

SecureSMX™

User’s Guide

Version 6.0.0

January 2026

by Ralph Moore
and

David Moore

© Copyright 2016-2026

Micro Digital Associates, Inc.
 (714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved.

smx is a registered trademark and SecureSMX is a trademark of Micro Digital, Inc.

SecureSMX is protected by patents listed at www.smxrtos.com/patents.htm and patents pending.

http://www.smxrtos.com/patents.htm

Table of Contents
PREFACE ..1

CHAPTER 1 INTRODUCTION ...3

1.1 How to Use This Manual ... 3
1.2 Partitioning .. 3
1.3 Advantages of Isolated Partitions .. 5
1.4 Hardware ... 5
1.5 Methodology ... 6
1.6 Security .. 6

1.6.1 The Increasing Need for Security .. 6
1.6.2 Protection Goals... 6
1.6.3 What You Need .. 7

1.7 SecureSMX Snapshot ... 7
1.8 SecureSMX Licensing ... 8

CHAPTER 2 BACKGROUND ..9

2.1 MMUs vs. MPUs .. 9
2.2 Cortex Micro Controller Units (MCUs) .. 10

2.2.1 Cortex-M .. 10
2.2.2 Cortex-M ARMM7 .. 11
2.2.3 Cortex-M ARMM8 .. 12

CHAPTER 3 GETTING STARTED ..13

3.1 Legacy Code .. 13
3.2 New Code ... 14
3.3 References .. 14

CHAPTER 4 BASIC THEORY ...17

4.1 Partitions and Tasks .. 17
4.1.1 What are Partitions? .. 17
4.1.2 Secure Boot .. 19
4.1.3 RTOS & System Services .. 19
4.1.4 The Vault ... 20
4.1.5 Mission Critical ... 20
4.1.6 utasks .. 20
4.1.7 ptasks .. 20
4.1.8 Parent and Child Tasks ... 20

4.2 MPU Control ... 22
4.2.1 Memory Protection Arrays and Tasks ... 22
4.2.2 MPU / MPA Relationship .. 23
4.2.3 Active Slots ... 24

4.2.4 Static Slots .. 25
4.2.5 Auxiliary Slots ... 26
4.2.6 MPU Slot Numbers & Region Overlaps.. 27
4.2.7 Task Stack Slot .. 27

4.3 MPA Templates .. 27
4.3.1 Creating and Loading MPAs .. 27
4.3.2 Using Parent and Child Tasks ... 29
4.3.3 Using ARMM7 MPU Subregions ... 30
4.3.4 Creating ARMM7 MPA Templates .. 32
4.3.5 Creating ARMM8 MPA Templates .. 33
4.3.6 Fast MPU Load .. 34
4.3.7 Template Errors ... 34
4.3.8 Standard Regions .. 35

4.4 Linker Command File .. 35
4.4.1 First Sections .. 36
4.4.2 Region Block Definitions ... 37
4.4.3 Block Ordering .. 38

4.5 Defining Sections ... 39
4.5.1 Section Prefixes ... 39
4.5.2 Command Line Switches .. 39
4.5.3 Section Pragmas .. 40
4.5.4 Template Macros ... 41
4.5.5 String Literals .. 41

4.6 Map Files ... 42
4.6.1 ARMM7 .. 42
4.6.2 ARMM8 .. 45
4.6.3 MpuMapper ... 46

4.7 Regions ... 47
4.7.1 Insufficient MPU Slots ... 47
4.7.2 Combined Regions .. 47
4.7.3 Common Regions .. 48
4.7.4 I/O Regions ... 49
4.7.5 I/O Regions Using Subregions .. 49

4.8 Interrupts and Exceptions ... 50
4.8.1 Priorities .. 50
4.8.2 Enabling ISRs and Exception Handlers to Run ... 50
4.8.3 Interrupts ... 51
4.8.4 Writing ISRs .. 52
4.8.5 Exceptions .. 53

4.9 SVC API .. 54
4.9.1 SVC Calls .. 54
4.9.2 SVC Call Mechanism .. 56
4.9.3 Restricted Services .. 57
4.9.4 Custom SSTs ... 57
4.9.5 Partially Restricted Services .. 60
4.9.6 Mixed Code Modules ... 60

4.10 Processor Control .. 61
4.10.1 smx Task Switching ... 61

4.10.2 From pmode to umode.. 62
4.10.3 Memory Protection Arrays, MPAs ... 63
4.10.4 What Good are ptasks? .. 65
4.10.5 Hacking a ptask ... 65

4.11 Dynamic Features ... 66
4.11.1 eheap and smx_Heap ... 66
4.11.2 The Need for Multiple Heaps ... 67
4.11.3 Allocating Heap Space.. 67
4.11.4 Creating a Heap ... 68
4.11.5 Heap Manager ... 69
4.11.6 Task Stacks .. 70
4.11.7 PSPLIM and MSPLIM ... 72
4.11.8 Task Local Storage ... 72
4.11.9 Dynamic Regions ... 73
4.11.10 Protected Data Blocks .. 74
4.11.11 Protected Messages ... 75

4.12 Miscellaneous .. 76
4.12.1 Standard C Library Functions .. 76
4.12.2 Partition Isolation vs. ucom Regions ... 78
4.12.3 HAL Code ... 78

CHAPTER 5 PARTITION PORTALS ..79

5.1 Introduction ... 79
5.1.1 Isolated Partitions .. 79
5.1.2 Function Call APIs ... 79
5.1.3 Partition Portals .. 80

5.2 Protected Messages .. 80
5.2.1 pmsg Structure ... 80
5.2.2 Sending a pmsg ... 81
5.2.3 Receiving a pmsg .. 83
5.2.4 Message Priority Inheritance .. 83
5.2.5 Dual MPA Slots for ARMM8 ... 83

5.3 Free Message Portal ... 84
5.3.1 Configurations .. 85
5.3.2 Portal Creation ... 86
5.3.3 Client Open ... 87
5.3.4 Client Operation ... 88
5.3.5 Server Operation .. 89
5.3.6 Client Close .. 90
5.3.7 Portal Deletion .. 91
5.3.8 More Flexible Operation.. 92

5.4 Tunnel Portal .. 92
5.4.1 Get pmsg (by client) .. 95
5.4.2 Create Portal (by server) .. 95
5.4.3 Open Portal (by client) .. 96
5.4.4 Open Portal (by server) ... 96
5.4.5 Send and Receive Data (by client and server) .. 97
5.4.6 Close Portal (by client) .. 99
5.4.7 Close Portal (by server) .. 99

5.4.8 Delete Portal (by server) ... 99
5.5 Shell Functions ... 100

5.5.1 Mapping Functions to Shell Functions .. 100
5.5.2 Creating a pmsg ... 101
5.5.3 Portal Server Operation .. 103

5.6 Sending Free Messages to Tunnel Portals.. 105
5.7 Other Portal Topics .. 107

5.7.1 Portal Access Delays and Priority Promotion .. 107
5.7.2 Portal Errors .. 108
5.7.3 Chained Portals .. 108
5.7.4 Server Callbacks .. 109
5.7.5 Who’s The Boss? ... 109
5.7.6 Client Data .. 109
5.7.7 Window Portal .. 109

5.8 Console Portal .. 110
5.9 Middleware Portals .. 111

5.9.1 smxFS.. 111
5.9.2 smxNS ... 114
5.9.3 smxUSBD .. 115
5.9.4 smxUSBH .. 116

5.10 Tunnel Portal Timeouts ... 117
5.10.1 Server Timeout... 117
5.10.2 Client Timeout .. 118
5.10.3 Client Recovery Methods ... 118

5.11 Portal Tips ... 119

CHAPTER 6 ADVANCED THEORY ...123

6.1 System Services .. 123
6.1.1 System Calls from pmode .. 124
6.1.2 System Calls from umode .. 125

6.2 Critical Sections ... 127
6.2.1 SecureSMX Object Priorities .. 127
6.2.2 Interrupt Disabling and Masking in Tasks .. 129
6.2.3 Other Methods to Protect Critical Sections .. 130

6.3 Cache Control .. 130
6.4 Porting SecureSMX ... 130

6.4.1 To Another Toolchain .. 130
6.4.2 To Another RTOS .. 131
6.4.3 To Another Processor ... 131

6.5 Runtime Limiting .. 131
6.5.1 Guidelines ... 131
6.5.2 Approach ... 133
6.5.3 Enabling Runtime Limiting .. 134
6.5.4 Adaptive Time slicing .. 135

6.6 Tokens ... 135

6.6.1 General .. 135
6.6.2 Blocking Excessive Creates ... 136
6.6.3 Handle Verification ... 137

6.7 Safe LSRs ... 137
6.7.1 The ISR Problem ... 137
6.7.2 LSR Types and Operation .. 137
6.7.3 Performance ... 139
6.7.4 Resulting Security .. 139

6.8 Task Privilege Levels .. 139
6.8.1 Description ... 139

CHAPTER 7 PARTITION DEMOS ..141

7.1 Getting Started ... 141
7.2 Creating an Isolated Umode Partition Demo ... 141

7.2.0 pd0 ... 142
7.2.1 pd1 ... 143
7.2.2 pd2 ... 145
7.2.3 pd3 ... 149
7.2.4 pd4 ... 151
7.2.5 pd5 ... 155
7.2.6 pd6 ... 155

CHAPTER 8 IMPLEMENTATION ..157

8.1 Planning .. 157
8.1.1 Security Plan .. 157
8.1.2 Reliability Plan .. 158
8.1.3 When to Add MPU Support .. 158

8.2 Project Approach ... 159
8.2.1 Legacy Code .. 159
8.2.2 New Code ... 161
8.2.3 Iterative Process .. 161
8.2.4 Keeping a Log and Backups .. 162

8.3 Working Base ... 162
8.3.1 Getting Started ... 162

8.4 Partitions ... 162
8.4.1 Creating Partitions ... 162
8.4.2 Partition Overlap .. 163
8.4.3 Using Region Tails ... 163
8.4.4 Partition Updating .. 164

8.5 Templates & Regions .. 164
8.5.1 Creating Templates ... 164
8.5.2 Code and Data Regions.. 165
8.5.3 I/O Regions ... 165
8.5.4 Too Many I/O Regions .. 165
8.5.5 MPU Region Details .. 167
8.5.6 ucom_code Region .. 168

8.5.7 Using TLS to Reduce Regions .. 168
8.6 Using the Linker ... 169

8.6.1 Block in Block ... 169
8.6.2 Initialized Variables .. 170

8.7 Tasks ... 170
8.7.1 Creating ptasks .. 170
8.7.2 Converting from ptask to utask .. 170
8.7.3 Dealing with Restricted and New Services .. 171
8.7.4 Dealing with Shared Code and Data... 171
8.7.5 Permanent ptasks .. 172
8.7.6 Using Child Tasks to Reduce Regions ... 172

8.8 Creating SVC Calls .. 174
8.9 Portals .. 174

8.9.1 Creating a Free Message Portal .. 174
8.9.2 Creating a Tunnel Portal ... 178
8.9.3 Tunnel Portal Client Shells and Server Cases for Most Calls ... 182
8.9.4 Tunnel Portal Data Block Transfers in Item Units ... 184
8.9.5 Data Block Transfer Considerations ... 185
8.9.6 Portal Configuration Settings ... 186

8.10 Miscellaneous .. 186
8.10.1 Heap Calls .. 186
8.10.2 Performance Measurements .. 187
8.10.3 Where Am I?... 187
8.10.4 Event Buffer .. 187
8.10.5 Reset Vector ... 187
8.10.6 ISRs and LSRs... 187
8.10.7 Critical Sections ... 188

8.11 Reducing Memory Waste for ARMM7 .. 189
8.11.1 Using MpuPacker .. 189
8.11.2 Reducing Block Tails ... 190
8.11.3 Reducing Region Block Gaps .. 190
8.11.4 Using Plug Blocks .. 191
8.11.5 Reducing Region Block Sizes .. 192
8.11.6 Restructuring Regions .. 192
8.11.7 Handling Aligned Blocks within Aligned Blocks... 192
8.11.8 Reducing code and data sizes... 193
8.11.9 Conclusion .. 194

8.12 Prerelease Checklist ... 194
8.13 Design Tips ... 195
8.14 Measurements ... 196

8.14.1 Size .. 196
8.14.2 General Performance .. 196
8.14.3 Thumb Drive Performance ... 197
8.14.4 SD Card Performance ... 198
8.14.5 ARMM7 Memory Waste.. 198

8.15 EWARM Tool Issues ... 199

CHAPTER 9 DEBUGGING ...201

9.1 Using Configuration Constants .. 201
9.1.1 SMX_CFG_SSMX ... 201
9.1.2 SMX_CFG_SSMX_ENABLE ... 201
9.1.3 MP_MPA_DEV ... 201
9.1.4 SMX_CFG_PORTAL ... 201
9.1.5 SMX_CFG_RTLIM ... 202
9.1.6 SMX_CFG_DIAG ... 202
9.1.7 SMX_CFG_TOKENS .. 202

9.2 Debugging Techniques ... 202
9.2.1 Keep a Debug Log ... 202
9.2.2 Buy a Tracing Tool ... 202
9.2.3 Finding MMFs ... 202
9.2.4 MMF Storms ... 203
9.2.5 Using Debugger Windows .. 203
9.2.6 The Handle Problem ... 204
9.2.7 Fixing an Easy MMF .. 204
9.2.8 Region Overlaps .. 205
9.2.9 Reversing Course .. 205
9.2.10 Portal Debugging ... 206

9.3 Using smxAware Security Features .. 207
9.3.1 MPU Display ... 207
9.3.2 MPA Displays ... 208
9.3.3 Tasks Display ... 208
9.3.4 Memory Map Window.. 208
9.3.5 Portal Events .. 209

9.4 Multitasking Issues .. 209
9.5 Pay Attention to Errors .. 209
9.6 Debug Tips .. 210
9.7 C-SPY Tool Issues .. 212

APPENDIX A.1 SECURESMX SERVICES ..213

mp_FPortalClose .. 213
mp_FPortalCreate .. 214
mp_FPortalDelete .. 215
mp_FPortalOpen .. 215
mp_FPortalReceive .. 216
mp_FPortalSend ... 216
mp_FTPortalSend .. 217
mp_MPACreate .. 218
mp_MPACreateLSR... 219
mp_MPUSlotLoad .. 220
mp_MPASlotMove .. 220
mp_MPUSlotSwap ... 221

mp_TPortalCall ... 222
mp_TPortalClose .. 223
mp_TPortalCreate .. 224
mp_TPortalDelete .. 224
mp_TportalOpen ... 225
mp_TPortalReceive .. 226
mp_TPortalSend ... 227
mp_TPortalServer .. 228
mp_RegionGetHeapR ... 230
mp_RegionGetHeapT .. 231
mp_RegionGetPoolR ... 231
mp_RegionGetPoolT ... 232
mp_RegionMakeR .. 233
mp_RegionMakeT .. 234

APPENDIX A.2 SMX PROTECTED BLOCK & MESSAGE SERVICES235

smx_PBlockGetHeap ... 235
smx_PBlockGetPool .. 236
smx_PBlockMake ... 237
smx_PBlockRelHeap ... 238
smx_PBlockRelPool ... 238
smx_PMsgGetHeap ... 239
smx_PMsgGetPool .. 240
smx_PMsgMake ... 241
smx_PMsgReceive .. 242
smx_PMsgReceiveStop .. 243
smx_PMsgRel ... 244
smx_PMsgReply ... 245
smx_PMsgSend .. 246
smx_PMsgSendB ... 247

APPENDIX B: LINKER COMMAND FILES ...249

ARMM7 .. 249
ARMM8 .. 252

APPENDIX C: GLOSSARY ..257

APPENDIX D: SMX API LIMITATIONS..259

Table of Figures

FIGURE 1.1 NON-PARTITIONED SOFTWARE ... 4
FIGURE 1.2 PARTITIONED SOFTWARE .. 4
FIGURE 2.1 MPU OPERATION ... 11
FIGURE 4.1 PARTITIONS .. 17
FIGURE 4.2 SECURE BOOT AND STARTUP ... 19
FIGURE 4.3 PARENT AND CHILD TASKS .. 21
FIGURE 4.4 MPA TEMPLATES, MEMORY PROTECTION ARRAYS, AND TASKS 22
FIGURE 4.5 MPU / MPA ALIGNMENT ... 24
FIGURE 4.6 USING EXPANSION SLOTS ... 26
FIGURE 4.7 TEMPLATE LOADED INTO MPAS .. 28
FIGURE 4.8 USING ARMM7 SUBREGION OVERLAYS ... 31
FIGURE 4.9 REGION WITH SUBREGION 5-7 DISABLES ... 37
FIGURE 4.10 MINIMAL INTERRUPT PROCESSING .. 51
FIGURE 4.11 TASK INTERRUPT PROCESSING ... 52
FIGURE 4.12 SYSTEM CALLS .. 56
FIGURE 4.13 MPA FOR PTASK .. 63
FIGURE 4.14 MPA FOR UTASK .. 64
FIGURE 4.15 DEDICATED HEAP FROM MAIN HEAP ... 68
FIGURE 5.1 DESIRED ISOLATION BETWEEN PARTITIONS .. 79
FIGURE 5.2 LOSS OF PARTITION ISOLATION ... 79
FIGURE 5.3 PARTITION ISOLATION USING FS PORTAL P ... 80
FIGURE 5.4 PROTECTED MESSAGE STRUCTURE ... 81
FIGURE 5.5 PMSG TRANSFER... 82
FIGURE 5.6 FREE MESSAGE PROTOCOL CONFIGURATIONS .. 85
FIGURE 5.7 TUNNEL PORTAL .. 93
FIGURE 5.8 TUNNEL PORTAL OPERATION ... 94
FIGURE 5.9 MULTIBLOCK SEND ... 98
FIGURE 5.10 SHELL FUNCTIONS .. 101
FIGURE 5.11 PMSG FORMAT ... 102
FIGURE 5.12 SMXFS PORTAL .. 112
FIGURE 5.13 SMXFS AND SMXUSBH MASS STORAGE CHAINED PORTALS 112
FIGURE 5.14 SMXUSBD MASS STORAGE PORTAL .. 113
FIGURE 5.15 SMXNS TRANSPORT LAYER (HI/LO) PORTAL .. 114
FIGURE 5.16 SMXUSBD MOUSE PORTAL .. 115
FIGURE 5.17 SMXUSBD SERIAL PORTAL .. 115
FIGURE 5.18 SMXUSBH FTDI232 SERIAL PORTAL ... 116
FIGURE 6.1 SYSTEM CALL FROM PTASK .. 124
FIGURE 6.2 SYSTEM CALL FROM UMODE ... 125
FIGURE 6.3 SYSTEM HIERARCHY .. 127
FIGURE 6.4 RUNTIME LIMITING .. 133
FIGURE 6.5 TOKENS .. 135
FIGURE 8.1 CONVERTING PTASKS TO UTASKS ... 160

1

Preface

Adding security to an embedded system increases its complexity and may increase its
development time. However, adding isolated partitions with limits has some offsetting
advantages such as easier system integration and easier debugging, resulting in:

1. Little or no increase in actual development time.
2. Better products.
3. Reduced future security problems.

SecureSMX can be viewed as a different way to develop microcontroller-based applications. It
provides a methodology in which software is modularized, then modules are placed into isolated
partitions, and those are moved into unprivileged mode (umode). Partitions are allowed to access
only a restricted set of system services and tokens are required to access smx objects in order to
perform kernel services. Token control is strictly within SecureSMX and cannot be compromised
from umode. Communication between partitions is restricted to standardized portals. All
limitations are hardware-enforced.

SecureSMX provides a toolbox containing many tools to deal with security problems. It is not a
one-size-fits-all solution. In fact, it is specifically aimed at not requiring that trusted code be
modified. Instead, it is aimed at partitioning untrusted and vulnerable software into isolated
partitions and then imposing limitations so that malware in those partitions cannot harm the rest
of the system. Whereas designing security in from the start is the best approach, SecureSMX also
supports incremental security improvement of existing products.

SecureSMX currently supports MCUs with Memory Protection Units based upon the Cortex-M
v7 and v8 architectures. These account for about 80% of all MCUs currently being produced.

3

Chapter 1 Introduction

1.1 How to Use This Manual

The next three chapters of this manual cover the theory of the SecureSMX methodology. Chapter
4 covers the features of SecureSMX. Chapter 5 presents portals, which you may not need until
late in your project. Chapter 6 presents advanced theory, which you may not need at all.

We recommend reading the introductory material, scanning the theoretical material to see what is
there, then going on to Chapter 7. Chapter 7 is based upon a series of demos, which can be
downloaded from www.smxrtos.com/securesmx, and which are designed to get you going as
quickly as possible. You can refer back to the theory chapters when you need more details.

Chapter 8 provides much needed debug help. Appendix A is the API reference for SecureSMX,
Appendix B is a complete linker command file, and Appendix C is a glossary of special terms
used in this manual.

Although the SecureSMX methodology is not rocket science, it is probably much different than
what you are used to. Hence, studying the theory sections, as needed, will avoid misconceptions
about how things actually work.

1.2 Partitioning

SecureSMX adds strong security and reliability to the SMX RTOS. It is a next generation RTOS
that provides tools and methods to improve the security of systems using Micro Controller Units
(MCUs) with Memory Protection Units (MPUs). SecureSMX currently supports ARM Cortex-M
MCUs. It facilitates dividing embedded software into isolated partitions through the use of the
processor’s memory protection unit (MPU) and its privilege levels.

Figure 1.1 shows typical embedded system software. Everything is jumbled together. If a hacker
gains access anywhere, he has access everywhere. Likewise, a bug anywhere in the system
jeopardizes the whole system.

Chapter 1

4

USBH

I/O

RTOS

App1

App3

Figure 1.1 Non-Partitioned Software

Figure 1.2 shows the same embedded system software after partitioning.

App1 App2

SECURITY RTOS Mission
Critical

File
System

Network-
ingUSBH

App3

Initializa-
tion

I/OVault

Figure 1.2 Partitioned Software

Because the above partitions are fully isolated from each other, by hardware, if a hacker gains
access to one partition, he cannot gain access to other partitions. Hence he can only disable the
partition that he has penetrated and he cannot obtain keys and critical information contained in

Introduction

5

the Vault and other partitions. Likewise, a bug in one partition can damage only the operation of
that partition. In both cases, system monitoring software can be alerted and it can take corrective
action as well as notifying the operator or a monitoring center. In the above figure, App3 may be
in pmode because it needs direct access to system services or needs maximum performance.

1.3 Advantages of Isolated Partitions

Dividing embedded system software into isolated partitions has the following benefits:

1. Much better security from hackers.

2. Higher reliability and safety.

3. Isolation of low-quality or unknown-quality software.

4. Better plug-in modularity.

5. More disciplined design.

6. Immediate detection of null and wild pointers and stack and buffer overflows.

7. Easier incorporation of legacy software, due to enforced modularity.

8. Partition-only reboot rather than system reboot for recovery.

9. Support for partition-only updates.

Security and Reliability are two sides of the same coin. In the former, hacks are deliberate; in the
latter, bugs and malfunctions are accidental. However, both damage system operation, and
measures that improve one tend to improve the other. Partitions are often subsystems that
perform specific functions, e.g. file systems, networking systems, etc. Hardware enforcement of
full isolation enforces modular designs and better module reusability in future systems.
Hardware enforcement of better design practices is also desirable. Partial reboots and partial
updates save time. These are all good reasons for partitioning.

1.4 Hardware

SecureSMX utilizes the following security features of the Cortex-M ARMM7 and ARMM8
architectures:

1. Memory Protection Unit (MPU).

2. Privileged and Non-privileged processor levels.

3. SVC Exception.

The methodology presented in this manual is the same for both processor architectures. Hence it
can be applied to families of products that use both architectures and it permits smooth migration
from ARMM7 to ARMM8. The only difference is that the ARMM7 MPU is more difficult to
support, however SecureSMX provides methods to overcome its problems. SecureSMX does not
require ARMM8 TrustZone in order to provide high security and protection from attacks and

Chapter 1

6

software bugs. For ARMM8, it runs in the non-secure state, but it could run in the secure state, if
preferred.

In the code and in this manual, ARMM7 represents ARMv7-M and ARMM8 represents
ARMv8-M.

1.5 Methodology

As evidenced by the breadth and depth of this manual, SecureSMX presents a comprehensive
methodology for the design of high-security embedded systems. This new methodology is quite
different from doing things the old way. Be prepared to learn some new tricks. The theoretical
aspects of the new SecureSMX methodology are explained in chapters 2 through 6.

Full partition isolation requires the following:

1. Limiting code, data, and I/O region access via the MPU.

2. Restricting access to system services via the SVC exception.

3. Dedicated heap for each partition that requires a heap.

4. Portals for communication between partitions.

5. Runtime, service, and object access limitations.

Chapters 7 and 8 cover the design and debug techniques necessary to partition embedded system
software. Refer to the Glossary for unfamiliar terms.

1.6 Security

1.6.1 The Increasing Need for Security
Most embedded systems have little or no security built in, yet they are being connected into the
Internet of Things (IoT) at a rapid pace. As a consequence, once isolated, defenseless embedded
systems are becoming accessible via the Internet. This makes it much easier for hackers to gain
access and to do damage, not only to the devices, but also, through them, to entire systems.

1.6.2 Protection Goals
The primary goal of protection is to protect trusted, critical software and data from less-trusted,
non-critical software, which has become infected with malware or is buggy. Examples of trusted
software are: the RTOS kernel, exception handlers, security software (e.g. crypto, authentication,
secure boot, and secure update), and mission-critical software. Examples of less-trusted software
are: code vulnerable to malware attacks such as: protocol stacks, device drivers, software of
unknown pedigree (SOUP), and insufficiently tested new code.

The secondary goal is to detect intrusions and bugs and shut them down so that critical system
operation is not imperiled, and sensitive data is not stolen. Dealing with intrusions and bugs may
be handled by stopping and restarting a penetrated partition or may require stopping and
rebooting the entire system.

Introduction

7

The tertiary goal is to minimize the amount of trusted code that must be written, since it is more
difficult to write trusted code. Code that is less trusted can be run in unprivileged mode (umode)
partitions, which are strongly isolated from trusted code partitions. This insures that failures or
hacking of less-trusted code will not impair the critical function of the system – e.g. to keep a
patient alive or to control a dangerous machine.

The degree of protection that must be implemented depends upon the security and safety
requirements of a specific system and the threats to which it may be exposed. SecureSMX
provides a range of security tools that enable achieving a level of protection appropriate for a
given system. And security can be steadily improved, in future releases, as a system becomes
more widely distributed and therefore more likely to be attacked. SecureSMX is structured to
foster progressive security improvement.

1.6.3 What You Need
SecureSMX is not a complete security solution. You also need:

1. Secure boot.

2. Secure update.

3. System monitoring.

SMX middleware products do provide crypto and authentication software.

1.7 SecureSMX Snapshot

The main things SecureSMX does to achieve better security and reliability in a multitasking
system are as follows:

1. Allow defining different MPU regions for each task.

2. Perform MPU region switching during task switches.

3. Automatically generate regions from linker command files.

4. Provide a Supervisor Call (SVC) API to allow unprivileged code (ucode) to call system
services, as well as to limit which services can be called from ucode1.

5. Allow allocation of protected blocks and messages.

6. Run mission critical code trusted code in privileged mode (pmode) tasks and partitions.

7. Run middleware and application code in unprivileged mode (umode) tasks and
partitions.

8. Run the SMX RTOS kernel APIs, LSRs, ISRs, scheduler, error manager, and other
system services in hmode.

1 See Appendix D: SMX API Limitations.

Chapter 1

8

9. Provide protection for both ptasks and utasks.

10. Individually protect task stacks.

11. Provide portals for communication and operations between fully isolated partitions.

12. Provide runtime limiting.

13. Control system object accesses via tokens.

14. Allow tasks to have privilege levels.

15. Provide a method to move most ISR code into a umode partition.

SecureSMX has had these principal design goals:

1. To enable developers to achieve high security for their systems.

2. To support incremental security improvement for existing systems as well as to provide a
security base for new systems.

3. To provide a flexible solution that permits achieving the right level of security for a
given system.

1.8 SecureSMX Licensing

SecureSMX is made available under the Apache License, Version 2.0. It is protected by several
U.S. patents, which are listed in smx.h, and patents pending. A patent license is granted
according to the Apache License for the use of SecureSMX in OEM products but not to remove
and integrate code with another OS, RTOS, or kernel. This is only a summary of intent; please
see the actual license terms in license.txt and apache2.txt in the release and the comment block at
the top of each source file.

Support and contracting services are available from Micro Digital at support@smxrtos.com.

9

Chapter 2 Background

2.1 MMUs vs. MPUs

Memory Management Units (MMUs) are used with full Operating Systems (OSs), such as Linux
and Windows to provide isolated virtual memories for processes. Processes are independently
compiled and linked and then individually loaded and run by the OSs. Process to process
isolation is good enough that if a process becomes infected by malware or starts malfunctioning,
for any reason, the OS can usually shut it down with little or no damage to other processes nor to
the system, itself. Hence, security is good, with regard to infected processes. The use of MMUs
is well-studied and well-understood. A downside to using MMUs is that they typically require
high-performance processors and very large memories.

High-performance, power-hungry, expensive processors and very large memories are not
compatible with the requirements for most embedded systems. In addition, full OSs do not have
the response times needed for many real-time applications. Most embedded systems use low-
cost, low-power, moderate-performance Micro Controller Units (MCUs) controlled by Real
Time Operating Systems (RTOSs). Embedded systems usually have meager memories and
processors compared to full OS systems. For security, many MCUs offer Memory Protection
Units (MPUs); these are faster than MMUs but not capable of creating virtual address spaces.
Instead, they allow dividing memory into isolated regions within a single address space.

In most embedded systems, we deal with partitions instead of processes. The idea is basically
the same – partitions include one or more tasks and perform specific functions for a system. Just
like processes, it is desirable to isolate partitions from each other so that if one partition is
infected with malware or begins malfunctioning, it can be stopped with minimal damage to the
rest of the system. Unfortunately, this is not as easy to accomplish with MPUs as it is with
MMUs.

The biggest challenge is that all MCU software is compiled and linked into a single executable
that runs in a single address space. Also, MPUs impose limitations of their own. The use of
MPUs for security is not well-studied, nor well-understood, and there are many complex
tradeoffs involved, especially due to the above limitations of embedded systems and the need for
deterministic real-time performance.

An advantage of MPUs over MMUs is that switching from one partition or process to another is
faster. In MMU systems it may be difficult to meet response time requirements. Such systems
are usually referred to as soft real-time systems as opposed to hard real-time systems
implemented with MCUs.

Chapter 2

10

2.2 Cortex Micro Controller Units (MCUs)

2.2.1 Cortex-M
The Cortex-M processor architecture, which includes ARMM7 and ARMM8, offers the
following security features:

1. Privileged and Unprivileged levels of processor operation.

2. Supervisor Call (SVC) Instruction.

3. Memory Protection Unit (MPU).

The first is implemented via the three modes of processor operation:

1. Handler Mode: Privileged mode for ISRs, fault handlers, the SVC handler, and the
PendSV handler. This mode can be entered only via an interrupt or an exception. We
refer to handler mode and any non-task, privileged code that uses the main stack as
being in hmode.

2. Privileged Thread Mode: Privileged tasks (ptasks) run in this mode. It can be entered
only from handler mode, by setting CONTROL.nPRIV = 0. We refer to this as pmode.

3. Unprivileged Thread Mode: Unprivileged tasks (utasks) run in this mode. It can be
entered from either of the above two modes, by setting CONTROL.nPRIV = 1. We refer
this as umode.

The p prefix can be interpreted either as privileged or protected and the u prefix can be
interpreted as either unprivileged or user. Code and tasks that run in pmode are called pcode and
ptasks; code and tasks that run in umode are called ucode and utasks.

An important aspect of the Cortex-M architecture is that pmode can be entered only via an
interrupt or an exception. The SVC N instruction causes an exception. It can be executed from
umode with an 8-bit argument, N. This allows making a system call from umode where N
specifies the function to call. The called function executes in pmode and returns its result to the
umode caller transparently. The SVC N instruction can also execute from pmode, which is
helpful for migrating a partition from pmode to umode.

The MPU provides N slots for N regions. Each region has a starting address, a size, and access
parameters, such as Read-Only (RO), Read/Write (RW), eXecute Never (XN), etc. If a memory
access is not permitted by a region in the MPU, a Memory Manage Fault (MMF) is generated.
The MMF is an exception that causes the MMF Handler to run. It normally stops or deletes the
faulting task and initiates recovery.

Background

11

Task

R0

R1

R2

R3

Task
Code
RO

Common
Code
RO

Data
RW, XN

Stack
RW, XN

Rejects

MPU

Memory

Addr

Data

TLS

MMF
Handler

MMF
Handler

Figure 2.1 MPU Operation

Figure 2.1 shows a simplified MPU with only 4 slots. Most MPUs have 8 slots, some have 16.
The region stored in R0 is a Read Only (RO) region for task code. R1 is an RO region for code
that is common with other tasks. R2 is a Read/Write (RW) and eXecute Never (XN) region for
data. R3 is the task stack, which is also RW and XN. Also shown also is optional Task Local
Storage (TLS) that can be part of the task stack region and which can be used for local task data,
such as a buffer.

Probably, the biggest drawback of the Cortex-M MPU is insufficient slots. Nearly all Cortex-M
processors have 8-slot MPUs. This would seem to be enough, but actually 10 or 12 would be
better. SecureSMX provides several methods to deal with this problem

2.2.2 Cortex-M ARMM7
The ARM Cortex-M ARMM7 processor architecture was introduced in 2005 and was intended
for medium-size embedded systems. Since then, thousands of different Cortex-M ARMM7 based
Micro Controller Units (MCUs) have been developed by the semiconductor industry; they are
used in tens of thousands of products developed by device manufacturers; and billions of chips
have been shipped to date. It is by far the most dominant MCU architecture (70% market share)
and hence the one we have supported first.

Chapter 2

12

A serious limitation of the ARMM7 MPU is that region sizes must be powers-of-two and regions
must be aligned on their size boundaries. This tends to result in substantial memory waste, which
is probably why this MPU has been very unpopular and seldom used in embedded systems.
However, we have found several methods to deal with this problem and to reduce memory waste
to acceptable levels, thus opening up this MPU to serious use for security improvement.

Each region is divided into 8 subregions and each subregion can be individually disabled. This
permits overlapping the unused portion of one region with another region and is one method
used by SecureSMX to reduce memory waste.

2.2.3 Cortex-M ARMM8
The Cortex-M ARMM8 architecture was announced several years ago. It requires that region
sizes and alignments only be multiples of 32 bytes. This effectively eliminates the memory waste
problem of the ARMM7 architecture. However, the number of MPU slots is unchanged, and a
new problem has been introduced: region overlap is not permitted. This is a serious and
unnecessary break with the ARMM7 architecture. It creates an obstacle to porting software from
one to the other and causes increased complexity, as is discussed in later sections.

The Cortex-M ARMM8 architecture also offers a new feature called TrustZone®, which permits
secure and non-secure states. TrustZone secure state may good for storage of keys and other
private data. However, running code in secure state may not be worth the extra code complexity
and debug difficulty. In addition, we believe that most device manufactures will want a security
solution that works with both ARMM7 and ARMM8 processors. Therefore SecureSMX does not
require nor support TrustZone.

13

Chapter 3 Getting Started

SecureSMX supports both upgrading legacy code security and providing a secure foundation for
new code. We start with legacy code.

3.1 Legacy Code

Often, in an existing system, there are one or more portions of the code that present security
problems. It might be, for example, a networking stack that was recently added to the system or a
third-party software package that is of unknown quality.

The first step is to get the entire system running in pmode with the MPU on. This process is
described, in detail, in section 7.2 Creating an Isolated Umode Partition Demo. Briefly, it
consists of using default regions that permit access to all memory and I/O for all tasks. The MPU
is not actually doing anything at this point, but the entire application has been put into what we
call the main partition and it will continue to run normally.

The next step is to define a partition for the problem code, its data, and I/O. This partition must
have at least one task. Then define code, data, and I/O regions for the partition that are limited to
the partition. These regions are loaded into the MPU whenever a task in the new partition runs.
In addition, by including the xapiu.h file, all system service calls are routed through the SVC
exception API. Now the MPU will prevent these tasks from accessing code, data, and I/O in the
main partition, thus protecting it. The final step is to move the partition into umode, thus putting
it into a secure sandbox.

Of course, the actual process it a bit more complicated. It is detailed in Chapter 7 Partition
Demos pd0 to pd4 and accompanied with demos for each step. “pd” means “partition demo”.
However, the process is not overly difficult, as is shown by the demos. The main partition is
largely unchanged and runs as it always has. Putting vulnerable code into an isolated partition
also requires very little code change nor understanding of it.

In order for the new partition and the main partition to communicate and call services in each
other, it may be necessary to implement a portal between them. See Chapter 5 Partition Portals.
SecureSMX enables this to be done with little change to the code in either partition.

Once the above baseline has been achieved, it may be desirable to divide the main partition into
smaller partitions and possibly move some of these into umode. These changes will improve
security, safety, and reliability of the system. SecureSMX fosters doing security changes in an
incremental manner and it also fosters migrating security changes into the next generation
system. SecureSMX has been designed so that the same techniques are generally applicable
when migrating from a ARMM7 processor to a ARMM8 processor. Thus it is possible to
develop a single security plan covering both architectures for both old and new systems.

Chapter 3

14

3.2 New Code

For new code, all partitions should be identified from the outset as well as determining which
mode they are to run in. Although the approach can be taken of getting new code running in
pmode then converting it to umode, we recommend writing the code for the intended mode from
the beginning. This is no harder and saves many steps. Of course, there may be some legacy
code, which may need to be moved to umode.

With new code, there is much more freedom to partition the code in a manner that makes sense
for security, safety, and reliability. Generally, the approach is to define partitions along
functional lines – i.e. each partition performs a subfunction of the system. Usually a single task is
defined per partition. This task may become the parent task for child tasks that perform functions
for the parent.

Due to limitations such as the SVC API for system services and the need for portals, utasks run
more slowly than ptasks. Hence, mission-critical, high performance code may be left in pmode.
Also security code, as illustrated in Figure 1.2, is left in pmode. Middleware, stacks, device
drivers, and vulnerable code should run in umode, where it can be best isolated from other
partitions. In cases where the inherent process is slow (e.g. serial communication, file IO, etc.)
the overhead of umode is often negligible compared to the operation time.

The next step is to identify portals. SecureSMX supports tunnel portals for large data transfers
(e.g. file I/O) and free message portals for commands and small data transfers. As part of
defining portals, some partitions are identified as servers and others as clients. Portals can cross
the umode/pmode boundary (see Figure 1.2) in either direction, so that is not a concern. They
utilize protected messages, pmsgs, which are regions in themselves.

Not previously mentioned are heaps. A heap cannot be shared between isolated partitions.
Hence, each partition needing a heap must have its own heap. SecureSMX includes eheap, which
is designed for embedded systems and which supports multiple heaps in a simple manner. eheap
can be configured to support a large range of heaps from simple and small to large and complex.

3.3 References

The following references should be on hand when reading this manual and when converting to
SecureSMX (1 – 5 are Micro Digital manuals):

1. smx Reference Manual.
2. smx User’s Guide.
3. smxBase User’s Guide.
4. smxAware User’s Guide.
5. Middleware manuals, as needed.
6. The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Memory

Protection Unit chapter, by Joseph Yiu, Elsevier Inc, 2014.
7. ARMv7-M Architecture Reference Manual, ARM Ltd. or

ARMv8-M Architecture Reference Manual, ARM Ltd.

Getting Started

15

8. ARM Platform Security Architecture Overview, ARM Ltd. 2017, for security term
definitions.

9. IAR EWARM Manuals.

17

Chapter 4 Basic Theory

4.1 Partitions and Tasks

4.1.1 What are Partitions?
Unlike specific code and data objects, which reside at specific locations in memory, a partition is
an abstract object consisting of the union all MPU regions that the partition’s tasks are allowed to
access. These are normally contained in a single partition template and are assigned to the
partition’s tasks as needed. The reason for this is the 8-slot limitation of most MPUs. A partition
may need more than 8 regions. This can be handled by defining tasks that each perform a portion
of the partition’s job and thus can operate within 8 regions.

App1 App2

SECURITY Mission
Critical

File
System

Network
Stack

USB
HostApp3

Vault

pmode

umode

pmode barrier

hmode
RTOS &

Sys. Serv.
ISRs &
LSRs

Exception
Handlers

Boot &
Initialize

Figure 4.1 Partitions

Figure 4.1 illustrates the software structure we are trying to achieve for security. In this diagram,
ovals represent isolated partitions, and rectangles represent just code. The partitions above the
heavy line run in umode, and the partitions below the heavy line run in pmode. The pcode runs in
hmode. The heavy line represents the boundary between unprivileged operation and privileged
operation and is called the pmode barrier. This isolation is enforced by the Cortex-M processor.

Chapter 4

18

Above the heavy line are three application partitions and three middleware partition. The goal is
to achieve isolation of each partition from all others. Then breaking into a partition does not
enable a hacker to access other partitions and thus the breach is contained. Each umode partition
contains one or more utasks. The utasks form the basis of isolation from tasks in other partitions,
but not from tasks in their own partition. umode partitions are capable of strong isolation. Hence,
vulnerable code such as drivers, middleware, and application code should be put into umode
partitions.

Below the heavy line are the Mission Critical and Security partitions. The first is likely to consist
of multiple tasks which perform the main function of the system, such as controlling a machine
or acquiring data. This code is probably field-proven, tightly written code that nobody wants to
change. By running in pmode, it is strongly protected from umode code by the pmode barrier and
requires minimal change. It is similar for the security partition. Isolation between pmode
partitions is not as strong as that between umode partitions2. Hence pmode partitions should
contain only trusted code.

The hmode code runs using the main stack and does not utilize tasks. Secure Boot runs in a task-
free environment following power up or system reset. RTOS & System Services includes smx
and other needed system services. Exception handlers run in hmode. Unfortunately, so do ISRs
and LSRs.

2 It is expected that malware cannot breach pmode. If it does, it can access anything in the system by simply
disabling the MPU.

Basic Theory

19

4.1.2 Secure Boot
When the system powers up or is reset, the processor comes up in hmode, and it is in the Secure
Boot code.

Processor
Init

RAM Clear
& Init

Authen &
Load Code

Main Heap
Init

C++
Initializers

System
Init

Create
tasks

Start
Scheduler

Run
Tasks

Power On

pmode

T1 T2 Tm Tn

Figure 4.2 Secure Boot and Startup

As illustrated in Figure 4.2, secure boot software does basic hardware and software initialization,
and it loads code, if necessary. SMX startup code takes over at this point. It initializes the smx
kernel and heaps, creates the tasks necessary to start operation, and then starts the scheduler.
Prior to starting the scheduler no tasks are running. After starting the scheduler, the system is
running only tasks. Partitions do their own initializations. Both for structural and security
reasons, it is best to minimize the secure boot code. Secure boot loaders are available from many
sources; SecureSMX does not include a secure boot loader.

4.1.3 RTOS & System Services
RTOS & System Services contains the SMX RTOS kernel and system services, such as error
management and error recovery code. This code runs in hmode when called from utasks and in
pmode when called from ptasks.

Chapter 4

20

4.1.4 The Vault
The Vault is where we store encryption keys, passwords, authentication codes, certificates, etc. If
pmode is breached, the Vault springs open and the Kingdom is lost. Therefore, protecting the
Vault is of paramount importance, and thus only the security partition, which contains crypto,
authentication, and other security code, is allowed to access the Vault.

4.1.5 Mission Critical
The mission critical partition(s) contains application ptasks which perform the main functions of
the system. As explained in the legacy code section, this code has probably been used in prior
systems and represents many years of development and testing. Typically this code is not the
security problem and thus requires very little modification – mostly getting it running with the
MPU.

Unfortunately, ISRs and LSRs, which are part of the mission critical code, run in hmode using
the main stack. If hacked, the hacker can easily turn off the MPU and access whatever he wants.
If the ISRs and LSRs have been carefully written and employ minimal code, they may not be a
problem. See section 4.8.3 Interrupts for more discussion.

4.1.6 utasks
utasks provide most secure isolation. This is primarily because they cannot access the MPU nor
change the CPU privilege level. The MPU is loaded with the regions that a utask is allowed to
access, including access permissions (e.g. read-only, execute never, etc.) for each region. This is
done by the smx scheduler when the utask is dispatched. Generally speaking, it is preferrable for
utasks to interface to the outside world since they are more strongly isolated than ptasks.

4.1.7 ptasks
As with utasks, the MPU is loaded with regions that the ptask is allowed to access when it runs.
Unfortunately, security provided by ptasks is weak compared to utasks. This is because if a ptask
is breached, only one instruction is required for malware to either turn off the MPU or to turn on
its Background Region (BR). Unfortunately, the MPU is defenseless in pmode.

However, ptasks may help to thwart an attack by catching certain hacking techniques (e.g. stack
or buffer overflow, attempted execution from a stack or buffer, etc.) and thus trigger an MMF
before a hacker gains control. The MMF handler can then stop or delete the ptask under attack,
then restart it — hopefully with only a small hiccup in system operation.

ptasks are just as capable as utasks to catch bugs and to prevent them from causing harm. Hence,
ptasks are helpful for increasing system safety and reliability.

4.1.8 Parent and Child Tasks
A hacker could cause a great deal of trouble if he could create, delete, start, and stop tasks from a
umode partition that he had penetrated. Hence, it would appear that task services should not be
permitted in umode, only in pmode.

Unfortunately, this does not always work well, especially if converting legacy code. To require
that all tasks be created during pmode initialization can result in significant restructuring of
software, which we want to avoid. Embedded systems are dynamic, and in many situations tasks

Basic Theory

21

must be created as they are needed in order to deal with real world events as they occur. For
example, tasks may be created as USB devices are plugged in, and the tasks may be deleted
when the USB devices are unplugged. As another example, some USB controllers can be
switched between host and device modes, thus requiring one USB stack to be disabled and the
other to be enabled. In order to minimize the use of resources, this may be implemented by
deleting one set of tasks and creating another.

Normally, a partition has one main task, which is created in pmode and which initially runs in
pmode to perform certain partition initializations, including spawning child tasks. The task then
switches itself into umode, where it starts its child utasks and possibly creates and starts others.
Figure 4.3 illustrates a task family. Note that child tasks can create other child tasks, thus
becoming parents of those children. This provides the flexibility needed for dynamic system
configuration and control.

Parent Task

Child A
Task

Child B
Task

Child C
Task

Figure 4.3 Parent and Child Tasks

A parent utask can create, start, stop, delete and perform other functions on its child tasks. It
cannot perform these functions on its own parent nor its siblings and their children. In addition to
this, a child inherits its parent’s mode, MPA template, and limitations. In addition, its priority
cannot be higher than its parent’s priority. Basically, a child can do only what its parent can do.
As will be discussed later, the ability to create child tasks is helpful to overcome MPU slot
limitations. Parent, child, and sibling tasks are discussed further in section 4.3 MPA Templates.
Also see Appendix D: SMX API Limitations.

The rules governing parent and child tasks are as follows:

1. A ptask creates a utask by specifying the SMX_FL_UMODE flag when it creates the
utask. However, it cannot create a child utask, because the child utask could then access
whatever the parent ptask could access.

2. A ptask creates a child ptask by specifying the SMX_FL_CHILD flag when it creates the
ptask. Child ptasks are useful when developing a pmode partition that will become a
umode partition. They also are useful for reducing MPU regions required per ptask.

3. A ptask creates a normal ptask if neither flag is specified when it creates the ptask – i.e. it
is neither a parent nor a child.

Chapter 4

22

4. Specifying both SMX_FL_UMODE and SMX_FL_CHILD causes an SMXE_INV_PAR
error.

5. A child ptask can only create another child ptask, and it becomes the child’s parent. In
this case, the SMX_FL_CHILD flag need not be specified.

6. A task created by a utask is always a child utask, and the creating task becomes its parent
task. The SMX_FL_UMODE and SMX_FL_CHILD flags are ignored, in this case.

7. In the case where a parent task creates a child task, which in turn, creates another child
task, the first parent task is referred to as the top parent task, and subsequent parent tasks
are referred to as parent tasks. Top parent tasks are important for runtime limiting and
tokens.

4.2 MPU Control

4.2.1 Memory Protection Arrays and Tasks
As shown in Figure 4.4, smx has a Task Table consisting of a task control block (TCB) for each
task that has been created. This table is not in a fixed order, but rather in the order in which tasks
were created.

TCB0
MPA0

MPA1

MPA2

MPA3

mpa_tmplta

mpa_tmpltb

TCB1

TCB2

TCB3

Task Table
Memory Protection

ArraysMPA Templates

TCB4
MPA_DFLT

Figure 4.4 MPA Templates, Memory Protection Arrays, and Tasks

Basic Theory

23

Each task also has its own Memory Protection Array (MPA), which is loaded into the MPU when
the task starts to run. Hence, each task has its own regions in the MPU when it is running. This
applies to both ptasks and utasks.

Each MPA is an array of structures. For ARMM7, each element of this array is a structure
consisting of two 32-bit fields named rbar and rasr that are exact copies of the MPU RBAR and
RASR registers in each MPU slot, except that the valid bit is set in rbar, but not in RBAR. For
ARMM8, the fields are named rbar and rlar and are exact copies of the MPU RBAR and RLAR
registers in each MPU slot.

If MP_MPA_DEV is set, an additional name field is present in the MPA structure. This name
field allows assigning a unique name to every region (e.g. “taskA_code”), which is helpful
during debugging. The name appears in the smxAware MPU and MPA displays and in the
debugger watch window when looking at MPA slots.

As shown in Figure 4.4, MPA Templates determine the contents of the MPAs. A template may
be shared between MPAs, as shown for MPA0, 1, and 2. This would be the case for tasks within
the same partition. In this case, the tasks are likely to have some unique regions and to share
other common regions. Alternatively, a task may have its own template, as shown for TCB3. In
this case, the task has its own code and data regions.

When a task is first created, it is assigned a default MPA, as shown for TCB4. For the debug
version, the default MPA usually consists of super regions that permit access to all memory in
use. This way a task can be debugged without being concerned about the exact regions it needs.
For the release version of an application, the default MPA normally contains all NULL regions.
Thus if a task has not been assigned an MPA, it cannot run.

Task creation usually is implemented as in the following example:

 ut2a = smx_TaskCreate(SR04_ut2a, TP2, TS_SSZ, SMX_FL_UMODE, "ut2a");
 mp_MPACreate (ut2a, &mpa_tmplt_ut2a, tmsk, msz);

This creates task ut2a with main code SR04_ut2a(), priority TP2, permanent stack of TS_TSSZ
bytes, named “ut2a”. The SMX_FL_UMODE flag causes the umode flag to be set, which causes
the task scheduler to dispatch it as a utask. If the umode task flag is not set, the task is dispatched
as a ptask.

mp_MPACreate() allocates an MPA of msz regions from the main heap and loads regions from
the mpa_tmplt_ut2a into it. tmsk is a bit mask which selects the regions from mpa_tmplt_ut2a.
This allows a single partition template to be used for tasks within the partition that require
different regions. Construction of templates and template masks is discussed in the next section.

4.2.2 MPU / MPA Relationship
The Cortex-M architecture allows for MPUs with 8 or 16 slots. 8 slots is too few in many cases
and 16 slots is more than adequate. 10 to 12 would be optimal. The vast majority of Cortex-M
processors with MPUs have 8-slot MPUs. Hence, there often is a problem with too few slots for
a particular partition. The relationship between the MPU and an MPA, as shown in Figure 4.5,
helps to deal with this problem.

Chapter 4

24

SR

6

5

4

3

2

1

0

0

1

2

3

4

SR

6

7

8

Active
Slots

Static
Slots

Auxiliary
Slots

MPU

MPA

2

3

4

5

6

7

Figure 4.5 MPU / MPA Alignment

Figure 4.5 shows an 8-slot MPU and a 9-slot MPA. The active slots of the MPU are loaded from
the active slots of a task’s MPA when the task starts running. Task MPAs can vary in size, but
each one must be large enough to hold the regions for the active MPU slots. In the above
example, less than all MPU slots are used for active slots. This would be unusual for an 8-slot
MPU, but not for a 16-slot MPU. The MPU static slots are loaded one time during initialization
and are not changed due to task switches. The MPA auxiliary slots serve to increase the effective
number of MPU slots, but are not loaded directly into the MPU. Slot types are discussed in the
sections that follow.

4.2.3 Active Slots
For most systems, all 8 MPU slots are needed for active slots, and there are no static slots.
Whenever an active MPU slot is changed, the corresponding MPA slot is also changed. Thus,
when a task switch occurs, it is not necessary to save the MPU slots. It is only necessary to load
the MPU active area from the new task’s MPA active area. This is done automatically by the
smx scheduler. Note that reducing the number of active slots will reduce task switching time, but
this cannot be done on a task basis because all tasks in a system must have the same number of
active slots.

The top active slot is designated “SR” for Stack Region. For ARMM7, this slot always holds the
task stack region; for ARMM8 it may not. When a task with a permanent stack of ssz bytes is
created by:

smx_TaskCreate(fun, pri, ssz, flags + heapn, name);

Basic Theory

25

a block of sufficient size to hold the stack and to meet MPU region size and region alignment
requirements is allocated from heapn. Task region information is temporarily stored in the task’s
TCB. This information is transferred to the task’s SR slot when its MPA is created.

For utasks, heapn is usually mheap, the main heap. mheap is normally in the sys_data region,
which is not accessible by utasks. For ptasks, a different heap that is not in the sys_data region
should be used. Otherwise, the SR slot will not be effective to catch accesses outside of the stack
block since it is included in the sys_data region. Worse, for ARMM8 an MMF would occur due
to overlapping regions. The latter is guarded against by SecureSMX as follows: if the stack is in
the sys_data region, its region is not loaded into the SR slot. Instead, this slot can be used for
another region. PSPLIM is supported for ARMM8 to catch stack overflows – see section 4.11.7
PSPLIM and MSPLIM for more information. However, this is not as good as a stack region,
which also detects underflows and may have different attributes than the sys_data region.

If a task without a permanent stack is created by:

smx_TaskCreate(fun, pri, 0, flags, name);

when the task is started, a stack block is allocated from the stack pool and the region information
is generated and loaded into the SR slot of the task’s MPA. Blocks in the stack pool must meet
MPU region requirements. Whenever the task is stopped, its stack block is returned to the stack
pool and the SP slot in its MPA is cleared. See the smx User’s Guide for more information on
permanent and temporary task stacks.

Since the stack pool is normally in the sys_data region, there is no problem using it for utasks.
However, for ptasks, loading the stack region into the SR slot of the MPA is inhibited and this
slot can be used for another region. PSPLIM is supported for ARMM8 to detect stack overflows.

For ARMM8, the foregoing is not a perfect solution for either type of task, but it is workable if
you are careful to not allocate a task’s stack from another region accessible by the task. For
example a ptask stack could be allocated from heap1, if heap1 is not in any other region of the
ptask.

4.2.4 Static Slots
MPU static slots, if any, are normally loaded one time, during system initialization using:

mp_MPUSlotLoad(u8 sn, u32* rp);

where sn is the slot number and rp points to the region to load. The following is an example of
usage:

 mp_MPUInit(); /* initialize the MPU */
 mp_MPUSlotLoad(0, (u32*)&mpa_tmplt_sys[0]); /* MPU[0] = sys_data */
 mp_MPUSlotLoad(1, (u32*)&mpa_tmplt_sys[1]); /* MPU[1] = sys_code */

mp_MPUInit() is called first. It initializes the MPU and loads all slots with NULL regions. Then
slots 0 and 1 are loaded with sys_data and sys_code. These are privileged regions necessary for
interrupts and exceptions to run and cannot be accessed by utasks.

In the case of a 16-slot MPU there are likely to be more than two static slots. These could be
used for common regions such as C-library functions, SVC shell functions, tables, etc. Using

Chapter 4

26

static slots in this manner reduces the number of active slots which must be switched on task
switches. However, common regions reduce partition isolation. If they are pure code or fixed
tables this is probably not a problem.

4.2.5 Auxiliary Slots
As mentioned, previously, 8-slot MPUs are most common, by far, but unfortunately, 8 slots are
often not enough. The auxiliary slots shown in Figure 4.5 are intended to alleviate this problem.
A given task’s MPA may have one or more auxiliary slots, as shown, or none. Hence, MPA sizes
vary from task to task.

Auxiliary slots can be used for two purposes:

1. Auxiliary slots for protected blocks and messages.

2. Expansion slots.

Auxiliary slots are explained in section 4.11.11 Protected Messages.

Expansion slots are primarily of value for I/O regions. Two or more I/O regions may be stored in
expansion slots and one active slot shared between them. When necessary to access an I/O
device,

mp_MPASlotMove(asn, esn)

moves its region from expansion slot esn to active slot asn in both the MPU and the task MPA,
as illustrated in Figure 4.6. Also shown is a pmsg auxiliary slot.

SP

IO

5

4

3

2

1

0

0

1

2

3

IO

SP

PMSG

IO2

IO1

MPU

MPA

2

3

4

5

6

7

OR

Active
Slots

Figure 4.6 Using Expansion Slots

If expansion slots were not used, the single IO slot would need to span from IO1 to IO2. This
could include many in-between memory-mapped peripherals that should not be accessible by the
current task.

Basic Theory

27

4.2.6 MPU Slot Numbers & Region Overlaps
For ARMM7 MPUs the slot number of each region in the MPA must be the MPU slot number,
not the MPA slot number. These are the small numbers in the MPA slots in Figure 4.5. This
unfortunate complexity is due to the fact that if two regions overlap, the access permission and
attributes of the higher numbered region prevail in the overlap area. Static slots are often
privileged, so if they are higher than a task’s active slots, the task would not be able to access the
overlapped portions of its own regions. This can result in puzzling MMFs — the task regions
look good, so what’s wrong? To prevent this, active slots are put above static slots. In the above
diagram, slots 0 and 1 are static slots.

ARMM8 MPUs do not have slot numbers, nor do they allow region overlaps. If two regions
overlap, access to a location in the overlap area causes an MMF. This, too, can be difficult to
diagnose. A system could be running fine for hours, days, or weeks, when a rare access is made
to a small sliver of overlap and BANG — an MMF brings the system down. This was an
unfortunate design decision made by Arm Ltd. smxAware warns about region overlaps in the
MPU and MPA displays to help avoid this problem.

4.2.7 Task Stack Slot
For ARMM7, MPU[N] is reserved for task stacks, where N is the highest active MPU slot. This
is so that the stack region’s attributes cannot be overridden by another region that overlaps it. For
example, overriding the XN stack restriction would enable executing code from the stack, which
is a common malware tactic. Also, anything that alters the task stack is likely to cause a difficult
problem to find.

See section 4.11.6 Task Stacks for more information on task stacks.

4.3 MPA Templates

4.3.1 Creating and Loading MPAs
As shown above in Figure 4.4, the MPAs for tasks are loaded from templates. This usually
occurs after task creation by calling:

mp_MPACreate(task, tmp, u32 tmsk, mpasz);

where tmp is a pointer to the template, tmsk is a bit mask which determines which regions in the
template are loaded into the MPA for the task, and mpasz is the size of the MPA, in slots.

Normally templates are associated with partitions, as shown in Figure 4.7. Such templates consist
of all regions needed by all tasks in the partition. Regions are selected for a given MPA by tmsk.

Chapter 4

28

A

B

C

D

E

F

G

H

A

B

C

D

A

B

E

F

G

H

1 1

1

1

1

1

0

0

1

1

1

1

0

0

0

0

Template MPA1

MPA2

M1 M2

M1 = 0x0F

M2 = 0xF3

Active
Slots

Aux
Slots

Figure 4.7 Template Loaded into MPAs

In the above figure, the template consists of 8 regions, A through H. M1 represents tmsk for
MPA1. Note that it selects regions A through D, which are loaded into MPA1, in order. M2
represents tmsk for MPA2. Note that it selects regions A, B, and E, F, G, H, which are loaded
into MPA2, in order. Regions A, B, C, D and A, B, E, F are loaded into MPA active slots.
Regions G and H are loaded into MPA2 auxiliary slots. For ARMM7, each region in the
template must have the MPU slot number where it goes. Hence, A, B, C, D would have 2, 3, 4, 5
and E, F would have 4, 5, assuming the active area starts at MPU[2], as shown in Figure 4.6.
Regions G and H do not require slot numbers. For ARMM8, regions do not have slot numbers.

If there are NULL regions in an MPA between active regions they must have NULL place
holders in the template. For ARMM7, NULL place holders look like:

 RGN(4 | V, 0, "spare"), /* reserved for dynamic region */
 RGN(5 | V, 0, "stack"), /* reserved for task stack */

For ARMM8 they look like:

 RGN(4, 0, 0, "spare"), /* reserved for dynamic region */
 RGN(5, 0, 0, "stack"), /* reserved for task stack */

If the defined regions end before the end of the MPA, as determined by mpasz,
mp_MPACreate() will automatically place NULL place holders in the remaining slots. Thus they
need not appear in the template. Hence, a ARMM8 template could look like:

Basic Theory

29

MPA mpa_tmplt_t2a =
{
 RGN(0, RA("sys_data") | DATARW, RLA("sys_data") | AI(0) | EN, "sys_data"),
 RGN(1, RA("sys_code") | CODE, RLA("sys_code") | AI(0) | EN, "sys_code"),
 RGN(2, RA("t2a_data") | DATARW, RLA("t2a_data") | AI(0) | EN, "t2a_data"),
 RGN(3, RA("t2a_code") | CODE, RLA("t2a_code") | AI(0) | EN, "t2a_code"),
// RGN(4, 0, 0, "dynamic"),
// RGN(5, 0, 0, "spare"),
// RGN(6, 0, 0, "spare"),
// RGN(7, 0, 0, "aux"),
};

The commented-out lines are present only to document what the slots do – they can be omitted.
Commenting them out saves a little bit of space for the template (36 bytes). Note that region
numbers are ignored and present only for readability. The code for creating an MPA for the
above template is:

mp_MPACreate(t2a, &mpa_tmplt_t2a, 0xF, 8);

It is very important that tmsk = 0xF have exactly the same number of 1’s as the template has
regions. If it is too small, regions will be omitted; if it is too large, regions will be included from
the next template. For ARMM8 this is likely to cause MMFs due to region overlaps.

4.3.2 Using Parent and Child Tasks
As previously discussed, in section 4.1.8 Parent and Child Tasks, a partition may contain a
parent task and its child tasks. The parent task is created in pmode, and its MPA is loaded in
pmode from the partition template. As previously noted, it is convenient to create a single
template for each partition containing all regions that the partition needs. This provides an
overview of the partition. Then the regions are allocated to the parent and its child tasks, with
each getting an appropriate subset of regions to do its job.

The child tasks can be viewed as specialists that help the parent task to do the work of the
partition. For example, one child task might handle input for the parent and another child task
might handle output. This helps to overcome the MPU slot limitation, since the parent task need
not access the input and output regions and the child tasks need not access all of the parent’s
regions.

Child tasks can be created in pmode. But it is more convenient, for the parent task to create the
child tasks and load their MPAs in umode, after it has initialized the partition and switched to
umode, itself. Switching the parent to umode is done as follows:

TCB_PTR smx_ct;

smx_TaskSet(smx_ct, SMX_ST_UMODE, 1);
smx_TaskStart(smx_ct);

This sets the parent umode flag, then restarts the parent task so the umode flag takes effect.
When the parent MPA is loaded, a pointer to its template is saved in the parent TCB. A child
utask must inherit the parent’s template. Thus when the parent calls:

Chapter 4

30

TCB_PTR child;

mp_MPACreate(child, tmp, tmsk, mpasz);

tmp is ignored, and the parent’s template is used instead. (For good form, tmp should be NULL.)
tmsk is used, as usual, and mpasz determines the size of the child MPA. Note that the child
cannot access anything outside of the partition’s regions. This is a convenient way to avoid errors
that create security problems.

As development of a partition proceeds, it often happens that new regions are needed that exceed
available MPU slots. SecureSMX has been designed to facilitate dividing an initial single parent
task into parent plus child tasks in order to deal with this, as noted above.

A parent task can create a (non-child) utask in pmode and create its MPA before setting its
umode flag, for example:

TCB_PTR task;

mp_MPACreate(task, tmp, tmsk, mpasz);
smx_TaskSet(task, SMX_ST_UMODE, 1);
smx_TaskStart(task);

In this case, the tmp parameter is required. This is the method normally used to create a umode
partition’s top task. It can be also used to create independent tasks for the partition instead of
creating child tasks. Independent tasks might share a common partition template, or not. Hence, a
partition may have a mixture of independent tasks, parent tasks, and child tasks in order to do its
job efficiently.

4.3.3 Using ARMM7 MPU Subregions
The ARMM7 MPU region size and alignment requirements can result in large wasted areas of
memory between regions, as shown below for A.

Basic Theory

31

580 580

160

100

0

1024

1280

1408

0

1

2

3

4

5

6

7

0

1024

A

B

Used

Empty

100

160

Figure 4.8 Using ARMM7 Subregion Overlays

Figure 4.8A shows allocating memory for three regions requiring 580, 160, and 100 bytes. Each
allocated region size has been increased to the next power of two: 1024, 256, and 128,
respectively. The result is that 1408 bytes of memory are required whereas only 840 bytes are
actually used. Hence, 568 bytes = 39%, is wasted. By comparison, ARMM8 would allocate 608,
160, and 128 bytes = 896 total, resulting in 56 wasted = 6%.

Figure 4.8B shows the use of ARMM7 subregions within the 1024-byte region. There are 8
subregions, each 128-bytes in size. These subregions are numbered on the left side. Subregions 0
to 4 = 5 * 128 = 640 bytes, which is large enough for 580 bytes. So, this region can be defined as
starting on a 1024-byte boundary, with a size of 1024 bytes, but with subregions 5, 6, and 7
disabled. The region definition is as follows:

RGN(0 | RA("r1_data") | V, DATARW | RSI("r1_data") | N57 | EN, "r1_data"),

where N57 = N5 | N6 | N7, which disables subregions 5, 6, and 7.

Now the 100 byte data will fit into subregion 5, which is on a 128-byte boundary, and the 160
byte data will fit into subregions 6 & 7, which is on a 256-byte boundary. Entries in the linker
command file would be:
define block r1_data with size = 640, alignment = 1024 {rw section .r1.data};
define block r2_data with size = 128, alignment = 128 {rw section .r2.data};
define block r3_data with size = 256, alignment = 256 {rw section .r3.data};
define block sram_block with fixed order {block r1_data, block r2_data, block r3_data,…}

The first 3 lines define the blocks, their sizes, their alignments, and the sections within them. The
fourth line forces the linker to put the blocks in the order shown in Figure 4.8B. So now, total
memory required is 1024 bytes and wasted memory has been reduced to 184 bytes = 18% — not
as good as ARMM8, but a big improvement.

Chapter 4

32

Using the linker command file is discussed in detail in section 4.4 Linker Command File.

4.3.4 Creating ARMM7 MPA Templates
Templates are composed of regions. A typical ARMM7 template looks like this:

MPA mpa_tmplt_ut2b =
{
 RGN(0 | RA("ucom_data") | V, DATARW | SRD("ucom_data") | RSI("ucom_data") | EN, "ucom_data"),
 RGN(1 | RA("ucom_code") | V, CODE | SRD("ucom_code") | RSI("ucom_code") | EN, "ucom_code"),
 RGN(2 | RA("ut2b_data") | V, DATARW | SRD("ut2b_data") | RSI("ut2b_data") | EN, "ut2b_data"),
 RGN(3 | RA("ut2b_code") | V, CODE | SRD("ut2b_code") | RSI("ut2b_code") | EN, "ut2b_code"),
 RGN(4 | V, 0, “spare”), /* reserved for dynamic region */),
 RGN(5 | V, 0, "spare"), /* reserved for dynamic region */
 RGN(6 | V, 0, "stack"), /* reserved for task stack */
};

This is a template for a single utask, named ut2b. ucom_data and ucom_code are regions that are
shared with other utasks within the same partition or other partitions. The ut2b_data and
ut2b_code regions are unique to ut2b. Regions 4 and 5 are NULL regions reserved for dynamic
regions. Note that this template matches Figure 4.5, except that it has no auxiliary regions. The
mask for this template is 0xF. The template regions 0 to 3 are loaded one to one into the MPA of
ut2b then NULL regions are automatically loaded into MPA[4] and [5].

The above template definition must be preceded with:

#pragma section = "ucom_data"
#pragma section = "ucom_code"
#pragma section = "t2b_data"
#pragma section = "t2b_code"

These pragmas link the region names used in the template to blocks defined in the linker
command file, discussed below in section 4.4 Linker Command File.

Each line in the above template is a structure: {rbar, rasr, name}. The macros RGN(), RA(),
SRD(), and RSI() automatically create the necessary MPA fields. The macros and constants are
defined in mpatmplt.h. It is recommended that all templates be put into mpa.c and to avoid
including mpatmplt.h in other files, due to its ultra-short macro names.

In the above array of struct’s, the first field is rbar (region base address register). Looking at
rbar for region 0, we see that it starts at ucom_data, the V flag is set, and MPA[0] is selected to
be loaded by the RGN() macro. The slot numbers in the template are MPA slot numbers. When
the MPA slots are loaded, the constant MP_MPU_FAS (First Active Slot) is added to each MPA
slot number to convert it to its corresponding MPU slot number. (For example, in Figure 4.5,
MP_MPU_FAS = 2.) When the task scheduler later loads a task’s MPA into the MPU for a task
switch, the V flag and MPU slot number are used for fast MPU loading – see below.

MP_MPU_FAS is defined in mpu.h. As previously noted, for 8-slot MPUs, it is normally 0
because at least 8 active slots are needed for most systems. Hence MP_MPU_FAS is primarily of
use for 16-slot MPUs, where it might be 6, leaving 10 active slots.

The second structure field is rasr (region attribute and size register). Looking at rasr for region
0, we see that it is a DATARW region. The SRD() macro automatically sets subregion disable

Basic Theory

33

flags, the RSI() macro sets the size index, and EN means that the region is enabled. Automatic
generation of subregion disable flags greatly reduces errors and is discussed more fully in section
4.4 Linker Command File.

The third structure field is name. It is loaded into the task’s MPA only during debug and it is
never loaded into the MPU. The name field helps one to remember what the region is for. It
primarily useful in the smxAware MPA and MPU displays.

The region attribute macros are defined as follows:

#define DATARW (XN | RW | C)
#define CODE (RO | C)

where XN, RW, and RO are MPU attributes that mean execute never, read/write, and read-only.
C from TEX C B = 0 1 0 and defines normal memory — see Yiu. If normal memory is not
defined, alignment errors occur. These and other attributes are defined in mpatmplt.h. For
example, the DATARW attribute macro means that a region using it cannot be loaded with
executable code then executed – a favorite hacking technique. This greatly impedes a hacker,
especially if CODE regions are in ROM and therefore inalterable. A DATARW region can be
used only to store and retrieve data.

4.3.5 Creating ARMM8 MPA Templates
The corresponding ARMM8 template to the above ARMM7 template is as follows:

MPA mpa_tmplt_ut2b =
{
 RGN(0, RA("ucom_data") | DATARW, RLA("ucom_data") | AI(0) | EN, "ucom_data"),
 RGN(1, RA("ucom_code") | CODE, RLA("ucom_code") | AI(0) | EN, "ucom_code"),
 RGN(2, RA("ut2b_data") | DATARW, RLA("ut2b_data") | AI(0) | EN, "ut2b_data"),
 RGN(3, RA("ut2b_code") | CODE, RLA("ut2b_code") | AI(0) | EN, "ut2b_code"),
 RGN(4, 0, 0, "spare"), /* reserved for dynamic region */
 RGN(5, 0, 0, "spare"), /* reserved for dynamic region */
 RGN(6, 0, 0, "stack"), /* reserved for task stack */
};

This is much simpler than the ARMM7 template. Slot numbers are ignored and only present for
readability. There is no V flag, and DATARW and CODE appear in rbar. There is no SRD()
since the ARMM8 MPU has no subregions. RLA() replaces RSI(), and specifying an end address
rather than an encoding for the size is much easier for I/O and other fixed regions. EN is still
present.

The attribute index (AI) is set to 0, which selects MAIR0, Memory Attribute Indirection Register
0. This is one of 8 registers that can be selected. It is defined in mpatmplt.h as 0x44, which
means “normal memory, outer non-cacheable, normal memory inner non-cacheable”. MAIR1,
which is used for I/O regions, is defined as 0x4, which means device attributes nGnRE = non-
gathering, non-reordering, early write acknowledgement. See the ARMv8-M Architecture
Reference Manual for more information on MAIR attributes.

Chapter 4

34

DATARW and CODE are defined slightly differently than for ARMM7, but do basically the
same things. Other than these differences, the operation of templates, MPAs, and tasks is the
same for ARMM7 and ARMM8.

4.3.6 Fast MPU Load
Since the active region of a task’s MPA is loaded into the MPU every time a task is started or
resumed, fast MPU loading is important. Both ARMM7 and ARMM8 permit loading up to 4
slots at a time using registers R2 thru R9 and not requiring setting of the MPU_RNR register for
each region load. (ARMM8 fast loading is a little more complicated due to the lack of the region
number in RBAR and because loading cannot span any 4 consecutive regions, e.g. regions 2-5
cannot be loaded in one operation. MPU_RNR must be set to 0, 4, 8, etc. ahead of each bulk
load.)

Fast load is enabled if MP_MPA_DEV == 0. This allows mp_MPULoad() to use the MPU
region override feature. During debug, MP_MPA_DEV == 1 and a slower load method uses the
MPU_RNR register to load one region at a time. In this mode, some checking is done to help
find ARMM7 template errors. No checking is done for ARMM8.

For ARMM7, MPA entries must be in increasing order by MPU slot number and the V bit must
be set. Unused slots and those reserved for dynamic regions or the task stack must be defined
with the slot number, V bit, and 0 for RASR, such as:

RGN(n | V, 0, “name”),
where n is the slot number.

For ARMM8, MPA entries, slot numbers are unused and only present for readability, and there
are no V flags. Unused slots and those reserved for dynamic regions or the task stack must be
defined as follows:

RGN(n, 0, 0, “name”),

4.3.7 Template Errors
Template errors are likely to be difficult to track down and may cause unexpected system
vulnerabilities. The MPU and MPA displays in smxAware are helpful to find these errors. They
show the contents of each region and its name, as well as its starting address, ending address,
size, and attributes. smxAware also provides overlapping region and adjacent region alerts.

Overlapping regions in ARMM7 cause difficulty because the attributes of the higher-numbered
region take precedence over those of the lower-numbered region. For example, if the lower
region is DATARW and the upper region is PDATARW, when a utask attempts to access an
address in the overlap area, an MMF will occur. This can be puzzling because there is nothing
wrong with the lower region and the overlap may not be noticed. (The reason why static slots are
below active slots is to avoid this problem, because static slots are usually privileged slots.)

The situation is even worse in ARMM8. In this case, the first access to the overlap area causes an
MMF. Once again, the cause of the MMF is difficult to determine since nothing seems to be
wrong. Worse than lost debug time, this could be an Achilles heel that brings a shipped system
down when a once-in-a-blue moon event occurs that causes access to overlapped areas.

Basic Theory

35

Adjacent regions pose a more subtle problem. In their case, overflows may not be detected
because one adjacent region picks up where the other region leaves off. Systems could easily
ship with this exploitable flaw undetected by the manufacturer, but not by a hacker. An example
of this vulnerability in a ARMM7 system is a ptask stack taken from mheap. Since mheap is in
the sys_data region and this region is in every ptask’s MPA, stack overflow will not be detected.

In the case of a ARMM8 system, dispatching this task will cause an MMF before the task can
even begin to run. Yet the task main function is in a code region of the MPU, the stack is in the
stack region of the MPU, and everything else looks ok. So what’s wrong?

Whenever a puzzling MMF occurs, check the smxAware MPU window for a region overlap
alert. Prior to final release, smxAware should be checked for all static and dynamic regions used
by every task for both overlap and adjacent alerts. See Chapter 8 Implementation for more
information on this.

4.3.8 Standard Regions
The following standard regions are used in SecureSMX and in this manual:

sys_code system services code and constant data, exception handlers, and ISRs.

sys_data system global variables, and MPA templates.

ucom_code Common umode functions, including SVC shell functions for system
services from umode, C library functions, some portal functions, and
portal shell functions.

ucom_data Data for ucom functions. Note that this region represents an inter-
partition vulnerability and should be minimized, if not eliminated.

sys_code and sys_data allow ptasks to access system services. They are present in all ptask
MPAs. As a consequence, Background Region (BR) is not needed by ptasks and is off when they
run.

ucom_code is an execute-only region that should be placed in ROM so that it cannot be altered.
It contains code shared by utasks and ptasks. The existence of this shared region would seem to
violate partition isolation. However, we feel what is in it should be safe for most systems. If very
high security is needed for your system, its contents should be carefully considered. The same is
true for any new code added here. There are ways to avoid common code such as duplicating
functions and making separate SVC shells and jump tables for each partition.

In addition to these standard regions, each task may have it own code, data, and IO regions.
These are defined by the application. See mpa.c for examples of templates using standard and
application regions.

4.4 Linker Command File

The linker command file may seem intimidating, at first, but it is not that bad. Most
programmers have little experience with it, and it has unique commands that may seem strange.
However, IAR ILINK is a powerful linker and it is well-suited to the task as hand. You will need

Chapter 4

36

to get as familiar with modifying your linker command file as you are with writing C code. And,
with the introduction of the MPU, expect the linker command file to become pretty large.

As noted in the previous section, the regions used in templates correspond to blocks created in
the linker command file (.icf file for EWARM). Appendix B contains two complete linker
command files, for reference. The first is for ARMM7 and the second is for ARMM8. Both are
for the same code – the smx/SecureSMX regression test. The only difference is the memory
structures of the two processors. All blocks are the same. The description that follows is
primarily for the ARMM7 linker command file, since it is the more complex of the two. Since
the linker blocks become MPU regions the terms are used interchangeably in the discussion that
follows. For maximum clarity, the term region block is used.

4.4.1 First Sections
At the top of the ARMM7 linker command file, memory regions are specified, for example:

define region SRAM = mem:[from 0x20000000 to 0x2004FFFF];

Linker regions are not the same as MPU regions — don’t let the terminology confuse you.

After the memory regions come the size definitions for MPU regions, such as:

define exported symbol scsz = 0x80000; /* sys_code size */
define exported symbol sdsz = 0x40000; /* sys_data size */
define exported symbol ucomcsz = 0x8000; /* ucom_code size */

We recommend choosing abbreviated symbol names and also using hex sizes. Sizes must be
powers of two for ARMM7, so hex sizes can have only one non-zero digit and it must be 1, 2, 4,
or 8. This helps to avoid size errors, which can be hard to find. For ARMM8, we also
recommend using hex sizes. Sizes must be multiples of 32. Hence, each size should end in 0x00,
20, 40, 60, 80, A0, C0, or E0. Any other size ending is prohibited and will cause an MMF. It is
relatively easy to scan even a long list, as shown, and see wrong endings.

By “exported” it is meant that the symbol can be used in code, merely by adding externs ahead
of it:

extern u32 scsz;
extern u32 sdsz;

Next come empty block definitions, such as:

define block CSTACK with size = 0x200, alignment = 8 { }; /* Main Stack */
define block EVT with size = EVT_size, alignment = 512 { }; /* Exception Vector Table <1> */
define block mheap with size = 0x4000, alignment = 16 { }; /* mheap if SMX_CFG_SSMX */

The first allocates space for the main stack, the second allocates space for the exception vector
table, EVT, and the third allocates space for the main heap. Space for other system buffers and
tables are also allocated in this section. Empty blocks that are not referenced in the code require
the keep {} command.

Basic Theory

37

4.4.2 Region Block Definitions
Next come the region block definitions. These are linker blocks that become MPU regions. For
ARMM7 for example:

define block ucom_code with size = ucomcsz*5/8, alignment = ucomcsz
 {ro section .svc.text, ro section .svc.rodata, ro object strncpy.o, ro object strlen.o};

where ucomcsz is the smallest power of two big enough to contain the region. Note that the
block size is ucomcsz*5/8. This means that SubRegion Disables, SRDs 5, 6, and 7 are 1 – i.e.
these subregions are disabled. This is shown in Figure 4.9

0

1

2

3

4

5

6

7

Figure 4.9 Region with Subregion 5-7 Disables

In this figure, the shaded area shows the portion of the region to which the MPU will allow
access. Attempted accesses in the white area will result in MMFs. Hence, the white area is
available for use by another region or regions. As design progresses, regions will grow and the
linker may complain that a block is too small. This is easily handled by increasing 5/8 to 6/8,
then to 6/8, then to 7/8, and finally to no fraction (=8/8). After this, double the size constant,
e.g. ucomcsz and use the 5/8 fraction. This process becomes as natural as fixing syntax errors
when the compiler complains.

As described in section 4.3.3 Using ARMM7 MPU Subregions, the SRD macro automatically
calculates the SRD field in the RASR from the region block size. Hence, this process is error-
free.

In the above block definition, notice that alignment is ucomcsz, as required by ARMM7. Within
the {} there is: ro section .svc.text. Sections are defined in the source code and will be discussed
next. Note also:

 ro object strncpy.o, ro object strlen.o

This is how standard C library functions are included in ucom_code for use by all tasks with
ucom_code in their MPAs. ro means read only, and .o is means an object file. It is not desirable
to include the entire C library because this would increase memory requirements and there are
some C library functions that are undesirable. Embedded systems normally require very few

Chapter 4

38

standard C library functions, so this is a practical approach. You might want to put the C library
functions into their own region. However, the limited number of MPU slots works against this.

Continuing to the next sections of the linker command file, notice that blocks are defined for
sys_code and sys_data, and then region blocks are defined for the tasks. t2a is a ptask; ut2a is a
utask. These cryptic names are used in the smx regression test. You would, of course, pick more
meaningful names for your tasks. Note that there are both code sections and data sections.

Most of the above is not applicable to ARMM8. Looking a the ARMM8 linker command file in
Appendix B note that all region block sizes are the sizes defined in the region sizes section and
all alignments are 32 bytes.

4.4.3 Block Ordering
Unfortunately ILINK does not order blocks for best memory efficiency. For example, if the
region size in Figure 4.9 is 256K, then the subregions sizes are 256K/8 = 32K. If the next block
size is 128K, it cannot start after subregion 4, 5, or 6 because these are not on 128K boundaries.
Therefore, the linker will put this block after subregion 7 resulting in an unused gap of 96K.

To fix this problem, use block-ordering blocks with fixed order keywords, such as:

define block rom_block with fixed order, size = romsz*5/8, alignment = romsz
 {block sys_code, block ut1a_code, block ut2b_code,
 block ut2a_code, block t2a_code, block t2b_code,
 block ut2c_code, block ut2d_code, block ut2s_code,
 block t2c_code, block t2s_code, ro};

This puts the blocks in the order specified, so that smaller blocks are put into gaps between larger
blocks. Typically, every time a region block is increased in size, gaps will get larger and the
ordering will need to be changed. This is can be time-consuming, if there are many blocks.

SecureSMX includes a tool called MpuPacker which determines the block order to achieve the
most efficient memory usage. The blocks can then be reordered, in the above, and the linker run
again. See section 8.11.1 Using MpuPacker for more information.

However, there will still be gaps between region blocks for ARMM7. These can be partially
filled with plug blocks consisting of code and data not in region blocks (see 8.11.4 Using Plug
Blocks). Another solution is to define smaller regions by using more tasks (see 4.1.8 Parent and
Child Tasks). This will result in smaller gaps. There are several other methods to reduce memory
waste, which are discussed in appropriate sections of this manual.

The foregoing is not necessary for ARMM8 since all region blocks are multiples of 32 bytes and
are 32-byte aligned, so wasted memory is minimal and there is no advantage to moving region
blocks around. Looking at ARMM8 linker command file in Appendix B, rom_block and
ram_block are defined for use in templates such as mpa_tmplt_tinit. This is true also for
ARMM7.

Basic Theory

39

4.5 Defining Sections

As can be seen in the linker command files in Appendix B, sections define the contents of the
linker region blocks, which, in turn, become MPU regions. Sections are defined in the source
code. There are three ways to do this:

4.5.1 Section Prefixes
The easiest way to define sections is to use section prefixes. For example, at the top of xsmx.h:

#pragma section_prefix = ".sys"3
This prepends .sys to the default section names like this:

.sys.bss, .sys.data, .sys.noinit, .sys.rodata, and .sys.text
Since the section prefix was put into a header file, it applies to all smx C files that include
xsmx.h. If this is not desired in a particular C file, use:

#pragma diag_suppress=Ta168 /* ignore warning that next line overrides existing prefix */
#pragma section_prefix = "" /* cancel .sys prefix in code that follows */

to revert to the standard names:

.bss, .data, .noint, .rodata, and .text

Note that this pragma applies to the whole file, and the last one encountered is the one that is
used. Also, the --section_prefix command line switch does the same, but it is better to use the
pragma so it is visible in the source code, rather than hidden in the project. It also avoids
overriding project nodes, which saves having to make project option changes to every overridden
node and file below each.

4.5.2 Command Line Switches
The --section command line switch can be used to rename individual sections. For example, to
rename .bss to .sys.bss:

--section .bss=.sys.bss

Any or all of the sections can be renamed. Also, this can be done in a file that is passed as input.
For example, right clicking a node in the project window, such as XSMX, then selecting:
Options, C/C++ Compiler, Extra Options with Override inherited settings checked and enter this:

-f $PROJ_DIR$\..\..\..\CFG\mpi_sys.xcc

3 The dot at the start is not required, but is used for consistency with standard section names, such as .text. This is a
useful convention to identify names as being section names.

Chapter 4

40

Then in CFG\mpi_sys.xcc:

--section .bss=.sys.bss
--section .data=.sys.data
--section .rodata=.sys.rodata
--section .noinit=.sys.noinit
--section .text=.sys.text

The downside of command line switches is that they are hidden in the project file rather than in
the source code, and it is necessary to make project options changes to every overridden node
and file below each.

4.5.3 Section Pragmas
Sections can also be defined by putting pragmas into the code. For example:

#pragma default_variable_attributes = @ ".ut2s.bss"
TPSS pssa; /* portal server structure A */
u32 sz; /* data size */
u8* sbp; /* server buffer pointer */

#pragma default_variable_attributes = @ ".ut2s.rodata"
TPCS* tp_pcl[] = {&pcsA, &pcsB};
#pragma default_variable_attributes =

#pragma default_function_attributes = @ ".ut2s.text"
void tpA_ut2s(void)
{
 mp_TPortalServer(&pssa, STMO);
}
#pragma default_function_attributes =

In the above examples, uninitialized data is put into .ut2s.bss, and initialized data is put into
.ut2s.rodata. The variable pragma with no section name ends the variable pragma area and
reverts to the default for the file. Then the tpA_ut2s() function is put into the .ut2s.text section.
Additional functions can follow this function. The function pragma with no section name ends
the function pragma area. The default variable sections (e.g. .bss) apply outside of the variable
pragma areas and the default code sections (e.g. .text) apply outside of the function pragma
areas.

The pragma approach can be used to override either of the above two methods. This allows
different sections to be grouped logically together in the same file. For example, t2a_init can put
be put into .text, whereas the t2a_main can be put into .t2a.text. Keeping the two functions
together in a source file helps to reduce errors.

Pragma section assignments can also be spread around. For example,

#pragma default_variable_attributes = @ ".ut2s.bss"

can appear multiple times in the same module and it can appear in other modules, as well. The
linker will combine all of them into a single .ut2s.bss section.

Basic Theory

41

Note: The pragma approach requires special handling for string literals, so the command line
technique may be preferable. See the end of section 4.5.4 String Literals for more information.

4.5.4 Template Macros
The template macros used in section 4.3.4 Creating ARMM7 MPA Templates use the
__section_begin() and __section_size() pragmas (see mpatmplt.h). These actually work with
section block names as well as on section names. In templates, they are used only for section
block names. Using a section name in __section_begin() would be wrong unless it is the first
section in the block. Using it in _section_size() would be wrong unless the section is the only
thing in the block.

4.5.5 String Literals
The following:

#pragma default_variable_attributes = @ ".fs.rodata"
"This is STM32 working with FatFs"
#pragma default_variable_attributes =

does not put the string literal into .fs.rodata, as expected. Instead, the compiler puts it into the
standard .rodata section. Thus when this string literal is accessed in the fs partition an MMF will
occur. In order to fix this it is necessary to use the section command line switch:

--section .rodata=.fs.rodata

Then the string literals in the fs partition can be put into the fs_code region block, as follows:

define block fs_code with size = fscsz*7/8, alignment = fscsz {ro section .fs.text,
 ro section .fs.rodata}

Following this with

initialize by copy with packing = none {rw};

in the linker command file may be necessary to avoid an error message, such as the following:

Error[Lp017]: the address of ".fs.rodata41 (tportal.o)" was needed when
 computing compressed initializers for section .data (ffdemo.o #8),
 but that address hasn't been set yet, since the size of the
 compressed initializers are needed in order to set it.

In some cases, the compiler puts string literals into the .text segment, such as when they are
passed as parameters:

mp_FPortalCreate(fpsh, cp_pcl, cp_pclsz, ssn, “cp”, "cp_sxchg");

In order to get “cp” into .cp.rodata, define a variable to point to it, as follows:

const char* const cpname = "cp";

mp_FPortalCreate(fpsh, cp_pcl, cp_pclsz, ssn, cpname, "cp_sxchg");

Now the:

–section .rodata=.cp.rodata

Chapter 4

42

command line switch in Extra Options works thus allowing utasks to access “cp”.

Another problem arises if a module has string literals that must go into different sections, since
there can only be one section command line switch for section type (e.g. .rodata) in a module.
This might occur, for example, if both client and server code are in the same module. The
simplest solution, in this case, is to split the module into a client module and a server module.
But if this is not practical, use a section command line switch for the most common string
literals, and for each of the others, assign a string literal to an array variable (notice the brackets)
and use section pragmas, as follows:

#pragma default_variable_attributes = @ ".cp.rodata"
const char* const cpname[] = "cp";
#pragma default_variable_attributes =

Multiple strings, such as an error message table, can be handled as follows:

#pragma default_variable_attributes = @ ".cp.rodata"
static const char err0[] = "ERROR 0";
static const char err1[] = "ERROR 1";
static const char err2[] = "ERROR 2";

const char* const errmsg[] = {err0, err1, err2};
#pragma default_variable_attributes =

4.6 Map Files

4.6.1 ARMM7
If you are creating a system of significant complexity, it is easy to get confused with all the
section definitions in the code and region block definitions in the linker command file. The
smxAware MPA and MPU displays are a big help with this. The map file is also helpful to see
exactly what is happening, for example:
 rom_block 0x20'0000 0xa'0000 <Block>
 sys_code 0x20'0000 0x1’4000 <Block>
 .intvec const 0x20'0000 0x1c8 vectors.o [1]
 .sys.rodata const 0x20'01c8 0x4 bspm.o [1]
 .sys.rodata const 0x20'01cc 0x4 bspm.o [1]
 .sys.rodata const 0x20'01d0 0x28 isrshells.o [1]
 .sys.rodata const 0x20'01f8 0x8 mpu.o [1]
 .sys.rodata const 0x20'0200 0x8 mpu.o [1]

…
 .sys.text ro code 0x20'06b0 0x368 bspm.o [1]
 .sys.text ro code 0x20'0a18 0x190 clock.o [1]
 .sys.text ro code 0x20'0ba8 0xd0 bbsp.o [5]
 .sys.text ro code 0x20'0c78 0xafc isrshells.o [1]
 .sys.text ro code 0x20'1774 0x6d8 xprof.o [5]
 .sys.text ro code 0x20'1e4c 0x304 xsys.o [5]

 …
 sys_code uninit 0x21'3c6c 0x394 <Block tail

Basic Theory

43

The above corresponds to stm32746g_tsmx.icf in Appendix B. Note that the rom_block starts at
0x200000 with size 0xA0000, and the sys_code block is inside of it and also starts at 0x200000
with size 0x14000. sys_code contains the .intvec and .sys.rodata and .sys.text sections, as well as
other sections that are not shown. sys_code ends with a Block tail of 0x394 unused bytes. This
916 bytes of wasted memory is a consequence of the ARMM7 MPU region power-of-two size
requirement.

The region size for sys_code is 0x20000 bytes; the subregion size is therefore 0x4000 bytes (i.e.
0x20000/8), and the first 5 subregions = 0x14000 bytes are used for sys_code. Clearly, one less
subregion would be too small (0x394 compared to 0x4000), so this is the best we can do.

Continuing in the map file:
 ut1a_code 0x21'4000 0x20 <Block>
 .ut1a.text ro code 0x21'4000 0x10 tmpu.o [1]
 ut1a_code const 0x21'4010 0x10 <Block tail>

 …
 ut2b_code 0x21'4200 0x200 <Block>
 .ut2b.text ro code 0x21'4200 0x60 tmpu.o [1]
 .ut2b.text ro code 0x21'4260 0x168 tpmsg.o [1]
 .ut2b.text ro code 0x21'43c8 0x22 theap.o [1]
 ut2b_code const 0x21'43ea 0x16 <Block tail>
 ut2a_code 0x21'5000 0xa00 <Block>

 …
 t2b_code 0x21'6c00 0x100 <Block>
 .t2b.text ro code 0x21'6c00 0x24 tpmsg.o [1]
 t2b_code const 0x21'6c24 0xdc <Block tail>
 ut2c_code 0x21'8000 0x1400 <Block>

 …

the next region, ut1a_code starts at 0x214000, and its size is only 0x20. Going further down in
the table we find t2b_code followed by ut2a_code. ut2b_code ends at 0x2143ea + 0x16 =
0x214400. But ut2a_code starts at 0x215000 – 0xC00 = 3072 bytes above. Why is this? It is
because ut2a_code has a size of 0xa00. Looking at the linker command file: ut2acsz = 0x1000
and:
 define block ut2a_code with size = ut2acsz*5/8, alignment = ut2acsz

so ut2a_code must be aligned on 0x1000 and 0x215000 is the next higher 0x1000 boundary.

Unlike block tails, block gaps can be reclaimed. This done by filling them with other blocks.
From tsmx.icf we see that t2bcsz = 0x100, so t2b_code could be relocated to 0x214400, between
ut2b_code and ut2a_code. Other small regions could also be moved into the gap to reduce
wasted memory. It is unfortunate that ILINK does not do this, and it is obviously tedious to do it
manually – especially if it must be done every time a block size changed. Our MpuPacker tool
takes care of this problem – see section 8.11.1 Using MpuPacker.

Chapter 4

44

Looking further down in the map file, we find:
 ucom_code 0x21'4000 0x3800 <Block>
 svc_code 0x21'4000 0x2000 <Block>
 .svc.text ro code 0x21'4000 0x1b8 svc.o [1]
 .svc.text ro code 0x21'41b8 0x10 tmain.o [1]
 .svc.text ro code 0x21'41c8 0x2bc fportlc.o [5]
 .text ro code 0x21'4484 0x66 ABImemset.o [4]
 .svc.text ro code 0x21'44ec 0x242 tportls.o [5]
 .svc.text ro code 0x21'4730 0x5c0 tportlc.o [5]
 .text ro code 0x21'4cf0 0xa6 ABImemcpy.o [4]
 .text ro code 0x21'4d98 0x18 strcpy.o [4]
 .text ro code 0x21'4db0 0x36 strlen.o [4]
 .text ro code 0x21'4de8 0x70 strncpy.o [4]
 .svc.text ro code 0x21'4e58 0x170 cpcli.o [1]
 .text ro code 0x21'4fc8 0x1e strcat.o [2]
 svc_code const 0x21'4fe6 0x101a <Block tail>

Here we see that C library functions such as ABImemset.o, the smxu shell functions in svc.o, and
portal functions have been put into svc_code which is in ucom_code.

Further down in the map file, we find:
 sram_block 0x2000'0000 0x2'8740 <Block>
 sys_data 0x2000'0000 0x2'8000 <Block>
 CSTACK 0x2000'0000 0x200 <Block>
 CSTACK uninit 0x2000'0000 0x200 <Block tail>
 EVT 0x2000'0200 0x1c8 <Block>
 EVT uninit 0x2000'0200 0x1c8 <Block tail>
 mheap 0x2000'03d0 0x4000 <Block>
 mheap uninit 0x2000'03d0 0x4000 <Block tail>
 EVB 0x2000'43d0 0x8000 <Block>
 EVB uninit 0x2000'43d0 0x8000 <Block tail>
 heap1 0x2000'c3d0 0x6144 <Block>
 heap1 uninit 0x2000'c3d0 0x6144 <Block tail>
 heap2 0x2001'2520 0x2000 <Block>
 heap2 uninit 0x2001'2520 0x2000 <Block tail>
 heap3 0x2001'4520 0x2f60 <Block>
 heap3 uninit 0x2001'4520 0x2f60 <Block tail>
 ucom_data 0x2001'7600 0x200 <Block>
 ucom_data-1 0x2001'7600 0x30 <Init block>
 .ucom.data inited 0x2001'7600 0x2c mfxstm32l152.o [1]
 .ucom.data inited 0x2001'762c 0x4 mfxstm32l152.o [1]
 .ucom.bss zero 0x2001'7630 0x4c stm32756g_eval.o [1]

We see that sys_data is first in sram_block, and the main stack, CSTACK, is first in it. Next is
the Exception Vector Table, EVT. This is where the sb_irq_table (see irqtable.c) is copied from
ROM by __low_level_init() in startup.c, then ARMM_NVIC_VTOR is set to point to it. Next is
mheap, the main heap, followed by EVB and other heaps. Because none of these are regions they
need only be aligned as specified in tsmx.icf. Then comes ucom_data, which is a region block
and thus aligned on its size, udsz = 0x100.

Basic Theory

45

None of the blocks above ucom_data are initialized (see tsmx.icf). ucom_data consists of
.ucom.data-1, which is initialized, and .ucom.bss, which is not. The ucom_data-1
Initializer_bytes are at:
 Initializer bytes const 0x24'6780 0x30 <for ucom_data-1>

They are in ROM since they are constants and they are copied into the .ucom.data variable
during system startup. The other variables are in .ucom.bss section, which means they are
initialized to 0.

In some cases regions are nested within other regions, such as ucom_data within sys_data. This
is done since some tasks may only need access to the inner region(s), but other tasks need access
to the inner and outer region(s), but don’t have enough MPU slots for all regions. In the above
case, ucom_data might be shared between utasks, which do not access sys_data. But ptasks may
need access to ucom_data and sys_data. Look at task templates to see what each task can access.
For information on nesting regions, see section 4.7.2 Combined Regions.

4.6.2 ARMM8
The following map file corresponds to lpc55s69evk_tsmx.icf in Appendix B:
 sys_code 0x0 0x1'1f00 <Block>
 .intvec const 0x0 0x130 vectors.o [1]
 .sys.rodata const 0x130 0x4 bspm.o [1]
 .sys.rodata const 0x134 0x4 bspm.o [1]
 .sys.rodata const 0x138 0x20 clock.o [1]

 …
 .sys.text ro code 0x734 0x358 bspm.o [1]
 .sys.text ro code 0xa8c 0x66 term.o [1]
 .sys.text ro code 0xaf4 0xa0 uart.o [1]
 .sys.text ro code 0xb94 0xac clock.o [1]
 .sys.text ro code 0xc40 0xd0 bbsp.o [5]]

 …
 sys_code uninit 0x1'1eec 0x14 <Block tail>

sys_code starts with intvec. It also contains cp_code and ucom_code, like ARMM7. Note that
the sys_code tail is a tiny 0x14 = 20 bytes!

Further down the map file, we find rom_block with ut1a_code:
 rom_block 0x1'1f00 0x2'75dc <Block>
 ut1a_code 0x1'1f00 0x20 <Block>
 .ut1a.text ro code 0x1'1f00 0x10 tmpu.o [1]
 ut1a_code const 0x1'1f10 0x10 <Block tail>
 ut2b_code 0x1'1f20 0x200 <Block>
 .ut2b.text ro code 0x1'1f20 0x60 tmpu.o [1]
 .ut2b.text ro code 0x1'1f80 0x168 tpmsg.o [1]
 .ut2b.text ro code 0x1'20e8 0x22 theap.o [1]
 ut2b_code const 0x1'210a 0x16 <Block tail>
 ut2a_code 0x1'2120 0x640 <Block>

These are similar to ARMM7, except note that the ut2b_code to ut2a_code gap is only 0x12120
– (0x1210a + 0x16) = 0 – i.e. no gap!

Chapter 4

46

Further down, we find:
 sys_data 0x2000'0000 0x1'daa0 <Block>
 CSTACK 0x2000'0000 0x200 <Block>
 CSTACK uninit 0x2000'0000 0x200 <Block tail>
 EVT 0x2000'0200 0x1c8 <Block>
 EVT uninit 0x2000'0200 0x1c8 <Block tail>
 mheap 0x2000'03d0 0x4000 <Block>
 mheap uninit 0x2000'03d0 0x4000 <Block tail>
 EVB 0x2000'43d0 0x8000 <Block>
 EVB uninit 0x2000'43d0 0x8000 <Block tail>
 ucom_data 0x2000'c3e0 0x280 <Block>
 .ucom.bss zero 0x2000'c3e0 0x4 bbase.o [5]

These are similar to ARMM7, except the sys_data and ucom_data blocks are smaller. Note that
sys_data size is not a power of two, but rather a multiple of 32.

4.6.3 MpuMapper
MpuMapper is a utility we developed to modify the IAR map file in order to see what region
each variable and function is in. This greatly aids tracking down and fixing MMFs. The
Placement Summary changes from this:
 .sys.text ro code 0x800'171c 0x5be mpu.o [1]
 .sys.text ro code 0x800'1cdc 0x3a4 bspm.o [1]
 ...

to this:
 .sys.text ro code 0x800'171c 0x5be mpu.o [1]
 mp_MPACreate 0x800'171d
 mp_MPASlotMove 0x800'1919
 mp_MPUInit 0x800'19bd
 mp_MPULoad 0x800'1a05
 mp_RegionGetHeapT 0x800'1a75
 mp_RegionGetPoolT 0x800'1b0b
 mp_RegionMakeT 0x800'1b7f
 mp_RegionGetHeap() 0x800'1c29
 .sys.text ro code 0x800'1cdc 0x3a4 bspm.o [1]
 sb_ClocksInit 0x800'1cdd
 ...

The Placement Summary can then be scanned from top to bottom to look for things out of place,
which is not practical with the original map. The modified map file replaces the original map
file, which is renamed as xxxx_sav.map.

If MpuMapper is run with no arguments, it opens a dialog to permit browsing to the input .map
file. Otherwise, the input file can be specified as an argument. This is useful to run it
automatically from the IDE after every build. To do this, click on Project, Options, Build
Actions, and on the Post-build command line put:
 $PROJ_DIR$\..\..\..\BIN\MpuMapper.exe "$TARGET_DIR$\$TARGET_BNAME$.map"

Basic Theory

47

4.7 Regions

4.7.1 Insufficient MPU Slots
When working with an 8-slot MPU, insufficient slots can be a problem for some partitions. Some
solutions to this are:

1. Auxiliary slots – See the discussion in section 4.2.5 Auxiliary Slots and see Figure 4.6.

2. Child tasks – See the discussion in section 4.1.8 Parent and Child Tasks.

3. Define server partitions and access them through portals – See Chapter 5 Partition
Portals.

However, these solutions may not be available for a particular partition for various reasons, such
as requiring too much code change. In that case it is necessary to fall back to the solutions that
follow in this section.

4.7.2 Combined Regions
If there are not enough MPU slots, it may be necessary to combine regions that you had hoped to
keep separate. Fortunately this is easy to do, and it would be easy to reverse if something
changes that makes an additional slot available. This is done in the linker command file, as
follows:

Consider the initial case of having separate FS and USBD code and data regions:

define block fs_code with size = 0x7000, alignment = fscsz
 {ro section .fs.text, ro section .fs.rodata};
define block fs_data with size = 0x400, alignment = fsdsz
 {rw section .fs.bss, rw section .fs.data, rw section .fs.noinit};
define block usbd_code with size = 0x10000, alignment = usbdcsz
 {ro section .usbd.text, ro section .usbd.rodata};
define block usbd_data with size = 0x1000, alignment = usbddsz
 {rw section .usbd.bss, rw section .usbd.data, rw section .usbd.noinit};
 ...
place in ROM {..., block fs_code, block usbd_code, ...};
place in SRAM {..., block fs_data, block usbd_data, ...};

To reduce the number of regions, fs_code and fs_data blocks are added into the usbd_code and
usbd_data blocks, respectively. Size and alignment are deleted from the fs blocks, and then they
are simply added to the lists in usbd blocks and deleted from the place directives:

Chapter 4

48

define block fs_code {ro section .fs.text, ro section .fs.rodata};
define block fs_data {rw section .fs.bss, rw section .fs.data, rw section .fs.noinit};
define block usbd_code with size = 0x10000, alignment = usbdcsz
 {ro section .usbd.text, ro section .usbd.rodata, block fs_code};
define block usbd_data with size = 0x1000, alignment = usbddsz
 {rw section .usbd.bss, rw section .usbd.data, rw section .usbd.noinit,
 block fs_data};
 ...
place in ROM {..., block usbd_code, ...};
place in SRAM {..., block usbd_data, ...};

Two problems with this solution are that a task requiring access to the USBD stack also gains
access to the file system, and the file system regions are now buried in the USBD regions and
thus cannot be used separately. With regard to the first problem, a reduction of partition isolation
and thus security, has occurred. Risk analysis may determine that this is ok for a particular
system. If not, another approach is to make fs and/or usbd separate partitions and access them via
portals. See Chapter 5, Partition Portals

With regard to the second problem, it is possible to retain the size and alignment of the fs blocks
and thus allow them to be used independently. In this case, the original blocks would be included
in the usbd blocks, as follows:

define block usbd_code with size = 0x10000, alignment = usbdcsz
 { block fs_code, ro section .usbd.text, ro section .usbd.rodata};
define block usbd_data with size = 0x1000, alignment = usbddsz
 { block fs_data, rw section .usbd.bss, rw section .usbd.data,
 rw section .usbd.noinit};

Notice that they now appear first. This is necessary to avoid large gaps inside of the usbd blocks.
For example, fs_data is aligned on 0x400, and since usbd_data is aligned on 0x1000, if fs_data is
first in usbd_data, it will be automatically aligned and no gap will occur ahead of it. If more than
one aligned block is to be included in a larger aligned block, the largest included block should be
put first, then the next largest, etc.

4.7.3 Common Regions
Rather than putting whole regions into other regions to cope with the limited number of MPU
slots, as discussed in the previous section, it may work better to put common code and data into
common regions, such as ucom_code and ucom_data.

A example of this is a task that uses smxFS to write to a USB disk. This task needs to access to
smxfs_code, smxfs_data, smxusbh_code, smxusbh_data, and the USBH I/O region = 5 regions.
The task needs access to its own code region, data region, stack region, and ucom_code region =
4 regions. (The ucom_code region is necessary for system services and standard C library
functions.) Thus, 9 regions are needed, which exceeds MPU slots available. A solution to this
problem is to put the subset of smxUSBH code needed for USB disk access into ucom_code,
creating a new region, ucomx_code. Now the task needs access to just 8 regions.

Those tasks needing access only to system services would be given the ucom_code region, not
the ucomx_code region. Hence they could not access the common smxUSBH code. However

Basic Theory

49

any task that does require ucomx_code would also have access to the common smxUSBH code,
so there is a reduction in partition isolation with this solution.

The difference between this solution and that of the previous section is that only some of the
USBH code is exposed to other tasks – namely that portion needed to access a USB disk. Other
USBH class drivers, device drivers, and portions of the USBH stack are not exposed. Thus it
would not be possible for a hacker to gain access to some other USB device such as a WiFi stack
through ucom_code. On the other hand since basic USBH code is exposed, the hacker could
disrupt USBH services.

As in the previous section, if these weaknesses are not acceptable, putting the file system and
USBH into separate partitions and accessing them via portals is a possible solution.

4.7.4 I/O Regions
Unlike memory regions, I/O regions have fixed addresses. Thus it is easier to specify them with
direct memory addresses and not involve the linker. For example:

 RGN(6 | 0x40011000 | V, IO | (9 << 1) | EN, "USART1"),

is for MPU region 6 of the STM32F746 ARMM7 processor. Looking at the memory map in its
Reference Manual, the I/O block for USART1 starts on 0x40011000 and its size is 1 KB.
(Referring to Yiu, Table 11.7 b1001 -> 1 KB, b1001 = 9.) Note that subregion disables are not
used in the above.

Looking at USART1, in more detail, we find that only the first 32 locations are used. Hence

 RGN(6 | 0x40011000 | V, IO | (4 << 1) | EN, "USART1"),

is a better choice. Then a wrong USART1 register address would cause an MMF.

The foregoing is for ARMM7. For ARMM8, the end address is specified rather than an encoding
of the limit, which is much easier:

 RGN(4, 0x40086000 | IOR, 0x40086FE0 | AI(1) | EN, "USART0"),

Remember the low byte is 0xE0 because the low 5 bits are used for other purposes. 0xE0 means
the limit is 0xFF. Note: the above is for a LPC55Sxx MCU.

Sometimes, partitions require more I/O regions than there are available MPU slots. Possible
solutions are swapping regions dynamically and spanning multiple regions. See section 8.5.4
Too Many I/O Regions, for discussion of these approaches.

4.7.5 I/O Regions Using Subregions
In some cases the size or alignment of an I/O register block does not match ARMM7 MPU
requirements. For example, for the above MCU, the Ethernet MAC register block is from
0x4002 8000 to 0x4002 93FF, so its size is 0x1400, which is not a power of 2. The next power of
2 is 0x2000, so this is the region size. The corresponding subregion size is 0x2000/8 = 0x400.
0x2000 – 0x800 = 0x1600, which is big enough. So set SRD = b1100 0000 = 0xC0 allows access
to the full Ethernet MAC register block. Unfortunately, it also allows access 0x200 bytes above
Ethernet MAC register block to address 0x4002 95FF. Fortunately, this area is unused.

Chapter 4

50

The case where a register block starts on an alignment less than its size does not seem to occur
for this processor. However, this could happen, perhaps with a custom I/O device. For example,
if an I/O register block size is 256 bytes, but it is located on a 128-byte boundary, then it is
necessary to look below for a suitable boundary. The next 128-byte boundary below is at least
256-byte aligned, but a 256 byte region starting there would not big enough to contain the full
register block. If, however, the boundary is also 512-byte aligned, then a 512 region would be
big enough. The subregion size would be 64 bytes. Hence, the subregion disables would be SRD
= b11000011 = 0xC3. This prevents access outside of the I/O register block. If say only the first
140 bytes of registers were used, SRD = 0xC7 would be even better.

4.8 Interrupts and Exceptions

4.8.1 Priorities
PendSV has lowest priority, SVC has next highest, and IRQs have higher priority. SVC must be
lower than IRQ priorities since otherwise, a system call via SVC would block peripheral
interrupts the whole time the system call ran.

4.8.2 Enabling ISRs and Exception Handlers to Run
If there are no static MPU slots available, the Background Region (BR) must be on in umode in
order to permit ISRs and exception handlers to execute when an interrupt or exception occurs.
This is controlled by setting SMX_CFG_MPU_BR_EN to 1 in xarmm_iar.inc. BR has no effect
in umode. It takes effect only when an interrupt or exception causes the processor to switch to
hmode.

BR enables access to all of implemented memory with default attributes, except for regions in
the MPU, which override the default attributes. Since any task might be interrupted, MPU
attribute overrides have no value, yet might cause trouble. However, it appears that compiler and
linker checks prevent the worst possible problems such as executing data or changing RO data.

Alternatively, if there are two MPU slots available to be static slots (in all MPAs), it may be
preferrable to set SMX_CFG_MPU_BR_EN to 0 and load the sys_code and sys_data regions
into them. These are privileged regions and thus cannot be accessed in umode. They should be
chosen to be as small as possible, while allowing all ISRs and exception handlers to execute.
This means that they should not include initialization nor ptask code and data regions. However,
sys_code must include all ISRs, exception handlers, smx, and other system services, and
sys_data must include all control blocks, buffers, etc. to support sys_code functions.

This makes utasks more similar to ptasks: ptasks have sys_code and sys_data in the first two
MPU slots in order to access system services directly and to support exceptions and ISRs. Also,
BR is off for ptasks.

Unfortunately BR off is not much protection against hackers. Rather than turn BR on, the hacker
could simply turn the MPU off – only one instruction is required for either. However, keeping
BR off does improve reliability (bugs are not as smart as hackers) and is worth doing for that
reason, alone.

Basic Theory

51

4.8.3 Interrupts
Interrupts cause an immediate switch to hmode and thus risk allowing hackers to penetrate it.
Recalling that any pmode code is but one step away from opening the Vault by turning off the
MPU, this is a major security concern. In many cases, only a few lines of carefully written code
in an ISR or in an ISR + LSR4 are needed to do the job. Figure 4.10 illustrates the two ways of
handling interrupts.

ISR

External
Control

Interrupt

ISR

LSR

Interrupt

External
 Control

Figure 4.10 Minimal Interrupt Processing

In this case, carefully writing the ISR code and LSR (if needed) code may be adequate protection
See section 8.10.6 ISRs and LSRs for suggestions for writing fortified code for ISRs and LSRs.

For complex ISRs, it may be a good practice to immediately swap the sys_code and sys_data
regions into the MPU, if not already there, and to switch BR off, if it is on. Although this is not a
large gain for security, it will improve safety and reliability by helping to catch programming
mistakes. When exiting, the ISRs must, of course, restore the replaced regions and switch BR on,
if it was on in the interrupted utask.

4 smx Link Service Routines, LSRs, are used for deferred interrupt processing and to make system calls.

Chapter 4

52

ISR

LSR

Interrupt

ISR

LSR

Interrupt

ptask

External
 Control

External
 Control

utask

NOYES

Figure 4.11 Task Interrupt Processing

When more than minimal interrupt processing is required, Figure 4.11 illustrates what to do on
the left and what not to do on the right. The objective is to move as much processing as possible
into a utask where hacking can be better constrained. As in Figure 4.10, the goal is minimal code
in ISRs and LSRs.

Despite the foregoing caution, it may be necessary to do full interrupt processing in pmode (i.e.
the above right-hand diagram). This is definitely faster and simpler, especially if there are critical
sections of code and if system services are being called. In this case, it is preferable to do the
processing in the ptask rather than in the ISR or LSR since it offers a bit more protection.

Another approach is discussed in section 6.7 Safe LSRs, which is using safe umode LSRs,
uLSRs. This is an advanced technique and so is put off until the advanced chapter.

4.8.4 Writing ISRs
As a general rule, as little as possible should be done in ISRs. They should do the minimum
necessary to reenable the IRQ and then invoke an LSR. The LSR should do the minimum
necessary to start a task, preferably a utask. All ISR code should be in .sys.text, which is in
sys_code.

Basic Theory

53

Example of assembly ISR:

SECTION `.sys.text`:CODE:NOROOT
 THUMB
MyISR:
 ; ISR body or call C ISR here
 cpsid f
 sb_INT_ENABLE
 pop {pc}

Example of C ISR:

#pragma default_function_attributes = @ ".sys.text"
void MyISR(void)
{
 smx_ISR_ENTER();
 // ISR body here
 smx_ISR_EXIT();
}
#pragma default_function_attributes =

ISRs cannot make smx SSR calls, however they can make system service function calls,
including smx_LSR_INVOKE(lsr, par). But, they must make direct calls not SVC calls. This is
because IRQs have higher priority than the SVC exception. Attempting an SVC call from a
higher priority IRQ will cause a Hard Fault. To avoid this, make sure that ISRs are preceded by
xapi.h or xapip.h, not xapiu.h.

4.8.5 Exceptions
Because exceptions are internally generated, they are not as much of a concern for hacking as are
interrupts. Handlers are implemented for the SVC, PendSV, MMF, and UF exceptions. The SVC
exception occurs when an SVC N instruction is executed, as it is done in the system service shell
functions in svc.c. SVC services are discussed in the next section. The PendSV exception is used
for task switching by smx. The UsageFault exception occurs in ARMM8 due to a stack overflow.

The Memory Manage Fault exception occurs when the MPU detects a violation. The MMF
handler halts operation if sb_handler_en is false. This normally is false for debugging (and set
true in smx_Go() if SMX_DEBUG = 0). This allows seeing the call stack leading up to the
MMF. Clicking on a level takes you to the instruction that called the level above. So clicking on
the top level in the call stack window shows the line of code that caused the MMF. See Chapter 9
Debugging. Also there is information on MMF debugging in the pd2 discussion in Chapter 7
Partition Demos.

If SMX_DEBUG = 0, the smx_EM() error manager is called with an SMXE_MMF_VIOL error
and severity = 1. Since this is considered to be an irrecoverable error, when smx_EMHook() is
called at the end of smx_EM(), it stops the task causing the MMF and outputs “TASK
STOPPED”. Stopping the task is necessary because attempting to return to the point of an MMF
results in an infinite loop. Recovery code should be added to smx_EMHook() to delete, recreate,
and restart the task or to reboot the system.

Chapter 4

54

MMFs are not likely to occur in ISRs or trusted LSRs because they run in hmode, normally with
Background Region ON. However safe LSRs can cause MMFs. In this case, the LSR host task
should be stopped as well as any other tasks in the partition and the partition should be rebooted.

4.9 SVC API

4.9.1 SVC Calls
When a ptask is converted to a utask, it can no longer make direct system service calls. Instead, it
must make indirect system service calls through the SVC Handler. This is accomplished via shell
functions such as the following:

NI bool smxu_SemSignal(SCB_PTR sem)
{
 sb_SVC(SS)
}

where

#define sb_SVC(id) \
 { \
 __asm("mov r12, #0"); \
 __asm("svc %0" : : "i" (id)); \
 }

This shell function simply invokes the SVC N function with N = SS. r12 == 0 means that the
function has 4 or less parameters; r12 == 1 means that it has more than 4 parameters.
Abbreviations for system services are defined in the ssndx enum in svc.c:

enum ssndx {LIM, AS, ASL, HF, HM, LIF, MUCR, MUG, MUR, PICR, PIGW, PIPW, SS, ST,
 SEG, SSG, TCR, TSU, IRQM, IRQU, PK, PTMG, EM, END};

The abbreviations define indices into the smx_sst[] jump table, which is below ssndx in svc.c.
The abbreviations are local to svc.c, hence they can be very short. The only requirements are that
they be distinct and in the same order as the jump table. This makes it easy to add or to remove
shell functions. After the jump table are the uSSR shell functions.

It is very important that only system services that are used in the application be included.
Otherwise, unused services will be linked in. Another module, svctmplt.c, has the enum, jump
table, and shell functions for every system service that can be permitted in umode. It is intended
that these be copied from it to svc.c, as needed.

As discussed in a later section, it is possible to define partition-specific enums, system service
table (SST), and shell functions that are included in the partition. In this case the partition does
not require access to svc.c for system calls.

The svc.c code must be included in the MPA of every utask that makes system calls, unless the
task is using a custom SST. Typically svc.c code is put into svc_code. C library code may also be
included here. svc_data may be defined, but is likely to be empty. For partitions that need more
than svc_code it can be included in ucom_code, which may include C library functions, partition

Basic Theory

55

functions, and other shared code. Normally, ucom_code replaces the sys_code region in an active
slot when a task is changed from a ptask to a utask. ucom_data contains common data and it
replaces sys_data when a task is changed from a ptask to a utask.

To switch utask code to use indirect system service calls, it is necessary only to use #include
“xapiu.h” instead of “include xapi.h” in its C modules. xapiu.h contains shell function prototypes
and mapping macros, such as:

bool smxu_SemSignal(SCB_PTR sem);

#define smx_SemSignal(sem) smxu_SemSignal(sem)

Thus it is not necessary to change system call names in utask code, unless default parameters are
being used in the calls. Macros cannot deal with default parameters – all parameters must be
specified in a macro. If default parameters are being used, just replace smx_ with smxu_ in the
utask code. Since smxu_xxxx() is a function, it can deal with default parameters, for example:

bool smxu_SemTest(SCB_PTR sem, u32 timeout=0);

Other system calls besides smx calls are also implemented. These have prefixes such as sb_,
mp_, etc., which become sbu_, mpu_, etc. Abbreviations for these calls are also included in the
ssndx enum.

If you find the need to define system services of your own, define a unique abbreviation, such as
MSC (my service call) to put in ssndx, and put the system call in the same position in smx_sst[].
Then create a shell function using the same abbreviation. See svc.h to pick the correct sb_SVC()
macro, depending upon the number of parameters in your new service. Up to 7 parameters are
currently supported. If your system service includes a heap call, it is necessary to use one of the
sb_SVCH() macros. This is because a heap call may need to wait on the heap mutex. A double
SVC call is necessary if the mutex wait succeeded.

Chapter 4

56

4.9.2 SVC Call Mechanism
Figure 4.12 illustrates the system call mechanisms for both utasks and ptasks.

utask
ssu_
shell

function

SVC
Handler

SS
Jump
Table

SS

ss_
call

PVEM

EM

ptask
pmodeumode

Figure 4.12 System Calls

As shown, utasks make indirect system calls via ssu_ shell functions5. Each shell function calls
the SVC n instruction, where n identifies the system call. The SVC instruction causes an SVC
exception, which causes the SVC Handler (SVCH) to run. This handler is located in
xarmm_iar.s and is written in assembly language for best performance. Due to SVC exception
handling by the processor, SVCH() runs in hmode with the main stack. As shown, it calls the
system service (SS) via the smx_sst[] jump table located in svc.c. The return value from the
system service is returned back through SVCH() and the shell function to the utask. Everything
to the right of the heavy line runs in pmode.

Figure 4.12 also shows direct ss_ calls from ptasks. As can be seen, these are much simpler and
consequently faster. If a ptask makes many direct system calls, it is possible that, when converted
to a utask making indirect calls, it will run too slowly. In that case, it must remain a ptask or
possibly be rewritten to make less system calls. Not shown in the figure is that ptasks can also
make indirect calls via the ssu_ shell functions. This is done as for ucode, simply by adding
#include “xapiu.h” ahead of the ptask code. Doing so before converting from a ptask to a utask is
a good way to verify that the indirect call overhead will be acceptable.

For a simple system service, such as SemSignal(), 780 clocks are required for the smx_ version
and 978 clocks are required for the smxu_ version – 198 more clocks or 25% overhead. For a

5 ssu_ represents any system service, such as smxu_, sbu_ etc.

Basic Theory

57

complex system service such as TaskCreate() the times are 3,876 and 4,777, respectively,
leading to increases of 901 clocks or 23% overhead. The former is typical of services with 4 or
less parameters and the latter is typical of services with more than 4 parameters. The latter
requires copying parameters 5, 6, and 7 from the task stack to the main stack. Very few smx
services require more than 4 parameters. In general, the performance hit for SVC calls is about
25%.

4.9.3 Restricted Services
Many system services are not desirable in umode due to potential hacker attacks. Allowing calls
such as smx_SysPowerDown() or smx_LSRsOff() would obviously be a mistake. Such calls are
omitted from svc.c. Note that ssndx[] in svc.c starts with LIM and ends with END. LIM is not a
service. Instead, END is put into smx_sst[LIM]. SVCH() compares n to END and if not less,
invokes smx_EM() with an SMXE_PRIV_VIOL error. This is treated as a recoverable error (sev
= 0). After being logged and reported, control comes back to the point of call, but no service has
been performed. Hence, a hacker cannot make up values of n in order to try to invoke restricted
services. (Nor can he directly call such services without triggering an MMF.)

Since the privilege violation has been blocked from occurring, it is not considered to be a fatal
error, and the task continues. This is appropriate during debug, but during operation it is
probably a sign of hacking, and smx_EMHook() might take stronger action. However, the error
is logged into the error and event buffers, so monitoring these may be sufficient to catch the
hacker and to take appropriate action.

Restricted functions such as smx_SysPowerDown() generate an error message during
compilation, if xapiu.h has been included:

"smx_SysPowerDown() not available in umode"

This helps to weed out restricted service calls when converting a ptask to a utask. As shown in
Figure 4.12 a system call from a ptask goes directly to an SSR, and there are no disallowed
service calls. As noted in the previous section, ptasks can also make indirect calls via the uSSR
shell functions. Doing so, before converting to utasks, is a good way to weed out restricted
services being made by the ptask. To do so, it might be necessary to split the task into a ptask
that makes the restricted calls and then restarts itself as a utask. This is commonly done for
initialization vs. normal operation.

4.9.4 Custom SSTs
svc.c contains smx_sst[] and shell functions for all services being used by utasks. As such, it
needs to be fairly general, but normally quite a bit less than svctmplt.c, which contains all system
services safe for umode.

As an even greater protection, custom ssndx enums, SST[]s, and shell functions can be defined
for partitions when desirable. The following example shows how this can be done for partition
pa:

/* pa system service table indices */
enum pa_ssndx {LIM, AS, MUF, MUG, SS, END};

/* pa system service table */
#pragma default_variable_attributes = @ ".sys.rodata"

Chapter 4

58

const u32 pa_sst[] = {
 (u32)END,
 (u32)smx_SchedAutoStop,
 (u32)smx_MutexFree,
 (u32)smx_MutexGet,
 (u32)smx_SemSignal,
};

/* Initialization */
#pragma default_variable_attributes = @ ".sys.text"
void utpa_init(void)
{
 utpa = smx_TaskCreate(tmx1_utpa, TP2, 0, SMX_FL_UMODE, "utpa");
 mp_MPACreate(utpa, (MPA*)&mpa_tmplt_utpa);
 smx_TaskSet(utpa, SMX_ST_CBFUN, (u32)tmx1_utpa_cbf, 1);
 semx1 = smx_SemCreate(SMX_SEM_RSRC, 1, "semx1");
 mux1 = smx_MutexCreate(0, 2, "mux1");
 smx_TaskStart(utpa);
 …
}

/* utpa callback function */
void tmx1_utpa_cbf(u32 m)
{
 switch (m)
 {
 case SMX_CBF_START:
 smx_autostop = &pa_SchedAutoStop;
 case SMX_CBF_ENTER:
 smx_sstp = (u32*)&pa_sst; /* change to pa_sst on entry to utpa*/
 break;
 case SMX_CBF_STOP:
 case SMX_CBF_EXIT:
 smx_sstp = (u32*)&smx_sst; /* change to smx_sst on exit from utpa */
 }
}

/************************************** UMODE PARTTITION A ***************************************/

#include "svc.h"
#pragma default_function_attributes = @ ".utpa.text"

/* simulated xapipa.h */
Void pa_SchedAutoStop(void);
bool pa_MutexFree(MUCB_PTR mtx);
bool pa_MutexGet(MUCB_PTR mtx, u32 timeout=0);
bool pa_SemSignal(SCB_PTR sem);

Basic Theory

59

#define smx_SchedAutoStop() pa_SchedAutoStop()
#define smx_MutexFree(mtx) pa_MutexFree(mtx)
#define smx_MutexGet(mtx, tmo) pa_MutexGet(mtx, tmo)
#define smx_SemSignal(sem) pa_SemSignal(sem)
/* end of simulated xapipa.h */

/* pa shell functions */
NI void pa_SchedAutoStop(void)
{
 sb_SVC(AS)
}

NI bool pa_MutexFree(MUCB_PTR mtx)
{
 sb_SVC(MUF)
}

NI bool pa_MutexGet(MUCB_PTR mtx, u32 timeout)
{
 sb_SVC(MUG)
}

NI bool pa_SemSignal(SCB_PTR sem)
{
 sb_SVC(SS)
}

void utpa_main(void)
{
 if (!smx_MutexGet(mux1, 0))
 tfailu();
 if (!smx_SemSignal(semx1))
 tfailu();
 if (!smx_MutexFree(mux1))
 tfailu();
}
#pragma default_function_attributes =

The first step is to define the xapipa.h, as shown above, which will convert smx calls to pa_ calls.
Then define pa_ssndx and pa_sst[] as shown above. Note that there are only 3 smx services plus
autostop. Many partitions may need very few services, like this, so the less a hacker has to work
with, the better. (If a partition has a custom SST, it is not given access to svc.c.) Next the shell
functions are defined. These all have less than 4 parameters, so only the sb_SVC() macro is used.
The tmx1 function, which runs in pmode, shows how the utpa task is created, given an MPA, and
given the tmx1_utpa_cbf callback function with utpa->flags.hookd set. It also creates the mux1
mutex and the sem1 semaphore, then starts the utpa task.

Ignoring autostop, for the moment, note that when utpa starts and each time it is resumed,
smx_sstp is set to &pa_sst. Hence the pa_sst[] jump table rather than smx_sst[] jump table is
used whenever utpa is running. Note that when utpa stops running smx_sstp is set to &smx_sst.

Chapter 4

60

This restores use of smx_sst[] for utasks that do not have custom SSTs. utpa_main() shows how
the pa services are called.

It is important to note that data and code above the UMODE PARTITION A are in .sys regions
and code below is in the utpa_text region. The pa_sst[] table is used by SVCH() and is
inaccessible by utpa. The pa shell functions are in utpa_text. Since there are very few, they do
not add significant memory overhead to utpa_text. Task utpa does not need, nor should it have
access to svc.c.

The above example is somewhat complicated by autostop, shown here just to illustrate how it
can be done. Autostop is necessary only if a task is allowed to run off its last }, as utpa does.
Such a task is called a one-shot task. Many partitions may not use one-shot tasks and thus not
require autostop. However, if one does, note that tmx1_utpa_cbf calls

smx_ChangeAutoStop((u32)pa_SchedAutoStop);

on START. A complexity of the ARMM architecture is that a task is started by creating an
exception frame, then doing an exception return. The LR slot in the exception frame contains the
smxu_SchedAutoStop() address for a utask. So on START this is changed to
pa_SchedAutoStop(). It is not necessary to put the LR slot back because the exception frame is
in the task stack, and it is lost on autostop since the task stack is released to the stack pool.

4.9.5 Partially Restricted Services
Some system services are needed in umode, but they are limited in what they can do. For
example, a parent task is allowed to start or stop one of its child tasks, but a child task is not
allowed to start or stop its parent task. Limitations also apply to what interrupts a task can mask
or unmask. These limitations have been added to smx. See Appendix D: SMX API Limitations
and the smx Reference Manual for specifics.

4.9.6 Mixed Code Modules
It often is not desirable to segregate pcode into p modules and ucode into u modules. There may
be a connection between a p function and a u function and thus it is desirable to keep them
together. For example, a task may start in pmode in order to initialize its partition, then restart
itself in umode to run. Thus there is need for both pmain() and umain() code and it is desirable to
have one adjacent to the other.

This can be accomplished as follows:

#include "smx.h "

// pcode

/*+++++++++++++++++++++++++ LIMITED SVC API (UMODE) ++++++++++++++++++++++++*/
#include "xapiu.h"

// ucode

/*+++++++++++++++++++++++++ FULL DIRECT API (PMODE) ++++++++++++++++++++++++*/
#include "xapip.h"

// back to pcode

Basic Theory

61

In the above, smx.h includes xapi.h, so pcode is first. Then xapiu.h switches to ucode. Then
xapip.h switches back to pcode. It does this by reversing the mappings of xapiu.h. xapiu.h can be
included next, then xapip.h after it, alternating as often as necessary. Headings can be included,
as shown in order to make header file changes more prominent and thus avoid not seeing them.

If there are many alterations of pcode and ucode in a module, alternating #include statements
may become messy. This can be avoided by using the smx_ prefix for direct smx calls and the
smxu_ prefix for indirect smxu calls via the SVC Handler, as follows:

#include "xapiu.h"
#include "xapip.h"
…
void tm03(void)
{
 ut2a = smx_TaskCreate((FUN_PTR)tm03_ut2a, TP2, 0, SMX_FL_UMODE, "ut2a");
 smx_TaskStart(ut2a);
 …
#pragma default_function_attributes = @ ".ut2a.text"
void tm03_ut2a(void)
{
 bool rv;
 rv = smxu_SemTest(sbr2, INF);

xapiu.h defines the smxu_ function prototypes and xapip.h undefs the mapping macros in
xapiu.h. Thus, they are not being used.

In the above example, it is helpful during debug to see the utask code immediately after the
pmode code that created and started the utask. This makes it easier to follow interactions
between the two, without having to scroll up and down in the module or switch from module to
module. The pragma puts the utask code into its code segment.

Middleware modules run in umode, so generally a main header file in them includes xapiu.h so
that all its C files start with ucode. Then xapip.h is included ahead of ISRs, LSRs, and
initialization code, and xapiu.h is included again after them for the remaining code in the file.
This technique works well for a subsystem or library that is mostly ucode.

4.10 Processor Control

4.10.1 smx Task Switching6
For the Cortex-M architecture, following execution of an smx System Service Routine, SSR, if
the smx_sched flag is set, or if smx_lqctr is not 0, the PendSV Handler is triggered, causing a
PendSV exception7. The smx_sched flag indicates that the current task should be stopped,
suspended, or its priority tested vs. the top task in the ready queue. A non-zero smx_lqctr
indicates that an LSR is ready to run. LSRs are dispatched ahead of all tasks.

6 This is a simplified description – several complexities are omitted.
7 When an SSR is called from SVCH(), operation is a bit different. See Section 4.9.2 SVC Call Mechanism.

Chapter 4

62

When a PendSV exception occurs, the processor automatically switches to hmode and to the
main stack. It first stacks the R0-R3, R12, LR, PC, and XPSR registers on the task stack, TS. The
processor is now in handler mode and it is running the smx_PendSV_Handler() (PSVH()). If
smx_lqctr > 0, PSVH() first calls the LSR scheduler to run LSRs in the LSR queue, smx_lq.
When all LSRs have run, PSVH() tests the smx_sched flag: if 0 or if the current task is still the
top priority ready task it returns to the current task, else it calls the task scheduler. The task
scheduler selects the top task (longest waiting at highest priority) to run.

After the task scheduler runs, it returns to the tail of PSVH(). It is important to note that it will be
doing so with a different current task since there has been a task switch. PSVH() does some
processing, then returns to thread mode. If SMX_CFG_SSMX is set, the nPRIV bit in the
CONTROL register is set equal to smx_ct->flags.umode. This determines whether the task runs
as a utask or as a ptask. In either case, the task’s stack is now used and if the task had been
suspended, R0-R3, R12, LR, PC, and XPSR are unstacked from it before returning to the point
of suspension. Otherwise, if the task is being started, unstacking is not required and control goes
to the beginning of its main function.

4.10.2 From pmode to umode
If the ct->flags.umode flag is set in a task’s TCB, the task is a utask; if the flag is 0 the task is a
ptask. Normally the SMX_FL_UMODE flag is used to set its umode flag when a task is created:

 ut2a = smx_TaskCreate(tm03_ut2a, TP2, 0, SMX_FL_UMODE, "ut2a");

Otherwise, the task created is a pmode task:

 t2a = smx_TaskCreate(tm02_t2a, TP2, 0, 0, "t2a");

Alternatively, following task creation, while in pmode, the flag can be changed with:

 smx_TaskSet(task, SMX_ST_UMODE, 1);

A ptask can set its own umode flag. Hence, a task can start running in pmode and then switch
itself to umode, as follows:

 #include “xapi.h”

 #pragma default_function_attributes = @ ".t2a.text"
 void tm10_t2a(void)

 {
 /* perform pmode initialization */
 …
 /* create alias task */
 ut2a = t2a;

 /* Change template, set umode, and restart with code tm10_ut2a. */
 smx_TaskLock();

 smx_TaskSet(ut2a, SMX_ST_UMODE, 1);
 mp_MPACreate(ut2a, (MPA*)&mpa_tmplt_ut2a);
 ut2a->name = "ut2a";
 smx_TaskStartNew(ut2a, 0, TP2, tm10_ut2a);
 }

Basic Theory

63

 #include “xapiu.h”

 #pragma default_function_attributes = @ ".ut2a.text"
 void tm10_ut2a(u32 par)
 {
 /* Run in umode, after restarting. */
 }

In this example, tm10_t2a() is the pmode main function for t2a, and tm10_ut2a() is the umode
main function for ut2a. TaskSet() allows changing task t2a to task ut2a. (t2a and ut2a are the
same task with different names – i.e. the TCB does not change.) Then MPACreate() allows
changing to mpa_tmplt_ut2a. smx_TaskStartNew() allows changing a task’s main function. It
also allows passing a parameter to the new main function and changing the task’s priority. Note
that the task must be locked so it cannot be preempted while changes are being made. It is
unnecessary to unlock the task because the scheduler will do that following
smx_TaskStartNew().

Typically the top task of a partition may do quite a bit of initialization that can be done only in
pmode. When this is complete, it switches itself to umode where it completes the initialization,
such as creating and starting child tasks and then starts its normal operation.

4.10.3 Memory Protection Arrays, MPAs
Figure 4.13 shows an MPA for a ptask.

MPA

sys_code

sys_data

IO

3

4

5

6

OR

SP

pmsg

IO1

IO2
Auxiliary

Slots

Active
Slots

Figure 4.13 MPA for ptask

Chapter 4

64

Notice that slots 1 and 0 hold sys_data and sys_code. This is necessary because Background
Region, BR, is always off when a ptask runs. Slot 2 is an IO slot shared between IO1 and IO2.
Slots 3 thru 6 hold ptask regions. Slot 7 holds the stack pointer region. Slots 8 thru 10 are
auxiliary slots – i.e. outside of the MPU. Slot 8 is reserved for protected messages, pmsgs, and
slots 9 and 10 hold IO regions that can be swapped to the active IO slot 2, as needed.

Figure 4.14 shows the MPA for the same task after it has been converted to a utask:

MPA

ucom_code

ucom_data

IO

3

4

5

6

SP

pmsg

Active
Slots

Auxiliary
SlotsIO2

IO1

Figure 4.14 MPA for utask

Notice that ucom_code has replaced sys_code and ucom_data has replaced sys_data. In this case,
BR is on in umode. BR is not effective in umode but becomes effective when an interrupt or an
exception causes a switch to hmode. If ucom_data is not necessary, IO2 and IO1 can have their
own active slots and switching between them is no longer necessary. Also the MPA would be
smaller since two of the auxiliary IO regions are no longer needed. In both cases, slots 3-6 are
available for task regions. How these are used will vary from task to task. Most likely, two slots
will be used for task_code and task_data and the other two slots are available for other regions,
such as dynamic regions or other common regions.

Note: The above represents conversion of a ptask into a utask, during development, and changing
its template, accordingly. This is not the same thing as discussed in section 4.10.2 From pmode
to umode. However, these figures also apply to that discussion since a switched task can change
from a pmode template to a umode template.

Basic Theory

65

4.10.4 What Good are ptasks?
Unfortunately, the MPU is totally unprotected in pmode. It is within the System Control Space
(SCS), which is in the Private Peripheral Bus (PPB) memory area. Accesses to the PPB bypass
the MPU. Hence the PPB, and all within it, have no protection from malignant pcode. If malware
gains control of a ptask, it need only turn off the MPU or turn on BR in order to access whatever
the hacker pleases. Thus, ptasks are not as secure as utasks8. What then are ptasks good for?

They are good for:

• Speed – direct access to all system and BSP services.
• Fine-tuned, mission-critical code that no one wants to change.
• Better reliability.
• Stepping stones in the conversion of ptasks to utasks.
• Cache and memory attribute control.

The fact that SecureSMX provides support for both ptasks and utasks and that they are largely
treated equivalently means that it is easier to achieve a proper balance between security,
performance, reliability, and other factors for an embedded system. As part of this equivalence,
ptasks can make indirect SVC system calls and can also use portals, if desired.

ptasks are very important for improving the reliability and safety of legacy code, and they serve
as stepping stones to moving to umode. Often, there is one area that presents a security or safety
problem. It might be adding networking or it might be code that has proven vulnerable to
hacking. The partition demos, pd0 to pd4, presented in Chapter 7 show a step-by-step process to
define a partition in pmode and move it into umode. As time goes on, other partitions can be
defined and moved into umode, thus steadily improving system security and safety. SecureSMX
is designed to support incremental improvement.

4.10.5 Hacking a ptask
Although ptasks are not as secure as utasks, if a hacker gains access to a ptask, he is still not
home free. Suppose, for example, that a ptask monitors a sensor. The sensor is connected to an
A/D converter, which the ptask periodically samples. Assume that an 8-bit A/D converter is
being used and that the samples are stored in a large buffer for later processing. In a typical
attack, the hacker replaces the sensor with a D/A converter connected to his computer. Then, by
synchronizing his D/A converter with the A/D converter, he can load a small program into the
buffer, conversion by conversion.

Then he needs to cause the system code to branch to his program, and he is in! Normally this is
done by replacing a return address in the task stack with the address of the just-loaded malware.
However it is done, let’s assume the hacker does it and the next subroutine return branches to his
code in the buffer. But wait! The buffer is in an execute never, XN, region enforced by the MPU,
so the branch will cause an MMF, and supervisory code will take over. Too bad for the hacker –
foiled again!

8 Because a utask cannot access the PPB, and BR has no effect in umode.

Chapter 4

66

4.11 Dynamic Features

Previous sections of this manual have covered static features – i.e. those determined at compile
and link time. This section presents dynamic features that are used while running.

4.11.1 eheap and smx_Heap
eheap is an RTOS-agnostic heap developed by Micro Digital specifically for embedded systems.
It supports multiple heaps, in a simple manner, and can support simple, small heaps with a single
bin up to large, complex heaps with up to 31 bins. Hence it is ideal for situations where multiple
heaps of various sizes are required. It has other useful features for embedded systems such as:

• Configurable bin structures (number and sizes of bins).
• Aligned allocations on 2^n boundaries.
• ARMM7 region allocations with automatic subregion disables.
• Large bin sorting during idle periods.
• Integrated small-block, block pools for object-oriented programming objects.
• Automatic heap and bin scanning and fixing for broken links.
• Manual or automatic merge control.
• Fragmentation recovery.
• Debug chunks to assist in finding leaks and other problems.

smx provides smx_Heap shell functions which add task-safe support to eheap functions. Task-
safe operation is achieved via a mutex per heap, rather than the SSR_ENTER() / SSR_EXIT()
mechanism used by other smx services. This is necessary because heap calls can be slow. Using
a mutex allows higher-priority tasks to run while a heap task waits for a heap operation to
complete9. Using a heap mutex per heap is necessary to decouple partitions so that one partition
cannot cause another partition to wait excessively for access to its own heap.

When a heap is initialized, if the mode parameter is NULL, the heap will not be mutex-protected.
This reduces overhead for partition heaps in which operations cannot be preempted (e.g. only
one task does heap operations). In this case, heap operations are still logged and smx heap error
checking is still performed.

For C++ partitions where ultimate speed is necessary, integrated block pools can be added to
eheap for small objects. In this case, there is no logging and no smx error checking. However,
eheap still performs numerous error checks, and approximately 11 error types are reported in
hvp[hn]->errno.

A single timeout, smx_htmo, applies to all heap accesses. It is intended only to prevent
permanent task hang-ups and should be a long time. During debug it is best to set it to
SMX_TMO_INF, in order to avoid heap timeouts, which may cause problems.

9 Of course, there is only one processor, so the heap operation does not run while the higher-priority task runs. The
important thing is that the higher-priority task is not forced to wait for a potentially long heap operation.

Basic Theory

67

See the smx Reference Manual for more information on using smx heaps and creating and using
multiple heaps. See the eheap User’s Guide for more information on using eheap. This will help
you understand the following sections.

4.11.2 The Need for Multiple Heaps
Using heaps in modern application code is popular and it is necessary to support object-oriented
languages. This is a growing trend as embedded systems become more complex and are expected
to do more functions – especially in IoT systems. Also, some middleware uses heaps.

It is unacceptable for utasks to have direct access to the main heap. A hacker could easily bring
down the whole system simply by exhausting or corrupting the main heap. It generally is also not
acceptable to have a heap that two or more partitions share, since malware in one partition could
corrupt blocks owned by another partition, or it could access sensitive data of the other partition.
Thus, each partition that needs a heap, must have its own heap. These heaps will generally be
small, but not necessarily so.

An exception to the above is if one partition gets blocks from a heap, and another partition
releases them back to the heap, then obviously the heap must be shared between the partitions.
SecureSMX provides protected messages, pmsgs, for this purpose. Special services are provided
to get, release, and handle pmsgs so that the task does not have direct access to the shared heap.
pmsgs are used for portals, which are discussed in the next chapter.

4.11.3 Allocating Heap Space
The main heap is in sys_data and it is used by the smx kernel. Task stacks are allocated from it,
as well as other objects that smx needs. Space for the main heap is allocated by the mheap block
in the linker command file.

There are two ways to allocate heaps that are dedicated to partitions. One is to define the heap
block in the linker command file, as follows:
 define block heap2 with size = 0x1000, alignment = 16 { };

This is quite a small heap (4096 bytes) but adequate for some partitions. Then in the initialization
code for the heap:

hsa = (u8*)__section_begin("mheap");
hsz = (u32)__section_size("mheap");

The second way to allocate a heap is illustrated in Figure 4.15. In this case, it is allocated at run
time from the main heap (or another heap), using:

hsz = 0x1000;
hsa = smx_PBlockGetHeap(hsz, sn, DATARW, “heap1”, mheap);

where sn is the slot number in the current task’s MPA to place the new heap region. In the figure
below, heap1 calls from TaskA operate only on heap1 and cannot go outside of it. TaskA can
access the main heap only for a protected block or message, as shown by the dashed line, and
cannot go outside of the protected block or message. (Protected blocks and messages are
discussed in sections 4.11.10 Protected Data Blocks and 4.11.11 Protected Messages,
respectively.) Hence the main heap is protected from TaskA.

Chapter 4

68

TaskA

heap1

heap0

Figure 4.15 Dedicated Heap from Main Heap

Memory for a dedicated heap can also be a static block of memory, a block from a block pool, or
Task Local Storage, TLS (see section 4.11.8 Task Local Storage).

4.11.4 Creating a Heap
Each partition that needs a heap creates its own heap. To do so, the partition must define a
binsz[] array, allocate space for the bins, define an eheap variable structure, EHV, and get space
for the heap, as follows:

/*==
 FAST HEAP (hn = 1) from SDRAM
==*/
/* Medium bin size array consisting of five large bins with no SBA. The top
 bin contains chunks >= 2048 bytes. The array ends with 0xFFFFFFFF. */

u32 const binsz1[] =
/*bin 0 1 2 3 4 end */
 {24, 512, 1024, 1536, 2048, -1};

#if defined(__IAR_SYSTEMS_ICC__)
#pragma data_alignment = SB_CACHE_LINE /* cache align in SRAM */
#endif

HBCB bin1[(sizeof(binsz1)/4)-1]; /* heap1 bins */

#if EH_STATS
u32 bnum1[(sizeof(binsz1)/4)-1]; /* number of chunks per bin */
u32 bsum1[(sizeof(binsz1)/4)-1]; /* sum of chunk sizes per bin */
#endif

EHV hv1; /* heap1 variable array */

Basic Theory

69

/* heap1 create and initialize control variables */
void h1_init(void)
{
 u8* hsa; /* heap starting address */
 u32 hsz; /* heap size */

 /* get heap space for h1 allocated in linker command file */
 hsa = (u8*)__section_begin("heap1");
 hsz = (u32)__section_size("heap1");

 /* initialize heap */
 smx_HeapInit(hsz, 0, hsa, &hv1, (u32*)binsz1, (HBCB*)bin1, EH_NORM, "heap1");
}

The EHV structure contains all of the variables that control the heap. The top task for a partition
initializes certain variables, then calls smx_HeapInit(), as shown above. In this example, the
second parameter is the donor chunk size, which is not used if there are no small bins. For
simplicity, the above example does not show a Small Bin Array, SBA, but one can be added. An
SBA consists of a single bin per chunk size, starting at 24 — e.g. 24, 32, 40, 48. An SBA
provides faster allocations of small blocks since no bin searching is required.

This particular example is a simple heap, which has better performance than a one-bin heap (the
smallest possible heap). In effect, each bin acts like a subheap and contains chunks starting at the
bin size. So, for example bin1[0] contains chunks from 24 to 504 bytes in 8-byte increments = 61
different chunk sizes. The chunks in this bin are sorted, by increasing size, during idle periods, in
order to speed up finding the first big-enough chunk for a desired block size.

If C++ is being used in a partition, then the partition’s heap creation and initialization must be
added to smx_HeapsInit(), which creates mheap. This function is called by C startup code prior
to calling C++ initializers, which need the new heap. If C++ is used in the partition, then
integrated block pools are normally added to provide fast allocation and deallocation for small
objects.

4.11.5 Heap Manager
Each partition having a dedicated heap defines its own heap manager and assigns its address to
the EHV mgr field. The heap manager does functions such as:

• Automatic chunk merge control to prevent excessive fragmentation.
• Automatic heap and bin scan and repair.
• Bin sorting to improve bin performance.

Simple partition heaps may not require heap managers. Large, heavily used heaps, such as
mheap are likely to use managers for the above purposes to improve performance and reliability.

Chapter 4

70

4.11.6 Task Stacks
smx provides three kinds of task stacks:

• Heap stacks (permanent)
• Preallocated stacks (permanent)
• Stack pool stacks (shared)

A heap stack block is allocated by smx_TaskCreate() from heapn, if the stack size, ssz, is non-
zero and bp is zero. If bp != 0, bp is assumed to point to a preallocated stack block of size = ssz.
If ssz == 0, the stack block is allocated from the stack pool when the task is dispatched and
returned to the stack pool when the task is stopped.

Each stack block contains the following, in order of increasing addresses:

• Stack pad (optional)
• Stack
• Register Save Area (RSA)
• Task Local Storage (TLS) (optional)

A preallocated stack block must come from an existing task region, so no stack region is created
for it. It also must conform to MPU size and alignment requirements. In this case, the top MPU
slot is free for another region. For ARMM8, when a ptask with a heap stack is created from
mheap, no stack region is created for it. This is because the stack region would overlap the
sys_data region, which contains mheap, thus causing an MMF. If the stack block comes from
another heap, a stack region can be created for it. If a utask is created, a stack region can be
created for it because the sys_data region is either not present in the MPU for utasks or it allows
privileged access, only. Thus region overlapping is not a problem.

If the stack is allocated from a heap, the stack block size is increased to meet the MPU size and
alignment requirements, if does not already. The region for the heap stack is automatically
created and stored in the task’s TCB. When an MPA is created for the task, the stack region is
loaded into the top active slot of the MPA and whenever the task is started or resumed, the stack
region is loaded from the MPA into the top slot of the MPU.

For a heap stack, if the stack block size is increased, the additional space is put into the stack,
itself. Hence task->ssz may be greater than the requested stack size in smx_TaskCreate(). As a
consequence, in the event of a stack overflow, look at task->ssz, not at the requested size, to
decide upon a new stack size. For ARMM8, increasing the requested stack size above task->ssz,
may result in a slightly larger stack than expected, but for ARMM7 it could result in a much
larger stack than expected. This is because the stack block size will increase by a subregion size.
For example, if the current size is 1024*5/8 - 8-byte pad - RSA = 600 bytes and it is increased by
16 bytes (i.e. 616 requested in smx_TaskCreate()), another subregion must be added, so the new
stack size becomes 1024*6/8 - 8 - 32 = 728 bytes – quite a bit more than expected! If fast RAM
is scarce, it may be better to look for ways to reduce stack usage in the task, rather than
increasing stack size.

If the stack size parameter is zero, a pool stack, or temporary stack, is assigned to a task by the
task scheduler when the task first starts. The stack block size is determined by

Basic Theory

71

STACK_BLK_SIZE in acfg.h, which must be a power of two for ARMM7 and a multiple of 32
for ARMM8. Then:

SMX_SIZE_STACK = (SMX_SIZE_STACK_BLK - SMX_SIZE_STACK_PAD
 - SMX_RSA_SIZE)

A temporary stack cannot have Task Local Storage, so TLS_SIZE is not included above. In
addition, each stack in the stack pool must meet the MPU size and alignment requirements. For
ARMM8, the stack pool comes from the sys_data region. Thus for a ptask, no stack region is
created for it due to the no region overlap requirement. For ARMM8 utasks and all ARMM7
tasks, a stack region is automatically created and loaded into the top active slot of the task’s
MPA. Then, whenever the task is started or resumed, the stack region is loaded from the MPA
into the top slot of the MPU.

For stack regions in the top MPU slot, overflows and underflows are immediately detected and
reported as Memory Manage Faults (MMFs). If STACK_PAD_SIZE in acfg.h is not 0, stack
overflow will not be caught until the stack pad is also overflowed (but it will show in
smxAware). Stack pads are normally used during debugging so that the system will keep running
despite stack overflows. Normal smx stack overflow detection by the scheduler is still enabled
and reported, the first time, as SMXE_STK_OVFL by the smx error manager.

Due to the heap allocation method for a ARMM7 MPU, the following stack block sizes are
available for 2048 bytes or less:

32

40 48 56 64

80 96 112 128

160 192 224 256

640 768 896 1024

1280 1536 1792 2048

For example, if a stack block size of 232 bytes is needed, the closest larger size from the above
table is 256, thus excess10 space would be 24 bytes. If a stack block size of 1600 bytes were
needed, the closest larger size from the above table is 1792, thus excess space would be 192
bytes. As apparent from the table, potential excess space gets larger, the larger the stack. For
ARMM8, excess space is always less than 32 bytes.

10 The term “excess” space is used instead of “wasted” space because the excess space is put into the stack where it
might be used.

Chapter 4

72

4.11.7 PSPLIM and MSPLIM
ARMM8 defines two new registers: PSPLIM and MSPLIM. The first is an overflow limit for the
current process stack. The second is an overflow limit for the main stack.

PSPLIM is set equal to task->spp by smx_MPULoad() when a task is started or equal to
clsr->stp by smx_MPULoad() when a safe LSR is started. During operation, if PSP >= PSPLIM,
a Usage Fault occurs. MSPLIM is set = CSTACK + SB_SIZE_MS_PAD in the startup code
(__low_level_init()). If MSP > MSPLIM a Usage Fault occurs. In both cases:

Usage Fault -> smx_UF_Handler() -> sb_UFM() -> smx_EM() -> smx_EMHook() -> halt

smx_UF_Handler(), in xarmm_iar.s, is written in assembly language in order to avoid an infinite
stack-overflow/usage-fault loop caused by register pushes for C functions. If sb_handler_en is
false, it halts. Otherwise, it first moves MSPLIM to the start of CSTACK in order to avoid
further MSPLIM usage faults. Then it calls sb_UFM(). SB_SIZE_MS_PAD must be large
enough to allow sb_UFM(), smx_EM(), and smx_EMHook() to run without MSPLIM usage
faults. sb_UFM() tests for stack overflow. If PSP >= PSPLIM, it calls
smx_EM(SMXE_STK_OVFL, 1); if MSP >= MSPLIM, it calls
smx_EM(SMXE_MSTK_OVFL, 2); if neither, it calls smx_EM(SMXE_UF_VIOL, 1).

smx_EM() records the error, then calls smx_EMHook(), which stops the current task if sev == 1
or calls aexit() if sev == 2. Following this, recovery code should be added to reboot the task or
aexit() should reboot the system. Unfortunately an exception stack is not created when a
PSPLIM or MSPLIM violation occurs. Creating an exception stack and attempting an exception
return does not work, so the processor is halted, instead, and a watchdog timeout is necessary to
restart it and reboot the system.

Using PSPLIM can allow MPU[7] to be used for another purpose other than as a task stack
region. In this case, the task stack would be put into the task_data region. However, PSPLIM
does not protect against code execution from the task stack, which is a prevalent attack vector.
Also it seems that simply rebooting the task or safe LSR experiencing the stack overflow is not
possible and the entire system must be rebooted.

4.11.8 Task Local Storage
For a permanent stack, smx_TaskCreate() allows adding a Task Local Storage (TLS) area that
follows the Register Save Area (RSA) and is part of the stack region, as follows:

smx_TaskCreate(fun, pri, tlssz_ssz, fl_hn, name);

tlssz_ssz is a double parameter: the upper 16 bits define the TLS size, tlssz, and the lower 16 bits
define the stack size, ssz.11 Both can sizes be up to 64 KB. TLS is available only if ssz > 0 – i.e.
the task stack must be a permanent stack from heap, heapn (hn = fl_hn & 0xF) or a preallocated
stack.

The TLS pointer is stored in the TCB of the task. It can be accessed as follows:

tlsp = (u8*)smx_TaskPeek(task, SMX_PK_TLSP);

11 Some functions combine parameters, since the SVC Handler supports only up to 7 parameters.

Basic Theory

73

This operation is permitted for utasks as well as ptasks.

TLS allows saving an MPU slot by combining space for static local variables with task stack
space into a single region. In order to do so, local static variables must be organized into
structures and arrays. If organized into a single structure, use:

tlsp->fieldn;

to access fieldn in the TLS. Using a TLS can save using an MPU slot for a task_data region. This
is particularly recommended when a task has very few static variables. With the Cortex-M
architecture, there is no time penalty to access a variable vs. a field in a structure – both require
two LDR instructions. An index is added for a field, and no index is added for a variable.
Depending upon the compiler and its settings, multiple field accesses may save LDR instructions
vs. multiple variable accesses, and thus be faster.

Another possible use for a TLS is as a dedicated heap if a partition has only one task.

4.11.9 Dynamic Regions
There are times when it is beneficial if regions can be created during run time rather than defined
statically at compile time. A good example is a case where a buffer size depends upon
installation parameters and thus is not known at compile time. At initialization time, the code has
already been compiled and linked, so it is not possible to change a static region. Hence a
dynamic region is needed. Dynamic regions can only be created in pmode.

To create a dynamic region in the template for taskA:

 mpa_tmplt_taskA[sn] = MP_DYN_RGN(dpr[n]);

where dpr[] is an array of n dynamic regions and MP_DYN_RGN() loads the address of dpr[n]
and sets DRT flag in template slot sn. The DRT is bit 31 in the RASR, which is an unused bit, or
= 0xFFFFFFFF in the RLAR, which is an illegal value. Thus a dynamic template slot does not
look like a normal template slot.

SecureSMX provides three functions to dynamically create data regions, from pmode:

u8* mp_RegionGetHeapR(rp, sz, sn, attr, name, hn);
u8* mp_RegionGetPoolR(rp, pool, sn, attr, name);
bool mp_RegionMakeR(rp, bp, sz, sn, attr, name);

where rp = &dpr[n], sz is the desired data block size, sn is the MPU slot number, attr is the
attributes macro, name is an optional name for the region. For get from heap, hn is the heap
number; for get from pool, pool is the pool handle; for make block, bp is the block pointer. A
region can be made from any block pointed to by bp. This can be a dynamically allocated block
or a static block such as sblk[128]. Both pool blocks and static blocks must meet region size and
alignment requirements.

When a task’s MPA is loaded, dynamic slots are loaded along with the static slots from the
template. Hence, the above Region functions need to be called before the task’s MPA is created.
The above functions are not smx SSRs and thus they are not task-safe. They should be used only
during initialization or while the calling task is locked.

Chapter 4

74

The following illustrates creating a dynamic region in a template:

MPA mpa_tmplt_ut2a =
{
 RGN(0 | RA("ucom_data") | V, DATARW | RSI("ucom_data") | EN, "ucom_data"),
 RGN(1 | RA("ucom_code") | V, CODE | RSI("ucom_code") | EN, "ucom_code"),
 RGN(2 | RA("ut2a_data") | V, DATARW | RSI("ut2a_data") | N7 | EN, “ut2a_data”),
 RGN(3 | RA("ut2a_code") | V, CODE | RSI("ut2a_code") | EN, "ut2a_code"),
 MP_DYN_RGN(dpr[0]), /* dynamic region */
 RGN(5 | V, 0, "stack"), /* reserved for task stack */
};

MPR dpr[3]; /* dynamic protection regions */

bp = mp_RegionGetHeapR(&dpr[0], 200, 4, DATARW, "block1", mheap);

In the above, a dynamic region is obtained from mheap and loaded into dpr[0]. When
mpa_tmplt_ut2a is loaded into task ut2a’s MPA, dpr[0] is loaded into MPA[4].

As with TLS, described in section 4.11.8 Task Local Storage, data must be organized into arrays
and structs, or the entire region might be used as a working buffer. The major advantage of a
dynamic region is that it does not require defining a section in the code and a block in the linker
command file. It is thus easier to use and it is more flexible with regard to changing
requirements.

4.11.10 Protected Data Blocks
Protected blocks are referred to as pblocks. They differ from the dynamic regions defined in the
previous section in that they can be created and released at any time by utasks or ptasks.
Protected data blocks are good for heaps, temporary buffers, work areas, structures, etc. that may
vary in size.

The following smx SSRs allow creating and releasing protected data blocks:

u8* smx_PBlockGetHeap(sz, sn, attr, name, hn);
u8* smx_PBlockGetPool(pool, sn, attr, name);
bool smx_PBlockMake(bp, sz, sn, attr, name);
bool smx_PBlockRelHeap(bp, sn, hn);
bool smx_PBlockRelPool(bp, sn, pool, clrsz);

Where sz is the desired data block size, sn is the MPU slot number for its region, attr is the
attributes macro (e.g. DATARW), and name is an optional name for the block. For get from
heap, hn is the heap number; for get from pool, pool is the pool handle; for make block, bp is the
block pointer. For the release functions, bp is the block pointer returned by one of the get
functions, and clrsz specifies how many bytes to clear after the free block link in the first word of
the block. PBlock functions are similar to the region functions of the previous section. They are
smx SSRs, so they can be safely called from either utasks or ptasks, at any time.

Basic Theory

75

Basically, a pblock is obtained from a heap or a pool or made from a static block. A region is
created for it and loaded into MPU[sn+fas]12 and into MPA[sn] of the current task. If
MP_MPA_DEV, name is also loaded into MPA[sn]. The heap can be any heap, including the
main heap, mheap. The block pool can be any block pool; the block can be any block, both as
long as blocks meet size and alignment requirements. These are safe because if a hacker
penetrates the task, the MPU prevents him from accessing memory outside of the protected
block.

For more information on PBlock functions, see Appendix A.2.

4.11.11 Protected Messages
Protected messages are referred to as pmsgs. They are pblocks that can be sent from partition to
partition via smx message exchanges. They carry their own region information with them. Thus
they are portable regions.

The following smx SSRs are provided for protected messages:

MCB_PTR smx_PMsgGetHeap(sz, bpp, sn, attr, hn, mhp);
MCB_PTR smx_PMsgGetPool(pool, bpp, sn, attr, mhp);
MCB_PTR smx_PMsgMake(bp, sz, sn, attr, name, mhp);
bool smx_PMsgRel(mhp, clrsz);
MCB_PTR smx_PMsgReceive(xchg, bpp, sn, timeout, mhp);
void smx_PMsgReceiveStop(xchg, bpp, sn, timeout, mhp);
bool smx_PMsgReply(pmsg);
bool smx_PMsgSend(pmsg, xchg, pri, rxchg);
bool smx_PMsgSendB(pmsg, xchg, pri, rxchg);

Where sz is the desired message data block size, bpp is the location in which to put the message
block pointer, sn is the MPU slot number for the message block region, and attr is the attribute
macro (e.g. DATARW). For get from heap, hn is the heap number; for get from pool, pool is the
pool handle; for make block, bp is the block pointer and name is an optional name for the pmsg.
These functions return the pmsg handle, which is a pointer to its Message Control Block (MCB).

For the release function, pmsg is the msg handle returned by one of the get functions, and clrsz
specifies how many bytes to clear after the free block link in the first word of the message block.
For the send and receive functions xchg is the message exchange to use, timeout is the maximum
time to wait at an exchange, pri is the pmsg priority, and rxchg is the reply or resource exchange
to send the pmsg when done.

For ARMM7, smx_PMsgGetHeap() minimizes the actual memory allocation by sizing to the
nearest multiple of subregion size, and by setting the proper subregion disable bits in the region
created. It can handle sizes that are not a power of 2, whereas smx_PMsgGetPool() and
smx_PMsgMake() require blocks that meet size and alignment requirements.

These PMsg functions are smx SSRs, so they can be safely called from either utasks or ptasks, at
any time. They are similar to standard smx message SSRs but incorporate message protection

12 fas is an abbreviation for MP_MPU_FAS defined in mpu.h and means first active slot of the MPU.

Chapter 4

76

mechanisms and are used to securely transfer information between partitions. They are the basis
for portals discussed in Chapter 5 Partition Portals and are described more fully there. For
detailed information on PMsg functions, see Appendix A2.

If the message handle pointer parameter, mhp, in the above calls is set to the address of the
message handle, then the message handle will be loaded by the Get, Make, and Receive services
and need not be loaded directly from the return value. The Rel and Send services load NULL
into the message handle so it can no longer be used. In addition, if the message handle is not
initially NULL, a Get, Make, or Receive service will be aborted and SMXE_INV_OP reported.
This forces releasing or sending a message before getting or receiving another message, thus
avoiding message and MCB leaks.

4.12 Miscellaneous

4.12.1 Standard C Library Functions
The standard C library contains a mixture of functions including utility, init/exit, and system
services. Some should be only accessible during startup and shutdown, and some should not be
used in embedded systems.

The MODULE SUMMARY section of the map file lists the IAR C libraries and files in them
that were linked. For example:

rt7M_tl.a: [4]
 ABImemcpy.o 166
 ABImemset.o 102
 XXexit.o 12
 cexit.o 10
 cmain.o 30
 cmain_call_ctors.o 32
 copy_init3.o 46
 cstartup_M.o 12
 data_init.o 40
 strcmp.o 18
 strcpy.o 24
 strlen.o 54
 strncpy.o 112
 zero_init3.o 58

 Total: 716

Standard C library functions that should be used in tasks should be put into ucom_code. If there
are a large number of C lib functions being used, it is helpful to define a clib_code block and
include it in ucom_code:

define block clib_code with alignment = 4
 {ro object dl7M_tln.a, ro object m7M_tls.a, ro object rt7M_tl.a}
 except {ro object cstartup_M.o, ro object cppinit.o, ro object data_init.o,
 ro object fpinit_M.o, ro object rle_init_single.o, ro object zero_init3.o,
 ro object cmain.o, ro object cmain_call_ctors.o,
 ro object exit.o, ro object cexit.o, ro object XXexit.o};

Basic Theory

77

define block ucom_code with size = ucomcsz*5/8, alignment = ucomcsz
 {ro section .ucom.text, ro section .ucom.rodata,
 block clib_code};

ucom_code is included in sys_code so ptasks can also access these functions.

The except clause omits init and exit routines that are used only during startup and shutdown and
should not be accessible by ptasks and utasks. They are automatically put into rom_block via
“ro” at the end of the block definition. rom_block and ram_block regions are in the MPA
templates of startup and shutdown tasks. Another benefit of doing this is it reduces the
ucom_code and ucom_data sizes to minimize the required ARM7 alignment.

Alternatively clib_code can be defined to specify all of the C library files to locate:

define block clib_code with alignment = 4 {
 ro object ABImemclr.o, ro object ABImemcpy.o, ro object ABImemmove.o,
 ...
 ro object memchr.o, ro object memcmp.o, ro object mktime.o,
 ro object strcasecmp.o, ro object strcat.o, ro object strchr.o,
 ...
 ro object xTzoff_nop.o, ro object xisdst_nop.o, ro object xttotm.o};

but this method is inconvenient, because as additional C library functions are used, they cause an
MMF until they are added to the list. Generally speaking, use of C library functions should be
minimized in embedded systems. Some have unexpected behaviors – e.g. printf() uses very large
amounts of stack. Other functions are dangerous – e.g. gets(), sprintf(), abort(), and exit().
Standard C library functions were not designed with security in mind. Many have well-known
flaws that are exploited by hackers. Including these in your code is to invite an attack. In many
cases, you are better off to create equivalent functions of your own that hackers do not know
about. At the very least, verify that what you are using is safe. Also, if a C library function is
used in only one partition, include it only in one of that partition’s regions, rather than in
ucom_code.

Components, such as those downloaded from GitHub, tend to use clib functions freely without
regard for whether they are vulnerable, have undesirable side-effects, or use static data. Initially
during development, these functions may be put into ucom_code and their static data put into
ucom_data, but soon they should be moved out. At the end of the project, corrections can be
made. clib functions that are used only during boot, initialization, or exit should be removed
from ucom regions and linked in by the ro and rw linker symbols. Or, if they are being called
from code running under an initialization task, they should be put into the sys regions.

If possible, partition code should be rewritten to not use dangerous clib functions nor to use clib
functions that require static data. However, for large, complex components, doing this may not
be practical. In that case, if the clib function is used in only one partition, put it into a region of
that partition using the linker command file. This does not require having the source code. If the
clib function is used in other partitions and its source code is available, duplicate it in the other
partitions with slightly different names and use header files to map the standard names to the
duplicate names. This is a good solution for clib functions that require static data. For vulnerable
clib functions, it confines the risk to the partition it is in. Most likely, the component in that
partition has many other serious vulnerabilities, so this may not result in reduced security.

Chapter 4

78

If the above solutions do not work, then it may be necessary to rewrite the clib functions to be
safe and to make them system services accessible via svc shell functions.

4.12.2 Partition Isolation vs. ucom Regions
The ucom regions, especially ucom_data, are in violation of partition isolation. As shipped,
ucom.code contains only svc shell functions and C library (clib) functions; ucom.data contains
only static data needed by some clib functions. During development, it may be expedient to add
other common code and data. However, for best security, it is recommended to minimize
ucom_code and to eliminate ucom_data in the final design.

The svc shell functions translate into RTOS and system services, most of which check input
parameters thoroughly and are written to avoid misuse. As shipped, services that might cause
system damage are excluded from the svc shell functions. For security, when a project is
complete, it is recommended that all unused svc shell functions be removed from ucom_code or,
better, that their jump table entries be changed to report a security violation. Going even further,
since most partitions use limited RTOS and system services, it is possible to create custom shell
functions and jump tables to avoid using ucom_code for svc shell function, altogether. See 4.9.4
Custom SSTs for more information.

clib functions are quite a different matter. Many have well-known flaws that are exploited by
hackers. Initially during development they may be put into ucom, but soon they should be moved
out. See 4.12.1 Standard C Library Functions for discussion.

4.12.3 HAL Code
Hardware Abstraction Layer (HAL) code, such as that provided by chip vendors, needs special
handling. Some guidelines are:

• Boot, initialize, and exit HAL code that does not run in a task and its static data
should go into the default sections (.text, .data, etc.). These are not in a partition.

• Initialize and exit HAL code that does run in a task and its static data should go
into .sys.code and .sys.data.

• HAL code used by a middleware module and its driver(s) should go into the same
partition as the middleware module.

• Common HAL code and data used by two or more partitions should go into
.ucom.code and .ucom.data. However, like the clib functions discussed above, this
violates partition isolation. Some of the same remedies might be applied to them,
including making HAL functions into system services.

79

Chapter 5 Partition Portals

Partition portals enable isolating client partitions from server partitions. They utilize an alternate
form of API between clients and servers that is built upon smx protected messages.

5.1 Introduction

5.1.1 Isolated Partitions
Figure 5.1 shows the desired isolation between a file system (FS) partition and two application
partitions (App1 and App2) that use the file system.

FS

App1 App2

Figure 5.1 Desired Isolation Between Partitions

5.1.2 Function Call APIs
Figure 5.2 shows the result when the App1 and App2 partitions must access the file system via
the file system’s normal function call API – i.e. loss of partition isolation.

App1 App2

FS

Figure 5.2 Loss of Partition Isolation

Chapter 5

80

Function calls are the predominant API between clients and servers. This creates a problem for
partitioning. In the above diagram, the file system’s API functions must be accessible to both
application partitions. And subroutines in the file system must be accessible to the API functions
and driver functions must be accessible to the subroutines. Hence nearly the entire file system
must be accessible to both App1 and App2. Also, file buffers and global variables must be
accessible to the file system functions. So, the whole file system and driver(s) end up in a code
region shared by the App partitions and file buffers and globals end up in a data region shared by
the App partitions. Thus none of these partitions is isolated from the others.

If a hacker penetrates any one of the partitions, he has access to the other partitions via the
common file system regions. Although he cannot necessarily control the other partitions, he can
certainly bring them down and possibly disrupt the whole system. The solution to this problem is
to use partition portals, which are discussed next.

5.1.3 Partition Portals

FS

App1 App2
P

Figure 5.3 Partition Isolation Using FS Portal P

Figure 5.3 shows the isolation achieved with file system partition portal, P. The double arrows
represent bidirectional data transfers. Note that there is no overlap between the partitions. Hence,
the desired full level of isolation shown in Figure 5.1 has been achieved. Partition portals are
indirect calling mechanisms which permit full isolation between partitions. They are based upon
smx protected messages, pmsgs, working in combination with the Cortex-M MPU.

SecureSMX provides two types of partition portals:

• Free message portals, fportals – see section 5.3 Free Message Portal.
• Tunnel portals, tportals – see section 5.4 Tunnel Portal.

Protected messages are discussed first.

5.2 Protected Messages

5.2.1 pmsg Structure
SecureSMX portals are implemented using smx protected messages (pmsgs). Figure 5.4
illustrates the structure of a pmsg. A normal smx message consists of a Message Control Block
(MCB) linked to a data block that contains the actual message. An smx pmsg is the same as a

Partition Portals

81

normal smx message with the addition of special fields to the MCB, and the data block is an
MPU block region. The MCB, itself, is in sys_data and therefore inaccessible to utasks.

pmsg

rasr / rlar
host

MCB Data Block

datashapxn
con

bp

Figure 5.4 Protected Message Structure

The above figure shows the additional pmsg MCB fields along with bp, which are:

• con is the control structure which contains:
o hsn host slot number.
o osn owner slot number.
o bnd bound message flag.
o sb system block flag, which means the pmsg data block is in sys_data.

• shapxn ARMM8 shareability, access permissions, and execute never.
• bp points at the pmsg data block and is used to calculate rbar for ARMM7 and

ARMM8.
• rasr/rlar ARMM7 region attribute and size register or ARMM8 region limit address

register.
• host task handle – loaded when server receives pmsg.

5.2.2 Sending a pmsg
A pmsg can be sent from partition to partition, via a message exchange, and it carries with it its
own MPU region information for its data block. Thus it is a self-contained data region, and hence
the name protected message. For ARMM7 the data block consists of 5, 6, 7, or 8 contiguous
subregions aligned on the subregion size, 2^n, all within a region of size 2^(n+3) aligned on its
size. For ARMM8, the data block is a multiple of 32 bytes, aligned on 32 bytes. For more
information on pmsgs, see Section 4.11.11, Protected Messages, and Appendix A.2 smx
Protected Block & Message Services.

Chapter 5

82

PC PSSX

Figure 5.5 pmsg Transfer

Figure 5.5 shows how a pmsg is sent from a client partition, PC, to a server exchange SX. The
hash marks on the arrow represent pmsgs waiting at SX for service from the server partition, PS.
A pmsg is sent by a task in PC with a smx_PMsgSend() function. pmsgs can wait at an exchange
either in FIFO order or in priority order. A pmsg is received by a PS task with a
smx_PMsgReceive() function. These are discussed in detail below.

If SX is a pass exchange, PS will run at the priority set in the pmsg by PC. If this priority is
higher than that of the PC task, the PS task will preempt the PC task and process the pmsg
immediately. This is analogous to a direct function call, such as fwrite(). If the pmsg priority is
equal to or lower than the PC task priority, the PS task will not run until the PC task suspends or
stops and all other tasks of higher priority or precedence13 have also suspended or stopped. This
flexibility is not available with direct function calls. Delayed action can be useful if the pmsg is a
non-urgent message, such as a status message that PS is just going to log or display. In this
regard, it is important to note that pmsgs can accumulate at SX in priority and precedence order
and will be processed in that order.

sn = pmsg->con.osn, where sn is the PC task’s MPA slot number that contains the pmsg region.
When a free protected message is sent, the current task’s MPA[sn] is cleared. If sn is an active
slot, MPU[sn+fas] is also cleared. In the case where sn is an active slot, even if the sending task
retains a pointer to the message block, it can no longer access it. This prevents changing a
message after it has been validated by a receiving task in another partition. It also prevents the
sender from reading the message after it has been updated by a receiving task in another
partition. This is the recommended approach for free messages – i.e. free pmsg blocks should not
be taken from sender regions. It is best if they are taken from mheap or a block pool in sys_data.

For a bound protected message (pmsg->con.bnd == 1), the sender retains access to the pmsg, so
the foregoing is not applicable. In this case, it is more efficient, slot-wise, for the pmsg block to
come from a sender region. Bound protected messages are used for tunnel portals (see section
5.4, Tunnel Portal).

The slot numbers in the sending and receiving tasks need not be the same. The send slot can be
an auxiliary slot (see Figure 4.13) if the data block comes from a client data region. Otherwise, it
must be an active slot.

13 a task has precedence if it has equal priority and has been waiting longer. It has priority if its priority is higher. In
smx 0 is the lowest priority.

Partition Portals

83

5.2.3 Receiving a pmsg
smx_PMsgReceive() is normally used by a server to receive a pmsg from an SX exchange. When
a pmsg is received by a server task, its MPA[sn] is loaded with RBAR and RASR/RLAR from
the MCB of the pmsg, where sn is the slot number parameter in the pmsg receive function. If sn
is an active slot, MPU[sn+fas] is also loaded. If the pmsg data block is in a server region, the
server slot can be an auxiliary slot for ARMM7. However, it must be an auxiliary slot for
ARMM8 because overlapping regions cause MMFs for ARMM8. Otherwise the receive slot
must be an active slot.

The receiving task can read and modify a free pmsg data block, then send it to another exchange.
For example, a pmsg could be created and loaded with data by a data acquisition task, passed to
another task to encrypt the data, then passed to yet another task to send the encrypted data out on
a network. There is complete isolation between each sending and receiving task. This is possible
because the pmsg carries its own region information as it moves from place to place. Thus a
pmsg is protected at all times. Of course, an infected sender could send a disruptive message.
Thus receivers should perform validation checks before accepting pmsgs.

smx_PMsgReceiveStop() allows a server task to release its stack prior to again waiting at SX.
This kind of task is called a one-shot task. (See the smx User’s Guide for a full explanation.)
Since at any given time, there are likely to be many idle portals where servers are waiting, using
one-shot tasks for portal servers can save significant RAM. This helps to compensate for the
additional tasks introduced by portals.

Two portal protocols have been implemented using pmsgs:

• Free Message Protocol.

• Tunnel Protocol.

The free message protocol is the simpler of the two and provides the best security. It is discussed
in section 5.3 Free Message Portal. The tunnel protocol is discussed in section 5.4 Tunnel Portal.

5.2.4 Message Priority Inheritance
Like mutexes, portals can cause unbounded priority inversions resulting in tasks missing their
deadlines. Consequently, smx implements message priority inheritance for pass exchanges. See
section 5.7.1 Portal Access Delays and Priority Promotion for further discussion.

5.2.5 Dual MPA Slots for ARMM8
Due to the fact that overlapping slots generate MMFs for ARMM8, it is necessary to implement
dual MPA slots for pmode servers. The following discussion applies only to ARMM8
processors.

If a pmsg14 is allocated from mheap and sent to a ptask, region overlap is likely to occur
resulting in an MMF. This is because mheap is in sys_data and sys_data is usually a ptask
region. The simplest way to avoid this is to allocate ptasks from a heap or block pool that is not

14 Here, and elsewhere, “pmsg” refers to the pmsg data block as well as to the whole pmsg.

Chapter 5

84

in sys_data. However, that may not always be convenient. For example, a pmsg that was
allocated from mheap by a umode task might be sent to a pmode task only under exceptional
conditions (e.g. a system error has occurred). Then, the resulting MMF might be puzzling to
figure out. (Note that the MPU window in smxAware shows overlapping regions, so it is good to
watch it.)

SecureSMX implements the following solution to this problem: when a pmsg is allocated from
sys_data, the pmsg->con.sb (system block) flag is set. Then, if sb is set, a ptask receiving the
pmsg must use an auxiliary slot for the pmsg region. (In this case, the pmsg region is not actually
needed to access the pmsg.) If sb is not set, the ptask must use an active slot for the pmsg
region.15 (In this case the pmsg region is needed to access the pmsg). This is implemented as
follows:

When a ptask does a receive, it specifies a dual slot number (dsn), as in the following example:

 dsn = 0x64;
 while (pmsg = smx_PMsgReceive(psh->sxchg, &bp, dsn, SMX_TMO_INF))
where:

dsn = xsn << 4 + asn;
and xsn = auxiliary slot number; asn = active slot number. When a pmsg is received, if pmsg-
>con.sb = 1, the pmsg region is put into MPA[xsn]. Otherwise it is put into MPA[asn] and into
MPU[asn+fas]. When a utask does a receive, sb is ignored since utasks can not use sys_data as a
region because it is privileged..

There are, of course, other cases where receiving a pmsg could cause a region overlap and thus
an MMF. These are unlikely, but must be guarded against if an ARMM8 processor is being used.
One way to proceed is to always allocate pmsgs from mheap.

5.3 Free Message Portal

A portal is limited to a single server, but it may be accessed by many clients.

Server API:
bool mp_FPortalCreate(FPSS* psh, FPCS** pclp, u32 pclsz, u8 ssn,
 const char* pname=NULL, const char* sxname=NULL);
bool mp_FPortalDelete(FPSS* psh, FPCS** pclp, u32 pclsz, u8 xsn=0);
Client API:
bool mp_FPortalClose(FPCS* pch, u8 xsn=0);
bool mp_FPortalOpen(FPCS* pch, u8 csn, u32 msz, u32 nmsg, u8 pri,
 u32 tmo=SMX_TMO_INF, const char* rxname=NULL);
MCB_PTR mp_FPortalReceive(FPCS* pch, u8** dpp=NULL);
bool mp_FPortalSend(FPCS* pch, MCB* pmsg);

15 Of course, if the pmsg is allocated from another ptask region, then these rules do not apply. Therefore, to avoid
unexpected MMFs when using an ARMM8, it is advisable to decide, in advance, upon a consistent pmsg allocation
strategy and then to stick with it. This unfortunate complexity is due to an architectural flaw in ARMM8.

Partition Portals

85

bool mp_FTPortalSend(FPCS* pch, u8* bp, MCB_PTR pmsg);

See Appendix A.1 SecureSMX Services for descriptions of parameters and other information.
Use of these functions is discussed in the following sections.

5.3.1 Configurations
The free message portal gets its name from the fact that the pmsgs are not bound to the client as
they are for the tunnel portal. Hence they are free. Its protocol primarily makes use of the smx
protected messaging capabilities discussed previously. Figure 5.6 illustrates three of many
possible free message protocol configurations. Hash marks indicate waiting messages at the
message exchanges shown.

C SX S

Memory

RX

C1 C2

SX

S
C SX S

RX

A

C B

Figure 5.6 Free Message Protocol Configurations

Figure 5.6A is the most basic configuration in which client, C, obtains a pmsg from memory,
loads it, then sends it to server exchange, SX. Server, S, receives the pmsg from SX, processes it,
then returns it to memory. As previously explained, in section 4.11.11 Protected Messages,
pmsgs can come from any heap or any block pool, or be made from any standalone block. Note
that the latter two must meet MPU size and alignment requirements, whereas if calling
smx_PMsgGetHeap(), smx_PBlockGetHeap(), or mp_RegionGetHeapT(), smx heap allocations
automatically meet MPU region requirements.

The memory shown in Figure 5.6A can be global memory or local memory in the client partition.
In the global case, an active slot in the client MPA is required; in the local case an auxiliary slot
may be used (see section 4.2.5 Auxiliary Slots) for the client, to save a slot, but an active slot is

Chapter 5

86

required for the server16. The 5.6A configuration is suitable for infrequent messages such as
notifications of rare events, or it may be necessary if memory is limited.

Figure 5.6B shows two clients, C1 and C2, that are obtaining recycled pmsgs from a resource
exchange, RX, loading them, then sending them to a server exchange, SX. The server processes
the messages and sends them back to RX. In this case, performance is better than 5.6A at the
expense of RAM permanently allocated to pmsgs. This configuration might be useful where data
rates are moderate, such as input from multiple UARTs or multiple low-speed USB devices.
Client could send multi-block messages, in which case, the server would need to separate
intermingled blocks into their client streams.

Figure 5.6C shows a bidirectional data configuration. In this case, as many messages as needed
are obtained from memory and sent to the reply exchange, RX. Client C receives messages from
RX, processes and/or loads them, then sends them to the server exchange, SX. Server S receives
messages from SX, processes and/or loads them, then sends them to RX. A return message may
contain only status such as ACK or NAK or it may contain processed data. If the RX exchange is
being used to return an ACK or NAK or a return value, there can be only one pmsg in circulation
or the messages need to be numbered

In a case like 5.6C, the server might be a special processor for the client that could be replaced
dynamically, when conditions change. Note that although data exchange is bidirectional, the
client is the master and must initiate all transactions. Should the server need to initiate
transactions, such as for a client callback, then a separate portal would be required.

5.3.2 Portal Creation
To create a free message portal, it is first necessary to define a Free message Portal Server
Structure (FPSS) for the server, a Free message Portal Client Structure (FPCS) for each client
permitted to access the portal, and a permitted client list, pcl[], containing pointers to the client
FPCSs:

FPSS pssa; /* portal server structure a */
FPSS* pssah; /* portal server structure a handle */
extern FPCS pcs1, pcs2; /* portal client structures 1 & 2 */
FPCS* pcla[] = {&pcs1, &pcs2} /* permitted client list a */
u32 pclasz = sizeof(pcla)/4; /* permitted client list a size */
#define SSN 5 /* server slot number for pmsg */

Then call the free message portal create function:

mp_FPortalCreate(&pssah, pcla, pclasz, SSN, “portla”, “sx_portla”);

The pssa, pssah, pcla[], and pclasz definitions are best grouped with the server code because they
must be in a data region accessible to the server. Similarly, the pcs1 and pcs2 definitions are best
grouped with their respective client code, because each must be accessible by its respective
client. All portal structures are statically defined at compile/link time and are not accessible in

16 In all portal discussions, clients and servers are assumed to be separate partitions. If not, there is no need for
portals – the client can directly call server functions. This may be useful as an intermediate step during partitioning
but not as the final implementation, in most cases.

Partition Portals

87

umode. If another client is defined for this portal, its FPCS address would be added to pcla[] and
pclasz would be increased. Hence, it is easy to see which clients are permitted to access a given
portal. These are called authorized clients. Only they are allowed access to the server. The
amount of overhead and complexity for a portal may seem excessive, but it is necessary for full
isolation of client and server partitions in order to provide high security.

mp_FPortalCreate() creates the server exchange, sxchg, and loads its address into pssa. It then
loads the sxchg address into pcs1 and pcs2 to enable each client to access the portal17. (For
malware to access the portal, it would need to guess its sxchg address.) The portal name is also
loaded into the server’s FPSS and into each client’s FPCS. Since a client may access multiple
partitions via its portals and thus have multiple FPCSs, portal names are helpful to avoid
confusion during checkout.

Once the server portal has been created, it is necessary to create and start the server task, as
follows:

 TCB* taskA;

 if (taskA = smx_TaskCreate(mainA, PRI_MAX, stksz, SMX_FL_UMODE, "taskA"))
 {
 mp_MPACreate(taskA, &mpa_tmplt_taskA);
 pssa.stask = taskA;
 smx_TaskStart(taskA);
 }

The server portal and its task should normally be created in pmode during system initialization.
taskA is given maximum priority so that it will run immediately after system initialization, then
wait at sxchg for the first pmsg. After that, taskA assumes the priority of each pmsg that it
receives since sxchg is a priority-pass message exchange. It is assumed above that taskA is a
utask, but it could be a ptask, in which case replace SMX_FL_UMODE with 0.

5.3.3 Client Open
Once a portal and its task have been created, an authorized client can open the portal, as follows:

FPCS pcs1; /* portal client structure 1 */

mp_FPortalOpen(&pcs1, csn, msz, nmsg, tmo, "pcs1_rxchg");

where pcs1 is the same client handle used in the permitted client list, pcla[], above. At this point,
the client structure already contains the alias sxch handle and the portal name. csn is the client’s
MPA slot number for pmsg data block regions, msz is the pmsg block size, nmsg is the number
of pmsgs to create for this portal, tmo is the rxchg wait timeout, and “pcs1_rxchg” is the rxchg
name. rxchg is an RX resource/reply exchange as shown in Figure 5.6. At this point, csn, pri, and
tmo are just stored in pcs1.

17 A handle, such as sxchg, is a location in memory that stores the address of the sxchg control block. In this case,
the sxchg handle is in a server data region. If a client calls mp_FPortalSend() using this handle, an MMF will occur
because sxchg is not in a client region. To remedy this problem, each client must have its own alias sxchg handle
that is accessible via one of its own data regions. An alias handle is another location in memory that stores the same
control block address as the real handle.

Chapter 5

88

If nmsg == 0, no rxchg is created and no pmsgs are created. This allows pmsgs to later be created
separately, as shown in Figure 5.6A, or to allocate them from somewhere other than mheap such
as the client’s address space in order to use a auxiliary slot for the pmsg region. If nmsg > 0,
rxchg is created and nmsg pmsgs are created and sent to rxchg. If nmsg == 1, rxchg is probably
operating as a reply exchange, as shown in Figure 5.6C. If nmsg > 1, rxchg is probably operating
as a resource exchange as shown in Figures 5.6B or C.

The following code supports the operation shown in Figure 5.6B:

FPCS pcs1, pcs2; /* portal client structures */

mp_FPortalOpen(&pcs1, csn1, tmo1, msz, nmsg, "RX");
mp_FPortalOpen(&pcs2, csn2, tmo2, msz, 0, NULL);
pcs2->rxchg = pcs1->rxchg;

In this case pcs1 is first opened with nmsg pmsgs – enough for both clients. Note that each client
has its own MPA slot, priority, and timeout, but msz must be the same. Since nmsg == 0 for
pcs2, no rxchg and no pmsgs are created for it, but the rxchg handle is loaded from pcs1 to pcs2.
Of course, C1 and C2 can have separate rxchgs and different pmsgs, if desired. In that case,
smx_PMsgReply(), used by server S to release a pmsg, will send the pmsg to the correct rxchg
for each client.

5.3.4 Client Operation
A client receives a pmsg from an rxchg with:

FPCS* pcs1h; /*portal client structure 1 handle */
u8* pbp; /* pmsg block pointer */

pmsg = mp_FPortalReceive(pcs1h, &pbp);

where pcs1h is the portal client structure handle and &pbp is the address of pointer pbp, which is
used to load the pmsg data block. If the portal were opened with no pmsgs created, then a pmsg
would be obtained with one of the pmsg get functions, such as:

pmsg = smx_PMsgGetHeap(msz, &pbp, pcs1h->csn, MP_DATARW, mheap);

This approach is useful if the client seldom sends messages to this portal, if the messages vary in
size, or if the client sends messages to many portals.

In either case, the pmsg is sent to the free portal message exchange, pcs1h->sxchg, with:

mp_FPortalSend(pcs1h, pmsg);

When processing of the pmsg is complete,

smx_PMsgReply(pmsg);

is called by server S to release the pmsg. In the first case the pmsg is returned to RX, as shown in
Figures 5.6B & C. In the second case, it is deleted and its block is returned to mheap, as shown
in Figure 5.6A. Which of these occurs is predetermined by the client and hidden from the server.
This prevents malware in the server from sending pmsgs to inappropriate places.

Partition Portals

89

5.3.5 Server Operation
As previously described in section 5.3.2 Portal Creation, the portal server task is separately
created and started. The code for it should be similar to the following:

FPSS cpsvr; /* cp server structure */

void cp_main(void)
{
 cp_server(&cpsvr);
}

void cp_server(FPSS* psh)
{
 CPSH* chp; /* console header pointer */
 MCB* pmsg;
 u32 par1, par2, par3, par4, par5;
 bool ret;

 while (pmsg = smx_PMsgReceive(psh->sxchg, (u8**)&chp, psh->ssn, SMX_TMO_INF, &pmsg))
 {
 switch (chp->fid)
 {
 case CP_CLR_SCREEN:
 sb_ConClearScreen();
 break;
 case CP_DBG_MODE:
 ret = sb_ConDbgMsgMode();
 chp->ret = ret;
 break;
 case CP_WRITE_STRING:
 par1 = (chp->p1>>24)&0xEF;
 par2 = (chp->p1>>16)&0xFF;
 par3 = (chp->p1>>8)&0xFF;
 par4 = (chp->p1)&0xFF;
 par5 = (chp->p1)&0x80000000 ? 1 : 0;
 sb_ConWriteString(par1, par2, par3, par4, par5,(ccp)chp->dp);
 break;
 }
 smx_PMsgReply(pmsg);
 }
}

where the pmsg service header is defined as follows:

typedef struct CPSH { /* CONSOLE PARTITION SERVICE HEADER */
 u32 fid; /* function ID */
 u32 p1; /* parameter 1 */
 u32 p2; /* parameter 2 */
 u32 dp; /* data pointer */
 u32 ret; /* return value */

Chapter 5

90

 void* caller; /* caller addr (debug) */
} CPSH;

The pmsg data block consists of the above header followed by the actual message. The header is
loaded by the client sending the pmsg. This is normally done with shell functions that convert the
function call to a pmsg — see section 5.5 Shell Functions.

The above code has been borrowed from the console partition portal. Note that once started, the
portal server task, cp_task, waits for the next pmsg at its sxchg, with infinite timeout. When a
pmsg is received, cp_server() switches on the function id, chp->fid, where chp is the console
header pointer. The first case shown is a simple case of performing a command to clear the
screen. The second case reads the console mode and returns it. This shows how to handle a
return value. The third case shows a function with many small parameters packed into a single
header parameter. This not only saves space, but also improves performance. cp_task then
returns the pmsg to its rxchg using smx_PMsgReply(pmsg). It is necessary to use this function
because the rxchg handle is hidden in the pmsg and the server cannot access it.

The foregoing is an example of Figure 5.6C, except that for a console portal there are likely to be
many clients, rather than just one, accessing the console portal. In this case, because some
functions have return values, the rxchg is serving as a reply exchange as well as a resource
exchange. In order for this to work properly, there can be only one pmsg per client. This does not
result in reduced performance because, in this case, output to the terminal is via a UART and
thus very slow.

In other cases where communication is open-ended and no returns are expected, multiple pmsgs
may be used as shown in Figures 5.6A and 5.6C. The advantage of that is to handle cases where
client activity gets ahead of the server, possibly because the server has to wait for access.

The psh->ssn parameter in smx_PMsgReceive() is the slot in the MPU and in cp_task’s MPA to
put the data region for the pmsg. As noted previously, the pmsg data region is carried in its
message control block, MCB. This allow cp_task to access the pmsg data.

Also important, but not shown, is the pmsg priority carried in the pmsg MCB. Because sxchg is a
pass exchange, cp_task will run at this priority after receiving the pmsg. If it is higher than the
client task, the server task will preempt immediately and run. If it is the same, the server task will
not run until the client is suspended. (This could happen if the client waits on the rxchg to get the
pmsg back.) If pmsg priority is lower, then the server will run sometime in the future. This would
be appropriate for a non-critical activity, such as activity logging. In this case it would be likely
that many pmsgs would build up from many different sources until more important processing is
completed.

5.3.6 Client Close
To close a client portal, call:

mp_FPortalClose(&pcsA);

Doing this would be beneficial if pcsA is seldom used by the client, since all pmsgs created for it
would be released, and its rxchg would be deleted. These and the associated memory could then
be used for other purposes, such as another seldom-used portal. pcsA is not deleted, but it is
cleared except for sxchg and the portal name. pcsA is permanently dedicated to the server portal

Partition Portals

91

for which it is in the portal client list, unless the server portal is deleted. It is worth noting that all
pcs’s, pss’s, and pcl’s are static – i.e. they cannot be deleted – but they can be repurposed.

mp_FPortalClose() waits at rxchg for up to pcsA.tmo ticks for each pmsg. This is necessary
because client pmsgs may be waiting at the portal exchange to be processed or one might be
being processed. If a timeout occurs, it returns false, so other action can be taken to prevent a
pmsg leak. A possible action would be to delay then call this function again. This works because
pcsA.num is decremented each time a pmsg is released, thus it equals the number of pmsgs not
yet released. Note that smx_PmsgRel() will not work because the client does not own these
pmsgs.

For the example shown in 5.3.3 Client Open of opening two client portals that share an rxchg,
closing the first client portal will release the pmsgs and delete rxchg. When it is done, the second
client portal can be closed, but its FPCS rxchg field must be set to NULL as follows:

pcs2->rxchg = NULL;

mp_FPortalClose() has another parameter, xsn, which defaults to 0. This parameter is used only
by the mp_FPortalDelete() function and is not intended to be used in normal operation.

5.3.7 Portal Deletion
Portal deletion should be a rare event and probably used only by recovery operations. It is
intended to be used by system code running in pmode. To delete portal pssa, call:

mp_FPortalDelete(&pssa, pclp, pclsz, xsn);

This stops the portal task, for safety. Then it deletes the portal’s sxchg, which releases all pmsgs
waiting at it18, and it clears the alias sxchg handles and portal names in every FPCS in portal’s
pclp[]. In addition, the portal is closed at each client. xsn is used for this. It is an available slot in
the MPA of the ptask doing the deleting – preferably an auxiliary slot. xsn is necessary because
mp_FPortalClose() must receive and release every pmsg at the client’s rxchg. xsn holds the pmsg
data region during this process. Now the FPCSs are available for use by other portals.

Normally, the portal task is deleted after its portal is deleted, thus freeing a TCB and the task’s
stack, if it had a permanent stack.

A portal and its task should not be deleted if the portal task is performing an operation. This can
be determined by waiting for a reply pmsg from the portal at its rxchg. It can also be determined
by testing if the task is in the wait state. However, if a partition is misbehaving,
mp_FPortalDelete() can be used to forcibly shut down its portal and stop the portal task. This
would probably be followed up by shutting down and restarting the whole partition.

It is not recommended that portals routinely be deleted, as this is likely to lead to programming
errors. Portal delete is best reserved for recovery operations.

18 This uses smx_MsgRel_F(), which releases the msg data block to its origin: heap, block pool, or nothing if it is
standalone block, then releases its MCB to the MCB pool.

Chapter 5

92

5.3.8 More Flexible Operation
The free message API presented above is intended to make creating and using free message
portals easier. However, in some cases, these functions may prove to be too limiting. If so,
smx_PMsg functions can be used directly to create a custom protocol.

Receive can use either of the receive functions: smx_PMsgReceive() or
smx_PMsgReceiveStop(). The latter is good for seldom-used servers, since the server task
releases its stack while waiting for the next pmsg. Considering that there may be many seldom-
used servers in a system, sharing stacks can save significant memory.

Send can use either:

smx_PMsgSend(pmsg, rxchg, pri, reply); or

smx_PMsgReply(pmsg);

It is recommended that most servers use the latter, for better security and to minimize
programming errors. For it, rxchg is derived from pmsg->rpx, ssn = pmsg->osn, pri = pmsg->pri,
and there is no reply. Hence, the client controls the choice of rxchg and priority. osn is loaded
into the pmsg MCB when the pmsg is received by the owner. (For an unbound pmsg, this is the
last pmsg receiver; for a bound pmsg, this is the last pmsg sender.)

5.4 Tunnel Portal

Server API:
bool mp_TPortalCreate(TPSS** pshp, TPCS** pclp, u32 pclsz, u8 dsn,
 const char* pname=NULL, const char* sxname=NULL);
bool mp_TPortalDelete(TPSS* psh, TPCS** pclp, u32 pclsz);
void mp_TPortalServer(TPSS* psh, u32 stmo);

Client API:
bool mp_TPortalCall(TPCS* pch, u32 tmo=0);
bool mp_TPortalClose(TPCS* pch, u32 tmo=0);
bool mp_TPortalOpen(TPCS* pch, u32 msz, u32 thsz, u8 pri, u32 tmo=SMX_TMO_INF,
 const char* ssname=NULL, const char* csname=NULL);
bool mp_TPortalReceive(TPCS* pch, u8* dp, u32 rqsz, u32 tmo=0);
bool mp_TPortalSend(TPCS* pch, u8* dp=NULL, u32 rqsz=0, u32 tmo=0);

See Appendix A.1, SecureSMX Services for full call descriptions. Use of the above functions is
discussed in the sections that follow.

A tunnel portal installs a single pmsg (the “tunnel”) between the server and the client, which
alternate writing and reading its data block, as controlled by semaphores.

Partition Portals

93

Tunnel portals offer the following features:

1. Full isolation between clients and servers.

2. Minimal change to client code.

3. Good performance.

4. No copy transfers available with change to client code.

5. Full protection of data.

The free message protocol is recommended for infrequent messages and low-to-moderate data
rates, but it is too slow for large data transfers such as file and network data transfers. For these,
the tunnel portal is better. Figure 5.7 illustrates the basic concept of the tunnel portal. It is called
that because a pmsg data block, represented by T, in the figure, serves as a tunnel between the
Client and the Server. This is possible because both have MPA regions containing the pmsg data
block and thus both can read or write the data block. The pmsg data block is also referred to as
the portal buffer, pbuf. The pmsg is sent by the client to open the tunnel. After that, it remains in
place until the portal is closed.

Note: A tunnel portal can also accept free pmsgs – see section 5.6 Sending Free Messages to
Tunnel Portals.

Client ServerT

Figure 5.7 Tunnel Portal

pbuf is the only common region between the two partitions, and the MCB of the pmsg is not
accessible by either. If a hacker gains access to one partition, pbuf cannot be used to access the
other. pbuf is defined as XN (execute never) so the hacker cannot execute code from it. Since
pbuf is an MPU region, he also cannot overflow it. Either case would generate an MMF. Access
to pbuf alternates between client and server under control by two semaphores. Only one
partition, at a time, is permitted to access pbuf.

When malware has access to pbuf, it can put anything into it. Also, the malware could ignore its
semaphore and write into pbuf while the other end is reading it. (However, this would require
preempting the task at the other end.) Therefore, the receiving partition should have data checks
that prevent accepting harmful data. One possibility is to encrypt the data. This is not unlike
sending data over the Internet.

In the following discussion, client means the task in the client partition that controls the client
side of the portal, or it means the client partition, itself, and server means the task in the server
partition that controls the server side of the portal, or it means the server partition, itself. Usage

Chapter 5

94

should be clear from the context. Each partition has one tunnel portal task; each may also have
other tasks.

Figure 5.8 illustrates the tunnel portal protocol. It is similar to other protocols with open, close,
and data transfer operations. The operations are explained in the subsections that follow.

Client Server

Get pmsg

Open Portal in
Client

Make OPEN cmd
and Send

Create Portal

Wait @
sxchg

Open Portal in
Server

Send & Receive
Data Blocks

Receive & Send
Data Blocks Da

ta

Da
ta

Close Portal

Done with Portal

Close Portal

Delete No

Yes

Delete Portal

SEND cmd
RECEIVE cmd

CLOSE cmd

OPEN cmd

Figure 5.8 Tunnel Portal Operation

Partition Portals

95

5.4.1 Get pmsg (by client)
As with the free message protocol, the pmsg data block can be obtained from any heap, block
pool, or standalone block, as long as the block meets the MPU size and alignment requirements.
The pmsg is created independently of the portal so that the client can use it for other purposes,
such as first the work buffer, then pbuf. Doing this enables no-copy operation.

If the pmsg data block is already in an existing client region, an auxiliary MPA slot can be used
to hold it, thus saving an active MPA slot (see Figure 4.6). For ARMM8, an auxiliary slot must
be used if the pmsg data block is already in an existing client region. Otherwise, an active MPA
slot must be used. This pmsg is bound (pmsg->con.bnd == 1) to the client so that only the client
can send or release it.

5.4.2 Create Portal (by server)
A portal is normally created by the server’s pmode initialization code and remains in existence as
long as the server exists. Each tunnel portal has a Tunnel Portal Server Structure (TPSS) and a
Portal Client List (PCL). In addition, every client authorized to access the tunnel portal has a
Tunnel Portal Client Structure (TPCS) for the portal. The TPSS and TPCS structures contain the
information necessary to control their respective ends of the portal.

A portal’s Portal Client List is used, when the portal is created, to load the portal name and sxchg
address into the TPCS of every client that is authorized to access the portal. It is also used, if the
portal is deleted, to load “no portal” into each TPCS name field and NULL into each TPCS
sxchg field. A portal cannot be opened at the client end if its TPCS sxchg is NULL.

The entire system of portals is predetermined at compile time and cannot be tampered with
during run time. Thus it is virtually impossible for a hacker to access a portal not authorized for
the client partition which he has penetrated. The network of connections to portals is the
roadmap for a secure embedded system. In fact, when starting development of a system, a good
plan is to draw a data flow diagram showing partitions linked by lines that represent portals.

The first step to create a tunnel portal is to create the tunnel portal server task:

TCB* ptaskFS; /* file server task */

ptaskFS = smx_TaskCreate(ptaskFS_main, TP2, SMX_FL_UMODE, "ptaskFS");
mp_MPACreate(ptaskFS, &mpa_tmplt_ptaskFS, tmsk);

Then the portal is created as follows:

TPSS fs_pss;
TPCS* fs_pcl[] = {&fs_pcsA, &fs_pcsB };

 fs_pss.stask = ptaskFS;
 fs_pss.sid = FP;
 mp_TPortalCreate(&fs_pss, fs_pcl, sizeof(fs_pcl)/4, dsn, "fsportal", "fsportal sxchg");

Chapter 5

96

where fs_pss is the TPSS for the file server portal, fs_pcl is the PCL array, which in this case
contains two client structure addresses, dsn is a dual MPA slot number19, "fsportal" is the portal
name, and "fsportal sxchg" is the portal server exchange name. mp_TPortalCreate() creates a
server exchange, sxchg, then loads the sxchg handle and the portal name into each client TPCS
in the tunnel portal’s PCL. (Each client needs an alias sxchg handle because it cannot access the
real sxchg handle in the TPSS of the server.) Loading the portal name into each portal client
TPCS helps to avoid confusion during debugging — a given client may be able to connect to
more than one portal and thus would have more than one TPCS.

Note that the portal task handle and server ID are loaded into the portal TPSS. FP means File
Portal. This is where the portal is assigned to a specific server partition.

In some cases, a partition may have more than one portal. This could occur if the partition allows
simultaneous operations to take place. For example, a file system partition could have more than
one portal in order to permit simultaneous accesses to different disk drives, such as an SD card
and a thumb drive.

5.4.3 Open Portal (by client)
A client opens a portal when it wants to use it, by calling:

mp_TPortalOpen(tpch, msz, thsz, tmo, ssname, csname);

where tpch is the handle of the TPCS for the portal, msz is the pmsg data block size, thsz is the
total header size (msg header + service header), tmo is the csem timeout, sname is the server
semaphore, ssem, name, and csname is the client semaphore, csem, name. This function creates
ssem and csem semaphores, loads information into the TPCS, sets the TPCS open flag, and
creates the portal OPEN pmsg.

The OPEN pmsg includes portal information that the server needs, such as the ssem and csem
addresses (the server cannot access these in the client’s TPCS), portal type, message data size,
mdsz, (msz – thsz), thsz, and control flags. It then sends the OPEN message to the sxchg of the
portal and waits at csem up to tmo ticks for a signal from the server. The priority of the pmsg is
that of the client.

Note: tmo may need to be very large if other clients are using the portal or if the portal server has
low priority. But, tmo must be a well-chosen finite value because the client task must be able to
recover, if the server disconnects, which can happen due to it timing out.

5.4.4 Open Portal (by server)
When a pmsg is received at sxchg, a pointer to its data block is stored in the local variable, mhp
(message header pointer), and the pmsg data block region is loaded into MPA[hsn] of the server
and into MPU[hsn+fas] if hsn is an active slot. hsn means host slot number. The host, in this
case, is the tunnel portal server. hsn is derived from tpch->dsn, which was loaded by
mp_TPortalCreate(), as shown in section 5.4.2 Create Portal (by server). Since sxchg is a pass
exchange, the server assumes the pmsg priority, thus the server and the client have the same

19 See section 5.2.4 Dual Slots for ARMM8 for a description of dual slot numbers and why they are necessary for
ARMM8.

Partition Portals

97

priority when connected. Otherwise operation would be too complicated and error prone, due to
the fact that other tasks are running and may preempt the client or server.

The first pmsg received from a tunnel portal client must be an OPEN pmsg. Otherwise it is
discarded20, the INV_CMD portal error is reported, and the server goes back to sxchg to get or to
wait for the next pmsg. If an OPEN pmsg has been received, information is loaded from it into
the portal TPSS. This information includes the message header pointer, mhp, service header
pointer, shp, the message data pointer, mdp, message data size, mdsz, the csem and ssem
addresses, and the TPSS open flag is set. The server then signals csem and waits at ssem for the
next operation with the timeout specified by mp_TPortalServer(). Unlike a free message server,
it does not go back to sxchg for another pmsg. The message data section of the pmsg data block
becomes the portal buffer, pbuf.

It is important to note that there is an open flag at each end of a tunnel portal – in the client’s
TPCS and in the server’s TPSS. This is necessary because the client and server partitions are
isolated from each other – neither can see the other’s data. Only pbuf is common between them.
An important flag, such as the open flag, cannot be put into pbuf because pbuf sometimes
contains garbage. Of course, having two flags creates a flag synchronization problem – one end
of the portal may think it is open and the other end may think it is closed. This is resolved via
semaphore timeouts – the open end times out and closes its end. Then the two ends agree. See
5.10 Tunnel Portal Timeouts for more discussion.

5.4.5 Send and Receive Data (by client and server)
A client sends and receives commands and data with:

mp_TPortalSend(tpch, dp, rqsz, tmo);

mp_TPortalReceive(tpch, dp, rqsz, tmo);

The portal server task is normally very simple, as follows:

 TPSS pssa;

void ptaskA(void)
{
 mp_TPortalServer(&pssa, STMO);
}

where pssa is the TPSS for the portal, and STMO is the timeout for the ssem semaphore of the
portal. mp_TPortalServer() is part of the tunnel protocol and is discussed in section 5.5.3.

Send and receive are performed by the SEND and RECEIVE commands, respectively, as shown
above in Figure 5.8. Figure 5.9 shows multiblock send, in more detail. (Note that operation in
this figure begins with the Start ellipse in the center of the figure and that flow is upward on the
left half of the figure. It was done this way in order to minimize line crossings.)

The tunnel protocol is capable of sending data blocks larger than pbuf size, as illustrated by the
client work buffer in this figure. In this example, the work buffer is a little more than three pbuf

20 Unless it is a free message – see section 5.6 Sending Free Messages to Tunnel Portals.

Chapter 5

98

sizes. Therefore, four sends are necessary. Of course, best performance is achieved if pbuf is
large enough to send the whole work buffer at once. However, in tight memory systems that may
not be feasible, or the amount of data may be far too large for a buffer.

As shown in Figure 5.9, the client sends a block of pbuf-size to the server. This involves copying
it from the client’s work buffer to pbuf, setting the end of data, eod, flag, if it is the last block,
signaling ssem, and then waiting at csem.

Signal ssem

Last Block
?

Send Next
 Block

Done
?

csem
?

ssem
?

Process Block

eod
?

Reset
 eod

Signal csem

Set eod

N

N

Y

Y

N

Y

N

Y

N

Block 1

Block 2

Block 3

Block 4

Client Server

Return

Client Work Buffer

Start

Y
Portal

Figure 5.9 Multiblock Send

The ssem signal causes the server to start running. It accepts the data block in pbuf and processes
it. In the case of a file write, for example, this means calling the file write function to write what
is in pbuf to the disk. For example, if the client were writing a 32 KB block and pbuf were only
512 bytes, then 64 file writes would be necessary. That would clearly impact performance vs. a
direct write with no portal. If the server had a larger working buffer, it would be more efficient to
copy pbuf-size blocks to it until it was full, and then call the server’s disk write operation. This
could be handled in the server’s switch statement (see discussion in the next section).

After it has handled the block in pbuf, the server resets eod, if it is set, then signals csem. This
causes the client to resume running. If the send operation is done, control returns to the point of
call (i.e. the shell function – see section 5.5 Shell Functions). Otherwise, the next pbuf-size
block, or the smaller ending block, is loaded into pbuf, and the process repeats.

Figure 5.9 might seem to contradict client/server isolation. The line from “Send Next Block” to
“Process Block” is implemented by pbuf. How are the “Signal ssem” and “Signal csem” lines
implemented? They are implemented via the smx_SemSignal(sem) and smx_SemTest(sem)

Partition Portals

99

functions, where sem is the real csem or ssem handle in the Client and it is the alias csem or
ssem handle in the Server. Furthermore, if the Client or Server are utasks, then smx_SemSignal()
and smx_SemTest() are called via the SVC Handler; however for ptasks, they are called directly.
As a result of the foregoing the Client and Server are fully isolated from each other – there are no
sneak paths between them.

Receive is the reverse process and its flow chart is nearly the same as for send and thus is not
repeated here.

There are two ways that send and receive can be made faster:

• Increase pbuf size.

• No-copy operation. In this case pbuf is used as the work buffer at either or both ends.
This can result in performance nearly as good as direct calls.

For calls that don’t send or receive data blocks but only make API calls with a small amount of
parameter data, the following call is used:

mp_TPortalCall(tpch, tmo);

This is actually a macro that calls mp_TPortalSend(), but it omits unneeded parameters, and its
name makes it function clear.

5.4.6 Close Portal (by client)
A client must close a portal when a transaction is done so another client can use the portal. Even
if a portal is used by only one client, it may make sense to close it when not in use, in order to
save resources (semaphores and memory if the pmsg is released). This would be particularly true
if the portal is seldom used by this client. Closing a portal is shown in Figure 5.8 when the data
transaction is finished. The client sends a CLOSE command to the server and then waits on
csem. When the server signals csem, the client clears the message header in pmsg and unneeded
fields in its TPCS and its open flag, and then deletes csem and ssem. At this point, the csem and
ssem fields in the TPCS should be NULL, and the pname, sxchg, pmsg, and mhp fields should
still be valid. (These fields are cleared by other operations.)

Note: When objects are deleted, their handles are replaced with NULL. Unfortunately, NULL
shows false data in object fields in the watch and locals windows, which can be confusing during
debugging. However, defining a nullcb with 0’s in every field to use instead, has proven to be
too error prone.

5.4.7 Close Portal (by server)
When the server receives a CLOSE command, it clears all unneeded fields in its TPSS and its
open flag. It then signals csem, loads NULL into TPSS.csem and waits at sxchg for the next
OPEN or CONTROL pmsg from a client.

5.4.8 Delete Portal (by server)
If the portal is no longer needed, it can be deleted, as shown in Figure 5.8. This is usually done
by a system function that runs in pmode rather than by the server, itself, by calling:

mp_TPortalDelete(tpsh, pcpl, pclsz);

Chapter 5

100

tpsh is the TPSS handle, pclp is a pointer to the permitted client list for the portal, pclsz is the
size of the pcl list. mp_TPortalDelete() first stops the server task with an INF timeout, so it
cannot run. Then sxchg is deleted. For each TPCS in pcpl, the pname field is replaced with “no
portal” and NULL is loaded into the sxchg field. The latter prevents the portal from being
reopened by a client. Then, in this portal’s TPSS, “no portal” is loaded into its pname field, and
NULL is loaded into its sxchg, csem, and ssem fields.

Deleting the task is left up to application pcode. This is because the task was created outside of
the portal and may need a clean shut down before deleting it, or it may be desired to restart it or
to leave it stopped until it is needed again. Deleting a portal has the advantage of freeing an
exchange for other use, and if the task is a one-shot task21, its stack is also freed for use by
another one-shot task. When the task is deleted, NULL is loaded into tpsh->stask.

5.5 Shell Functions

When using a portal, an API call made from a client is not a call to the service but instead a call
to a shell function that loads the function parameters into a message and sends it to the server to
perform the actual call. This is true of both free message and tunnel portals, except that for a
tunnel portal the message is not actually sent because it remains in place as the portal buffer.

5.5.1 Mapping Functions to Shell Functions
Ideally, the shell function called on the client side would have the same name as the actual
function, so the application code is the same whether calling through a portal or calling directly.
However, for embedded software running in Micro-Controller Units (MCUs), all code is linked
into a single executable and thus has a single name space. To solve this problem, a mapping file
is used that defines macros to translate API calls to similarly named shell functions. Figure 5.10
shows how this works. Although shell functions may be used for either type of portal, they are
more likely to be used for tunnel portals, so tunnel portals are assumed in the discussion that
follows.

21 One-shot tasks are a unique feature of smx. Rather than having an internal infinite loop, a one-shot task has a
straight-thru main function. Hence, when done it is able to release its stack back to the stack pool since it is no
longer needed. One-shot tasks are recommended for servers that seldom run.

Partition Portals

101

App

f1()
f2()

fn()

fmap.h Shell Fcts
f1s()
f2s()

fns()

switch
(shdr)

API

f1()

f2()

fn()

pmsg

Tunnel

Figure 5.10 Shell Functions

The application makes API calls, f1(), f2(), etc. These are converted to shell function calls f1s(),
f2s() etc. when fmap.h is included in the app modules.22 fmap.h consists of statements for each
API function such as the following:

#define f1(a, b) f1s(a, b)

To go back to direct calls, it necessary only to comment out the header file:

//#include “fmap.h”

(Of course, direct calls work only if the client and server partitions are still joined into a single
partition, as shown in Figure 5.2, or if they have common regions for the API functions and data
in their templates.)

5.5.2 Creating a pmsg
When fmap.h is included in the application modules that make API calls, the calls are directed to
the shell functions, as shown in Figure 5.10. Each shell function creates a portal message, with
the format shown in Figure 5.11 and sends the message to the tunnel portal, as shown in Figure
5.1023.

22 In SecureSMX portals, the prefix ends with p (e.g. sfsp_fread() vs. sfs_fread()) to indicate it is the portal version
of the function, and there is generally a separate fmap file for each server (e.g. fpmap.h for smxFS portal).
23 For simplicity, a pmsg is said to be sent and received, but for a tunnel portal, the message is actually written into
pbuf and read from pbuf, as shown in Figure 5.10.

Chapter 5

102

mhdr

shdr

mdata
(pbuf)

TPCS->mhp

TPCS->shp

TPCS->mdp

TPSS->mhp

TPSS->shp

TPSS->mdp

Figure 5.11 pmsg Format

The message header, mhdr, is used by the tunnel portal protocol and is not used by the
application. The service header, shdr, is unique to the server and is used by the application. The
rest of the message, mdata (message data) or pbuf, contains the data (if any) needed for the
service (e.g. write) or produced by the service (e.g. read).

A typical service header is as follows:

typedef struct SFSP_SH { /* FILE SYSTEM SERVICE HEADER */
 u32 fid; /* function ID */
 u32 p1; /* parameter 1 */
 u32 p2; /* parameter 2 */
 u32 p3; /* parameter 3 */
 u32 p4; /* parameter 4 */
 u32 ret; /* return value */
 void* caller;
} SFSP_SH;

A similar header must be defined for each server or subserver in an embedded system. A shell
function fills in this header for the server function that it is translating into a pmsg. The shell
functions for a given server are put into a common file, such as fcli.c, and shared between all
clients using that server. The header file, fmap.h can also be shared between the clients. Shell
functions are typically small, so memory overhead for shell functions is small. For example, a
shell function for smxFS is:

Partition Portals

103

FILEHANDLE sfsp_fopen(const char* filename, const char* mode, TPCS* tpch)
{
 mp_PTL_CALLER_SAV(tpch);
 SFSP_SH* shp = (SFSP_SH*)tpch->shp;
 char* mp1p = (char*)tpch->mdp;
 char* mp2p = mp1p + strlen(filename)+1;
 strcpy(mp1p, filename);
 strcpy(mp2p, mode);
 mp_SHL2(SFS_ID_FOPEN, (u32)mp1p, (u32)mp2p, NULL);
 mp_TPortalCall(tpch, 0, 0, SFSP_CTMO);
 return (FILEHANDLE)(u32)shp->ret;
}

where tpch is the TPCS handle for the file system client. mp_PTL_CALLER_SAV() causes the
caller return address to be saved in the SFSP_SH caller field. This field is useful during
debugging to see where the call was made in the client. (The debugger call stack window does
not show this due to switching from the client stack to the server stack. See 9.2.10 Portal
Debugging.) sfsp_fopen() has two literal string parameters. These are pointers to the strings
stored in a client code region and thus are not accessible to the server. So, two pointers into pbuf
are created and these are used by two strcpy operations to load the actual strings, filename and
mode, into pbuf. (How to handle different types of parameters is discussed in section 8.9.3
Tunnel Portal Client Shells and Server Cases for Most Calls.)

Now the mp_SHL2() (Service Header Load 2 parameters) macro is called to load the portal
service header: SFSP_SH. SFS_ID_FOPEN is loaded into fid, pbuf string pointers are loaded
into p1 and p2, and NULL is loaded into ret. (NULL is the default error return value for
sfs_fopen(), in case the portal operation fails.) Other mp_SHLn() macros are available for n
parameters. Note that SFSP_SH allows for up to 4 parameters – the most needed for any file
system function.

Then mp_TPortalCall() “sends” pbuf to the tunnel portal and waits to “receive” the return value
and data, if any, from the sfs_fopen() function called in the server. This is accomplished by
signaling ssem, where the server waits, then waiting on csem for a signal from the server. If, for
some reason, the server is not waiting on ssem, csem will timeout and a "CLIENT TIMEOUT"
error will be reported. In this case, the client would normally reopen the portal and try the file
operation again. If the server is still unresponsive, an appeal needs to be made to higher-level
recovery software.

5.5.3 Portal Server Operation
Assuming all is going well, the tunnel portal server processes the contents of pbuf, as shown on
the right side of Figure 5.10. Its function is structured as follows:

void mp_TPortalServer(TPSS* psh, u32 stmo)
{
 while (psh->pmsg = smx_PMsgReceive(psh->sxchg, (u8**)&mhp, psh->dsn, SMX_TMO_INF))
 {
 if (mhp->type == TUNNEL)
 {

Chapter 5

104

 if (mhp->cmd == OPEN) /* first command must be OPEN */
 {
 do /* continuously loop while open */
 {
 switch (mhp->cmd)
 {
 case OPEN:
 …
 case SEND: /* from client */
 mp_TPortalCallServerFunc(psh);
 …
 case RECEIVE: /* to client */
 mp_TPortalCallServerFunc(psh);
 …
 case CLOSE:
 …
 default:
 mp_PortalEM((PS*)psh, INV_CMD, &mhp->errnum);
 }
 smx_SemSignal(psh->csem);

 /* if portal is open, wait for client request */
 } while (psh->open && smx_SemTest(psh->ssem, stmo));
 …

The foregoing implements the tunnel protocol at the server end. smx_PMsgReceive() can be
replaced with smx_PMsgReceiveStop() so that ptaskA releases its stack while it is waiting for
the next pmsg (i.e. ptaskA is a one-shot task). This can significantly reduce memory required if
there are many tunnel portals in a system.

mp_TPortalCallServerFunc() is a call-back function to which server call-back functions can be
added as follows:

void mp_TPortalCallServerFunc(TPSS* psh)
{
 switch (psh->sid)
 {
 case SFSP:
 sfsp_server(psh);
 break;

 case …

This function interprets the server id, sid, field in the server’s TPSS and branches to the
sfsp_server() or other server function. (The sid field is loaded when the portal is created – see
section 5.4.2 Create Portal (by server).) The server function consists primarily of a switch
statement that interprets the function id, fid, in the file system service header (see SFSP_SH
above) and calls the appropriate function in the server, such as:

shp->ret = (u32)sfs_fopen((const char *)shp->p1, (const char *)shp->p2);

Partition Portals

105

with the parameters from the service header. Note that, as described in section 5.5.2 Creating a
pmsg, the literal strings are actually in pbuf and the p1 and p2 point at them. The return value of
the server function is put into the service header ret field, as shown. Data or status information to
be returned to the client, if any, is loaded into pbuf. The return value is routed back to the
application point of call by the shell function, as shown in Figure 5.10. Information in pbuf is
passed back to the caller, as expected. Thus the portal is transparent to the application, except for
some added delay. (How to handle different types of parameters is discussed in section 8.9.3
Tunnel Portal Client Shells and Server Cases for Most Calls.)

Addition of a server portal requires creating the following:

• A mapping header file.

• Shell functions.

• Server task with a switch statement to call actual functions in the server.

As noted in the beginning of this section, shell functions are primarily used with tportals, but can
also be used with fportals. The console portal is an example of the latter — see cpcli.c and
cpsvr.c modules for sample code.

5.6 Sending Free Messages to Tunnel Portals

There are times when it is advantageous to send a high-priority message to a partition to perform
an urgent action, such as shutting the partition down or reconfiguring it. There are other times
when it is desirable to send frequent low-priority status inquiry messages. In cases like these it is
desirable to bypass the normal tunnel protocol. For these reasons, tunnel portals can accept free
pmsgs.

A pmsg received from a free message client portal must have a CONTROL command. Any other
free pmsg is discarded, the INV_CMD portal error is reported, and the server goes back to sxchg
to wait for the next pmsg.

Free pmsgs can be sent to tunnel portals using mp_FTPortalSend(). This automatically creates a
message header for the pmsg. A service header can be created by application code, if necessary.
Free pmsgs are used for sending commands or single data blocks to a tunnel portal or receiving
single data blocks from a tunnel portal.

When a free CONTROL message is received, the tunnel protocol code is bypassed, so operation
is simpler and faster than normal tunnel portal operation. pmsgs are sent to the sxchg for the
portal and can be intermingled with other tunnel portal OPEN and free CONTROL messages. If
a tunnel portal operation is in progress a free CONTROL message will not be received until the
tunnel portal is closed. After the server processes control or data in the pmsg it can load the pmsg
with status or data and send it to an rxchg using smx_PMsgReply(). This works as shown in
Figure 5.6C. If no rxchg is specified, the pmsg is released back to memory as shown in Figure
5.6A.

Chapter 5

106

The following illustrates how to get and send a free pmsg via a tunnel portal to a file system
server:

 FPCS* fpch;
 u8* dp;
 SFSP_SH* shp;

 fpch->pmsg = smx_PMsgGetHeap(SPBUF_SIZE, &dp, CL_SLOT, DATARW);
 shp = (SFSP_SH*)((u32)dp + sizeof(TPMH));

 shp->fid = SFS_ID_SUPCLOSE;
 mp_FTPortalSend(fpch, dp, fpch->pmsg);

In the server, the free pmsg bypasses the tunnel protocol code:

void mp_TPortalServer(TPSS* psh, u32 stmo)
{
 while (psh->pmsg = smx_PMsgReceive(psh->sxchg, (u8**)&mhp, psh->dsn, SMX_TMO_INF))
 {
 if (mhp->type == TUNNEL)
 {
 // tunnel protocol code
 }
 else if (mhp->type == FREEMSG)
 {
 switch (mhp->cmd)
 {
 case CONTROL:
 mp_TPortalCallServerFunc(psh);

and goes directly to mp_TPortalCallServerFunc();

void mp_TPortalCallServerFunc(TPSS* psh)
{
 …
 switch (psh->sid)
 {
 case SFSP:
 sfsp_server(psh);
 break;

which interprets the sid field in the server’s TPSS and branches to:

void sfsp_server(TPSS* psh)
{
 switch (shp->fid)
 …
 case SFS_ID_SUPCLOSE:
 // close USBH portal
 smxu_PMsgReply(ph->pmsg);

Partition Portals

107

This closes a portal between a file system partition and a USBH partition. This command would
normally be issued by system software, not by a file system client. After closing the portal,
smx_PMsgReply() sends the free pmsg to the client’s rxchg.

The following shows how the client fetches the pmsg, obtains the result of the USB portal close
operation, then releases the pmsg to memory:

 pmsg = mp_FPortalReceive(fpch, &dp);
 ret = shp->ret;

 smx_PMsgRel(&pmsg);
 return(ret);

Hidden in the above code is the reply exchange, rxchg It is created by mp_FPortalOpen() and
stored in the client’s FPCS. When a pmsg is sent, the index of rxchg is calculated and loaded into
pmsg->rpx. This is accessible to smx_PMsgReply(), but not to the server. mp_FPortalReceive()
fetches the pmsg from the rxchg, the return value is extracted from it, then it is released..

As noted above, free pmsgs can be intermingled with tunnel pmsgs. A free pmsg must wait for
the current tportal operation to finish. Then the server will come back to the sxchg for the next
pmsg. If the free pmsg has higher priority than other waiting pmsgs or is ahead of waiting pmsgs
at the same priority level, it will be accepted next. This is useful for system control functions
such as shutting down a server quickly or obtaining statistics about it.

A free pmsg cannot interrupt a current server operation, regardless of its priority. Some other
mechanism must be used for that, such as stopping the server portal task.

5.7 Other Portal Topics

5.7.1 Portal Access Delays and Priority Promotion
For shared portals, transaction times must be controlled so that every client gets fair access to the
server. But also, an important client must be able to receive preferential treatment based upon its
priority. The priority of the client is passed in the OPEN pmsg sent to the portal by the client. An
sxchg delivers to its server the longest waiting pmsg at the highest-priority. Since the server is a
pass exchange, it will adopt the priority of the pmsg, thus that of the client.

As with mutexes, an unbounded priority inversion is possible at a message exchange. This occurs
when a higher-priority task than the exchange owner is waiting at the exchange and the exchange
owner is preempted by one or more mid-priority tasks. In this case, the higher-priority task may
miss its deadline. For this reason, SMX exchanges have priority promotion. (See SMX Reference
Manual for smx_MsgXchgCreate()). Since portals are based upon SMX exchanges, they also
have priority promotion. However, in the case of tunnel portals, it is not sufficient to boost only
the priority of the server, the priority of its bound client must also be boosted.

To do this, when a new task becomes the server, not only is its handle recorded in sxchg->onr,
but also the client handle is recorded in sxchg->bct (bound client task). When a pmsg is received
by the sxchg which exceeds that of current server, both the server and its bound client priorities
are boosted to the higher priority. Without this, priority promotion would only be partial and thus
ineffective. Also the client and server would be operating at different priorities possibly leading
to portal protocol problems. When the server closes its connection and gets a new pmsg, it adopts

Chapter 5

108

the priority of that pmsg. When the bound client closes its connection, its priority reverts back to
prinorm, the same as a mutex.

Mutexes and Exchanges share the same TCB prinorm field and therefore should not be used
together. For a tunnel portal, if mutex priority promotion and demotion both occur before or after
connection, operation will be normal. Otherwise it will not. Getting a mutex, while connected, is
not advisable because only the client or the server will be promoted. In addition, it may lengthen
portal wait times resulting in timeouts.

5.7.2 Portal Errors
The following portal errors are detected and reported:

 CLIENT TIMEOUT
 INVALID COMMAND
 INVALID FUNCTION
 INVALID SID
 INVALID SSID
 INVALID SIZE
 INVALID TYPE
 NO PMSG
 PORTAL CLOSED
 PORTAL NOT EXIST
 PORTAL NOT OPEN
 SERVER TIMEOUT
 TRANSMISSION ERROR
 TRANSFER INCOMPLETE

When an error is detected,

mp_PortalEM(ph, errnum, ep)

is called, where ph is the portal structure handle. Only the name in these structures is used and it
is the first field in all portal structures. errnum is the error number and ep points at the location to
store errnum in either the pmsg header or in the portal structure. This function runs in pmode.
Currently mp_PortalEM() saves errnum in *ep, displays the portal name, if any, followed by the
error name, and makes an entry in the smx Error Buffer consisting of: etime, errnum, and ph.

5.7.3 Chained Portals
Chained portals occur when a partition is accessed via a portal and it accesses another partition
via another portal. An example is when the file system accesses a mass storage USB device (e.g.
a thumb drive) via the USB host server portal. Chaining portals increases overhead. It can also
result in poor performance because of incompatibilities between portals. For example, the first
portal may be using a pbuf size which is smaller than the optimum sector or block size used for
pbuf in the second portal. Causing a device to accept blocks that are smaller than its optimum
block size can seriously impact its performance.

Problems like this may require more complex shell functions and switch functions. For example,
the write shell function for the second portal could buffer up small blocks received from the first
portal until either its pbuf is full or the last block has been received from the client. Then the
second portal write shell function would write its pbuf and the device would operate more

Partition Portals

109

efficiently. Probably the first portal switch function would need to alert the second portal shell
function when the last block was being sent. So a little complexity needs to be added to the
portals. However basic partition code (e.g. file system code) may not be changed.

5.7.4 Server Callbacks
Synchronous server callbacks can be implemented using free message portals by sending
callback messages to reply exchanges and callback response messages to server exchanges. If
done this way, the portal belongs to the server, and all callback clients are in its PCL list. So each
client expecting a callback would send a pmsg to the server callback portal and the server would
send the callback pmsg to each client rxchg, in turn.

If this is not the desired mode of operation, then each callback client could have a callback portal
and the server would send its callback pmsg to each client’s callback sxchg. Then each client
would send its response pmsg to the server’s rxchg.

The above operations can be made more efficient by using smx message multicasting or
broadcasting (see the smx User’s Guide).

Support for synchronous server callbacks will be added to the tunnel protocol, if a need
develops. This would be more efficient since the callback would be through the tunnel portal and
no additional portals would be needed. Asynchronous callbacks require a separate portal.

5.7.5 Who’s The Boss?
Despite the fact that the server creates the portal, the client is always the boss (master). All
transfers are initiated by clients. Even though the client might prime a portal for a callback to
itself, as discussed above, the client is still the boss. Keeping this in mind helps to see when a
second portal is needed in the opposite direction.

5.7.6 Client Data
Client shell functions usually do not need any global data, but if they do, it is best to avoid using
a precious MPU slot, such by as adding a ucom_data region. The client structures have a 32-bit
data/pointer field that can hold a word or a data pointer. In many cases, a single word is
sufficient for a shell function. In cases where it is not, the data/pointer field can be defined as a
pointer to a structure in the TLS of the current task (see section 4.11.8 Task Local Storage).
Then, the client structure data/pointer field is typecast to a pointer to the structure stored in the
TLS. The address of the TLS can be obtained by calling:

dp = smxu_TaskPeek(smx_ct, SMX_PK_TLSP);

An example of using a client structure data field for one word, occurs in the smxUSBH mass
storage portal, where it is used to store the disk sector size used by client functions. The file
sector size varies from device to device; thus it is necessary to call a driver function to get it.
Rather than calling the driver function every time the sector size is needed, the driver function is
called once and the sector size is stored in pch->data.

5.7.7 Window Portal
A window portal is like a pane of glass: it maintains isolation between partitions, yet what is
written on one side of the pane can be read (and overwritten) on the other side. A window portal

Chapter 5

110

is simply a dynamic region (see 4.11.9 Dynamic Regions) that is shared between two or more
tasks. Each task has the region in one of its active MPA slots and thus can access the data block
of the window region. If the tasks have the same priority, then flags in the window can be used to
coordinate writing and reading. Otherwise, a mutex or semaphores can be used.

Unlike the free message and tunnel portals, a window portal tends to be a fixed region for each
task using it. The window region could be kept in an auxiliary MPA slot and switched into an
active slot, when needed.

5.8 Console Portal

The console functions are implemented in bcon.c, and their use is described in the smxBase
User’s Guide Section 2.8. If the console partition is implemented, bcon.c, a UART driver, and
cp_main() and cp_server() (both in cpsvr.c) are located in cp_code and related data in cp_data.

 The following console functions are available via the console portal:

void sb_ConClearScreen(FPCS* pch);
void sb_ConClearScreenUnp(FPCS* pch);
bool sb_ConDbgMsgMode(FPCS* pch);
void sb_ConDbgMsgModeSet(bool enable, FPCS* pch);
int sb_ConPutChar(char ch, FPCS* pch);
void sb_ConWriteChar(u32 col, u32 row, u32 F_color, u32 B_color, u32 blink,

char ch, FPCS* pch);
void sb_ConWriteString(u32 col, u32 row, u32 F_color, u32 B_color, u32 blink,

const char *in_string, FPCS* pch);
void sb_ConWriteStringNum(u32 col, u32 row, u32 F_color, u32 B_color, u32 blink,

const char *in_string, u32 num, FPCS* pch);
cpmap.h must be included in any module calling these function to convert the function names to
shell function names in cpcli.h, which is contained in ucom_code. Each shell function converts
one of the above function calls to a pmsg and sends it to the console portal exchange. There it is
converted back by cp_server() and executed in the console partition. Console portal calls can be
made by both ptasks and utasks.

The console portal is enabled by setting CP_PORTAL in xpcfg.h. This results in cp_init() being
called to create a free message portal for the console partition, including its portal exchange,
cp_sxchg and portal task, cp_task. It also starts cp_task waiting at cp_sxchg for a pmsg and
initializes the cp portal server structure, cpsvr.

The cp following system-level variables are defined in smxmain.c, if CP_PORTAL:

#pragma default_variable_attributes = @ ".cp.bss"
FPSS cpsvr; /* cp server struct */

#pragma default_variable_attributes = @ ".cp.data"
FPCS* cpcli_lst[] = {&cpcli_t1c, &cpcli_t2c}; /* permitted client list for cpsvr */
u32 cpcli_lstsz = sizeof(cpcli_lst)/4; /* size of cpcli_lst */

The above assumes two client tasks, t1c and t2c. Any number of client tasks is permitted.
cpcli_lst[] is used to initialize the client FPCS structures:

Partition Portals

111

#pragma default_variable_attributes = @ ".t1c.bss"
FPCS cpcli_t1c; /* cp client structure for t1c*/

#pragma default_variable_attributes = @ ".t2c.bss"
FPCS cpcli_t2c; /* cp client structure for t2c*/

When the system is running, only these clients can access the console portal. Other tasks lack the
address of the portal exchange and therefore cannot send pmsgs to it.

Before making console calls, a client must call:

bool mp_FPortalOpen(pch, csn, msz, 1, pri, tmo, rxname);

to open its side of the console portal. In the above, pch is the handle of the client portal structure,
csn is the MPU slot to use for the pmsg data region, msz is the size of pmsg data, only one pmsg
is allowed, tmo is the timeout to wait on the rxchg for the pmsg, and rxname is the name of the
rxchg.

The console portal can be used with minimal code changes in the client. This is accomplished by
preceding client console function calls with:

#include "cprtl.h"
#include "cpmap.h"
#define CP_PCH &cpcli_t1c

The first provides defines and prototype functions, the second maps functions to shells, and the
last provides the cp client structure handle for shell functions to access the t1c’s rxchg.

5.9 Middleware Portals

SMX middleware has already been partitioned using portals. The following sections summarize
what was done for each. For all but smxNS, the portal is at the API layer, meaning API calls are
done via protected messages which are handled by a server task and the results are returned.
Also, the client and server code run in umode. For smxNS, the portal was done at the TCP/UDP
layer, and the smxNS high level partition runs in pmode, and low-level runs in umode.

5.9.1 smxFS
A tunnel portal is created for each disk. This is done by calling sfsp_init() from sfs_devreg(),
which is the function to register each disk with the file system. Similarly sfs_devunreg() deletes
the portal via sfsp_exit().

Chapter 5

112

Application File SystemT DiskDisk
Driver

Figure 5.12 smxFS Portal

Demo Configuration: SMXFS and SMXFS_DEMO enabled (iararm.h).
SFS_DRV_MMCSD=1 (fcfg.h). SFS_PORTAL=1 (xpcfg.h). Link fsdemo.c and XFS
files.

Arrays of portal server and client structures and permitted client lists are indexed by the disk ID
(0, 1, etc.). Server structures are defined in fpsvr.c, and client in the demo and user application
files.

fpsvr.c has the init/exit routines that create and delete the portals, and it has the server task main
function, which is a large switch statement that calls the actual services requested by ID with the
parameters passed via the portal message.

fpcli.c has all of the shell functions that convert API calls into protected messages and passes
them through the portal.

fpmap.h has the mapping macros that convert API calls into portal calls by adding a p to the
prefix and passing the PCH (portal client handle) as a last parameter.

fprtl.h has definitions including configuration values for timeouts and MPA slots, the service
header structure (SH), and portal shell function prototypes.

Application code calls mp_TPortalOpen() to open the portal from a task that wants to access a
disk. If another task needs to access the same disk, the first task needs to close the portal with
mp_TPortalClose(), and the other task must open it. See fsdemo.c.

USB disks add complexity because they require smxUSBH which must be accessed via its
portal. So file operations go through the smxFS portal, and smxFS then does operations through
the smxUSBH mass storage portal. We call these chained portals.

 Figure 5.13 smxFS and smxUSBH Mass Storage Chained Portals

Demo Configuration: SMXFS, SMXFS_DEMO, SMXUSBH, and SMXUSBH_DEMO
enabled (iararm.h). SFS_DRV_USB=1 (fcfg.h). SFS_PORTAL=1 and

Application File System USBH Mass
Storage

USBH EventMS CallbackUSBH Callback

MS Event

T T

F

F
Disk

Partition Portals

113

SU_PORTAL_MS=1(xpcfg.h). Link fsdemo.c and XFS files and usbhdemo.c and
XUSBH files. usbhdemo.c is needed for an event callback portal.

There is some special handling at shutdown for this case (which is not necessary for your system
if it never shuts down and deletes the portals). When the application task (e.g. in fsdemo.c) exits,
it closes the FS portal. Later smxfs_exit() is called by smx_modules_exit(), which calls
sfs_devunreg() to unregister the device, and it calls sfsp_exit() to delete the FS portal. Before
doing this, though, it needs to send one last message to the USBH mass storage portal to shut it
down, but the portal is closed. Rather than reopen a tunnel, it sends a free message request with
command SFS_ID_SUPCLOSE. The smxFS portal server switch statement has this as its last
case, and it closes the USBH mass storage portal. It’s not immediately clear why this free
message PCS/PCH has access to the FS tunnel. The key is that it (sfsp_fmpcs) is listed in the
permitted client list for the portal. When the portal was created during startup, the exchange
handle and name were loaded into all of the PCSs in the list by the loop in mp_TPortalCreate().
At the top of fpsvr.c:

FPCS sfsp_fmpcs0;
…
u32* sfsp_pcl0[] = {(u32*)&sfsp_demo_lt_pcs0, (u32*)&sfsp_demo_rwt_pcs0,

(u32*)&sfsp_fmpcs0};

The first two in the list are the fsdemo tasks that normally use the portal.

Another issue related to USB disks regards event callbacks. A disk can be inserted or removed
and the write protect status can change at any time, so a file system has to check these each time
before doing an operation. This results in a lot of calls through the USB mass storage portal. An
alternative to polling status is to use a callback to notify smxFS when these events occur. In the
USB disk interface file (fdusb.c) we implemented a free message portal used for the USBH mass
storage driver to send status updates. The disk driver (fdusb.c) maintains Inserted, Changed, and
WriteProtect flags which the driver routines consult. See USBMSCallbackServerMain().

USB device disks: The foregoing covers the case of smxFS implementing a portal server for its
API functions (sfs_fopen(), sfs_fread(), etc.). It also must implement a disk-level portal server to
handle accesses from smxUSBD, as we have done for the SD/MMC driver. In fpsvr.c, below the
API portal functions, a second portal is defined for the SD disk driver. This handles calls from
the smxUSBD mass storage driver.

Host USBD Mass
Storage DiskDisk

Driver
T

Figure 5.14 smxUSBD Mass Storage Portal

Demo Configuration: SMXUSBD and SMXUSBD_DEMO enabled (iararm.h). SMXFS
and SMXFS_DEMO disabled, but link XFS files in project. MSTOR_RAMDISK=0
(usbddemo.c), and SFS_DRV_MMCSD=1 and SFS_DRV_USB=0 (fcfg.h).
SUD_MSTOR=1 (udcfg.h), and to also use Serial (section 5.9.3 smxUSBD) set

Chapter 5

114

SUD_SERIAL=1 and SUD_COMPOSITE=1. SUD_PORTAL_MS=1 (xpcfg.h). Link
usbddemo.c and XUSBD files and XFS files.

5.9.2 smxNS
Unlike the other middleware, this portal is within the TCP/IP stack, at the transport layer
(TCP/UDP). smxNS API code, server applications, and user application code that uses
networking run in pmode on the “hi” side of the portal, while the transport layer and drivers run
on the “lo” side of the portal. The idea is to protect the system from network intrusions, which
are the main risk for connected systems.

NetLo

NetHi Application

Secure Boot

Vault

umode

pmode

System
Services

Internet

Power On

SWI

Direct

Portal
Provided by SecureSMX

Security

Ethernet
TCP/IP

API
Apps

Servers

TCP/UDP

pmode Barrier

Figure 5.15 smxNS Transport Layer (Hi/Lo) Portal

Demo Configuration: SMXNS and SMXNS_DEMO enabled (iararm.h).
SNS_PORTAL=1 and SNS_PORTAL_TCB=1 (xpcfg.h). Link nsdemo.c and XNS files.
To use the web server, also link APP\DEMO\WEBPAGE files.

npsvr.c has the init/exit routines that create and delete the portals, and it has the server task main
function, which is a large switch statement that calls the actual services requested by ID with the
parameters passed via the portal message.

npcli.c has all of the shell functions that convert API calls into protected messages and passes
them through the portal.

Partition Portals

115

npmap.h has the mapping macros that convert API calls into portal calls by adding a p to the
prefix and passing the PCH (portal client handle) as a last parameter.

nprtl.h has definitions including configuration values for timeouts and MPA slots, the service
header structure (SH), and portal shell function prototypes.

smxNS was done differently than our other middleware. Instead of an API portal, it implements
a portal at the transport (TCP/UDP) layer to isolate the low-level part of the stack from the high-
level part to keep intruders from the Internet out. The high-level part runs in pmode and is
directly called by the networking application code, which is also in pmode. For our other
middleware, the whole package runs in umode and is isolated from the application. Data
encryption/decryption runs on the pmode side, so it is not possible to access it from the network.

A separate tunnel portal is needed for each application and network server task that uses the
TCP/IP stack. During initialization, Ninit() calls NMTinit() which creates all of the portals, and
then each task that uses them (application, telnet server, web server, etc.) opens one of the
portals.

5.9.3 smxUSBD
smxUSBD function drivers are the APIs to the device stack, so portals are needed for them.
Three have been implemented initially, mass storage, mouse, and serial. Mass storage functions
are called internally, not by the application, and they use the SD/MMC portal discussed at the
end of section 5.9.1 smxFS.

Application USBD
Mouse

T

Figure 5.16 smxUSBD Mouse Portal

Demo Configuration: SMXUSBD and SMXUSBD_DEMO enabled (iararm.h).
SUD_MOUSE=1 (udcfg.h). SUD_PORTAL_MOUSE=1 (xpcfg.h). Link usbddemo.c
and XUSBD files.

Application USBD
Serial

USBD EventUSBD Callback

T

F

Figure 5.17 smxUSBD Serial Portal

Mass Storage: See end of section 5.9.1 smxFS

Chapter 5

116

Demo Configuration: SMXUSBD and SMXUSBD_DEMO enabled (iararm.h).
SUD_SERIAL=1 (udcfg.h). To run with Mass Storage as a composite device, see end of
section 5.9.1 smxFS. SUD_PORTAL_SERIAL=1 (xpcfg.h). Link usbddemo.c and
XUSBD files.

udpsvr.c has the init/exit routines that create and delete the portals, and it has the server task
main function, which is a large switch statement that calls the actual services requested by ID
with the parameters passed via the portal message.

udpcli.c has all of the shell functions that convert API calls into protected messages and passes
them through the portal.

udpmap.h has the mapping macros that convert API calls into portal calls by adding a p to the
prefix and passing the PCH (portal client handle) as a last parameter.

udprtl.h has definitions including configuration values for timeouts and MPA slots, the service
header structure (SH), and portal shell function prototypes.

The application task (e.g. in usbddemo.c) opens the tunnel portal and then makes mouse or serial
calls.

The serial driver implements a callback for data and line state/coding changes using a free
message portal. See USBDSerCallbackServerMain() task function which wraps
USBDSerialNotification(). The smxUSBD code that calls the callback calls
sud_SerialRegisterPortNotify() to get the address of sud_SerialCallStackCallback() to call it.

5.9.4 smxUSBH
smxUSBH class drivers are the APIs to the host stack, so portals are needed for them. Two have
been implemented initially. The mass storage portal is described in section 5.9.1 smxFS. The
FTDI232 (serial) portal is the other. It supports connecting an FTDI USB to RS232 adapter.

Application USBH FTDI

USBH EventUSBH Callback

T

F

FTDI232
Adapter

Figure 5.18 smxUSBH FTDI232 Serial Portal

Demo Configuration: SMXUSBH and SMXUSBH_DEMO enabled (iararm.h).
SU_FTDI232=1 (udcfg.h). SU_PORTAL_FTDI232=1 (xpcfg.h). Link usbhdemo.c and
XUSBH files.

upsvr.c has the init/exit routines that create and delete the portals, and it has the server task main
function, which is a large switch statement that calls the actual services requested by ID with the
parameters passed via the portal message.

Partition Portals

117

upcli.c has all of the shell functions that convert API calls into protected messages and passes
them through the portal.

upmap.h has the mapping macros that convert API calls into portal calls by adding a p to the
prefix and passing the PCH (portal client handle) as a last parameter.

uprtl.h has definitions including configuration values for timeouts and MPA slots, the service
header structure (SH), and portal shell function prototypes.

For mass storage, smxFS opens the portal and makes USB mass storage calls, as discussed in
section 5.9.1 smxFS.

For FTDI232 serial, the application task (e.g. in usbhdemo.c) opens the tunnel portal and then
makes FTDI API calls. The demo has a send task and a receive task, and they alternate use of the
portal. Each opens the portal, uses it, and then closes it to allow the other to use it. Each task has
its own PCH to access the portal. Notice above each of the task main functions in usbhdemo.c
(usb_ftdi232_receive_main() and usb_ftdi232_send_main()), SUP_FTDI_PCH is defined to that
task’s pch variable. This is what is passed as the last parameter to the macros in upmap.h.

smxUSBH has a global event callback to notify the application of several different events. When
using portals, this uses a free message portal. See su_CallStackCallback() in udriver.c.
usbhdemo.c implements the actual callback function to handle the events. See
USBHEventServerMain() task function which wraps USBHEventCallback(), and
USBHEventInit(), which creates the free message portal. The smxUSBH code that calls the
callback calls su_GetStackCallback() to get the address of su_CallStackCallback() to call it.

5.10 Tunnel Portal Timeouts

As with most protocols, during normal operation, the tunnel protocol is fairly simple. It is during
abnormal operation that complexity increases. A case in point is timeouts. Portal timeouts are
likely for many reasons such as task preemptions, extreme loads, unexpected events, etc. So once
a system is running well, the next step is to pick good timeouts.

5.10.1 Server Timeout
When the server is waiting on a client for further action it waits at the ssem semaphore. An ssem
timeout is called a server timeout. When a server timeout occurs, the server closes the current
connection and goes to sxchg for the next pmsg. The server timeout value, STMO is set in
tportl.h. It must be chosen carefully in order to allow for normal client activity, yet avoid wasting
server bandwidth.

STMO should be long enough to allow clients sufficient time to perform their next operations.
Allowance may need to be made for a low-priority client to be preempted by higher-priority
tasks. However, this might result in long timeout potentially idling the server for an excessive
amount of time. In this case, it may be better to choose a smaller STMO and thus allow timeouts
to occur in some cases. In addition, an excessively large STMO could create a vulnerability for a
hacker. By repetitively opening the server portal and delaying until a server timeout occured,
malware could greatly reduce the server performance.

Chapter 5

118

Portal priority inheritance can help both of these problems if the server has higher priority
clients. When a pmsg from such a client arrives at the sxchg, the priority of the low-priority task
will immediately be promoted and it will be rescheduled, thus avoiding a server timeout – see
5.7.1 Portal Access Delays and Priority Promotion for more information.

Although we recommend working with an infinite STMO during development, it is important to
choose an effective value for release. This may require running the system under different
contitions and observing how it performs. A server time out is not disastrous. The server will
close its connection and go on to the next pmsg or wait at sxchg. The client will time out and can
recover (see the next section). Hence, during periods of heavy load, server time outs are ok.

5.10.2 Client Timeout
When the client is waiting on the server, it waits at the csem semaphore. A csem timeout is
called a client timeout. When a client timeout occurs, the client closes the current connection and
is then free to reopen the connection and continue from where it left off. A client timeout can
occur for the following reasons:

1. The server may have received a burst of higher-priority pmsgs and may not have even
opened the connection with this client.

2. The server may have opened the connection , but is taking longer to perform an operation
than expected, possibly due to preemptions by higher-priority tasks or it has encountered
an unexpected time delay in a device driver or elsewhere.

3. The server may have timed out and closed the connection at its end before the client sent
the latest command.

The client timeout value, CTMO is set in tportl.h. Choosing CTMO is different than choosing
STMO. In its case, allowance must be made for a busy server that is handling higher priority
pmsgs. Since sxchg is a priority exchange, it is possible that the pmsg from a low-priority task
may wait for a long time to be served. In addition, servers could have potentially long delays
when waiting on external events.

On the other hand, opting for an infinite CTMO is not a good choice, except during
development. The problem is that without a finite timeout, the client might miss a deadline.
Nonetheless, an effective choice for CTMO might be quite long. The problem of server
performance degradation does not apply here. If the client is missing deadlines, its priority
should be increased. Otherwise it is probably ok for it to wait a long time. A timeout is not
disastrous for a client, but if it times out and retries, its pmsg will lose its place ahead of other
equal-priority pmsgs. Priority promotion helps to ensure that unbounded priority inversion will
not occur when a low-priority task does gain access to a server.

5.10.3 Client Recovery Methods
It is important to understand that due to isolation, the server and client cannot share a single open
flag. Instead, each has its own. When the server receives a close command or times out, it resets
its open flag and clears other fields in its TPSS. Since the client cannot see the server’s open flag,
it may think the connection is still open. However, its csem will time out and it will reset its open
flag and clear other fields in its TPCS. Then the two ends will be back in sync.

Partition Portals

119

There are two types of client timeout:

1. OPEN timeout.

2. READ/WRITE timeout.

There is no CLOSE timeout because CLOSE is an open-ended operation – no acknowledgement
is expected and thus the client does not wait at csem for it.

In the first case, the client’s OPEN pmsg may still be waiting at the sxchg or, in the second case,
the server may be processing it, but has not yet signalled the client’s csem. To recover, the client
needs to close the connection and then reopen it. The server probably will not even notice the
first case, but in the second case, the server’s ssem will time out and the server will go back to
sxchg where it will find the new OPEN pmsg.

In the second type of csem timeout, the server may have failed to transfer a block in the middle
of a multi-block operation. In this case the client should close the connection, reopen it, and
continue from the missed block, which can be determined from the completed size, cmpsz, field
in the pmsg header.

It should be assumed that portal timeouts will occur during normal operation and recovery code
should be provided. For example:

 for (n = 3; n > 0, mp_TPortalOpen(tpch, LMSZ, THSZ, CTMO, "ssem", "csem") == false); n--)
 {
 mp_TPortalClose(tpch);
 }

 if (n == 0)
 {
 /* deal with portal open failure */
 }

The above code tries three times to open a portal, then deals with portal open failure.

5.11 Portal Tips

Portals are arguably the most complex part of SecureSMX, yet they are essential for partition
isolation because of the single address space limitation of MCUs. Every partition is likely to
require a portal, some may require more than one portal. For example, if a file system can
support simultaneous accesses to every device, then a portal per device is needed for best
performance. In some cases, portals may be necessary to report asynchronous events or for
feedback. The result of all of these requirements could be a very large number of portals in a
complex system.

A possible alternative to portals is to implement partition APIs as service functions. This might
be applicable to a file system, for example. The downside of doing this is that hmode code must
be able to access file system code. Hence the latter and its static data must be included in
sys_code and sys_data. This brings potentially vulnerable code below the pmode barrier, thus
reducing security. Accessing the file system via a portal is more secure. Portals are a necessary
evil for secure systems.

Chapter 5

120

Portals are confusing primarily because we are accustomed to using APIs, not portals, to access
services. The following tips may help you to adapt to using portals.

1. It is best to start with a diagram showing all servers and all clients, and then connect the
clients to the servers with arrows. We recommend that the arrowheads point at the
servers. This is the best time to work out the partitioning and the interconnections in your
system. If the diagram becomes very complicated, that may be a hint that you need to
rework your system architecture. Once you have a workable diagram, you can begin
programming portals and partitions, but not before.

2. Some servers may have multiple portals. For example, the file system may have multiple
portals in order to simultaneously access multiple disks. For these servers, you need to
decide if all clients access all portals or if some clients access one portal and other clients
access a different portal. The latter structure may be simpler to implement.

3. Each client has a portal client structure (PCS) for each server that it can access. The PCS
must be in a client MPU region. If many clients are accessing the same two servers, it
may be simpler to merge them into a single server, even though they provide different
services.
Alternatively, if a server has a large number of clients waiting for different services, it
may be a choke point and the server should be divided into more servers. Then it may be
found that only a few clients connect to each of the new servers and the system diagram
is simpler.

4. Each server has a portal server structure (PSS) for each of its portals. Each PSS must be
in a server MPU region. If simultaneous operation is not necessary, it may be simpler to
have a single portal per server.
On the other hand, if the server is providing different groups of services it may be
simpler, within the server, to have a separate portal and portal task for each service group.
An example of this is USB host class drivers.

5. For each portal, there must be a permitted client list (PCL) containing the addresses of all
the PCSs of the clients that the portal serves. During initialization, which must be done in
pmode, the PCL is used to load the handle of the server’s exchange and its name into
each PCS in the PCL. This is necessary because clients and servers are isolated from each
other when running. (If this is confusing see 8.2.6 The Handle Problem.)

6. Remember that it is a client task that opens the portal. Unlike the server side, which
creates the portal during system initialization, the client side opens a portal from the task
that will use the portal. If you get confused when trying to figure out how to use portals
in your existing design, think about the tasks involved and consult your diagram.

7. Attempting to share PCSs between client tasks in the same partition and to share PSSs
between server tasks in the same partition, though tempting, is likely to cause confusion,
and thus is not recommended. It is better to dedicate each PCS or PSS to a single task.

8. Arrays of PCSs: On the client side, PCSs are typically defined as individual structures.
However, PCSs in the same client, can grouped into an array so they can be selected via
an index. This might be simpler when a client has access to multiple portals.

Partition Portals

121

9. One-shot tasks: Due to the need for portal tasks, a partitioned system is likely to have
many more tasks than a non-partitioned system. Using one-shot portal tasks is
recommended because they do not consume stack memory while waiting and portal tasks
are likely to do a great deal of waiting.

10. Timeouts: Set csem and ssem timeouts to INF during debug, else debugging is likely to
be difficult. However, after debugging is complete, all csem and ssem timeouts must be
set to reasonable finite values. Otherwise, a hacker could freeze a client or server and this
could propagate throughout the system, bringing it to a halt. Also, if unexpected events or
latent bugs occur, timeouts provide a means of recovery.

11. Callbacks: Asynchronous callbacks (e.g. plugging in a USB device) normally require free
message portals from the server to the client. If more than one client needs to be notified,
smx broadcast or multicast capabilities might be useful. Synchronous callbacks, which
occur while a tunnel portal is open probably can be handled via the tunnel portal.

12. Debugging: See section 9.6 Debug Tips.

123

Chapter 6 Advanced Theory

The topics in this chapter are not necessary to start using SecureSMX but may become useful
later in a project. They are intended to provide a little more background information.

6.1 System Services

A system service is either an smx System Service Routine (SSR), such as smx_SemSignal(), or a
function that performs a system service, such as sb_IRQMask(). SSRs can cause task switches.
System service functions cannot.

System services operate the same regardless of whether they are invoked from ptasks or utasks.
For example, a utask may test a semaphore and become suspended upon it. A ptask may later
signal that semaphore, and the utask will be resumed. Or vice-versa. A ptask may have higher or
lower priority than a utask. The smx task scheduler dispatches the tasks according to their
priorities, regardless of privilege. What is different is that the ptask executes pcode, whereas the
utask executes ucode. Both are limited to access only the memory that the MPU permits.

Although the results are the same, the mechanisms by which utasks and ptasks execute system
services are different. These are explained in the next two subsections.

Chapter 6

124

6.1.1 System Calls from pmode
System calls from pmode are the simpler case, and it is the same as when running smx without
an MPU. Figure 6.1 shows the operation when a system service is called directly from a ptask:

ptask

System
Service

sched
or lqctr

?

Y PendSV
Handler Scheduler

Peempt
?

Next taskYN

pmode

U

S

U

Figure 6.1 System Call from ptask

The system service is executed in pmode using the task stack. If smx_sched or smx_lqctr is non-
zero, indicating that the ptask may need to be preempted, the smx_PendSV_Handler() is
invoked. It runs immediately since it is an exception. The S beside the line means stacking
occurs. Stacking is the process whereby the processer creates a stack frame in the task stack, TS,
and then switches to the main stack24, MS. The PendSV Handler runs in the main stack.

The PendSV Handler then calls the scheduler, which determines if the current ptask should be
preempted. If so, the ptask is suspended or stopped, the next ptask or utask is resumed or started,
and the scheduler returns to the PendSV Handler. This second part of the PendSV Handler is
called its tail.

The PendSV Handler performs an exception return to the current ptask if it has not been
preempted. Note: only smx SSRs can cause task preemption. The U next to the line means
unstacking occurs. Unstacking is the process whereby the processer loads saved processor
registers from the stack frame in TS, then switches to TS.

24 The term main stack is used by Arm Ltd. smx uses the term main stack. These are the same stack.

Advanced Theory

125

If the current ptask has been preempted, the PendSV Handler performs an exception return to the
next task, with unstacking. However, this is not the same task stack. It is the stack of the task that
was suspended and that now is being resumed. The result of unstacking for this task is as though
it were never suspended. If the task is being started there are no registers to restore. However the
scheduler does a head fake and creates a bogus stack frame, thus fooling the PendSV Handler.

6.1.2 System Calls from umode
Figure 6.2 illustrates how a system call is made from umode. This is clearly more complicated
than the system call from pmode. The utask calls a shell function, which in turn invokes the
smx_SVC_Handler() with a 1-byte parameter, which is the call ID. The S beside the line means
stacking occurs.

utask

shell function

SVC Handler System
Service

sched
or lqctr

?

N Y PendSV
Handler Scheduler

Peempt
?

Next TaskYN

umode

pmode

S

U TC

U U

Figure 6.2 System Call from umode

The SVC Handler runs in the main stack. It loads parameters 0 thru 3 from TS into r0 thru r3 and
it moves parameters 5 to 7, if any, from below the exception frame in the task stack to the top of
the main stack. (This is where the system service expects to find these parameters, by the

Chapter 6

126

ATPCS25.) The SVC Handler then calls the system service via the SST jump table that is in use.
(See section 4.9.2 SVC Call Mechanism.)

If the system call is not restricted (see sections 4.9.3 Restricted Services and 4.9.4 Custom SSTs)
the system service executes normally and returns to the SVC Handler, which moves the system
service return value from r0 to its correct position in the exception frame. This second portion of
the SVC Handler is called its tail. If smx_sched has not been set by the system service and if no
interrupt invoked an LSR (smx_lqctr == 0) during the system service, the SVC_Handler
performs an exception return back to the utask. The U beside the line means unstacking. The net
result is that register r0 contains the return value, r1 thru r3 and r12 are restored, and the utask
continues running from after the point of call.

If smx_sched or smx_lqctr is non-zero, indicating that the utask may need to be preempted, the
PendSV Handler is invoked. This is a little tricky. The SVC Handler first finishes running, then
it tail chains (TC) to the PendSV Handler. As a result, no unstacking/stacking occurs. The
PendSV Handler inherits the stacking done for the SVC Handler. The PendSV Handler then calls
the scheduler, which determines if the utask should be preempted. If so, the utask is suspended or
stopped, the top task26 is resumed or started, and the scheduler returns to the PendSV Handler
tail.

If the utask has not been preempted, the PendSV Handler performs an exception return to the
utask. The U under the line means unstacking occurs. If the utask has been preempted, the
PendSV Handler performs an exception return to the new task with unstacking. This operation is
the same as described in the previous subsection with regard to resuming or starting the next
task, which can be a utask or a ptask.

Eventually the suspended utask will be resumed, unstacked, and continue to run (assuming it was
not stopped nor deleted by a preempting task).

A subtle, but important, difference in the above two diagrams is that for a call from a ptask, the
branch to the PendSV Handler is made immediately after the system service finishes. Whereas
for a call from a utask, this is not possible – the PendSV Handler cannot run until SVC Handler
completes, because the SVC Handler has higher priority. Then the SVC Handler tail chains to
the PendSV Handler.

This causes a problem for certain RTOS services. The task scheduler cannot run if the PendSV
Handler does not run, and a task cannot be suspended or stopped if the scheduler does not run.
Hence, smxu services cannot wait upon an RTOS object, such as a mutex. For example, the
smxu_Heap shell functions cannot wait on the heap mutex. As a consequence, smxu_Heap shell
functions make the heap call, assuming the heap mutex is free. If it is, the heap service proceeds
normally and returns an appropriate value. However, if the mutex is not free, the utask is
suspended on it for the timeout period. If a timeout occurs, 0 is returned and the heap service
fails. If the mutex becomes free before the timeout, a special value, SMX_HEAP_RETRY, is
returned, and the heap shell function calls the heap service again.

25 Arm Thumb Procedure Call Standard
26 Top task is defined as the longest-waiting, highest priority task.

Advanced Theory

127

Consequently the SVC Handler may need to run twice to perform one heap operation, which
obviously hurts performance. This is a consequence of the Cortex-M architecture and there does
not seem to be a solution to this problem. However for the vast majority of heap calls, the heap
mutex will be free and the SVC Handler will be called only once.

6.2 Critical Sections

This section provides theoretical background concerning critical sections. For detailed guidance
about what to do to protect critical sections in certain situations, see section 8.10.7 Critical
Sections.

6.2.1 SecureSMX Object Priorities
Figure 6.3 illustrates the relative priorities of objects in a SecureSMX system:

ISRs

SVC
Handler

PendSV
Handler

Task
Scheduler SSRs

ptasks

utasks umode

pmode

Invoke LSR
smxu Call
smx Call

return

SSRs

LSRs

PSVH
tail

TC

Figure 6.3 System Hierarchy

Chapter 6

128

Figure 6.3 illustrates the operation of SecureSMX. This is complicated, but it is helpful to
understand the basic concepts:

• Priorities decline from top down.
• An ISR can preempt lower priority ISRs and all objects below it unless interrupts

are disabled or masked. SSRs never disable interrupts. Handlers and the Task
Scheduler disable interrupts only in small critical sections. LSRs and tasks should
also disable interrupts only in small critical sections. Minimizing interrupt disable
or masking times is important because they directly affect interrupt latency.

• Except for tasks, an ISR returns to the point of interrupt even though it may have
invoked an LSR. Invoking an LSR consists of putting its handle and a parameter
into the LSR queue, smx_lq, and incrementing the LSR counter, smx_lqctr. LSRs
are intended to do deferred interrupt processing in order to permit short ISRs and
to reenable interrupts as quickly as possible (since ISRs normally disable
interrupts).

• If an ISR has interrupted a task and smx_lqctr > 0, the ISR branches to the
PendSV Handler (PSVH()), which runs all LSRs in smx_lq in the order they were
enqueued (i.e. LSRs have no priorities, except that they are higher priority than
any task. Due to having no priorities, LSRs preserve temporal integrity.)

• If an ISR has interrupted a task and smx_lqctr == 0, the ISR returns to the point of
interrupt in the task – no more work to do.

• LSRs can call System Service Routines (SSRs) but cannot wait on them. For
example, an LSR could call smx_SemSignal() or it could call smx_SemTest()
with a 0 wait time. Thus, an SSR returns to the LSR, as shown in Figure 6.3.

• If an SSR has made a task switch likely by suspending or stopping the current
task (ct) or by enqueueing a new task in the ready queue, smx_rq, that might have
higher priority than ct and ct is not locked, the SSR sets smx_sched.

• When all LSRs have run and smx_sched > 0, PSVH() branches to the Task
Scheduler (TS). If smx_sched == 0, TS is bypassed (not shown). TS determines if
a higher priority task is ready to run, and if so the higher priority task becomes the
current task, ct.

• While TS is running, it tests smx_lqctr prior to starting ct, and if greater than 0,
executes a flyback to run all LSRs in smx_lq. Control then returns to TS and
interrupts are disabled until ct resumes or starts. This is essential in order to insure
that deferred interrupt processing is not overly delayed.

• When done, TS branches to the PSVH() tail, which dispatches ct with interrupts
disabled until ct begins running. As soon as ct begins running, it can be
interrupted to permit ISRs and LSRs to run.

• As shown in Figure 6.3, ptasks can make direct SSR calls. If smx_sched is not set
by the SSR, the SSR returns directly to the ptask. Otherwise, it branches to TS, as
shown.

• Both utasks and ptasks can make indirect SSR calls via the SVC Handler
(SVCH()). If smx_sched is not set by the SSR and smx_lqctr is 0, SVCH() returns
directly to the utask or ptask. Otherwise, SVCH() tail chains (TC) to PSVH().

Advanced Theory

129

6.2.2 Interrupt Disabling and Masking in Tasks
Tasks can be preempted by ISRs and LSRs, so it is necessary to protect critical sections shared
between tasks and ISRs or LSRs. Interrupts can be disabled in ptasks with sb_INT_DISABLE()
and reenabled with sb_INT_ENABLE(). This is the customary way to protect critical sections.
Note that this also disables LSRs from preempting tasks because they must be invoked by
ISRs27.

In umode, the processor enable and disable instructions become NOPs. So, if interrupts are being
disabled to protect a critical section in a ptask and that task is changed to a utask, the critical
section is no longer protected.28 This problem can be difficult to find. It is likely to occur when
converting legacy pcode to ucode. To avoid the problem, use the alternate versions of
sb_INT_DISABLE() and sb_INT_ENABLE() which stop the debugger if called in umode. These
are enabled by SB_ARMM_DISABLE_TRAP in barmm.h.

The solution to the absence of interrupt disabling and enabling in umode is interrupt masking and
unmasking, using the smxBase functions sb_IRQMask(irq_num) and sb_IRQUnmask(irq_num).
Each task is limited to masking an unmasking only specific interrupts. Otherwise, a hacker could
cause trouble by masking any interrupts he wished. This limitation is accomplished with
interrupt permission tables.

Each task’s TCB has a tcb.irq pointer, which points to an IRQ permission table consisting of an
array of IRQ_PERM structures, defined as:

typedef struct {
 u8 irqmin;
 u8 irqmax;
} IRQ_PERM;

where irqmin and irqmax define a range of IRQ numbers. For example, the IRQ permission table
for smxNS is:

const IRQ_PERM sb_irq_perm_ns[] = {
 {61, 62}, /* Ethernet */
 {37, 37}, /* USART1 for terminal output */
 {0xFF, 0xFF}, /* terminator */
};

Each row specifies a range of permitted IRQ numbers; the table is terminated with two 0xFF’s.
Then, set the task’s irq pointer to point to the table, for example:

smx_TaskSet(task, SMX_ST_IRQ, &sb_irq_perm_ns);

Now sb_IRQMask(irq_num) and sb_IRQUnmask(irq_num) can be used by this task to mask and
unmask its IRQs, in order to protect its own critical sections. Note that only ptasks and
initialization code that runs in pmode can call smx_TaskSet() to do this. Child tasks inherit the
parent’s IRQ permissions.

27 LSRs can also be invoked by tasks, but such LSRs will not preempt other tasks.
28 It is good that interrupts cannot be disabled in umode, else hackers would have a field day!

Chapter 6

130

A good place to put IRQ permission tables is at the end of irqtable.c in the BSP directory. To
find the IRQ numbers of IRQs, for your processor, see the sb_irq_table[] in irqtable.c.

Interrupt masking is useful for regulating ISRs, LSRs, and tasks which are performing related
functions, such as within the same partition. For example, it is necessary to prevent ISRs and
LSRs from loading information into a buffer while a task is reading the buffer. If a ptask is
expected to become a utask, it is preferrable to use interrupt masking rather than disabling.

6.2.3 Other Methods to Protect Critical Sections
Mutexes are a good way to protect critical sections, except they cannot protect against LSRs
accessing the critical section. See section 8.10.7 Critical Sections for a detailed discussion of
alternatives.

6.3 Cache Control

Cortex-M MPUs provide cache control. However, most Cortex-M MCUs do not have caches.
Hence SecureSMX does not currently implement MPU cache control. But, if needed, it can
easily be added to mpatmplt.h by defining a new attribute such as DATARW_NC (not cached)
and used in, for example:

mp_RegionGetHeapT(taskA, sz, sn, DATARW_NC, name, 0);

This would get a non-cached block of sz bytes from the main heap and load its region into
MPA[sn] of taskA. This block could be used for a DMA controller buffer. Since MCUs do not
usually maintain cache coherency, DMA controller buffers cannot be cached.

6.4 Porting SecureSMX

At the current time, SecureSMX runs only on smx and supports only Cortex-M ARMM7 and
ARMM8 processors using the IAR EWARM toolchain. If this does not match your
requirements, you may be interested in the following.

6.4.1 To Another Toolchain
SecureSMX utilizes IAR Embedded Workbench for ARM v9.40, or later, from IAR Systems.
Heavy use is made of the ILINK linker, and smxAware is integrated with the C-SPY debugger to
provide a powerful debug environment.

smx has been ported to GNU C, and SecureSMX could be ported to GNU C provided that its
linker has equivalent capabilities to the IAR linker. However, smxAware is not available for
debuggers used with GNU C, so you would lose the ability to display MPAs and the MPU in
clearly readable forms, as well as all of the other textual and graphical displays. Hopefully the
GNU debuggers have similar features to IAR C-SPY for debugging MMFs and other exceptions.
Supporting GNU C is probably feasible, although a lot would be given up.

We have no plans to support other toolchains, at this time.

Advanced Theory

131

6.4.2 To Another RTOS
The smx kernel is a feature-rich RTOS kernel with many unique features that have been utilized
in SecureSMX. In addition, many modifications have been made to smx to support SecureSMX.
As a consequence, porting SecureSMX to another RTOS is likely to be much more difficult than
porting an application to SMX.

To support the latter we have created FRPort and TXPort porting layers for FreeRTOS and
ThreadX. Each converts at least 90% of service calls likely to be used in applications to smx
service calls. In most cases, the smx services are likely to provide better operation and better
performance. Thus porting an application to smx is likely to improve its operation as well as
opening the security features of SecureSMX to it.

6.4.3 To Another Processor
SecureSMX requires that a processor have the following features:

1. A Memory Protection Unit comparable to the ARM v7-M or ARM v8-M MPU.

2. Privileged and unprivileged processor operation modes.

3. An SVC-equivalent instruction to support a SWI API for system services.

We have not supported other processors due only to lack of manpower. If you are interested in
using SecureSMX on another processor, please contact us.

6.5 Runtime Limiting

Unfortunately isolation, alone, is not sufficient to thwart hacker attacks. For example, a hacker
could merely put a task into an infinite loop thereby denying processor access to all but higher-
priority tasks. This alone would be sufficient to bring down most systems. Hence the RTOS must
support runtime limits as well as isolated partitions. Runtime limits act like time partitions.

6.5.1 Guidelines
In operating systems like Windows or Linux, runtime limiting is implemented by giving each
process a slice of processor time. This is simple to do and generally works well to enforce
fairness between processes. Realtime systems are different. Rather than fairness, the main
concern is for all tasks to meet their deadlines. Assigning runtime limits to tasks can be at odds
with this. Further complicating the matter, is that task workloads may vary significantly over
time. To deal with these problems, the following guidelines have been used for developing the
runtime limit algorithm used by SecureSMX:

1. Mission-critical tasks should not have runtime limits because such limits could
cause more harm than good. If a hacker reaches mission-critical code, it is game
over, anyway. Therefore, all tasks are not required to have runtime limits. It is up to
the developer to decide which tasks should have them.

2. To simplify development, child tasks share their parent’s runtime limits. This way,
as child tasks are spawned it is not necessary to readjust the limits. Assuming that
the typical partition has only one parent task, this amounts to assigning runtime
limits to partitions, which makes sense, since they are usually well-defined

Chapter 6

132

subsystems for which it is possible to determine reasonable runtime limits. Child
tasks may vary considerably in their use of processor cycles from time to time and
thus it is hard to assign individual runtime limits to them.

3. If child tasks spawn their own child tasks, the runtime limit of the top parent task is
used by all child tasks below it. This preserves the idea of runtime limits being
associated with partitions rather than with individual tasks within the partitions.

4. The runtime frame cannot be fixed. Introducing fixed limits into real-time systems,
invariably causes complexities that must be programmed around. It generally works
best to design in flexibility, and then let the system run freely. Such systems adapt
better to changing conditions than do rigidly designed systems.

5. The idle task must be allowed to run some minimum number of times per runtime
frame in order to perform its background functions. Hence the idle task’s limit is
actually the number of times it is allowed to run per frame. When the idle count
reaches 0, the runtime frame ends and all runtime suspended tasks are resumed. The
idle limit depends upon what the idle task is doing. For example, it might be
desirable for it to do some minimum number of heap scan increments per runtime
frame. Generally, when the idle task catches up on its work, it will decrement the
rest of its count rapidly, so a relatively high count should not waste time.

6. A task is only suspended if it reaches its or its top parent’s limit. If it is not running
nor attempting to run, it is not suspended. This is simpler to implement and results in
fewer tasks to resume at the end of the runtime frame.

7. When the runtime frame ends, all top-task and normal task runtime counters are
restored to their limits. Child task counters are actually pointers to top task counters
and thus are not changed.

Some goals of the above guidelines are to make assigning runtime limits easier for the developer
and to provide the best possible visibility into the consequences of specific assignments. Even so,
it may necessary to allow automatically changing runtime limits, if some partitions are not
getting their work done on time.

Advanced Theory

133

Gate
Semaphore

Idle
Task

Signal

Ti
m

ed
 O

ut
 T

as
ks

Time-Limited
Running Tasks

Unlimited Running
Tasks

= Counts Left

(after n passes)

Figure 6.4 Runtime Limiting

6.5.2 Approach
Figure 6.4 illustrates the basic approach. It turns out that specifying runtime limits in ticks is not
fine enough, so tick timer clocks are used, instead. This results in large numbers. For example,
for an STM32F7 MCU with a 200 MHz clock rate 1 millisecond is 200,000 clocks. To make this
more tractable, it is suggested to define a unit such as:

#define MSEC 200000

and to use this to specify limits, such as:

 smx_TaskSet(t2a, SMX_ST_RTLIM, 10*MSEC);

This has the added advantage of making runtime limits independent of the processor being used.
u32 fields rtlim and rtlimctr have been added to the task TCB. As indicated above, rtlim is set by
means of smx_TaskSet(), except for child tasks. When a child task is created its rtlim and
rtlimctr become pointers to the top parent’s29 rtlim and rtlimctr. smx_TaskSet(task,
SMX_ST_RTLIM, lim) returns SMXE_OP_NOT_ALLOWED if task is a child task.

When initialization is complete, all non-child, runtime-limited (RTL) tasks have their rtlims set
and their rtlimctrs cleared. Non RTL tasks have 0 rtlims and are ignored by the runtime limit
code. During operation, each time an RTL task stops running, the number of clocks it has used is
measured and added to its rtlimctr. The current task’s rtctr is checked on each tick. If its rtlimctr
>= its rtlim, the task is suspended on the smx_rtlsem gate semaphore, or, if it stops running

29 See Section 4.1.8 Parent and Child Tasks for the definition of top parent task.

Chapter 6

134

before the next tick, it will be suspended on smx_rtlimsem, if it attempts to run. Hence only RTL
tasks which exceed their rtlim’s or attempt to exceed them are suspended on smx_rtlimsem.

For a child task, the foregoing description applies to its top parent’s rtlim and rtlimctr. Hence,
any of a top parent’s children can run out the parent’s rtlimctr. If the child continues running it
will not be suspended on smx_rtlimsem until the next tick. But if the child stops running and it,
the parent, or one of the parent’s children attempts to run, that task will be suspended on
smx_rtlimsem. It may seem non-intuitive that a child can run out its parent’s rtlimctr and yet the
parent is not suspended on smx_rtlimsem. This is done to save time, since it is not necessary to
suspend the parent, unless it attempts to run.

Note that an RTL task may exceed its rtlim by (MSEC - 1), or 199,999 in the above case. If
objectionable, the overrun could be reduced by increasing the tick rate, but that might be
undesirable. Another alternative would be to use another timer that generates faster interrupts to
catch errant RTL tasks sooner.

6.5.3 Enabling Runtime Limiting
In xcfg.h:

#define SMX_CFG_SSMX 1
#define SMX_CFG_RTLIM 1
#define SMX_IDLE_RTLIM 2 /* number of idle passes per runtime limit frame */

Examples:

1. Typical code to create and start a ptask with a runtime limit of 10 milliseconds:

 t2a = smx_TaskCreate(ttM01_t2a, TP2, TS_SSZ, 0, "t2a");
 mp_MPACreate(t2a, &mpa_tmplt_t2a);
 smx_TaskSet(t2a, SMX_ST_RTLIM, 10*MSEC);
 smx_TaskStart(t2a);

2. Typical code to create and start a child ptask t2ac1 of parent ptask t2a:

 t2ac1 = smx_TaskCreate(ttM01_t2ac1, TP2, TS_SSZ, SMX_FL_CHILD);
 mp_MPACreate(t2ac1);
 smx_TaskStart(t2ac1);

Note that no template is specified in mp_MPACreate() because a child task uses its
parent’s template. Also no rtlim is set for the child task because it uses it top parent‘s
rtlim and rtlimctr.

3. Typical code to create and start a utask with a runtime limit of 20 milliseconds:

 ut2a = smx_TaskCreate(ttM01_ut2a, TP2, TS_SSZ, SMX_FL_UMODE, "ut2a");
 mp_MPACreate(ut2a, &mpa_tmplt_ut2ax);
 smx_TaskSet(ut2a, SMX_ST_RTLIM, 20*MSEC);
 smx_TaskStart(ut2a);

 This code must run in pmode.

Advanced Theory

135

4. Typical code to create and start a child utask ut2ac1 of parent utask ut2a:

 ut2ac1 = smxu_TaskCreate(ttM01_ut2ac1, TP2, TS_SSZ);
 mpu_MPACreate(ut2ac1, NULL, 0xc3, 6); /* 0xc3 = b1100 0011 */
 smx_TaskStart(ut2ac1);

This code must run in umode, and it can create only a child task, which shares its parent’s
rtlim and rtlimctr. In this case slots 0, 1, 6, and 7 of mpa_tmplt_ut2ax are loaded into
MPA[2-5], 0 is loaded into MPA[6], and the stack region is loaded into MPA[7]. There
are only 6 active slots in the MPU. MPU[0,1] are static slots.

6.5.4 Adaptive Time slicing
Most RTOSs support time slicing among tasks at a single priority level. smx previously
supported time slicing only at priority level 0. It turns out that the above implementation of
runtime limiting permits a more general form of time slicing, which we call adaptive time
slicing. Specifying runtime limits for tasks, in effect, time slices them if they do not voluntarily
give up the processor. As previously noted, the accuracy of the time slice is +/- 1 tick. Note that
the time sliced tasks need not all be at the same priority level and that when they are done, lower
priority level tasks are automatically allowed to run. Also, time sliced tasks may voluntarily give
up the processor and other tasks will run, instead. In addition, other tasks can still be runtime
limited, if desired.

6.6 Tokens

6.6.1 General
During World War II, families were given red tokens for meat, blue tokens for fish, and silver
tokens for the trolley. Tokens governed how much of each resource they could use. Similarly, we
must govern how much of each resource a partition can use, lest a hacker gain control and use up
resources needed by other partitions. As with runtime limiting, it is necessary to find a simple
approach that is practical for users to implement.

Semaphore

Semaphore

Task

Tokens

Figure 6.5 Tokens

Chapter 6

136

Figure 6.5 illustrates the basic token approach taken by SecureSMX. This approach does not
require that all tasks use tokens. Tokens are enabled by setting SMX_CFG_TOKENS in xcfg.h
The TCB of a task has a field that contains a token array pointer (tap), which points to the array
of tokens that the task is allowed to use. A child task shares the token array of its top parent. As
with runtime limits this is done to make token assignments unaffected by child task spawning. It
also means that token assignments tend to be for a partition, not for an individual task. When a
task is first created, its tap is NULL. This means no tokens are required for it to access objects.
This is appropriate for mission-critical tasks and system tasks such as those for initialization and
recovery. Similarly to runtime limits, we do not want a disaster caused due to lack of a token!
For token-limited tasks, the user must create a token array and load its address into the TCB tap
field.

So, how are tokens defined and what do they control? In many RTOSs, the control blocks for
tasks, semaphores, etc. are statically defined. In smx, only object handles, which are pointers to
control blocks, are statically defined. Control blocks are taken from pools and initialized as
needed. A token array consists of the addresses of the handles of the objects that a task is
allowed to access, as follows:

 u32 ut2a_ta[] = {(u32)&sema+1, (u32)&semc, 0};
 u32 ut2b_ta[] = {(u32)&sema, 0};

These are token arrays for two tasks, ut2a and ut2b. The +1 denotes a high-privilege token,
which permits task ut2a to create, delete, and perform other privileged operations on sema. ut2b
has only a low-privilege token for sema and thus it can perform only operations such as signaling
or testing sema. A 0 marks the end of each array. In practice, token arrays will usually be larger
than these examples. However, they are easy to create, since it is well-known what kernel objects
a task must access and control at the time the task code is written. Since token arrays must be
searched from beginning to end, those tokens needed most often should be placed first. However,
since mission-critical and highly-trusted tasks are not required to have tokens, system
performance impact from token array searching should be minimal. Token arrays are stored with
control blocks in pmode and thus are not accessible from umode.

Should a task attempt access to an object for which it has no token or an insufficient privilege
token, the operation is aborted and a SMXE_TOKEN_VIOL error with sev = 1 is reported,
causing smx_EMHook() to stop the task.

6.6.2 Blocking Excessive Creates
Tokens, alone, cannot prevent a hacker from repetitively creating or getting an object until he
uses up all control blocks for that object, thus denying them for other partitions. To prevent this,
an object cannot be created or gotten again until it has been deleted or released. Thus a hacker
cannot use up control blocks for an object type — he can create or get only one object, for which
he has a high token. In addition, he can access other objects only if he has tokens for them.

Unfortunately, messages are an exception to this. It is normal practice to get or receive a
message, fill it, then send it to an exchange. When the message has been sent, its handle is loaded
with NULL. This allows another message to be obtained. Normally this is desirable since the
server task to which messages are being sent may be busy, so extra messages are needed to avoid
loss of data. However, by getting messages repetitively, a hacker could use up all MCBs in the
system.

Advanced Theory

137

The best way to block this hack is by pre-allocating a set number of messages to a resource
exchange, and then limit the task to obtaining messages only from the resource exchange. Thus,
the partition that the task is in would not be permitted to get or make messages. It could only
receive them from the resource exchange. This limitation can be done for utasks by omitting the
message get calls from the smx_sst[] jump table. It also can be done for ptasks, if they are
required to use the SVC exception for kernel calls.

6.6.3 Handle Verification
As a standard feature, smx verifies that all handle parameters are valid handles. Each handle is
range-checked vs. its object control block pool and the cbtype field of the object is checked to
make sure the handle is aligned on an object boundary. If handle verification fails, the service is
aborted and an SMXE_INV_xCB error is supported, where x is the object type (e.g. “S” for a
semaphore). For messages, the owner field is also checked. If the current task is not the message
owner, the service is aborted and the SMXE_NOT_MSG_ONR error is reported. These are not
considered to be irrecoverable errors, so severity = 0, and smx_EMHook() allows the task to
continue. Handle verification is performed ahead of token verification in order to avoid MMFs
due to out-of-range handles.

6.7 Safe LSRs

6.7.1 The ISR Problem
A fundamental security flaw in the Cortex-M architecture and most other processor architectures
is that ISRs must run in handler mode. This pretty much opens up everything to a hacker coming
in via an interrupt. TrustZone might be employed to avoid this problem, at great complexity, but
it seems that Arm Ltd. could have come up with a simpler solution.

The flaw is further compounded by most RTOSs, which allow either kernel services or reduced
kernel services to be called from ISRs, thus greatly increasing the attack surface for the ISRs.
This also violates the generally accepted good programming practice of keeping ISRs short.
Doing so minimizes their attack surfaces and permits faster interrupt response times. By contrast,
smx permits only one small service call from an ISR and that is to invoke a link service routine
(LSR). This permits performing only the absolute minimum work in an ISR and deferring other
processing to an LSR. LSRs run like mini tasks that have priority over all tasks, are immune to
priority inversion, and can call any smx service that does not wait.

So far so good, except that LSRs, themselves, can be hacked and they also run in hmode. To deal
with this SecureSMX introduces LSRs that run in umode, called uLSRs.

6.7.2 LSR Types and Operation
Summary of the 3 types of LSRs:

• Trusted LSR: tLSR runs in handler mode and works like previous LSRs
• Safe LSR: uLSR runs in umode and pLSR runs in pmode, and both operate like

mini tasks.

Chapter 6

138

The previous smx LSR consisted only of a function pointer and a parameter. Both were placed in
the LSR queue, smx_lq. smx_lqin pointed to where to put the next LSR, and smx_lqout pointed
to where to get the next LSR. smx_lq was a cyclic queue. When all ISRs finished running, all
LSRs would be run in the order invoked, then tasks would run.

In order to run an LSR in umode, it must have its own stack, its own MPA, and several other
things. Hence, it requires an LSR control block (LCB), similarly to other smx objects. The LSR
queue operation is the same as before, except that LSR handles, instead of function pointers are
loaded into smx_lq. A parameter is still loaded after each handle. The function pointer is the first
field in the LCB. Hence tLSRs that run in hmode, such as smx_KeepTimeLSR, get the function
pointer from the LCB and run with it. These LSRs are low-overhead trusted LSRs (tLSRs) that
are used for smx operations and can also be used for applications, when low overhead is
necessary.

When an LSR is to be run, if flags.sys in its LCB is 1, then it is run as a tLSR and most of the
LCB fields are not used. If flags.sys is 0, then flags.umode is tested. If flags.umode is 1, the LSR
is run as a umode LSR, uLSR. If it is 0, the LSR is run as a pmode LSR, pLSR. This is similar to
how tasks are run. When either of these types of LSR is started, its MPA is loaded into the MPU,
its stack pointer is loaded into the PSP register, an exception frame is built in the LSR stack, and
an exception return is made to the LSR function, with the parameter passed in r0.

Normally, an LSR will run in the partition that it serves. As such, it can use regions from the
partition’s MPA template and thus is able to directly access variables and functions in the
partition. In fact, the LSR is actually running in the partition. At the same time, the LSR will
probably have IO regions that tasks in the partition do not have. The LSR can be directly invoked
by any task in the partition in order to start an IO operation, after which it may be repeatedly
invoked by an ISR until the operation is complete (e.g. sending a multi-block message).

A uLSR or pLSR is very much like a mini task. Its control block is only 9 words, compared to
about 32 words for a task. LSRs typically require only very small stacks of 25 words, or less.
The smallest possible stack is the size of an exception frame, 8 words. One of the fields in the
LCB is a host task handle, htask, which normally points to the top parent task in the partition.
The LSR shares the token array, runtime limit, and runtime counter of htask. The LSR can only
access smx objects permitted by htask tokens, and if it runs down the htask runtime counter, it
will be stopped until the runtime frame ends. Hence, it is protected the same as a task.

Like a one-shot task, when an LSR runs through its final brace, it triggers auto stop. This, in turn,
triggers a PendSV exception in order to return to hmode and to the PendSV Handler. The latter
will run all LSRs in lq, then continue the current task or resume or start a preempting task. If the
current task is continued, its MPA is reloaded into the MPU and it stack pointer is reloaded into
the PSP register. If a preempting task is to be run, the scheduler loads its MPA into the MPU and
its stack pointer into the PSP register.

See the smx Reference Manual for LSR create and delete function descriptions.

pmode LSRs serve primarily to allow partitions to be developed in pmode, then moved into
umode. However, like ptasks, they do improve security slightly and reliability significantly.

Advanced Theory

139

6.7.3 Performance
The overhead for the LSR types, measured on a typical MCU, in clock cycles are:

• tLSR 338

• pLSR 800

• uLSR 1086

As would be expected, the tLSR has much less overhead. For a very simple LSR that just starts
or resumes a task, it may be preferrable to use a tLSR. But, for more complex LSRs that do
processing and make smx calls, the pLSR and uLSR overheads should not be a problem – they
are much less than starting or resuming a task via a tLSR. Thus they present a good alternative
for deferred interrupt processing. On the other hand, if performance is not an issue, it may be
simpler to use a tLSR to restart or resume a task to do deferred interrupt processing.

6.7.4 Resulting Security
As noted above, the best that can be done is to minimize the amount of code in ISRs. Doing so
permits carefully writing the code to make it very hard, hopefully impossible, to hack. Moving as
much interrupt processing code as possible into uLSRs provides the best-possible security.
uLSRs are subject to the same limitations as utasks and thus can be fully isolated. At the same
time, invoking uLSRs is much faster than starting or resuming utasks. Hence they represent a
good compromise between security and performance.

6.8 Task Privilege Levels

6.8.1 Description
Tasks must have privilege levels in order to enforce the principle of least privilege, for security.
For example, a file server must be able to limit file access depending upon the privilege level of
the client making a request. This is accomplished by transferring the client’s privilege level to
the pmsg being sent to the server’s port, then transferring the pmsg’s privilege level to the server
when it accepts the pmsg. Server code can then test the privilege level of the current task with:

priv = smx_TaskPeek(smx_ct, SMX_PK_PRIV);

When a task is created, its privilege level is set to 0. This can be changed as follows:

smx_TaskSet(smx_ct, SMX_ST_PRIV, priv, fix);

where priv is the new privilege level, and if fix = 1, the privilege level is fixed. Fixed privilege
levels are intended for non-server tasks. When a task is created, its privilege level is not fixed.
Privilege levels can be set from 0 to 255. The meaning of a level is determined by the
application. utasks cannot change their own or other tasks’ privilege levels, except via pmsgs, as
discussed above.

141

Chapter 7 Partition Demos

This chapter presents a series of demos that demonstrate how to create an isolated partition in
pmode and then move it to umode. It is intended to provide a quick introduction to SecureSMX
and how to use it.

Note: This chapter and demos were created before the decision was made in v5.40 to make
SecureSMX open source (see 1.8 SecureSMX Licensing). We have retained this and the demo
on our website (link below), as a useful tutorial despite being an older version.

7.1 Getting Started

The partition demos are in a single file at www.smxrtos.com/securesmx/demo. After you have
downloaded and unzipped this file, you will observe five complete demos labeled pd0 thru pd4.
Each of these can be made and run using the IAR EWARM tool suite. If you do not have
EWARM, you can download a free evaluation copy from www.iar.com. The demos run on the
STM32F746G-Discovery board, which is very low cost and widely available from online
distributors.

The sections that follow contain instructions for stepping through each demo and observing how
it works. This is the best way to learn. Each demo is derived from its preceding demo and then
new code is added and changes are made. For example pd1 is derived from pd0. Hence, if you
prefer, you can use a comparison tool such as Beyond Compare to see what is changed from one
demo to the next.

smxAware provides insight into the demos. The smxAware files follow the demos in ssdemos.
To install smxAware see the installation section of its user’s guide.

Note: SecureSMX v5.2.0 and IAR EWARM v8.50.5 were used when writing the following
sections, so if a newer version is used, addresses and sizes are likely to be a little different. We
tested with v9.40.2 and verified it works (and addresses and sizes differ a little). Also, it is
possible we may have made fixes or adjustments to the demos since this was written causing
these to differ.

7.2 Creating an Isolated Umode Partition Demo

pd0 thru pd4 illustrate how to take a typical embedded system, identify a vulnerable partition,
then move the partition from pmode to umode, where it is fully isolated.

pd0 is intended to represent a typical, unprotected, embedded system running in hmode and
pmode. It contains three tasks: idle, mctask, and ffdemo. The mctask is intended to represent a
mission-critical task, which must be changed very little. The ffdemo task uses FatFs, which is
third party code and thus may be considered to be vulnerable. Our goal is to move ffdemo and

http://www.smxrtos.com/securesmx/demo
http://www.iar.com/

Chapter 7

142

FatFs into an isolated umode partition from which mctask is protected. This is done in a
sequence of steps represented by pd1, pd2, etc.

Running the Demos

The demos write a simple file to SD card repeatedly. Use a card that is blank or has nothing
important on it, and ensure it is inserted before starting the demo. In the IAR debugger, add
passcnt and failcnt to the Live Watch window, and you should see passcnt increasing as it runs.
If a terminal emulator is connected to the eval board, the top line tells what demo is running and
the bottom line shows % Idle, % Work, % Overhead, and Seconds running. Note that % Work is
quite high and overhead is very low. This line is presented so that you can see that the demo is
running.

7.2.0 pd0
We recommend that you trace through pd0 just to see what is there and how it works. Starting at
main(), certain startup code has already run. (A breakpoint can be put at __low_level_init() in
startup.c and restart, if you wish to trace it to main()). When tracing main() and following code,
note that SMX_CFG_SSMX is off as are configuration constants dependent upon it (see xcfg.h).
main() initializes a few things, then calls smx_Go(), which initializes smx. smx_Go() initializes
the error manager, event buffer, LSR30 queue, ready queue, timer queue, timeout array, several
system LSRs, the idle task and a few other things. Then idle is started at PRI_MAX with ainit()
as its main function. The system LSRs perform time functions, profiling, timeouts, and task self-
delete.

ainit() does application initialization, including tick enable, (portals are not enabled because
SMX_CFG_SSMX is 0), profiling is enabled as is event monitoring. At this point the mctask and
ffdemo tasks have been created and started. However, their priorities are less than PRI_MAX, so
they do not run. Put breakpoints at ffdemo_main(), mctask_main(), and smx_IdleMain(). Then
ainit restarts idle at PRI_MIN with smx_IdleMain() as its code, and the other tasks run.

All the tasks run in while loops. Since mctask has PRI_HI, it runs first. It just loops for a msec,
then suspends itself for 2 ticks. This allows ffdemo to run. It performs file operations, then
suspends itself for 25 ticks so idle can run. Idle performs a stack scan, a profile display, a heap
manager function, and bumps another task at PRI_MIN, if any is there. Since
SMX_CFG_RTLIM is 0, runtime limiting is not performed. Power down is inhibited. Idle runs
when the other tasks do not run.

The smxAware Event Timeline window provides a picture of the above tasks running. It can be
very helpful during debugging to see exactly in what order tasks, LSRs, and ISRs are running.
Let the system run for a few seconds, click the debugger pause button, then click on smxAware
in the task bar. Click on Graph in the pulldown window to see the timeline window. Other
smxAware windows present a great deal of useful information that may interest you. Clicking on
Event shows the entire Event Buffer. Clicking on Memory Map shows how read/write memory
is structured.

30 An LSR is an smx object that is used to perform deferred interrupt processing. It runs after all ISRs complete and
before any tasks resume. Hence it is immune to problems such as task priority inversion.

Partition Demos

143

7.2.1 pd1
At this point we have three tasks: idle, ffdemo, and mcon. The first step is to turn on
SMX_CFG_SSMX31. This enables the MPU. When it is on, smx_TaskCreate() assigns the
default memory protection array (MPA), mpa_dflt, to the task it creates (i.e. task->mpap =
mpa_dflt). This is used for ffdemo and mcon. (idle is discussed later). So the next step is to
define mpa_dflt.

Defining Region Blocks
From the map file (see “Unused Ranges, From” in it), we see that the memory sizes are as
follows when using the linker command file from pd0 (sizes may vary slightly):

ROM 0x136eb
SRAM 0x6cac
DRAM 0x8000

(Do not try to run it yet until we change to pd1.icf below. Using pd0.icf was just to see these
sizes in the map.)

The first step is to define region blocks for these. For ARMM7, a region block must have a size
that is a power of two and it must be aligned on its size. The first step is to determine the size.
Then we use subregion disables (by n/8 multiples) to make the region blocks fit as closely as
possible to the required sizes. The results are:

ROM 0x136eb <= 0x20000*5/8 = 0x14000
SRAM 0x6cac <= 0x8000*7/8 = 0x7000
DRAM 0x8000 <= 0x8000

These values were used to create region blocks in the linker command file at
pd1\APPM\IAR.AM\STM32\stm3264g_pd1.icf. Now change the linker to use pd1.icf. Right
click on pd1 top node, Options, Linker, and change:

$PROJ_DIR$\stm32746g_pd0.icf to

$PROJ_DIR$\stm32746g_pd1.icf

Looking at pd1.icf, note the MPU region sizes. These must be powers of two, which is easy to do
in hex. The rule for this is: There can be only one non-zero digit and it must be 1, 2, 4, or 8.
Below this are the region block definitions. Note the size and alignment taken from the above
calculations. Ignore (MPUPACKER) – it is a marker for our MpuPacker utility, discussed in
section 8.11.1 Using MpuPacker. The rest of pd1.icf is the same as pd0.icf.

As development proceeds, region blocks will grow in size. The linker will inform you if the
allocated size is exceeded. Then it is a simple matter to increase the allocated size by 1/8 or go to
the next power of two and 5/8. This permits keeping region block sizes tight during
development.

31 Be sure the configuration constants dependent upon SMX_CFG_SSMX are off – see xcfg.h. We are not ready for
them, yet.

Chapter 7

144

Default MPA
mpa_dflt is defined in pd1\BSP\ARM\STM32\mpa7.c. At the top, the region block names and
sizes have been brought over from pd1.icf. Below this, mpa_dflt is defined. The macros making
this possible, such as RGN and RA are defined in pd1\SSMX\ARMM\mpatmplt.h. Each line in
mpa_dflt defines RBAR, RASR, and a name for one region. The name is used only during
debugging – it is very helpful, in smxAware, for example.

The first three regions of mpa_dflt are the memory regions defined in pd1.icf. The next three are
IO regions. ffdemo requires all three of these. mcon requires just USART1. These IO memory
mapped sections are 1K in size and 1K aligned, so there is no problem making them into
ARMM7 regions. However, the memory-mapped registers in USART1 and SDMMC1 are
contained within the first 64 bytes and the registers in DMA2 within the first 128 bytes. So from
Liu Table 11.7 we see 64 bytes corresponds to 5 and 128 to 7, both as used in mpa_dftl. It is not
essential to tighten down regions, like this, but it does improve reliability vs. bugs and soft
errors.

Idle Task
For idle, an MPA template, mpa_tmplt_init, has been defined in mpa7.c. It is similar to mpa_dflt,
except that it has a large IO region. This is because idle first runs with ainit() as its main function
and ainit() does many different IO accesses. In smx_Go(), following creation of idle,
mp_MPACreate() is called to create a custom MPA for idle, using mpa_tmplt_init. After this,
smx_Idle->mpap -> MPA for idle and smx_Idle->tp = mpa_tmplt_init.

MMFs
When the MPU is enabled, a task’s MPA is loaded into the MPU whenever the task is
dispatched. Hence the task is limited to the memory regions and their attributes in its MPA. For
pd1 the regions are much smaller than the implemented memory sizes:

ROM 0x14000 vs. 0x100000
SRAM 0x7000 vs. 0x50000
DRAM 0x8000 vs. 0x2000000

This is useful because an access outside of used memory into implemented memory will not
trigger a Bus Fault, but it will trigger an MMF. To see this, start pd1. You will get an MMF,
which causes an immediate halt. To find the cause of the MMF, open the Call Stack window and
click on the top entry. You will see that there is some code attempting to access location
0x20008100. Selecting MPU in the smxAware Text window you can see that this address is not
in any MPU region, hence the MMF. Comment out the two lines of assembly code, and pd1 will
run ok.

An MMF causes a system halt only when debugging. For a released system, it causes a branch to
the smx_EM() with an SMXE_MMF_VIOL error and severity = 1. It calls smx_EMHook(),
which stops the task causing the error.

Task Stacks
Slot 7 is reserved for the task stack region. The main benefit of having a separate stack region is
that stack overflow is caught immediately, causing an MMF. This protects whatever is “above”
the stack such as a heap control block, another stack, or a global variable.

Partition Demos

145

During debug it may be desirable for the system to continue running despite a stack overflow.
This can be accomplished by adding a pad above the stack. smx will report a stack overflow
when it scans the stack or when the current task stops running, but no MMF will occur unless the
pad is exceeded. Below the stack is the register save area, and below that is optional task local
storage. The latter may be helpful if you run out of MPU slots. See section 4.11.8 Task Local
Storage.

smx supports two types of tasks: normal and one-shot. A normal task has a permanent stack,
which may be pre-allocated or allocated from a heap by smx_TaskCreate(). In the first case, the
stack block must be a region block. In the second case, eheap is able to find and allocate a region
block from a heap. Either way smx_TaskCreate() creates the stack region and stores it in the
task’s TCB. Then mp_MPACreate(), which is called next (see smx_Idle in smx_Go), moves the
region into MPA[7].

For a one-shot task the stack block is taken from the stack pool when the task is dispatched by
the scheduler. The stack block must be a region block. The scheduler creates the stack region and
loads it into MPA[7]. Then its MPA is loaded into the MPU, and the task is started. A one-shot
task does not have an internal infinite loop like a normal task. When a one-shot task stops it
releases its stack. Yet the one-shot task can be waiting at any smx object (e.g. semaphore, mutex,
etc.) just like a normal task. As a consequence, many one shot tasks can share a single stack as
long as they do not need to run concurrently. Since partitioning tends to increase the number of
tasks in a system, one-shot tasks can help to limit memory growth.

Summary
At this point, all tasks are running under the MPU, and no application code changes have been
made. Although not much has been done so far, there is already some benefit, namely: a latent
bug or two might have been found and soft error protection has been improved.

7.2.2 pd2
In this step we put FatFs into a pmode partition. Since a partition must have at least one task, we
will add ffdemo to the partition, for now.

Define Sections
The first step is to define regions for this new partition, which we will call fs. Regions are
composed of sections. The C compiler puts everything into the well-known sections: .text, .bss,
.data, .rodata, and .noinit. There are two ways to create our own sections (which have pros and
cons):

1. Compiler section switches.
2. Section pragmas.

Compiler section switches can be put into .xcc files. \CFG shows three .xcc files. (In the Open
dialog box, change the filter to All Files (*.*) to see them, since .xcc is not a standard extension
type.) These simply rename the sections created by the C compiler, such as:

--section .text=.sys.text

Chapter 7

146

To apply these files to a group (folder), such as RTOS: in the project window, right click RTOS,
Options, C/C++ Compiler, check “Override inherited settings”, Extra Options, check “Use
command line options”, and enter:

-f $PROJ_DIR$\..\..\..\CFG\mpi_sys.xcc

which applies mpi_sys.xcc to all files under RTOS. The simplicity of the project window belies
the complexity of the underlying project file. Unfortunately, when “Override inherited settings”
is checked in a subgroup, all of the settings of groups that include the subgroup are copied into it.
Then any changes made to a group must also be made to every overridden file or group under it,
which is easy to forget. For this reason, the .xcc option should be used sparingly. Here it is used
for RTOS and System, where it saves adding pragmas to a large number of modules, and for
some STMicro HAL files, where it helps reduce the number of pragmas added to third party
code, which is inconvenient when the code is revised by the third party. Note that overridden
files are indicated by a checkmark in the gear column of the Workspace (project) window.

For other modules, it is preferrable to use section pragmas in the module. This avoids the above
problem and it is necessary when not all functions or variables belong in the same regions. For
example, in ffdemo.c, it is preferrable for ffdemo_init() and ffdemo_exit() to go into sys_code,
since they are called during initialization and exit, respectively. Hence they do not belong in the
fs partition. Another example is in sd_diskio_dma_rtos_bspv1.c, where the transfer completed
callbacks and the trusted LSRs belong in sys_code. To do this,

#pragma default_function_attributes =
#pragma default_variable_attributes =

are placed ahead of them to end .fs.text and .fs.data from the start of the module.

However, section pragmas do not work for string literals, which is discussed in Eliminating
MMFs below and section 4.5.4 String Literals.

Upgrade pd2.icf
The next step is to add new region blocks to the linker command file. Four new MPU region
sizes have been added: fscsz, fsdsz, scsz, and sdsz.

Below them is a new block, clib_code. This is an ordinary block with alignment of 4. It is
necessary in order to bring clib functions into sys_code. (clib_code is included in sys_code
below.) Adding unknown code, such as FatFs, is likely to bring clib functions with it. The
Module Summary in the map file is helpful to find the new modules holding these functions.
They are likely to appear in one of the lower groups. Some clib functions require variables, so
clib_data is defined for these and it is included in sys_data.

Next come the new region blocks, fs_code, fs_data, sys_code, and sys_data. The first two are for
the fs partition. Notice that each code block includes .xx.text and .xx.rodata sections, and each
data block includes .xx.bss, .xx.data, and .xx.noinit sections. Although it’s not necessary to
specify ones that are not used, we strongly recommend always listing all of them to avoid
wasting time debugging MMFs when the code changes and they become necessary later.

Next are sys_code and sys_data. These are included in all ptask templates. Their purpose is to
allow direct access to system services and other services. For sys_code, note that .intvec is
included first. This is necessary to enable the CPU to access the first two vectors in the vector

Partition Demos

147

table on startup – see \BSP\ARM\STM32\STM32F7xx\vectors.c. Next are two .sys code
sections, then the clib_code block. For sys_data, CSTACK (the main stack) is included first so
that overflowing it will trigger an MMF. Next are three .sys data sections and the clib_data
block.

Now rom_block and ram_block are completely different than before: they include the region
blocks defined above. ro adds all code not in the code region blocks, and rw adds all data not in
the data region blocks. The sys blocks have been placed ahead of the fs blocks to minimize the
gap between them. In the map, sys_code ends at about line 900. The Block tail is wasted space
inside of the sys_code region block. It is 0x36ce (14,030) bytes. scsz = 0x20000 so a subregion
(1/8) is 0x4000 bytes, which is larger than the tail. 0x8010392 + 0x36ce = 0x8014000, which is
the starting address of fs_code, so it is not possible to use the space wasted between sys_code
and fs_code region blocks, by disabling a subregion.

Memory Overflow
Memory sizes have grown as follows, due to organizing code and data into region blocks that
have wastage at their ends and gaps between them due to the processor’s alignment
requirements:

ROM 0x136eb to 0x18000 24%
SRAM 0x6cac to 0xc000 143%
DRAM 0x8000 to 0x8000 0%

These are much larger increases than we will see in the end. There are many methods to improve
memory efficiency, however it is too early to apply them now. If you are experiencing memory
overflows at this stage, the best plan is to get a processor/board with more memory. If this is not
feasible, the next best plan is leave out portions of code, as you work.

fs MPA template
mpa_tmplt_fs is shown in BSP\ARM\STM32\mpaf7.c. Note that it has been necessary to
combine the USART1 and SDMMC1 IO regions in region 4, since there is no spare region. The
first is located at 0x40011000 and the second is at 0x40012c000. The range to be covered is
0x2c00 - 0x1400 = 0x1800. The next larger power of 2 is 0x2000. The region must start at
0x40010000 and it will cover to 0x40012000, which is not enough, so region size 0x4000 must
be chosen. It must start at 0x40010000 and will cover to 0x40014000, which is sufficient. This
covers from TIM1 to EXTI, which is twelve IO regions! In region 4, there are 6 region disables
(N0, N1, N2, N3, N4, and N67) leaving windows at 0x1000 to 0x1800 and at 0x2800 to 0x3000.
The first admits USART1 & 6; the second admits SDMMC1. This is acceptable, if UART6 is not
used.

Also note that the SDMMC1 and DMA2 regions were removed from the default template,
mpa_dflt, since they are now in the fs template.

fs MPA
In ffdemo_init(), ffdemo create is followed by:

mp_MPACreate(ffdemo, &mpa_tmplt_fs, 0xFF, 8);

This gets a block for the MPA from the main heap that is large enough for 8 slots, transfers the
first 7 slots from mpa_tmplt_fs, and loads the stack region from the ffdemo TCB into slot 7. In

Chapter 7

148

AppDbg.map search for fs_code in the Placement Summary to see its size. Then scan down to
the end of the section where you find <Block tail>. This shows how much spare space is left. Do
the same for fs_data. The sizes for the fs regions are (decimal):

fs_code 0x3000 (12288) spare 0x4d4 (1236) 10%
fs_data 0x2800 (10240) spare 0x294 (660) 6%

sys_code and sys_data allow the fs partition to directly access system services and data. These
are temporary and will be replaced when the fs partition is moved to umode. The IO regions and
the stack region have been previously discussed. The Event Buffer, EVB, requires a separate
region since it is in DRAM. If it were moved into SRAM, it could be combined with sys_data,
freeing up an MPU slot so USART1 and SCMMC1 could be separated.

Eliminating MMFs
Despite having tightened down the ffdemo task regions, pd2 runs smoothly. This is because we
have already fixed all of the MMFs that normally occur when regions are tightened. If you were
working with your own project, you would need to do this yourself. So, here is how to do it:

When an MMF occurs, open the Call Stack window and click on the top function (ignore
<Exception frame>). This shows where the MMF occurred. Put a breakpoint there and run to it
from the start. It generally works better to trace for an MMF in the disassembly window – tracing
in the C source code window can be misleading. If you have left a variable out of your regions,
you will generally find code like this:

ldr rx, =variable
ldr ry, [rx]

The first instruction will execute, but the second will refuse to execute. This is the sign of an
MMF. Compare the address in rx to the MPU regions in the smxAware Text window of
smxAware. You should find that it is not in any of them. The disassembly or C window will give
you the variable name. Find it in your code and move it into one of your data regions. This is
generally done with a section pragma, such as:

#pragma default_variable_attributes = @ ".fs.bss"

This is for a non-initialized variable in the fs_data region. For an initialized variable use
".fs.data".

If you have left out a function you generally find code like this:

bl function

To the right of this is the address of the function. Comparing to the MPU regions in smxAware,
you should find that it is not in any of them. Find the function in your code and move it into one
of your code regions with:

#pragma default_function_attributes = @ ".fs.text"

This is for the fs_code region.

Handles, as parameters in system service calls, tend to cause difficulty. For example, a
semaphore is created in hmode, then a utask attempts to signal it and gets an MMF. The problem
is that the compiler attempts to pass the handle, not its address, as the parameter. This results in

Partition Demos

149

an attempt to access an address outside of the MPU. To avoid this problem, it is necessary to
create an alias handle in a region of the utask and copy the actual handle into it after creating the
object in hmode. Then specify the alias handle as the parameter in the system service call,
instead of the actual handle.

A big problem is string literals (e.g. “abc”). The compiler puts all literals into section .rodata no
matter where they occur in the code. This can be perplexing – everything else works, except the
string literals. Often the string literal is staring you in the face, but you fail to recognize it. The
best way to get them into one of your sections, for example .fs.rodata, is to use a .xcc file, as
discussed previously. For example, this has to be done for “SDQueue” in smx_PipeCreate(), in
SD_initialize(). You would think that literal would be put into .fs.rodata, but it’s not! In this case,
-f $PROJ_DIR$\..\..\..\CFG\mpi_fsd.xcc has been put into Extra Options for FatFs.

An alternative is to define an array for a string, such as in ffdemo.c:

#pragma default_variable_attributes = @ ".fs.rodata"
const char hdr[] = "This is STM32 working with FatFs";

Then in ffdemo_main():

strcpy((char*)wtext, hdr);

puts the string literal into the beginning of wtext.

For ARMM8, a region overlap causes an MMF when the overlapping area is accessed. This can
be particularly puzzling during debug because you see that the object causing the MMF is in a
region, so what’s the problem? The MPU window in smxAware, flags overlapping regions, so
watch for this. Otherwise, you need to carefully compare MPU regions. Stacks and pmsgs are the
primary cause of overlapping regions. If a stack comes from the main heap, do not create a
separate stack region. This leaves MPU[7] available for another region. In this case, PSPLIM is
used to detect stack overflows. For pmsgs, it is best to use an auxiliary slot in the current task’s
MPA.

Sometimes, to find the cause of an MMF, it is necessary to trace in assembly. Tracing in C often
gives misleading results. For example, in C, it may look like a function is out of range, whereas
actually a parameter is the cause of the problem.

Summary
We now have FatFs and ffdemo running in an isolated partition with fairly tight regions. It is left
as an exercise to the reader to do the same for mcon. However, since mcon is highly-trusted
code, there is no reason to do this other than to improve reliability or possibly catch latent bugs.
Idle is left as is because it must perform functions such as heap management and profiling, which
require wide memory access. Also, in case of a system shutdown, aexit() runs under idle.

7.2.3 pd3
Before moving the fs partition to umode, we must get it to make system calls via the SVC
Exception, because it will not be able to access system calls directly.

Chapter 7

150

SVC Functions
SSMX\ARMM\svctmplt.c contains shell functions for all services considered safe for use from
umode. It does not contain shell functions for services that could disrupt system operation, such
as smx_SysPowerDown(). In some cases a service may be allowed from umode, but is limited in
what it can do. For example, smx_TaskCreate() can be used to create a umode child task, but not
a pmode task. svctmpl.c cannot be used in the project file because the jump table in it brings in
all smx and other services whether they are used or not. So svc.c is derived from svctmplt.c to
include only services actually used, in this case, by fs partition. As can be seen, it is also
considerably smaller. This is useful for IO services that may or may not be needed.

The ssndx enum in svc.c has 23 entries. The first, LIM, is the limit, the last, END, is the number
of entries, excluding itself, and in between are symbols for the 21 services provided. Each
symbol defines the n in the SVC N instruction. At the top of svc.c is the jump table, smx_sst[],
used by the SVC Handler (SVCH) with n as its index. Here the service function names are listed.
These must be in the same order as the ssndx enum. Note that the first entry is the limit = END =
22. This is used by SVCH() to determine if n is valid. If not SMXE_PRIV_VIOL is reported to
the Error Manager, which takes control.

It is pretty easy to get ssndx and smx_sst[] out of step. When this happens the actual function
activated will not be what you expected. It is fairly simple to find and fix this problem.

Following the jump table are the shell functions, which call SVC N via one of the sb_SVC
macros, using the symbols defined in the ssndx enum. (The sb_SVC macros are defined in
svc.h.) Each shell function has the same name as the service it represents, with a u added to the
prefix, e.g. smxu_. The header file, xapiu.h, defines the shell functions, and then maps each
service to a shell function using mapping macros.

All that is required to cause the fs partition to make service calls via SVCH() is to add

#include “xapiu.h”

after other includes in each module that calls a service. Since, xapiu.h uses mapping macros, all
parameters in each service call must be specified. This means that default parameters must be
added. For example:

smx_TaskStart(ffdemo);

must be changed to:

 smx_TaskStart(ffdemo, 0);

Default parameter values are specified in xapi.h.

Never in hmode
SVC functions can be called from pmode or umode, but must not be called from hmode. Since
ISRs and trusted LSRs run in hmode, this is an easy mistake to make. The problem is that the n
parameter should be stored in the task stack. But in hmode, there is no task stack, only the main
stack, so n is stored in the main stack. However, here it is not protected and the results can be
pretty wild. Usually a SMXE_PRIV_VIOL will be reported because the n delivered to SVCH()
is too large. At other times, the wrong service will be called, which might report some other error
such as SMXE_INV_TCB. This can be very confusing until you realize what is wrong.

Partition Demos

151

At the top of sd_diskio_dma_rtos_bspv1.c we have:

#if SMX_CFG_SSMX
#include "xapiu.h"
#endif

But starting at line 645 is ISR and LSR code. So, ahead of this put:

#if SMX_CFG_SSMX
#include "xapip.h"
#endif

This reverses the effect of xapiu.h.

Summary
We now have the fs partition making system calls via the SVC exception.

7.2.4 pd4
Finally we are ready to move the fs partition uptown to umode!

ucom Regions
The first thing is to define the ucom_code and ucom_data regions. These regions are common to
utasks and replace the sys_code and sys_data regions used by ptasks. In RTOS\SSMX\svc.c,
note that smx_sst[] is left in sys_code because it is used by SVCH(), which runs in hmode.
Below this, the shell functions are put into .ucom.text, and xapiu.h is included for prototypes.

For the STM32F746 group containing the HAL files, we removed the project override on the
C/C++ Extra Options tab that used mpi_sys.xcc to locate all of the files in sys_code and sys_data
regions, and instead we added this override to some files and pragmas to others to locate them
elsewhere. The SD driver files are put into the fs sections since they are used only by the file
system, and other files and routines are put into ucom sections since they may be needed by any
code. (Keep in mind that putting things in ucom goes counter to good security, because it is
shared by multiple partitions. For higher security systems, an alternative is to duplicate the HAL
routines and data needed by multiple partitions, giving them slightly different names, so each can
be located in only one partition.) The remaining HAL files do not have project overrides nor
pragmas, so their code and data fall into the default sections (.text, .data, etc.) which is fine
because those routines are called only during startup, which runs in pmode.

Next, we have modified pd2.icf to produce pd4.icf (pd3 uses pd2.icf). In particular, uccsz and
ucdsz have been defined, and below them ucom_code and ucom_data are defined. ucom_code
includes ucom sections and clib_code. The .ucom.reset section is a special section defined in
BSP\ARM\STM32\STM32F7xx\reset.c. It has the first two elements of the intvec (interrupt
vector) table, which are needed for system startup. Note that ucom_code is included in sys_code,
which is expected to be at the start of rom_block, and that is where the processor expects to find
pointers to CSTACK and to __iar_program_start, when it first starts running. After initialization,
the VTOR register points to the real intvec table (see vectors.c). Including the ucom sections in
the sys sections allows ptasks to access the clib functions, SVC shells, and other common
functions and data.

Chapter 7

152

New MPA
Next, a new MPA is required for fs in umode. In \BSP\ARM\STM32\mpaf7.c under UMODE
TEMPLATES is a new template mpa_tmplt_ufs. Note that ucom_code and ucom_data have
replaced sys_code and sys_data, the EVB region has been removed, and nothing else has
changed from mpa_tmplt_fs. EVB is accessed only by system services and thus its region is not
needed here. Note: the smx_EVBLogUser() functions, used to log user functions, can be called
in umode, but they are accessed via SVC shell functions.

In mp_MPACreate() in ffdemo_init(), mpa_tmplt_ufs has replaced mpa_tmplt_fs.

fs_heap
One more change is necessary because FatFs requires a heap. Since the main heap cannot be
used from umode, we must create a new heap, fs_heap. At the top of smxmain.c, bins and
variables are defined for the main heap, and space for the main heap, itself, is allocated. (It is
necessary to allocate it here because its size is determined by SMX_HEAP_SPACE, defined in
acfg.h.) Below this, fs_heap bins and variables are defined. Since this a small, low-activity heap,
it is given only one bin. Its size is defined near the top of pd4.icf as 0x1000 bytes.

fs_heap is initialized after the main heap (mheap) in smx_HeapsInit(). This consists primarily of
putting fs_heap in the fs_heap section, initializing three fields in the fs_hv structure, and then
calling smx_HeapInit()32 which is in xheap.c. This calls eh_Init() in \XBASE\eheap.c. eheap is
an RTOS-agnostic heap, which is the basis for smx_Heap. eh_Init() creates the heap, loads the
remaining fields in fs_hv. The fs_hv structure, EHV, is defined in eheap.h. Then eh_Init() assigns
a heap number to fs_heap, which is fs_hn. Finally in XFMW\FatFs\option\syscall.c,
ff_memalloc() calls:

smx_HeapMalloc(msize, 0, fs_hn);

and ff_memfree() calls:

smx_HeapFree(mblock, fs_hn);

umode

The final step is in smx_TaskCreate() in ffdemo_init() to replace 0 with SMX_FL_UMODE as
the flags parameter. The fs partition is now running in umode. (You can verify this by checking
umode in ffdemo_main vs. umode in mcon_main().) As a consequence, mission critical code and
system code are protected from the fs partition by the pmode barrier. What that means is that any
code, including malware, running in the fs partition can access hmode and pmode only via the
SVC exception, and that access is limited by the SVC shell functions that have been provided in
svc.c.

Background Region (BR)
When BR is on, except in umode, the processor can access all implemented memory. BR on in
umode has no effect. Put a breakpoint in ffdemo_main() and bring up the MPU Register window
(it is near the bottom of the Group menu). You will see that MPU_CTRL = 5. This means that

32 smx_HeapInit() is called by $Sub$$__call_ctors() in smxmain.c, which is called by __cmain() in the EWARM
startup code, prior to its calling C++ initializers, which require a heap.

Partition Demos

153

both BR and the MPU are on. This is true for all utasks. If an interrupt occurs, while in umode,
the processor switches to hmode, and BR allows the ISR to access all implemented memory. The
same is true for exceptions.

ptasks are different. BR is off in ptasks. For example, in mcon_main(), MPU_CTRL = 1,
meaning that BR is off and MPU is on. ptasks rely on sys_code and sys_data to directly access
the services they need. If an interrupt occurs, sys_code allows the ISR shell in vectors.c to run.
(If not, it must be moved into sys_code.) Then smx_ISR_ENTER() saves the state of BR and
turns it on; smx_ISR_EXIT() restores BR to its previous state if control returns to the point of
interrupt. Otherwise, smx_PendSV_Handler() runs next, and BR remains on for LSRs that might
be dispatched by it.

Reversion to MPU Off
You may be having difficulty finding a problem and you feel that the MPU or partitioning is
interfering with your effort, or may be the cause. Or you may be making a major change and do
not want to be interrupted with MMFs. Whatever the reason, reversion to MPU off is easy. First,
set SMX_CFG_SSMX to 0 in xcfg.h and xarmm_iar.inc. This automatically disables several
other SecureSMX features. Next: Top node Options, Linker, and change pd4a.icf to pd0.icf. It is
not necessary to change section pragmas in the code because the Linker will now ignore them,
and all #include “xapiu.h” statements are disabled. Then, since SMX is provided in library form
in these demos, exclude the library from the project and add the nompu version, which was built
with SMX_CFG_SSMX 0. We recommend that you give this a try to verify that pd4 runs
normally with the MPU off. Remember to reverse these changes before continuing.

Where inherited settings have been overridden there will be a check mark in the gear column of
the project window. It is recommended that you enable inherited settings in case the problem is
due to changes not being made to all duplicated project sections. Doing this will eliminate
duplicated sections in the project file. First save a copy of the .ewp file and restore it when done,
to avoid having to redo the overrides.

Sizes
ROM and SRAM usage have continued to increase, as shown in the map file:

ROM 0x136eb to 0x28000 106%
SRAM 0x6cac to 0xc000 77%
DRAM 0x8000 to 0x8000 0%

This is using pd4a.icf, and the percentages are vs. pd0 sizes. Now is a good time to run
MpuPacker to see if any improvement is possible. It is in the BIN directory, and it is documented
in section 8.11.1 Using MpuPacker, but some information is presented here. Make sure it set for
pd4. It generates two files: MpuPacker.txt and MpuPackerDiag.txt in APPM\IAR.AM\STM32.
In the EWARM Open dialog, click “All files (*.*)” in the lower right corner to see these.
Comparing the first file to pd4a.icf, we see that no improvement in ordering can be made.

The second file provides diagnostic information. For rom_block, there are no gaps, but there are
0x873b bytes free at the end. rom_block = 0x28000, so actual size used is 0x28000 – 0x873b =
0x1f8c5. The next smaller region block size (from 0x40000) is 0x20000, so reducing to that (and
using 8/8 subregion multiple) would save 0x8000 bytes.

Chapter 7

154

Looking at “Block Tails” in the Diag file, we see that the ucom_code tail can be reduced by
changing the region size (i.e. opt = “R”). ucom_code is in sys_code, which is in rom_code.
Somehow, ucom_code was way too big. It can be reduced to 0x2000*5/8. sys_code is a little too
big and can be reduced to 0x10000*7/8. These can be determined by looking at their sizes in the
map file and calculating the correct region size and multiple, but it is easier to let MpuPacker
guide you. The R means to divide the region size by 2 at least once, and the S means to reduce
the subregion size by 1/8 or more. This can be done iteratively. For example, if it says R, divide
the region size by 2 and restore the multiplier to 8/8. Relink and run MpuPacker again, and if
there is still an R there, do it again until the R is gone. If an S is there now, reduce the multiple
by 1/8 and try again. Repeat if S remains. When no letter is indicated in the opt column, you are
done.

By reducing ucom_code and sys_code, there is now more space in rom_block, so with region
size 0x20000 and 8/8 multiple the map file shows 0x873b byte block tail. Subregion size is
0x4000, so this is more than 2 subregions, and we change 8/8 to 6/8, leaving 0x73b bytes in the
block tail. Now:

ROM 0x136eb to 0x18000 24%

This is a dramatic reduction. Now change the linker to use pd4b.icf. Looking at Block Tails in
MpuPackerDiag.txt there are no tails larger than subregions. However, looking above in this file,
we see rom_block now has a gap of 0x2000 and there is 0x73b free. The latter is less than
rom_block subregion size = 0x20000/8 = 0x4000.

To work on the gap, the map file shows that fs_code ends at 0x8015000 and the last code ends at
0x80178c5, so there are 0x28c5 bytes not in a region block. Up to 0x2000 of this space can be
formed into a plug block with 4-byte alignment and put into the gap, thus reducing rom block
size by up to 0x2000. This plug block is called pb1_code. Now change the linker to use pd4c.icf.
Notice it selects individual object modules to put into the plug block. (These must be files that do
not contain pragmas to control section location or you will get link errors (see 8.11.4 Using Plug
Blocks).) Looking at MpuPacker.txt, we see that pb1_code is located between sys_code and
fs_code, as expected. Looking at MpuPackerDiag, we see that the gap is gone. This is because,
pb1sz = 0x2000 in pd4c.icf. Also, End Free space went from 0x73b to 0x2525, adding 0x1dea
more bytes at the end of rom_block for it to grow. If End Free had been greater than the
subregion size of 0x4000 for rom_block, it would have allowed reducing the multiplier by 1/8
reducing rom_block by 0x4000.

This significant reduction to 24% plus more space for code in rom_block illustrates what can be
done. Also there are other techniques that can reduce memory waste even further, as discussed in
Section 8.11 Reducing Memory Waste for ARMM7. However, it is clear that the above work is
best left until the end of the project, unless packing is so poor that things won’t fit in memory.

Looking at MpuPackerDiag.txt, we see that ucom_code, sys_code, and fs_code have “tails”.
Tails are unused memory at the ends of blocks. Having unused memory at the ends of regions is
better than having all of it after all code and all data because it allows code and data to grow
within regions, thus enabling partition-only updates.

Partition Demos

155

Performance
The difference in average 4096-byte file write and read performances from pd0 to pd4 is less
than the jitter from one measurement to the next. Therefore the performance of the SD card is the
limiting factor. Measured performances are: 1.17 mbps write and 3.72 mbps read.

Summary
The fs partition is now running in umode. Hence, mission critical code and system code are safe
from malware that may have infected the fs partition. The price for this enhanced security in
memory is small and in performance is none.

7.2.5 pd5
ffdemo is effectively a client and FatFs is effectively a server. Clients and servers are normally in
separate partitions. ffdemo and FatFs were put into the same partition in pd2 for the sake of
simplicity. Now we will separate them. In order to do so, the FatFs partition requires a task and a
portal. The portal enables clients to communicate with the server, without calling server
functions directly, which would violate isolation between server and client.

Server Tasks
One-shot tasks are ideal for servers because, after a server processes a request, it may sit idle for
a long time. In addition, the process of receiving a request, processing it, then sending back a
result is a one-shot operation, wherein no information need be carried over from one to the next.
A one-shot task gives up its stack while waiting for the next request so that another task can use
the stack.

7.2.6 pd6
The ISR Problem
Back in the good ol’embedded-systems days we had a rule that ISRs were to be as short as
possible. Obviously, this rule has been forgotten, with dire consequences to security. The two
ISRs for FatFs have a combined size of 972 bytes, not counting the functions they call. This
provides a large target for a hacker and it is not easy to write so much unhackable code. The even
worse news is that ISRs run in hmode. Hence, if a hacker breaks in, it takes him only two
instructions to turn off the MPU and then the entire system is his to exploit!

To see how the ISRs work in FatFs, go to pd5\BSP\ARM\STM32\STM32F7xx\vectors.c. There
you will see IRQ49, 59, and 69 have vectors to shell functions at the bottom of vectors.c. These
shell functions wrap the FatFs ISRs in smx_ISR_ENTER() and smx_ISR_EXIT(), which are
necessary to integrate the ISRs with smx. Put breakpoints on the FatFs ISRs. Then you can trace
into these ISRs to see how complex they are. Eventually these ISRs call completion callback
functions. These are at the bottom of sd_diskio_dma_rtos.bspv1.c. These callbacks have been
modified for SMX to invoke LSRs such as BSP_SD_WriteCpltCallbackLSR, which, in turn, call
the functions that perform the smx services necessary for completion. The foregoing only
accomplishes allowing FatFs to run with smx – the ISRs and LSRs run in hmode, so no security
gain has been made. This type of LSR is called a trusted LSR, meaning that it runs in hmode.

Chapter 7

156

Safe LSRs
In this step, we have converted trusted LSRs to safe LSRs, which run in umode. Also we have
moved as much code, as possible from the FatFs ISRs to the LSRs. Safe LSRs are like mini-tasks
– they have very low overhead, very small stacks, and can share MPU regions with tasks in the
partitions to which they belong. All LSRs run between ISRs and tasks. Hence they are ideal for
high-performance code that normally would go into ISRs -- they cannot be delayed by priority
inversions and other problem that beset tasks, such as high switching overhead.

To see how this works, place the same breakpoints in
pd6\BSP\ARM\STM32\STM32F7xx\vectors.c and trace from them. You will see quite a
difference in the ISRs and that all the complicated code is now in the uLSRs, which run in
umode. If this code is hacked, the hacker is locked into a umode partition – he thus cannot turn
off the MPU.

The preceding demos present a simple method to add isolated partitions to an existing system.
The remaining sections that follow add more general implementation information to that of the
demos.

157

Chapter 8 Implementation

This chapter provides implementation information that expands upon theoretical discussions and
demos of the previous chapters. The intent here is to bridge the gap between theory and actually
writing code. Design techniques and tips are presented.

8.1 Planning

8.1.1 Security Plan
Improving the security of a system requires a security plan. This normally consists of identifying
threats, then figuring out how to counter them. For example, to counter the man-in-the-middle
attack, all data to and from the system should be encrypted. This requires a secret key stored in
the system. The next threat is that a hacker will steal this key. To counter this threat, the key
must be stored in a secure pmode partition and all code accessing that key must also be in that
partition. In addition, a portal must be used to securely transfer data in and out of the partition in
order to encrypt or decrypt it. This encryption/decryption process is thus hidden from all client
partitions that use or generate the data. SecureSMX provides the necessary tools for securing
keys and other secret information.

Any place where the system contacts the outside world is a possible attack surface. Hence, it is
desirable to enclose each of these, especially low-level drivers, in umode partitions. The latter
provide greater isolation and security than pmode partitions. The attack vectors used by hackers
are so numerous and powerful that it is not practical to defend against every one. It is better to
assume that any I/O partition can be breached and to focus on containing the incursion. Fully
isolated partitions can ensure that although the infected partition has become malicious, the rest
of the system is able to shut it down, restart it or the whole system, continue its mission-critical
function, and to report the attack. This requires careful planning of partitions and recovery
methods.

Of course, an infected partition can be spewing bad data that can cause other partitions to
become damaged and to cause damage. This must be guarded against in the coding of these
partitions. Task stacks in their own XN partitions take away common hacking attacks such as
code execution from stacks and stack overflow. This protection is part of SecureSMX. An
attempt should be made to use only buffers that are in their own regions, in order to immediately
catch buffer overflows – another common hacking technique. Attempts to go outside of
partitions will generate immediate MMFs. These can stop a hacker in his tracks, provided that
the MMFs are acted upon. This requires a plan for how to handle breaches of partitions, and this
may determine how partitions are defined. Also a plan is needed for code to log MMFs for
support team study and to perform system recovery.

Probably the greatest vulnerability in a system using SecureSMX is its ISRs. As noted in section
4.8.2 Enabling ISRs and Exception Handlers to Run it may be necessary for BR to be on when

Chapter 8

158

an interrupt occurs. Even if BR is not on, a hacker can turn it on or turn the MPU off with a
single instruction. The best approach to guard against ISR infection is to first minimize ISR
code. This can be done by invoking LSRs, which perform all non-essential functions, before re-
enabling the interrupt, and for LSRs to start or resume utasks to do the bulk of the processing
that is not time-critical. In umode we are better able to contain the attack. Clearly there are
performance trade-offs in doing this, and these may require careful planning. In addition, ISRs
must be fortified – see section 8.10.6 ISRs and LSRs.

Unfortunately, hackers have extensive arsenals of tools, and they spend full time figuring out
how to attack systems like yours. System developers, on the other hand, must spend most of their
time creating and debugging useful software. Thus, the good guys are seriously outgunned by the
bad guys. The best we can do is do guard against common hacking techniques and apply
common sense.

8.1.2 Reliability Plan
It makes little sense to have a secure system that is unreliable. Although security and reliability
are two sides of the same coin there are differences in planning. Reliability failures result from
accidents, not deliberate actions. Hence we need not be concerned about attack surfaces but we
do need to be concerned about code quality. (Of course code quality is also a factor in security.)

There is usually some code in a system that is questionable because it is poorly written,
inadequately tested, or third-party code that no one understands. Typically there is not enough
manpower nor time to carefully review and fix such code. In this situation, putting the code into
a fully isolated umode partition and adding a portal to access it may be the best solution. Then,
when the code malfunctions, it should not bring down the whole system. Instead, the malfunction
can be logged for future repair, and the partition can be shut down or reinitialized and restarted.

Often, questionable code is the result of adding a feature for a large customer or a new feature
requested by Marketing. Such code may not receive the careful attention nor talent that the main
code has had, or the code may have originated from a third party. It is a good practice to put such
code into an isolated partition – at least until it has proven itself worthy of your trust.

8.1.3 When to Add MPU Support
For an existing product or a project near completion, the answer for when to add MPU support is
now. For a new project the answer may depend upon factors such as schedule pressure, market
window, and preferences or talents of team members.

There is no question that the best results will be achieved if security and reliability are “baked
in” to the system from the start. Using SecureSMX does introduce a learning curve to master the
new methodologies that it offers. However, once that learning is achieved it may actually help to
reduce debugging time, and it will produce a better design structure that is easier to maintain and
to extend in the future.

Another point of view is that implementation of MPU support is best postponed until the main
design goals have been achieved and the design is stable. Otherwise, introducing it may be too
much of a distraction and may result in missing the schedule. If the schedule is tight and
manpower is limited, this may be correct. In this case, we suggest that team members read this
manual in order to get an idea of what is needed and that a security plan is created that sets forth

Implementation

159

design rules to minimize redesign. At a minimum, partitions and their APIs should be identified,
and at least one task should be created for each partition. Planning like this requires little time
now and will reduce redesign time, in the future.

Unfortunately, in the late stage of project development, delivery pressure and long hours may
have set in, and “niceties” such as safety, security, and reliability may get little or no priority. In
this case, security can be delayed a little longer. It may even be acceptable for a project to go into
early production without the full security plan having been implemented. See section 8.2.3
Iterative Process.

8.2 Project Approach

8.2.1 Legacy Code
Even in a new project, there is likely to be some legacy code. An effective method is to gradually
convert less-trusted code to ucode and less-trusted tasks to utasks, while frequently verifying that
the system still runs correctly. If a problem occurs, the last step can be reversed and the problem
tracked down and fixed.

Sometimes it happens that you have some poorly written code or third party code that no one
understands and which has or is expected to come under attack. This is often called SOUP
(Software of Unknown Pedigree). Rather than rewriting the code, it is easier to put it into an
isolated umode partition. Then at least a hacker cannot bring down the rest of the system if he
gets into the SOUP. This may be an adequate first step with other partitions ported later.

See Chapter 7 and the partition demos for a step-by-step process to do this. This process is
repeated for each partition to move to umode. Note that certain tasks will be left in pmode. These
include security tasks (e.g. crypto tasks), mission-critical tasks, and tasks that cannot run in
umode due to performance or other issues. Figure 8.1 illustrates the basic process.

Chapter 8

160

Start

Run system
normally with

MPU
= default MPA

and BR off

Run OK
?

Expand regions
to cover all code
and data used by

appl & system

Pick least trusted
or most

vulnerable ptask

Create task_code
& task_data
regions. Add

other regions as
needed

Create task MPA
template & add
code to load it

into MPA for task

Task Run OK
?

Fix regions

Set task to
umode

Task Run OK
?

Remove
restricted system

calls from task
code

More Tasks
?

Done

Y

Y

N

N

Y

N

N Y

Figure 8.1 Converting ptasks to utasks

Implementation

161

8.2.2 New Code
If you are starting a new project, the first step is to decide on partitions and whether the partitions
should be in umode or pmode. For new code, the steps are:

1. Define all partitions for the project.
2. Create a working base.
3. Per partition:

a. Define all tasks — utasks for umode and ptasks for pmode.
b. Implement the code.
c. Define regions for each task.
d. Create a template for each partition.
e. Debug tasks, and get partition working in its intended mode.
f. Implement portals for the partition, if needed.

4. Repeat steps 3a-3f for each partition defined in step 1.
In this case, step 1 precedes writing code, and therefore each partition is defined in a written
specification with data flow diagrams. The working base should be implemented and debugged
next so there is an environment in which to debug the partitions as they are written.

If you prefer, you can write your new code in pmode, then use the approach in section 8.2.1
Legacy Code to convert it to umode. An advantage of this approach is that it is easier to write
and debug code in pmode. In doing so, you avoid umode restrictions on system calls and
interrupts. However, once you get your code running, you must port it to umode. We think it is
more efficient to develop umode code in umode and pmode code in pmode. This saves
reworking the code and results in a more sound design. However, the decision is up to you.33

Even in a new design, you may have some legacy code. It is quite possible that some of the code
may be fine-tuned, mission-critical code. If moved to umode it will definitely run slower and
thus may need to be rewritten. If this is not acceptable there is no problem leaving this code in
pmode. Of course, if the code has been experiencing cyber attacks, then it needs to be moved to
umode.

8.2.3 Iterative Process
As should be apparent from the foregoing, an actual project is likely to be a combination of
converting legacy code and creating new code. Hence, adding security and improving reliability
will most likely be an iterative process. It is not necessary to achieve perfectly isolated partitions
on the first pass. Incorporating SecureSMX, even minimally, makes security and reliability
better. Obviously shipment schedules must be met. Initially sales and manufacturing must ramp
up, and then there will be a growing population of devices. When the population of units in the
field is small, the payoff for hackers may be too little to motivate them. It is probably acceptable
to gradually improve security and reliability over this time period. In fact, security improvement
is typically an ongoing process for the life of the product, anyway.

33 One difficulty with developing a partition first for pmode is the loss of two MPU regions for sys_code and
sys_data that might require effort to work around, only to reverse that work when they are removed for umode.

Chapter 8

162

8.2.4 Keeping a Log and Backups
It is recommended that you keep a log of changes made as you progress, test frequently, and save
backups at each working point. Then when the system stops working, it is easier to figure out
what change caused the problem. Keeping a Was/Is list by cutting and pasting old/new code is
another helpful technique. Then when a wrong change has been made, it is easy to reverse it by
doing a side-by-side diff to the last working backup and reviewing the change logs.

8.3 Working Base

The working base consists of boot, initialization, HAL, SecureSMX, other system services, idle
task, and possibly legacy code. This code initially runs in pmode with the MPU off. See pd0 in
Chapter 7 for an example of a working base.

8.3.1 Getting Started
SMX runs ainit() in smxmain.c under the idle task with maximum priority, PRI_SYS, in order to
initialize smx and middleware. ainit() also calls appl_init(), which should be used to initialize
application code. The idle task runs with the init MPA so it has access to all implemented
memory and I/O.

Your tasks are assigned the default MPA in smx_TaskCreate(), which will be changed in a later
step. They will run in pmode so there is no restriction on the services they can use. Turn on the
MPU by calling

mp_MPUInit();

You can start your tasks in appl_init(), but they will not run until the idle task is restarted with
smx_IdleMain() code and 0 priority at the end of ainit(). Your system should still run, and it is
actually using the MPU. Simple as this change is, there is actually some gain: Any access outside
of implemented memory or with the wrong attributes (e.g. execute from RAM) will result in an
MMF.

Now you have a working base upon which to build and debug your new code.

8.4 Partitions

8.4.1 Creating Partitions
Partitioning has been introduced in section 4.1 Partitions and Tasks, and Chapter 6 Advanced
Theory presents a complete set of demos that illustrate how to create a partition and move it to
umode. A partition is usually formed from a body of code and data that performs a specific
system-level function, such as a file system. The first step is to group all code and data that
implement the system function into the partition. In the case of a file system, this would include
all drivers that it uses, with the exception of ISRs and LSRs. Because the latter must execute in
hmode, they are left out of a umode file system partition. It is important to get as much code out
of ISRs and LSRs and into partition utasks, as possible. See section 4.8.3 Interrupts for more
discussion of this.

Implementation

163

When working with legacy code, the above grouping of code and data into a partition is normally
performed in pmode. Then regions are defined for the partition and grouped into a partition
template used to load the MPA for each task in the partition, as discussed in section 4.3.1
Creating and Loading MPAs. For simplicity, in the discussion below, we will assume that a
partition has only one task. If the partition has no tasks, then a task must be created for it. For
example, a file system normally does not have a task, but rather runs in the context of each client
task that uses it. The file system task is a server task that provides a portal for its clients to get
file system services. See Chapter 5 Partition Portals for discussion.

8.4.2 Partition Overlap
Existing application code normally already uses tasks, and new application code will normally be
designed to use tasks. Hence, the tasks can serve as guide for defining partitions. Initially it may
be a good idea to create a partition for each task. However, after doing this, it may become
apparent that a great deal of code and data are common between some partitions. There are two
approaches to dealing with this:

• Define common regions for code and data.
• Merge partitions.

The problem with the first approach is that the partitions are no longer fully isolated from each
other. The problem with the second approach is that the partitions are larger and thus more of the
system is vulnerable if a partition is breached. For more discussion see sections 4.7.2 Combined
Regions and 4.7.3 Common Regions. In the case of legacy software, one may just have to live
with these problems – at least for the first pass. They can be reduced through restructuring in
future passes.

8.4.3 Using Region Tails
As noted in Section 1.3 Advantages of Isolated Partitions, there are more advantages to
partitioning a system than increased security and reliability. Region updating is one of these.
Referring to the map file in section 4.6 Map File, we see the following:
 fs_code 0x00260000 0x7000 <Block>
 .fs.rodata const 0x00260000 0x24 fmount.o [6]
 .fs.text ro code 0x00260024 0x100a fapi.o [6]
 …
 fs_code const 0x00264ee0 0x2120 <Block tail>

fs_code has a size of 0x7000 and an unused tail of 0x2120 due to ARMM7 MPU region
requirements. This tail would normally be wasted space. However, it can be used as spare space
to permit loading larger versions of the file system or to update the file system without changing
other code. This is possible because the space has been permanently allocated to the file system
by the linker.

To have interchangeable versions of a server, outside code must make its service calls via a jump
table, so that entry points (i.e. the jump table) are the same from one server version to the next.
With portals, this is achieved automatically because external calls go through a portal switch
statement, which makes the actual file service calls. Addresses in the switch statement are
automatically updated whenever the partition is recompiled and relinked.

Chapter 8

164

This feature is not dependent upon ARMM7 block tails. ARMM8 regions can be assigned a
larger space than needed in order to allow for different code versions and future updates. This is
a better use for spare space than allowing it to accumulate at the end of memory regions.

8.4.4 Partition Updating
A partition that is fully isolated by using portals can be updated independently of the rest of the
system provided that any external functions that it uses, such as ucom_code do not move. This is
because other partitions that interact with the partition do so through its portals and do not access
internal code nor data within the partition. Hence addresses of internal code and data within the
partition are relative to each other and are free to change if the partition is recompiled since only
the partition, itself, uses them. Tails in the regions used by the partition allow for expansion of
code, data, or the task stack in those regions.

Partition updates have the following advantages over full system updates:

• Less code to deal with.
• Updating is faster and requires less bandwidth to download updates.
• Buffer sizes are significantly reduced.
• System code is untouched.
• Possible to run tests on the new partition before accepting it.
• May be possible to update non-critical partitions while the system continues running.
• If the entire code is being updated, the hacker can inject malware where it will do the

most damage – most likely a critical partition. Since critical partitions have been carefully
written and thoroughly tested they are not likely to be updated often. Non-critical
partitions are more likely to be updated and partition updating allows them to be updated
without exposing critical partitions to injection attacks.

Partition updating requires modifying and thoroughly testing the updated code with the full
system at the home base, then extracting the partition object code from the full system object
code, sending it to the devices in the field, which receive and patch it into their object.

8.5 Templates & Regions

See section 4.3 MPA Templates for discussion of how templates are defined and used. As shown
there, the general case is to define a template per partition, which is shared between the tasks in
the partition. This simplifies the process of deriving child tasks from parent tasks. However in
the following, we will discuss task templates (i.e. a template per task) in order to simplify
discussion.

8.5.1 Creating Templates
If you are going to start with a ptask, then the template must contain the sys_code and sys_data
regions since BR is turned off when ptasks run. If these are already in static MPU slots, then they
need not be added to the template. A good way to create a new template is to pick a template in
mpa.c that is close to what you need and modify it.

Implementation

165

When the template has been defined, load it into the task’s MPA with:

mp_MPACreate(task, tmp, tmsk, mpasz);

Where task is the task, tmp is the template pointer, tmsk is the template mask, and mpasz is the
MPA size. For 8 active slots with no auxiliary slots, tmsk = 0xFF, and mpasz = 8. Now that the
task is no longer using the default MPA, it is likely to experience MMFs when it starts running.
Solving the MMFs may consist, in many cases, of just moving taskA-specific code and data into.
taskA_code and taskA_data regions, respectively. Assigning regions to tasks is task-specific.
Some tasks may need fewer memory regions, but more I/O regions, etc.

8.5.2 Code and Data Regions
The first step is to group code and data into task-specific regions and to define blocks in the
linker command file to hold these regions. It is convenient to name them after the task, e.g.:
taskA_code and taskA_data or name them after the partition, e.g. usbh_code and usbh_data. If
not already the case, it may be helpful to put all task-specific code into a single module, and it
may also be helpful to put all task-specific static data, if any, at the start of that module. Or, you
can leave functional partitioning of code and data into modules as is.

8.5.3 I/O Regions
Unlike memory regions, I/O regions have fixed addresses. It is thus easier to specify them with
direct memory addresses and not involve the linker. For example:

 RGN(6 | 0x40011000 | V, IO | (9 << 1) | EN, "USART1"),

Look at the memory map information in the MCU manual to find the memory range for a
particular peripheral. For ARMM7 the region must be a power of 2, aligned on that size
boundary, and for ARMM8 the region must be a multiple of 32 bytes on a 32 byte boundary. Put
its starting address in the RGN() definition, e.g. 0x40011000 above. For ARMM7 fill in the size
exponent, e.g. (9 << 1) above. The value of the size exponent is log2 block_size – 1. For example
if the region is 0x400 = 1024 bytes, 1024 = 210, and 10 – 1 = 9. The << 1 shifts it to the correct
position in RASR. For ARMM8, set RLAR to the address limit, rounded down to the previous
32-byte boundary. For example, if it ends at 0x…FF, set it to 0x…E0.

8.5.4 Too Many I/O Regions
Sometimes more I/O regions are needed than there are available slots in the MPU. For example,
a particular task using smxNS needs the ETH, GPIO, RCC, and USART1 regions. The ETH
region is the Ethernet controller, the GPIO and RCC regions are needed by the driver for pin and
clock configuration, and the UART region is needed for status and error messages. In addition
the task needs its code and data regions, common code and data regions, and an EMAC buffer
region, totaling up to 9.

Clearly a creative solution is needed here. One possibility is to run the task in pmode for
initialization, without the ETH, USART1, and EMAC regions, thus requiring 8 slots. Then run
the task in umode, without the GPIO and RCC regions, thus requiring 7 slots. This might work,
depending upon how the code is structured.

Chapter 8

166

Another possibility is to create larger regions that span individual I/O regions, such as the
following from mpa_tmplt_ns in mpaf7.c:

 RGN(5 | 0x40020000 | V, IO | N3 | N57 | (15 << 1) | EN, "ETH, RCC, GPIO"),
 RGN(6 | 0x40011000 | V, IO | (9 << 1) | EN, "USART1"),

Note the use of subregion disables N3 and N57 to block intervening peripheral regions as much
as possible. In this case, region 5 starts at 0x4002 0000 and goes to 0x4003 0000. This includes
16 other I/O regions, which this task should not access. The subregion disables block address
ranges 0x4002 6000 to 0x4002 7FFF and 0x4002 A000 to 0x4002 FFFF, but 13 I/O regions are
still exposed. Clearly this is not a good solution.

Using auxiliary regions may be a better solution. In this case active slot 5 would be shared by
auxiliary regions 8, 9, and 10:

Region 8: 0x4002 8000 to 0x4002 93FF, size = 0x2000, SRD = 0xE0. ETH
Region 9: 0x4002 3800 to 0x4002 3BFF, size = 0x400, SRD = 0. RCC
Region 10: 0x4002 0000 to 0x4002 03FF, size = 0x400, SRD = 0. GPIOA

These are all exact fits – no outside I/O regions are exposed. Now the question is can the code be
modified to swap in I/O regions as necessary? For example, using:

mp_MPASlotMove(5, 8);

when ETH access is needed. The places to put slot moves can be found by running the code and
finding where MMFs occur. As long as putting slot moves in the code is viable, and performance
is not seriously impacted, this is clearly a better solution than spanning I/O regions. However, a
few words of caution are in order: (1) A slot move can only be put into code that is unique to a
task. It cannot be put into a subroutine shared by two or more tasks unless the tasks have
identical shared slots and corresponding auxiliary slots. (2) It cannot be put into a subroutine
shared between a task and an LSR. (3) If a common subroutine requires a slot move, internally,
one solution is to split the subroutine and to do the slot moves in task code between split routine
calls. Implementing slot moves may require some creative programming.

If it is necessary to span I/O regions, here are steps to help determine the subregion disables:

1. List the peripherals needed by the task.

2. Write the addresses ranges next to each from the MCU manual.

3. Order them by address.

4. Consider the distances between them and decide how to group them based on the number
of slots.

5. Subtract addresses from the beginning of the lowest to the end of the highest to see how
big the range is. Round up to the next power of 2 (0x4000 for example).

6. Divide by 8 to get the subregion size (0x800 in this case).

7. Make a list of the subregion addresses, and mark the one(s) where each peripheral is.
Depending on the size of the I/O space for the peripheral, it might span multiple
subregions or it may be a small sliver of a subregion. In this case, each fit in a subregion
but used only part of it (since each is only 0x400 bytes).

Implementation

167

 0 0x40010000 - 0x400107FF
 1 800 1000
 *2 1000 17FF UART1
 3 1800 1FFF
 4 2000 27FF
 *5 2800 2FFF SDMMC1
 6 3000 37FF
 7 3800 3FFF

8. The unused subregions are excluded by N0|N1|N3|N4|N6|N7, in this case.

9. Check results in smxAware’s Task display. Expand the task and scroll down to MPAs.

 MPA[4] rbar 40010014 rasr 1300db1b "USART1, SDMMC1"
 Start 40010000
 End 40013fff
 Subreg Dis 0,1,3,4,6,7 (Size 0x800)
 Sub Start 40011000 (Size 0x800)
 End 400117ff
 Sub Start 40012800 (Size 0x800)
 End 40012fff
 Attributes PIO

In this case, the peripherals were quite close, so subregion size was fairly tight, but it can be
terrible if they are separated by much. You might get better results by changing the region
grouping, so do a little experimentation.

8.5.5 MPU Region Details
MPU slots in which the EN bit is 0 are inactive and have no effect upon memory accesses.
Hence a user is not forced to use all slots. Unused slots are usually filled with 0’s to disable
them. Regions should not overlap, unless the overlap is disabled with subregion disables in one
of the regions. The problems with overlap are discussed in section 4.2.6 MPU Slot Numbers &
Region Overlaps.

Background Region (BR) is enabled by setting MMU_CTRL.PRIVDEFENA. It flows around all
other regions in the MPU so that all of memory is covered and accessible to pcode (but not to
ucode). It is considered to have a slot number of -1. Hence the attributes of MPU regions take
precedence over it. For example, if a region is RO, it cannot be written, even though BR is on.
Outside of MPU regions, default memory attributes are in effect, as if the MPU were not present.

If regions that are simultaneously present in the MPU overlap, the attributes of the higher-
numbered region prevail. This could cause an unexpected action, such as an MMF. Using the
subregion disables of one region in the overlap area will prevent this problem. Another problem
to be aware of is adjacent regions in the MPU. In this case, overflow or underflow from one
region to the other will not be detected, unless there is a permission violation.

smxAware flags region overlap and adjacent region problems in the MPA and MPU displays.

Chapter 8

168

8.5.6 ucom_code Region
The ucom_code region contains the shell functions necessary for SVC calls, tunnel portal
functions, and C library functions that are needed by more than one utask. It should be the only
region shared between umode partitions in the final system implementation. It is a read-only
region that should be stored in ROM, if possible. Even if loaded into RAM, it is protected from
change by the MPU RO attribute. Given that dangerous C library routines are not included, we
think that ucom_code is sufficiently safe from hacking.

The SVC shell functions do little more than invoke the SVC N instruction with a value of n. The
actual system functions are performed in pmode out of the reach of the hacker. smx SSRs have
thorough parameter testing to avoid problems with bad parameters. Possibly it will be necessary
to add this for other system functions that currently do not test all parameters. Tunnel portal
functions must be run in umode due to technical difficulties. Free portal functions run in pmode.

It is possible that C library functions will need to be rewritten to be safe (e.g. checking all
parameters) and also moved to pmode.

8.5.7 Using TLS to Reduce Regions
As described in section 4.11.8 Task Local Storage, TLS can be defined for a task when the task
is first created. It is a section of memory in the task stack block which is below34 the Register
Save Area, RSA. Since it is in the stack block region, it is protected. TLS can replace a task data
region, thus saving an MPU slot. This can be particularly useful for an I/O task, which may need
more I/O regions than otherwise available slots.

As an example of using TLS, suppose that we have taskA that needs two static variables, var1
and var2 and an 80-byte static buffer separated by a pad to protect against buffer underflow.
Then define:

typedef struct {
 u32 var1;
 u32 var2;
} taskA_var;

taskA_var tv = taskA->tlsp; /* variables */
u8* pp = taskA->tlsp + sizeof(taskA_var); /* pad pointer */
u8* bp = pp + PAD_SIZE; /* buffer pointer */
u32 tlssz = sizeof(taskA_var) + PAD_SIZE + 80;

Then:

taskA = smx_TaskCreate(taskA_main, PRI3, (tlssz<<16 + 200), h0, “taskA”);
memset(pp, PAD_PATTERN, PAD_SIZE);

creates taskA with a 200-byte stack and a TLS with tlssz bytes, and puts a pointer to the TLS in
taskA->tlsp. Then the pad is filled with PAD_PATTERN.

34 As usual, “stack below” means higher memory and “task top” means lowest memory address.

Implementation

169

Now, to use the TLS refer to the variables as:

tv->var1 = a;
tv->var2 = b;

and access the buffer using bp:

bp[i] = x;

Putting the buffer at the bottom ensures that a buffer overflow (see footnote 34) will generate an
immediate MMF. A pad of a recognizable pattern guards the variables from buffer underflow.
During debug, watching pad patterns can help to find bugs. In the final system, it is advisable to
frequently check that pads have not been overwritten in order to detect hacking.

Using the above technique, multiple structures and buffers may be defined in a TLS. These are
for static variables. Auto variables are located in the task stack, as usual.

8.6 Using the Linker

See section 4.4 Linker Command File for discussion of how create a linker command file. This
section covers some implementation details.

8.6.1 Block in Block
Ideally, ucom_code should be the only common region between umode partitions. However, as
explained in section 4.7.3 Common Regions, in some cases it is necessary to have some other
common regions. This reduces the security of the regions, but it may be that too much recoding
would otherwise be required. This is a tradeoff that may need to be made between security and
feasibility, especially on the first pass.

For pmode, there may be a need to access functions in ucom_code (e.g. SVC shell functions), yet
no slots are available. In this case, ucom_code could be included in sys_code, which is accessible
by all ptasks, as follows:

define exported symbol scsz = 0x20000; /* system */

define exported symbol ucomcsz = 0x8000; /* ucom */

define block ucom_code with size = ucomcsz*5/8, alignment = ucomcsz
 {ro section .svc.text, ro section .svc.rodata, block cp_code,
 block clib_code};

define block sys_code with fixed order, size = scsz*5/8, alignment = scsz /* <3> */
 {block ucom_code, ro section .intvec, ro section .sys.text, ro section .sys.rodata};

Since ucom_code is an aligned block it is important to put it first in sys_code and to add “with
fixed order” to make sure that the linker puts it first. Otherwise a large gap may occur ahead of
ucom_code in sys_code. Note that the scsz = 0x20000 and ucomsz = 0x8000, so ucom_code will
be aligned on a ucom_code boundary and there will be no wasted space within sys_code due to a
boundary gap. If a block being included is not aligned (e.g. clib_code), then it can be put
anywhere in the larger block. In case sys_code is first in rom_block, it must have the initial stack
pointer and start address in as the first two words, so a mini EVT is put at the start of
ucom_code, as is done for other large blocks. See section 8.10.5 Reset Vector.

Chapter 8

170

8.6.2 Initialized Variables
IAR EWARM compilers v7.50, and later, put explicitly zero-initialized data with data that is
non-zero-initialized, instead of with bss data that is cleared in blocks. If you want to put such
data with bss data, delete the explicit initializer from these variables (i.e. =0, =NULL, =false) or
use the compiler’s --section switch to set the section names for the whole file, instead of using
the section pragma.

Statically initializing variables to 0 or NULL after a #pragma that specifies the section:

#pragma default_variable_attributes = @ ".ucom.bss"
u32 my_var = 0;

causes the following compiler error:

Warning[Be006]: possible conflict for segment/section "<section>"

It's unnecessary, so delete the initializer (=0). IAR confirmed the behavior is by design. The
reasoning is that when the user places variables in a specified section, one of the important use
cases is to handle initialization for those variables in some special way. If you want to handle
initialization yourself, you typically need to put zero-inited variables in one section and
initialized variables in another. That is the reason for the warning, and also the reason why an
explicit zero is treated differently from an implicit zero. This gives the user control over zero-
inited variables. For variables that are not placed in user-specified sections, the assumption is
that they will be initialized by the normal mechanism, and for those variables, explicit zeros are
treated the same as implicit zeros.

8.7 Tasks

8.7.1 Creating ptasks
Most systems start with all ptasks and no utasks. In this case, all tasks will be using the default
MPA, dflt_mpa, and they should run with no problem. The following sections explain how to get
a ptask running with its own template. At this point, if the task is to remain a ptask, then the
work is done. Converting a ptask to a utask is explained in the next section.

8.7.2 Converting from ptask to utask
The first step is to change the template. See section 4.3 MPA Templates for how to do this. Next,
add

#include "xapiu.h"

ahead of all utask code that is supposed to execute in umode. This forces the SVC API to be used
by the utask for system service calls. The final step is to move taskA into umode. Creating a task,
creating its MPA, and assigning it to umode are usually done during initialization in pmode as in
the following example:

 ut2a = smx_TaskCreate(tm06_ut2a, TP2, 300, SMX_FL_UMODE | h0, "ut2a");
smx_MPACreate(ut2a, mpa_tmplt_ut2a, tmsk);

 smx_TaskStart(ut2a);

Implementation

171

This creates a utask, ut2a, with a main function tm06_ut2a, priority TP2, stack size 300 bytes
from the main heap, h0, for umode, and name ut2a. Next an MPA is allocated and loaded with
template mpa_tmplt_ut2a, and ut2a is started.

Now, when ut2a is first dispatched, the sb_PendSV_Handler() tail will set the processor
CONTROL register = 0x3 just ahead of starting the task. This causes the processor to run in
unprivileged thread mode (umode) using the task’s stack. Later, when ut2a has been suspended
and is then resumed, the EXE_RETURN value (e.g. 0xFFFF FFFD will cause it to run in umode.

8.7.3 Dealing with Restricted and New Services
When a task first starts running as a utask, you are likely to see PRIVILEGE VIOLATION
errors. The latter indicate that restricted service calls are being made by the utask. See section
4.9.3 Restricted Services for discussion of this. These must be removed from the utask code.
Frequently this can be done by moving them to a ptask, such as the initial ptask version of the
current utask. If this cannot be done then the utask may need to remain a ptask or it might be
split into a utask and a ptask.

If the restricted service is actually a new service that is safe in umode, it needs to be added to the
SVC services, as follows:

• Add an abbreviated service name to the ssndx enum in svc.c
• Add the service to the smx_sst[] jump table in svc.c in the same position as the

abbreviated service name is in ssndx.
• Add a shell function to svc.c using the abbreviated service name.
• Add the shell prototype function in the upper part of xapiu.h.
• Add the service to shell function conversion in the lower part of xapiu.h.

8.7.4 Dealing with Shared Code and Data
When converting a ptask to a utask, it may occur that the ptask shares code or data with another
ptask. Potential solutions to this problem are:

• Move the code or data into a common region accessible by both tasks. This may
be acceptable for common code, but may not be acceptable for common data.
Also, there may not be an MPU slot available for the new region.

• Put all tasks into one partition and convert the whole partition at once instead of
task by task. This is good if all of the ptasks are destined to be utasks.

• Splitting a task into a ptask and a utask, where the ptask shares pcode and pdata
with other ptasks and the utask does not.

• Starting a task as a ptask to perform functions required for task initialization, then
switching it to a utask that performs only operational functions.

• Replicating common routines using different names.
• Passing global variables via messages or pipes.

Chapter 8

172

8.7.5 Permanent ptasks
Once you have moved everything you can into umode, the ptasks left behind are the royalty, so
to speak, that you are trying to protect. They perform security functions, mission-critical
functions, and system functions. You have several options for dealing with them:

• Allow them to continue running in the default MPA.

• Put them into one partition and develop a single MPA template for it.

• Put them into individual partitions with individual MPA templates.

System reliability increases with each of these steps.

Implementing ptasks having limited regions does produce some security gain, because many
hacker tricks, such as executing code from the task stack or a buffer will trigger an MMF before
the hacker can gain access. The MMF handler can then stop the task and sound an alarm.
However, best protection comes from moving as much code as possible into umode where a
hacker definitely cannot get to the MPU nor to pmode code and data.

8.7.6 Using Child Tasks to Reduce Regions
See Section 4.1.8 Parent and Child Tasks for general discussion of parent and child tasks. Here
we consider spawning a child task to deal with a partition that has too many regions. This is a
particularly effective method in smx for two reasons: (1) The smx task control block, TCB, is
very efficiently implemented and requires only about 25 words, plus another 6 for the MPA, and
(2) smx one-shot tasks give up their stacks when waiting. It is likely that only one child task can
run at a time in a partition, hence they can all share one stack.

Consider the following template:

MPA mpa_tmplt_usbd =
{
 RGN(0 | RA("ucom_code") | V, CODE | SRD("ucom_code") | RSIC(ucsz) | EN, "ucom_code"),
 RGN(1 | RA("ucom_data") | V, DATARW | SRD("ucom_data") | RSIC(udsz) | EN, "ucom_data"),
 RGN(2 | RA("usbd_code") | V, CODE | SRD("usbd_code") | RSIC(usbdcsz) | EN, "usbd_code"),
 RGN(3 | RA("usbd_data") | V, DATARW | SRD("usbd_data") | RSIC(usbddsz) | EN, "usbd_data"),
 RGN(4 | 0x40010000 | V, IO | (9 << 1) | EN, "USART1"),
 RGN(5 | 0x40012C00 | V, IO | (9 << 1) | EN, "SDMMC"),
 RGN(6 | 0x40026400 | V, IO | (9 << 1) | EN, "DMA2"),
 RGN(7 | V, 0, "stack"),
 RGN(8 | 0x40040000 | V, IO | (17 << 1) | EN, "USBHS"),
};

This template has 9 regions and will not fit into an 8 slot MPU. This problem can be solved by
defining a child task to handle the serial output. The parent task, uptsk, is created in pmode, as
follows:

Implementation

173

/*=============================== PMODE =================================*/
TCB_PTR uptsk;
u32 pmsk = 0x16F; /* = b1 0110 1111 parent mask */

uptsk = smx_TaskCreate(uptsk_main, TP2, 500, SMX_FL_UMODE, "uptsk");
smx_MPACreate(uptsk, mpa_tmplt_usbd, pmsk, 8);
smx_TaskStart(uptsk);

/*=============================== UMODE =================================*/
#include "xapiu.h"
#pragma default_variable_attributes = @ ".usbd.bss"
TCB_PTR uctsk;
#pragma default_variable_attributes =

#pragma default_function_attributes = @ ".usbd.text"

/* parent task */
void uptsk_main(void)
{
 u32 cmsk = 0x1F; /* = b0001 1111 child mask */
 uctsk = smx_TaskCreate(uctsk_main, TP2, 0, 0, "uctsk");
 smx_MPACreate(uctsk, 0, cmsk, 8);
 smx_TaskStart(uctsk);
 …
}

/* child task */
void uctsk_main(void)
{
 …
}
#pragma default_function_attributes =

In this example, it is assumed that the uptsk parent task is created by pmode initialization code.
Note that the MPA for uptsk task uses the above template with pmsk, which filters out the
USART1 (4) and stack (7) regions. Thus region 4 = SDMMC, region 5 = DMA2, and region 6 =
USBHS. Region 7 is automatically loaded with RGN(7| V, 0, 0).

uptsk_main() runs in umode and creates the child task, uctsk. This task inherits mpa_tmplt_usbd
from its parent, uptsk, and loads it into its MPA with cmsk. Hence, region 4 = USART1 and slots
5, 6, and 7 are filled with RGN(5 | V, 0, 0), RGN(6 | V, 0, 0), and RGN(7| V, 0, 0), respectively.
uctsk also inherits umode from uptsk as well as its IRQ permissions. If a priority above TP2 were
specified, uctsk would be given TP2. A child task cannot be created in umode with higher
priority than its parent.

Now when uptsk has a message to output via USART1, it signals the semaphore at which uctsk
waits. Since uctsk has the same priority as uptsk, it sends the message at a later time after uptsk
is done. This would be appropriate for unimportant messages. If uptsk needed to get an important
message out quickly, it could send a higher-priority message to a pass exchange at which uctsk
waited. This would result in a temporary priority boost for uctsk.

Chapter 8

174

Since uctsk was created with 0 stack size, it is a one-shot task. As such, it releases its stack while
waiting for the next message. This saves memory. However, uctsk does require a TCB, which
takes about 100 bytes of memory.

In the case where an operation is unique to a partition, using a child task makes sense. However,
if the operation is needed by more than one partition it may make sense to define a small,
special-purpose partition for this operation.

8.8 Creating SVC Calls

You will probably need to create some of your own SVC calls, at some point. For example, your
code may require changing I/O connections during operation. For example, if your processor has
a USB On-The-Go controller, switching from the USB host stack to the USB device stack
requires some GPIO calls. However, it is definitely undesirable to allow a utask access to the
GPIO regions – a hacker could cause serious trouble with this, such as redirecting outputs to do
the opposite of what they are supposed to. See sections 4.9.1 SVC Calls and 4.9.4 Custom SSTs
for information on creating SVC calls.

8.9 Portals

8.9.1 Creating a Free Message Portal
1. Create prtl.h file to define the SLOT, service header struct (SH), and client shell prototypes.

#define DEMO_SSLOT 6

typedef struct DEMO_SH { /* DEMO SERVICE HEADER */
 u32 fid; /* function ID */
 u32 p1; /* parameter 1 */
 u32 p2; /* parameter 2 */
 u32 p3; /* parameter 3 */
 u32 p4; /* parameter 4 */
 u32 ret; /* return value */
 void* caller; /* caller addr (debug) */
} DEMO_SH;

int demop_func1(u32 par, TPCS* tpch);
int demop_func2(u32 par1, u32 par2, u32 par3, TPCS* tpch);
…

2. Create svr.c file containing:

a. Portal server structure (pss) variable

 FPSS demo_pss;

b. Portal client list (pcl) with addresses of TPCS variables from the client app code (externed)

 extern TPCS demo_pcs;
 extern TPCS demo_pcs1;
 TPCS* demo_pcl[] = {&demo_pcs, &demo_pcs1};

Implementation

175

c. Portal init()

bool demo_init(u32 ssn)
{
 FPSS* psh = &demo_pss; /* demo_pss handle */
 TCB* demo_task; /* portal server task */

 if (mp_FPortalCreate(psh, demo_pcl, demo_pclsz, ssn, demoname, "demo_sxchg"))
 {
 /* create and start portal server task */
 demo_task = smx_TaskCreate((FUN_PTR)demo_main, DEMOS_PRI, 400,

SMX_FL_UMODE, "demo_task");
 if (demo_task)
 {
 mp_MPACreate(demo_task, &mpa_tmplt_demo);
 smx_TaskSet(demo_task, SMX_ST_IRQ, (u32)sb_irq_perm_uart, 0);
 demo_pss.stask = demo_task;
 smx_TaskStart(demo_task);
 return true;
 }
 }
 return false;
}

d. Portal exit()

bool demo_exit(void)
{
 /* shut down portal */
 ret &= smx_TaskDelete(&demo_pss.stask);
 ret &= mp_FPortalDelete(&demo_pss, &demo_pcl, MP_NPCL(demo_pcl));

 return true;
}

e. Portal server()

void demo_server(FPSS* psh)
{
 MCB* pmsg;
 DEMO_SH* shp; /* demo portal header pointer */

 while (pmsg = smx_PMsgReceive(psh->sxchg, (u8**)&shp, psh->ssn, SMX_TMO_INF))
 {
 switch (shp->fid)

 {
 case DEMO_ID_FUNC1:
 shp->ret = demo_func1(shp->p1);
 break;

Chapter 8

176

 case DEMO_ID_FUNC2:
 shp->ret = demo_func2(shp->p1, shp->p2, shp->p3);
 break;
 ...
 }

 smx_PMsgReply(pmsg);
 }
}

f. Portal server task main function

void demo_main(void)
{
 FPSS* psh = &demo_pss;
 demo_server(psh);
}

3. Create cli.c file for client shell functions that each send a command to the portal server to run
the corresponding API function.

#include "dprtl.h"

#pragma default_function_attributes = @ ".svc.text"

int demop_func1(u32 par, TPCS* tpch)
{
 mp_PTL_CALLER_SAV(pch);
 char* dp;
 DEMO_SH* shp;
 MCB* pmsg;

 if (pmsg = mp_FPortalReceive(pch, (u8**)&shp))
 {
 mp_SHL1(DEMO_ID_FUNC1, mtype, 0);
 dp = (char*)shp + sizeof(DEMO_SH);
 strcpy(dp, mp);
 shp->p2 = (u32)dp;
 mp_FPortalSend(pch, pmsg);
 return shp->ret;
 }
}

int demop_func2(u32 par1, u32 par2, u32 par3, TPCS* tpch)
{
...

4. Create pmap.h file to define mapping macros from API calls to client shells. For example:

#define demo_func1(par) demop_func1(par, DEMO_PCH)

Implementation

177

5. In your init code called by appl_init(), call the portal init function in svr.c, and in exit code
called by appl_exit() call the exit function in svr.c.

 demo_init(DEMO_SSLOT);
 demo_exit();

6. Create MPA template in mpa.c (ARMM7 shown; ARMM8 similar)

#pragma section="demo_code"
#pragma section="demo_data"
...
extern u32 democsz;
extern u32 demodsz;
...
MPA mpa_tmplt_demo =
{
 RGN(0 | RA("demo_code")| V, CODE | SRD("demo_code")| RSIC(democsz)| EN, "demo_code"),
 RGN(1 | RA("demo_data")| V, DATARW | SRD("demo_data")| RSIC(demodsz)| EN, "demo_data"),
 RGN(2 | RA("ucom_code") | V, CODE | SRD("ucom_code") | RSIC(svccsz) | EN, "ucom_code"),
 RGN(3 | 0x40011000 | V, IO | (9 << 1) | EN, "USART1"),
 RGN(4 | V, 0, "dynamic region"),
 RGN(5 | V, 0, "dynamic region"),
 RGN(6 | V, 0, "dynamic region"),
 RGN(7 | V, 0, "stack"),
};

7. Add sections to the .icf file

define exported symbol democsz = 0x___;
define exported symbol demodsz = 0x___;
...
define block demo_code with size = democsz, alignment = democsz {ro section .demo.text,

 ro section .demo.rodata};
define block demo_data with size = demodsz, alignment = demodsz {rw section .demo.bss,

 rw section .demo.data, rw section .demo.noinit};

define block rom_block with fixed order
 {..., block demo_code, ...}

define block sram_block with fixed order
 {..., block demo_data, ...}

Chapter 8

178

8.9.2 Creating a Tunnel Portal
The following shows the steps to create a tunnel portal.

1. Create prtl.h file to define the SLOT and TMO settings, service header struct (SH), and the
client shell prototypes.

#define DEMO_SSLOT 6 /* slot for pmsg region */
#define DEMO_CTMO SMX_TMO_INF /* client timeout */
#define DEMO_STMO 500 /* server timeout */

typedef struct DEMO_SH { /* DEMO SERVICE HEADER */
 u32 fid; /* function ID */
 u32 p1; /* parameter 1 */
 u32 p2; /* parameter 2 */
 u32 p3; /* parameter 3 */
 u32 p4; /* parameter 4 */
 u32 ret; /* return value */
 void* caller; /* caller addr (debug) */
} DEMO_SH;

/* TPMH is the tunnel portal message header */

#define DEMO_THDRSZ (sizeof(TPMH) + sizeof(DEMO_SH)) /* total header size */

int demop_func1(uint nID, TPCS* tpch);
int demop_read(void* buf, int size, TPCS* tpch);
…

2. Create svr.c file containing:

a. Portal server structure (pss) variable.

 TPSS demo_pss;

b. Portal client list (demo_pcl) which contains the addresses of tunnel portal client structures
(TPCSs) in the client code.

 extern TPCS demo_pcs;
 extern TPCS demo_pcs1;
 TPCS* demo_pcl[] = {&demo_pcs, &demo_pcs1};

c. Portal init()

bool demo_init(u32 ssn)
{
 TCB_PTR demo_svr = &pss->stask;
 if (mp_TPortalCreate(&demo_pss, &demo_pcl, MP_NPCL(demo_pcl), 0, "demo_portal",

 "demo_portal sxchg", 0))
 {
 /* create and start portal server task */
 demo_svr = smx_TaskCreate((FUN_PTR)demo_main, PRI_NORM, STACK_SIZE,

SMX_FL_UMODE, "demo_svr_task");

Implementation

179

 if (demo_svr)
 {
 mp_MPACreate(demo_svr, &mpa_tmplt_demo);
 pss->ssn = ssn; /* server slot number */
 pss->sid = DEMO; /* server id */
 pss->ssid = 0; /* no subserver */
 smx_TaskStart(demo_svr);
 return true;
 }
 }
 return false;
}

d. Portal exit()

bool demo_exit(void)
{
 u32 ret = true;

 /* shut down portal */
 ret &= smx_TaskDelete(&demo_pss.stask);
 ret &= mp_TPortalDelete(&demo_pss, &demo_pcl, MP_NPCL(demo_pcl), 0);
 return ret;
}

e. Portal server()

void demo_server(TPSS* ph)
{
 TPMH* mhp = (TPMH*)ph->mhp; /* msg header pointer */
 DEMO_SH* shp = (DEMO_SH*)ph->shp; /* file header pointer */

 switch (shp->fid)
 {
 case DEMO_ID_FUNC1:
 shp->ret = demo_func1(shp->p1);
 break;
 case DEMO_ID_FUNC2:
 shp->ret = demo_func2(shp->p1, shp->p2, shp->p3);
 break;
 case DEMO_ID_READ:
 shp->ret = demo_read((void*)ph->mdp, mhp->mdsz);
 break;
 case DEMO_ID_WRITE:
 shp->ret = demo_write((void*)ph->mdp, mhp->mdsz);
 break;
 ...
 }
}

Chapter 8

180

f. Portal server task main function

void demo_main(void)
{
 mp_TPortalServer(&demo_pss, DEMO_STMO);
}

3. Create cli.c file for client shell functions that each send a command to the portal server to run
the corresponding API function. See examples in mp_TPortalCall() and mp_TPortalSend() in
Appendix A: API which show how to handle different scenarios for parameters.

#include "dprtl.h"
#pragma default_function_attributes = @ ".demo.text"

int demop_func1(uint nID, TPCS* tpch)
{
 mp_PTL_CALLER_SAV(tpch); /* save the portal caller address in TCB */
 DEMO_SH* shp = (DEMO_SH*)tpch->shp; /* service header pointer */
 mp_SHL1(DEMO_ID_FUNC1, par1, ERROR_ID1); /* load service header with 1 parameter */
 mp_TPortalCall(tpch, 0, 0, DEMO_CTMO); /* send pmsg */
 return shp->ret; /* return received value */
}

int demop_read(void* buf, int size, TPCS* tpch)
{
 mp_PTL_CALLER_SAV(tpch);
 DEMO_SH* shp = (DEMO_SH*)tpch->shp;
 mp_SHL2(DEMO_ID_READ, 0, 0, 0); /* load service header with 2 parameters */
 #if NO_COPY
 mp_TPortalReceive(tpch, 0, size, DEMO_CTMO) /* single block left in pbuf */
 #else
 mp_TPortalReceive(tpch, (u8*)buf, size, DEMO_CTMO) /* copy multiple blocks to buf */
 #endif
 return shp->ret;
}
...

demo_write() would look the same as demo_read() except mp_TPortalSend() is called instead of
mp_TPortalReceive(). Only data block read uses mp_TPortalReceive(). All others use
mp_TPortalSend(). (mp_TPortalCall() uses mp_TPortalSend()).

Note that for data block read, the source/destination buffer address and the transfer size are
passed in the Receive/Send call. In the copy mode, data is copied from/to the buffer passed
to/from the portal buffer, and the server passes ph->mhp (field in TPSS) to the actual API call.
Size is stored in the message header (mhp->mdsz) which is passed to the API call.

Integers and pointers are easily passed in the SH.par fields, but to pass a string or to get data
returned in parameters requires special handling. See the examples in section 8.9.3 Tunnel Portal
Client Shells and Server Cases for Most Calls.

Implementation

181

4. Create pmap.h file to define mapping macros from API calls to client shells. For example:

#define demo_read(buf, size) demop_read(buf, size, DEMO_PCH)

5. In your init code called by appl_init(), call the portal init function in svr.c, and in exit code
called by appl_exit() call the exit function in svr.c.

6. In your app task that will use the portal, allocate a pmsg and call mp_TPortalOpen()

 /* open demo portal with pmsg from heap */
 demo_pcs->pmsg = smx_PMsgGetHeap(BLKSZ, (u8**)&demo_pcs->mhp, DEMO_CSLOT,

MP_DATARW, 0);
 u32 pri = smx_TaskPeek(demo_main, SMX_PK_PRI);
 mp_TPortalOpen(demo_pcs, DEMO_BUFSZ, DEMO_THDRSZ, DEMO_CSLOT, pri,

DEMO_CTMO, "demo_portal", "demo_portal ssem", "demo_portal csem");

7. At the end of the task (if it exits) or at a point where it no longer needs the portal, close it and
free the pmsg.

 /* close demo portal and release pmsg */
 mp_TPortalClose(demo_pcs, TMO);
 smx_PMsgRel(&demo_pchs->pmsg, DEMO_CSLOT, 0);
 demo_pcs->pmsg = NULL;
 demo_pcs->mhp = NULL;

8. Add a new case to mp_TPortalCallServerFunc() in SSMX\tportls.c:

 switch (fpsh->sid)
 {
 case DEMO:
 demo_server(fpsh);
 break;

9. Create MPA template in mpa.c (ARMM7 shown; ARMM8 similar)

#pragma section="demo_code"
#pragma section="demo_data"
...
extern u32 democsz;
extern u32 demodsz;
...
MPA mpa_tmplt_demo =
{
 RGN(0 | RA("demo_code")| V, CODE | SRD("demo_code")| RSIC(democsz)| EN, demo_code"),
 RGN(1 | RA("demo_data")| V, DATARW | SRD("demo_data")| RSIC(demodsz)| EN, demo_data"),
 RGN(2 | RA("ucom_code") | V, CODE | SRD("ucom_code") | RSIC(svccsz) | EN, "ucom_code"),
 RGN(3 | 0x40011000 | V, IO | (9 << 1) | EN, "USART1"),
 RGN(4 | V, 0, "dynamic region"),
 RGN(5 | V, 0, "dynamic region"),
 RGN(6 | V, 0, "dynamic region"),
 RGN(7 | V, 0, "stack"),
};

Chapter 8

182

10. Add sections to the .icf file

define exported symbol democsz = 0x___;
define exported symbol demodsz = 0x___;
...
define block demo_code with size = democsz, alignment = democsz {ro section .demo.text,

ro section .demo.rodata};
define block demo_data with size = demodsz, alignment = demodsz {rw section .demo.bss,
 rw section .demo.data, rw section .demo.noinit};

define block rom_block with fixed order {..., block demo_code, ...}
define block sram_block with fixed order {..., block demo_data, ...}

8.9.3 Tunnel Portal Client Shells and Server Cases for Most Calls
Writing the client shells and server cases for each portal call gets easier with experience. Best is
to find a similar case, then copy and edit it. This section shows some common examples.

General: In the mp_SHLn() macro, the n is the number of parameters for the function (not
including the PCH par). The last value in the macro is the best error value to return if the portal
operation itself (not the call) fails. A function that returns true/false would pass false; one that
returns an error code should return the most appropriate error code.

These all use mp_TPortalCall() which is a macro that maps onto mp_TPortalSend(). This is used
for most calls. The previous section shows data block transfers. The next section shows a more
complex case of data block transfers for APIs that transfer a number of items not bytes.

1. Simple Values (input) (e.g. int, char, bool, handle, etc.): Pass the values in order and
typecast to (u32) if necessary. These are passed in the service header (SH) par fields.

int sfsp_fseek(FILEHANDLE filehandle, long lOffset, int nMethod, TPCS* pch)
{
 mp_PTL_CALLER_SAV();
 SFSP_SH* shp = (SFSP_SH*)pch->shp;
 mp_SHL3(SFS_ID_FSEEK, (u32)filehandle, lOffset, nMethod, 1);
 mp_TPortalCall(pch, SFSP_CTMO);
 return shp->ret;
}

 Note that a FILEHANDLE is a pointer, which is treated as a value like an smx handle and
points to data on the server side not the client side. The corresponding server case is:

 case SFS_ID_FSEEK:
 shp->ret = sfs_fseek((FILEHANDLE)shp->p1, shp->p2, shp->p3);
 break;

 p1 is typecast back to (FILEHANDLE), and others are simply passed on.

2. Simple Values (output): (Actually these are pointers to simple values, which is necessary for
a function to return data via parameters.) These are returned via the portal buffer. Pass 0 for
the parameters, and then the server case passes pointers into the portal buffer. The client shell
then copies the values out of the portal buffer into the locations the parameters point to:

Implementation

183

int sup_FTDIGetStatus(uint iID, u8 *pModemStatus, u8 *pLineStatus, TPCS* pch)
{
 mp_PTL_CALLER_SAV();
 SUP_SH* shp = (SUP_SH*)pch->shp;
 mp_SHL3(SU_ID_FTDI_GET_STATUS, iID, 0, 0, -1); /* portal returns pars 2, 3 in msg buffer */
 mp_TPortalCall(pch, SUP_FTDI_CTMO);
 if (shp->ret != -1)
 {
 *pModemStatus = *(u8*)(pch->mdp);
 *pLineStatus = *((u8*)(pch->mdp)+1);
 }
 return shp->ret;
}

 The server case:

 case SU_ID_FTDI_GET_STATUS:
 shp->ret = su_FTDIGetStatus(shp->p1, (u8*)ph->mdp, (u8*)ph->mdp+1);
 break;

 Notice the values in this case are each a byte, so the second is one byte after (+1). For a
word, it would be (+4). Also notice the client shell only copies the values if the function was
successful.

3. Strings and Structures (input): These have to be copied into the portal buffer, and the server
side passes the address of each within the portal buffer. Use strcpy() and memcpy()
respectively.

FILEHANDLE sfsp_fopen(const char* filename, const char* mode, TPCS* pch)
{
 mp_PTL_CALLER_SAV();
 SFSP_SH* shp = (SFSP_SH*)pch->shp;
 char* mdp1 = (char*)pch->mdp;
 char* mdp2 = mdp1 + strlen(filename)+1;
 strcpy(mdp1, filename);
 strcpy(mdp2, mode);
 mp_SHL2(SFS_ID_FOPEN, (u32)mdp1, (u32)mdp2, NULL);
 mp_TPortalCall(pch, SFSP_CTMO);
 return (FILEHANDLE)shp->ret;
}

 Server case simply passes them on:

 case SFS_ID_FOPEN:
 shp->ret = (u32)sfs_fopen((const char *)shp->p1, (const char *)shp->p2);
 break;

4. Strings and Structures (output (and input)): memcpy() is used before and after the call for
input and output, respectively.

Chapter 8

184

int sfsp_findnext(int id, FILEINFO* fileinfo, TPCS* pch)
{
 mp_PTL_CALLER_SAV();
 SFSP_SH* shp = (SFSP_SH*)pch->shp;
 /* fileinfo is input and output par */
 void* mdp = (char*)pch->mdp;
 memcpy(mdp, fileinfo, sizeof(FILEINFO));
 mp_SHL2(SFS_ID_FINDNEXT, id, (u32)mdp, -1);
 mp_TPortalCall(pch, SFSP_CTMO);
 /* copy even if ret is -1 since pFindSpec and maybe other fields changed */
 memcpy(fileinfo, mdp, sizeof(FILEINFO));
 return shp->ret;
}

 Server just passes the pointer:

 case SFS_ID_FINDNEXT:
 shp->ret = sfs_findnext(shp->p1, (FILEINFO*)shp->p2);
 break;

5. Other (String In and Struct Out): Another detail is that since the struct has a fixed size,
putting it first in the portal buffer lets us get the offset to the other simply by sizeof() rather
than calling strlen(). Notice the pointers are passed in reverse order mdp2 then mdp1.

int sfsp_findfirst(const char* filespec, FILEINFO* fileinfo, TPCS* pch)
{
 mp_PTL_CALLER_SAV();
 SFSP_SH* shp = (SFSP_SH*)pch->shp;
 /* put fileinfo first to avoid strlen(), and so same as other sfs_find calls */
 /* fileinfo is output par only so no need to copy here */
 u8* mdp1 = pch->mdp;
 char* mdp2 = (char*)mdp1 + sizeof(FILEINFO);
 strcpy(mdp2, filespec);
 mp_SHL2(SFS_ID_FINDFIRST, (u32)mdp2, (u32)mdp1, -1);
 mp_TPortalCall(pch, SFSP_CTMO);
 /* copy even if ret is -1 since pFindSpec and maybe other fields changed */
 memcpy(fileinfo, mdp1, sizeof(FILEINFO));
 return shp->ret;
}

8.9.4 Tunnel Portal Data Block Transfers in Item Units
Data block transfers use mp_TPortalReceive() and mp_TPortalSend() as shown in section 8.9.2
Creating a Tunnel Portal. Special handling is needed if the API transfers a number of items
rather than a number of bytes. fread() and fwrite() are examples.

The client shells multiply size and items to pass to the portal, which operates in bytes, but then
for the return value, they reverse this to return the number of items read/written by dividing the
completed size by the item size. Notice they use the message header cmpsz field, which would
be less than the requested size if there were some problem:

Implementation

185

size_t sfsp_fread(void * buf, size_t size, size_t items, FILEHANDLE filehandle, TPCS* pch)
{
 mp_PTL_CALLER_SAV();
 SFSP_SH* shp = (SFSP_SH*)pch->shp;
 mp_SHL4(SFS_ID_FREAD, 0, 0, 0, (u32)filehandle, 0); /* portal server fills in pars 1, 2, 3 */
 mp_TPortalReceive(pch, (u8*)buf, size*items, SFSP_CTMO);
 return pch->mhp->cmpsz/size; /* ret num items (not bytes) completed */
}

size_t sfsp_fwrite(void* buf, size_t size, size_t items, FILEHANDLE filehandle, TPCS* pch)
{
 mp_PTL_CALLER_SAV();
 SFSP_SH* shp = (SFSP_SH*)pch->shp;
 mp_SHL4(SFS_ID_FWRITE, 0, 0, 0, (u32)filehandle, 0); /* portal server fills in pars 1, 2, 3 */
 mp_TPortalSend(pch, (u8*)buf, size*items, SFSP_CTMO);
 return pch->mhp->cmpsz/size; /* ret num items (not bytes) completed */
}

 Server passes to the actual calls as one item of total bytes:

 case SFS_ID_FREAD:
 shp->ret = sfs_fread((void*)ph->mdp, mhp->mdsz, 1, (FILEHANDLE)shp->p4);
 if (shp->ret != 1)
 mhp->errnum = TRANS_INC; /* alert mp_TPortalReceive() transfer incomplete */
 break;
 case SFS_ID_FWRITE:
 shp->ret = sfs_fwrite((void*)ph->mdp, mhp->mdsz, 1, (FILEHANDLE)shp->p4);
 if (shp->ret != 1)
 mhp->errnum = TRANS_INC; /* alert mp_TPortalSend() transfer incomplete */
 break;

8.9.5 Data Block Transfer Considerations
As mentioned in the note at the start of the Creating a Tunnel Portal, special care is needed for
data block transfer API calls.

Notice in the example in the preceding section that special handling is needed to set the message
header errnum field to TRANS_INC so that the portal can abort the operation in the case that this
is part of a transfer that the portal automatically split because the requested size is larger than the
portal buffer size. For example, if the original call to sfs_fread() in the application is 4KB but the
portal buffer is only 1KB, the portal automatically splits it into 4 separate reads. If one of these
reads fails, the whole operation is aborted by flagging TRANS_INC, as above.

Attention must be given to the return value. If it is a success/fail code, just return shp->ret in the
client shell. If it is a completion size, return the amount completed to that point, such as a partial
amount of a split transfer, using the cmpsz field of the message header. If the API call returns the
number of units rather than bytes, it is necessary to divide by the unit size, as shown in the
example in the previous section.

Chapter 8

186

Test the case of failure of an early chunk of a split transfer by simulating failure in the actual API
call (by patching the return value in the debugger just before the function returns), and step
carefully through the code using breakpoints in mp_TPortalSend() and mp_TPortalReceive(),
watching what is happening and ensuring the right value is returned.

Split transfer support is not appropriate for all portal types. It is suitable when success means the
full requested amount is returned. For a serial driver that may return fewer, the technique
described above doesn’t work, and the portal buffer should be the largest request size, to avoid
split transfers.

8.9.6 Portal Configuration Settings
Configuration settings are needed for client and server timeouts and slot numbers. Define
CTMO, STMO, SSLOT, and CSLOT constants for each portal as shown in SMX code. The first
three are characteristics of the portal and should be defined in the portal header file, e.g. fprtl.h
for smxFS. CSLOTs are specific to each client task that uses a portal, so they should be defined
in the client code.

Servers that wait on an event should have a maximum wait time for each such event. This is
called a timeout. CTMO should be chosen to be much larger than the largest server timeout,
since the purpose of CTMO is to detect that the server has failed or disconnected from the client.
This allows the client to initiate a recovery operation. The purpose of STMO is the same in
reverse – i.e. to allow the server to detect that the client has failed or abandoned the operation.
Although the client is occupied with the server, it is possible that it might make a call, such as
smx_MutexGet(), that could result in a wait. So STMO should be much larger than the largest
client timeout that could occur during a server operation started by the client. This allows the
server to abort the current operation and accept the next pmsg.

If CTMO or STMO are too small, they may interfere with normal operation, causing needless
problems. Avoiding this may require careful study. For example, flash disks can have very long
delays occasionally. On the other hand, it is not a good idea to set these timeouts to INF, for then
no recovery is possible.

8.10 Miscellaneous

8.10.1 Heap Calls
Due to the greater power of smx_Heap calls, they have extra parameters vs. the Standard C Lib
heap functions. For example,

void* smx_HeapMalloc(u32 sz, u32 an=0, u32 hn=0);

where an specifies the power-of-two block alignment required and hn is the heap number.

Application code changes can be minimized by defining heap macros, such as:

#define malloc(sz) smx_HeapMalloc(sz, 3, 2)

where 3 specifies the normal 8-byte alignment and 2 specifies heap 2, the heap being used in this
partition.

Implementation

187

8.10.2 Performance Measurements
The smxBase time measurement functions sb_TMInit(), sb_TMStart(), and sb_TMEnd() are
designed to make accurate performance measurements in pmode. sb_TMInit() is called
automatically during startup from idle/ainit. It determines the calibration constant sb_TMCal() to
eliminate the overhead of the start and end functions.

Unprivileged time measurement functions sbu_TMInit(), sbu_TMStart(), and sbu_TMEnd() are
provided to make accurate performance measurements in umode. The start and end functions use
the sbu_PtimeGet() function in svc.c, which does an SVC call. Call sbu_TMInit() from a utask
prior to using these functions in order to set sbu_TMCal to eliminate their overhead. Since there
is quite a bit more overhead on sbu_TM calls than on sb_TM calls, accuracy may not be as good.

8.10.3 Where Am I?
sb_IN_UMODE() and sb_IN_SVC() are useful in special situations. For example,
sb_IN_UMODE() == true means execution is in umode. It thus cannot be in an LSR or ISR.
IN_SVC() means that the current system service was called from umode.

8.10.4 Event Buffer
The Event Buffer, EVB, captures events for smxAware to display. EVB is defined in the linker
command file and put into sys_data. When debugging, it is desirable to make EVB as large as
possible in order to maximize traces. This can be done by determining how much SRAM is free
from the map file and increasing EVB by that much. If this is not enough, EVB can be moved
into DRAM, if available. However, that may impact performance since EVBLog functions are
called frequently.

8.10.5 Reset Vector
The reset vector (initial SP and IP) must be located at the start of internal flash. Since MpuPacker
reorders blocks for efficiency, the block it puts first must have the reset vector. The reset vector
is just the first 2 slots of the EVT, so in reset.c, we have created mini vector tables with just these
two entries that are put at the start of their respective code sections, e.g. .usbh.reset for
usbh_code. The placement and ordering are done in the .icf file like this:

define block usbh_code with fixed order, size = usbhcsz, alignment = usbhcsz
 {ro section .usbh.reset, ro section .usbh.text, ro section .usbh.rodata};

Notice “with fixed order” and that .usbh.reset is first. This has been done for what is likely to be
the biggest region block since MpuPacker locates the biggest region block first. If you create a
larger region block, be sure to include ro section .usbh.reset at its start. If this region block
includes another region block, include ro section .usbh.reset at the start of that block and put it
first.

8.10.6 ISRs and LSRs
As noted in section 4.8.3 Interrupts, ISRs are probably the weakest link in a well-partitioned
system. They can be manipulated by hackers from outside of the system. Therefore, it is best to
make ISR code short and rugged. To fortify ISRs, LSRs, and other vulnerable code, the
following ideas may be helpful:

Chapter 8

188

1. Callees perform validity checks on all parameters.

2. Callers perform validity checks on returns.

3. Range check pointers before using.

4. Put pads (i.e. known patterns) before and after buffers.

5. Check pads frequently to catch overflows.

6. Report errors and abort.

If done well, measures like these will make a hacker’s work more difficult and thus may thwart
his attack. Clearly it is practical to implement measures like these only on small amounts of
code. That is a good reason to keep ISRs and LSRs as short as possible. Any functions that can
be deferred from ISRs to LSRs should be, and any functions that can be deferred from LSRs to
utasks, should be.

8.10.7 Critical Sections
The introduction of umode results in changes to how methods that protect critical sections work.
As a consequence it may require making changes to legacy code. This section gives you detailed
guidance for each situation. For background information, please see section 6.2 Critical Sections.

Mutex: A mutex is the most common way to protect a critical section. It works to protect critical
sections in tasks against reentrancy by other tasks. It can be used to protect tasks against LSRs.
However, since LSRs cannot wait it does not work well for them.

smx_LSRsOff(): This is a more effective way to protect tasks against LSRs. It is better because it
blocks LSRs from running until the task is out of the critical section. Then the LSRs can run.
However, this service is not available for utasks; see SVC Call below for them.

smx_TaskLock(): Locking a task is an effective way to prevent reentrancy into its critical section
by another task. It is much faster than a mutex. But it does not protect tasks against LSRs, and if
the critical section calls a service that might suspend or stop the task, the lock is lost. Task lock is
implemented with a counter and thus can be called multiple times without harm, provided that
task unlock is called the same number of times to unlock the task.

Disabling Interrupts: This is the common approach to protect critical sections in tasks, LSRs, and
ISRs from ISRs. However, it does not work in umode! In umode, the processor ignores the cpsie
i and cpsid i. Hence, pmode code that relies on these for protection becomes unprotected when it
is moved to umode. This is easily overlooked, since the sb_INT_ENABLE() and
sb_INT_DISABLE() macros fail silently. To help deal with this problem, we have defined
alternate versions of the ENABLE and DISABLE macros in XBASE\barmm.h that stop the
debugger if called in umode. Set SB_ARMM_DISABLE_TRAP to 1 to use them.

Masking Interrupts: Typically, when and ISR and a task share a buffer, one is loading the buffer
and the other is unloading it. Hence, there is only one ISR to protect against. This can be
accomplished by masking the interrupt, which can be done from umode. To allow the utask to do
this, it is necessary to create an IRQ permission table, as follows:

Implementation

189

const IRQ_PERM sb_irq_perm_ns[] = {
 {61, 62}, /* Ethernet */
 {37, 37}, /* USART1 for terminal output */
 {0xFF, 0xFF}, /* terminator */
};

This enables IRQs 61 to 62 and 37 to be masked and unmasked. Each row specifies a range of
IRQs to allow, and the table is terminated with an entry of 0xFF’s. A good place to put IRQ
permission tables is at the end of irqtable.c in the BSP. Next, permit the task to use it:

smx_TaskSet(task, SMX_ST_IRQ, &sb_irq_perm_ns);

Then sb_MaskIRQ() and sb_UnmaskIRQ() can be used by this task to mask and unmask these
IRQs.

SVC Call: Study the code to determine what needs to be protected against. To protect umode
code from LSRs, it can be made into a SVC call. To protect against one or a few interrupts, mask
them as discussed in the previous note. If all interrupts must be disabled, one solution is make
the critical section an SVC call, which DISABLEs interrupts ahead of the critical section and
ENABLESs them after it. This works for utasks. ptasks can call the code directly.

8.11 Reducing Memory Waste for ARMM7

It is recommended that debugging be done with a test board having ample memory. This allows
work to progress without concern for inefficient memory usage. Otherwise, it may be necessary
to work with only portions of a system, at a time, or to frequently optimize memory usage.

8.11.1 Using MpuPacker
Due to ARMM7 region size and alignment requirements, region block gaps can be very large.
Hence it is important to minimize them. MpuPacker aids in this process. It is in the \BIN
subdirectory can be run from the command line.

The following are instructions for how to use it:

1. MpuPacker first opens a dialog box.
2. Enter the full path and name of the .icf and .map files or click the button at the end of

the line to browse to them. After the first run, these need not be entered again.
3. Check the Create Diagnostic File box, and then click the Optimize button.
4. Both MpuPacker.txt and MpuPackerDiag.txt will be created in the same directory as

the .icf file.
5. MpuPacker.txt shows the optimized block order for the collection blocks in the .icf file

as marked by MPUPACKER:COLL. Copy and paste these into the collection blocks
in the .icf to replace the original ones.

6. MpuPackerDiag.txt shows more information concerning block ordering, so you can
see the efficiency of block placement. In addition, it shows the unused memory in each
block, which is called a block tail. Reducing tails is discussed next.

Chapter 8

190

8.11.2 Reducing Block Tails
Block tails are potentially wasted memory inside of region blocks. A tail can be as large as the
subregion size of the block, minus one byte. In a particular test case, total ROM tails = 34,740
bytes, and total SRAM tails = 38,248 bytes. However, if available memory is not being
exceeded, spare memory might as well be distributed among block tails. This is because they
provide expansion memory for partition updates, thus allowing smaller and faster updates that
may not disrupt normal operation, except for the partition being updated.

As noted above, running MpuPacker produces an MpuPackerDiag.txt file that has a Block Tails
section. The section looks as follows:
rom_block
 addr tail subreg opt
 ---- ---- ------ ---
 ucom_code const 0x0800447a 0x1b86 0x1000 S
 sys_code uninit 0x08016e60 0x91a0 0x4000 S
 fs_code const 0x0802b994 0x66c 0x2000
 fsdp_code const 0x0802c774 0xc8c 0x400 R
 fsdd_code const 0x0802d400 0x6c00 0x4000 R
 usbhdp_code const 0x08034cc8 0x138 0x200
 fpu_code uninit 0x08035000 0x800 0x100 -

To reduce block tails, dDo the optimizations to the .icf file indicated in the opt column, and then
run the linker and MpuMapper again. The meanings are:

R Divide the region size by 2 because less than half of the region is being used. Also
restore the multiplier to 8/8. If less than 1/4 of the region size were initially used, it
would show as R after running again. Repeat the process until R no longer appears.

S Reduce n in the n/8 multiplier to disable more subregions. This can be done
iteratively, reducing by 1 each time until S no longer appears.

- Delete the region because it is empty.

The first time this is done it may take several iterations to optimize memory usage. However,
after that, as regions grow due to adding code and variables, the linker will complain if a region
is exceeded. It is usually easy to increase the region size and continue development.

8.11.3 Reducing Region Block Gaps
Gaps between region blocks can dramatically increase wasted memory, as shown by the
MpuPackerDiag.txt file:
Details for Region sram_block ARMv7 MPU Alignment
 Block sys_data Size 20000 6/8-size 18000 Start 20000000 End 20017fff *
 Block lcd_data Size 200 7/8-size 1c0 Start 20018000 End 200181bf *
 (gap) Size 240 Start 200181c0 End 200183ff *
 Block fpu_data Size 400 7/8-size 380 Start 20018400 End 2001877f *
 (gap) Size 3880 Start 20018780 End 2001bfff *
 Block fpd_data Size 4000 5/8-size 2800 Start 2001c000 End 2001e7ff *
 (gap) Size 1e40 Start 2001e800 End 2002063f *
 Block pb1_data Size 20c0 8/8-size 20c0 Start 20020640 End 200226ff

Implementation

191

 Total Gaps Size 5900

In this case the gaps total to 0x5900 bytes = 22,784 bytes! The MpuPackerDiag.txt file shows the
recommended optimum order for this collection block as:
Details for Region sram_block ARMv7 MPU Alignment
 Block sys_data Size 20000 6/8-size 18000 Start 20000000 End 20017fff *
 Block fpd_data Size 4000 5/8-size 2800 Start 20018000 End 2001a7ff *
 (gap) Size 1cc0 Start 2001a800 End 2001c4bf *
 Block pb1_data Size 20c0 8/8-size 20c0 Start 2001c4c0 End 2001e57f
 (gap) Size 280 Start 2001e580 End 2001e7ff *
 Block fpu_data Size 400 7/8-size 380 Start 2001e800 End 2001eb7f *
 (gap) Size 80 Start 2001eb80 End 2001ebff *
 Block lcd_data Size 200 7/8-size 1c0 Start 2001ec00 End 2001edbf *
 Total Gaps Size 1fc0

Simply reordering the blocks results in a reduction of gaps to 0x1fc0 = 8128 bytes – a savings of
14,656 bytes!

The replacement block shown in MpuPacker.txt:

define block sram_block with fixed order, size = sramsz*4/8, alignment = sdsz
 {block sys_data, block fpd_data, block pb1_data, block fpu_data,
 block lcd_data};

should be pasted into the .icf file in place of the initial block and the linker run again.

8.11.4 Using Plug Blocks
What if the above is not enough and memory is still being exceeded? After MpuPacker has done
its job, there may still be large gaps between region blocks, as shown above. This can be
remedied by defining plug blocks. These are blocks that are not used for regions, and thus can be
aligned on word boundaries.

It is recommended to put all non-runtime code and data into two plug blocks, as follows:

define block pb1_code with size = pb1csz, alignment = 4 {ro section .pb1.text, ro};
define block pb1_data with size = pb1dsz, alignment = 4 {rw section .pb1.bss,
 rw section .pb1.data, rw section .pb1.noinit, rw};

In this case, some non-runtime code has been put into .pb1.text, and ro brings in all remaining
code that is not in region blocks. Similar for data. Initially, the plug blocks can be kept at the
ends of collection blocks, such as:

define block sram_block with fixed order, size = sramsz*4/8, alignment = sdsz
 {block sys_data, block lcd_data, block fpu_data,
 block fpd_data, block pb1_data};

As design progresses, if available memory is exceeded, even using MPUPacker
recommendations, pb1_code and pb1_data can be split into smaller plug blocks that fit nicely
into the gaps. In this example, pb1_data = 0x20c0 bytes, which is too large for any of the gaps in
the optimized sram_block shown above. However, by redefining sections in the data, pb1_data
can be split into pb1_data, pb2_data, etc. blocks that nicely fit into the gaps. Clearly, doing this
takes time and is not recommended during debug, unless it is unavoidable.

Chapter 8

192

8.11.5 Reducing Region Block Sizes
Larger regions tend to waste more memory. For example, if a region size is 0x20000 then its
subregion size (1/8) is 0x4000 = 16KB. It may happen that the actual size is slightly over a
subregion boundary with the result that nearly all of the rest of the 16KB subregion is wasted.
There is nothing that the linker can do about this. The following techniques can be used:

1. The Tails section MpuPackerDiag shows all block tail sizes next to the subregion
size. If the tail is very small compared to the subregion, then this region block is a
good candidate for size reduction. In the case of a code partition, using more
subroutines might achieve the needed size reduction. In the case of a data partition,
reducing a buffer size or sharing a buffer might do the job.

2. If a spare slot is available in every partition template using the region, split the region
block into two smaller region blocks, such that the sum of their tails is smaller than
the original tail.

3. Split partitions into smaller partitions so that regions are smaller and the sum of the
resulting tail sizes is smaller than the original sum of the tail sizes. This is most easily
done by defining child tasks. (See parent/child task discussion in section 4.3.2 Using
Parent and Child Tasks)

8.11.6 Restructuring Regions
The linker will omit unreferenced code and data, but it cannot distinguish what each task or
partition needs. Hence, it may be necessary to do a careful analysis of each overly large region.
For example, it might be possible to divide a large region shared by TaskA and TaskB into
RegionA, used by TaskA, RegionB, used by TaskB, and RegionC, shared between them. TaskA
would use A and C, and TaskB would use B and C.

But suppose TaskA has only one available slot. This can be accommodated by including region
block C in region block A in the linker command file. Then TaskA would use region A
(including C) in its MPA, whereas TaskB would use regions B and C in its MPA. Now both
tasks can access region C, but neither can access the other’s private region, so task isolation has
also been improved. At the same time, a large region has been divided into 3 smaller regions,
which should reduce memory waste.

8.11.7 Handling Aligned Blocks within Aligned Blocks

A block may be defined to be a region for one task, but to be accessed by another task it must be
put inside a larger block that is defined as a region for that task. This typically occurs due lack of
an extra MPU slot for the second task. For example, ucom_code is used in utasks that have an
available slot, and it is included in sys_code for ptasks that do not. In order to prevent an
unnecessary gap within sys_code, put ucom_code first with fixed order:

define block ucom_code with size = ucomcsz*5/8, alignment = ucomcsz
 {ro section .ucom.text, ro section .ucom.rodata}

define block sys_code with fixed order, size = scsz*7/8, alignment = scsz
 {block ucom_code, ro section .sys.text, ro section .sys.rodata};

Implementation

193

This results in the following linker output:
 sys_code 0x21'2000 0x1c00 <Block>
 ucom_code 0x21'2000 0x1400 <Block>
 .ucom.text ro code 0x21'2000 0x340 ucom.o [1]

 …
 .text ro code 0x21'30f2 0x1e strcat.o [2]
 ucom_code const 0x21'3110 0x2f0 <Block tail>
 .sys.text ro code 0x21'3400 0x84 startup.o [1]

This results in a 0x2f0 tail, but no gap after (0x2f0 + 0x213110 = 0x213400) ucom_code. Note
also that ucom_code is aligned on sys_code. This is always the case for an inner region block
since its region size cannot be larger than the outer region block.

If more than one region block is included in an outer region block, the internal region blocks
should be in put order by decreasing size. However, gaps can still occur due to subregion
disables. If so, manual ordering within the larger block may be necessary. For example, if
decreasing block-size ordering is A, B, C, but C can fill the A to B gap, then A, C, B will give a
better result. An additional technique is to fill gaps with sections. For this purpose, sections can
be sized to better fill gaps. For example, if region ucom_code contains A, B, and .ucom.text, split
.ucom.text into .ucom.textA and .ucom.textB using section pragmas in the code, so that
.ucom.textA nicely fills the rest of the A to B gap after C, and .ucom.textB is put where it fits
best in ucom_code. This is possible because section sizes do not have to meet region
requirements, so they can be used as stuffing.

8.11.8 Reducing code and data sizes
If easier approaches do not achieve the size reduction goal, it may be necessary to make some
code changes. This may be well worth the effort if a region only slightly exceeds a subregion
boundary. For code regions, a few ideas to consider are:

• Refactor selected functions to reduce size and to improve performance.
• Reduce repeated code for less used functions by defining subroutines.
• Replace macros with subroutines.
• Be sure to use _pragma("inline=never") ahead of the above subroutines.
• Move out code not actually needed in a partition by using section pragmas. This

could be the case if some code is in a region just because it is in the same module,
but the code is actually used elsewhere, such as during initialization or exit.

• Move seldom needed functions to sys_code and access them via the SVC Handler
from umode – i.e. add to svc.c. Since the number of SVC functions is limited, it is
best to create a master function in which a parameter selects each function. This
way many functions can be moved out of a partition region. Total parameters for
the master function is limited to 7. Of course, this adds overhead to the functions.

For data regions, consider:

• Moving some data to a Task Local Storage, TLS – see Section 4.11.8 Task Local
Storage.

• Reducing buffer sizes where reduced performance is acceptable.

Chapter 8

194

• Sharing buffers rather than defining separate buffers. One way to do this is to
create a local heap, allocate buffers as needed, and free them when not needed.

• If there is a local heap, use it instead of static variables. It is helpful, in this case,
to define related variables as fields in structures and allocate blocks for the
structures in order to maximize heap efficiency.

• Move out data not actually needed in a partition by using section pragmas.

8.11.9 Conclusion
Obviously many of the above cures are labor intensive and should be done only if code or data
no longer fits within the installed memory in a system that otherwise is ready to be shipped.
However, they offer hope that memory waste due to using a ARMM7 MPU can be held below a
small percentage, thus allowing security to be improved even in tight-memory systems. In our
experience, we find that memory waste can be reduced to about 20% without using extreme
measures. If code rewriting and restructuring is permitted, it should be possible to go well below
20%.

However, if there is sufficient memory, it is better to have it distributed among partitions rather
than all at the end of each memory since this enables partition-only updates.

8.12 Prerelease Checklist

It is recommended to make a checklist of settings to change prior to release. Here are a few for
the list:

• Ensure SMX_CFG_SSMX_ENABLE and all portals (middleware and
application) are enabled by XX_PORTAL settings (xcfg.h, xpcfg.h, etc.).

• SB_ARMM_DISABLE_TRAP = 0 in barmm.h to restore the normal
DISABLE/ENABLE macros in barmm.h (versions with no DEBUGTRAP).

• MP_MPA_DEV = 0 in mpu.h for fast MPU loading and to eliminate the region
name field used for debugging.

• Tune down region sizes in mpa.c by changing RASR SIZE field e.g. (nn << 1).
Regions using RSIC() macro are tightly wrapping the code or data they contain.
Super regions using (nn << 1) may be spanning whole memories, so tune them
down to what is actually used. Check that I/O regions map the needed peripheral
ranges as closely as possible. See sections 8.5.3 I/O Regions and 8.5.4 Too Many
I/O Regions.

• Do subregion disables to optimize memory usage, according to section 4.3.3
Using ARMM7 MPU Subregions.

• Do code coverage testing to ensure there are no unexecuted sections of code
which might generate an MMF due to referencing inaccessible symbols or doing
non-permitted operations.

Implementation

195

8.13 Design Tips

The following tips may help to reduce design errors:

• Prefix utask names and their main code with “u”, e.g. utaskA, utaskA_main().
This helps to keep the actors straight so you know who is privileged and who is
not.

• Avoid static local variables. The linker may not put them where you expect.
• If a module has pcode and ucode, it is best to put the pcode first and follow it with

#include “xapiu.h”. Then put the ucode. See section 4.9.6 Mixed Code Modules
for more discussion and alternatives.

• If pcode follows ucode, use #include “xapip.h” ahead of it. It is ok to alternate
xapiu.h and xapip.h as many times as necessary.

• Using hexadecimal numbers for sizes and alignments in the linker command file,
helps to avoid errors — e.g. 0x800 instead of 2048. For a power of 2, only one
digit is permitted in the number and the digit must be 1, 2, 4, or 8. So a wrong
digit, like 5, stands out. Get a hex calculator if you don’t already have one.

• Make blocks just large enough to contain their section(s). As code or data grows,
the linker will let you know if a block overflows and you can increase the size of
the block.

• Defining a constant for a region size in the linker command file (e.g. fsdsz), and
then using it for region block alignment and size helps to reduce errors.

• Through the use of subregion disables there are only 4 possible block sizes, for
example: fsdz*5/8, fsdsz*6/8, fsdz*7/8, and fsdz*8/8. When a block overflows,
go to the next size and the SRD macro will automatically generate the correct
SRD pattern.

• If available memory is exceeded, use MpuPacker to suggest the most efficient
block order to reduce gaps.

• For ARMM7, reducing region sizes reduces alignment requirements and thus
results in more efficient memory usage. If an application no longer fits into a
memory, it may be necessary to define smaller partitions or more child tasks.

• If converting legacy pcode to umode, it is best to resist unnecessary code changes
until the code is running in umode. This way there are fewer changes that could
be causing a problem.

• If creating new code, it is best to not optimize the code until it is running in the
intended mode, for the same reason as above.

• If converting ptasks to utasks, after a ptask is running, include xapiu.h ahead of its
code so that it makes SVC calls instead of direct system calls. This will filter out
restricted system calls before switching to umode – one less problem.

• If a task needs to create other tasks and do other privileged operations, start it in
pmode, and after it finishes initialization, restart it in umode, as shown in section
4.10.2 From pmode to umode.

Chapter 8

196

• Special versions of sb_INT_DISABLE() and sb_INT_ENABLE() can be enabled
to do DEBUGTRAP if used in umode. Set SB_ARMM_DISABLE_TRAP to 1 in
XBASE\barmm.h. See section 6.2.2 Interrupt Disabling and Masking in Tasks.

• In a SVC function, for a system service that may suspend or stop on a heap
mutex, use an sb_SVCH macro. If the heap is initially busy, but then becomes
free before the timeout, these macros try again. See section 4.9.1 SVC Calls.

• IAR ILINK does not automatically order blocks to minimize gaps between them,
so it may be necessary to do so manually with the help of MpuPacker and the
fixed order keyword. See section 4.4.3 Block Ordering and 8.11 Reducing
Memory Waste for ARMM7.

• IAR ILINK does not automatically fill gaps with code and data that is outside of
regions, so it is necessary to create plug blocks and locate them in gaps.

• MPU_TYPE.DREGION indicates number of MPU slots. CM3/4 allow 8, CM7
allows 8 or 16.

8.14 Measurements

8.14.1 Size
The SecureSMX functions, if all are used, add about 8KB of code to SMX. The breakdown is:
without portals 4KB, tunnel portals 3KB, and free pmsg portals 1KB. These numbers exclude
portal shell functions and buffers. SecureSMX adds the sum of all MPA sizes to RAM and the
sum of all MPA template sizes to ROM. In addition, it adds the sum of all portal server and
client structures to RAM. It increases MCB sizes by 14 bytes and TCB sizes by 28 bytes. The
introduction of partitioning and portals will usually increase the number of tasks in a system. For
many of the new tasks, it is possible to use one-shot tasks, thus reducing additional memory
needed for task stacks.

8.14.2 General Performance
Execution overhead via the SVC exception for typical system services, such as smx_SemTest()
and smx_SemSignal() is about 100%. Percent overhead is less for longer system services, since
the overhead is a fixed amount of time per system service. Overhead for starting a task is about
25%. This includes loading the task’s MPA into the MPU, and for other MPU conditional code.
It is about 12% for task resumption and negligible for task suspension and stopping.

The main overhead for using the MPU is from calls to mp_MPULoad() at each task switch and
for making SVC calls. A counter can be added to mp_MPULoad() to see how often it runs. If
using smx_sst[] and SMX_CFG_DIAG is 1 in xarmm_iar.inc and xcfg.h, SVC calls are counted
in smx_sst_ctr[]. The entries correspond to the enum values in ssndx in svc.c. The counts can be
surprisingly high. For a 20MB file write to a thumb drive followed by a 20MB file read, we
recorded:

Implementation

197

[21] 10 smx_EQCount()
[33] 30926 smx_HeapFree()
[35] 30944 smx_HeapMalloc()
[63] 7 smx_MutexCreate()
[66] 284271 smx_MutexGet()
[68] 284271 smx_MutexRelease()
[87] 14 smx_SemCreate()
[88] 13 smx_SemDelete()
[89] 30895 smx_SemPeek()
[90] 30896 smx_SemSignal()
[91] 226406 smx_SemTest()
[93] 15512 smx_EtimeGet()
[96] 10245 smx_StimeGet()
[99] 3 smx_TaskCreate()
[130] 244 smx_SysPeek()
[141] 61873 smx_HeapAccessGet()
[149] 6 sb_DelayUsec()
[150] 195367 sb_IRQClear()
[151] 3611 sb_IRQMask
[152] 198978 sb_IRQUnmask
Total 1404492

The mutex, semaphore, and IRQ operations are very high because this was measured on STM32,
and the Synopsys USB host controller generates an extreme number of interrupts (many
thousands per second) because of its design. The number would be much lower for EHCI and
other controllers. The number of heap operations is also surprising and probably could be
reduced with minor design changes.

8.14.3 Thumb Drive Performance
Despite the above, performance reduction is not bad:

 read/write
no MPU 3274/2132 KB/s 100/100%
no portal 2854/1846 KB/s 87/ 87% 100/100%
FS portal 2714/1790 KB/s 83/ 84% 95/ 97%
FS+USBH portals 2541/1709 KB/s 78/ 80% 89/ 93%

The first column shows what was measured; the second column shows transfer rates; the third
column is percentages for portal + MPU; the fourth column shows percentages for MPU only.
No MPU means that fsdemo, smxFS, and smxUSBH were running with the MPU turned off.
MPU means fsdemo, smxFS, and smxUSBH were running in umode with the MPU turned on.
No portal means direct file system and USBH calls due to the fsdemo, smxFS, and smxUSBH
being in the same partition. Portal means file system calls via a portal with fsdemo and smxFS in
mutually isolated partitions and USBH calls with smxFS and smxUSBH in mutually isolated
partitions.

The first line shows a 13% reduction in performance due to turning on the MPU. This includes
the SVC calls shown in the previous table. Of this reduction only 2% is due to MPU loading

Chapter 8

198

during task switches. Using the smxFS portal results in another 3-4% performance reduction. In
this case, an SD card is being accessed. FS+USB reflects adding a chained portal from smxFS to
smxUSBH in order to access a thumb drive. This shows another 4-5% reduction in performance.

Overall, there is a 22% reduction in performance for file reads and a 20% reduction in
performance for file writes. As mentioned in the previous section a lot of the overhead is due to
the high number of SVC calls due to the particular USB host controller used on STM32. Even
so, these are good results considering the large improvement in security due to putting fsdemo (a
prototype application) into an isolated umode partition, putting smxFS and smxUSBD each into
isolated umode partitions, and communicating between the three partitions via tunnel portals.
The three partitions are fully isolated from each other and from all other partitions in the system.

8.14.4 SD Card Performance
Performance has been measured for the smxFS demo with an SD card. The following are KB/sec
read and write times:

Direct: R/W = 7305/3060
No-copy: R/W = 6845/2935 = 93%/97%
Portal 4096: R/W = 6780/2940 = 92%/97%
Portal 512: R/W = 3780/2080 = 51%/69%

Direct is the direct call. The other three are via an smxFS portal. No-copy uses a 4096-byte pbuf
as the working buffer in the client. Portal 4096 uses a 4096-byte pbuf, and Portal 512 uses a 512-
byte pbuf. The demo continuously writes, reads, and compares a 20MB file. The above
measurements are averages over 250 second periods. Read and write performance is very good
in both 4096 byte pbuf cases, but much less for a small pbuf. However, in a tight memory
system, this performance reduction might be acceptable.

If not, then the direct call API must be used with consequent loss of isolation, or the application
(e.g. fsdemo) and the smxFS partitions must be merged. In this case some higher-level API
would be presented to the rest of the system via a portal for the combined partition.

8.14.5 ARMM7 Memory Waste
Due to the ARMM7 MPU requirement that regions be power-of-two sizes and that they be
aligned on their sizes, memory waste can be substantial. However, in an actual middleware port
of about 20,000 lines of code, wasted code space was only 14.5% and wasted data space was an
even smaller 2.5%. These numbers are not bad considering the importance of security and
reliability as well as the other benefits of isolated partitions. However, other systems may
experience much worse results and it may be necessary to work with larger memories during
development or to put some code and data into external memory, which may result in
performance degradation. See section 8.11.1 Using MpuPacker to minimize waste.

Implementation

199

8.15 EWARM Tool Issues

EWARM does a very good job of supporting the features of SecureSMX. However, it was not
designed for partitioning, hence there are some issues:

• Extra Options such as section name changes applied to a top node in the project must also
be applied to sub nodes that have their Override inherited settings box checked. The
“privileged” subfolders in the App project help to deal with this problem.

• #pragma default_function_attributes and #pragma default_variable_attributes have some
limitations and may cause errors locating things. They cannot locate string literals, which
are always put into .rodata by the compiler. See 4.5.4 String Literals for solutions to this.

• const in a variable definition might be ignored by the compiler, so locating it in an rodata
section might be wrong.

• The linker might complain that a memory overflows even though you haven't moved or
added any significant code or data. If you temporarily make the memory region bigger by
increasing the end address in the mem statement, you can get it to link and then inspect the
.map file to try to find out what is wrong. You may see it has reordered things, and
alignment requirements may have caused big gaps, for example.

• The map file does not show symbols ordered by address and sections, which makes it
difficult to check that things are located properly. MpuMapper fixes this. See 4.6.3
MpuMapper.

201

Chapter 9 Debugging

This chapter focuses on how to deal with debug problems unique to using partitioning, portals,
and other SecureSMX features.

9.1 Using Configuration Constants

Debugging code is more challenging when security features are enabled. For this reason,
configuration constants are provided to selectively disable some security features. Once basic
security features are working well, the disabled security features can be individually enabled to
test the functionality that they control. The following are the security configuration constants that
are available:

9.1.1 SMX_CFG_SSMX
When 1, this enables all MPU and security features. When 0, all of these features are disabled,
and the code for them is omitted. SMX_CFG_SSMX_ENABLE must also be 1 to turn on the
MPU (see below). The following configuration constants are disabled if SMX_CFG_SSMX is
off: SMX_CFG_SSMX_ENABLE, SMX_CFG_PORTAL, SMX_CFG_RTLIM, and
SMX_CFG_TOKENS.

9.1.2 SMX_CFG_SSMX_ENABLE
When 0, the MPU is not turned on even though SMX_CFG_SSMX is 1. This is useful during
debugging if MMFs are interfering with finding problems. It can also be useful to determine if a
problem is caused by the MPU, such as interrupts not being disabled in umode. SVC calls are
also disabled if this is 0, which makes debugging easier since system calls are direct, and the call
stack isn’t broken by the exception. However, if the problem goes away and use of SVC calls is
needed to reproduce it, they can be easily enabled with the MPU off by a config setting at the
USER tag in xapiu.h.

9.1.3 MP_MPA_DEV
Enables names for MPA regions and for static slots. Names are very helpful when looking at
MPAs in global and local variable windows and also for use with smxAware. MP_MPA_DEV
also selects a slower form of MPU loading that checks for MPA errors. MP_MPA_DEV should
be 0 for final code in order to speed up MPU loading on task switches and to save memory by
eliminating unnecessary names.

9.1.4 SMX_CFG_PORTAL
Enables use of portals. If 0, portals are disabled and portal code is omitted. When developing a
portal, it is convenient for the client and server to initially be in the same partition or to have

Chapter 9

202

common regions such that the client and server can be operated with or without the portal.
SMX_CFG_PORTAL can be used to select between these modes. Once the portal code is
running properly, the partitions can be isolated from each other.

9.1.5 SMX_CFG_RTLIM
Enables runtime limiting. Allows disabling runtime limiting during debugging to determine if a
problem is being caused by it.

9.1.6 SMX_CFG_DIAG
Enables a system service counter to keep track of how many times the service has run. These are
a good way to spot imbalances – if a system service is running far more often than other services,
there is probably a problem. See section 8.14.2 General Performance.

9.1.7 SMX_CFG_TOKENS
Enables tokens to be used to control access to smx objects.

9.2 Debugging Techniques

9.2.1 Keep a Debug Log
It is helpful to keep a debug log as you go, such as:

->”->PMR->PSvr->ut2c: pmsg=5dd0, dp=5d8, pass ->tpA6: rxch->0, sxchg->ut2s, pmsg=5dd0,
fl=5df0,->tpAEnd: ut2s->ssn=0 wrong, Fixed, mpap=548. rok

(You are not expected to understand this.) The idea is to keep track of the path followed (e.g.
->”->PMR->PSvr->ut2c), what was observed (e.g. pmsg=5dd0), and what was “fixed” (ut2s-
>ssn=0 wrong). The nature of this work is that there are frequent task switches due to the
introduction of tasks for partitions, portals, child tasks, etc. Each time a task switch occurs, the
call stack is lost, so it is easy to get lost. A solution to this is to run to a starting breakpoint, then
trace forward using breakpoints or run-to-cursor’s in the subsequent tasks and also to keep a
debug log, so you ”remember” where you came from and where you are going.

9.2.2 Buy a Tracing Tool
Another solution is to invest in a tracing tool such as IAR I-jet Trace, which allows you to look
at the history of code that executed up to the problem. I-jet Trace is used in place of an I-jet
debug probe. It is a more expensive unit with a large memory to store execution history. It
requires ETM support on the processor and board. It can be configured to start, end, or center the
trace on the trigger condition, such as a breakpoint. It correlates the disassembly trace with the C
code. You can navigate forward and backward through the trace and into or over functions.
Unfortunately, SVC calls seem to confuse the navigation, so when going backward at the trace
level, it will not step over calls that make an SVC call. As a consequence, it is necessary step
backward through all the code before the SVC call point of return, even the SVC handler, itself.

9.2.3 Finding MMFs
Although MMFs are theoretically helpful for finding software bugs such as uninitialized
pointers, etc., it can be difficult and frustrating to figure out what has caused the latest MMF.

Debugging

203

The sections that follow are intended to help you with this process. See also Eliminating MMFs
in 7.2.2 pd2.

9.2.4 MMF Storms
When isolating a task, you are likely to experience an MMF storm, if not a downright blizzard,
due to references that are outside of the regions you have assigned to the task. This is normal and
is worse for utasks than ptasks because ptasks have the sys_code and sys_data regions, which are
large. It may seem that the MMFs will never end. All you can do is to keep plodding along,
finding and fixing MMFs. There is an end to this tunnel, so be patient.

9.2.5 Using Debugger Windows
During normal operation, an MMF is directed to the smx_MMF_Handler in xarmm_iar.s.
However during debug it is directed to MMF_Stop() in vectors.c. The latter simply stops and
does not switch to the main stack, as does the smx_MMF_Handler(). As a consequence, the call
stack leading up to the MMF is visible in the call stack window and you can see what function
caused it. Double-clicking on that function takes you to the instruction causing the MMF.

In addition, the Fault Exception Viewer (new in C-SPY v8.20) shows what type of violation
occurred (data or code) and provides the data address if it was a data violation. It also provides
the instruction address causing the MMF. By entering this address into the “Go to” box at the top
of the Disassembly window, you can see the actual assembly language instruction that caused the
MMF. Generally, looking at the C statement is not sufficient.

If you are working with an older version of C-SPY, open System Control Block (SCB), in the
Registers window. The CFSR register in it shows the cause of this fault. (See ARM Application
Note 209.) The PC register points to the faulting instruction. The MMFAR register in SCB
shows the address of a data violation, if any.

Study the faulting assembly instruction to see what memory it attempts to access and compare to
the MPU regions for the current task. The smxAware MPU display in its Text window is very
helpful with this because it shows the starting and ending addresses and the attributes for each
region.

If you are not using smxAware, the Memory Protection Unit in the debugger’s Registers window
allows looking at MPU registers. In order to see a specific slot, enter its number into MPU_RNR.
Then RBAR and RASR or RLAR will display the desired region. Clicking on the +’s reveals the
fields. Unfortunately, only one region can be seen at a time. With smxAware, the entire MPU or
an entire MPA can be seen at once. This makes it much easier to verify that a particular address
is not covered.

In some cases, you may find an attribute violation (e.g. trying to write to DATARO or to access
PDATARW in umode). This requires a code fix. However, you may have discovered a latent
bug, which needed to be fixed anyway.

For more discussion of how to debug MMFs, see Eliminating MMFs in section 7.2.2 pd2.

Chapter 9

204

9.2.6 The Handle Problem
Why might:

smx_SemSignal(sema);

cause an MMF when

smx_SemSignal(semb);

does not? It may be that semb is defined in a current task region and sema is not. sema was
probably defined in pmode or in another partition. Why does this matter? If you look at the
disassembly for SemSignal(sema), you will see something like this:

LDR R0, [PC, 0x830] ; sema
LDR R0, [R0]
BL smx_SemSignal(struct SCB *)

Remember that sema is a handle. That means it is a memory location that stores the address of
the sema control block – i.e. it is a special pointer. The first instruction above loads the address
of sema into R0. This is ok, but the second LDR attempts to read this address, which is outside of
the MPU regions. That is what causes the MMF.

In order to correct this problem, you must define an alias handle, semaa, for sema in a region
that the current task can access:

SCB_PTR semaa;

Then in code that has access to both handles (probably pcode), you need to load the alias handle
after sema has been created:

semaa = sema;

This may seem so simple, why belabor it? Because this problem is certain to get you sooner or
later.

In general, when an object is created in one partition and used in another, the second partition
needs an alias handle. This is a location in the second partition that stores the pointer to the
object’s control block. The control block, itself, need not be in the second partition because it is
accessed only by smx in pmode, and smx has access to all sys_data. For examples of alias
handles see the csem, ssem, and sxchg fields in portal control structures.

9.2.7 Fixing an Easy MMF
Typically, you will find that a function or a variable that the current task is attempting to access
is not in the task’s MPU regions. This is fixed by adding the function or data to the appropriate
region of the task’s MPA template. For a pmode task, this often involves adding functions or
variables that you did not realize the task needed (e.g. C library calls and BSP functions). For a
umode task, it often involves moving functions from sys_code and variables from sys_data to
regions accessible by the utask, such as ucom_code and ucom_data

It often occurs that some variables or functions are needed in two regions. But they cannot be in
two places at once. The solution to this is to put them into a smaller region, then include the
smaller region in the larger region, such as the following:

Debugging

205

define block cp_data with size = cpdsz*5/8, alignment = cpdsz {block cp_heap,
 rw section .cp.data, rw section .cp.bss};

…
define block sys_data with size = sdsz*5/8, alignment = sdsz, fixed order
 {block EVT, block CSTACK, block mheap, block ucom_data, block cp_data,…

In this case, the cp_data region is needed by both the cp partition and by ptasks.

9.2.8 Region Overlaps
Region overlaps cause difficult problems to find, because the address of a variable or a function
is in an MPU region for the current task. Hence, it seems that nothing is wrong.

For ARMM7, suppose that region 6 overlaps region 5 by one subregion. Then region 6’s
attributes take precedence over region 5’s attributes in that subregion, because region 6 has a
higher number than region 5. So if region 6 is read-only and region 5 is read/write, an attempt to
write into the overlap area of region 5 will cause an MMF. This is can be a serious problem
because it may seldom occur. Suppose, for example, that within the region overlap there are just
a few variables in region 5 that are rarely accessed. Then MMFs will seldom occur.

For ARMM8, if two regions overlap, an MMF occurs only when an access is attempted to the
overlap area. So the system can be running fine and suddenly have an MMF due to a rare access
to a tiny overlap area. In this case attributes do not matter.

Both of the above are potential Achilles heels for systems being shipped, since either problem
can easily escape even through testing.

smxAware is the best tool for finding this problem – it flags region overlaps in both its MPU and
its MPA displays. You just have to remember to look.

9.2.9 Reversing Course
If umode restrictions are hindering debugging of a task or partition, you may wish to temporarily
return the task or partition to pmode. Or maybe the design has changed, and you want to
permanently return it to pmode.

To return a utask to operation as a ptask, remove the SMX_FL_UMODE flag in
smx_TaskCreate() or comment out:

smx_TaskSet(utask, SMX_ST_UMODE, 1);

if it is being used and comment out #include “xapiu.h” in its module(s). Also, go back to the
MPA template that was being used in pmode, which includes the sys_code and sys_data regions.

Alternatively, try setting SMX_CFG_SSMX_ENABLE to 0 temporarily so the MPU is not
enabled and direct system calls are made instead of SVC, so the call stack isn’t broken. See
section 9.1.2 SMX_CFG_SSMX_ENABLE

Chapter 9

206

9.2.10 Portal Debugging
Loss of the call stack due to isolating the client and server partitions causes a problem when
debugging portals. The problem is that while tracing operation in the server it is not possible to
see the origin of the operation in the client. To avoid this problem, we recommend that during
the initial debugging of a new portal to combine the client and server partitions into a single
partition or to use common regions between them. Then, by disabling or enabling the map header
file, e.g. #include “pmap.h” and remaking the project, it is possible to quickly switch between
direct calls or portal calls.

Once the portal is operating correctly, the client and server partitions can be separated. This will
usually result in a host of MMFs to be tracked down and fixed. When that has been done,
separation is complete.

After the client and server partitions have been separated, there may be times when it is
necessary to be able to go back into the client and trace through to the server. To do this, run to
the point of interest in the server, and then use the caller field in the service header of the pmsg.
(To get this, if you are stopped in the function called via the portal, e.g. some_func(), then in the
call stack window, double click on the server function (which should be one below some_func),
and in it add shp to the watch window and expand it to see the caller. If it’s not named shp, it is
whatever points to ret, p1, p2, etc in the call, e.g. xxx->p1.) Enter this address into the
disassembly window. What you should see is an instruction like:

BL some_func(int, …

at the cursor. Run to the line after it for the call stack window to show the calls leading up to it.
Or put a breakpoint on this line and run from the beginning. When the debugger stops on this
breakpoint, you can then step into the portal call to see what is loaded into the service header,
then continue on into the server to find what is wrong. While in the client, enter smx_ct in the
watch window to see what the current task is. Alternatively, the current task can be determined at
the server side by opening the smxAware GAT Event Timelines, clicking the +>| (Zoom in Max)
button, and finding the last task to run using the portal other than the server task.

When deploying a new driver for a middleware partition, it often happens that certain hardware
“features” must be programmed around. If these features have time dependencies debugging
through a portal is likely to be too clumsy. In such cases restoring the direct call API becomes
necessary. SMX middleware portals can be disabled using the settings in XSMX\xpcfg.h, such
as:

#define SFS_PORTAL 0 /* enable smxFS portal */

and then remaking the project. This excludes the mapping header file so that direct calls are
made, and it removes code related to creating and using the portal. Note that it is also necessary
to merge the client and server partitions or to use common regions between them.

Debugging

207

9.3 Using smxAware Security Features

The following highlight smxAware features used to help debug SecureSMX-based software. For
full information on smxAware, see the smxAware User’s Guide.

The first three displays discussed below are in the smxAware Text window.

9.3.1 MPU Display
This displays the MPU for the current task. At the top, MPU ON/OFF, BR ON/OFF, privileged
or unprivileged mode, and MSP (main stack) or PSP (task stack) are shown. Following this,
active region overlaps and adjacent regions are shown. Both can cause problems. As a project
progresses, the ordering of regions is likely to change and require careful attention. Next is
display of the MPU regions. The following is a partial ARMM7 MPU display (ARMM8 is
similar):
 Current Task: (fs_reader_writer0) 0x20013420
 MPU ON BR ON CPU: UNPRIV MODE PSP
 MPU[0] Enabled rbar 08030000 rasr 0602e017 "fsdp_code"
 Start 08030000
 End 08030fff
 Subreg Dis 5,6,7 (Size 0x200)
 Sub Start 08030000 (Size 0xa00)
 End 080309ff
 Attributes CODE
 MPU[1] Enabled rbar 20034001 rasr 1302e019 "fsdp_data"
 Start 20034000
 End 20035fff
 Subreg Dis 5,6,7 (Size 0x400)
 Sub Start 20034000 (Size 0x1400)
 End 200353ff
 Attributes DATARW
 MPU[2] Enabled rbar 0804a002 rasr 0602c019 "ucom_code"
 Start 0804a000
 End 0804bfff
 Subreg Dis 6,7 (Size 0x400)
 Sub Start 0804a000 (Size 0x1800)
 End 0804b7ff
 Attributes CODE
 ...
 MPU[7] Enabled rbar 2000a007 rasr 1302c115 "stack"
 Start 2000a000
 End 2000a7ff
 Subreg Dis 0,6,7 (Size 0x100)
 Sub Start 2000a100 (Size 0x500)
 End 2000a5ff
 Attributes DATARW

When MP_MPA_DEV is 1, region names are displayed, as shown above. These names are not
actually in the MPU; they are in the current MPA.

Chapter 9

208

9.3.2 MPA Displays
Each displays the selected task’s MPA. The current task name is in parentheses. Its MPA should
be the same as shown in the MPU display. The following is a partial ARMM7 MPA display
(ARMM8 is similar):
 MPU Regions for this task
 MPA[0]/MPU[0] rbar 08030010 rasr 0602e017 "fsdp_code"
 Start 08030000
 End 08030fff
 Subreg Dis 5,6,7 (Size 0x200)
 Sub Start 08030000 (Size 0xa00)
 End 080309ff
 Attributes CODE
 MPA[1]/MPU[1] rbar 20034011 rasr 1302e019 "fsdp_data"
 Start 20034000
 End 20035fff
 Subreg Dis 5,6,7 (Size 0x400)
 Sub Start 20034000 (Size 0x1400)
 End 200353ff
 Attributes DATARW
 MPA[2]/MPU[2] rbar 0804a012 rasr 0602c019 "ucom_code"
 Start 0804a000
 End 0804bfff
 Subreg Dis 6,7 (Size 0x400)
 Sub Start 0804a000 (Size 0x1800)
 End 0804b7ff
 Attributes CODE
 ...
 MPA[7]/MPU[7] rbar 2000a017 rasr 1302c115 "stack"
 Start 2000a000
 End 2000a7ff
 Subreg Dis 0,6,7 (Size 0x100)
 Sub Start 2000a100 (Size 0x500)
 End 2000a5ff
 Attributes DATARW

The display is similar to the MPU display, except each region’s MPA/MPU slot number is
indicated, which will be different if the MPU has static slots. In that case, the static slots are
displayed at the end of the MPA after a separation line.

9.3.3 Tasks Display
The Task display shows task information and its full TCB, including additional fields for
SecureSMX. Clicking on the + for flags, reveals all task flags.

9.3.4 Memory Map Window
This window is helpful for debugging SecureSMX-based software. It displays a graphical
memory map overview showing MPU regions in memory bars. It allows zooming in and out on
any memory area to reveal what it is used for (e.g. stack t2s, free heap, MPU[1] sys_code) and if
it is pmode or umode. In addition, region overlaps are flagged. A Detail window shows function,

Debugging

209

starting address, ending address, and size. This window is helpful to visualize how memory is
being used.

9.3.5 Portal Events
Portal calls are displayed in the Event Buffer in pink. The portal name is shown for the pch and
psh parameters to make it easier to associate the calls made for a particular portal when studying
the buffer. This results from the PortalCreate() and PortalOpen() functions both adding entries to
the handle table for psh and pch, respectively. (The name will only show for pch while the portal
is open since PortalClose() removes it from HT, and it will only show for psh while the portal
exists since PortalDelete removes it from HT.) Studying the event buffer is very helpful to see
how the portal works and what system calls it uses.

The Event Timelines graph shows portal operations as small pink rectangles within task bars.
This helps to visualize portal activity. Putting the Detail cursor on a rectangle shows the portal
function and its parameters.

9.4 Multitasking Issues

Converting to SecureSMX is likely to add more tasks to a system, due to partitioning and portals.
Thus multitasking debug skills become even more important. A basic problem is that one cannot
step from one task to another in the way that one steps from one function to another. It is
necessary to anticipate where control will go, then set a breakpoint or run-to-cursor at that point.
However, other tasks may intervene between the start and end points due to interrupts and
preemptions. Even worse, the end point may have been reached by a different path than
expected. This can be very confusing.

The smxAware Graphical Analysis Tool (select “Graph” on the smxAware pull-down menu)
enables you to see what actually happened and thus clarify why things are not as expected. Using
it helps to see where you can take actions so that the sequence of events goes as expected. Then
you can step through the target task and fix the problems you are after.

Sometimes it necessary take small steps rather than big leaps. It often is helpful to put a
breakpoint in the scheduler just past where smx_ctnew is started to see if it is the task you expect
to run next. Don’t put a breakpoint in code used by multiple tasks. Instead put it at the place in
the task code that calls that code.

9.5 Pay Attention to Errors

All SMX modules do extensive error monitoring and reporting. To benefit from this, keep a
Watch window open showing smx_errno, sb_errno, as well as key variables such as smx_sched,
smx_srnest, smx_ct, all tasks of interest to you, etc. When an error occurs that stops the system,
look at the errno’s to see what happened. It also helps to have a terminal connected to the
console output UART in your system to display error messages.

For example, all return values, especially from system calls should be tested before use.
However, few programmers do this, so in the following case:

Chapter 9

210

 ut2a = smx_TaskCreate(tm06_ut2a, TP2, 300, 0, "ut2a");
 smx_TaskStart(ut2a);

If smx_TaskCreate() fails, ut2a will be NULL. Then smx_TaskStart(ut2a) will abort, report
SMXE_INV_TCB and branch to smx_EM(), which will output "smx INV TCB" to the console.
If you are paying attention to the watch window or terminal, you will know right away that task
ut2a is not running, and that is why your breakpoint in it is not triggering. Otherwise you will
probably waste time trying to figure out what is wrong with task ut2a or some other task, not
realizing that ut2a is not even running!

9.6 Debug Tips

Most of these are covered elsewhere, but it helps to have a brief list of what can go wrong when
debugging:

• MMF first things to check using debugger register window and smxAware MPU display:
Ensure the instruction pointer is in a code region of the MPU, a data reference is in a data
region of the MPU, and the stack pointer is in the stack region of the MPU.

• MMF for ARMM7 can occur even though an address is in an MPU region, if attributes
are wrong (e.g. PCODE from umode code) or if the region start is not properly aligned.

• MMF for ARMM8 when an access is made to an area of overlapping regions. A region
overlap does not cause an MMF until access to an address in the overlap area is
attempted. Hence the MMF appears to be due to an out-of-bounds access. However, the
smxAware MPU window will indicate that there is a region overlap, which is the true
cause of the MMF. Region overlap is most likely to occur if regions are defined with hard
addresses rather than by the linker. Otherwise overlapping regions can occur due to
loading dynamic regions such as stacks and pmsgs.

• MMF for ARMM8 when a region is accessed that is not a multiple of 32. To avoid this
make sure that all size definitions in the linker command file are in hexadecimal and end
in 0x00, 20, 40, 60, 80, A0, C0, or E0.

• MMF in C library code: A difference in optimization level (such as in Debug and Release
targets) may cause the linker to use a different version of a C library function, such as
memcpy. Then the object file for this version must be added to the appropriate region in
the linker command file.

• MMF on task switch: The task stack may be outside of MPU regions. In this case, even
though the task main code is in an MPU region, it cannot be reached.

• MMF with BR ON: Although BR ON allows accessing all installed memory, MPU
region attributes prevail over default attributes.

• MMFs too distracting: MPU operation can be temporarily disabled by setting
SMX_CFG_SSMX_ENABLE to 0 in xcfg.h and in xarmm_iar.inc and rebuilding
everything. See section 9.1.2 SMX_CFG_SSMX_ENABLE.

• Hard Fault: Occurs due to calling an SVC instruction with interrupts disabled. Check that
PRIMASK == 0 and that BASEPRI == 0.

• Hard Fault: Occurs due to an SVC from an SVC or an SVC from an IRQ since the SVC
must run immediately, but it can only preempt lower priority exceptions.

Debugging

211

• Hard Fault: ISRs must use direct system calls not SVC system calls because they have
higher priority than the SVC Handler.

• Hard Fault: Occurs if an MMF occurs in an exception handler with the same or lower
priority. This is called fault escalation. Note that sb_IntCtrlInit() sets priorities of MMF,
BF, and UF to 0, which is the highest configurable priority, so an MMF occurring in BF
or UF would escalate to HF. Likewise, exceptions with effective negative priorities are
higher than 0, so an MMF in one of them would also escalate to HF. Effective priorities:
Reset (-3), NMI (-2), or HF (-1). User exceptions should have lower priorities (> 0), so an
MMF in one will not escalate.

• When invoked from the SVC_Handler(), the PendSV_Handler() cannot run until the
SVC_Handler() exits, because it is lower priority.

• Critical sections cannot be protected in umode by disabling interrupts. See section 8.10.7
Critical Sections for more discussion of this.

• To determine if a system call is a SVC call rather than a direct call, look at it in the
disassembly window to see if its prefix ends with u (e.g. smxu_ rather than smx_).

• Template change: If a region is being added or removed be sure to change the tmsk in
mp_MPACreate()’s using the template. Failing to do so can cause bizzare behavior.

• CONTROL register is not valid in handler mode following an exception or interrupt. It
only indicates the state of the interrupted utask or ptask in thread mode.

• Build change: If switching from one build target to another causes a problem, e.g. Debug
to Release, check each overridden file (indicated with a check mark in the Workspace
window) for each project to ensure that the Extra Options settings are the same.

• Portals: If a problem occurs in common code, use the call stack to see what portal it is.
The portal’s main function is at the bottom of the call stack. If it is a chained portal, look
at the caller field in the service header (see section 9.2.10 Portal Debugging) and run
back to that address where the call was made in the first portal’s server, and then look at
the call stack.

• Portals: If pmsg->pri is greater than the client priority, the server will preempt and the
client will not wait at rxchg or csem. This can be confusing when debugging client/server
operation.

• Portals: If pmsg->pri is equal to or less than the client priority, the server will wait for the
client and possibly other tasks to finish running. In this case, a very long timeout for the
client wait on csem may be necessary. However, do not use INF because then the client
cannot recover if the server disconnects from it.

• Portals: If pmsg->pri is equal to or less than the client priority be sure to specify a
timeout > 0 for mp_TPortalReceive() and mpTPortalSend(), else the server cannot run to
perform the intended operation. This is particularly a problem with sending the OPEN
command.

• Memset: Breaking on memset() is confusing. It is better to break after memset().
• Reset: If the application runs from the debugger but not from reset, it probably means that

the reset vector (initial SP and IP) is not at the beginning of internal flash, as it must be.
See section 8.10.5 Reset Vector.

Chapter 9

212

• smx Control Block Fields: These cannot be accessed from umode – use the object’s
Peek() instead.

• smx Object Handles: If a handle in a service call is not in range, an MMF will occur. To
avoid this either define the handle to be in range or create an alias handle that is in range
and copy the handle contents into it.

• A variable is not being put where expected. Make sure that the section is included in the
region block in the linker command file. For example, if tsx is put into .ut2a.bss, but
.ut2a.bss is not put into ut2a_data, then accessing tsx in ut2a will cause an MMF.

9.7 C-SPY Tool Issues

• In a SVC system call, the call stack will not show the functions before the SVC handler.
In order to see how you arrived at the call, return back to the SVC handler and step
through its tail over the POP {PC} where it returns to the shell. (It is in all caps so it can
be found easily.) Then the functions leading up to the SVC call will appear in the call
stack.

• If there is a problem looking at MPU registers in C-SPY or smxAware after a fault
occurs, put a breakpoint at the failure point, restart, and run to it.

• Stepping with the debugger in umode may cause the MPU it to run differently than when
it is free running. Stepping over an instruction that should cause an MMF may not cause
the MMF. If stepping in the disassembly window, the debugger refuses to step over the
instruction causing the MMF. If behaviors like these occur, try running to a point past the
problem, then observe if correct operation has occurred.

• Stepping over setting MPU_CTRL.PRIVDEFENA causes the change not to show in the
register, but it does seem to take effect.

• ETM Trace: Unfortunately, SVC calls seem to confuse the trace navigation, so when
stepping backward at the trace level, it will not step over calls that make an SVC call,
requiring you to step backward through all the lower code, even the SVC handler.

213

Appendix A.1 SecureSMX Services

Except for portal client services all services in this section of Appendix A should be executed
only in pmode or hmode. These services are not task-safe and must be protected against
reentrancy due to task preemption.

mp_FPortalClose
bool mp_FPortalClose(FPCS* fpch, u8 xsn)

Parameters fpch fportal client handle
 xsn Available slot in the MPA of task deleting portal.

Returns true fportal closed.
 false fportal not closed.

Errors See smx_PMsgReceive(), smx_PMsgRel(), and smx_MsgXchgDelete().

Descr Called by a client to close a free message portal. Releases the number of pmsgs

obtained by it when it was opened. Waits up to fpch->tmo ticks for each pmsg. If a
timeout occurs, aborts and returns false. In this case, fpch->num is the number of
messages remaining to be released. If all pmsgs are released, deletes rxchg and clears
free message portal client structure fields, except portal name and handles. At this
point, fpch->rxchg = NULL. fpch->pname and fpch->sxchg are cleared only if the
portal is deleted, and fpch->pmsg is cleared only if pmsg is released.

 Can be called by a task deleting a portal via mp_FPortalDelete() – see discussion

there.

Example

 FPCS* fpch;
 bool pass;

 pass =sb_FPortalClose(fpch);
 if(!pass)
 {
 if (fpch->num > 0)
 {
 Delay(100);
 pass = sb_FPortalClose(fpch);
 }
 }

Appendix A.1

214

 The above closes the client portal pointed to by fpch. If close fails and some pmsgs
have not been released, it tries again after a 100 tick delay.

mp_FPortalCreate
bool mp_FPortalCreate(FPSS* fpsh, FPCS** pclp, u32 pclsz, u8 ssn, const char* pname=NULL,

 const char* sxname=NULL)

Parameters fpsh fportal server handle.
 pclp Permitted client handle list.
 pclsz Permitted client handle list size (number of clients).
 pname fportal name.
 ssn Server MPU slot number for pmsg region.
 sxname Server exchange name.

Returns true fportal created.
 false fportal not created.

Errors See smx_MsgXchgCreate()

Descr Creates sxchg, loads pname and sxchg handle into the free message portal client

structures listed in pcl and into the portal server structure. Loads ssn into the portal
server structure. Notes:

 1. Must be called from pmode.
 2. Portals are owned by servers.

Example
#pragma default_variable_attributes = @ ".ut2A.bss"

 FPSS fpssa;
 TCP* ut2A;

#pragma default_variable_attributes = @ ".ut2A.data"
FPSS* fpssah = &fpssa;
extern FPCS fpcs1, fpcs2;
FPCS* fpcla[] = {&fpcs1, &fpcs2};

 #pragma default_variable_attributes =

 ut2A = smx_TaskCreate(tpF1_ut2A, TP2, TS_SSZ, SMX_FL_UMODE, "ut2A");
 mp_MPACreate(ut2A, (MPA*)&mpa_tmplt_ut2A, 0x3F);
 fpssah->stask = ut2A;
 mp_FPortalCreate(fpssah, fpcla, sizeof(fpcla)/4, SV_SLOT, "portalA", "sxchgA");
 smx_TaskStart(ut2A);

 fpssa, fpssah, and fpcla[] are defined for portal A in ut2A regions. fpcs1 and fpcs2
clients are permitted access to portal A. The portal task, ut2A, is created first and its
handle is loaded into fpssa, then mp_FPortalCreate() is called to create the portal and
task ut2A is started. The above normally occurs during partition initialization.

SecureSMX Services

215

mp_FPortalDelete
bool mp_FPortalDelete(FPSS* fpsh, FPCS** pclp, u32 pclsz, u8 xsn)

Parameters fpsh fportal server handle
 pclp Permitted client handle list.
 pclsz Permitted client handle list size (number of clients).
 xsn Available slot in the MPA of the calling task.

Returns true fportal deleted.
 false fportal not deleted.

Errors See smx_TaskStop() and smx_MsgXchgDelete()

Descr Stops the portal server task, deletes sxchg, sets pname = “no portal” and sxchg =

NULL in the portal client structures listed in pcl and in the portal server structure.
Closes portal in all clients listed in pcl. Clears portal server structure after stask. At
this point only stask is a valid field. Notes:

 1. Must be called from pmode.
 2. fportal cannot be reopened by a client.

Example
 sb_FPortalDelete(&pssa, fpcla, sizeof(fpcla)/4, xsn);

 Reverses portal creation in the mp_FPortalCreate() example.

mp_FPortalOpen
bool mp_FPortalOpen(FPCS* fpch, u8 csn, u32 msz, u32 nmsg, u32 tmo=0, const char* rxname=NULL)

Parameters fpch fportal client handle.
 csn Client task’s MPU slot for pmsg region.
 msz pmsg data block size.
 nmsg Number of pmsg’s to create.
 tmo rxchg timeout (ticks).
 rxname rxchg name.

Returns true fportal opened.
 false fportal not opened.

Errors PORTAL_NEXIST fportal does not exist.
 See also smx_MsgXchgCreate(), smx_PMsgGetHeap(), and smx_PMsgSend().

Descr Opens a free message portal for a client. If nmsg > 0, creates rxchg, gets up to nmsg

pmsgs from main heap, with msz block size, and sends them to rxchg. If nmsg == 0,
rxchg must be created and assigned to the FPCS rxchg field, externally to this
function. Initializes FPCS fields, except name and sxchg, which were already set by

Appendix A.1

216

mp_FPortalCreate(). Aborts if sxchg for the portal does not exist, reports PORTAL
NEXIST, and returns false. Allows re-opening a portal closed by the client. The pmsg
priority is that of the client.

Example
 FPCS fpcsA_xxx;

 sb_FPortalOpen(&fpcsA_xxx, CL_SLOT, MSIZE, 1, TMO, "rxchg_xxx")

 Opens fportal A for client xxx with one pmsg of MSIZE bytes, and stores pmsg at
rxchg_xxx.

mp_FPortalReceive
MCB* mp_FPortalReceive(FPCS* fpch, u8** dpp=NULL)

Parameters fpch fportal client handle.
 dpp Data pointer.

Returns pmsg pmsg received.
 NULL pmsg not received.

Errors PORTAL_NOPEN fportal not open.
 See also smx_PMsgReceive().

Descr Called by client to receive a pmsg from fpch->rxchg. If the portal is not open, reports

PORTAL_NOPEN, sets fpch->errnum, and returns NULL. If a pmsg is not available,
at fpch->rxchg waits for up to fpch->tmo ticks, then returns NULL if a timeout
occurs. If a pmsg is received, loads the address of its data block into *dpp, unless dpp
== NULL, loads the pmsg data region into the current task’s MPA[fpch->csn] and
into MPU[fpch->csn+fas], and returns the pmsg handle.

Example
 u8* dp;
 FPCS fpch;
 MCB* pmsg;

 pmsg = mp_FPortalReceive(fpch, &dp);

 Receives pmsg from fpch->rxchg and loads the address of its data block into dp.

mp_FPortalSend
bool mp_FPortalSend(FPCS* fpch, MCB_PTR pmsg)

Parameters fpch fportal client handle.
 pmsg pmsg to send.

Returns true pmsg sent.
 false pmsg not sent.

SecureSMX Services

217

Errors
 PORTAL_NOPEN fportal not open.
 See also smx_PMsgSend().

Descr Called by a client to send pmsg from the client to the server waiting at fpch->sxchg.

If the portal is not open, reports PORTAL_NOPEN, sets fpch->errnum, and returns
false. Otherwise, loads pmsg->rasr/rlar from MPA[fpch->csn], sets pmsg->pri =
fpch->pri, sets pmsg->con.bnd = false, and if fpch->rxchg exists, loads its index into
pmsg->rpx. Clears MPU[fpch->csn+fas] if it is an active slot. Clears fpch->pmsg if it
equals pmsg.

Example 1
 u8* dp = NULL;
 FPCS fpch;
 MCB* pmsg;

 pmsg = mp_FPortalReceive(fpch, &dp);
 mp_FPortalSend(fpch, pmsg);

 Gets pmsg from fpch->rxchg and sends it to fpch->sxchg.
Example 2

 u8* dp = NULL;
 FPCS fpch;
 MCB* pmsg

 pmsg = smx_PMsgGetHeap(fpsize, &dp, fpch->csn, DATARW, 0);
 mp_FPortalSend(fpch, pmsg);

 Gets pmsg from heap 0 and sends it to fpch->sxchg.

mp_FTPortalSend
bool mp_FTPortalSend(FPCS* fpch, u8* bp, MCB_PTR pmsg)

Parameters fpch fportal client handle.
 bp pmsg block pointer.
 pmsg pmsg to send.

Returns true pmsg sent.
 false pmsg not sent.
Errors
 PORTAL_NOPEN fportal not open.
 See also smx_PMsgSend().

Descr Operates the same as mp_FTPortalSend(), except that it is used to send a free

message to a tunnel portal. In order to do so, this function fills in the type and cmd
fields in the standard tunnel portal message header, as follows:

 mhp->type = FREEMSG;
 mhp->cmd = CONTROL;

Appendix A.1

218

 This results in bypassing the normal tunnel protocol code in mp_TPortalServer() to
mp_TPortalCallServerFunc().

Example
 u8* dp;
 FPCS fpch;
 MCB* pmsg;

 pmsg = mp_FPortalReceive(fpch, &dp);
 mp_FTPortalSend(fpch, dp, pmsg);

 Gets a pmsg from fpch->rxchg and sends it to fpch->sxchg. dp points to the start of
the pmsg data block.

mp_MPACreate
bool mp_MPACreate(TCB_PTR task, MPA* tmp, u32 tmsk=MP_TMSK_DFLT, u32

mpasz=MP_MPU_ACTVSZ)

Parameters task Task for MPA
 tmp Template pointer.
 tmsk Template mask.
 mpasz MPA size (slots)

Returns true Template created and loaded.
 false Template not created.

Errors SBE_INV_PAR Invalid parameter
 SBE_PRIV_VIOL utask tried to change its own MPA
 SMXE_INV_TCB Invalid TCB
 See also smx_HeapMalloc() and smx_HeapFree()

Descr Allocates a large enough MPA for regions in the template that are selected by 1 bits

in tmsk. Must be at least large enough for MP_MPU_ACTVSZ slots. For a ptask,
uses the template selected by tmp, but for a utask uses parent's template. Loads
template regions into MPA that are selected by 1's in tmsk. For ARMM7, active slots
must contain MPU slot numbers not MPA slot numbers. If tmsk 1 bits run out,
remaining active slots are filled with (V+i, 0), where i is the MPU slot number. For
ARMM8 there is no slot number nor valid flag and if tmsk 1 bits run out, remaining
active slots are filled with (0, 0). Saves mp, msz, and tp in task's TCB. If task already
has an MPA, its stack rbar and rasr is saved in task->rv and task->sv, respectively,
and the MPA is freed. Then the new MPA is allocated and loaded. Freeing the old
MPA is necessary because new MPA size may be different. The new MPA may have
additional auxiliary slots above the active slots.

Example
t2a = smx_TaskCreate(tm15_t2a, TP2, 0, 0, "t2a");
smx_MPACreate(t2a, &mpa_tmplt_t2a, 0x3F, 6);

 smx_TaskStart(t2a);

SecureSMX Services

219

 As shown here, MPACreate() is typically called immediately after a task is created
and before it is started. In this case the active area is 6 slots and there are no auxiliary
slots, so mpa_tmplt_t2a has 6 regions, and the mask loads them sequentially starting
at MPA[0].

mp_MPACreateLSR
bool mp_MPACreateLSR(LCB_PTR lsr, MPA* tmp, u32 tmsk=MP_TMSK_DFLT, u32

mpasz=MP_MPU_ACTVSZ)

Parameters task LSR for MPA
 tmp Template pointer.
 tmsk Template mask.
 mpasz MPA size

Returns true Template created and loaded.
 false Template not created.

Errors SBE_INV_PAR Invalid parameter.
 SMXE_INV_LCB Invalid LCB
 See also smx_HeapMalloc() and smx_HeapFree()

Descr Creates an MPA for a safe LSR. Allocates a large enough MPA for regions in the

template that are selected by 1 bits in tmsk 1. Loads template regions into MPA that
are selected by 1's in tmsk. For ARMM7, active slots must contain MPU slot
numbers not MPA slot numbers. If tmsk 1 bits run out, remaining active slots are
filled with (V+i, 0), where i is the MPU slot number. For ARMM8 there is no slot
number nor valid flag and if tmsk 1 bits run out, remaining active slots are filled with
(0, 0). Saves MPA pointer, mpasz, and stack memory region in LCB. If LSR already
has an MPA, it is freed. Then the new MPA is allocated and loaded. Freeing the old
MPA is necessary because the new MPA size may be different. The new MPA may
have additional auxiliary slots above the active slots.

Example

 lsra = smx_LSRCreate(tsch07_lsra, SMX_FL_TRUST, NULL, 100, "lsra", &lsra);
 mp_MPACreateLSR(lsra, (MPA*)&mpa_tmplt_t2a, 0x3F, 6);
 smx_LSRInvoke(lsra, 1);

 As shown here, MPACreateLSR() is typically called immediately after a safe LSR is
created and before the LSR is invoked. In this case, the active area is 6 slots and there
are no auxiliary slots, so mpa_tmplt_t2a has 6 regions and the mask loads them
sequentially starting at MPA[0]. Note that lsra is using the t2a MPA template. This is
commonly done for safe LSRs so that they can share code and data with a task in the
same partition. However, the LSR might have an IO slot that no task has.

Appendix A.1

220

mp_MPUSlotLoad
bool mp_MPUSlotLoad(u8 dn, u32* rp)

Parameters dn destination MPU slot number.
 rp region pointer.

Returns true Slot loaded.
 false Slot not loaded.

Errors SBE_INV_PAR Invalid parameter.

Descr Loads MPU[dn] slot from a template region pointed to by rp. Use in pmode only.

This is intended to be used in MPU initialization code to load static MPU slots (see
section 4.2.4 Static Slots).

Example

 mp_MPUSlotLoad(0, (u32*)&mpa_tmplt_sys[1]); /* MPU[1] = sys_code */
 mp_MPUSlotLoad(1, (u32*)&mpa_tmplt_sys[0]); /* MPU[0] = sys_data */

 The above shows loading sys_code into MPU[0] and sys_data into MPU[1] static
slots. Static slots do not change on task switches. Hence these regions will be
available at all times. However, they are privileged, so utasks cannot access them.

mp_MPASlotMove
bool mp_MPASlotMove(u8 dn, u8 sn)

Parameters dn destination MPA slot number.
 sn source MPA slot number.

Returns true Slot moved.
 false Slot not moved.

Errors SBE_INV_PAR Invalid parameter (dn or sn > MPA size).

Descr Moves contents of MPA[sn] to MPA[dn] and to MPU[dn+fas], if dn <

MP_MPU_ACTVSZ, where fas is the first active slot in the MPU (see section 4.2.3
Active Slots). Normally used to move an auxiliary region that is above the active slots
to a shared slot (see section 4.2.5 Auxiliary Slots). Also can be used to save an active
region in an auxiliary region, then restore it later. Since MPA[dn] is also loaded, a
task switch will not cause loss of region. This function can be called in umode via the
SVC exception or it can be called directly in pmode.

Example

#define IO 4
#define IO2 7

 #define IO1 8

SecureSMX Services

221

 /* access IO port 1 */
 if (mp_MPASlotMove(IO, IO1)
 …

 /* access IO port 2 */
 if (mp_MPASlotMove(IO, IO2)
 …

 The above shows moving the needed IO region into the common IO slot prior to
accessing that region. This is a good way to access multiple IO regions with a single
MPU IO slot.

mp_MPUSlotSwap
bool mp_MPUSlotSwap(u8 dn, u32* rp)

Parameters dn destination MPU slot number.
 rp region pointer.

Returns true Slot swapped.
 false Slot not swapped.

Errors none

Descr Swaps content of region at rp with MPU[dn].
 Notes:
 1. For use in pmode, only.
 2. dn and *rp must be correct. They are not tested.
 3. For use in ISRs, but not interrupt safe.
 4. Not for tasks, since MPA is not changed, and would be lost on task switch.

Example

 MPR iad = RGN(1 | RA("intA_data") | V, PDATARW | SRD("intA_data") | RSIC(sdsz)
 | EN, "intA_data"); /* macros in mpatmplt.h; see note below */

 void ISRA(void)
 {
 smx_ISR_ENTER();
 mp_MPUSlotSwap(1, (u32*)&iad);
 …
 mp_MPUSlotSwap(1, (u32*)&iad;
 smx_ISR_EXIT();
 }

 The above assumes sys_code is in the single static MPU[0] slot, and sys_data is in
MPU[1] if this is an smx ISR (using smx_ISR_ENTER/EXIT() as shown). This
permits BR to be off in utasks as well as ptasks. Then iad is swapped into MPU[1]
and MPU[1] into iad. iad is a very small data region for ISRA only. This helps to
harden ISRA against hacking.

Appendix A.1

222

 Note that the definition of iad should be in mpa.c since it uses the same macros used

by MPA definitions. Due to the ultra-short names of these macros, it is not
recommended to include mpatmplt.h in any other files.

mp_TPortalCall
bool mp_TPortalCall(TPCS* tpch, u32 tmo=0)

Parameters tpch tportal client handle.
 tmo csem timeout (ticks).

Returns true Command sent.
 false Command not sent.

Errors PORTAL_CLOSED tportal closed.
 CLIENT_TMO csem timed out.
 See also smx_SemSignal() and smx_SemTest().

Descr Called by client to send a command from client to server. This is a macro that calls

mp_TPortalSend(). It is used to make an API call that doesn’t transfer data blocks.

Example 1

SFSP_SH* shp = (SFSP_SH*)tpch->shp;
mp_SHL1(SFS_ID_FCLOSE, (u32)filehandle, SB_FAIL);
mp_TPortalCall(tpch, SFSP_CTMO);

 This is an example of sending a command, from the client shell for sfs_fclose().
mp_SHL1() is one of several macros defined in portl.h to load a service header. This
macro loads the fid and filehandle into the SFSP service header, and it preloads the
ret field with SB_FAIL, in case the portal operation fails. The return value is the most
appropriate error value for the particular API call.

Example 2
SFSP_SH* shp = (SFSP_SH*)tpch->shp;
char* mp1p = (char*)tpch->mdp;
char* mp2p = mp1p + strlen(filename)+1;
strcpy(mp1p, filename);
strcpy(mp2p, mode);
mp_SHL2(SFS_ID_FOPEN, (u32)mp1p, (u32)mp2p, NULL);
mp_TPortalCall(tpch, SFSP_CTMO);

 This is an example of sending a command that has some data values to pass. This is
from sfsp_fopen() client shell. It copies the filename and mode strings into the pbuf,
and loads pointers to each into service header p1 and p2. The handler in the server
passes these as p1 and p2 to the actual sfs_fopen() function.

SecureSMX Services

223

Example 3
SUP_SH* shp = (SUP_SH*)tpch->shp;
mp_SHL3(SU_ID_FTDI_GET_STATUS, iID, 0, 0, -1);
mp_TPortalCall(tpch, SUP_FTDI_CTMO);
if (shp->ret != -1)
{
 *pModemStatus = *(u8*)(tpch->mdp);
 *pLineStatus = *((u8*)(tpch->mdp)+1);

 }

 This is an example of sending a command that gets data values via parameters. The
two bytes being returned are written to the first two bytes of the portal buffer by the
server handler, and they are retrieved above. Special handling is needed for par2 and
par3 because they are pointers to locations to store returned data. The function being
called is:

 int sup_FTDIGetStatus(uint iID, u8 *pModemStatus, u8 *pLineStatus, TPCS* pch);

mp_TPortalClose
bool mp_TPortalClose(TPCS* tpch, u32 tmo)

Parameters tpch tportal client handle
 tmo Timeout (ticks).

Returns true tportal closed.
 false tportal not closed.

Errors See smx_SemDelete(), smx_SemSignal(), and smx_SemTest().

Descr Called by a client. Returns true if tportal is already closed. Otherwise, sends CLOSE

command to server and waits for ack. Continues if ack received or a timeout occurs.
Clears pmsg hdr and client structure starting at shp, and deletes csem and ssem.
Returns true unless a semaphore fails to delete.

Example

 TPCS* tpch;

 if (!sb_TPortalClose(tpch, CTMO))
 tfailu();

 Sends a CLOSE command to the server and waits CTMO ticks for acknowledgement
from the server. Then closes the portal from the client side.

Appendix A.1

224

mp_TPortalCreate
bool mp_TPortalCreate(TPSS* tpsh, TPCS** pclp, u32 pclsz, u8 dsn, const char* pname=NULL,

const char* sxname=NULL)

Parameters tpsh tportal server handle.
 pclp Permitted client handle list.
 pclsz Permitted client handle list size (number of clients).
 dsn Dual server slot number for pmsg received.
 pname tportal name.
 sxname Server exchange name.

Returns true tportal created.
 false tportal not created.

Errors See smx_MsgXchgCreate()

Descr Creates sxchg and loads pname and sxchg handle into the portal client structures in

pcl and into the portal server structure. sxchg is a pass exchange with priority
inheritance. A permitted client list must be defined for every portal in the system. It is
a list of handles of portal clients that are allowed to access the portal. Loads dsn into
tpsh->dsn. Notes:

 1. Must be called from pmode.
 2. Portals are owned by servers.

Example
TPSS pssa;

 TPSS* phs = &pssa;

 phs->stask = ut2s;
phs->dsn = SSLOT;
mp_TPortalCreate(phs, pcla, sizeof(pcla)/4, SV_SLOT, "portalA", "sxchg");

 Creates tportal, pssa, for task ut2s, which was previously created. Loads “portalA”
and sxchg handle into all client structures in pcla so they can open and use this
tportal.

mp_TPortalDelete
bool mp_TPortalDelete(TPSS* tpsh, TPCS** pclp, u32 pclsz)

Parameters tpsh tportal server handle
 pclp Permitted client handle list.
 pclsz Permitted client handle list size (number of clients).

Returns true tportal deleted.
 false tportal not deleted.

Errors See smx_TaskStop() and smx_MsgXchgDelete()

SecureSMX Services

225

Descr Stops the server task, deletes sxchg, and clears sxchg handles and portal names in

permitted portal client structures. Marks the portal closed in the pmsg header and
clears the portal server structure. Notes:

 1. Must be called from pmode.
 2. tportal cannot be reopened by a client.
Example

 sb_TPortalDelete(&pssa, tpcla, sizeof(pcla)/4);

 Reverses portal creation in the above mp_TPortalCreate() example.

mp_TportalOpen
bool mp_TPortalOpen(TPCS* tpch, u32 msz, u32 thsz, u32 tmo=0, const char* ssname=NULL,

const char* csname=NULL)

Parameters tpch tportal client handle.
 msz pmsg data block size.
 thsz Total header size.
 tmo csem timeout (ticks).
 ssname ssem name.
 csname csem name.

Returns true tportal opened.
 false tportal not opened.

Errors NO_PMSG pmsg does not exist.
 PORTAL_NEXIST tportal has not been created.
 See also smx_SemCreate(), smx_SemTest(), smx_PMsgSendB().

Descr Called by a client to open an existing portal from the client side, so that the portal can

be used by the client. Aborts if sxchg for the portal does not exist, reports
PORTAL_NEXIST, and returns false. Aborts if pmsg for the portal does not exist,
reports NO_PMSG, and returns false. Allows reopening a portal closed by either the
client or the server, after closing the portal. Creates csem and ssem for the portal,
unless they already exist. Loads pmsg parameters into the portal client structure,
creates an OPEN pmsg, and sends it to sxchg of the portal. Waits for the server to
acknowledge. msz is the size of the pmsg data block. Total header size, thsz = pmsg
header size + service header size. Must be preceded with:

 1. Get pmsg of msz and load tpch->pmsg and tpch->mhp
 2. Load tpch->name and tpch->sxchg by TPortalCreate().

 Note: pmsg is bound to the client task. The server can receive the pmsg, but only the
client can send or release it. The priority of the pmsg is that of the client.

Appendix A.1

226

Example
 TPCS* tpch = &pcsA;

 tpch->pmsg = smx_PMsgGetHeap(mdsz, (u8**)&tpch->mhp, clslot, DATARW, 0);
 mp_TPortalOpen(tpch, mdsz, thsz, CTMO, "ssem", "csem");

 Gets a pmsg from heap 0 with a data block of at least mdsz bytes, loads the data block
address into tpch->mhp and loads the data block region into MPA[clslot] and
MPU[clslot+fas]. Opens tportal using pmsg.

mp_TPortalReceive
bool mp_TPortalReceive(TPCS* tpch, u8* dp, u32 rqsz, u32 tmo=0)

Parameters tpch tportal client handle.
 dp Data pointer.
 rqsz Total request size.
 tmo csem timeout (ticks).

Returns true Last data block has been received.
 false Last data block has not been received.

Errors INV_SIZE No-copy size exceeds size of pbuf.
 PORTAL_NOPEN tportal not open to start.
 PORTAL_CLOSED tportal closed during operation.
 CLIENT_TMO csem timed out.
 TRANS_INC Transfer incomplete.
 See also smx_SemSignal(), smx_SemTest(), smx_PMsgSendB().

Descr Called by a client to receive data from a server. Sets command to RECEIVE, passes

rqsz via message header, and signals ssem. Waits on csem for a data block from
server. dp != NULL means copy mode. In this case, copies each received data block
from pbuf to the client buffer at dp. If not end of data, updates dp and signals ssem for
the server to send the next block. If end of data, operation stops. dp == NULL means
no-copy mode. In this case only one block is transferred from the server, and it is left
in pbuf, which also serves as the client’s the work buffer so no data copying is
necessary at the client end.

 Note: This function is used only for data block transfers from server to client. For all

other calls by client shells, use mp_TPortalCall() or mp_TPortalSend().

SecureSMX Services

227

Example
 SFSP_SH* shp = (SFSP_SH*)pch->shp;
 mp_SHL4(SFS_ID_FREAD, 0, 0, 0, (u32)filehandle, 0);

 #if SFSP_NO_COPY
 mp_TPortalReceive(pch, NULL, size*items, SFSP_CTMO)
 #else
 mp_TPortalReceive(pch, (u8*)wbuf, size*items, SFSP_CTMO)
 #endif

 Reads a file via the file system portal. SFSP_SH is the file system service header. It
comes after the standard portal message header. It is filled by the mp_SHL4() macro,
then mb_TPortalReceive() is called. This example shows both no-copy and copy
operation. Note that dp is NULL in the no-copy case, but points at a work buffer,
wbuf, in the copy case.

mp_TPortalSend
bool mp_TPortalSend(TPCS* tpch, u8* dp=NULL, u32 rqsz=0, u32 tmo=0)

Parameters tpch tportal client handle.
 dp Data pointer.
 rqsz Total request size.
 tmo csem timeout (ticks).

Returns true All data sent.
 false All data not sent.

Errors INV_SIZE No-copy size exceeds pbuf size.
 PORTAL_NOPEN tportal not open.
 CLIENT_TMO csem timed out.
 TRANS_INC Transfer incomplete.
 See also smx_SemSignal() and smx_SemTest().

Descr Called by client to send data or command from client to server. dp != NULL means

copy mode. Sets command to SEND, sets end of data flag if one block is being sent,
else clears it, passes rqsz via message header, and copies up to sizeof(pbuf) bytes
from user buffer at dp to pbuf and updates dp. Then signals ssem, and waits at csem
for ack from server. When ack received, if all data has not been sent, copies the next
data block from the user buffer at dp to pbuf and sends it. Repeats sending blocks
until rqsz bytes have been sent. Sets end of data for last block sent.

 dp == NULL means no-copy mode. Sets command to SEND, sets sod and eod, clears

err, passes rqsz via message header, and signals ssem. Then waits at csem for ack
from server. Only the data block already in pbuf is sent. pbuf is also the client work
buffer so no data copying is necessary. This is the usual case when commands, are
being sent.

Appendix A.1

228

 Note: This function is used for all client shell operations, except block data transfers
from server to client. For those, use mp_TPortalReceive(). Even for a client shell that
implements an API call that gets some data value(s), this function is used. For all but
data block transfer, set dp = NULL and rqsz = 0. mp_TPortalCall() is provided as a
simpler way to call this function for API calls that don’t send data blocks. It passes
NULL and 0 for dp and rqsz.

Example

 SFSP_SH* tpch = (SFSP_SH)tpch->shp;

 mp_SHL4(SFS_ID_FWRITE, 0, 0, 0, (u32)filehandle, 0);
 #if SFSP_NO_COPY
 mp_TPortalSend(tpch, NULL, size*items, SFSP_CTMO)
 #else
 mp_TPortalSend(tpch, (u8*)wbuf, size*items, SFSP_CTMO)
 #endif

 This shows writing a file via the file system portal. SFSP_SH is the file system
service header. It comes after the standard portal message header. It is filled by the
mp_SHL4() macro, then sb_TPortalSend() is called. This example shows both no-
copy and copy operation. Note that dp is NULL in the no-copy case, whereas dp
points at a work buffer, wbuf, and rqsz is the size of the buffer in the copy case.

 Note: See mp_TPortalCall() examples for sending commands that do not send data

blocks.

mp_TPortalServer
void mp_TPortalServer(TPSS* tpsh, u32 stmo)

Parameters tpsh tportal server handle.
 stmo ssem timeout (ticks).

Errors INV_CMD Invalid command.
 INV_SID Invalid server ID.
 SERVER_TMO ssem timeout.
 See also smx_PMsgReceive(), smx_SemSignal(), and smx_SemTest().

Descr Called by the portal task to perform portal server functions. Waits at sxchg for a

portal OPEN pmsg to open the tunnel portal for the server or for a FREEMSG pmsg.
Implements the tunnel portal protocol at the server end if mhp->type == TUNNEL.
Signals csem when commands are done, and waits at ssem for more commands.
When the portal is closed by a client or a free pmsg is processed, waits at sxchg for
the next OPEN or FREEMSG pmsg. This also occurs if an invalid pmsg type or
command is received. If ssem times out, the portal is closed at the sender’s end and
the portal server structure is cleared. When done or error, gets next pmsg from sxchg.
To stop the portal server, stop or delete the portal task.

SecureSMX Services

229

Example
void sfsp_main(void)
{
 mp_TPortalServer(tpsh, SFSP_STMO);

 }

static void mp_TPortalCallServerFunc(TPSS* tpsh)
{
 switch (psh->sid)
 {
 …
 case SFSP:
 sfsp_server(psh);
 break;

 …
 default:
 mp_PortalEM((PS*)psh, INV_SID, &psh->mhp->errno);
 }

 }

 As shown above, sb_TPortalServer() is the main function for the file system portal
task. It calls mp_TPortalCallServerFunc(tpsh), which is partially shown above for the
file system case SFSP, the sid for the file system. This case calls sfsp_server(tpsh),
which is located in fpsvr.c. This function interprets the fhp->fid and calls the
appropriate file system function, as follows:

 switch (fhp->fid)
 {
 …

 case SFS_ID_FWRITE:
 fhp->ret = sfs_fwrite((void*)ph->mdp, mhp->mdsz, 1, (FILEHANDLE)fhp->p4);
 break;
 …
 }

 Creating a new server portal, requires defining a new server id, sid, and adding a case
for it to mp_TPortalCallServerFunc(). Then defining function ids, fids, for the server
functions accessible via the portal and defining a new server function that interprets
them. Normally, this function is located with other server code for the file system.

Appendix A.1

230

mp_RegionGetHeapR
u8* mp_RegionGetHeapR(MPR_PTR rp, u32 sz, u8 sn, u32 attr, const char* name=NULL, u32 hn=0)

Parameters rp Region pointer.
 sz Size of block (minimum).
 sn Slot number in task MPA.
 attr Attributes for region.
 name Name for region.
 hn Heap number.

Returns bp Block pointer.
 NULL No block available or error.

Errors See smx_HeapMalloc()

Descr Used to create a dynamic region that might be used by one or more tasks. Gets a

block of at least sz bytes from heap hn, creates rbar and rasr or rlar for it, and loads
them into the region at rp. If MP_MPA_DEV also loads name into region defined as
for ARMM7:

typedef struct { /* MEMORY PROTECTION REGION */
 u32 rbar; /* region address and slot number */
 u32 rasr; /* region attributes and size */
 const char *name; /* region name (for debugging, if MP_MPA_DEV) */
} MPR, *MPR_PTR;

Example
u8* bp;
MPR* dpr[3];
bp = mp_RegionGetHeapR(&dpr[0], 140, 4, DATARW, "dblock", h0);
mpa_tmplt_t2a[4] = MP_DYN_RGN(dpr[0]);

t2a = smx_TaskCreate(t2a_main, TP2, 0, 0, "t2a");
mp_MPACreate(t2a, &mpa_tmplt_t2a);

 Gets a 140-byte data block from heap 0, loads its region information into dpr[0].
mpa_tmplt_t2a[4] is loaded with the address of dpr[0] and its dynamic flag is set. t2a
is created and its MPA is created from mpa_tmplt_t2a. In this process, the region
information for block bp will be loaded into t2a MPA[4]. This block is fully protected
and can be accessed only by t2a for read/write, only.

SecureSMX Services

231

mp_RegionGetHeapT
u8* mp_RegionGetHeapT(TCB_PTR task, u32 sz, u8 sn, u32 attr, const char* name=NULL,u32 hn=0)

Parameters task Task for region.
 sz Size of block (minimum).
 sn Slot number in task MPA.
 attr Attributes for region.
 name Name for region.
 hn Heap number.

Returns bp Block pointer.
 NULL No block available or error.

Errors See smx_HeapMalloc()

Descr Used to directly create a dynamic region for a task. Gets a block of at least sz bytes

from heap hn, creates rbar and rasr or rlar for it, and loads them into task MPA[sn]. If
MP_MPA_DEV also loads name into MPA[sn]. Used to get a protected block for a
task. Called from smx_TaskCreate(), smx_PBlockGetHeap(), smx_PMsgGetHeap(),
and directly.

Example
u8* bp;
bp = mp_RegionGetHeapT(taskA, 100, 3, DATARW, "pblock", h0);
memset(bp, 0, 100);

 Gets a 100-byte data block from heap 0, loads its region information into taskA
MPA[3], then clears the block. The block is fully protected and can be accessed only
by taskA for read/write, only.

mp_RegionGetPoolR
u8* mp_RegionGetPoolR(MPR_PTR rp, PCB_PTR pool, u8 sn, u32 attr, const char* name=NULL)

Parameters rp Region pointer.
 pool Pool to get block from.
 sn Slot number in task MPA.
 attr Attributes for region.
 name Name for region.

Returns bp Block pointer.
 NULL No block available or error.

Errors See sb_BlockGet()

Descr Basically the same as mp_RegionGetHeapR(), except that the block comes from a

block pool. For ARMM7, the pool block size must be a power of two and the pool
must be aligned on the block size. For ARMM8 the block size must be a multiple of

Appendix A.1

232

32 and the pool must be aligned on 32 bytes. This function is useful if several tasks
require blocks of the same size, in which case, creating a block pool is likely to be
more efficient than using a heap. Or it might be used in the case where it is not
desirable to create a heap for the partition.

Example
u8* bp;
MPR* dpr[3];
PCB_PTR pool_256;

bp = mp_RegionGetPoolR(&dpr[1], &pool256, 4, DATARW, "block2");
mpa_tmplt_t2a[4] = MP_DYN_RGN(dpr[1]);
t2a = smx_TaskCreate(t2a_main, TP2, 0, 0, "t2a");
mp_MPACreate(t2a, &mpa_tmplt_t2a);

 Gets a 256-byte data block from pool_256 and loads its region information into
dpr[1]. mpa_tmple_t2a[4] is loaded with the address of dpr[1] and its dynamic flag is
set. Then t2a is created and its MPA is created from mpa_tmplt_t2a. As a result, the
region information for block bp is loaded into t2a MPA[4]. Assuming pool_t2a is
directly accessible only in pmode, this block is now fully protected and cannot be
accessed by any other task. Also t2a can access it only for read/write.

mp_RegionGetPoolT
u8* mp_RegionGetPoolT(TCB_PTR task, PCB_PTR pool, u8 sn, u32 attr, const char* name=NULL)

Parameters task Task for region.
 pool Pool to get block from.
 sn Slot number in task MPA.
 attr Attributes for region.
 name Name for region.

Returns bp Block pointer.
 NULL No block available or error.

Errors See sb_BlockGet()

Descr Basically the same as mp_RegionGetHeapT(), except that the block comes from a

block pool. For ARMM7, the pool block size must be a power of two, and the pool
must be aligned on the block size. For ARMM8, the block size must be a multiple of
32 and the pool must be aligned on 32 bytes. This function is useful if several tasks
require blocks of the same size, in which case, creating a block pool is likely to be
more efficient than using a heap. Or it might be used in the case where it is not
desirable to create a heap for the partition.

SecureSMX Services

233

Example
u8* bp;
PCB_PTR pool_256;

bp = mp_RegionGetPoolT(taskA, &pool_256, 3, DATARW, "pblock");
memset(bp, 0, 256);

 Gets a 256-byte data block from pool_256 and loads its region information into taskA
MPA[3], then clears the block. Assuming pool_t2a is directly accessible only in
pmode, this block is now fully protected and cannot be accessed by any other task.
Also taskA can access it only for read/write, not to execute code.

mp_RegionMakeR
bool mp_RegionMakeR(MPR_PTR rp, u8* bp, u32 sz, u8 sn, u32 attr, const char* name=NULL)

Parameters rp Region pointer.
 bp Block pointer.
 sz Size of block.
 sn Slot number.
 attr Attributes for region.
 name Name for region.

Returns true Region made.
 false Region not made.

Errors SMXE_INV_PAR

Descr Makes a region for a block from any source given a block pointer, bp, and size, sz,

creates rbar and rasr or rlar, and loads them into region at rp. Used to create a
dynamic region for slot sn with attributes, attr. Block must be at least 32 bytes and of
proper size and alignment.

 For umode, the block must be fully within the MPU. If not, the make fails and

SMXE_INV_PAR is reported. This is to prevent unauthorized memory accesses from
umode. This limitation does not apply for pmode. For ARMM8, if block overlaps an
MPU region, sn must be an auxiliary slot in the current task’s MPA because ARMM8
does not permit overlapped MPU regions. If not, make fails and SMXE_INV_PAR is
reported.

Example
 MPR* dpr[2];
#pragma data_alignment=128
 u8 ablk[128];

 mp_RegionMakeR(&dpr[2], ablk, 128, 4, DATARW, "ablk")
 mpa_tmplt_taskA[4] = MP_DYN_RGN(dpr[2]);
 …

 taskA = smx_TaskCreate(taskA_main, TP2, 0, 0, "taskA");
 mp_MPACreate(taskA, &mpa_tmplt_taskA);

Appendix A.1

234

 Creates region information for ablk and loads it into dpr[2]. mpa_tmplt_taskA[4] is
loaded with the address of dpr[1] and its dynamic flag is set. At some later time,
taskA is created and its MPA is loaded from mpa_tmplt_taskA, so the ablk region is
loaded into MPA[4] of taskA. ablk is now accessible by taskA for read/write. If the
dpr[2] dynamic region is also used in mpa_tmplt_taskB then taskA and taskB can
both access ablk and can communicate through it. The attributes need not be the
same: taskA could have read/write access, and task B could be read only.

mp_RegionMakeT
bool mp_RegionMakeT(u8* bp, u32 sz, u8 sn, u32 attr, const char* name=NULL)

Parameters bp Block pointer.
 sz Size of block.
 sn Slot number.
 attr Attributes for region.
 name Name for region.

Returns true Region made.
 false Region not made.

Errors SMXE_INV_PAR

Descr Makes a region for a block from any source given a block pointer, bp, and size, sz,

creates rbar and rasr or rlar for it, and loads them into the current task’s MPA[sn].
Block must be at least 32 bytes and of proper size and alignment.

 For umode, the block must be fully within the MPU. If not, the make fails and

SMXE_INV_PAR is reported. This is to prevent unauthorized memory accesses from
umode. This limitation does not apply for pmode. For ARMM8, if block overlaps an
MPU region, sn must be an auxiliary slot in the current task’s MPA because ARMM8
does not permit overlapped MPU regions. If not, make fails and SMXE_INV_PAR is
reported.

Example

 #pragma data_alignment=128
 u8 ablk[128];

bp = mp_RegionMakeT(ablk, 128, 3, DATARW, "ablk");
memset(bp, 0, 128);

 Creates a region for ablk and loads it into MPA[3] of taskA, and then clears the
block. ablk is now accessible by taskA for read/write, only. If this function is repeated
for ablk for taskB, then taskA and taskB can both access ablk and can communicate
through it. The attributes need not be the same: taskA could have read/write access,
but task B might be read only.

235

Appendix A.2 smx Protected Block & Message Services

These services manage protected blocks and protected messages for use in SecureSMX systems.
Although they are smx services, they are available only with SecureSMX and they are intended to
be used only with it. Most of these services are SSRs and thus are task-safe. For ARMM8, if a
protected block overlaps another MPU region, an MMF will occur when the overlap area is first
accessed. This is not the case for ARMM7.

smx_PBlockGetHeap
u8* smx_PBlockGetHeap(u32 sz, u8 sn, u32 attr, const char* name=NULL, u32 hn=0)

Type SSR.

Summary Gets a protected block from a heap.

Compl smx_PBlockRel().

Parameters sz minimum block sz required.
 sn MPA slot number.
 attr block attributes (e.g. RW_DATA).
 name region name.
 hn heap number

Returns bp block pointer.
 NULL no block available or error.

Errors SMXE_INV_PAR invalid sn.
 See also smx_HeapMalloc().

Descr Gets an aligned block of at least sz bytes from heap hn, creates a region for the block,

and loads the region into MPA[sn] of the current task. Then loads MPA[sn] into
MPU[sn+fas]. Block alignment meets MPU requirements for the block size. Actual
memory allocation is minimized by sizing to the nearest multiple of subregion size,
and the proper subregion disable bits are set in the region created. name is loaded into
the region name field in MPA[sn] if MP_MPA_DEV. The block is a bare block.

Example
u8* bp;
bp = smx_PBlockGetHeap(80, 4, DATARW, “work_buf”, 3);

 Gets an 80-byte data pblock, named “work_buf” from heap 3, puts its region into
MPA[4] and MPU[4+fas], and returns a pointer, bp, to the block.

Appendix A.2

236

smx_PBlockGetPool
u8* smx_PBlockGetPool(PCB_PTR pool, u8 sn, u32 attr, const char* name=NULL)

Type SSR.

Summary Gets a protected block from a block pool.

Compl smx_PBlockRel().

Parameters pool block pool.
 sn MPA slot number.
 attr block attributes (e.g. RW_DATA).
 name region name.

Returns bp block pointer.
 NULL No block available or error.

Errors SMXE_INV_PAR invalid sn.
 SMXE_WRONG_POOL invalid block size or alignment.
 SMXE_POOL_EMPTY pool empty.

Descr Gets a block, from pool, creates a region for the block, and loads the region into

MPA[sn] of the current task. Then loads MPA[sn] into MPU[sn+fas]. Block must
meet MPU alignment requirements for its size. name is loaded into the region name
field in MPA[sn] if MP_MPA_DEV. The block is a bare block.

Example
u8* bp;
PCB pool128;

bp = smx_PBlockGetPool(&pool128, 4, DATARW, “out_buf”);

 Gets an 128-byte data pblock, named “out_buf” from block pool128 and puts its
region into MPA[4] and MPU[4+fas], and returns a pointer, bp, to the block.

smx Protected Block & Message Services

237

smx_PBlockMake
bool smx_PBlockMake(u8* bp, u32 sz, u8 sn, u32 attr, const char* name=NULL)

Type SSR.

Summary Makes a pblock from a standalone block.

Compl smx_PBlockRel().

Parameters bp block pointer.
 sz block size.
 sn MPA slot number.
 attr block attributes (e.g. RW_DATA).
 name region name.

Returns true Conversion succeeded.
 false Conversion failed.

Errors SMXE_INV_PAR invalid sn.
 SMXE_WRONG_POOL invalid block size or alignment.

Descr Creates a region for a standalone block, and loads the region into MPA[sn] of the

current task. Then loads MPA[sn] into MPU[sn+fas]. Block must meet MPU
alignment and size requirements. name is loaded into the region name field in
MPA[sn] if MP_MPA_DEV. The block is a bare block.

 For umode, the block must be fully within the MPU. If not, the make fails and

SMXE_INV_PAR is reported. This is to prevent unauthorized memory accesses from
umode. This limitation does not apply for pmode. For ARMM8, if block overlaps an
MPU region, sn must be an auxiliary slot in the current task’s MPA because ARMM8
does not permit overlapped MPU regions. If not, make fails and SMXE_INV_PAR is
reported.

Example

 #pragma data_alignment = 32
u8 cb[32];

bp = smx_PBlockMake(&cb, sizeof(cb), 4, DATARW, “char_buf”);

 Makes a 32-byte pblock from cb[] and puts its region into MPA[4] and MPU[4+fas],
names it “char_buf”, and returns a pointer to the block, bp.

Appendix A.2

238

smx_PBlockRelHeap
bool smx_PBlockRelHeap (u8* bp, u8 sn, u32 hn=0)

Type SSR.

Summary Releases a protected block to heap hn.

Compl smx_PBlockGetHeap().

Parameters bp block pointer.
 sn MPA slot number.
 hn Heap number.

Returns true Block released.
 false Block not released due to error.

Errors SMXE_INV_PAR invalid sn is or bp is not in heap hn range.

Descr Releases a block obtained by smx_PBlockGetHeap(). Aborts if parameters are

incorrect. Otherwise, releases the block back to heap hn and clears35 MPU[sn+fas]
and MPA[sn]. Thus, once released, a block can no longer be accessed by the current
task.

Example
u8* bp;

 smx_PBlockRelHeap(bp, 4, 2);

 Releases the block pointed at by bp to heap 2 and clears MPA[4] and MPU[4+fas]

smx_PBlockRelPool
bool smx_PBlockRelPool (u8* bp, u8 sn, PCB* pool=NULL, u32 clrsz=0)

Type SSR.

Summary Releases a protected block to block pool.

Compl smx_PBlockGetPool() and smx_PBlockMake().

Parameters bp block pointer.
 sn MPA slot number.
 pool Pool handle.
 clrsz Number of bytes to clear in block, after byte 4.

35 Clearing MPA and MPU slots is a complex process. See SecureSMX User’s Guide, Clearing Slots for details.

smx Protected Block & Message Services

239

Returns true Block released.
 false Block not released due to error.

Errors SMXE_INV_PAR invalid sn or pool.

Descr Releases a protected block obtained by smx_PBlockGetPool() or

smx_PBlockMake(). Aborts if parameters are incorrect. Otherwise, releases the block
back to its block pool and clears clrsz bytes from byte 4 up to the end of the block and
clears MPU[sn+fas] and MPA[sn]. Thus, once released, a block can no longer be
accessed by the current utask. If pool == NULL, the block is a standalone block and it
is not released nor cleared.

Example1
u8* bp;
PCB* poolA;

smx_PBlockRelPool(bp, 4, poolA, PA_BLK_SZ);

 Releases block pointed to by bp to poolA, clears MPA[4] and MPU[4+fas] and clears
PA_BLK_SZ bytes in it from byte 4.

Example2
 smx_PBlockRelPool(bp, 4);

 Clears MPA[4] and MPU[4+fas] for the block pointed to by &cb. Does not release
the block, nor clear it (standalone block).

smx_PMsgGetHeap
MCB_PTR smx_PMsgGetHeap(u32 sz, u8** bpp, u8 sn, u32 attr, u32 hn=0 , MCB_PTR* mhp=NULL)

Type SSR.

Summary Gets a protected message from heap hn.

Compl smx_PMsgRel().

Parameters sz minimum block sz required.
 bpp place to put pmsg block pointer.
 sn MPA slot number.
 attr block attributes (e.g. RW_DATA).
 hn heap number.
 mhp message handle pointer (used for tokens)

Returns pmsg pmsg handle.
 NULL no block available or error.

Appendix A.2

240

Errors SMXE_INV_OP *mhp != NULL.
 SMXE_INV_PAR invalid sn.
 See also smx_HeapMalloc().

Descr Gets an aligned block of at least sz bytes from heap hn, creates a region for the block,

and loads the region into MPA[sn] of the current task. Block alignment meets MPU
requirements. Actual memory allocation is minimized by sizing to the nearest
multiple of subregion size, and the proper subregion disable bits are set in the region
created. Then loads MPA[sn] into MPU[sn+fas], gets an MCB, and makes the
protected block into a protected message, pmsg. Returns the pmsg block pointer via
bpp, unless bpp == NULL. The pmsg can be sent to and received from a normal smx
message exchange.

Example
u8* bp;
MCB_PTR pmsg;

pmsg = smx_PMsgGetHeap(80, &bp, 4, DATARW);

 Gets an 80-byte data block from heap 0, puts its region into MPA[4] and
MPU[4+fas], makes the pblock into a pmsg, returns the pmsg handle, and loads the
address of the data block into bp.

smx_PMsgGetPool
MCB_PTR smx_PMsgGetPool(PCB_PTR pool, u8** bpp, u8 sn, u32 attr , MCB_PTR* mhp=NULL)

Type SSR.

Summary Gets a protected message from a block pool.

Compl smx_PMsgRel().

Parameters pool block pool.
 bpp place to put pmsg block pointer.
 sn MPA slot number.
 attr block attributes (e.g. RW_DATA).
 mhp message handle pointer (used for tokens).

Returns pmsg pmsg handle.
 NULL No pmsg available or error.

smx Protected Block & Message Services

241

Errors SMXE_INV_OP *mhp != NULL.
 SMXE_INV_PAR invalid sn.
 SMXE_OUT_OF_MCBS no MCBs available.
 SMXE_WRONG_POOL invalid block size or alignment.
 SMXE_POOL_EMPTY pool empty.

Descr Gets a block, from pool, creates a region for the block, and loads the region into

MPA[sn] of the current task. Block must meet MPU alignment requirements for its
size. Then loads MPA[sn] into MPU[sn+fas], gets an MCB, and makes the protected
block into a protected message, pmsg. The pmsg can be sent to and received from a
normal smx message exchange.

Example
u8* bp;
PCB p128;
MCB_PTR pmsg;

pmsg = smx_PMsgGetPool(&p128, &bp, 4, DATARW);

 Gets an 128-byte data block from block pool p128, puts its region into MPA[4] and
MPU[4+fas], makes the pblock into a pmsg, returns the pmsg handle, and loads the
address of the data block into bp.

smx_PMsgMake
MCB_PTR smx_PMsgMake(u8* bp, u32 sz, u8 sn, u32 attr, const char* name=NULL , MCB_PTR*

mhp=NULL)

Type SSR.

Summary Makes a protected message from a standalone block.

Compl smx_PMsgRel().

Parameters bp block pointer.
 sz block size.
 sn MPA slot number.
 attr block attributes (e.g. RW_DATA).
 name region name.
 mhp message handle pointer (used for tokens)

Returns true Conversion succeeded.
 false Conversion failed.

Errors SMXE_INV_PAR invalid sn, sz, or alignment.

Descr Creates a region for the standalone block and loads the region into MPA[sn] of the

current task. Block must meet MPU alignment requirements for its size. Then loads
MPA[sn] into MPU[sn+fas], gets an MCB, and makes the protected block into a

Appendix A.2

242

protected message, pmsg. Also sets pmsg->bs to -1 to indicate that the pmsg block is
standalone and thus need not be released by smx_PMsgRel(). The pmsg can be sent
to and received from a normal smx message exchange.

 For umode, the pmsg block must be fully within the MPU. If not, the make fails and

SMXE_INV_PAR is reported. This is to prevent unauthorized memory accesses from
umode. This limitation does not apply for pmode. For ARMM8, if pmsg block
overlaps an MPU region, sn must be an auxiliary slot in the current task’s MPA
because ARMM8 does not permit overlapped MPU regions. If not, make fails and
SMXE_INV_PAR is reported.

Example

 #pragma data_alignment = 32

u8 cb[32];
MCB_PTR pmsg;

pmsg = smx_PMsgMake(&cb, 32, 4, DATARW, “smsg”);

 Makes a 32-byte pblock from cb[] and puts its region into MPA[4] and MPU[4+fas],
makes the pblock into a pmsg, names it “smsg”, and returns its handle.

smx_PMsgReceive
MCB_PTR smx_PMsgReceive (XCB_PTR xchg, u8** bpp, u8 dsn, u32 tmo=0, MCB_PTR* mhp=NULL)

Type SSR.

Summary Gets a pmsg from an exchange.

Compl smx_PMsgSend().

Parameters xchg exchange to get message from.
 bpp pointer to message block pointer. NULL if none.
 dsn MPA dual slot number for message region.
 timeout timeout in ticks.
 mhp Message handle pointer (used for tokens).

Returns pmsg Protected message handle.
 NULL Error or timeout.

Errors SMXE_INV_OP *mhp != NULL.
 SMXE_INV_PAR invalid sn.
 SMXE_INV_PRI message priority is invalid for a pass exchange.
 SMXE_INV_XCB invalid exchange handle.
 SMXE_WAIT_NOT_ALLOWED called from LSR with nonzero timeout.

Descr Gets a pmsg from xchg. If no pmsg is waiting at xchg, suspends the current task for

tmo ticks. Fails if tmo ticks elapse before a pmsg is received. Operates the same as

smx Protected Block & Message Services

243

smx_MsgReceive(), except that it obtains rbar and rasr for the pmsg block from the
pmsg MCB and loads them into MPA[sn] and MPU[sn+fas], which allows the
current task to access the pmsg block.

 For ARMM7, sn = dsn. For ARMM8, dsn = xsn << 4 + asn, where xsn = auxiliary

slot number and asn = active slot number. When a pmsg is received, if pmsg->con.sb
= 1 and the current task is a ptask, sn = xsn, otherwise sn = asn. If no pmsg is waiting
at xchg, dsn is saved in the current task’s TCB.

Note dsn is necessitated because the ARMM8 architecture does not permit overlapping

regions. Receive() and ReceiveStop() are the only services requiring dsn and they
require it only when called from ptasks. If it is known that no pmsgs having data
blocks in sys_data will be received by a ptask, then dsn is not required for it. See
section 5.2.4 for more information.

Example
u8* pbp;
MCB_PTR pmsg;
XCB_PTR uxr;

pmsg = smx_PMsgReceive(uxr, &pbp, 4, 5);

 Receives pmsg from exchange uxr, puts pmsg block region into MPA[4] and
MPU[4+fas], loads pmsg block address into pbp, if a pmsg is waiting at uxr. If not,
will wait up to 5 ticks for a pmsg. If none received, returns NULL.

smx_PMsgReceiveStop
void smx_PMsgReceiveStop (XCB_PTR xchg, u8 **bpp, u8 dsn, u32 timeout=0, MCB_PTR* mhp=NULL)

Type Limited SSR (tasks only).

Summary Same as smx_PMsgReceive() except that the current task is stopped then restarted

when a pmsg is received or a timeout occurs.

Compl smx_PMsgSend().

Parameters xchg exchange to get message from.
 bpp pointer to message block pointer. NULL if none.
 dsn MPA dual slot number for message region.
 timeout timeout in ticks.
 mhp Message handle pointer (used for tokens).

Errors SMXE_INV_OP *mhp != NULL.
 SMXE_INV_PAR invalid sn or bpp points into the current stack.
 SMXE_INV_PRI message priority is invalid for a pass exchange.
 SMXE_INV_XCB invalid exchange handle.
 SMXE_OP_NOT_ALLOWED called from an LSR.

Appendix A.2

244

Descr See smx_PMsgReceive() for operational description. The current task always stops,
then restarts instead of resuming, if a pmsg is received or a timeout occurs. As a
consequence, the task starts over from the beginning of its main function. The
message handle is returned via the parameter in taskMain(u32 par) – see example.

Notes (1) If called from an LSR, aborts operation and returns to the LSR.
 (2) smx_lockctr is cleared if called from a task.
Example

 smx_TaskStartPar(taskM, -1);

void taskM(u32 par)
 {
 static u8* bp;
 MCB_PTR pmsg = (MCB_PTR)par;
 XCB_PTR uxr;

 if (pmsg ! = NULL && pmsg != -1)
 /* process pmsg using bp */

 smx_PMsgReceiveStop(uxr, &bp, 4, 500);
 }

 The first time taskM is started, par == -1 and processing is skipped. If a pmsg is
waiting at uxr, smx_PMsgReceiveStop() stops the current task, receives pmsg from
uxr, puts pmsg block region into MPA[4], loads pmsg block address into pbp, then
restarts taskM, passes the pmsg handle in as par, and loads MPA[4] into MPU[4+fas].
If no pmsg is waiting at uxr, waits up to 500 ticks for one to arrive. If a pmsg is
received, performs the previous steps, else restarts taskM with pmsg == NULL.

 Although the code above seems convoluted, the advantage of using

smx_PMsgReceiveStop() instead of smx_PMsgReceive(), is that taskM releases its
stack while waiting for the next pmsg. This allows other tasks to share the stack,
which is desirable if pmsgs are received very seldom,

smx_PMsgRel
bool smx_PMsgRel(MCB_PTR *mhp, u16 clrsz=0)

Type SSR.

Summary Releases a protected message.

Compl smx_PMsgGetHeap().

Parameters mhp message handle pointer.
 clrz Number of bytes to clear from 4th to end.

smx Protected Block & Message Services

245

Returns true pmsg released.
 false pmsg not released due to error.

Errors SMXE_INV_PAR invalid sn is or bp is not in heap hn range.

Descr Releases a pmsg obtained by smx_PMsgGetHeap(), smx_PMsgGetPool(), or

smx_PMsgMake(). Dequeues pmsg if it is at an exchange. Clears MPA[osn] and
MPU[osn+fas] and releases the pmsg data block back to its heap or pool, unless it is a
standalone block, where osn is the pmsg owner slot number, stored in the pmsg. Only
the pmsg owner can release a pmsg. Usually this is the task that got or received the
pmsg.

 When a pmsg is bound to the sender (as in a tunnel portal), the sender (portal client)

remains its owner and only it can release the pmsg. In this case, the receiver (portal
server) is called the host. If the contents of the host slot number, hsn, stored in the
pmsg, match the contents of the owner slot number, osn, MPA[hsn] is cleared.
Otherwise MPA[hsn] is not changed. The reason for this is that the host may have
received another pmsg before the client releases its pmsg. Either way, the host can no
longer access the pmsg data block.

Example
MCB_PTR pmsg;

smx_PMsgRel(pmsg);

 Releases pmsg and clears MPA[osn] and MPU[osn+fas], where osn is stored in the
pmsg MCB. If the pmsg is bound, MPA[hsn] is also cleared if it is the same, where
hsn and the bnd flag are stored in the pmsg MCB. In this case, the pmsg data block is
not cleared.

smx_PMsgReply
bool smx_PMsgReply(MCB_PTR pmsg)

Type Function calls SSR.

Summary Restricted version of smx_PMsgSend.

Parameters pmsg pmsg handle

Returns true pmsg sent or released.
 false pmsg not sent nor released due to error.

Appendix A.2

246

Descr Determines rxchg from pmsg->rpx, pri from pmsg->pri, and calls smx_PMsgSend().
Used in the free message protocol to limit a server’s actions and to reduce errors.
When smx_PMsgReply() is used, the server has no knowledge of nor control of the
rxchg to which pmsg is returned. If pmsg->rpx = 0xFF (no reply exchange) releases
pmsg. See smx_PMsgSend() for details.

Example
MCB_PTR pmsg;

smx_PMsgReply(pmsg);

 Sends pmsg to its resource exchange or releases it if it has no resource exchange.

smx_PMsgSend
bool smx_PMsgSend(MCB_PTR pmsg, XCB_PTR xchg, u8 pri=0, void *reply=NULL)

Type SSR.

Summary Sends pmsg to an exchange, or delivers pmsg to the top waiting task, if any.

Compl smx_PMsgReceive(), smx_PMsgReceiveStop().

Parameters pmsg protected message handle to send.
 xchg exchange handle to send message to.
 pri priority of msg, unless == SMX_PRI_NOCHG.
 reply where to send reply. NULL if no reply is expected.

Returns true Message sent.
 false Message not sent due to error.

Errors SMXE_INV_MCB invalid pmsg or pmsg not owned by ct nor clsr.
 SMXE_INV_PAR invalid sn, pri, or reply.
 SMXE_INV_XCB invalid exchange.

Descr Operates the same as smx_MsgSend(), except for the following:

 1. For ARMM7, pmsg->rasr = MPA[osn] and for ARMM8, pmsg->rlar = MPA[osn],

where osn = pmsg->con.osn. osn is the pmsg owner slot number, which was loaded
when the pmsg was first obtained or when it was received from another task. osn is
the pmsg block region slot number in the MPA of the task that owns the pmsg. Only
this task can send or release the pmsg.

 2. If the pmsg bound flag is not set (pmsg->con.bnd == 0), clears MPU[osn+fas] and

MPA[osn]. In this case, the sender can no longer access the pmsg data block. This is
used for free message portals. If the bound flag is set, MPU[osn+fas] and MPA[osn]
are not cleared. In this case, the sender remains the pmsg owner and it can still access
the pmsg data block. This is used for tunnel portals.

smx Protected Block & Message Services

247

 3a. For ARMM7: if a receiving task, rtask, is waiting at xchg, its MPA[rsn] is loaded
with the pmsg data region from the pmsg MCB, where rsn = (rtask->dsn & 0xF). In
this case rsn is an active slot and MPA[rsn] will be loaded into MPU[rsn+fas] when
rtask is resumed or started.

 3b. For ARMM8: if (rtask is a utask || pmsg->con.sb == 0), rtask MPA[rsn] is loaded

with the pmsg data region from the pmsg MCB, where rsn = (rtask->dsn & 0xF). In
this case rsn is an active slot and MPA[rsn] will be loaded into MPU[rsn+fas] when
rtask is resumed or started.

 3c. For ARMM8: if (rtask is a ptask && pmsg->con.sb == 1), rtask MPA[rsn] is

loaded with the pmsg data region from the pmsg MCB where rsn = rtask->dsn >> 4.
In this case rsn must be an auxiliary slot and MPA[rsn] will not be loaded into
MPU[rsn+fas] when rtask is resumed or started. The pmsg block region must be
loaded into an auxiliary MPA slot because the sys_data region is loaded into the
MPU whenever a ptask runs, else an MMF would occur due to overlapping regions.

Note dsn = dual slot number, was loaded into rtask->dsn by smx_PMsgReceive() or by

smx_PMsgReceiveStop() and sb = system block, which, if set, means that the pmsg
block came from the sys_data region.

Example
MCB_PTR pmsg;
XCB_PTR uxa;
XCB_PTR uxr;

smx_PMsgSend(pmsg, uxa, 2, (void*)uxr);

 Sends pmsg to exchange uxa with priority 2 and reply exchange uxr.

smx_PMsgSendB
bool smx_PMsgSendB(MCB_PTR pmsg, XCB_PTR xchg, u8 pri=0, void *reply=NULL)

Type Function calls SSR.

Summary Sends a bound pmsg to an exchange.

Descr Same as smx_PMsgSend() except it sets the bound flag in pmsg MCB so that the

pmsg continues to be owned by the sender. Used for tunnel portals.
Examples

MCB_PTR pmsg;
XCB_PTR uxa;

smx_PMsgSendB(pmsg, uxa, 2);

 Sends a bound pmsg to exchange uxa with priority 2 and no reply exchange.

249

Appendix B: Linker Command Files

ARMM7
/**
* stm32746g_tsmx.icf Version 5.1.0
*
* ILINK Command File for IAR EWARM, TSMX, and STMicro STM32746G-EVAL board.
*
* ARMM7 Internal ROM Internal SRAM Version (ROM build targets)
*
* Memory Layout:
*
* ITCMRAM [0x00000000--0x00003FFF] (16KB) Unused (ITCM RAM)
* ROM [0x08000000--0x080FFFFF] (1MB) Int Flash via AXIM interface
* ROM [0x00200000--0x002FFFFF] (1MB) Int Flash via ITCM interface
* TCRAM [0x20000000--0x2000FFFF] (64KB) EVT, Main Stack (DTCM RAM)
* SRAM1 [0x20010000--0x2004BFFF] (240KB) Data (Int SRAM)
* SRAM2 [0x2004C000--0x2004FFFF] (16KB) Joined with SRAM1 (Auxiliary Int SRAM)
* RAM [0xC0000000--0xC1FFFFFF] (32MB) LCD buffer (Ext SDRAM)
*
**/

define symbol EVT_size = 4*(16+98); /* SB_IRQ_MAX+1 <1> */
define memory mem with size = 4G;

/* Memory region definitions */
define region ROM = mem:[from 0x00200000 to 0x002FFFFF]; /* ITCM */
define region SRAM = mem:[from 0x20000000 to 0x2004FFFF];
define region RAM = mem:[from 0xC0000000 to 0xC1FFFFFF];

/* MPU region sizes (must be power of 2) <2> */
define exported symbol cpcsz = 0x2000; /* console partition */
define exported symbol cpdsz = 0x1000;
define exported symbol cphsz = 0x400; /* console partition heap */
define exported symbol scsz = 0x20000; /* system */
define exported symbol sdsz = 0x40000;
define exported symbol svccsz = 0x2000; /* svc */
define exported symbol t2acsz = 0x1000;
define exported symbol t2adsz = 0x100;
define exported symbol t2bcsz = 0x100;
define exported symbol t2bdsz = 0x20;
define exported symbol t2ccsz = 0x100; /* t2 client */
define exported symbol t2cdsz = 0x40;
define exported symbol t2scsz = 0x400; /* t2 server */
define exported symbol t2sdsz = 0x80;

Appendix B

250

define exported symbol tm23dsz = 0x20; /* tm23 swap region */
define exported symbol ut1acsz = 0x20;
define exported symbol ut1adsz = 0x80;
define exported symbol ut2acsz = 0x1000;
define exported symbol ut2adsz = 0x80;
define exported symbol ut2axdsz = 0x20;
define exported symbol ut2bcsz = 0x200;
define exported symbol ut2bdsz = 0x20;
define exported symbol ut2ccsz = 0x2000; /* ut2 client */
define exported symbol ut2cdsz = 0x400;
define exported symbol ut2dcsz = 0x100; /* ut2 second client */
define exported symbol ut2ddsz = 0x40;
define exported symbol ut2scsz = 0x800; /* ut2 server */
define exported symbol ut2sdsz = 0x100;
define exported symbol ucsz = 0x2000; /* ucom */
define exported symbol udsz = 0x100;

/* Empty block definitions (not initialized) */
define block CSTACK with size = 0x200, alignment = 8 { }; /* Main Stack */
define block EVT with size = EVT_size, alignment = 512 { }; /* EVT <1> */
define block mheap with size = 0x4000, alignment = 16 { }; /* Mheap */
define block heap1 with size = 0x6144, alignment = 16 { }; /* Heap1 ttCD17 */
define block heap2 with size = 0x2000, alignment = 16 { }; /* Heap2 thMH05 */
define block heap3 with size = 0x2f60, alignment = 16 { }; /* Heap3 thR */
define block cp_heap with size = cphsz, alignment = 16 { }; /* Cons part heap */
define block LCD_BUF with size = 0x200000, alignment = 8 { }; /* LCD buffer */
keep {block EVT, block LCD_BUF};

/* Console partition and SVC regions <3> */
define block cp_code with size = cpcsz*7/8, alignment = cpcsz
 {ro section .cp.text, ro section .cp.rodata};
define block cp_data with size = cpdsz*5/8, alignment = cpdsz {block cp_heap,
 rw section .cp.data, rw section .cp.bss};
define block svc_code with size = svccsz*5/8, alignment = svccsz
 {ro section .svc.text, ro section .svc.rodata,
 ro object ABImemset.o, ro object ABImemcpy.o,
 ro object strcat.o, ro object strcpy.o,
 ro object strncpy.o, ro object strlen.o};

/* Common umode regions <3> */
define block ucom_code with fixed order, size = ucsz*7/8, alignment = ucsz
 {block svc_code, ro section .ucom.text, ro section .ucom.rodata};
define block ucom_data with size = udsz, alignment = udsz
 {rw section .ucom.data, rw section .ucom.bss};

/* System regions <3> */
define block sys_code with size = scsz*6/8, alignment = scsz {ro section .intvec,
 ro section .sys.text, ro section .sys.rodata, block cp_code,
 block ucom_code}; /*<4>*/
define block sys_data with size = sdsz*5/8, alignment = sdsz, fixed order
 {block EVT, block CSTACK, block mheap, block ucom_data, block cp_data, /*<5>*/
 rw section .sys.bss, rw section .sys.data, rw section .sys.noinit,
 block heap1, block heap2, block heap3, rw};

Linker Command Files

251

/* Test task regions <3> */
define block t2a_code with size = t2acsz*6/8, alignment = t2acsz
 {ro section .t2a.text, ro section .t2a.rodata};
define block t2b_code with size = t2bcsz, alignment = t2bcsz
 {ro section .t2b.text, ro section .t2b.rodata};
define block t2c_code with size = t2ccsz*5/8, alignment = t2ccsz
 {ro section .t2c.text, ro section .t2c.rodata};
define block t2s_code with size = t2scsz*5/8, alignment = t2scsz
 {ro section .t2s.text, ro section .t2s.rodata};
define block ut1a_code with size = ut1acsz, alignment = ut1acsz
 {ro section .ut1a.text, ro section .ut1a.rodata};
define block ut2a_code with size = ut2acsz*5/8, alignment = ut2acsz
 {ro section .ut2a.text, ro section .ut2a.rodata};
define block ut2b_code with size = ut2bcsz, alignment = ut2bcsz
 {ro section .ut2b.text, ro section .ut2b.rodata};
define block ut2c_code with size = ut2ccsz*5/8, alignment = ut2ccsz
 {ro section .ut2c.text, ro section .ut2c.rodata};
define block ut2d_code with size = ut2dcsz, alignment = ut2dcsz
 {ro section .ut2d.text, ro section .ut2d.rodata};
define block ut2s_code with size = ut2scsz*5/8, alignment = ut2scsz
 {ro section .ut2s.text, ro section .ut2s.rodata};
define block t2a_data with size = t2adsz, alignment = t2adsz {rw section .t2a.bss,
 rw section .t2a.data};
define block t2b_data with size = t2bdsz, alignment = t2bdsz {rw section .t2b.data};
define block t2c_data with size = t2cdsz*5/8, alignment = t2cdsz {rw section .t2c.bss,
 rw section .t2c.data};
define block t2s_data with size = t2sdsz*6/8, alignment = t2sdsz {rw section
 .t2s.bss,rw section .t2s.data};
define block ut1a_data with size = ut1adsz, alignment = ut1adsz {rw section

.ut1a.data};
define block ut2a_data with size = ut2adsz*6/8, alignment = ut2adsz {rw section

.ut2a.data};
define block ut2ax_data with size = ut2axdsz, alignment = ut2axdsz {rw section

.ut2ax.data};
define block ut2b_data with size = ut2bdsz, alignment = ut2bdsz {rw section

.ut2b.data};
define block ut2c_data with size = ut2cdsz*5/8, alignment = ut2cdsz {rw section

.ut2c.bss};
define block ut2d_data with size = ut2ddsz*5/8, alignment = ut2ddsz {rw section

.ut2d.bss};
define block ut2s_data with size = ut2sdsz, alignment = ut2sdsz {rw section .ut2s.bss,
 rw section .ut2s.data};
define block tm23_data with size = tm23dsz, alignment = tm23dsz {rw section

.tm23.data};

/* MPU region sizes for initialization (must be power of 2) */
define exported symbol romsz = 0x100000;
define exported symbol sramsz = 0x40000;
define exported symbol ramsz = 0x200000;

/* Block ordering for best memory efficiency. MPUPACKER */
define block rom_block with fixed order, size = romsz*5/8, alignment = romsz
 {block sys_code, block ut1a_code, block ut2b_code,

Appendix B

252

 block ut2a_code, block t2a_code, block t2b_code,
 block ut2c_code, block ut2d_code, block ut2s_code,
 block t2c_code, block t2s_code, ro};
define block sram_block with fixed order, size = sramsz*6/8, alignment = sramsz
 {block sys_data, block t2a_data, block t2b_data,
 block ut1a_data, block ut2a_data, block ut2ax_data,
 block ut2b_data, block ut2c_data, block ut2d_data,
 block ut2s_data, block t2c_data, block t2s_data,
 block tm23_data};
define block ram_block with fixed order, size = ramsz, alignment = ramsz
 {block LCD_BUF};

/* Initialization */
initialize by copy with packing = none {rw};
do not initialize {section .noinit};

/* Placements */
place in ROM {block rom_block};
place in SRAM {block sram_block};
place in RAM {block ram_block};

/* Notes:
 1. size = 4*(16 + SB_IRQ_MAX + 1). Must be aligned to power of 2 >= EVT size.
 2. Ensures CSTACK is first to detect main stack overflows. Also places
 critical blocks in TCRAM for speed.
 3. Alignment must = size.
 4. Copied to EVT by startup code in case EVT is needed before the linker
 copy code runs.
 5. mheap must start at 0x20000400 or thAA16-24 will fail.
*/

ARMM8
/***
* lpc55s69_tsmx.icf Version 5.1.0
*
* ILINK Command File for IAR EWARM, TSMX, and STMicro NXP LPC55S69-EVK board.
*
* ARMM8 Internal ROM Internal SRAM Version (ROM build targets)
*
* Non-Secure Memory Layout:
* ROM [0x00000000--0x0009D7FF] (630KB) Code (last 10KB reserved)
* BOOT ROM [0x03000000--0x0301FFFF] (128KB) Boot code
* SRAM X [0x04000000--0x04007FFF] (32KB) Unused (Casper & power down)
* SRAM0-3 [0x20000000--0x2003FFFF] (256KB) EVT, Data, Main Stack
* SRAM4 [0x20040000--0x20043FFF] (16KB) Unused (PowerQuad)
* APB & AHB [0x40000000--0x4010FFFF] (1888KB) Peripherals
* Secure Memory Layout:
* Add 0x10000000 to all addresses
*
**/
define symbol EVT_size = 4*(16+60); /* 60=SB_IRQ_MAX+1 */

Linker Command Files

253

define memory mem with size = 4G;

/* Memory region definitions */
define region ROM = mem:[from 0x00000000 to 0x0009D7FF];
define region SRAM = mem:[from 0x20000000 to 0x2003FFFF];

/* MPU region sizes */
define exported symbol cpcsz = 0x13a0; /* console partition */
define exported symbol cpdsz = 0x8a0;
define exported symbol cphsz = 0x400; /* console partition heap */
define exported symbol scsz = 0x12100; /* system */
define exported symbol sdsz = 0x1c080;
define exported symbol svccsz = 0x10c0; /* svc */
define exported symbol t2acsz = 0x760;
define exported symbol t2adsz = 0xa0;
define exported symbol t2bcsz = 0x40;
define exported symbol t2bdsz = 0x20;
define exported symbol t2ccsz = 0xa0; /* t2 client */
define exported symbol t2cdsz = 0x20;
define exported symbol t2scsz = 0x240; /* t2 server */
define exported symbol t2sdsz = 0x80;
define exported symbol tm23dsz = 0x20; /* tm23 swap region */
define exported symbol ut1acsz = 0x20;
define exported symbol ut1adsz = 0x20;
define exported symbol ut2acsz = 0x640;
define exported symbol ut2adsz = 0x40;
define exported symbol ut2axdsz = 0x20;
define exported symbol ut2bcsz = 0x200;
define exported symbol ut2bdsz = 0x20;
define exported symbol ut2ccsz = 0x1240; /* ut2 client */
define exported symbol ut2cdsz = 0x2e0;
define exported symbol ut2dcsz = 0x100; /* ut2 second client */
define exported symbol ut2ddsz = 0x20;
define exported symbol ut2scsz = 0x420; /* ut2 server */
define exported symbol ut2sdsz = 0xe0;
define exported symbol ucsz = 0x12a0; /* ucom */
define exported symbol udsz = 0x80;

/* Empty block definitions (not initialized) */
define block CSTACK with size = 0x200, alignment = 8 { }; /* System (Main)
Stack */
define block EVT with size = 0x1c8, alignment = 512 { }; /* Exception Vector
Table <1> */
define block mheap with size = 0x4000, alignment = 16 { }; /* mheap tsmx */
define block heap1 with size = 0x2000, alignment = 16 { }; /* heap1 ttCD17 */
define block heap2 with size = 0x2000, alignment = 16 { }; /* heap2 thMH05 */
define block heap3 with size = 0x2f60, alignment = 16 { }; /* heap3 thR */
define block cp_heap with size = cphsz, alignment = 16 { }; /* heap for cp */
keep {block EVT};

/* Console partition and SVC regions */
define block cp_code with size = cpcsz, alignment = 32
 {ro section .cp.text, ro section .cp.rodata};

Appendix B

254

define block cp_data with size = cpdsz, alignment = 32 {block cp_heap,
 rw section .cp.data, rw section .cp.bss};
define block svc_code with size = svccsz, alignment = 32
 {ro section .svc.text, ro section .svc.rodata,
 ro object ABImemset.o, ro object ABImemcpy.o,
 ro object strcat.o, ro object strcpy.o,
 ro object strncpy.o, ro object strlen.o};

/* Common umode regions <3> */
define block ucom_code with fixed order, size = ucsz, alignment = 32
 {block svc_code, ro section .ucom.text, ro section .ucom.rodata};
define block ucom_data with size = udsz, alignment = 32
 {rw section .ucom.data, rw section .ucom.bss};

/* System regions <3> */
define block sys_code with size = scsz, alignment = 32 {ro section .intvec, /*<4>*/
 ro section .sys.text, ro section .sys.rodata, block cp_code,
 block ucom_code};
define block sys_data with size = sdsz, alignment = 32, fixed order
 {block EVT, block CSTACK, block mheap, block ucom_data, block cp_data,
 rw section .sys.bss, rw section .sys.data, rw section .sys.noinit,
 block heap1, block heap2, rw};

/* Test task regions <3> */
define block t2a_code with size = t2acsz, alignment = 32
 {ro section .t2a.text, ro section .t2a.rodata};
define block t2b_code with size = t2bcsz, alignment = 32
 {ro section .t2b.text, ro section .t2b.rodata};
define block t2c_code with size = t2ccsz, alignment = 32
 {ro section .t2c.text, ro section .t2c.rodata};
define block t2s_code with size = t2scsz, alignment = 32
 {ro section .t2s.text, ro section .t2s.rodata};
define block ut1a_code with size = ut1acsz, alignment = 32
 {ro section .ut1a.text, ro section .ut1a.rodata};
define block ut2a_code with size = ut2acsz, alignment = 32
 {ro section .ut2a.text, ro section .ut2a.rodata};
define block ut2b_code with size = ut2bcsz, alignment = 32
 {ro section .ut2b.text, ro section .ut2b.rodata};
define block ut2c_code with size = ut2ccsz, alignment = 32
 {ro section .ut2c.text, ro section .ut2c.rodata};
define block ut2d_code with size = ut2dcsz, alignment = 32
 {ro section .ut2d.text, ro section .ut2d.rodata};
define block ut2s_code with size = ut2scsz, alignment = 32
 {ro section .ut2s.text, ro section .ut2s.rodata};
define block t2a_data with size = t2adsz, alignment = 32 {rw section .t2a.bss,
 rw section .t2a.data};
define block t2b_data with size = t2bdsz, alignment = 32 {rw section .t2b.data};
define block t2c_data with size = t2cdsz, alignment = 32 {rw section .t2c.bss,
 rw section .t2c.data};
define block t2s_data with size = t2sdsz, alignment = 32 {rw section .t2s.bss,
 rw section .t2s.data};
define block ut1a_data with size = ut1adsz, alignment = 32 {rw section .ut1a.data};
define block ut2a_data with size = ut2adsz, alignment = 32 {rw section .ut2a.data};

Linker Command Files

255

define block ut2ax_data with size = ut2axdsz, alignment = 32 {rw section .ut2ax.data};
define block ut2b_data with size = ut2bdsz, alignment = 32 {rw section .ut2b.data};
define block ut2c_data with size = ut2cdsz, alignment = 32 {rw section .ut2c.bss};
define block ut2d_data with size = ut2ddsz, alignment = 32 {rw section .ut2d.bss};
define block ut2s_data with size = ut2sdsz, alignment = 32 {rw section .ut2s.bss,
 rw section .ut2s.data};
define block tm23_data with size = tm23dsz, alignment = 32 {rw section .tm23.data};

/* rom_block and sram_block definitions */
define block rom_block with fixed order, alignment = 32
 {block ut1a_code, block ut2b_code,
 block ut2a_code, block t2a_code, block t2b_code,
 block ut2c_code, block ut2d_code, block ut2s_code,
 block t2c_code, block t2s_code, ro};
define block sram_block with fixed order, alignment = 32
 {block t2a_data, block t2b_data, block ut1a_data,
 block ut2a_data, block ut2ax_data, block ut2b_data,
 block ut2c_data, block ut2d_data, block ut2s_data,
 block t2c_data, block t2s_data, block tm23_data};
/* Initialization */
initialize by copy with packing = none {rw};
do not initialize {section .noinit};

/* Placements */
place at start of ROM {block sys_code};
place in ROM {block rom_block};
place at start of SRAM {block sys_data};
place in SRAM {block sram_block, block heap3};

/* Notes:
 1. size = 0x1c8 so mheap will start at 0x3d0 like STM32F746.
 2. Ensures CSTACK is first to detect main stack overflows. Also places
 critical blocks in TCRAM for speed.
 3. Alignment and size must be multiples of 32 bytes.
 4. Copied to EVT by startup code in case EVT is needed before the linker
 copy code runs.
*/

257

Appendix C: Glossary

auxiliary slot An extra MPA slot that is swapped with an active slot or one that is stored and never put into
the MPU. See section 4.2.5 Auxiliary Slots.

active slot An MPU slot that is replaced upon a task switch.
alias handle Secondary pointer to a control block or structure.
attributes Access permission with share, buffer, and cache control for a region.
bound stack A permanent task stack that is retained by a task when it is stopped.
BR Background Region flag of ARMM7 MPU. When on, allows access to all memory.
current task The task that is running.
fas First active slot in MPU. Slots below this are static and are not changed by task switches.
free message portal A portal that uses free pmsgs to exchange data between client and server.
handle Pointer to a control block or control structure.
head Portion of a function before calling a callee (e.g. SVCHh()).
hmode Privileged, main stack, no tasks.
MCB smx Message Control Block.
MCU Micro Controller Unit: A system on a chip including processor, memory, and peripherals.
message exchange An smx object that allows exchanging messages between tasks and between tasks and LSRs.
MMF Memory Manage Fault.
MMU Memory Management Unit.
MPU Memory Protection Unit.
MpuPacker Micro Digital utility that suggests the best linker block order to minimize gaps for ARMM7.
MS Main Stack of processor used in hmode.
non-volatile registers R4-R11.
one-shot task Runs once, stops, and releases its stack, while waiting.
partition Abstract object consisting of the union all MPU regions that the partition’s tasks are allowed to

access.
pblock Protected block – i.e. the block is an MPU region.
plug block A non-region block used to fill a gap.
pmode Protected or privileged mode.
pmsg Protected message – i.e. the message block is an MPU region.
portal Allows transfer of data between isolated partitions.
ptask A task that runs in pmode with the MPU on and BR off.
RASR Region Attribute and Size Register in ARMM7 MPU.
RBAR Region Base Address Register in MPU.
RLAR Region Limit Address Register in ARMM8 MPU.
region Area of memory defined by a starting address, size, and attributes.
region block A linker block that becomes an MPU region.

Appendix C

258

region size Next power of two large enough to contain region for ARMM7 or next multiple of 32 for
ARMM8.

restricted services System services not allowed in umode.
RO Read-Only.
RTOS Real Time Operating System.
RW Read/Write.
runtime frame Ends when idle task has run a specified number of times.
runtime limit The number of clocks per runtime frame that a task is allowed to run.
safe LSR An LSR that has its own stack and MPA and runs in umode (uLSR) or pmode (pLSR).

Functions like a mini task, except it cannot wait.
size boundary A multiple of size.
SOUP Software of Unknown Pedigree.
SRD SubRegion Disable field in RASR.
SSR smx System Service Routine. Performs smx services such as smx_TaskCreate().
stacking Processor saves volatile registers on the task stack due to an exception.
subregion 1/8 of a region for ARMM7. Can be individually disabled.
super region MPU region that maps an entire memory, e.g. SRAM. An MPA with super regions can be

helpful initially for a task being developed, to avoid MMFs.
system service A service performed by system software, such as smx_SemSignal() or sb_IRQMask().
tail Portion of a function after return from callee (e.g. SVCHt()), or the unused portion at the end of

a linker block (e.g. cp_code 0x1b92 <Block tail>).
TLS Task Local Storage.
token Assigned to tasks to limit access to smx objects. A HI token permits creating, changing, and

deleting an object. A LO token permits object access, only.
top task Longest waiting task at the highest priority level – i.e. next to run
trusted LSR An LSR that runs in hmode, uses the main stack, and does not have an MPA.
TS Task Stack.
tunnel portal Uses a pmsg, bound to the client, as the portal buffer for data and command transfers in either

direction and remains in place until the portal is closed.
umode Unprotected or unprivileged mode.
unbound stack A temporary task stack allocated from a stack pool. Released when task is stopped.
unstacking Processor restores registers on return from an exception.
utask A task the runs in umode with the MPU on.
ARMM7 ARMv7-M architecture.
ARMM8 ARMv8-M architecture.
volatile registers R0-3, R12, LR, and PSR.
window portal Uses a common dynamic region as a portal.
XN eXecute Never.

259

Appendix D: SMX API Limitations

Most API services are permitted in umode. Some are prohibited or limited. This appendix
summarizes the limitations.

Note: These limitations could change (by us or you), so please refer to the code to be sure.

Following are prohibited in umode:
smx_EventGroupSet()
smx_Go()
smx_HeapBinSeed()
smx_HeapExtend()
smx_HeapInit()
smx_HeapRecover()
smx_HeapScan()
smx_HeapSet()
smx_HTInit()
smx_LSRCreate()
smx_LSRDelete()
smx_LSRInvoke()
smx_LSRsOff()
smx_LSRsOn()
smx_MsgXchgSet()
smx_MutexGetFast()
smx_PipeSet()
smx_SemSet()
smx_SysPseudoHandleCreate()
smx_SysPowerDown()
smx_TaskLock()
smx_TaskLockClear()
smx_TaskSet()
smx_TaskUnlock()
smx_TaskUnlockQuick()
smx_TimerSetLSR()

Following are limited by relationship. A utask may operate upon its children, its siblings, and
itself, but not upon its parent or other tasks.
smx_BlockRelAll()
smx_MsgRelAll()
smx_TaskBump()
smx_TaskDelete()
smx_TaskLocate()
smx_TaskPeek()
smx_TaskResume()
smx_TaskStart()

Appendix D

260

smx_TaskStartNew()
smx_TaskStop()
smx_TaskSuspend()

Following have indicated limitations:
sb_INT_DISABLE/ENABLE(): Ignored by processor. See section 6.2.2 Interrupt Disabling and
Masking in Tasks

sb_IRQMask/Unmask(): Permitted for IRQs specified in table assigned to task’s TCB by
smx_TaskSet(,SMX_ST_IRQ,). See section 6.2.2 Interrupt Disabling and Masking in Tasks.

smx_TaskCreate(): Child inherits parent's MPA, umode flag, and IRQ permissions.

smx_TaskSet(): pmode only and:
 SMX_ST_PRIV: only top parent privilege can be set
 SMX_ST_TAP: only top parent tap can be set
 SMX_ST_UMODE: only top parent can be put into umode

These behaviors can be changed easily.

1. To prohibit calls, change #defines in xapiu.h to use _Pragma("error"), following examples
there.

2. To change limitations by relationship, modify smx_TaskOpPermit() in xtask.c.

3. To change limitations for IRQs, modify sb_IRQPermCheck() in bspm.c.

4. To change others, edit the functions.

	Preface
	Chapter 1 Introduction
	1.1 How to Use This Manual
	1.2 Partitioning
	1.3 Advantages of Isolated Partitions
	1.4 Hardware
	1.5 Methodology
	1.6 Security
	1.6.1 The Increasing Need for Security
	1.6.2 Protection Goals
	1.6.3 What You Need

	1.7 SecureSMX Snapshot
	1.8 SecureSMX Licensing

	Chapter 2 Background
	2.1 MMUs vs. MPUs
	2.2 Cortex Micro Controller Units (MCUs)
	2.2.1 Cortex-M
	2.2.2 Cortex-M ARMM7
	2.2.3 Cortex-M ARMM8

	Chapter 3 Getting Started
	3.1 Legacy Code
	3.2 New Code
	3.3 References

	Chapter 4 Basic Theory
	4.1 Partitions and Tasks
	4.1.1 What are Partitions?
	4.1.2 Secure Boot
	4.1.3 RTOS & System Services
	4.1.4 The Vault
	4.1.5 Mission Critical
	4.1.6 utasks
	4.1.7 ptasks
	4.1.8 Parent and Child Tasks

	4.2 MPU Control
	4.2.1 Memory Protection Arrays and Tasks
	4.2.2 MPU / MPA Relationship
	4.2.3 Active Slots
	4.2.4 Static Slots
	4.2.5 Auxiliary Slots
	4.2.6 MPU Slot Numbers & Region Overlaps
	4.2.7 Task Stack Slot

	4.3 MPA Templates
	4.3.1 Creating and Loading MPAs
	4.3.2 Using Parent and Child Tasks
	4.3.3 Using ARMM7 MPU Subregions
	4.3.4 Creating ARMM7 MPA Templates
	4.3.5 Creating ARMM8 MPA Templates
	4.3.6 Fast MPU Load
	4.3.7 Template Errors
	4.3.8 Standard Regions

	4.4 Linker Command File
	4.4.1 First Sections
	4.4.2 Region Block Definitions
	4.4.3 Block Ordering

	4.5 Defining Sections
	4.5.1 Section Prefixes
	4.5.2 Command Line Switches
	4.5.3 Section Pragmas
	4.5.4 Template Macros
	4.5.5 String Literals

	4.6 Map Files
	4.6.1 ARMM7
	4.6.2 ARMM8
	4.6.3 MpuMapper

	4.7 Regions
	4.7.1 Insufficient MPU Slots
	4.7.2 Combined Regions
	4.7.3 Common Regions
	4.7.4 I/O Regions
	4.7.5 I/O Regions Using Subregions

	4.8 Interrupts and Exceptions
	4.8.1 Priorities
	4.8.2 Enabling ISRs and Exception Handlers to Run
	4.8.3 Interrupts
	4.8.4 Writing ISRs
	4.8.5 Exceptions

	4.9 SVC API
	4.9.1 SVC Calls
	4.9.2 SVC Call Mechanism
	4.9.3 Restricted Services
	4.9.4 Custom SSTs
	4.9.5 Partially Restricted Services
	4.9.6 Mixed Code Modules

	4.10 Processor Control
	4.10.1 smx Task Switching
	4.10.2 From pmode to umode
	4.10.3 Memory Protection Arrays, MPAs
	4.10.4 What Good are ptasks?
	4.10.5 Hacking a ptask

	4.11 Dynamic Features
	4.11.1 eheap and smx_Heap
	4.11.2 The Need for Multiple Heaps
	4.11.3 Allocating Heap Space
	4.11.4 Creating a Heap
	4.11.5 Heap Manager
	4.11.6 Task Stacks
	4.11.7 PSPLIM and MSPLIM
	4.11.8 Task Local Storage
	4.11.9 Dynamic Regions
	4.11.10 Protected Data Blocks
	4.11.11 Protected Messages

	4.12 Miscellaneous
	4.12.1 Standard C Library Functions
	4.12.2 Partition Isolation vs. ucom Regions
	4.12.3 HAL Code

	Chapter 5 Partition Portals
	5.1 Introduction
	5.1.1 Isolated Partitions
	5.1.2 Function Call APIs
	5.1.3 Partition Portals

	5.2 Protected Messages
	5.2.1 pmsg Structure
	5.2.2 Sending a pmsg
	5.2.3 Receiving a pmsg
	5.2.4 Message Priority Inheritance
	5.2.5 Dual MPA Slots for ARMM8

	5.3 Free Message Portal
	5.3.1 Configurations
	5.3.2 Portal Creation
	5.3.3 Client Open
	5.3.4 Client Operation
	5.3.5 Server Operation
	5.3.6 Client Close
	5.3.7 Portal Deletion
	5.3.8 More Flexible Operation

	5.4 Tunnel Portal
	5.4.1 Get pmsg (by client)
	5.4.2 Create Portal (by server)
	5.4.3 Open Portal (by client)
	5.4.4 Open Portal (by server)
	5.4.5 Send and Receive Data (by client and server)
	5.4.6 Close Portal (by client)
	5.4.7 Close Portal (by server)
	5.4.8 Delete Portal (by server)

	5.5 Shell Functions
	5.5.1 Mapping Functions to Shell Functions
	5.5.2 Creating a pmsg
	5.5.3 Portal Server Operation

	5.6 Sending Free Messages to Tunnel Portals
	5.7 Other Portal Topics
	5.7.1 Portal Access Delays and Priority Promotion
	5.7.2 Portal Errors
	5.7.3 Chained Portals
	5.7.4 Server Callbacks
	5.7.5 Who’s The Boss?
	5.7.6 Client Data
	5.7.7 Window Portal

	5.8 Console Portal
	5.9 Middleware Portals
	5.9.1 smxFS
	5.9.2 smxNS
	5.9.3 smxUSBD
	5.9.4 smxUSBH

	5.10 Tunnel Portal Timeouts
	5.10.1 Server Timeout
	5.10.2 Client Timeout
	5.10.3 Client Recovery Methods

	5.11 Portal Tips

	Chapter 6 Advanced Theory
	6.1 System Services
	6.1.1 System Calls from pmode
	6.1.2 System Calls from umode

	6.2 Critical Sections
	6.2.1 SecureSMX Object Priorities
	6.2.2 Interrupt Disabling and Masking in Tasks
	6.2.3 Other Methods to Protect Critical Sections

	6.3 Cache Control
	6.4 Porting SecureSMX
	6.4.1 To Another Toolchain
	6.4.2 To Another RTOS
	6.4.3 To Another Processor

	6.5 Runtime Limiting
	6.5.1 Guidelines
	6.5.2 Approach
	6.5.3 Enabling Runtime Limiting
	6.5.4 Adaptive Time slicing

	6.6 Tokens
	6.6.1 General
	6.6.2 Blocking Excessive Creates
	6.6.3 Handle Verification

	6.7 Safe LSRs
	6.7.1 The ISR Problem
	6.7.2 LSR Types and Operation
	6.7.3 Performance
	6.7.4 Resulting Security

	6.8 Task Privilege Levels
	6.8.1 Description

	Chapter 7 Partition Demos
	7.1 Getting Started
	7.2 Creating an Isolated Umode Partition Demo
	7.2.0 pd0
	7.2.1 pd1
	7.2.2 pd2
	7.2.3 pd3
	7.2.4 pd4
	7.2.5 pd5
	7.2.6 pd6

	Chapter 8 Implementation
	8.1 Planning
	8.1.1 Security Plan
	8.1.2 Reliability Plan
	8.1.3 When to Add MPU Support

	8.2 Project Approach
	8.2.1 Legacy Code
	8.2.2 New Code
	8.2.3 Iterative Process
	8.2.4 Keeping a Log and Backups

	8.3 Working Base
	8.3.1 Getting Started

	8.4 Partitions
	8.4.1 Creating Partitions
	8.4.2 Partition Overlap
	8.4.3 Using Region Tails
	8.4.4 Partition Updating

	8.5 Templates & Regions
	8.5.1 Creating Templates
	8.5.2 Code and Data Regions
	8.5.3 I/O Regions
	8.5.4 Too Many I/O Regions
	8.5.5 MPU Region Details
	8.5.6 ucom_code Region
	8.5.7 Using TLS to Reduce Regions

	8.6 Using the Linker
	8.6.1 Block in Block
	8.6.2 Initialized Variables

	8.7 Tasks
	8.7.1 Creating ptasks
	8.7.2 Converting from ptask to utask
	8.7.3 Dealing with Restricted and New Services
	8.7.4 Dealing with Shared Code and Data
	8.7.5 Permanent ptasks
	8.7.6 Using Child Tasks to Reduce Regions

	8.8 Creating SVC Calls
	8.9 Portals
	8.9.1 Creating a Free Message Portal
	8.9.2 Creating a Tunnel Portal
	8.9.3 Tunnel Portal Client Shells and Server Cases for Most Calls
	8.9.4 Tunnel Portal Data Block Transfers in Item Units
	8.9.5 Data Block Transfer Considerations
	8.9.6 Portal Configuration Settings

	8.10 Miscellaneous
	8.10.1 Heap Calls
	8.10.2 Performance Measurements
	8.10.3 Where Am I?
	8.10.4 Event Buffer
	8.10.5 Reset Vector
	8.10.6 ISRs and LSRs
	8.10.7 Critical Sections

	8.11 Reducing Memory Waste for ARMM7
	8.11.1 Using MpuPacker
	8.11.2 Reducing Block Tails
	8.11.3 Reducing Region Block Gaps
	8.11.4 Using Plug Blocks
	8.11.5 Reducing Region Block Sizes
	8.11.6 Restructuring Regions
	8.11.7 Handling Aligned Blocks within Aligned Blocks
	8.11.8 Reducing code and data sizes
	8.11.9 Conclusion

	8.12 Prerelease Checklist
	8.13 Design Tips
	8.14 Measurements
	8.14.1 Size
	8.14.2 General Performance
	8.14.3 Thumb Drive Performance
	8.14.4 SD Card Performance
	8.14.5 ARMM7 Memory Waste

	8.15 EWARM Tool Issues

	Chapter 9 Debugging
	9.1 Using Configuration Constants
	9.1.1 SMX_CFG_SSMX
	9.1.2 SMX_CFG_SSMX_ENABLE
	9.1.3 MP_MPA_DEV
	9.1.4 SMX_CFG_PORTAL
	9.1.5 SMX_CFG_RTLIM
	9.1.6 SMX_CFG_DIAG
	9.1.7 SMX_CFG_TOKENS

	9.2 Debugging Techniques
	9.2.1 Keep a Debug Log
	9.2.2 Buy a Tracing Tool
	9.2.3 Finding MMFs
	9.2.4 MMF Storms
	9.2.5 Using Debugger Windows
	9.2.6 The Handle Problem
	9.2.7 Fixing an Easy MMF
	9.2.8 Region Overlaps
	9.2.9 Reversing Course
	9.2.10 Portal Debugging

	9.3 Using smxAware Security Features
	9.3.1 MPU Display
	9.3.2 MPA Displays
	9.3.3 Tasks Display
	9.3.4 Memory Map Window
	9.3.5 Portal Events

	9.4 Multitasking Issues
	9.5 Pay Attention to Errors
	9.6 Debug Tips
	9.7 C-SPY Tool Issues

	Appendix A.1 SecureSMX Services
	mp_FPortalClose
	mp_FPortalCreate
	mp_FPortalDelete
	mp_FPortalOpen
	mp_FPortalReceive
	mp_FPortalSend
	mp_FTPortalSend
	mp_MPACreate
	mp_MPACreateLSR
	mp_MPUSlotLoad
	mp_MPASlotMove
	mp_MPUSlotSwap
	mp_TPortalCall
	mp_TPortalClose
	mp_TPortalCreate
	mp_TPortalDelete
	mp_TportalOpen
	mp_TPortalReceive
	mp_TPortalSend
	mp_TPortalServer
	mp_RegionGetHeapR
	mp_RegionGetHeapT
	mp_RegionGetPoolR
	mp_RegionGetPoolT
	mp_RegionMakeR
	mp_RegionMakeT

	Appendix A.2 smx Protected Block & Message Services
	smx_PBlockGetHeap
	smx_PBlockGetPool
	smx_PBlockMake
	smx_PBlockRelHeap
	smx_PBlockRelPool
	smx_PMsgGetHeap
	smx_PMsgGetPool
	smx_PMsgMake
	smx_PMsgReceive
	smx_PMsgReceiveStop
	smx_PMsgRel
	smx_PMsgReply
	smx_PMsgSend
	smx_PMsgSendB

	Appendix B: Linker Command Files
	ARMM7
	ARMM8

	Appendix C: Glossary
	Appendix D: SMX API Limitations

