smx®

Reference Manual

Version 6.0.0

January 2026

by Ralph Moore

M Micro Digital

© Copyright 1988-2026
Micro Digital Associates, Inc.
(714) 437-7333
support@smxrtos.com
WWW.SmXrtos.com

All rights reserved.

smx is a registered trademark and SecureSMX is a trademark of Micro Digital, Inc.

smx is protected by patents listed www.smxrtos.com/patents.htm and patents pending.

http://www.smxrtos.com/patents.htm

Table of Contents

smx Services

Services FOrmat.........coeevevvevvveevivnennn.
Notes and Restrictions............ccce...e.

smx_Block and smx_BlockPool
smx_BlockGet

smx_BlockMake...........cccceveveenennen.

smx_BlockPeek
smx_BlockRel
smx_BlockRelAll
smx_BlockUnmake
smx_BlockPoolCreate
smx_BlockPoolDelete

smx_BlockPoolPeekK.............ccccuu.....

smx_EVB

smxX_EVBINit......ccocooveveveneicnnn,

smx_EVB_LOG Macros

smx_EventFlags and smx_EventGroup
smx_EventFlagsPulse.............c.........

smx_EventFlagsSet
smx_EventFlagsTest
smx_EventFlagsTestStop
smx_EventGroupClear
smx_EventGroupCreate
smx_EventGroupDelete
smx_EventGroupPeek

smx_EventGroupSet..........ccccvevenen.

smx_EventQueue
smx_EventQueueClear

smx_EventQueueCount....................

smx_EventQueueCountStop
smx_EventQueueCreate
smx_EventQueueDelete

smx_EventQueuePeekK......................

smx_Event QueueSet
smx_EventQueueSignal

smx_Heap
smx_HeapBinPeek
smx_HeapBinScan
smx_HeapBinSeed
smx_HeapBinSort
smx_HeapCalloc
smx_HeapChunkPeek

S 10D L= o] =t 1=T o To S PSRSI 38

K 1= o] o =TSP 39
S 10D [T 1 1L RSSO 40
SIMX_HEAPMATIOCT ...ttt bbbt h et et e b sb e sb e e bt eb e et et e besbesbesbeeneas 43
SIMX_HEAPPEEK ...t bbbttt bbbt bt btk e e e b e b bt b e Rt Rt et et et naenbenneenean 45
SIMX_HEAPREAIIOC. ...t bttt h et b e bt bt b e bt e bt et et e besbesbenbeeneas 46
SIMX_HEAPRECOVET ...ttt b bttt a e b e e bt e e ke e ke et e e ae e e be e ebe e ebe e bt enbeenbeenee e 48
SIMIX _HBAPSCAN ...ttt h e bt e b e e bt e s bt e a b e eb b e e b £ e ke e ke e beeRe e e Re e ehe e ebe e bt enbeenreene e e 49
SIMIX _HBAPSELttt bt bt e b e e bt s bt R b e h £ e R £ e R e e b e e Rt Re e Re e ehe e ebe e bt e nbeenreene e e 51
SN H T e e e bbb 53
100G = 1 PSP P PR 53
D 1] PSSR 55
SIMX_ISR_ENTER ...ttt bbbtk b bbb b bbb bbb b s b bt ettt b et et 55
SIMX ISR _EXIT etttk bbb bbb b bR e bR E ke e e b b e bkt bkt b et et 57
R DG Y SR 58
LD S R L0 1 (- TSP 58
L IS R U =] 1=] (SR 59
L1 IS R A LYo S SPR 59
1) T = £ OSSPSR 61
] S T (S P 61
SIMX _IMISQ ettt R e R e R b b e a b e be e e e nnreas 63
R Y 10 =04 o ST 63
K G 1Y T U 64
SIMX_IMISGIMIAKE ... vttt ettt s e et e et st e e se e s e st e s et s e e e b e e Reen e e seen e e eeeeenbeeneeneeneene e eenrenrenneenen 65
R 1D Y/ ST T S PSSRI 66
R LD Y ST 2 LT oT=T Y- S SSRO 67
SIMX_IMISGRECEIVESTOP ...ttt ettt bbbttt bbbt bt bt eh et e b e beebesb e s bt eb e et e b e besbesbesbeeneas 69
SIMX_IMISGRE .ttt bbbt b et e bt b e e b e R e ek et e b e bt eh e b e Rt eh £ et e b et ehenbenneeneas 70
SIMX_IMISGREIAIL ...ttt bbbkt b e bt et et e beeb e sb e e bt e b e e e et e besbesbesneeneas 71
SIMX_IVISGSENT ...ttt ettt ekt bk bbbt b et e b e bt e b e e b £ e R £ eh £ e e et e Rt eh e b e e Rt eh £ e s et e b ebe b e bt enean 72
SIMX_IMISGUNIMAKE. ...ttt ettt bbbt h et bbb e b e b e ek e e e et e ke ebesb e e bt eb e e e e b e besbesbenbeeneas 74
] 1 G VST ol T TS S 76
SIMX_IMISGXCNGCIBAN ...ttt bbbt bt bt et e b ek eb e b e e bt eb e et et e besbesbesbeeneas 76
SIMX_IMISOXCNGCIEALE ...ttt ettt ettt bttt h et bt bbbt bt eh e et et e nbeebesb e e bt eb b e e e b e besbesbenbeeneas 77
SIMX_IMSGXCNGDEIBLE ...ttt b bbbt h et b e b sb e bt bt eb e et et e besbesbesbeeneas 78
SIMX_IMISGXCNGPEEK ... ettt ettt e e et st e st e e sees e e e e s e e ee st e sbeaneenee e ensenrenrenrenneanean 79
R 1D Y/ ST Do T 1S S SRSS 80
SIMX_IMIULEX ...tttk e b bt e e b bt e e et e s b e e snbe e e nnb e e e snneas 82
LD Y10 @ LT S PSRSRO 82
SIMX_IMULEXCIEALEveivee ettt ettt ettt ee et e e e e e e s s e saeesaeeseeen e ene e et e e nteesteebeesaeeneeaneesneenneenseensenneennee e 83
SIMX_IMIULEXDEIEE ... ettt st et e e seen e e e e ae st e steaneen e e e ens e eenrenrenneanean 83
K L Y LU - P 84
K L Y LT (T P 85
SIMX_IMUTEXGEEFAST ...ttt ettt ettt b et e e b e e b e et e e b e e eab e e e beeeabe e e beeanbeeanbeeanbeeenes 86
SIMIX _IMIUTEX G BESTOP .. ettt ettt btttk b e bt e bt st ab e eb ek e e ke e ke e bt e se e e be e she e ebe e bt embeenreenee e 86
SIMX_ IMULEXPEEK ...ttt s b e e b e et e e st e e st e st e e s te e be e beeseeaaeesbeesaeesbeenteenteeneensee e 88
R L Y LT DR =] USSP 88
VLT DR =] [) SRR 89

L Y LU 5= OO P PR 90

] 1D G | USSR 91

SIMX_PIPECIBAN ...ttt bttt et bt bbbt bt e bt et e b e beeb e sb e e bt eb e e b et e besbesbeebeeneas 91
1 T o L=T O LT TSSO TSRO 91
SIMX_PIPEDEIBLE. ...ttt b e bbbt et et e bt bt bt e bt e bt et e b et she b e nneenean 92
LD T TCT] RSSO 93
S LD AT 1T £ Y SRRSO 94
S 1D T 11T {2 o OSSR 95
SMX_PIPEGEIPKIWAILveviiieee ettt ettt ese et e e e st e sbeaneen e e e ens e eenresreaneanean 96
SMX_PIPEGEIPKIVWAITSIOD ... veteceieecie sttt st e n et e et st e sbeaneen e e e ens e eesresreaneanean 98
R DS T 1= 2T ST 100
SIMX_PIPEPULB ...ttt bbbt bbbt et e s e b e e b e e ke e bt e b e e bt ehe e e et e nbesbenbesbeebeenes 101
SIMX_PIPEPULIBIM ...ttt bbbttt e et b e bt bt e b e bt e he e e et e nbeebesbesneereenes 102
SIMX_PIPEPULPKL ...ttt bbbt ettt e b b skt e bt b e e bt es e e e et e st ebesbesaeeneens 103
SIMX_PIPEPUIPKIVWAIL. ...ttt bbb bt bbb et et et et sb e besaeereenes 104
SMX_PIPEPUIPKIWEITSTOP ...ttt bttt e bbbttt et b et sb e be b eneenes 105
SIMX_PIPERESUITIE ...ttt bbbt bt bt bt e e e a e nee e bt e ke e bt e b e e bt e he e b et e nbeebesbesbeeneenes 107
R 1D T 0TS P 108
] 10D QT 1 [T TP U P PPRTOPPTO 110
(1 1= 1O 1T SRR SORRN 110
L T-] (O £ (- USSR 110
R LD =T 41 L] =) P 112
SIMIX_SEMPEEK ...ttt sttt e e e et et s e e s b e e Re e R e e e e n e et e Re e Re e ReeReeR e e n et e nnenrenreeneereenes 112
] G 1= 15T USSR 113
R 10D =T 15T T - | 114
R LS T=] o I SRS PPRSTRO 115
] 1 G TE] 1 =T 51 (0] BT TPV PTO U PPURTPRPPN 118
R DS 1S SRR 120
SIMX_SSR_ENTERX ..ttitiittiitt ittt sttt ettt e st e b s et e b s et st e st et e e e s e b e e e st et et e s e abe st eneanees 120
SIMX _SSREXIL 1..viiiiiie ittt ettt e et e s ae e s be e be et e e st e e teesbeesteesteeseeeReeeReeeheeabeenbeenbeeRbenteenreenreerrenn 121
] 11 GRS} £ T PSPPSR 122
SMX_SYSPSEUAOHANAIECTEALE ...ttt b ettt et bbb en s 122
SITIX_ SYSPEEK ...ttt a et bbbt bRt E e e R bR h ekt Re b e Rt Rt e e et e b nheebenaeereenes 122
SIMX_SYSPOWEIDIOWIN ...ttt ettt sttt h e bt ekt s e sk e s bt e e be e bt e bt e he e e he e ehe e bt et e anbenbbesbeesbeenbeanneas 123
SIMX_ SYSWWNAEIS ...ttt bbbt bbbt a e b e bt s bt e bt bt e bt e bt e e et e b b e besaeeneenes 124
R 10D N I TS PP UROPRO 125
SIMX_ TASKBUIMID ...ttt bttt bbbt b bt bt et e s e b e e b e e ke eb e e bt e bt e bt et et et sbenbesbeebeenes 125
L I T O =Y L= SRS USSR 126
SIMX_TASKCUITENT ...ttt te et e s ae e s be e be et e et b e s te e st e e sbeesteeseeeseesaeesaeebeenbeanbesteestaesreesteeseens 128
SIMX_TASKDEIELE ... ettt e st et e s te e teeee s aeesae e saeeabeenbeensesteestaesteenreereean 129
R 1D I T S 0o S 130
R 1D I T 4 0T P 131
R 1D I T S 0T (O 1 USSP 132
R 1D I T S-S 133
R 1D I TS S ST - 134
L It 1] USSR SRRN 135
K1 I T ST [T o USSP 136
SIMX_TASKSIEEPSIOP ..ttt bbbttt e bbb e bt b e bt e bt et e b e b sbesbesaeeneenes 137
SIMX _ TASKSTANteite ittt e et e e st e e be et e et b e s teesteesbeebeeseesseeaaeesaeebeenteenbesseesteesbeenreaseens 138
K1 G I (6] (0]« OO TOTS TR 140
QI T g] B O (0] (o] o BSOS 142
R 1D I TS ST U] o1 o TP 143
R 1D I T S0 1 oS 144

SMX_TaSKUNIOCKQUICKveieiiisiect ettt sttt e e e et nrestesneeneenes 145

R 1) I T 1 2 1=1 o TP 146

] 10D G 01T SRR PPPROTRPRTN 147
R 1) I 11T 0o TSP 147
R 1D I 115 T P 148
R D I L 1T 1 T P 149
R 1D I 1T S0 S P 150
SIMX_ TIMEISEEPUISE ...ttt et e et e st e st e e s te e teeseesseesteesbeeabeenbeeabesteestaesbeesreaseens 151
L 01T 5] L SRS SRR 152
K1 W 1115 65 (o] o OSSOSO T PRSP 154
SMX ULHITY FUNCTIONS.....c.viiiiiieecee sttt esne e e nneenne s 155
SMX_CONVIMISECTOTICKS. . .eiitiiti ettt sttt et e et e st e st e s teesbeeseesraesbeesaeesbeenbeenbesteesteesteesteaseeas 155
SMX_CONVTICKSTOMSEC.....cueeiieiietie ettt sttt e et e et e st e s te e s te e beeseesseesteesaeebeenbeensesteesteesbeenteaseens 155
SIMX_DBIAYIMSEC ...ttt bbbttt bbbt bt bt b et e s e e e e bt skt e bt e bt e bt e h e e e e b e b sb e besbeereenes 155
SIMX_DBIAYTICKS ...t bbbttt b e bt bbb e bt e bt et et et sb e besbeebeenes 156
SIMX_ERROR ...ttt ettt ettt bbbt e st et e R e et e b e s et e s e Rt e b et e s e b et e st e be b en e et et n et e 156
R LD =1 2T 3 o1 - P 157
] 11 G PSSR 157

SIMIX GIOSSATY ..ttt sttt bbbttt be e b e e e b e e beesb e s be et e e seesbeesbeeneesbeeae s 159

smx Services

smx Services

This section covers all smx system services, including SSRs, functions, and macros. For simplicity, these
are often referred to as smx calls or just calls. Each description provides all information necessary to
properly use the subject smx call. Read the smx User’s Guide for information concerning the theory and
application of smx services. The smx Glossary at the end of this manual defines all smx terms and symbols.

Names in all caps are generally data types, manifest constants, macros, or enumerated constants. Names
such as atask are handles for objects such as tasks. Hence, atask->afield can be used to access afield in atask
control block. It is also possible to access afield via the control block structure: tch.afield. However, it is
better to use the Peek functions provided by smx to access object information, since direct field accesses
cannot be used in SecureSMX systems. A function is identified by parentheses after the name — for
example smx_TaskStart().

Services Format

The synopsis of the call is listed first. It employs the ANSI standard for function prototypes. Following it are
these fields:

Type Indicates whether the call is an SSR, macro, function, etc. See the smx Glossary section for
discussion of call types.

Summary Summary of what the call does.

Compl Complementary call. This is the call that performs the inverse operation, if any.
Parameters Describes the parameters of the call, if any.
Returns Shows what, if anything, is directly returned by the call. If 0, false, or NULL is returned, it

may be assumed that the call has been aborted and that nothing has been changed, unless
otherwise indicated.

Errors Lists the error types which may occur for the call. See the Glossary for descriptions of error
types. If an error is detected the service is aborted and false or NULL is returned, unless
otherwise indicated. Some secondary errors (from called SSRs or smxBase functions) may
not be listed, but can occur during operation.

Descr Description of the call. It helps when reading a call description to remember that if a call is
made from a task, that task is the current task (smx_ct) while the call is executing. Similarly,
if a call is made from an LSR, that LSR is the current LSR (smx_clsr) while the call is
executing.

Notes Specifics concerning control block fields, etc. This information is not necessary to properly
use the call, but may be helpful for debugging or for better understanding.

TaskMain The prototype for the task’s main function (for the task being stopped) is shown here for a
stop call, as well as the parameter passed to the task’s main function when the task is
restarted. The parameter to the main function can be void if you do not need to reference the
value passed in. This is the case when specifying an infinite timeout (SMX_TMO _INF) in
the stop call. Otherwise, you are advised to do error checking and handle the case where the
stop call times out.

Example These are intended to illustrate the common uses of calls. As such, they are often
unencumbered with error checking. See the Error Management chapter of the smx User’s
Guide for discussion of error checking.

smx Services

Notes and Restrictions

(1) Timeouts are specified in ticks. They may be specified in milliseconds by ORing
with flag SMX_FL_MSEC, such as 10|SMX_FL_MSEC. The granularity is ticks,
which is rounded up if necessary (e.g. 15 msec = 2 ticks for 100 ticks/sec.)

(2) Any code following a stop call will not execute. When the task is restarted, execution
starts at the beginning of the task’s main function with the return value from the call
passed in as the task main parameter. Note: stop and start calls which specify the task
are an exception to this.

(3) Stop SSRs: The parameter of the task main function should be the same type as the
return value of the suspend SSR — e.g. void task_main(MCB_PTR msg).

(4) Bare functions should not be used in tasks because they are not protected from
preemption.

(5) Bare functions and SSRs may not be mixed on the same end of a pipe (e.g. having an
ISR and a task both putting packets into the same pipe).

(6) Task and LSR main function parameters: On some processors, such as ColdFire,
there are separate address and data registers. If the compiler passes parameters in
registers rather than on the stack, you must define the parameter to be a data type
(e.g. integer) rather than a pointer. (Note that smx handles are pointers.) If it is
necessary to pass a pointer, define the type to be u32 and then typecast it to the
pointer type within the task or LSR main function, as follows:

void task_main(u32 par)

{
MCB_PTR msg = (MCB_PTR)par;
[* use msg */

}

(7) The handle pointer (hp) parameter of SSRs that create or get objects is used to
prevent multiple creates of objects. Handles must be NULL when calling Create or
Get SSRs, in order to avoid aborting the SSR and generating a SMXE_INV_OP
error. hp can also used by Create or Get SSRs to directly load handles instead of
loading the SSR return value. Under SecureSMX hp is used to check that the caller
has a token that permits changing or accessing an smx object. Autovariable handles
must be explicitly cleared before using in a Create or Get call to avoid this error.

smx_Block, smx_BlockPool

smx_Block and smx_BlockPool

See the smxBase User’s Guide for Base Block Pool functions, and see the smx User’s Guide, Memory
Management chapter for usage information and more examples.

smx_BlockGet

BCB_PTR smx_BlockGet (PCB_PTR pool, u8** bpp, u32 clrsz=0, BCB_PTR* bhp=NULL)
Type SSR

Summary Gets an smx block by combining a data block from a block pool and a BCB from the BCB

pool.
Compl smx_BlockRel()
Parameters pool Pool to get block from.

bpp Pointer to block pointer. NULL if none.
clrsz Number of bytes to clear from the start of block.

bhp Block handle pointer (see hp note in Notes and Restrictions).
Returns blk Handle of smx block obtained.
NULL No block available or error.
Errors SMXE_INV_PCB Invalid pool handle.
SMXE_OUT_OF_BCBS
SMXE_INV_OP Attempted multiple gets of same block.
Descr Gets a block from the specified block pool for use as the data block and a BCB from the BCB

pool, initializes the BCB and links it to the data block. Clears the first clrsz bytes of the data
block up to its size and loads the address of the data block into bpp, unless it is NULL. bpp
can be used to load data into the data block. The current task or LSR becomes the smx block
owner. Returns the block handle.

Notes 1. For proper operation there must be at least as many BCBs as there are active smx blocks
in a system at any given time.

2. Interrupt safe with respect to sb_BlockGet() and sb_BlockRel() operating on the same

block pool.
Example

BCB_PTR build_msg(PCB_PTR pool)

{
usg* dbp;
BCB_PTR blk;
blk = smx_BlockGet(pool, &dbp, 4);
/* load blk using dbp */
return blk;

}

This function gets a message from pool, loads data into it, and returns the block handle.

smx_Block, smx_BlockPool

smx_BlockMake

BCB_PTR smx_BlockMake (PCB_PTR pool, u8* bp, BCB_PTR* bhp=NULL)

Type
Summary
Compl
Parameters

Returns

Errors

Descr

Notes

Example:

SSR
Makes an smx block from a base block or a bare block using a pointer to it.
smx_BlockUnmake()

pool Base pool of the block. NULL if none.

bp Block pointer.
bhp Block handle pointer (see hp note in Notes and Restrictions).
blk Handle of block obtained.

NULL Insufficient resources or error.

SMXE_OUT_OF BCBS
SMXE_INV_OP Attempted multiple makes or creates of same block.
SMXE_INV_PAR bp is NULL or out of pool range, if pool not NULL.

Makes a block from a bare block, using its pointer. Gets BCB from BCB pool, initializes it
and returns its handle. The pool pointer or NULL, if no pool, is stored in the BCB.

1. The pool parameter is not used in this operation. It can be supplied so that a base block can
be released back to the correct pool, at a later time.

2. For proper operation there must be at least as many BCBs as there are active blocks in a
system at any given time.

3. Bare blocks can be statically defined, obtained from a base block pool, DAR, heap, or
ROM, or any other source.

#define WIDTH 4;
#define LENGTH 20;

LCB_PTR in_LSR;

PCB in_pool; /* base pool */
PICB_PTR in_pipe;

u8 pp[WIDTH*LENGTH]J;

in_LSR = smx_LSRCreate(in_LSR_main, SMX_FL_TRUST, NULL, 0, “in_LSR");
in_pipe = smx_PipeCreate(&pp, WIDTH, LENGTH, "in_pipe");

void in_ISR(void)

{
static u8 *bp, *dp;
u8 ch = UART_In();
switch (ch)
{
case: STX
bp = sb_BlockGet(&in_pool, 4);
dp = bp;
break;
case: ETX
smx_LSR_INVOKE(in_LSR, (u32)bp)
break;
default:
*dp++ =ch;
}
}
void in_LSR_main(u32 bp);
{
BCB_PTR blk;
blk = smx_BlockMake(&in_pool, (u8*)bp);
if (lsmx_PipePutPktWait(in_pipe, &blk, NO_WAIT))
smx_BlockRel(blk, 0);
}

smx_BlockPeek

u32

Type
Summary

Parameters

Returns

value

smx_BlockPeek (BCB_PTR blk, SMX_PK_PAR par)

Returns the current value of the parameter specified.

Block to peek at.
What to return.

Value of par.
Value, unless error.

smx_Block, smx_BlockPool

in_ISR() runs whenever a UART input interrupt occurs. It gets the incoming character from
the UART. If it is the start of text (STX) a base block is obtained from in_pool. Subsequent
characters are loaded into the base block. When the end of text (ETX) is received, in_LSR is
invoked. in_LSR uses smx_BlockMake() to make the base block at bp into an smx block and
then puts its handle, blk, into in_pipe where a task waits to process it. Note that this is a no-
copy operation. Note also, that if in_pipe is full, the block is released so a memory leak will
not occur. Unfortunately, the data is also lost.

smx_Block, smx_BlockPool

Errors

Notes

Example

SMXE_INV_BCB Invalid block handle
SMXE_INV_PAR Invalid argument.

This service can be used to peek at a block. Valid arguments are:

SMX_PK_BP Block pointer.

SMX_PK_NEXT Next block in the free list, if block is free, else 0.
SMX_PK_ONR Block owner, 0 if none.

SMX_PK_POOL Block pool, 0 if note.

SMX_PK_SIZE Block size.

TCB_PTR task;

task = (TCB_PTR)smx_BlockPeek(blk, SMX_PK_ONR);
if (task == smx_ct)
smx_BlockRel(blk, 0);

smx_BlockRel

bool smx_BlockRel (BCB_PTR blk, ul6 clrsz=0)

Type
Summary
Compl

Parameters

Returns

Errors

Descr

Notes

SSR
Releases a block obtained by smx_BlockGet() or made by smx_BlockMake().
smx_BlockGet(), smx_BlockMake()

blk Block to release.

clrsz Number of bytes to clear from byte 4 of block.

true Block released.

false Block not released due to error.

SMXE_INV_BCB blkis invalid or block has already been released.
SB_INV_PCB Invalid pool handle.

SB_INV_BP blk->bp is not in pool.

Releases a block obtained by smx_BlockGet() or made by smx_BlockMake(). Releases the
data block back to its base pool, if pool is valid. In this case, the blk->ph must point to a pool
control block. Clears clrsz bytes from byte 4 to the end of the block. Also releases the BCB
back to its pool. If blk->bhp is non-zero, NULL is loaded into *blk->bhp.

1. This SSR can be used to release an smx block, which was made from a bare block.

2. Loading NULL into *blk->bhp prevents accidental reuse of blk and shows clearly that blk
has been released.

3. Interrupt safe with respect to sb_BlockGet() and sb_BlockRel() operating on the same base
block pool.

Example

smx_Block, smx_BlockPool

BCB_PTR blk;
u32 sz;

sz = smx_BlockPeek(blk, SMX_PK_SIZE);
smx_BlockRel(blk, sz);

This clears the data block of blk, except the first 4 bytes, and releases it. (Note: The first 4
bytes of a free data block are used for the free list link to the next block.)

smx_BlockRelAll

u32 smx_BlockRelAll (TCB_PTR task)

Type
Summary
Parameters

Returns

Errors

Descr

Example

SSR

Releases all blocks owned by task and returns the number released.

task Task whose blocks are to be released.
n Number of blocks released.
0 Error or no blocks were owned

SMXE_INV_TCB Invalid task handle.

Searches the BCB pool and releases all blocks owned by task. Returns the number of blocks
released.

void stop_task(TCB_PTR atask)
{
smx_BlockRelAll(atask);
smx_TaskStop(atask);

}

smx_TaskStop(atask) does not automatically release all blocks owned by atask. In this
example, all of atask’s blocks are released, then it is stopped. This prevents block leakage if
the task gets the blocks again when it is restarted.

smx_BlockUnmake

u8* smx_BlockUnmake (PCB_PTR* pool, BCB_PTR blk)

Type
Summary
Compl

Parameters

SSR
Unmakes a block made by smx_BlockMake() into a bare block.
smx_BlockMake(), smx_BlockGet()

pool Pointer to pool handle, if any.
blk Block to unmake.

smx_Block, smx_BlockPool

Returns

Errors

Descr

Notes

Example

>0 Block unmade.
NULL Error.

SMXE_INV_BCB Invalid block handle or block already unmade or released.

Unmakes an smx block made by smx_BlockMake() or a block obtained by smx_BlockGet()
by converting it into a bare block and releasing its BCB. If pool '= NULL, loads blk->ph into
*pool, so the code receiving a base block can get its handle. If pool == NULL, the block is a
bare block. If blk->bhp = NULL, loads NULL into *blk->bhp.

1. Interrupt safe with respect to sb_BlockGet() and sb_BlockRel() operating on the same
block pool.

2. Loading NULL into *blk->bhp prevents accidental reuse of blk and shows clearly that blk
has been released.

LCB_PTR out_LSR;
PICB_PTR out_pipe;

ug8* pkt_ptr;
PCB_PTR pkt_pool;
u32 pkt_sz;
u32 bp;

out_LSR =smx_LSRCreate(out_LSR_main, NULL, 0, SMX_FL_TRUST, “out_LSR");
smx_LSRInvoke(out_LSR, (u32)out_pipe);

void out_LSR_main(u32 pipe);

{
BCB_PTR pkt;
if (smx_PipeGetPkt((PICB_PTR)pipe, (u8*)&pkt))
{
pkt_sz = smx_BlockPeek(pkt, SMX_PK_SIZE);
pkt_ptr = smx_BlockUnmake(&pkt_pool, pkt);
bp = pkt_ptr;
pkt_sz--;
UART_Out(bp++);
}
}

smx_Block, smx_BlockPool

void out_ISR(void);

{
if (pkt_sz > 0)
{
pkt_sz--;
UART_Out(bp++);
}
else
{
UART_Stop();
sb_BlockRel(pkt_pool, pkt_ptr, 0);
}
}

This example is the opposite of that shown for smx_BlockMake(). It is assumed that a task
invokes out_LSR when it puts a packet handle into out_pipe. out_LSR gets the next packet
handle from out_pipe and puts it into pkt. It then determines pkt_sz and unmakes pkt into a
bare block at pkt_ptr and puts the pool handle into pkt_pool. out_LSR decrements pkt_sz and
outputs the first byte to the UART to start the UART send.

The UART interrupts each time it needs another byte, and out_ISR provides the next byte
until all bytes have been sent. out_ISR then stops the UART and releases the bare block back
to pkt_pool. pkt_pool could be an smx block pool, a base block pool, or NULL. In the latter
case, the block is not released to any pool.

smx_BlockPoolCreate

PCB_PTR smx_BlockPoolCreate (u8* pp, u8 num, ulé6 size, const char* name=NULL, PCB_PTR* php=NULL)

Type
Summary
Compl

Parameters

Returns

Errors

SSR
Creates an smx block pool of num size blocks at pp.

smx_BlockPoolDelete()

pp Pointer to memory for pool.

num Number of blocks.

size Size of blocks.

name Name to give block pool, NULL for none.

php Pool handle pointer (see hp note in Notes and Restrictions).

pool Pool handle.

NULL Insufficient resources or error.

SMXE_INV_OP Attempted multiple creates of the same block pool.
SMXE_INV_PAR Invalid parameter.

SMXE_OUT_OF PCBS

smx_Block, smx_BlockPool

10

Descr

Notes

Example

Gets PCB for pool and calls sb_BlockPoolCreate() to creates block pool of num*size blocks
at pp and loads name. If successful, initializes PCB and returns block pool handle. If not,
returns PCB to its pool.

1. pp must be 4-byte aligned.

2. The block pool can be created from any block anywhere in memory, and it is assumed to
be large enough.

#define NUM 100;
#define SIZE 20;

PCB_PTR poolA;

u8 p = &pa[NUM*SIZE]; /* static pool */
Or
u8* p = (u8*)smx_HeapCalloc(NUM, SIZE); /* heap pool */

poolA = smx_BlockPoolCreate(p, NUM, SIZE, "poolA", &poolA);

Creates a block pool of NUM blocks, of SIZE bytes in either a static block of memory or in a
block allocated from the heap. Note that if the smx_HeapCalloc fails, p == 0 and
smx_BlockPoolCreate() will also fail.

smx_BlockPoolDelete

u8* smx_BlockPoolDelete (PCB_PTR* php)

Type
Summary
Compl
Parameters

Returns

Errors

Descr

Note

SSR
Deletes an smx block pool.
smx_BlockPoolCreate()

php Pool handle pointer.

>0 Pool deleted.

NULL Error.

SMXE_BLK IN_USE One or more blocks are still in use.
SMXE_INV_PCB Invalid block pool handle.

Deletes a block pool created by smx_BlockPoolCreate(). Clears and releases its PCB, sets
*php = NULL so it cannot be used again, and returns a pointer to the start of the released
pool.

User is responsible for dealing with the pool block.

smx_Block, smx_BlockPool

Example
ug8* bp;
PCB_PTR poolA;

bp = smx_BlockPoolDelete(&poolA);
smx_HeapFree((void*)bp);

If the pool delete fails, bp will be NULL and smx_HeapFree() will do nothing. If bp is not
within the heap, smx_HeapFree() will abort with an error.

smx_BlockPoolPeek

u32 smx_BlockPoolPeek (PCB_PTR pool, SMX_PK_PAR par)

Type SSR
Summary Returns the current value of the parameter specified.
Parameters pool Block pool to peek at.
par What to return.
Returns value Value of par.
0 Value, unless error.
Errors SMXE_INV_PCB Invalid block pool handle.
SMXE_INV_PAR Invalid parameter.
Notes This service can be used to peek at a block pool. Valid arguments are:
SMX_PK_NUM Number of blocks in pool.
SMX_PK_NUM_USED Number of used blocks in pool.
SMX_ PK_FREE Number of free blocks in pool.
SMX_PK_FIRST First free block in pool.
SMX_PK_MIN First physical block in pool.
SMX_PK_MAX Last physical block in pool.
SMX_PK_NAME Name of the pool.
SMX_PK_SIZE Size of the blocks in pool.
Example

SCB_PTR semA,;
void app_init(void)
{
u32 lim = smx_BlockPoolPeek(poolA, SMX_PK_NUM);

semA = smx_SemCreate(SMX_SEM_RSRC, lim, "sr");
}

This shows using smx_BlockPoolPeek() during initialization of semA, which is used to
control access to poolA.

11

smx_EVB

12

smx_EVB

See the smx User’s Guide, Event Logging chapter for usage information and more examples.

smx_EVBInit

void smx_EVBInit (u32 flags)

Type Bare function

Summary Creates and initializes the Event Buffer, EVB.
Parameters flags Flags indicate what to log:

SMX_EVB_EN_TASK
SMX_EVB_EN_LSR
SMX_EVB_EN_ISR
SMX_EVB_EN_ERR
SMX_EVB_EN_USER
SMX_EVB_EN_PORTAL
SMX_EVB_EN_PERR

SMX_EVB_EN_SSR1-8 SSR groups 1-8.
SMX_EVB_EN_SSRS All SSR groups.
SMX_EVB_EN_ALL.

Returns none

Descr Initializes the event buffer, EVB, and specifies which types of events to log. Space for EVB

is allocated by the linker command file. The EVB_EN flags can also be changed via
smxAware. The PORTAL and PERR enables are for usage with SecureSMX.

Example
smx_EVBInit(SMX_EVB_EN_ALL); /* enable logging of all events */

smx_EVBInit(SMX_EVB_EN_ERR +
SMX_EVB_EN_ISR +
SMX_EVB_EN_LSR); /* enable logging of errors, ISRs, and LSRs */

smx_EVB

smx_EVB_LOG Macros

void smx_EVB_LOG_ISR (u32isr)

void smx_EVB LOG ISR _RET (u32 isr)

void smx_EVB LOG_LSR (u32 handle)

void smx_EVB LOG LSR _RET (u32 handle)

void smx_EVB_LOG_SSRn (u32id, u32 p1, ..., pn)

void smx_EVB_LOG_USERn (u32 handle, u32 p1, ..., pn)

Type
Summary

Parameters

Returns

Descr

Example

Bare macros that call functions
Record respective events in the Event Buffer.

handle Task or LSR handle or user pseudo handle.

id SSR ID

isr ISR pseudo handle.

pl-n SSR parameter or user value.
None

These macros load events into EVB. The ISR macros log ISR pseudo handles. The macros
must be put into the ISRs in order to log them and the ISR enable must be set. The LSR
macros log the LSR handle and task macros log the task handle. These are called
automatically, if their enables have been set.

The user macros can be used anywhere in the code to serve as timestamps and to show values
of up to n variables. The handle of a user event can be a pseudo handle or some other unique
identifier, chosen by the user.

The ISR and LSR macros are written as macros, for speed; the others call functions, in order
to minimize code space. See xevb.h and xevb.c. For ISRs written using an assembly shell, put
the above C macros in the C body of the ISR. Specifically, put smx_EVB_LOG_ISR() right
after smx_ISR_ENTER() and smx_EVB_LOG_ISR_RET() right before smx_ISR_EXIT().
These will mark the time spent in the body of the ISR.

void appl_init(void)

{
void* isrl_h = smx_SysPseudoHandleCreate();
smx_HT_ADD(isrl_h, "isr1");

}

void isr1(void

{
smx_EVB_LOG_ISR(isrl);
[*isrl code */
smx_EVB LOG LSR_RET(isrl);

}

The above example shows how to log a non-smx ISR into the Event Buffer. A pseudo handle
is created for it because ISRs do not have handles.

13

smx_EventFlags, smx_EventGroup

14

smx_EventFlags and smx_EventGroup

See the smx User’s Guide, Event Groups chapter for usage information and more examples.

smx_EventFlagsPulse

bool smx_EventFlagsPulse (EGCB_PTR eg, u32 pulse_mask)

Type SSR
Summary Pulses event flags on and off that are not already set.
Compl smx_EventFlagsTest() and smx_EventFlagsTestStop()
Parameters eg Event flags group.
pulse_mask Flags to pulse.
Returns true Flags pulsed.
false Flags not pulsed.
Errors SMXE_INV_EGCB Invalid event group handle.
Descr See smx_EventFlagsSet() for operational description. This service is useful in situations

where it is desired to resume tasks that are already waiting for a specific combination (AND,
OR, or ANDOR) of the specified flags. It does not have a pre-clear mask. If a pulsed flag was
already set, it will be left set unless cleared by a post clear flag of a resumed task. If a pulsed
flag was reset, it will be left reset.

Example

#define F2 0x2
#define F1 0x1

EGCB eg;
void t2aMain(u32)
{

smx_EventFlagsPulse(eg, F2+F1);
}

Resumes tasks already waiting for a combination of F2 and F1. If a task was waiting for
either or both, it will be resumed.

smx_EventFlags, smx_EventGroup

smx_EventFlagsSet

bool smx_EventFlagsSet (EGCB_PTR eg, u32 set_mask, u32 pre_clear_mask)

Type

Summary

Compl

Parameters

Returns

Errors

Descr

Example

SSR

Clears flags in eg selected by 1 bits in pre_clear_mask, sets flags selected by 1 bits in
set_mask, and resumes waiting tasks which now match a pre-specified combination of
eg->flags.

smx_EventFlagsTest() and smx_EventFlagsTestStop()

eg Event group.
set_mask Flags to set.
pre_clear_mask Flags to pre-clear

true Flags cleared and set.
false Flags not cleared and set.

SMXE_INV_EGCB Invalid event group handle.

Pre-clears flags selected by pre_clear_mask in eg, and sets flags selected by set_mask. Then,
if at least one new flag has been set, the task wait queue is searched for matches to eg->flags.
Each task’s test_mask, post_clear_mask, and test condition (OR, AND, or ANDOR) are
obtained from its TCB. The test mask condition is compared to eg->flags and if there is a
match, the task is resumed. The flags causing the match are recorded in the rv field of the
TCB and will be returned when the task starts running. (They are the return value of the test
operation, which caused the task to wait.)

After this, the match flags are ANDed with the post_clear_mask for the task. The result of the
AND is the reset mask for the task. For example: if flags causing a match = M & A and the
post_clear_mask = A, then the result is A. This allows auto-clearing event flags, like A,
without auto-clearing mode flags, like M.

If there are multiple tasks waiting, the above procedure is repeated for each task. When all
tasks have been processed, their reset masks are ORed; then the 1’s complement of the OR is
ANDed with eg->flags. Thus all flags causing matches, after AND’ing with corresponding
post_clear_mask, are reset. See smx_EventFlagsTest() for more discussion and examples.

If eg->cbfun is not NULL, the callback function cbfun(EGCB_PTR eg) is called. See also
smx_EventGroupSet().

#define TXRDY 0x40
EGCB modem_eg;

void start_transmit(void)

{
smx_EventFlagsSet(modem_eg, TXRDY, 0);

}

Sets transmit ready flag in the modem_eg event group and resumes any tasks waiting for it.
There is no pre-clear, in this case.

15

smx_EventFlags, smx_EventGroup

16

smx_EventFlagsTest

u32 smx_EventFlagsTest (EGCB_PTR eg, u32 test_mask, u32 mode, u32 post_clear_mask, u32 timeout=0)

Type
Summary

Compl

Parameters

Returns

Errors

Descr

Notes

SSR

Tests for a match between eg->flags and test_mask. If found, smx_ct is continued. Returns
the flags causing the match, and clears flags causing a match that are selected by the post
clear_mask. Suspends smx_ct if no match is found and timeout > 0.

smx_EventFlagsSet() and smx_EventFlagsPulse().

eg Event group.

test_mask Flags to test.

mode SMX_EF_OR, SMX_EF_AND, or SMX_EF_ANDOR.
post_clear_mask Flags to reset of those causing a match.

timeout Timeout in ticks or msec if |SMX_FL_MSEC.

flags Flags causing match.

0 No match, timeout, or error.

SMXE_INV_EGCB Invalid event group handle.
SMXE_INV_PAR test_mask == 0.

SMXE_WAIT_NOT_ALLOWED Call from LSR with timeout > 0.

Tests flags in event group vs. test_mask. If match, clears matching flags selected by post-
clear_mask, continues task, and returns flags which caused the match. If test_mask bit 16 is 1
(0x10000), tests for the AND of flags. mode determines the test to make. Bits 31 - O are the
test pattern to compare to eg->flags. For AND/OR testing, flags in AND terms must be
adjacent. For example, ABC, AB + C, or A +BC can be tested for, but not AC + B. For
efficiency, terms should be as close to the least significant end, as possible.

If called from smx_ct and there is no match and timeout > 0, saves test_mask in ct->sv and
the post_clr_mask in sv2. If AND, sets ct->flags.ef_and; if ANDOR, sets ct->flags.ef_andor;
Enqueues task in FIFO order in eg wait queue, loads smx_ct timeout, and suspends smx_ct. If
there is no match and no timeout, fails and returns 0.

If the timeout elapses the task resumes with 0 return value. Otherwise, when a match occurs,
due to smx_EventFlagsSet() or smx_EventFlagsPulse() from another task or LSR, this task
resumes with its return value equal to the flags that caused the match. It clears those flags that
caused the match that are selected by the post_clear_mask

Operation from an LSR is the same as from a task except that waits are not allowed. Hence,
an LSR can determine if flags are currently set, but it cannot wait for them.

1. Clears smx_locketr if called from a task and timeout = SMX_TMO_NOWAIT.

Example

smx_EventFlags, smx_EventGroup

#define AND SMX_EF_AND
#define TXRDY 0x4

#define DSR 0x2

#define CTS 0x1

#define TFLGS 0x7

u32 flags;

EGCB_PTR modeg;

void TransmitMain(u32)

{
while (flags = smx_EventFlagsTest(modeg, TFLGS, AND, TFLGS, 100))
{
if (flags == TFLGS)
/* send next message */
else
break; /* timeout -- stop sending */
}
}

The transmit task waits for the modem flags: TXRDY, DSR, and CTS to all be true. It then
resets the flags, sends the next message, and waits upon them again. It stops transmitting if a
timeout occurs.

smx_EventFlagsTestStop

void smx_EventFlagsTestStop (EGCB_PTR eg, u32 test_mask, u32 mode, u32 post_clear_mask, u32 timeout=0)

Type

Summary

Compl

Parameters

Errors

Descr

Limited SSR — tasks only.

Same as smx_EventFlagsTest() except that smx_ct is always stopped, then restarted when it
is time for it to run.

smx_EventFlagsSet() and smx_EventFlagsPulse().

eg Event group.

test_mask Flags to test.

mode SMX_EF_OR, SMX_EF_AND, or SMX_EF_ANDOR.
post_clear_mask Flags to reset of those causing a match.

timeout Timeout in ticks or msec if |SMX_FL_MSEC.
SMXE_OP_NOT_ALLOWED Called from an LSR

SMXE_INV_EG Invalid event group handle.
SMXE_INV_PAR test_mask == 0.

See smx_EventFlagsTest() for operational description. ct always stops, then restarts instead
of resuming. The flags causing a match are returned via the parameter in taskMain(par), when
task restarts.

17

smx_EventFlags, smx_EventGroup

18

Notes

TaskMain

par

Example

1. If called from an LSR, aborts operation and returns to the LSR.
2. Clears smx_locketr if called from a task, since it always stops.

void task_main(u32 par)

flags Flags causing match.
0 No match.
The equivalent example of the above smx_EventFlagsTest() example is:

void TransmitMain(u32 par)

{
if (par == TFLGS)
/* send next message */
else if (par == 0)
smx_TaskStop(smx_ct); /* timeout -- stop sending */
smx_EventFlagsTestStop(modeg, TFLGS, AND, TFLGS, 100);
}

This task would initially be started as follows:

TCB_PTR transmit;
smx_TaskStart(transmit, 1);

The first time transmit runs it does not send a message, nor do a timeout stop. Instead, it tests
the modem flags and stops. When there is a match, transmit will restart, and the matching
flags will be passed into TransmitMain() as par. If a timeout or error occurs, transmit will
stop since par == 0.

smx_EventGroupClear

bool smx_EventGroupClear (EGCB_PTR eg, u32 init_mask)

Type
Summary

Parameters

Returns

Errors

Descr

Example

SSR

Clears event group.

eg Event group to clear.
init_mask Values to set flags.
true eg cleared.

false eg not cleared.

SMXE_INV_EG Invalid event group handle.

Resumes all waiting tasks with O return values and sets eg->flags = init_mask. Typically used
for system recovery.

EGCB_PTR eg;
smx_EventGroupClear(eg, flags);

Clears eg task wait list and leaves eg->flags = flags.

smx_EventFlags, smx_EventGroup

smx_EventGroupCreate

EGCB_PTR smx_EventGroupCreate (u32 init_mask, const char* name=NULL, EGCB_PTR* eghp=NULL)
Type SSR

Summary Creates an event group with 32 flags.

Compl smx_EventGroupDelete()

Parameters init_mask Initial values of flags.

name Name to give event group (NULL for none).

eghp Event group handle pointer (see hp note in Notes and Restrictions).
Returns handle Event group created.

NULL Event group not created.
Errors SMXE_OUT_OF _EGCBS
Descr Gets an event group control block from the EGCB pool and initializes it. Loads init_mask

into EGCB flags field, name into EGCB name field, eghp into EGCB eghp field, and sets
*eghp = eg. If allocation fails, returns NULL and reports SMXE_OUT_OF EGCBS.

Example

#define CM 8
EGCB_PTR comm_eg;

void comm_init(void)

{

comm_eg = smx_EventGroupCreate(CM, "comm_eg");

}

Creates an event group with handle and name comm_eg and flag CM set.

smx_EventGroupDelete

bool smx_EventGroupDelete (EGCB_PTR* eghp)
Type SSR

Summary Deletes an event group.

Compl smx_EventGroupCreate()

Parameters eghp Event group handle pointer.

Returns true Event group deleted.
false Event group not deleted.
Errors SMXE_INV_EGCB Invalid event group handle
Descr Deletes an event group created by smx_EventGroupCreate(). First resumes waiting tasks,

giving them O return values and clearing their timeouts. Then clears the EGCB, returns it to
the EGCB pool, and sets *eghp = NULL so it cannot be used again.

19

smx_EventFlags, smx_EventGroup

Example

EGCB_PTR eg;
smx_EventGroupDelete(&eg);

smx_EventGroupPeek

u32 smx_EventGroupPeek (EGCB_PTR eg, SMX_PK_PAR par)

Type SSR
Summary Returns the current value of the parameter specified.
Compl smx_EventGroupSet()
Parameters eg Event group to peek.
par What to return.
Returns value Value for par.
0 Value, unless error.
Errors SMXE_INV_EGCB Invalid event group handle.

SMXE_INV_PAR Invalid parameter.

Notes This service can be used to peek at an event group. Valid arguments are:

SMX_PK_FLAGS Flags

SMX_PK_TASK Number of tasks waiting

SMX_PK_FIRST First task waiting

SMX_PK_NAME Name of event group
Example

EGCB_PTR eg;
u32 num_tasks;
TCB_PTR first_task;

num_tasks = smx_EventGroupPeek(eg, SMX_ PK_TASK);
if (num_tasks > 0)

first_task = (TCB_PTR)smx_EventGroupPeek(eg, SMX_PK_FIRST);
else

first_task = NULL;

smx_EventGroupSet

bool smx_EventGroupSet(EGCB_PTR eg, SMX_ST_PAR par, u32 v1, u32 v2)
Type SSR
Summary Provides event group control.

Compl smx_EventGroupPeek()

20

Parameters

Returns

Errors

Descr

Example

smx_EventFlags, smx_EventGroup

eg Event Group to set.

par Parameter to set.

vl Value 1.

v2 Value 2.

true Parameter has been set.

false Parameter has not been set due to error.

SMXE_INV_EGCB Invalid event group handle.
SMXE_PRIV_VIOL Privilege violation; cannot call from umode (SecureSMX).

par is of type SMX_ST_PAR. Available parameters are:

SMX_ST_CBFUN Event flags set callback function = v1.

Loads the event flags set callback function into the EGCB. Using this service is highly
recommended over directly setting internal eg modes, which may result in incorrect settings
due to preemption of the current task. Also, direct eg mode setting is not possible in umode
under SecureSMX.

EGCB ega;
smx_EventGroupSet(ega, SMX_ST_CBFUN, ega_cbfun);

void ega_cbfun(EGCB_PTR eg)
{

[* perform callback function */

}

This example loads ega_cbfun() into the EGCB. ega_cbfun is called whenever a flags set or
pulse operation occurs. This can be used to implement multiple waits.

21

smx_EventQueue

22

smx_EventQueue

See the smx User’s Guide, Event Queues chapter for usage information and more examples.

smx_EventQueueClear

bool smx_EventQueueClear (EQCB_PTR eq)

Type
Summary
Compl
Parameters

Returns

Errors

Descr

Example

SSR

Clears an event queue.

None

eq Event queue to clear.
true Event queue cleared.
false Error.

SMXE_INV_EQCB Invalid event queue handle.

Resumes all tasks waiting at eq with false return values and deactivates their timeouts. This
call would normally be used in a recovery situation, such as starting event processing over.

If the current task is not locked, it may be preempted by a higher priority task that was
waiting at eq.

EQCB_PTR eq;
smx_EventQueueClear(eq);

smx_EventQueueCount

bool smx_EventQueueCount (EQCB_PTR eq, u32 count, u32 timeout=0)

Type
Summary

Compl

Parameters

Returns

Limited SSR — tasks only

Suspends the current task on eq for count number of events. Fails if timeout ticks elapse
before count events occur.

smx_EventQueueSignal()

eq Event queue to wait at.
count Number of events to wait for.
timeout Timeout in ticks or msec if |[SMX_FL_MSEC.

true Count completed.
false Error, zero count or timeout, or timed out.

Errors

Descr

Notes

Example 1

smx_EventQueue

SMXE_OP_NOT_ALLOWED Called from an LSR or timeout == 0.
SMXE_INV_EQCB Invalid event queue handle.
SMXE_BROKEN_Q Broken queue.

If count is O returns true and continues the current task. If it is nonzero, the current task is
suspended on eq until it has been signaled count times or for timeout ticks. Then the task is
resumed with true or false, respectively.

To enqueue the current task, the differential count of each task already enqueued in eq, is
subtracted, in order, from count until the result would be less than 0 or the end of the queue
has been reached. The current task is enqueued just ahead of this point or at the end of the
queue. The calculated differential count is loaded into the sv field of the current task’s TCB
and it is subtracted from the differential count of the following task, if there is one. For
example, if the event queue looks like this:

TCBs

QCB 8 5 12

and a task with a count of 10 is enqueued, the event queue will then look like this:

QCB 8 2 3 12

added

smx_EventQueueCount() can be used to delay a task count ticks. However, it is more
efficient to suspend it for count ticks:

smx_TaskSuspend(smx_ct, count);

Event queues are useful to measure events such as revolutions, objects passing by, etc.. The
overhead per signal to eq is small because only the first counter need be decremented.

1. If called from an LSR, operation aborts and returns to LSR.
2. Clears smx_lockctr if called from a task and timeout = SMX_TMO_NOWAIT.
3. Thein_evq TCB flag is set to indicate that the task is in an event queue.

#define SEC SB_TICKS_PER_SEC

EQCB_PTR msg_rec;
TCB_PTR statask;
XCB_PTR out_portl, in_portl, pool;

23

smx_EventQueue

24

void receiveMain(u32)
{
MCB_PTR msg;
smx_TaskStart(statask);
while (msg = smx_MsgReceive(in_portl, SMX_TMO_INF))
{
/* Process msg */
smx_EventQueueSignal(msg_rec);

}

void stataskMain(u32)
{
u8* mbp;
MCB_PTR status_msg;

while (1)
{
status_msg = smx_MsgGet(pool, &mbp, 0);
if (smx_EventQueueCount(msg_rec, 8, SEC))
*mbp = OK;
else
*mbp = LOW,
smx_MsgSend(status_msg, out_portl, 0, NO_REPLY);

}

If 8 messages are received in less than a second, OK status is returned. Otherwise LOW status
is returned.

smx_EventQueueCountStop

void smx_EventQueueCountStop (EQCB_PTR eq, u32 count, u32 timeout=0)

Type
Summary

Compl

Parameters

Errors

Limited SSR — tasks only

Same as smx_EventQueueCount() except that smx_ct is always stopped, then restarted when
it is time for it to run.

smx_EventQueueSignal()

eq Event queue to wait at.
count Number of events to wait for.
timeout Timeout in ticks or msec if |[SMX_FL_MSEC.

SMXE_OP_NOT_ALLOWED Called from an LSR or timeout == 0.
SMXE_INV_EQCB Invalid event queue handle.
SMXE_BROKEN_Q Event queue is broken.

Descr

Notes

TaskMain

par

Example

smx_EventQueue

See smx_EventQueue() for operational description. smx_ct always stops, then restarts instead
of resuming. Pass or fail is returned via the parameter in taskMain(par), when the task
restarts.

1. If called from an LSR, aborts operation and returns to LSR.
2. Clears smx_lockctr if called from a task, since it always stops.

void task_main(bool par)

true Count completed.
false Zero count or timed out.

#define SEC SB_TICKS_PER_SEC

EQCB_PTR msg_rec;
TCB_PTR statask;
XCB_PTR out_portl, in_portl, pool;

void receiveMain(u32)
{
MCB_PTR msg;
smx_TaskStart(statask, 0);
while (msg = smx_MsgReceive(in_portl, SMX_TMO_INF))
{
[* Process msg */
smx_EventQueueSignal(msg_rec);

}

void stataskMain(bool all_msgs_rec)
{

u8* mbp;

MCB_PTR status_msg;

if (all_msgs_rec)
{
status_msg = smx_MsgGet(pool, &mbp, 0);
if (all_msgs_rec)
*mbp = OK;
else
*mbp = LOW;
smx_MsgSend(status_msg, out_portl, 0, NO_REPLY);

}
smx_EventQueueCountStop(msg_rec, 8, SEC);

}

This example is equivalent to that shown for smx_EventQueueCount(). The statask task is
started with all_msg_rec == 0 so it will wait at the msg_rec event queue and stop. When 8
messages have been received, the statask task will restart with all_msg_rec == 1.

25

smx_EventQueue

26

smx_EventQueueCreate

EQCB_PTR smx_EventQueueCreate (const char* name=NULL , EQCB_PTR* eghp=NULL)

Type
Summary
Compl

Parameters

Returns

Errors

Descr

Example

SSR
Creates an event queue.
smx_EventQueueDelete()

name Name to give event queue, NULL for none.
eghp Event queue handle pointer (see hp note in Notes and Restrictions) .

handle Event queue created.
NULL Event queue not created due to Error.

SMXE_OUT_OF EQCBS Out of event queue control blocks.

Gets a queue control block from the EQCB pool and initializes it as an EQCB. Loads name
into it. Returns the EQCB address as the event queue handle.

EQCB_PTR SignalsEQ;

void appl_init(void)

{
SignalsEQ = smx_EventQueueCreate("SignalsEQ");

}

In this example, an event queue is set up to count signals.

smx_EventQueueDelete

bool smx_EventQueueDelete (EQCB_PTR* eghp)

Type
Summary
Compl
Parameters

Returns

Errors

Descr

SSR

Deletes an event queue.
smx_EventQueueCreate()

eghp Event queue handle pointer.

true Event queue deleted or *eghp == NULL
false Error.

SMXE_INV_EQCB Invalid event queue handle.
SMXE_INV_PAR eghp==NULL.

Deletes an event queue created by smx_EventQueueCreate(). Resumes all waiting tasks with
false return values and clears their timeouts. Then clears the EQCB, releases it to the EQCB
pool, and sets *eghp == NULL so it cannot be used again. If *eghp == NULL, aborts with
true.

Example
EQCB_PTR RotationsEQ);

smx_EventQueueDelete(&RotationsEQ);

smx_EventQueuePeek

u32 smx_EventQueuePeek (EQCB_PTR eq, SMX_PK_PAR par)

Type SSR
Summary Returns the current value of the parameter specified.
Compl smx_EventQueueSet()
Parameters eq Event queue to peek.
par What to return.
Returns value Value of par.
0 Value, unless error.
Errors SMXE_INV_EQCB Invalid event queue handle.
SMXE_INV_PAR Argument not recognized.
Descr This service can be used to peek at a event queue. Valid arguments are:
SMX_PK_FIRST First task waiting on this eq.
SMX_PK_LAST Last task waiting on this eq.
SMX_PK_NAME Name.
Example
EQCB_PTR eq;

TCB_PTR top_task;
top_task = (TCB_PTR)smx_EventQueuePeek(eq, SMX_PK_FIRST);

smx_Event QueueSet

bool smx_EventQueueSet (EQCB_PTR eq, SMX_ST_PAR par, u32 v1, u32 v2)
Type SSR

Summary Provides event queue control.

Compl smx_EventQueuePeek()
Parameters eq Event queue to set.
par Parameter to set.
vl Value 1.
V2 Value 2.

smx_EventQueue

27

smx_EventQueue

28

Returns

Errors

Descr

true Parameter has been set.
false Parameter has not been set due to error.

SMXE_INV_PAR par not recognized.
SMXE_INV_EQCB Invalid event queue handle.
SMXE_PRIV_VIOL Privilege violation; cannot call from umode (SecureSMX).

par is of type SMX_ST_PAR. Available parameters are:

None Pararameters can be added if desired.

smx_EventQueueSignal

bool smx_EventQueueSignal (EQCB_PTR eq)

Type
Summary
Compl
Parameters

Returns

Errors

Descr

Example 1

SSR
Signals an event queue. The first waiting task waiting may be resumed or restarted.

smx_EventQueueCount(), smx_EventQueueCountStop()

eq Event queue to signal.

true Signal sent.

false Signal not sent due to error.
SMXE_INV_EQCB Invalid event queue handle.

If eq is an event queue and it is not empty, decrements the first task’s count in task->sv. If the
resulting count is zero, resumes the first task with true, clears its in_evq flag, and its timeout.
Does the same for all other tasks with 0 differential counts. When there are no tasks left in eq,
sets eg->fl = NULL and eg->tq = 0.

LCB_PTR revLSR;
EQCB_PTR revs;
TCB_PTR wheel_task;

void revISR(void)

{

smx_LSR_INVOKE(revLSR, 0);
}
void revLSRMain(u32 par)
{

smx_EventQueueSignal(revs);
}

smx_EventQueue

void wheel_task_main(u32)

{
while (smx_EventQueueCount(revs, 10, 100)
{
/* perform N revs operation */
}
}

Each time a wheel turns, it causes a pulse, which triggers an interrupt causing reviSR() to run.
revISR() invokes revL SR, which signals the revs event queue. wheel_task runs every 10
revolutions.

29

smx_Heap

30

smx_Heap

See the smx User’s Guide, Heaps chapter for usage information and more examples, and see the eheap
User’s Guide for more detailed information.

The following heap services are implemented via smx shell porting functions in xheap.c that call
corresponding eheap services. (eheap is an RTOS-agnostic heap developed for embedded systems.) They
meet the ANSI C Standard for malloc(), free(), realloc(), and calloc() and offer many additional services.
The smx porting functions provide the following:

1. smx APl

2. Access protection via a mutex per heap.

3. Optional event logging in the smx event buffer.
4

Optional conversion of eheap errors to smx errors followed by calling the smx error manager,
smx_EM().
5. C++ support.

smx heap services are not SSRs, hence multiple heaps can be accessed simultaneously by different tasks.
For systems without multiple heaps, the heap number, hn, defaults to 0. Access protection can be omitted by
directly calling eheap services, but access protection is normally required in a multitasking environment.

eh_hvp[hn] is the heap variable pointer for heap hn. Each heap has its own eheap variable, EHV, structure,
which is defined in eheap.h. This structure contains all information needed to control a heap.
"eh_hvp[hn]->" has been omitted for heap variables in the following descriptions, but it is required in code
that accesses heap variables.

The eheap User’s Guide has information concerning how to configure a heap for best size and performance.
This is considered advanced information that is needed only when it becomes necessary to optimize a heap
and thus is not included in the smx manuals. The following service descriptions are intended to provide
sufficient information for use with smx.

smx_HeapBinPeek

u32 smx_HeapBinPeek (u32 binno, EH_PK_PAR par, u32 hn=0)

eheap eh_BinPeek()

Type Mutex-protected function

Summary Returns the current value of the parameter specified for the heap bin specified by binno.

Parameters binno Bin number.

par What to return.
hn Heap number.
Returns value Value of par.
-1 Error.
Errors SMXE_INV_PAR Invalid parameter

smx_Heap

Descr Used to obtain information about a heap bin. binno is the bin humber. The parameter, par, is
of type EH_PK_PAR. Available parameters are:
EH_PK_COUNT Number of chunks in bin.
EH_PK_FIRST Address of first chunk in bin, NULL if empty.
EH_PK_LAST Address of last chunk in bin, NULL if empty.
EH_PK_SIZE Minimum chunk size for bin.
EH_PK_SPACE Total free space in bin.

smx_HeapBinPeek() reports SMXE_INV_PAR and returns -1, if par is not one of the above
or if binno is not valid. 0 or NULL can be a valid return for some parameters. This service is
recommended over directly reading bin parameters, because the latter can result in incorrect
readings due to preemption by other tasks. Also, bin parameters cannot be directly read in
umode under SecureSMX.

Example
CCB_PTR cp;

cp = (CCB_PTR)smx_HeapBinPeek(14, EH_PK_FIRST);

This returns a pointer to the first chunk in bin 14.

smx_HeapBinScan

bool smx_HeapBinScan (u32 binno, u32 fnum, u32 bnum, u32 hn=0)
eheap eh_BinScan()
Type Mutex-protected function

Summary Scans forward through free bin list of binno for broken links and fixes what it can. Scans
backward to fix broken forward links.

Parameters binno Bin to scan.
fnum Number of chunks to scan forward per run.
bnum Number of chunks to scan backward per run.
hn Heap number.

Returns true Done or unfixable error encountered.
false Call again to continue scanning.

Errors SMXE_HEAP_BRKN The free bin list is broken and cannot be fixed.
SMXE_HEAP_FIXED A broken link in the free bin list has been fixed.
SMXE_INV_PAR Invalid parameter.

Descr smx_HeapBinScan() scans the free bin list of bin binno and fixes broken links that it finds or

reports SMXE_HEAP_BRKN if a link is unfixable. Normally it is called from a heap
manager that runs periodically and scans fnum chunks forward each time. Scans are broken
into runs, to permit higher priority tasks to access the heap and not miss their deadlines. If
binno is out of range, or if either fnum or bnum is 0, SMXE_INV_PAR is reported and true is
returned.

31

smx_Heap

32

Notes

Example

A global pointer, bsp, points at the next chunk to scan, at the start of a run. If it is NULL, a
new scan begins from the bin free forward link, ffl. bsp is set to NULL by smx_Heaplnit() or
when a bin scan completes. Repetitively calling smx_HeapBinScan() each time it returns
false, results in moving through the bin’s free chunk list, fnrum chunks at a time, until the end
of the list is reached and true is returned.

1. Because it is expected to run frequently, smx_HeapBinScan() makes no entries in the
event buffer, other than those due to reported errors or fixes.

2. Whenever a fix is made, EH_HEAP_FIXED is reported, and the scan continues.

void smx_HeapManager(void)

{
static u32 i=0;
if (smx_HeapBinScan(i, 2, 10))
i =i==-eh_hvp[hn]->top_bin ? 0 : i+1;
}

This is an example of bin scanning from smx_HeapManager(). smx_HeapBinScan() is called
once per pass through smx_HeapManager(), which is called every HEAP_MGR_CNTs from
IdleMain(). It scans 2 chunks, at a time. When a bin is finished, smx_HeapBinScan() returns
true, and i is incremented to scan the next larger bin. If the top bin has just been scanned, i is
cleared and scanning starts over at bin 0.

If the heap has 20,000 free chunks in bins it will take 10,000 passes of idle to scan all bins. If
idle runs an average of 100 times per second, it will take 100 seconds to scan all bins. This is
probably often enough. If not, fnum can be increased. Note that a backward scan will cover
10 chunks per run. This is because the backward scan is both faster and more urgent since a
broken forward link has been found.

If smx_HeapBinScan() fixes a break, it reports SMXE_HEAP_FIXED, which is recorded by
smx_EM(), and normal operation continues. If it cannot fix a break, it reports
SMX_HEAP_BRKN. This is treated as an irrecoverable error by smx_EM(), which calls
smx_EMHook() to initiate recovery. Logging heap fixes into EVB is helpful because it might
indicate a bug, a hardware problem, or malware.

smx_HeapBinSeed

bool smx_HeapBinSeed (u32 num, u32 bsz, u32 hn=0)

eheap

Type

Summary

Parameters

eh_BinSeed()
Mutex-protected function

Gets a big enough chunk from heap hn to divide into num chunks for blocks of size bsz and
puts them into the correct bin for their size.

num Number of blocks.
bsz Size of each block, in bytes.
hn Heap number.

smx_Heap

Returns true Blocks seeded.
false Block not seeded due to error.
Errors Same as smx_HeapMalloc() and smx_HeapFree().
Descr This service is used to seed a bin with num chunks having block size, bsz. The bin is not

specified because it depends upon the chunk size. The chunk size = bsz + chunk overhead,
EH_CHK_OVH. If debug mode is OFF, EH_CHK_OVH = inuse CCB size = 8 bytes. If
debug mode is ON, EH_CHK_OVH = chunk debug control block, CDCB, size +
8*EH_NUM_FENCES - 8.

smx_HeapBinSeed() shares internal subroutines with smx_HeapMalloc() and
smx_HeapFree() and thus returns the same errors that they do.

Notes 1. Due to the way smx_HeapMalloc() works, the big chunk may be bigger than necessary. As
a consequence the last chunk may be slightly larger than the others and thus might be put into
a higher bin.

2. This function performs seeding based upon desired block size. However, bins are based
upon chunk size. Hence a correction is necessary to pick the correct bin.

Example
u32 trgt_numisizeof(mheap_binsz)/4];

for (bin = O; bin <= top_bin; bin++)

{
if((n = smx_HeapBinPeek(bin, EH_PK_COUNT)) <= trgt_num[bin])
{
bsz = smx_HeapBinPeek(bin, EH_PK_SZ) - EH_CHK_OVH,;
num =trgt_num[n] — n;
smx_HeapBinSeed(num, bsz);
}
}

This function compares bin contents to a target size for each bin from 0 to the top_bin and
seeds the bin if necessary to bring it up to the target number. Bin seeding might be used to get
the heap off to a good start during initialization.

smx_HeapBinSort

bool smx_HeapBinSort (u32 binno, u32 fhum, u32 hn=0)

eheap eh_BinSort()

Type Mutex-protected function

Summary Sorts a large bin’s free chunk list by increasing chunk size.

Parameters binno Bin number.
fnum Number of chunks to sort per run.

hn Heap number.
Returns true Bin sort has been completed, was not needed, or was aborted due to an error.
false Call again to continue sorting this bin.

33

smx_Heap

34

Errors

Descr

Notes

Example 1

SMXE_INV_PAR fhumisO.

smx_HeapMalloc() and the other heap allocation services take the first large-enough chunk
from a large bin. If the bin’s free chunk list is sorted by increasing size, this will be the best-
fit chunk in the bin. Thus large-bin sorting helps improve allocation times from large bins.
Also, since the allocated chunk is best fit, splitting and thus fragmentation is reduced.

This service is used to put chunks in order, by increasing size in large-bin free lists. A run
consists of fnum sorting loops. fnum is chosen to be small enough so that higher priority tasks
needing access to this heap do not miss their deadlines, yet large enough so that bins will
usually be sorted when needed. Bin sorting is normally done during idle time.

The bin sort map, bsmap, has a bit per bin. The bit for a bin is set if smx_HeapFree() puts a
chunk into the bin’s free list. When the chunk is larger than the first chunk in the bin, it is put
at the end of the list and the bsmap bit is set for the bin. Otherwise the chunk is put at the start
of the bin’s free list and the bsmap bit is not set. Small bins never need sorting, hence their
bsmap bits are never set. Therefore, bsmap shows only large bins that need sorting.

If binno is less than or equal to the top bin number and its bsmap bit is ON, that bin is
selected. Else if binno is greater than the top bin number, the smallest bin having its bsmap
bit ON is selected. Calling smx_HeapBinSort() repetitively until it returns true results in
sorting the selected bin. The bsmap bit is cleared on the first pass of sorting a bin.

Each time fnum chunks have been sorted, smx_HeapBinSort() gives up the heap mutex so a
higher-priority heap operation can run.

A bin’s bsmap bit is reset when a sort begins, and csbin stores the bin number being sorted,
between runs. If a preempting free sets the bit, due to putting a chunk at the end of the bin,
the sort is aborted and restarted on the next run. If a preempting malloc takes a chunk from
the bin, it also sets the bin’s bsmap bit, causing the sort to start over. Starting over is not
detrimental to a sort, because any sorting already done is preserved. Otherwise each run starts
from where the last run left off.

1. Heap sorting need not be perfect. Taking a somewhat larger chunk than necessary due to
imperfect sorting is not likely to be significant.

2. Because it is expected to run frequently, smx_HeapBinSort() makes no entries in the event
buffer, other than those due to reported errors or fixes.

void smx_HeapManager(void)

{
for(i = first_large_bin, i <=top_bin, i++)
{
while ('smx_HeapBinSort(i, 4) {}
}
delay(n);
}

Example 2

smx_Heap

void smx_HeapManager(void)

{
while (Ismx_HeapBinSort(top_bin + 1, 4)
{
while (Ismx_HeapBinSort(top_bin + 1, 4) {}
}
delay(n);
}

Example 1 one shows going methodically through all large bins every n time units. Example
2 shows where the first smx_HeapBinSort() finds the smallest unsorted bin, if any, and calls
smx_HeapBinSort() repetitively to sort that bin. It then finds the next smallest unsorted bin
and continues until all bins have been sorted, then waits n time units to start over. In both
cases, smx_HeapBinSort() is called repetitively until it returns true, meaning that the bin is
fully sorted. Example 2 is clearly more efficient than example 1.

smx_HeapCalloc

void* smx_HeapCalloc (u32 num, u32 sz, u32 an=0, u32 hn=0)

eheap
Type

Summary

Compl

Parameters

Returns

Errors

Descr

eh_Calloc()
Mutex-protected function

Allocates space for an array of num elements of sz bytes from the heap and clears all
elements. See smx_HeapMalloc() for details concerning allocations.

smx_HeapFree()

num Number of elements.

sz Size of each element in bytes.

an Alignment number (block alignment = 2”an bytes).
hn Heap number.

pointer to allocated array.
NULL Array not allocated due to error.

Same as smx_HeapMalloc()

Allocates a single block of memory from the heap of (num * sz) bytes with fill mode OFF.
The contents of the block are cleared, fill mode is restored, and a pointer to the block is
returned. It is important to note that only one heap block is allocated, and therefore, the
blocks in the array cannot be individually freed. This service shares internal subroutines with
smx_HeapMalloc()and thus returns the same errors that it does.

35

smx_Heap

36

Example
#define NUM_RECS 10

typedef struct {
u32 fieldl,
u32 field2;
} REC;

REC *rp;
u32 i, error;

void array_op(void)

{
if (rp = (REC*)smx_HeapCalloc(NUM_RECS, sizeof(REC)))
for (i = 0; i < NUM_RECS; i++, rp++)
{
rp->fieldl =1i;
rp->fieldl = 2%;
}
else
[* report error */
}

smx_HeapChunkPeek

u32 smx_HeapChunkPeek (void* vp, EH_PK_PAR par, u32 hn=0)
eheap eh_ChunkPeek()
Type Mutex-protected function

Summary Returns the current value of the parameter specified for a chunk in the heap, given a pointer
to either the chunk or to the block in it.

Parameters vp Chunk pointer (cp) or block pointer (bp).
par What to return.
hn Heap number.

Returns value Value of par.
-1 Error.

Errors SMXE_INV_PAR Invalid parameter.

EH_WRONG_HEAP Vp is not in heap n range or is not 4-byte aligned.

Descr

Example

smx_Heap

Used to return information about heap chunks. The parameter, par, is of type EH_PK_PAR.
Permitted values are:

EH_PK_BINNO Chunk bin number (O if not free, or not in a bin).

EH_PK BP Data block pointer determined from cp (O if free).

EH_PK CP Chunk pointer determined from bp (O if free).

EH_PK_NEXT Address of next chunk in the heap.

EH_PK_NEXT_FREE Address of next chunk in this bin (O if last chunk, not in bin, or not free).
EH_PK_ONR Chunk owner (0 if not a debug chunk).

EH_PK_PREV Address of previous chunk in heap.

EH_PK _PREV_FREE Address of previous chunk in bin (0 if first chunk, not in bin, or not free).
EH_PK_SIZE Chunk size.

EH_PK_TIME Time chunk allocated (O if not debug chunk).

EH _PK _TYPE Chunk type (free == 0, inuse == 1, debug == 3).

smx_HeapChunkPeek() returns -1 and reports SMXE_INV_PAR, if par is not one of the
above values. If a chunk is inuse, it cannot be in a bin, thus 0 is returned. Since 0 is a valid
bin number, the chunk should be tested for free. Care must be taken that vp is a valid chunk
pointer in all cases, unless par == EH_PK_CP, in which case it must be a valid data block
pointer.

Using this service is recommended over directly reading chunk parameters. The latter may
result in incorrect readings, due to preemption by another task or due to attempting to read an
invalid field for the chunk type. Also, chunk parameters cannot be directly read in umode
under SecureSMX. It usually is best to read the chunk type first to make sure that the
expected chunk information is actually available. It is also advisable to check that the return
value is not -1 before using it.

#define DEBUG 3

u8* bp;
CCB_PTR cp;
int time = 0;

if (cp = (CCB_PTR)smx_HeapChunkPeek(bp, EH_PK_CP))
if (smx_HeapChunkPeek(cp, EH_PK_TYPE) == DEBUG)
time = smx_HeapChunkPeek(cp, EH_PK_TIME);

Starting with a block pointer, this example show how to get the chunk pointer, cp, then
determine when the block was allocated, if it is in a debug chunk.

37

smx_Heap

smx_HeapExtend

bool smx_HeapExtend (u32 xsz, u8* xp, u32 hn=0)
eheap eh_Extend()
Type Mutex-protected function

Summary Adds a memory extension to the heap.

Parameters xsz Extension size, in bytes.
Xp Extension pointer.
hn Heap number.

Returns true Heap extended.

false Heap not extended due to error.
Errors SMXE_INV_PAR xszis zero or xp is not above current heap.

Descr smx_HeapExtend() is used to extend the heap to additional memory space. xsz is the size of
the additional space and xp is a pointer to the start of it. This space can come from any RAM
that is above the current heap. If not, smx_HeapExtend() reports SMXE_INV_PAR, and
returns false. This is also the case if xsz == 0. Otherwise, xsz is increased to 16 or set to the
next 8-byte boundary and xp is moved up to the next 8-byte boundary, if necessary.

smx_HeapExtend() handles both the case where the extension is adjacent to the top of the
current heap and the case where there is a gap in between. In both cases, ec (end chunk) is
moved to the top of the extension. In the adjacent case, the extension is merged with the top
chunk, tc, and the merged chunk becomes the new tc. In the gap case, an artificial inuse
chunk is created from the old ec to cover the gap and the extension becomes the new tc. The
old tc is freed to a bin. tc and the freed chunk are filled if fill mode is ON. Then tcp and hsz
are updated and true is returned.

Example
#define HEAP_EXT 4096

u8* xp = 0xC0200000;
bool ok;

if (smx_errno = SMXE_INSUFF_HEAP)

{

ok = smx_HeapExtend(HEAP_EXT, xp);
}
if (ok)

[* retry allocation */

This example shows extending the heap by 4096 bytes in order to recover from an
SMXE_INSUFF_HEAP error. In this case, 0xC0200000 is the start of free DRAM.

38

smx_Heap

smx_HeapFree

bool smx_HeapFree (void* bp, u32 hn=0)

eheap eh_Free()
Type Mutex-protected function
Summary Frees a block to the heap or heap block pool that was previously allocated from the heap or
heap block pool.
Compl smx_HeapMalloc(), smx_HeapCalloc(), and smx_HeapRealloc()
Parameters bp Pointer to block to free.
hn Heap number.
Returns true Block freed or already free.
false Block not freed due to an error.
Errors SMXE_HEAP_ERROR Block is already free.
SMXE_INV_CCB Forward or backward link is out of range.
SMXE_INV_PAR Derived cp is out of range or not 8-byte aligned
Descr Frees the block pointed to by bp back to the heap. If bp is NULL, no operation is performed

and true is returned, per the ANSI C standard. If bp is not in heap hn range,
SMXE_INV_PAR is reported and false is returned.

If EH_BP (Block Pool enable) and bp is less than first heap chunk pointer, fhep, then the
block pointed to by bp is freed to either the 8-byte pool or to the 12-byte pool. The block
pointer control block pointer, bpcbp, for hn, points to an array of two block pool control
blocks, BPCBs (see eheap.h). The BPCB is selected depending upon bp. The pn field in a
BPCB points to the first block in the free block linked list. The freed block is put at the start
of this list, pn is updated to point to it, and true is returned. This operation is very fast
compared to a heap free. If bpcbp == NULL, the operation is aborted and false is returned.

A double free is detected by testing the inuse bit of the word before bp, which is the last word
of the chunk control block. If 0, EH_HEAP_ERROR is reported and false is returned. This
test is not 100% effective because the chunk may have already been reallocated and thus pass
the test. In this case, the reallocated block will be freed, in error.

bp is converted to the chunk pointer, cp, for the chunk it is in, and a pointer to the previous
chunk, the prechunk pointer, pcp, is derived from cp. If either pointer is out of heap range for
heap hn, false is returned and EH_INV_CCB is reported. If EH_SS _MERGE (Spare Space
Merge), the prechunk is inuse, and it has spare space at the end, the spare space is merged
with the freed chunk.

If merging is enabled by mode.fl.cmerge == ON, smx_HeapFree() merges the prechunk if it
is free and merges the postchunk if it is free. Chunks in bins are removed from their bins
before merging them. If the postchunk is dc the merged free chunk is put into dc and dcp is
updated; if the postchunk is tc the chunk is put into tc and tcp is updated. Otherwise, the
correct bin for the chunk size is determined and the chunk is put into that bin. heap_used is
reduced by the size of the freed chunk.

39

smx_Heap

40

Notes 1. If chunk filling is enabled (mode.fl.fill == ON) a free block is loaded with the
EH_FREE_FILL pattern. However, dc or tc is loaded with the EH_DTC_FILL pattern. This
greatly increases the time required to free a block and should be used only to assist
debugging.

2. If either of the scan pointers, hsp or hfp, was pointing at the freed chunk and it was merged
with a prechunk or spare space, the pointer is backed up to the start of the new chunk. If a
chunk is put at the end of a large bin, the bsmap bit for that bin is set, indicating that the bin
needs to be sorted.

Example

void function(void)

{
void *dp;
dp = smx_HeapMalloc(100);
[* use temporary block of memory via dp */
smx_HeapFree(dp);

}

This example gets a block of 100 bytes from the heap 0, uses it, then frees it back to the heap.

smx_Heaplnit

u32 smx_Heaplnit (u32 sz, u32 dcsz, u8* hp, EHV_PTR vp, u32* bszap, HBCB* binp, u32 mode,
const char* name=NULL)

eheap eh_Init()
Summary Initializes heap starting at hp with heap variables structure selected by vp.
Parameters sz Size of the heap, in bytes.

dcsz Donor chunk size. 0 means no donor chunk.

hp Start of heap pointer.

vp Pointer to heap variables structure.

bszap Pointer to heap bin size array.

binp Pointer to heap bin array.

mode Heap mode flags.
Mode Flags

EH_CM chunk merge*
EH_DBM debug mode*
EH_FILL fill*

EH_AM automerge*

EH_HFR heap failure report

EH_AR auto recover

EH_ED error detection excluding allocations and frees
EH_EDA error detection all

EH_EM error manager

EH_PRE preemption protection

smx_Heap

EH_NORM (EH_AM|EH_EDA | EH_EM | EH_PRE) normal operation

EH_DBOP (EH_NORM | EH_FILL | EH_HFR) debug operation
Returns hn Heap number (means heap has been initialized).
-1 Heap not initialized due to an error or it was already initialized.
Errors SMXE_ALREADY_INIT Heap has already been initialized.
SMXE_INV_PAR sz or hp is invalid.

SMXE_TOO_MANY_HEAPS SMX NUM_HEAPS have already been initialized.

Descr A heap must be initialized before it can be used. If C++ is not being used in an application or
in a partition of an application using a dedicated heap, smx_HeapInit() can be called from the
initialization code for the application or the partition before any other heap calls are made.
smx_Heaplnit() returns the heap number, hn, which must be used in all subsequent heap calls
for that heap, unless hn = 0, which is the default value.

If C++ is being used in an application or in a partition of an application that uses a dedicated
heap, smx_HeaplInit() must be called after the compiler startup does data init, but before C++
initializers run. This is because data init clears RAM and C++ initializers normally make
heap allocation calls to create C++ objects. Some compilers (e.g. IAR EWARM) provide a
window to do this, but other compilers do not.

To deal with the latter case, code is put into smx_HeapMalloc() to call a user-written
function, smx_HeapslInit() if eh_hvpn == 0 —i.e. no heaps have been initialized. This function
must initialize all heaps associated with C++ code. This is unfortunate because the code to
test eh_hvpn becomes overhead for every allocation thereafter.

hp can point anywhere in RAM and sz can be any desired size >= 32 bytes. Typically a main
heap is allocated from SRAM or DRAM, and small dedicated heaps may be allocated from it.
In some systems the main heap may be allocated from DRAM, and small fast heaps may be
allocated from SRAM. Allocation of space for a heap is done in the linker command file.

eheap maintains an array of pointers, eh_hvp[EH_NUM_HEAPS]. Each pointer points to the
heap variable structure (EHV) for heap hn, where hn is the index into eh_hvp. Hence,
eh_hvp[hn]-> is used to access heap hn variables. "eh_hvp[h]->" is omitted when referring to
heap variables in this manual, but it must be included in code. Space for each heap variable
structure is allocated by application code and certain fields must be set before calling
smx_Heaplnit() — see the example below. When a heap has been successfully initialized, its
heap number, hn, is returned and mode.fl.init is turned ON. Thereafter, hn must be used for
all accesses to that heap, except hO, which is the default or main heap.

If vp is NULL, -1 is returned and nothing is done. If sz < 32 or hp is NULL,
SMXE_INV_PAR is reported; if en_hvp[] is full, SMXE_TOO_MANY_HEAPS is reported,;
if mode.flinit is ON, SMXE_ALREADY _INIT is reported. In all cases -1 is returned and
nothing is done.

If they are not multiples of 8, sz is adjusted to the next lower multiple of 8 and hp is adjusted
to the next higher multiple of 8. This is done so that the heap and all chunks in it will be 8-
byte aligned.

Following initialization, the heap consists of four chunks: start chunk (sc), donor chunk (dc),
top chunk (tc), and end chunk (ec). sc and ec are inuse chunks with no data. They are each 8
bytes in size and linked together. dc is a free chunk, which initially contains dcsz bytes. tc is a
free chunk, which initially contains the remaining free space of the heap = sz — dcsz - 16. dc

41

smx_Heap

normally is much smaller than tc; it is the source for small chunks. If dcsz < 24, dc becomes a
free chunk with no space for data and mode.fl.use_dc is turned OFF. tc is the source for large
chunks.

If EH_BP and bpcbp is not NULL, space is allocated from the heap for 8-byte and 12-byte
block pools at the bottom of the heap between sc and dc and the pools are initialized. bpcbp
points at an array of block pool control blocks, BPCBs (see eheap.c). Each BPCB has a
num_blks field, which is loaded by the application. If num_blks is 0, no pool is created.
Otherwise, a num_blks pool is created and its pool control block is initialized.

smx_Heaplnit() loads pi = sc and px = ec. It initializes the mode field so that cmerge, debug
and fill flags are OFF and other flags are ON. If EH_PRE, preemption protection is enabled
and eh_hvp[n]->pre is set, a heap mutex is created for the heap, and the mutex handle is
loaded into the mtx field. This mutex is used to control access to all heap functions for this
heap.

If mode == 0, hmtx is not created, and heap functions are not protected by a mutex for this
heap. This mode of operation is intended for partition heaps in which preemption of heap
operations is prevented by other means. This reduces the overhead for the heap operations.

smx_Heaplnit() also initializes the bins and other heap variables. If hmode.fl.fill is ON, dc
and tc are filled with the EH_DTC_FILL pattern.

The mode flags enable corresponding heap operations, if set. If a flag is present in the mode
argument, it is set in en_hvp[n]->mode; otherwise, it is reset in eh_hvp[n]->mode. The flags
marked with * can also be set and reset with smx_HeapSet().

See the Setup chapter of the eheap User’s Guide for detailed information on setting up and
initializing heaps.

Example
u32 const hm_binsz[] =

fn0O 1 2 3 4 5 6 7 8 9 10 11%

{24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112,\
Mbin12 13 14 15 16 17 18 19 20 21 22 23%

120, 128, 256, 384, 512, 640, 768, 896, 1024, 1152, 1280, 1408, \
bin24 25 26 27 28 end

1536, 1664, 1792, 1920, 2048, -1};

/* get heap space for hm allocated in linker command file */

u8* hmsa = (u8*)__section_begin("hm"); /* heap main starting address */
u32 hmsz = (u32)__section_size("hm"); /* heap main size */

u32 hmdcsz = hmsz/8; /* heap main donor chunk size */

EHV hmv; /* heap main variables structure */

HBCB hm_bins|[(sizeof(hm_binsz)/4)-1]; /* heap main bins */

u32 hmn; /* heap main number */

memset((void*)&hmv, 0, sizeof(EHV)); /* clear hmv */
hmn = smx_Heaplnit(hmsz, hmdcsz, hmsa, &hmv, (u32*)hm_binsz, (HBCB*)hm_bins,
(EH_EDA | EH_EM | EH_PRE), “hm”);

42

smx_Heap

The above example shows creating the main heap for a system. Hence, there are a large
number of bins. hm_binsz is an array of bin sizes, each being the minimum size for that bin.
Note that bins 0 to 12 are the small bin array, SBA, for this heap. Each of these bins holds
only one size. (hm_binsz/8 — 3) is used as an index and the first free chunk is taken, so access
is very fast. Bins 13 to 27 are the large bin array, LBA. Each of these bins is spaced 128 bytes
apart. Hence, each holds 128/8 = 16 chunk sizes. To get a chunk from one of these bins
requires searching for the first large enough free chunk. The bins are normally sorted to make
this faster and to allocate a best-fit chunk. Bin 28 is the top bin. It holds chunk sizes from
2048 bytes and up.

Space for heap main, hm, is allocated by the linker command file. hmsa and hmsz are
obtained, as shown. hmv is statically allocated, as is the hm_bins array of bin pointers. hmv is
cleared, two fields in it are preset, then smx_Heaplnit() is called to initialize the heap and
name it “hm”. smx_HeaplInit() returns the heap number, hmn. This can be used to access the
EHYV for the heap main via eh_hvp[hmn]->field. Heap numbers are assigned in the order that
heaps are created, up to a maximum, EH_NUM_HEAPS, defined in eheap.h. hmv field can
also be used to access the EHV for hm.

Heaps can have any number of bins from 1 to 28. For example:

u32 const binsz1[] =
/*bin 0 end */
{24! _1}1

Defines a one bin heap. Being able to adjust the number and the sizes of bins is useful for
partition heaps under SecureSMX.

smx_HeapMalloc

void* smx_HeapMalloc (u32 sz, u32 an=0, u32 hn=0)
eheap eh_Malloc()
Type Mutex-protected function

Summary Allocates a block of at least sz bytes from heap hn, aligned on at least a 2"an-byte boundary.
Also can perform MPU region block allocations under SecureSMX.

Compl smx_HeapFree()

Parameters sz Minimum size of block to allocate, in bytes.
an Alignment number (block alignment = 2"an bytes).
hn Heap number.

Returns bp Block pointer.
NULL Insufficient space or error.

Errors SMXE_INV_PAR Invalid parameter if sz = 0 or > heap size

SMXE_INSUFF_HEAP Insufficient space in heap.

Descr Allocates a block of at least sz bytes and aligned on a 2*an-byte boundary from heap hn. The
block is contained within a chunk. If debug mode is OFF, an inuse chunk is allocated; if

43

smx_Heap

44

debug mode is ON, a debug chunk is allocated. Chunks are normally hidden from the user.
The minimum block size that can be allocated from the heap is 16-bytes. The block size may
be larger than sz, if an exact-fit chunk has not been found.

Prior to searching the heap if block pools are present, a block of sz <= 12 and an <= 3 is taken
from the 8-byte or 12-byte pool, if the pool is not empty and there is not an alignment
mismatch (12-byte blocks can be 4-byte aligned.) Otherwise a heap search starts.

If sz is 0 or > heap size, SMXE_INV_PAR is reported and NULL is returned. If sz is less
than 16, it is rounded up to 16. If sz is not a multiple of 8, it is adjusted to the next higher
multiple of 8. For example, if sz = 27, it is adjusted to 32.

The search for the needed chunk progresses as follows until it is found: a small chunk is taken
from the right-size bin in the small bin array (SBA), the donor chunk (dc), the next occupied
bin, or the top chunk (tc). A large chunk is taken from the upper bin for its size, the next
occupied bin, or tc. If allocation fails automatic recovery will occur, if enabled (see
smx_HeapRecover() discussion). Otherwise EH_INSUFF_HEAP is reported and NULL is
returned..

All blocks from the heap are automatically 8-byte (an = 3) aligned. If enabled, chunks with
larger alignments can be allocated. The search order is the same as above. In this case, a
chunk is chosen if the data block will fit at the next 2*an boundary and still be within the
chunk. The CCB is moved up to this boundary and spare space is combined with the
prechunk (see smx_HeapFree() discussion). If EH_R is added to the alignment number to
form the an parameter (e.g. EH_R + 3), an MPU region block allocation will be performed.
See the eheap User’s Guide, Chapter 4 Operation for more information on both of these types
of allocations.

The found chunk is marked inuse and split if its spare space is greater than or equal to
EH_MIN_FRAG, defined in eheap.h. The upper part becomes a free chunk. It will be merged
into a free postchunk (i.e. the next chunk) if mode.fl.cmerge is ON. If the found chunk's spare
space is less than EH_MIN_FRAG, its EH_SSP flag is set (bit 2 in blf) and its spare space
pointer, ssp, is loaded into the last word of the chunk. ssp points to the start of the spare
space. See the discussion in smx_HeapFree() for how spare space is used.

If fill mode is enabled, unique fill values are put into the data and spare space areas. These
help when viewing the heap via the debugger memory window.

If mode.fl.debug is ON, a debug chunk is allocated instead of an inuse chunk. The CCB is
replaced with a CDCB (Chunk Debug Control Block) followed by EH_NUM_FENCES
ahead of and after the data block. See the smx User’s Guide, Heaps Chapter, Heap
Debugging section for more information on debug chunks.

The final chunk size is added to hused, which is used to determine the high-water mark,
hhwm of heap usage in order to determine if the heap needs more memory. If allocation fails,
NULL is returned and EH_INSUFF_HEAP is reported.

smx_Heap

Example
void* bp;

if (bp = smx_HeapMalloc(204, 5, hm))
{

[* access block using bp */
smx_HeapFree(bp);
}

Since 204 is not a multiple of 8, the size is increased to 208. A block of 208 bytes, aligned on
a 2”5 = 32-byte boundary, is allocated from the main heap. If the main heap is in DRAM and
the cache line size is 32 bytes, this alignment will improve access times to the block. When
no longer needed, the block is released back to the heap by smx_HeapFree().

smx_HeapPeek

u32 smx_HeapPeek (EH_PK_PAR par, u32 hn=0)
eheap eh_Peek()
Type Mutex-protected function

Summary Returns the current value of the parameter specified for heap hn.

Compl smx_HeapSet()
Parameters par What to return.
hn Heap number.
Returns value Value of par.
-1 Error.
Errors SMXE_INV_PAR Invalid parameter.
Descr Used to obtain information about heap, hn. The parameter, par, is of type EH_PK_PAR.
Permitted values are:
EH_PK_AUTO Automatic chunk merge control is enabled.
EH PK BS FWD Bin scan forward.
EH_PK DEBUG Allocate debug chunks.
EH_PK_FILL Fill blocks, spare space, dc, and tc with unique fill patterns.
EH_PK_HS FWD Heap scan forward.
EH_PK_INIT Heap has been initialized.
EH_PK_MERGE Merge chunks when freed.
EH _PK USE_DC Enable allocation from donor chunk.

smx_HeapChunkPeek() returns -1, and reports SMXE_INV_PAR, if par is not one of the
above. Otherwise, it returns the value of the mode (ON or OFF). This service is
recommended over directly reading heap modes, because the latter can result in incorrect
readings due to preemption by other tasks. Also, heap modes cannot be directly read in
umode under SecureSMX.

45

smx_Heap

46

Example

if (smx_HeapPeek(EH_PK_MERGE))

/* chunks are being merged, when freed */
else

/* chunks are not being merged, when freed */

This might be used to monitor how automatic merge control is doing or to decide what action
to take if a heap failure has occurred.

smx_HeapRealloc

void* smx_HeapRealloc (void* cbp, u32 sz, u32 an=0, u32 hn=0)

eheap

Type
Summary

Compl

Parameters

Returns

Errors

Descr

eh_Realloc
Mutex-protected function

Allocates a new size block from an existing heap block. Preserves existing contents and
conforms to the ANSI C Standard. See smx_HeapMalloc() for details concerning allocations.

smx_HeapFree()

cbp Pointer to block to reallocate.

sz New block size.

an Alignment number (block alignment = 2”an bytes).
hn Heap number.

nbp New block pointer.

NULL Insufficient space or error.

Same as smx_HeapMalloc() and smx_HeapFree().

This service is generally used to allow a task to release memory that it no longer needs,
without having to get another block and copy the data from the old block to the new block. In
this case, time saved by using smx_HeapRealloc() can be substantial.

Alternatively, smx_HeapRealloc() allows getting a larger block, and data in the old block will
be automatically copied over to the new block. Since it cannot be preempted, a higher-
priority task needing the heap will not be able to run until it finishes. Hence, if working with
large blocks, it may be preferable to malloc a larger block, copy the data, then free the smaller
block, instead of using smx_HeapRealloc().

Reallocates an existing block pointed to by cbp to a new block of size, sz, and returns a new
block pointer, nbp. Can be used to either downsize or upsize the current block at cbp.
smx_HeapRealloc() is considerably more complex than the other two heap allocation
services. However, it uses smx_HeapMalloc() and smx_HeapFree(), so the same discussion
for them concerning size, errors, etc. applies to it.

Per the ANSI C Standard: if cbp == NULL, a block of sz bytes is allocated from the heap; if
sz ==0, cbp is freed to the heap. Otherwise, if cbp is not within heap hn range or not 8-byte
aligned, SMXE_WRONG_HEAP is reported and NULL is returned. If sz is greater than 0,
but less than 16, it is automatically rounded up to 16; if sz is not a multiple of 8, it is rounded
up to the next multiple of 8.

smx_Heap

The current chunk size is determined and the necessary new chunk size is determined. If
mode.fl.debug is OFF the latter will be for an inuse chunk, else it will be for a debug chunk.
This is true, regardless of the type of the current chunk, which is being reallocated. Hence,
smx_HeapRealloc() can be used to convert an inuse chunk to a debug chunk or vice versa,
without losing data in the data block. smx_HeapRealloc() can also be used to increase the
alignment of the block. Either of these is likely to require a new chunk.

There are two possibilities for reallocation, due to relative chunk sizes:

current chunk is big enough, then it is split into a new, exact-fit chunk and a new free
chunk®. The new free chunk is merged with the chunk after?, if it is free and cmerge is ON.
The block pointer returned, nbp, is the same as cbp and the block size is equal to or slightly
larger than sz°. Note that data up to the new size is preserved and that data above that size is
lost.

current chunk is not big enough, then the current chunk is freed. This may result in its
being merged with a lower free chunk or a upper free chunk, or both, which could result in a
chunk that is now big enough for the new block. However, the odds of that occurring are
small, so the new free chunk is put into a bin, and the smx_HeapMalloc() is called to get the
best-fit chunk that can be found. Then data is copied from the current block to the new block,
if necessary*, and the new block pointer, nbp, is returned. Also, the unused upper portion of
the chunk is split off into a new free chunk, if it is big enough?.

If a big-enough chunk cannot be found, the preceding free, merge, and bin load operations are
reversed, SMXE_INSUFF_HEAP is reported, and NULL is returned. In this case, the initial
block is undisturbed and can continue being used via the cbp pointer. Means to recover from
this failure are the same as described for smx_HeapMalloc().

In all cases, data is preserved up to the end of the current block or to the end of the new block,
whichever is smaller. To ensure this, fill mode is turned OFF, then restored at the end of this
service. Thus heap fill is suspended for all smx_HeapRealloc() operations.

Example
void *bp, *nbp;

bp = smx_HeapMalloc(200);
/* use 200-byte block via bp */

[* get another 200 bytes */
nbp = smx_HeapRealloc(bp, 400);
/* use 400-byte block via nbp *

This example allocates 200 bytes from the heap, uses it for a while, then increases the block
size to 400 bytes. When a block is being increased in size, the most likely scenario is that a
larger chunk will be allocated elsewhere in the heap, the data from the old block will be
copied to the new block, then the old chunk will be freed. In the above example, nbp is
unlikely to be the same as bp. Hence, care must be exercised to update any secondary

! There is a limitation on chunk splitting. See discussion in the eheap User’s Guide, Operation Chapter,
chunk splitting section.

2 When discussing chunks, “before” and “after” or “lower” and “upper” refer to physical chunk positions.
® See discussion in smx_HeapMalloc().

“ It is possible that the chunk and data block do not move, even though they are larger, in which case block
contents are not copied.

47

smx_Heap

48

pointers (e.g. read pointer, write pointer, etc.). The contents from byte 0 to byte 199 of the
original block are guaranteed to be unchanged, even though the block may have been moved.

smx_HeapRecover

bool smx_HeapRecover (u32 sz, u32 num, u32 an=0, u32 hn=0)

eheap

Type

Summary

Parameters

Returns

Errors

Descr

eh_Recover()
Mutex-protected function

Tries to find enough adjacent free chunks that can be merged to create a chunk large enough
for a block of sz bytes with alignment an. See smx_HeapMalloc() for details concerning
allocations.

sz Block size needed.

num Maximum number of chunks to scan.

an Alignment number (block alignment = 2"an bytes).
hn Heap number.

true Chunk is now available to allocate.

false Chunk not found.

SMXE_INV_PAR Invalid parameter: sz or num = 0.

This service is intended to recover from a situation where a large chunk cannot be allocated
because the heap has been fragmented into too many smaller free chunks. Recovery is
possible only if enough free space is found in adjacent free chunks. Otherwise, this service
fails and some other means must be used to allocate the needed chunk.

smx_HeapRecover() starts the scan from sc for small chunks or from the top of dc for large
chunks. The scan continues until num chunks have been scanned or ec has been reached. If a
big-enough chunk can be formed by merging adjacent free chunks, it removes the free chunks
(except dc and tc) from their bins and merges them. mode.fl.cmerge, if set, is ignored. If the
merged chunk is not dc nor tc, it puts the merged chunk into its proper bin. If the merged
chunk is dc, it updates smx_dcp; if the merged chunk is tc, it updates smx_tcp, then returns
true.

smx_HeapRecover() does not merge chunks that it cannot use. If successful,
smx_HeapRecover() should be followed by retrying the allocation that failed. If
mode.fl.auto_rec is ON, this is done automatically and the allocation returns the block in the
merged chunk. In this case, recovery is transparent to the application, except that the
allocation will take longer than normal and SMXE_HEAP_RECOVER will be reported. In
this case, the entire heap is searched. If a big-enough chunk is not found, returns false and the
allocation returns NULL and reports SMX_INSUFF_HEAP.

If smx_HeapRecover() is called directly, it will search for num chunks and return false if
nothing is found. This is intended to put a limit on search times for very large heaps; it allows
application recovery code to try another approach or to simply move on. In this case
mode.fl.auto_rec must be OFF. Allocation failure is most likely to occur for large blocks
while the heap is still usable for smaller blocks. In time, the large block allocation might be
tried again, and it might succeed.

smx_Heap

If num expires on a free chunk, the scan continues until a big-enough free space is found, an
inuse chunk is found, or the end of the heap is reached. If a big-enough free space is found,
the chunks are merged and true is returned.

Example
void* bp;
TCP_PTR StoppedTask;

void ProcessTaskMain() /* for mode.fl.auto_rec = OFF */

{
while (1)
{
if (bp = smx_HeapMalloc(1000, 0, fheap))
{
[* process data using bp */
smx_HeapFree(bp);
}
else
break;
}
smx_TaskStart(RecoveryTask, 1000);
StoppedTask = smx_ct;
}
void RecoveryTaskMain(u32 size)
{
if (smx_HeapRecover(size, 10000, 0, fheap)
smx_TaskStart(StoppedTask);
else
/* use alternate recovery method */
}

In the above example, if smx_HeapMalloc() fails in ProcessTask, RecoveryTask is started
with the needed size as a parameter, ProcessTask’s handle is saved in StoppedTask, and
ProcessTask autostops. When RecoveryTask runs, it calls smx_HeapRecover(), which tests
up to 10,000 chunks. If it finds a big-enough chunk it returns true, which restarts
ProcessTask. If not, ProcessTask remains stopped while alternate recovery techniques are
tried, such as extending fheap, using a different heap, releasing unneeded blocks, or
reallocating blocks smaller.

smx_HeapScan

bool smx_HeapScan (CCB_PTR cp, u32 fnum, u32 bnum, u32 hn=0)
eheap eh_Scan
Type Mutex-protected function

Summary Scans forward through the heap for errors and makes fixes when it can. Scans backward
through the heap to fix broken forward links.

49

smx_Heap

50

Parameters

Returns

Errors

Descr

Notes

cp Chunk pointer to start scan. Start at smx_hsp, if NULL.
fnum Number of chunks to scan forward per run.
bnum Number of chunks to scan backward per run.

hn Heap number.

true Stop scanning — done or unfixable error encountered.

false Continue scanning.

SMXE_HEAP_BRKN Heap cannot be fixed.
SMXE_HEAP_FENCE_BRKN Broken fence found (fixed in release version).
SMXE_HEAP_FIXED A heap fix was made.

SMXE_INV_PAR Invalid parameter.

SMXE_WRONG_HEAP cp not in heap hn.

smx_HeapScan() is intended to perform frequent heap scans and to fix or report heap
problems that it finds. Normally it is called once per pass of the idle task and scans fnum
chunks forward or bnum chunks backward. It cannot be interrupted by another heap service
while scanning.

cp can be set to start a scan at a specific chunk in the heap. However, it is usually set to
NULL, in which case, the new scan starts from where the last scan left off, at hsp.
Repetitively calling smx_HeapScan() with cp == NULL, results in forward scanning through
the entire heap, fnum chunks at a time, until the end of the heap is reached. Then true is
returned to indicate that the scan is complete. When the end of the heap has not been reached,
false is returned to indicate to keep scanning. If smx_HeapScan() is called when the end of
the heap has been reached, scanning starts from the beginning of the heap.

smx_HeapScan() fixes broken backward links by scanning forward and broken forward links
by scanning backward. It also checks chunk control block (CCB) fields and fixes them, if
possible. Whenever a fix is made, SMXE_HEAP_FIXED is reported.

For a debug chunk, the lower and upper fences are checked. If a broken fence is found for the
debug version of smx (SMX_DEBUG == 1), smx_HeapScan() reports
SMXE_HEAP_FENCE_BRKN and returns true. This stops the scan so that the broken fence
can be inspected. In the release version, broken fences are fixed, SMXE_HEAP_FIXED is
reported, and the scan continues.

If the backward scan finds a broken back link before it reaches the chunk with a broken
forward link, it is not possible to fix either link. So, instead, the gap is bridged from one
chunk to the other and EH_HEAP_BRKN is reported. This leaves the heap in a semi-
operational mode, as long as none of the bridged chunks is accessed. This could be used to
allow operation to continue in emergency mode, or for the purpose of a clean system
shutdown. More frequent scanning will reduce the likelihood of double breaks, like this.

See the eheap User’s Guide, Reliability chapter for more information on heap scanning.

1. Because it is expected to run frequently, smx_HeapScan() makes no entries in EVB, other
than those due to reported errors or fixes.

2. If smx_HeapScan() cannot fix a break, it reports SMX_HEAP_BRKN. This is treated as an
irrecoverable error by the error manager, smx_EM(), which calls smx_EMHook(). The latter
is the place to put heap recovery or system reboot code. See the smx User’s Guide, Error
Management chapter.

smx_Heap

Example
u32 heap_scan = HEAP_SCAN_CNT;

void smx_HeapManager(void)

{
if (--heap_scan == 0)
{
smx_HeapScan(NULL, 2, 100, mheap_hn);
heap_scan = HEAP_SCAN_CNT;
}
}

This example shows heap scanning in the heap manager, which is called by the idle task.
smx_HeapScan() is called once per HEAP_SCAN_CNT passes through
smx_HeapManager(). Starting from the beginning of the heap, it continuously scans 2 chunks
forward per run, starting over when it reaches the end of the heap. If a broken forward link is
found, it goes to the end of the heap and scans 100 chunks backward per run until it reaches
and fixes the break, and then it resumes scanning forward. More chunks are scanned
backward per run because it is important to fix a break quickly

If the heap has 200,000 chunks it will take 100,000 passes to scan the full heap. This might be
too often, hence HEAP_SCAN_CNT is introduced. If slowed down to about one scan per
tick, it would take 1000 seconds (about 17 minutes) to complete a pass.

smx_HeapSet

bool smx_HeapSet (SMX_ST_PAR par, u32 val, u32 hn=0)
eheap eh_Set()

Type Mutex-protected function

Summary Sets the specified heap mode to ON or OFF.

Compl smx_HeapPeek()
Parameters par Parameter to set.
val Value to set.
hn Heap number.
Returns true Parameter has been set.
false Parameter has not been set due to error.
Errors SMXE_INV_PAR Invalid parameter

51

smx_Heap

52

Descr

Example

Used to control heap modes. par is of type SMX_ST_PAR. Available parameters are:

SMX_ST_AUTO Automatic free chunk merge control.
SMX_ST_DEBUG Debug mode control.
SMX_ST_FILL Block fill mode control.

SMX_ST_MERGE Free chunk merge control.

and the available values are ON and OFF. SMX_ST_AUTO enables automatic control of
chunk merge (cmerge) implemented in smx_TaskManager(). SMX_ST_DEBUG controls
debug mode, which causes allocations to create debug chunks, which have additional
diagnostic fields in their control blocks (see in Glossary). SMX_ST_FILL controls fill mode,
which enables filling blocks with unique patterns when they are allocated or freed. It also
enables filling dc and tc with unique patterns. SMX_ST_MERGE control cmerge mode,
which applies to free operations. If par is not recognized, returns false and reports
SMX_INV_PAR.

Using this service is highly recommended over directly setting internal heap modes, which
may result in incorrect settings due to preemption of the current task. Also, direct heap mode
setting is not possible in umode under SecureSMX.

smx_HeapSet(SMX_ST_MERGE, ON);

This example turns on cmerge mode so that blocks being freed will be merged with adjacent
free blocks.

smx_HT

smx_HT
smx_HT
void smx_HT_ADD (void* h, const char* name)
void smx_HT_DELETE (void* h)
void* smx_HTGetHandle (char* name)
const char* smx_HTGetName (void* h)
void smx_HTInit(void)
Types smx_HT_ADD C macro calls smx_HTAdd()

smx_HT_DELETE C macro calls smx_HTDelete()
smx_HTGetHandle Reentrant function
smx_HTGetName Reentrant function

smx_HTInit() Function

Summary Add and delete entries to the handle table (HT), query HT for handles or names, and initialize
HT.

Parameters h Handle to add to the handle table or to find.

name Name to add to handle table or to find.
Returns none

Errors SMXE_HT_DUP Duplicate entry
SMXE_HT _FULL Handle table full

Descr Most smx object control blocks contain object names. HT is used to give names to objects
which have no control blocks, such as ISRs and user objects.

If SMX_DEBUG, smx_HT_ADD() and smx_HT_DELETE() map onto the functions
smx_HTAdd() and smx_HTDelete(), respectively. Otherwise, they map to nothing. The
macros should be called instead of calling the functions directly.

smx_HT_ADD(h, name) adds an entry for handle h to HT and loads name into it..
smx_HT_ADD() first scans to see if name is already in the handle table. If it is, it returns
false and reports SMXE_HT_DUP. smx_HT_ADD() reports SMXE_HT_FULL if the handle
table is full. If either parameter is O, it aborts and does nothing

smx_HT_DELETE(h) deletes the entry. If a name was added to HT, it must be deleted when
the object is deleted.

smx_HTGetHandle() returns the handle that corresponds to the name specified, or NULL, if
no entry is found. smx_HTGetName() returns the name that corresponds to the handle
specified, or the null string, if no entry is found.

53

smx_HT

Handle table structure:

handle name
0x12345678 » T|la|s|k[A[\O
handle table
Example
void* MyISRH;
TCB_PTR TaskA, h;
char *n;

void appl_init(void)

{
MyISRH = smx_SysPseudoHandleCreate();
smx_HT_ADD(MyISRH, "MyISR");
TaskA = smx_TaskCreate(taska_main, PRI_NORM, 0, SMX_FL_ NONE, "TaskA");
}
void print_report(TCB_PTR task, void *isr)
{
const char *task_name, *isr_name;
task_name = TaskA->name;
isr_name = smx_HTGetName(MyISR);
/* print report with task and ISR names */
}
void appl_exit(void)
{
smx_TaskDelete(&TaskA);
smx_HT_DELETE(MyISRH);
}

A pseudo handle is just a number that is outside the range of normal handles. See
smx_SysPseudoHandleCreate(). In appl_init(), smx_HT_ADD() assigns “MyISR” to this
handle and creates an entry in HT. smx_TaskCreate() loads “TaskA” into TaskA->name.

The print_report() function is able to get the task name from the task TCB and the ISR name
form the handle table by using smx_HTGetName(). This enables it to print a report with
names, instead of handles. smxAware uses HT in a similar way.

In appl_exit(), smx_TaskDelete() deletes the TaskA and smx_HT_DELETE() deletes the
MyISR entry in HT.

54

smx_ISR

smx_ISR

See the smx User’s Guide, Service Routines chapter for usage information and more examples, and see the
SMX Target Guide for your processor and tool suite.

smx_ISR_ENTER

smx_ISR_ENTER()

Type
Summary
Compl
Parameters
Returns

Descr

Example 1

C and assembly macros
Used to begin an smx ISR.
smx_ISR_EXIT()

none

none

An smx interrupt service routine must begin with smx_ISR_ENTER(). Operations often
performed are saving volatile registers on the current stack, switching to SS, and
incrementing smx_srnest. Some processors (e.g. Cortex-M) do all of these automatically.
Others require all of these to be done (e.g. some ARM’s). In addition, some processors
necessitate using assembly shells; others allow writing ISRs fully in C. Implementation of
smx_ISR_ENTER() is a complex subject. It is discussed in detail in the SMX Target Guide.

In all cases, ISR_ENTER() saves the suspend location in task->susploc if SMX_DEBUG is
defined, calls smx_RTC_ISR_START() if SMX_CFG_PROFILE, and turns Background
Region on under SecureSMX.

void interrupt AnISR(void)

{
smx_ISR_ENTER();
/* ISR body here */
smx_ISR_EXIT();

}

This example is for a processor, which does hardware interrupt vectoring and which permits
ISRs to be written in C. In this case, smx_ISR_ENTER() and smx_ISR_EXIT() are C
macros.

55

smx_ISR

56

Example 2

Example 3

EXTERN AnISRC

PUBLIC AnISR
AnISR:

smx_ISR_ENTER

LDR 10, =AnISRC

MOV Ir, pc
BX r0
smx_ISR_EXIT
void AnISRC(void)
{
/* ISR body here */
}

This example is for a processor that does hardware vectoring, but requires assembly ISRs.
ColdFire is an example. This is handled above by creating an assembly shell, AnISR, which
is linked to the interrupt. It calls the ISR body, AnISRC, which written in C. It is easier to
write the ISR body in C, but of course it can be written entirely in assembly, if performance is
an issue. In this case, smx_ISR_ENTER() and smx_ISR_EXIT() are assembly macros.

PUBLIC smx_irg_handler

smx_irg_handler:
smx_ISR_ENTER
Idr rl, =sb_IRQDispatcher

mov Ir, pc

bx rl

smx_ISR_EXIT
void AnISRC(void)
{

/* ISR body here */
}

This example is for a processor that requires software vectoring. Some ARM processors are
an example. This is handled by creating sb_IRQDispatcher(), which determines which ISR to
call, then calls it, such as AnISRC() shown above. sb_IRQDispatcher() is supplied as part of
smxBSP for the processor, and need not be written by the user. It can be found in the
processor / tool assembly module (e.g. xarm_iar.s).

Normally all ISRs will be written in C for this kind of processor, since software dispatching is
slow to begin with. In this case, smx_ISR_ENTER() and smx_ISR_EXIT() are assembly
macros.

smx_ISR

smx_ISR_EXIT

smx_ISR_EXIT()

Type C and assembly macros

Summary Used to end an smx ISR. Binds it to the smx scheduler.
Compl smx_ISR_ENTER()

Parameters none

Returns none

Descr All interrupt service routines which use smx_ISR_ENTER() must end with
smx_ISR_EXIT().

For most processors: If smx_srnest is greater than 1, decrements smx_srnest, pops registers
pushed by smx_ISR_ENTER() and does an interrupt return to the interrupted service routine
or scheduler. If smx_srnest is 1, and smx_Iqgctr != 0, branches to the prescheduler, which calls
the LSR scheduler, smx_SchedRunLSRs(), which runs all waiting LSRs. If smx_Iqgctr == 0,
clears smx_srnest, switches to the current task stack, pops the registers pushed by
smx_ISR_ENTER(), and does an interrupt return to the current task.

For ARM-M processors: smx_srnest is not needed for ISR nesting due to the RETTOBASE
flag, but it is needed to check LSR plus SSR nesting. If ARMM_FL_RETTOBASE == 0,
control goes to the interrupted ISR. Otherwise, if smx_srnest == 0, and smx_Ilqctr != 0,
smx_srnest is set to 1 and the smx_PendSV_Handler() (PSVH()) is triggered. Then interrupt
return is called. PSVH() tail-chains to this and runs. Since smx_Iqgctr = 0, PSVH() calls
smx_SchedRunLSRs(), which runs all waiting LSRs.

For all processors, after all queued LSRs run, if smx_sched != 0, smx_SchedRunTasks() is
called, to determine what task to dispatch next. If another task has higher priority than
smx_ct, it will be dispatched unless smx_ct is locked. If smx_sched == 0, control goes to
smx_ct.

If ARMM_FL_RETTOBASE == 0 and srnest != 0, control goes to the point of interruption,
which could be in an LSR or in system code, such as an SSR or the smx scheduler.

Examples See smx_ISR_ENTER().

57

smx_LSR

smx_LSR

See the smx User’s Guide, Service Routines chapter for usage information and more examples.

smx_LSRCreate

LCB_PTR smx_LSRCreate(FUN_PTR fun, u32 flags=0, TCB_PTR htask=NULL, u32 ssz=0, const char*

Summary

Parameters

Returns

Flags

Errors

Descr

LSR Fun

Example

58

name=NULL, LCB_PTR* Inp=NULL)
Creates an LSR.

fun LSR function.
htask Host task.
ssz LSR stack size.

flags Flags: system, umode.
name LSR name.
Ihp LSR handle pointer (see hp note in Notes and Restrictions).

handle LSR created.
NULL LSR not created due to an error.

SMX_FL_TRUST Trusted LSR.

SMX_FL_UMODE SecureSMX only.
SMX_FL_NOLOG Don’t log LSR in EVB.
SMXE_INV_OP Attempted double create.
SMXE_INV_PAR Both TRUST and UMODE flags set.

SMXE_OUT_OF LCBS

Gets an LSR control block from the LSR control block pool and loads fun, Ihp, cbtype, and
name into it. If flags == SMX_FL_TRUST, sets Isr->flags.trust = 1. This is the normal LSR
if SecureSMX is not in use. For SecureSMX, two additional types of LSRs are supported,
called safe LSRs. See the SecureSMX User’s Guide, section 6.7 Safe LSRs for more
information.

void Isr_main(u32 par)

LCB PTRsra
Isra = smx_LSRCreate(Isra_main, SMX_FL_TRUST, NULL, 0, "Isra", &lsra);

Creates Isra with function Isra_main and name “Isra”. Isra is a trusted LSR which means that
it runs in handler mode and does not have its own stack so it uses the main stack. This is the
standard smx LSR.

smx_LSR

smx_LSRDelete

bool smx_LSRDelete(LCB_PTR™* Ihp)

Summary
Parameters

Returns

Errors

Descr

Example

Deletes an LSR created by smx_LSRCreate().
Ihp LSR handle pointer.

true LSR deleted.
false LSR not deleted.

SMXE_INV_LCB

For a trusted LSR, returns the LCB back to the LCB pool, and sets *Ihp = NULL so it cannot
be used again. For safe LSRs, see the SecureSMX User’s Guide, section 6.7 Safe LSRs for
more information.

LCB_PTRIsra

smx_LSRDelete(&lIsra)

smx_LSRInvoke

bool smx_LSRInvoke (LSR_PTR Isr, u32 par=0)

void

Types

Summary

Parameters

Returns

Errors

Descr

LSR Main

smx_LSR_INVOKE (LSR_PTR lsr, u32 par=0)

smx_LSRInvoke SSR for use from tasks
smx_LSR_INVOKE Unrestricted function for use from ISRs and LSRs

Invokes a link service routine and passes par to it.

Isr LSR to invoke.
par Parameter to pass to LSR.

true LSR invoked.
false Error.

SMXE_LQ _OVFL smx_lqis full.

Places the LSR handle, Isr, followed by the parameter, par, into the LSR queue, smx_Iq. If
smx_LSRInvoke() is called from a task, Isr runs immediately, unless LSRs are off (see
below). If smx_LSR_INVOKE() is called from an ISR or an LSR, Isr will run after all ISRs
have run and all LSRs ahead of it in smx_lq have run.

void Isr_main(u32 par)

59

smx_LSR

60

Notes:

Example

1. LSRs run with interrupts enabled.

2. smx_LSR_INVOKE() has no return value since there is nothing an ISR can do to retry.
However, it does report SMXE_LQ_OVFL.

3. Pointer parameters: For processors with separate address and data registers, such as
ColdFire, see the note about LSR and task main function parameters at the start of the Calls
section.

4. smx_LSRInvoke() allows a task to invoke an LSR in the same way that an ISR invokes it,
which is useful to start an interrupt-driven process. It is also useful to simulate an interrupt
during debugging.

LCB_PTR send_lsr;
SCB_PTR send_done;

void send_main(u32)

{
MCB_PTR msg;
char *mbp;
u32 size;
msg = smx_MsgGet(send_pool, &mbp, 0);
size = smx_MsgPeek(msg, SMX_PK_SIZE);
fill_msg(mbp, size);
smx_LSRInvoke(send_lsr, (u32)msg);
smx_SemTestStop(send_done, SMX_TMO_DFLT);
}
void send_next_ISR(void)
{
smx_LSR_INVOKE(send_lst, 0);
}
void send_Isr_main(u32 val)
{

static char *cp;
static MCB_PTR msg;

switch (val) {

case 0O:
if (*cp '="0")
{
output(cp);
cp++
}
else
(
smx_MsgRel(msg, 0);
smx_SemSignal(send_done);
}
break;

smx_LSR

default:
msg = (MCB_PTR)val;
cp = (char*)smx_MsgPeek(msg, SMX_PK_DP);
output(cp);
cp++;

}

The send task gets a message, fills it, then invokes send_Isr() with the message handle as the
parameter. send_lIsr() loads this into the static msg, loads the first character pointer into the
static cp, sends the first character, increments cp, and stops. When the output device needs the
next character, it interrupts to cause send_next_ISR() to invoke send Isr() with a O parameter.
send_lsr() sends the next character. This continues until send_lsr() reaches the null character,
at which time it releases the message back to its pool and signals the send_done semaphore to
send another message.

This example shows the value of being able to invoke an LSR from either a task or an ISR.
In this case, invoking from a task serves to get the output process started and invoking from
an ISR serves to keep it going.

smx_LSRsOff

void smx_LSRsOff (void)

Type Function

Summary Inhibits LSRs from running.

Compl smx_LSRsOnN()

Descr Used in tasks to prevent LSRs from running. This makes the code atomic because an interrupt
cannot cause a preemption. The effect is similar to smx_TaskLock(), except that locking does
not prevent LSRs and SSRs from running.

Example

void atask_main(u32)
{
smx_LSRsOff();
atask->fun = new_function;
smx_LSRsON();
}
smx_LSRsOn

bool smx_LSRsOn (void)

Type
Summary

Compl

SSR
Re-enables LSRs and runs any that are waiting
smx_LSRsOff()

61

smx_LSR

62

Returns
Errors

Descr

Example

true

none

Re-enables LSRs. This is an SSR so that LSRs that were invoked when LSRs were off, will
run before the task resumes.

See above.

smx_Msg

smx_Msg

See the smx User’s Guide, Exchange Messaging chapter for usage information and more examples.

smx_MsgBump

bool smx_MsgBump (MCB_PTR msg, u8 pri)

Type SSR
Summary May change message priority; requeues the message .
Parameters msg Message to change priority and requeue.
pri Priority to change to, or SMX_PRI_NOCHG.
Returns true Success.
false Error.
Errors SMXE_INV_MCB Invalid message handle.
SMXE_INV_PRI pri > SMX_MAX_PRI
SMXE_INV_XCB Invalid exchange handle.
Descr If msg is valid and pri <= SMX_MAX_ PRI, changes msg priority to pri and requeues it if it is

in a valid exchange queue. If pri is SMX_PRI_NOCHG, does not change msg priority, but
moves msg to the end of the queue. If priority inheritance is enabled, this will result in the
exchange owner priority being increased if it was less than the new msg priority. See the smx
User’s Guide, Exchange Messaging chapter, message priority inheritance section and priority
inheritance in the smx User’s Guide for more information.

Example
XCB_PTR xa, xb;

void em9(void)

{
MCB_PTR msg1, msg2;
us8 priz;

msgl = smx_MsgGet(msg_pool, NULL, 0);
smx_MsgSend(msgl, xa);
msg2 = smx_MsgGet(msg_pool, NULL, 0);
smx_MsgSend(msg2, xa);
pri2 = (u8)smx_MsgPeek(msg2, SMX_PK_PRI);
smx_MsgBump(msg2, ++pri2);

}

In this example, two messages are obtained and sent to xa.. Then, smx_MsgPeek() is used to
get the priority of msg2, which is bumped up by one. As a consequence, msg2 will now be
ahead of msgl in the xa message queue.

63

smx_Msg

smx_MsgGet

MCB_PTR smx_MsgGet (PCB_PTR pool, u8** bpp=NULL, ul6 clrsz=0, MCB_PTR* mhp=NULL)

Type SSR
Summary Gets a message by combining a message block from a block pool and an MCB from the
MCB pool.
Compl smx_MsgRel()
Parameters pool Pool to get message block from.
bpp Pointer to message block pointer. NULL if none.
clrsz Number of bytes to clear from the start of message block.
mhp Message handle pointer (see hp note in Notes and Restrictions) .
Returns msg Handle of message obtained.
NULL Out of blocks or error.
Errors SMXE_INV_PCB Invalid pool handle.
SMXE_INV_OP *mhp = NULL.

SMXE_OUT_OF MCBS

Descr Gets a block from pool for use as the message block and gets an MCB from the MCB pool.
Initializes the MCB, links it to the message block, clears the first clrsz bytes of the message
body up to its size, and loads the address of the message block into bpp, unless bpp is NULL.
bpp is intended to be used to load data into the message block. The smx_ct or smx_clsr
becomes the message owner. Returns the message handle.

Notes 1. For proper operation there must be at least as many MCBs as there are active messages in
a system at any given time.

2. Interrupt safe with respect to sb_BlockGet() and sb_BlockRel() operating on the same

block pool.
Example

MCB_PTR build_msg(PCB_PTR pool, u8* dp)

{
u8* mbp;
MCB_PTR msg;
msg = smx_MsgGet(pool, &mbp, 4);
LoadMessage(mbp, dp);
return msg;

}

This function gets a message from pool, loads data into it, and returns the message handle.

64

smx_Msg

smx_MsgMake

MCB_PTR smx_MsgMake (u8* bp, u32 bs=0, MCB_PTR* mhp=NULL)

Type SSR
Summary Makes a message from a bare block or a protected block under SecureSMX.
Compl smx_MsgUnmake()
Parameters bp Block pointer.

bs Block source: pool, heap, or no source (-1).

mhp Message handle pointer (see hp note in Notes and Restrictions).
Returns msg Handle of message made.

NULL Insufficient resources or error.
Errors SMXE_INV_PAR bp == NULL

SMXE_INV_OP *mhp != NULL

SMXE_OUT_OF_MCBS

Descr Makes a message from a bare block or a protected block. Gets MCB from MCB pool,
initializes it, and returns its handle. If the block is from a pool, msg->bs = &pool; if the block
is from a heap, msg->bs = hn. If the block is a standalone block, msg->bs = -1.

Example
LCB_PTR in_LSR;
PCB in_pool;
XCB_PTR in_xchg;

void in_ISR(void);

{
u8 char;
u8 *mbp, *dp;
char = UART _In();
switch (char)
{
case: STX
mbp = sb_BlockGet(&in_pool, 4);
dp = mbp;
break;
case: ETX
smx_LSR_INVOKE(in_LSR, (u32)mbp)
break;
default:
*dp++ =ch;
}
}

65

smx_Msg

void in_LSR_main(u32 mbp);

{
MCB_PTR msg;
msg = smx_MsgMake((u8*)mbp, &in_pool);
smx_MsgSend(msg, in_xchg);

}

in_ISR() runs whenever an UART input interrupt occurs. It gets an incoming character from
the UART. If it is the start of text, STX, a base block is obtained from in_pool. This is an
interrupt-safe function designed for ISR usage. Subsequent characters are loaded into the base
block. When the end of text, ETX, is received, in_LSR is invoked. in_LSR runs after all ISRs
complete. It uses smx_MsgMake() to make the base block at mbp into a message and then
sends the message to in_xchg, where a task waits to process it. Note that this is a no-copy
operation.

smx_MsgPeek

u32

Type
Summary
Parameters

Returns

Errors

Descr

66

smx_MsgPeek (MCB_PTR msg, SMX_PK_PAR par)
SSR
Returns the current value of the parameter specified.

msg Message to peek at.
par What to return.

value Value of par.

0 Value, unless error.

SMXE_INV_MCB Invalid message handle.
SMXE_INV_PAR Argument not recognized.
SMXE_BROKEN_Q Message queue is broken.

SMXE_UNKNOWN_SIZE Message block size is unknown

This service can be used to peek at a message. Valid arguments are:

SMX_PK_BP Block pointer.

SMX_PK_HN Heap number.

SMX_PK_ONR Owner.

SMX_PK_NEXT Next msg in queue. NULL, if none.

SMX_PK_PRI Message priority.

SMX_PK_POOL Pool.

SMX_PK_REPLY Reply field. 0 if mcb.rpx = OXFFFF (no reply).
SMX_PK_SIZE Block size.

SMX_PK_XCHG Exchange where msg is waiting. 0, if none, or broken queue.

If the message block is from a heap or a pool, SMX_PK_SIZE returns the block size. If not,
0 is returned and SMXE_UNKNOWN_SIZE is reported. Hence, if a message was made from
a freestanding block, its size must be stored outside of the message.

Example

smx_Msg

u8* mbp;

MCB_PTR msg;

bool pass;

XCB_PTR xchgM, reply;

if (msg = smx_MsgReceive(xchgM, &mbp, TMO))

{
pass = ProcessMsg(mbp);
reply = (XCB_PTR)smx_MsgPeek(msg, SMX_PK_REPLY);
*mbp = pass;
smx_MsgSend(msg, reply, 0, NO_REPLY);
}

This is an example where a message is received from xchgM and processed. pass indicates if
processing was successful. smx_MsgPeek() is used to find the reply exchange, the first byte
of msg is set equal to pass, and msg is send to the reply exchange, where the sender waits for
acknowledgement. Note that it is not necessary to know the origin of the message.

smx_MsgReceive

MCB_PTR

Type
Summary

Compl

Parameters

Returns

Errors

Descr

smx_MsgReceive (XCB_PTR xchg, u8** bpp=NULL, u32 timeout=0, MCB_PTR* mhp=NULL)
SSR

Gets a message from xchg. If xchg is empty, suspends the current task for timeout ticks. Fails
if timeout ticks elapse before a message is received.

smx_MsgSend()

xchg Exchange to get message from.

bpp Pointer to message block pointer. NULL if none.

timeout Timeout in ticks or msec if [SMX_FL_MSEC.

mhp Message handle pointer (see hp note in Notes and Restrictions).

msg Message handle.

NULL Error or timeout.

SMXE_INV_XCB Invalid exchange handle.

SMXE_INV_OP *mhp = NULL.

SMXE_INV_PRI Message priority is invalid for a pass exchange.

SMXE_WAIT_NOT_ALLOWED Called from LSR with nonzero timeout.

If xchg is a normal exchange, dequeues the first message waiting at xchg and returns the
message handle. The task or LSR that made the call becomes the message owner. Also loads
the message body pointer into bpp for access to the message body. If xchg is empty and
timeout is not 0, suspends smx_ct on xchg for timeout ticks. smx_ct is enqueued in priority
order. If a message is sent to xchg before the timeout elapses, smx_ct resumes with the
message handle as the return value and the message body pointer is loaded into bpp. If the
timeout elapses or was 0, ct resumes with a NULL return value and nothing is loaded into
bpp. Timeouts are not permitted for LSRs.

67

smx_Msg

68

Notes

Example

If xchg is a pass exchange, changes task priority if it is less than SMX_PRI_SYS. If not,
returns NULL and reports SMXE_INV_PRI. If smx_ct does not own a mutex, changes
smx_ct->prinorm = msg->pri and smx_ct->pri = msg->pri. If smx_ct owns a mutex,
smx_ct->prinorm and smx_ct->pri are changed up, but not down, in order to preserve priority
promotion, if any, by the mutex. Requeues smx_ct in the ready queue if its priority has
changed. If smx_ct priority is decreased it may be preempted, unless it is locked. For an LSR,
receiving from a pass exchange is the same as receiving from a normal exchange since LSRs
have no priority. If priority inheritance is enabled, the task receiving the message becomes the
exchange owner. See the smx User’s Guide, Exchange Messaging chapter, message priority
inheritance section and priority inheritance in the smx User’s Guide for more information.

If xchg is a broadcast exchange, and a message is waiting, smx_ct receives the message
handle and the message body pointer is loaded into bpp. However, msg remains engqueued at
xchg and its sender remains its owner. If no message is waiting at xchg, ct is enqueued at
xchg in FIFO order. Operation for a message received before the timeout elapses or after it
elapses, is similar to a normal exchange, except that msg remains enqueued at xchg and its
sender remains its owner. All tasks waiting at xchg receive the message at the same time.

1. Clears smx_locketr if called from a task and timeout != SMX_TMO_NOWAIT.

XCB_PTR in_xchg;

MCB_PTR msg;
void task_Main(u32)
{
u8* mbp;
while (1)
{
if (msg = smx_MsgReceive(in_xchg, &mbp, 100))
Process.Msg(mbp);
else
break;
}
/* report failure */
}

In the above example, task gets msg from the in_xchg and processes it, using mbp. task will
wait up to 100 ticks, and if there is no message, it will report a failure.

smx_Msg

smx_MsgReceiveStop

void smx_MsgReceiveStop (XCB_PTR xchg, u8** bpp=NULL, u32 timeout=0, MCB_PTR* mhp=NULL)

Type
Summary

Compl

Parameters

Errors

Descr

Notes

TaskMain

par

Example

Limited SSR — tasks only

Same as smx_MsgReceive() except that smx_ct is always stopped, then restarted when it is
time for it to run.

smx_MsgSend()

xchg Exchange to get message from.

bpp Pointer to message block pointer. NULL if none.

timeout Timeout in ticks or msec if [SMX_FL_MSEC.

mhp Message handle pointer (see hp note in Notes and Restrictions).

SMXE_INV_XCB Invalid exchange handle.

SMXE_INV_PAR bpp points to a location in the current task stack.
SMXE_INV_PRI Message priority is invalid for a pass exchange.
SMXE_OP_NOT_ALLOWED Called from an LSR.

See smx_MsgReceive() for operational description. smx_ct always stops, then restarts instead
of suspending then resuming. The message handle is returned via the parameter in
taskMain(par), when the task restarts.

1. If called from an LSR, aborts operation and returns to LSR.

2. Clears smx_lockctr if called from a task, since it always stops.

void task_main(MCB_PTR msg)

handle = Message handle received.
NULL Error or timeout.

Note: For processors with separate address and data registers, such as ColdFire, see Note 8 in
smx Services, Notes and Restrictions.

XCB_PTR input;
MCB_PTR data;

u8* mbp;
void task_Main(u32 msg)
{
if (msg '= NULL)
{
ProcessData(mbp);
smx_MsgReceiveStop(input, &mbp, TMO);
}
else
/* report failure */
}

69

smx_Msg

70

The above example is equivalent to the example shown for smx_MsgReceive(). Note that
there is no while loop — when a message is received or a timeout occurs, smx restarts task
and passes the message handle or NULL as the task_Main() parameter. Also note that mbp is
defined as a static variable — it cannot be defined as an auto variable, because the stack

changes.

smx_MsgRel

bool smx_MsgRel (MCB_PTR msg, ul6 clrsz=0)

Type SSR

Summary Releases a message obtained by smx_MsgGet() or smx_MsgMake().
Compl smx_MsgGet(), smx_MsgMake()

Parameters msg Message to release.

clrsz Number of bytes to clear from byte 4 of message block if from a pool.

Returns true Message released.
false Invalid MCB or msg is not owned by current task.
Errors SMXE_INV_MCB Invalid message handle
SMXE_INV_PAR Message block pointer is out of range.
SMXE_NOT_MSG_ONR smx_ct is not the message owner.
SBE_INV_POOL Invalid pool handle.
SBE_INV_BP Block pointer is out of range.
Descr Releases a message obtained by smx_MsgGet() or smx_MsgMake(). If msg is at a broadcast

exchange, dequeues it. If msg->bs < eh_hvpn, msg is from a heap, and hn = msg->bs. Frees

msg block to hn if msg->bp is in the address range of heap hn.

If msg->bs >= eh_hvpn but I= -1, msg block is from a pool and pool pointer, pp = msg->bs.
Releases msg block to pool at pp if it is a valid pool and if bp is in the pool range. Also clears

clrsz bytes from byte 4 to the end of the msg block.

If msg->bs == -1, the block is a standalone block, and is not released.

The operation also fails if the message is not owned by the current task. This is done for
safety to prevent a task that no longer owns a message from releasing it. Note: an LSR can
release a message that it does not own. This is done to allow message handles to be passed to

LSRs as LSR parameters.

Notes 1. This allows a broadcast task to release a message it sent to a broadcast exchange, since it

still owns the message.

2. Interrupt safe with respect to sb_BlockGet() and sb_BlockRel() operating on the same

block pool.

smx_Msg

Example
u32 release_msgs(XCB_PTR xchg)
{
MCB_PTR masg;
u32 i, sz;
for (i = 0; (msg = smx_MsgReceive(xchg, SMX_TMO_NOWAIT)); i++)
{
sz = smx_MsgPeek(msg, SMX_PK_SIZE);
smx_MsgRel(msg, sz);
}
return i;
}
All messages waiting at xchg are removed, cleared, and released. The number of messages
released is returned to the caller.
smx_MsgRelAll
u32 smx_MsgRelAll (TCB_PTR task)
Type SSR
Summary Releases all messages owned by task and returns the number released.
Parameters task Task whose messages are to be released.
Returns Number of messages released.
Errors SMXE_INV_TCB Invalid task handle.
Descr Searches entire MCB pool and releases all messages owned by task. Messages are dequeued
before release. Returns number of messages released.
Example

void stop_task(TCB_PTR atask)
{
smx_MsgRelAll(atask);
smx_TaskStop(atask);

}

Unlike smx_TaskDelete(&atask), smx_TaskStop(atask) does not automatically release all
messages owned by atask. In this example, all of atask’s messages are released, then it is
stopped.

71

smx_Msg

72

smx_MsgSend

bool smx_MsgSend(MCB_PTR msg, XCB_PTR xchg, u8 pri=0, void* reply=NULL)

Type
Summary
Compl

Parameters

Returns

Errors

Descr

Notes

SSR
Sends a message to an exchange. Delivers msg to the top waiting task, if any.

smx_MsgReceive(), smx_MsgReceiveStop()

msg Message to send.

xchg Exchange to send message to.

pri Priority to set msg to unless SMX_PRI_NOCHG.

reply Where to send reply. NULL if no reply is expected.

true Message sent.

false Message not sent due to error.

SMXE_INV_MCB Invalid message pointer.

SMXE_NOT_MSG_ONR smx_ct is not the owner.

SMXE_INV_XCB Invalid exchange pointer.

SMXE_INV_PAR Reply is not a valid exchange handle or index or pri is invalid.

If xchg is a normal exchange, msg is enqueued in its wait queue, unless there is a task
waiting. If so, msg is delivered to the first task. This task becomes the new owner and it is
resumed. If there is no task waiting at the exchange, msg is enqueued in priority order, unless
its priority is O, in which case it is enqueued in FIFO order. If pri == SMX_PRI_NOCHG, the
message priority is not changed. This allows a task to forward a message without changing its
priority. xchg becomes the message owner so the message will not be released if the task is
deleted or smx_MsgRelAll(task) is called.

If xchg is a pass exchange, operation is the same with the addition that the task receiving
msg assumes it priority. See the discussion of this feature under smx_MsgReceive(). If
priority inheritance is enabled, this will result in the exchange owner’s priority being
increased if it was less than the new msg priority. See the smx User’s Guide, Exchange
Messaging chapter, message priority inheritance section and priority inheritance in the smx
User’s Guide for more information.

If xchg is a broadcast exchange, bxchg, operation is quite different. Tasks are engqueued in
FIFO order and all are resumed at once by smx_MsgSend(). Each task receives the msg
handle, and the message block pointer is loaded into its mbp location. However, the sending
task remains the owner, and the message “sticks” to the bxchg, meaning that it will be
“received” by all subsequent receives until replaced or released.

The broadcast message can be replaced by sending another message to the bxchg or it can be
released by the initial sender. In the first case, the message will be automatically released and
any task can cause this to happen. In the second case, the initial sender is the message owner,
so only it can release the message. See smx User’s Guide, Exchange Messaging chapter,
broadcasting messages section for more discussion of broadcasting.

The following notes apply to all cases above:

smx_Msg

1. If a task making this call is not the message owner, the call returns false and reports
SMXE_NOT_MSG_ONR. This prevents a task from sending a message that it does not own.
However an LSR can send a message that it does not own. This allows LSRs to release
messages that they did not get nor make.

2. msg, xchg, and reply are checked and if invalid, false is returned and the appropriate error
is reported.

3. The reply parameter allows the sender to tell the msg recipient where to reply. It is an
exchange handle 8-bit index, which is stored in msg->rpx. If the reply parameter == NULL or
NULL, then rpx is set to OxXFF, meaning no reply. See smx User’s Guide, Exchange
Messaging chapter, using the reply field section for more discussion.

4. If xchg->cbfun is not NULL, the callback function cbfun(XCB_PTR xchg) is called. See
also smx_MsgXchgSet().

Examplel

typedef struct
{
u32 hdr;
u8 data[N];
}*MB_PTR;

PCB_PTR free_msgs;
XCB_PTR port0;

bool send_msg(void)

{
MCB_PTR msg;
MB_PTR mbp;
if (msg = smx_MsgGet(free_msgs, &mbp, SMX_TMO_NOWAIT))
{
mbp->hdr = TEST,;
for 1=0;i<N;i++)
mbp->datai] = i;
smx_MsgSend(msg, port0, PRI_NORM);
return true;
}
else
return false;
}

In this example, a message block is obtained, filled with a test pattern, and sent to another
exchange called port0. Message priority is set to 0 and no reply is expected. Returns true if a
message is sent, false otherwise.

Example 2 See smx User’s Guide, Exchange Messaging chapter, client/server example for a reply
example.

73

smx_Msg

smx_MsgUnmake

u8* smx_MsgUnmake (MCB_PTR msg, u32* bsp=NULL)

Type SSR
Summary Unmakes a message made by smx_MsgMake() to a bare block or to a pblock.
Compl smx_MsgMake()
Parameters msg Message to unmake.
bsp Place to put block source.
Returns >0 Message unmade.
NULL Invalid MCB or msg is not owned by current task.
Errors SMXE_INV_MCB Invalid message handle.
SMXE_NOT_MSG_ONR smx_ct is not the message owner.
Descr Reverses smx_MsgMake() by converting an smx message to a bare block or pblock® by

releasing its MCB. A task that no longer owns a message cannot unmake it. However, an
LSR can unmake a message that it does not own. Returns the address of the data block and
loads its source into the user-supplied location, *bsp, unless bsp == NULL.

Example
u8* bpi;
PCB_PTR msg_pool;
LCB_PTR out_LSR;

PCB_PTR ppi;

void SendMsg(void)

{
u8* mbp;
MCB_PTR msg;
msg = smx_MsgGet(msg_pool, &mbp, 4);
/* load NULL terminated message using mbp */
smx_LSRInvoke(out LSR, (u32)msg);

}

void out_LSR_main(u32 m)

{
MCB_PTR msg = (MCB_PTR)m;
bpi = smx_MsgUnmake(msg, &ppi,);
UART_Out(*bpi++);

}

> See the SecureSMX User’s Guide for information on pblocks.

74

smx_Msg

void out_ISR(void)

{
if (*bpi !=0)
{
UART_Out(*bpi++);
}
else
{
sb_BlockRel(ppi, bpi, 0);
UART_Stop();
}
}

This example is the opposite of that shown for smx_MsgMake(). It is assumed that a task
calls SendMsg(), which gets a message, loads it, then invokes out_LSR with msg as its
parameter. out_L SR unmakes the message, thus loading bpi and ppi for out_ISR(). out_LSR
then outputs the first character to start UART output. The UART interrupts each time it needs
another character, and out_ISR() provides the character until all characters have been sent.
out_ISR() releases the block back to msg_pool, which is pointed to by ppi.

75

smx_MsgXchg

76

smx_MsgXchg

See the smx User’s Guide, Exchange Messaging chapter for usage information and more examples.

smx_MsgXchgClear

bool smx_MsgXchgClear (XCB_PTR xchg)

Type
Summary
Parameters

Returns

Errors

Descr

Example

SSR

Clears an exchange.

xchg Exchange to clear.

true Exchange cleared or already clear.

false Error.

SMXE_INV_XCB Invalid exchange handle.

SMXE_BROKEN_Q Task or message queue is broken.

At the time it is cleared, a message exchange can have a task queue, a message queue, or no
gueue. Clears an exchange by resuming all waiting tasks with NULL return values, for a task
gueue, or releasing all waiting messages, for a message queue. Appropriate xchg fields are
cleared.

bool modeA,;
XCB_PTR port_in;
TCB_PTR serverA, serverB;

bool toggle_server(void)

{

bool pass = false;

smx_TaskLock();

if (modeA)

{
pass = smx_TaskStop(serverA);
pass &= smx_MsgXchgClear(port_in);
pass &= smx_TaskStart(serverB, port_in);

}
else
{
pass =smx_TaskStop(serverB);
pass &= smx_MsgXchgClear(port_in);
pass &= smx_TaskStart(serverA, port_in);
}

smx_MsgXchg

modeA = if modeA ? false : true;
smx_TaskUnlock();
return pass;

}

This function toggles the task serving port_in. It does so by stopping the current server,
clearing the port_in exchange, then starting the alternate server. This is done with ct locked so
that the operation is atomic. Since all messages have been released, client tasks will
presumably time out and try again.

smx_MsgXchgCreate

XCB_PTR smx_MsgXchgCreate (SMX_XCHG_MODE mode, const char* name=NULL, XCB_PTR* xhp=NULL,

Type
Summary
Compl

Parameters

Returns

Errors

Descr

u8 pi)

SSR

Creates a message exchange, which operates in the specified mode.
smx_MsgXchgDelete()

mode Operating mode.

name Name to give exchange, NULL if none.

xhp Exchange handle pointer (see hp note in Notes and Restrictions).
pi Enable priority inheritence.

xchg Handle of exchange created.
NULL Insufficient resources or error.

SMXE_INV_OP Attempted multiple creates of the same message exchange.
SMXE_OUT_OF_XCBS
SMXE_WRONG_MODE Mode is not recognized.

Creates an exchange of the mode specified:

mode exchange
SMX_XCHG_NORM Normal
SMX_XCHG_PASS Pass
SMX_XCHG_BCST Broadcast

Allocates an exchange control block from the XCB pool, initializes it, and returns the
exchange handle. Priority inheritance can be enabled only for pass exchanges. If xchg-
>flags.pi is true priority inheritance is enabled for xchg. See the smx User’s Guide, Exchange
Messaging chapter, message priority inheritance section and priority inheritance in the smx
User’s Guide for more information.

77

smx_MsgXchg

78

Example

XCB_PTR port_in, port_out;

void appl_init(void)

{
port_out = smx_MsgXchgCreate(SMX_XCHG_NORM, "port_out");
port_in =smx_MsgXchgCreate(SMX_XCHG_PASS, "port_in");

}

This example shows the creation of a normal exchange and a pass exchange.

smx_MsgXchgDelete

bool smx_MsgXchgDelete (XCB_PTR* xhp)

Type
Summary
Compl
Parameters

Returns

Errors

Descr

Example

SSR
Deletes an exchange created by smx_MsgXchgCreate().

smx_MsgXchgCreate()

xhp Exchange to delete.

true Exchange deleted or already deleted.
false Error.

SMXE_INV_XCB Invalid exchange handle.

SMXE_BROKEN_Q Task or message queue is broken.

Deletes an exchange created by smx_MsgXchgCreate(). Resumes all waiting tasks with false
return values or releases all waiting messages. Clears and releases the XCB, and sets *xhp =
NULL so it cannot be used again.

bool remove_server(TCB_PTR serverA, XCB_PTR port_in)

{
bool pass = false;
if (smx_TaskStop(serverA))
{
if (smx_MsgXchgDelete(port_in))
pass = true;
}
return pass;
}

In this example, serverA is first stopped; if successful, port_in is deleted. Returns true if both
succeed. Normally only one server task serves a server exchange. It makes sense if it has
been stopped to release all messages waiting at its exchange, since they will not be serviced.
Deleting the exchange ensures that more messages cannot be sent.

smx_MsgXchg

smx_MsgXchgPeek

u32 smx_MsgXchgPeek (XCB_PTR xchg, SMX_PK_PAR par)

Type SSR
Summary Returns the current value of the parameter specified.
Compl smx_MsgXchgSet()
Parameters xchg Message exchange to peek at.
par What to return.
Returns value Value of par.
0 Value, unless error.
Errors SMXE_INV_XCB Invalid exchange handle.

SMXE_INV_PAR Invalid argument.

Descr This service can be used to peek at an exchange. Valid arguments are:

SMX_PK_TASK First task waiting on this exchange. NULL, if none.
SMX_PK_MSG First message waiting on this exchange. NULL, if none.
SMX_PK_MODE Mode of the exchange (BCST, PASS or NORM).
SMX_PK_NAME Name of the exchange.
Example

u32 count_msgs(XCB_PTR xchg)

{
MCB_PTR msg;
u32 ctr =0;

smx_TaskLock();
if (msg = (MCB_PTR)smx_MsgXchgPeek(xchg, SMX_PK_MSG))
{
for (; msg->cbtype != SMX_CB_MCB; msg = smx_MsgPeek(cb, SMX_PK_NEXT))
Ctr++;
}
smx_TaskUnlock();
return ctr;

}

This function returns the number of messages waiting at xchg. Note the combined use of
smx_MsgXchgPeek() and smx_MsgPeek(). It is necessary to lock the current task in order to
achieve accurate results.

79

smx_MsgXchg

80

smx_MsgXchgSet

bool smx_MsgXchgSet(XCB_PTR xchg, SMX_ST_PAR par, u32 v1, u32 v2)

Type SSR
Summary Provides message exchange control.
Compl smx_MsgXchgPeek()
Parameters xchg Exchange to set.
par Parameter to set.
vl Value 1.
v2 Value 2.
Returns true Parameter has been set.
false Parameter has not been set due to error.
Errors SMXE_INV_XCB Invalid exchange handle.
SMXE_PRIV_VIOL Privilege violation; cannot call from umode (SecureSMX).
Descr par is of type SMX_ST_PAR. Available parameters are:
SMX_ST_CBFUN Message send callback function = v1.

Loads the message send callback function into the exchange control block. Using this service
is recommended over directly setting internal exchange modes, which may result in incorrect
settings due to preemption of the current task. Direct exchange mode setting is not permitted
in umode under SecureSMX.

Example

smx_MsgXchg

MCB_PTR msg;
SCB_PTR sema;
TCB_PTR taska;
XCB_PTR xchga, xchgb, xchg;

smx_MsgXchgSet(xchga, SMX_ST_CBFUN, xchga_cbfun);
smx_MsgXchgSet(xchgb, SMX_ST_CBFUN, xchgb_cbfun);

void xchga_cbfun(XCB_PTR xchg)

{
xchg = xchga;
smx_SemSignal(sema);
}
void xchgb_cbfun(XCB_PTR xchg)
{
xchg = xchgb;
smx_SemsSignal(sema);
}
void taskaMain(u32 par)
{
u8* bp;
while (smx_SemTest(sema, 100)
{
msg = smx_MsgReceive(xchg, &bp, 100);
ProcessMsg(bp);
smx_MsgRel(msg);
}
}

This example shows how a single taska can wait for and process messages from two different
exchanges, at the same time. When either xchga or xchgb receives a message, its callback
function runs, which sets xchg to the appropriate xchg and signals sema, where taska waits.
taska receives and processes the waiting message, then releases it.

81

smx_Mutex

82

smx_Mutex

See the smx User’s Guide, Mutexes chapter for usage information and more examples.

smx_MutexClear

bool smx_MutexClear (MUCB_PTR mtx)

Type

Summary

Compl
Parameters

Returns

Errors

Descr

Note

Example

SSR

Frees mtx regardless of owner and nesting count and clears mtx task queue by resuming all
tasks in it, with false returns.

smx_MutexGet()

mtx Mutex to clear.
true Mutex cleared.
false Error.

SMXE_BROKEN_Q Task mutex-owned queue is broken.
SMXE_INV_MUCB Invalid mutex handle.

If the mutex is owned by a task, removes the mutex from the owner’s mutex-owned queue,
and adjusts the priority of the owner to that of the highest priority mutex that it still owns or
to normpri, if none. Requeues owner if it is in a queue and its priority has changed. Clears
mtx onr and ncnt fields. Resumes all tasks waiting at mtx with false returns.

Normally, a task should call smx_MutexRel()to release a mutex that it owns.
smx_MutexClear() is used when deleting a mutex and for recovery.

MUCB_PTR mtx;

void task_main(u32)

{
mtx = smx_MutexCreate(1, PRI_HI, "mtx");
/* use mtx */
smx_MutexDelete(&mtx);

}

smx_MutexDelete() calls smx_MutexClear().

smx_Mutex

smx_MutexCreate

MUCB_PTR smx_MutexCreate (u8 pi, u8 ceiling, const char* name=NULL , MUCB_PTR* muhp=NULL)
Types SSR

Summary Creates a mutex.
Compl smx_MutexDelete()

Parameters pi Enable priority inheritance if != 0.
ceiling Ceiling priority of mutex if 1= 0.
name Name to give mutex or NULL for none.
muhp Mutex handle pointer (see hp note in Notes and Restrictions).

Returns handle Mutex created.
NULL Insufficient resources or error.
Errors SMXE_OUT_OF _MUCBS
Descr Gets mutex control block from mutex control block pool and initializes it. If pi = 0, priority

inheritance is enabled. If ceiling, specifies the ceiling priority of the mutex. These are used to
avoid unbounded priority inversions of tasks. If ceiling >= SMX_PRI_NUM, sets ceiling =
SMX_PRI_NUM-1.

Example
MUCB_PTR mtx;

void task_main(u32)

{
mtx = smx_MutexCreate(1, PRI_HI, "mtx");
smx_MutexGet(mtx, TDFLT);
[* protected critical section */
smx_MutexRel(mtx);
}
This creates a mutex which has a ceiling at PRI_HI and priority promotion for tasks above that
priority.

smx_MutexDelete

bool smx_MutexDelete (MUCB_PTR* muhp)

Type SSR

Summary Deletes a mutex created by smx_MutexCreate().
Compl smx_MutexCreate()

Parameters muhp Mutex to delete.

83

smx_Mutex

84

Returns

Errors

Descr

Example

true Mutex deleted.
false Error.

SMXE_INV_MUCB Invalid mutex handle.

Clears the mtx task queue by resuming all tasks in it with false, removes the mutex from the
owner’s mutex-owned list, and adjusts the priority of the owner to that of the highest priority
mutex it still owns or to normpri, if none. Then clears the MUCB, releases it to the MUCB
pool, and sets *muhp = NULL so it cannot be used again.

MUCB_PTR mtx;

void task_main(u32)

{
mtx = smx_MutexCreate(1, 0, "mtx");
/* use mtx */
smx_MutexDelete(&mtx);

}

smx_MutexFree

bool smx_MutexFree (MUCB_PTR mtx)

Type
Summary
Compl
Parameters

Returns

Errors

Descr

SSR
Frees the mutex regardless of owner and nesting count.

smx_MutexGet()

mtx Mutex to free.
true Mutex freed.
false Error.

SMXE_BROKEN_Q Owner’s mutex owned queue is broken. Does not abort.
SMXE_INV_MUCB Invalid mutex handle.

Makes the next waiting task the new owner or frees the mutex if no other task is waiting.
Resumes the owner with false and adjusts its priority to its highest owned mutex priority or to
normal priority, if none. The owner is requeued, if its priority changes. Removes mtx from
previous owner’s mutex owned queue.

Differs from smx_MutexRel() in that smx_ct does not need to be the owner, and the nesting
count is ignored. Differs from smx_MutexClear() in that it does not clear the mtx task wait
queue.

Normally, smx_MutexRel() is what a task should call to release a mutex it owns.
smx_MutexFree() is called by smx_TaskDelete() if the task owns mtx. It also should be
called before stopping a task that owns mtx.

Example

smx_Mutex

void stop_task(TCB_PTR task)

{
MTX_PTR mtx;
while (mtx = smx_TaskPeek(task, SMX_PK_MTX))
{
smx_MutexFree(mtx);
}
smx_TaskStop(task);
}

This function frees all mutexes owned by task before stopping it. It can be called from any
task, since the task does not need to own the mutexes.

smx_MutexGet

bool smx_MutexGet (MUCB_PTR mtx, u32 timeout=0)

Types
Summary
Compl

Parameters

Returns

Errors

Descr

SSR
Gets mutex, if free and returns true. Otherwise, smx_ct is suspended in mutex’s wait queue.
smx_MutexRel(), smx_MutexFree(), smx_MutexClear()

mtx Mutex to get.
timeout Timeout in ticks or msec if [SMX_FL_MSEC.

true Got mtx.
false Did not get mtx due to error or timeout.

SMXE_INV_MUCB Invalid mutex handle.

If mtx is free, smx_ct gets it and becomes its owner. The onr field of the MUCB is set to the
task’s handle, and the mutex is added to the task’s mutex-owned list. If the mutex has a
ceiling priority that is higher than the task’s current priority, the task’s priority is promoted to
the ceiling priority. If the task already owns the mutex, the mutex’s nesting counter is
incremented and true is returned.

If another task already owns the mutex and timeout is non-zero, smx_ct is suspended and
priority enqueued in the mtx wait queue. If priority inheritance is enabled in mtx, the priority
of the owner, if less, is promoted to smx_ct->pri, and the owner is requeued. This enables the
owner to finish its operation without preemption by mid-priority tasks, which might cause
unbounded priority inversion.

If the owner is waiting for another mutex, which also has priority promotion enabled, and its
owner has lower priority than smx_ct->pri, then its owner’s priority is promoted. Priority
promotion can propagate through any number of such chained mutexes.

If called from an LSR, true is returned if the mutex is not owned by a task; otherwise false is
returned. Since an LSR has higher priority than any task, it is allowed to borrow a free mutex.
This is necessary to allow LSRs to do heap operations and for other purposes. It is safe, since
the LSR will finish before any task can run, and also LSRs cannot preempt each other. If false

85

smx_Mutex

86

Notes

Example

is returned, the mutex is owned by a task, and the LSR must not execute code protected by
the mutex.

1. Clears smx_lockctr if called from a task and timeout > 0.

MUCB_PTR mtx;

void taskMain(u32)
{

smx_MutexGet(mtx, tmo);
/* perform critical section */
smx_MutexRel(mtx);

}

This example shows protecting a critical section of code by getting a mutex, then releasing it.

smx_MutexGetFast

bool smx_MutexGetFast (MUCB_PTR mtx, u32 timeout=0)

Types
Summary
Compl

Parameters

Returns

Errors

Descr

Example

Internal function
Gets mutex, if free, and returns true. Otherwise smx_ct is suspended in mutex’s wait queue.

smx_MutexRelFast()

mtx Mutex to get.

timeout Timeout in ticks or msec if |[SMX_FL_MSEC.
true Got mutex.

false Timeout.

none

Operation is the same as smx_MutexGet() except that ceiling priority is not implemented and
no error checking is performed. This function is intended for use by heaps and in similar
situations where speed is important and errors are unlikely. Also, the mutex is not included in
the current task’s mutex owned list, and it is assumed that the mutex owner is not in any other
gueues. It is not an SSR but it is task safe and can be used outside of SSRs. Only
smx_MutexRelFast() can be used to release mtx.

See smx_MutexGet() example.

smx_MutexGetStop

void smx_MutexGetStop (MUCB_PTR mtx, u32 timeout=0)

Type

Summary

Limited SSR — tasks only

Same as smx_MutexGet() except that ct is always stopped, then restarted when it is time for it
to run.

Compl

Parameters

Errors

Descr

Notes

TaskMain

par

Example

smx_Mutex

smx_MutexRel(), smx_MutexFree(), smx_MutexClear()

mtx Mutex to get.
timeout Timeout in ticks or msec if [SMX_FL_MSEC.

SMXE_INV_MUCB Invalid mutex handle.
SMXE_OP_NOT_ALLOWED Called from an LSR.

See smx_MutexGet() for operational description. smx_ct always stops instead of suspending,
then restarts instead of resuming. Pass or fail is returned via the parameter in taskMain(par),
when the former ct restarts.

1. If called from an LSR, returns to LSR and reports SMXE_OP_NOT_ALLOWED.
2. Clears smx_locketr if called from a task, since it always stops.

void task_main(bool par)

true Got mutex.
false Error or timeout.

MUCB_PTR mtx;

u32 pass =-1;
void taskA_Main(u32 pass)
{
switch(pass)
{
case -1:
/* initialize taskA */
case 0O:
/* timeout or error */
case 1:
/* do critical section */
smx_MutexRel(mtx);
}
smx_MutexGetStop(mtx, 100);
}

The above example shows protecting a critical section with a mutex for a one-shot task.
When first started, since par = -1, taskA_Main does initialization, then attempts to get mtx
and stops. When it gets mtx, it restarts, and since par == 1, it does the critical section. It then
releases mtx, so another task can run and attempts to get mtx again and stops. taskA waits up
to 100 ticks. If it fails to get mtx, since par == 0, it does not enter the critical section, but
rather recovers from the timeout or error and tries again.

87

smx_Mutex

88

smx_MutexPeek

u32 smx_MutexPeek (MUCB_PTR mtx, SMX_PK_PAR par)

Type SSR
Summary Returns the current value of the parameter specified.
Compl smx_MutexSet()
Parameters mtx Mutex to peek.
par What to return.
Returns value Value of par.
0 Value, unless error.
Errors SMXE_INV_MUCB Invalid mutex handle.
SMXE_INV_PAR Argument not recognized.
Descr This service can be used to peek at a mutex. Valid arguments are:
SMX_PK_FIRST First task waiting on this mutex.
SMX_PK_LAST Last task waiting on this mutex.
SMX_PK_PI Priority inheritance enabled.
SMX_PK_CEIL Ceiling priority.
SMX_PK_NAME Name.
SMX_PK_ONR Owner.
SMX_PK_MOLP Next mutex in mutex owned list.
SMX_PK_NCNT Nest counter.
Example

MUCB_PTR mtx;
TCB_PTR top_task;

top_task = (TCB_PTR)smx_MutexPeek(mtx, SMX_PK_FIRST);

smx_MutexRel

bool smx_MutexRel (MUCB_PTR mtx)

Type SSR
Summary Releases mtx if owned by smx_ct and its nesting count == 1; if > 1 decrements count.
Compl smx_MutexGet(), smx_MutexGetStop()
Parameters mtx Mutex to release.
Returns true Mutex released.
false Error.
Errors SMXE_INV_MUCB

SMXE_MTX_ALRDY_FREE

Descr

Example

smx_Mutex

SMXE_MTX_NON_ONR_REL smx_ct does not own mtx.
SMXE_BROKEN_Q smx_ct mutex-owned queue is broken.

Decrements mtx nesting count and if not zero, returns with true. If nesting count is zero,
removes mtx from the smx_ct mutex-owned list. If smx_ct does not own any other mutexes,
its priority is restored to its normal priority, prinorm. Otherwise, smx_ct->pri is set to the
highest ceiling priority or the highest waiting task priority for other mutexes owned by
smx_ct that have a ceiling priority or priority inheritance enabled, respectively. If smx_ct’s
priority changes, it is requeued in smx_rq and preemption test is enabled.

If one or more tasks are waiting in the mtx wait list, the top task is made the new mtx owner,
mtx is put into its mutex-owned list, and the new owner priority is increased to the mutex
ceiling priority if greater. If the new owner is waiting for another mutex any priority change
will be propagated to that mutex owner.

This is the service that normally should be called to release a mutex obtained with
smx_MutexGet(). See also smx_MutexClear() and smx_MutexFree().

If called from an LSR, aborts and returns true. See LSR discussion in smx_MutexGet().

See the smx_MutexGet() example.

smx_MutexRelFast

void smx_MutexRelFast (MUCB_PTR mtx)

Type
Summary
Compl
Parameters
Returns
Errors

Descr

Example

Internal Function

Releases mtx obtained by smx_MutexGetFast() and owned by smx_ct.
smx_MutexGet(), smx_MutexGetStop()

mtx Mutex to release.

None

None

Operation is the same as smx_MutexRel() except that ceiling priority is not implemented, and
no error checking is performed. This function is intended for use by mutexes and similar
situations where speed is important and errors are unlikely. It is not an SSR but it is task safe
and can be used outside of SSRs. Only smx_MutexGetFast() can be used to get mtx.

See the smx_MutexGet() example.

89

smx_Mutex

90

smx_MutexSet

bool smx_MutexSet (MUCB_PTR mtx, SMX_ST_PAR par, u32 v1, u32 v2)
Type SSR

Summary Provides mutex control.

Compl smx_MutexPeek()
Parameters mtx Mutex to set.
par Parameter to set.
vl Value 1.
V2 Value 2.
Returns true Parameter has been set.
false Parameter has not been set due to error.
Errors SMXE_INV_PAR par not recognized.

SMXE_INV_MUCB Invalid mutex handle.
SMXE_PRIV_VIOL Privilege violation; cannot call from umode (SecureSMX).

Descr par is of type SMX_ST_PAR. Available parameters are:

None Pararameters can be added if desired.

smx_Pipe

smx_Pipe

See the smx User’s Guide, Pipes chapter for usage information and more examples. Pipes serve both for
message queues and for 10. Services for the former are SSRs; services for the latter are interrupt-safe

functions.

smx_PipeClear

bool

Type
Summary
Parameters

Returns

Errors

Descr

Example

smx_PipeClear (PICB_PTR pipe)
SSR
Clears pipe and resumes all tasks waiting to put packets.

pipe Pipe handle.

true Pipe Cleared.
false Error.
SMXE_INV_PICB Invalid pipe handle

Resumes all tasks waiting on the pipe with false and clears pipe_put and pipe_front flags in
TCBs. Sets pipe read and write pointers to the start of the pipe buffer, thus clearing the pipe.
Also clears full flag in PICB. Intended for use from tasks or LSRs. Is protected from
interrupts.

bool restart_pipe_operation(PICB_PTR pipe)
{

return(smx_PipeClear(pipe));

}

smx_PipeCreate

PICB_PTR

Type
Summary
Compl

Parameters

smx_PipeCreate (void* ppb, u8 width, ul6 length, const char* name=NULL , PICB_PTR*
php=NULL)

SSR
Creates a pipe.
smx_PipeDelete()

ppb Pointer to pipe buffer.

width Width of pipe in bytes. Can be 1 to 255. Pipe cell size = pipe width.
length Length of the pipe in cells; can be up to 64K — 1.

name Name to give pipe; NULL, if none.

php Pipe handle pointer (see hp note in Notes and Restrictions).

91

smx_Pipe

92

Returns

Errors

Descr

Notes

Example

handle Pipe created.
NULL Pipe not created due to error.

SMXE_INV_PAR ppb == NULL, width == 0, or length ==
SMXE_OUT_OF_PICBS

Gets a PICB and initializes it. Accepts the block pointed to by ppb as the pipe buffer. Loads
pipe name, if any, into PICB. Returns address of PICB as the pipe handle and also loads into
&php. The cell size determines the maximum packet size that the pipe will accept.

1. The pipe buffer must be >= width * length bytes. If it is larger there is no problem, but if it
is smaller, then pipe data will overwrite whatever is after the pipe. To be safe, the user should
allocate space for (width * length).

2. For best performance, pipe buffer should be aligned on a 32-bit or cache-line boundary and
located in SRAM.

#define PW 8
#define PL 10

u8 pbuf[PW*PL];
PICB_PTR pkt_pipe;

void pipe_init(void)
{

pkt_pipe = smx_PipeCreate(pbuf, PW, PL, "pkt_pipe");
}

This example creates an 8-byte-wide packet pipe. An array is defined for the pipe buffer.
Buffers can be statically defined, as shown, or obtained from a block pool or a heap. It is
recommended to use constants for width and length. If, for example, PL were changed to 20,
the pipe buffer would automatically be re-sized.

smx_PipeDelete

void* smx_PipeDelete (PICB_PTR* php)

Type
Summary
Compl
Parameters

Returns

Errors

Descr

SSR

Deletes a pipe.
smx_PipeCreate()

php Pipe handle pointer.

pbuf Pipe buffer address.
0 Pipe not deleted due to error.

SMXE_INV_PICB Invalid pipe handle.

Deletes a pipe by resuming all waiting tasks with false return values, releasing its PICB back
to the PICB pool, and setting *php = NULL so it cannot be used again. Returns address of
pipe buffer so the user can re-use it or release it back to its block pool or heap.

smx_Pipe

Example

#define PW 8
#define PL 10

PICB_PTR open_pipe(const char *name)

{
void *ppb;
ppb = smx_HeapMalloc(PW*PL);
return(smx_PipeCreate(ppb, PW, PL, name));
}
bool close_pipe(PICB_PTR pipe)
{
void *ppb;
ppb = smx_PipeDelete(&pipe);
return(smx_HeapFree(ppb));
}

The open_pipe function shows allocating a pipe buffer from the heap using predefined width
and length constants, then creating the pipe and returning its handle. The close_pipe function
shows the inverse action of deleting the pipe, then using the pipe buffer address to free the
buffer back to the heap. Note, in close_pipe(), that if pipe delete failed, ppb would be 0, heap
free would fail, and close pipe would return false.

smx_PipeGet8

bool smx_PipeGet8 (PICB_PTR pipe, u8* bp)
Type Bare function

Summary Gets the next byte from pipe and loads it into the byte pointed to by bp. For ISR and LSR
usage. Does not wake up a waiting task.

Compl smx_PipePut functions and SSRs.
Parameters pipe Pipe handle. Assumed to be valid.
bp Buffer pointer to load byte.
Returns true Byte transferred.
false Byte not transferred or pipe empty.
Errors None
Descr Gets the oldest byte in pipe, advances the pipe’s read pointer to the next cell, and returns true.

This is the fast version of smx_PipeGet() for byte gets; it may be used in time-critical sections
of user code such as in ISRs and LSRs. If this function is used in a task, it must be protected
from preemption, since it is not an SSR. This function will not interfere with an interrupted
complementary function that is operating on the same pipe.

93

smx_Pipe

94

Notes

Example

1. Use only with complementary functions at the other end of the pipe.
2. Will not resume a task waiting on pipe to put a byte. Use smx_PipeResume(pipe) for that.
3. Two ISRs should not get from the same pipe.

PICB_PTR out_pipe;

void out_chars(u8* out_port)

{
u8 ch;
while (smx_PipeGet8(out_pipe, &ch))
{
out_port = ch;
}
}

In this example, all of the characters in out_pipe are sent to out_port each time the out_chars
function is called. The function stops running when the pipe has been emptied.

smx_PipeGet8M

u32 smx_PipeGet8M (PICB_PTR pipe, u8* bp, u32 lim)

Type
Summary

Compl

Parameters

Returns
Errors

Descr

Notes

Bare function

Gets the next bytes from pipe up to lim or until pipe is empty and loads them into the buffer
at bp. For ISR and LSR usage. Does not wake up a waiting task.

smx_PipePut functions and SSRs.

pipe Pipe handle. Assumed to be valid.
bp Buffer pointer to load bytes.
lim Limit on bytes transferred.

Number of bytes transferred.
None

Transfers the oldest bytes in pipe to the buffer at bp, up to the limit specified or until pipe is
empty, advances the pipe’s read pointer and bp for each byte transferred, and returns the
number of bytes actually transferred. This is faster than smx_PipeGet8() for multi-byte
transfers, such as may occur with UARTS and other high-speed serial controllers that have
internal buffers. It may be used in time-critical sections of user code such as in ISRs and
LSRs. If this function is used in tasks, it must be protected from preemption, since it is not an
SSR. This function will not interfere with an interrupted complementary function that is
operating on the same pipe.

1. Use only with complementary functions at the other end of the pipe.
2. Will not resume a task waiting on pipe to put a byte. Use smx_PipeResume(pipe) for that.
3. Two ISRs should not get from the same pipe.

Example

smx_Pipe

PICB_PTR out_pipe;
u8 bp[10];
u32 numx;

numx = smx_PipeGet8M(out_pipe, bp, 10);

In this example, up to 10 bytes in out_pipe are transferred to bp[]. The limit prevents
overflowing bp[]. numx is the actual number of bytes transferred.

smx_PipeGetPkt

bool smx_PipeGetPkt (PICB_PTR pipe, void* pdst)

Type
Summary

Compl

Parameters

Returns

Errors

Descr

Notes

Bare function

Gets the next packet from pipe and loads it into the buffer at pdst. For ISR, LSR, and task
usage.

smx_PipePutPkt().
pipe Pipe handle.

pdst Destination pointer to store packet.
true Packet transferred.

false Packet not transferred.

None

If pipe is not empty, smx_PipeGetPkt() copies the oldest packet from it to the buffer at pdst,
advances the pipe’s read pointer to the next cell, and returns true. Returns false if pipe is
empty or for invalid parameter. Provides fast packet transfers. Intended primarily for use in
ISRs and LSRs and is interrupt-safe. When used in tasks, it must be protected from
preemption, since it is not an SSR.

1. Use only with complementary functions at the other end of the pipe.

2. Will not resume a task waiting on pipe to put a packet.

3. Two ISRs should not get from the same pipe.

4. A packet pipe (i.e. width > 1) is empty unless a full packet is present.

95

smx_Pipe

96

Example
PICB_PTR pkt_pipe;
TCB_PTR out_pkt;

ppb = smx_HeapMalloc(8*10);
pkt_pipe = smx_PipeCreate (ppb, 8, 10, “pkt_pipe”)

void out_pkt_main(u8* out_port)

{
u8 mb8];
u32 i
while (smx_PipeGetPkt(pkt_pipe, &mb))
{
for 1=0;1<8;i++)
{
*out_port = mbli];
}
}
}

In this example, the oldest 8-byte packet is taken from the 8-byte-wide pkt_pipe. The packet
is sent to out_port, byte by byte. This process continues until pkt_pipe is empty. Then out_pkt
task autostops.

smx_PipeGetPktWait

bool smx_PipeGetPktWait (PICB_PTR pipe, void* pdst, u32 timeout=0)

Type SSR
Summary Gets the next packet from pipe and loads it into the buffer at pdst. Waits if pipe is empty.
Compl smx_PipePut functions and SSRs.
Parameters pipe Pipe handle.
pdst Destination pointer to store packet.

timeout Timeout in ticks or msec if [SMX_FL_MSEC.

Returns true Packet transferred.
false Packet not transferred.

Errors SMXE_OP_NOT_ALLOWED Called from an LSR with timeout > 0.
SMXE_INV_PAR pdst is NULL
SMXE_INV_PICB Invalid pipe handle

Descr If pipe is not empty, transfers the oldest packet in pipe to the buffer at pdst and advances the

pipe’s read pointer to the next cell in the pipe. If another task was waiting to put a packet,
puts its packet into pipe and resumes it with true. If pipe is empty and timeout > 0, smx_ct is
suspended until either it gets a packet or a timeout occurs. Can be used from a task or an
LSR; from an LSR, timeout must be 0.

Notes

Example

If flags.pipe_front is set for the waiting task, its packet is passed directly to smx_ct, then the

waiting task is resumed with true.

. Use only with complementary functions at the other end of the pipe.
. May be mixed with smx_PipeGetPktWaitStop() at the same end of the pipe.

. Multiple waiting tasks are enqueued in priority order.

. A packet pipe (i.e. width > 1) is considered empty unless a full packet is present.
. Clears smx_lockctr if called from a task and timeout = SMX_TMO_NOWAIT.

PICB_PTR ctrl_pipe;
PICB_PTR data_pipe;
PICB_PTR in_pipe;

TCB_PTR inpipe_load;
TCB_PTR pipe_fwd;

u32 ctrl_pipe_ctr;
u32 data_pipe_ctr;

typedef struct

{
u8 dest;
u8 data[3];

} PIPE_MSG;

void pipe_init(void)

{
void* pbp;
pbp = smx_HeapMalloc(4*10);
ctrl_pipe = smx_PipeCreate(pbp, 4, 10, "ctrl_pipe");
smx_PipeSet(ctrl_pipe, SMX_ST_CBFUN, (u32)pipe_cbf);
pbp = smx_HeapMalloc(4*10);
data_pipe = smx_PipeCreate(pbp, 4, 10, "data_pipe");
smx_PipeSet(data_pipe, SMX_ST_CBFUN, (u32)pipe_cbf);
pbp = smx_HeapMalloc(4*10);
in_pipe = smx_PipeCreate(pbp, 4, 10, "in_pipe");

}

void inpipe_load_main(void)

{
PIPE_MSG msg_ctrl ={1, 2, 3, 4};
PIPE_MSG msg_data ={0, 5, 6, 7}
smx_PipePutPktWait(in_pipe, &msg_ctrl);
smx_PipePutPktWait(in_pipe, &msg_data);

}

smx_Pipe

97

smx_Pipe

98

void pipe_fwd_main(void)

{
PIPE_MSG msg_out;
while (smx_PipeGetPktWait(in_pipe, &msg_out))
{
if (msg_out.dest == 1)
{
smx_PipePutPktWait(ctrl_pipe, &msg_out);
}
else
{
smx_PipePutPktWait(data_pipe, &msg_out);
}
}
}
void pipe_cbf(PICB_PTR pipe)
{
if (pipe == ctrl_pipe)
ctrl_pipe_ctr++;
else if (pipe == data_pipe)
data_pipe_ctr++;
}

pipe_init() creates ctrl_pipe and data_pipe, both with the pipe_cbf callback function. Then it
creates in_pipe without a callback function. The inpipe_load task loads two canned messages
into in_pipe. The pipe_fwd task gets the messages and distributes them to the ctrl_pipe and to
the data_pipe based upon their dest fields. pipe_cbf is called each time, and it updates the
appropriate counter.

smx_PipeGetPktWaitStop

void smx_PipeGetPktWaitStop (PICB_PTR pipe, void* pdst, u32 timeout=0)

Type
Summary
Compl

Parameters

Errors

Limited SSR — task only
Same as smx_PipeGetPktWait() except that the current task is always stopped.
smx_PipePut functions and SSRs.

pipe Pipe handle.
pdst Destination pointer to store packet.
timeout Timeout in ticks or msec if |[SMX_FL_MSEC.

SMXE_OP_NOT_ALLOWED Called from an LSR.
SMXE_INV_PAR pdst is NULL
SMXE_INV_PICB Invalid pipe handle

Descr

TaskMain

par

Notes

Example

smx_Pipe

See smx_PipeGetPktWait() for operational description. The current task is always stopped
instead of suspended, then restarted instead of resumed when it is time to run. Pass or fail is
returned via the parameter in taskMain(par), when task restarts.

void task_main(bool par)

true
false

o ok~ wdh e

Packet transferred
Packet not transferred

Use only with complementary functions at the other end of the pipe.

May be mixed with smx_PipeGetPktWait()’s at the same end of the pipe.
Multiple waiting tasks are enqueued in priority order.

A packet pipe (i.e. width > 1) is considered empty unless a full packet is present.
If called from an LSR, aborts operation and returns to LSR.

Clears smx_lockctr if called from a task, since it always stops.

LCB_PTR key LSR;
PICB_PTR key_pipe;
TCB_PTR key task;
u8 key_ buf[4];

void key_task_init(u32)

{
void* pbp;
pbp = smx_HeapMalloc(4*10);
key pipe = smx_PipeCreate(pbp, 4, 10, "key_pipe");
smx_TaskSet(key task, SMX_ST_FUN, key_task _main);
smx_PipeGetPktWaitStop(key_pipe, key buf, 100); /* wait for first packet */
}
void key_task_main(u32)
{
ProcessPkt(key_buf);
smx_PipeGetPktWaitStop(key_pipe, key_buf, 100); /* wait for next packet */
}
void key LSR_main(u32)
{
smx_PipeResume(key_pipe); /* start key task */
}

99

smx_Pipe

100

void key_ISR(void)
{

u8 ch;

static cc = 0;

ch = input_key(key_port);

smx_PipePut8(key_pipe, ch);

if (++cc ==4)

{
smx_LSR_INVOKE(key_LSR, 0) /* packet received, invoke LSR */
cc=0;

}

key task is a one shot task started with key_task_init() as its main function. key_task_init()
creates key_pipe, changes the key_task main function to key_task_main and calls
smx_PipeGetPktWaitStop(). key_pipe is a 4-byte wide pipe. key_ISR() accepts one byte at a
time from key_port and loads the byte into key pipe. When 4 bytes have been loaded, the
packet is complete and key LSR is invoked. It calls smx_PipeResume() to restart key_task,
with the received packet in key_buf].

Note that it is possible that several key interrupts could occur before key_task is able to run. It
does no harm to call smx_PipeResume() if key_task has already been resumed and is waiting
in the ready queue. As a result there could be several packets waiting in key_pipe when
key_task does start running. This is ok because the get operation will immediately restart
key_task for each key that it finds in key_pipe. key_task does not actually stop, it just keeps
restarting, which takes no more time than resuming.

smx_PipePeek

u32 smx_PipePeek (PICB_PTR pipe, SMX_PK_PAR par)

Type
Summary
Compl

Parameters

Returns

Errors

SSR
Returns the current value of the parameter specified.
smx_PipeSet()

pipe Pipe handle.
par What to return.

value Value of argument.
0 Value, unless error.

SMXE_INV_PICB Invalid pipe handle.

smx_Pipe

Descr This service can be used to peek at a pipe. Valid arguments are:
SMX_ PK_FULL Pipe is full.
SMX_PK_WIDTH Pipe width.

SMX_PK_LENGTH Pipe length (number of cells).
SMX_PK_NUMPKTS Number of packets in pipe.
SMX_PK_NUMTASKS Number of tasks waiting on pipe.

Example 1
TCB_PTR pipe_input_task;

void regulate_pipe(PICB_PTR pipe)
{
if (smx_PipePeek(pipe, SMX_PK_NUMPKTS) > 3)
pipe_input_task->pri++; /* increase task priority */
if (smx_PipePeek(pipe, SMX_PK_NUMPKTS) < 2)
pipe_input_task->pri--; /* decrease task priority */

}

In this example, the number of packets in pipe is compared to 3 to increase the priority of
pipe_input_task or compared to 2 to decrease it.

Example 2
void send_msg(const char*);

void increase_msgs(PICB_PTR pipe)
{
if ((smx_PipePeek(pipe, SMX_PK_NUMTASKS) > 1) && (pipe->fl->flags.pipe_put == 0))
send_msg("Increase message input rate");

}

In this example, if more than one task is waiting for packets and they are not waiting to put
packets, a message is sent to the operator to increase the message input rate.

smx_PipePut8

bool smx_PipePut8 (PICB_PTR pipe, u8 byte)

Type Bare function

Summary Puts byte into pipe. For ISR and LSR usage.
Compl smx_PipeGet functions and SSRs.

Parameters pipe Pipe handle. Assumed to be valid.
byte Byte to put into pipe.

Returns true Byte put into pipe.
false Byte not put into pipe.

Errors None

101

smx_Pipe

102

Descr

Notes

Example

If pipe is not full, puts byte into pipe, and advances the pipe’s write pointer to the next cell,
cyclically. It may be used in time-critical sections of user code such as ISRs and LSRs. If
used in a task, it must be protected from preemption, since it is not an SSR. This function will
not interfere with an interrupted complementary function that is operating on the same pipe.

1. Use only with complementary functions at the other end of the pipe.
2. Will not resume a task waiting on pipe to get a byte.
3. Two ISRs should not put to the same pipe.

PICB_PTR key pipe; /* byte wide pipe */
u8 input_key(u8 key_port);

void key_ISR(void)

{
u8 ch;
ch =input_key(key port);
smx_PipePut8(key pipe, ch);
smx_LSR_INVOKE(key_LSR, 0) /* start task via LSR */
}

In this example, key_ISR runs due to an interrupt when a key is available for input. It gets the
key from key_port and puts it into key_pipe. It then invokes key LSR to start the task waiting
on key_pipe to process the key.

smx_PipePut8M

u32 smx_PipePut8M (PICB_PTR pipe, u8* bp, u32 lim)

Type

Summary

Compl

Parameters

Returns
Errors

Descr

Bare function

Puts multiple bytes from buffer at bp into pipe up to lim or until pipe is full. For ISR and LSR
use.

smx_PipeGet functions and SSRs.

pipe Pipe handle. Assumed to be valid.
bp Buffer pointer to get bytes.
lim Limit on bytes transferred.

Number of bytes transferred.
None

Transfers bytes from the buffer at bp to pipe, up to the limit specified or until pipe is full.
Advances the pipe’s write pointer and bp for each byte transferred and returns the number of
bytes actually transferred. This is faster than smx_PipePut8() for multi-byte transfers. It may
be used in time-critical sections of user code such as ISRs and LSRs. If this function is used
in tasks, it must be protected from preemption, since it is not an SSR. smx_PipePut8M(), in
an ISR, will not interfere with an interrupted complementary function in a task or LSR that is
operating on the same pipe.

Notes

Example

smx_Pipe

1. Use only with complementary functions at the other end of the pipe.
2. Will not resume a task waiting on pipe to get a byte.
3. Two ISRs should not put to the same pipe.

PICB_PTR out_pipe;
u8 out_buf[NUM];
u32 numx;

numx = smx_PipePut8M(out_pipe, out_buf, NUM);

In this example, up to NUM bytes are transferred from out_buf] to out_pipe. The limit
prevents exceeding out_buf[] size. numx is the actual number of bytes transferred.

smx_PipePutPkt

bool smx_PipePutPkt (PICB_PTR pipe, void* psrc)

Type
Summary
Compl

Parameters

Returns

Errors

Descr

Notes

Example

Bare function
Puts the packet from the buffer at psrc into pipe.
smx_PipeGetPkt().

pipe Pipe handle.
psrc Pointer to source of packet.

true Packet transferred.
false Packet not transferred.

None

If the pipe is not full, smx_PipePutPkt() copies the packet in the buffer at psrc into it,
advances the pipe’s write pointer to the next cell, and returns true. If pipe is full does not wait
and returns NULL. Provides fast packet transfers. Intended primarily for use in ISRs and
LSRs and is interrupt safe. When used in tasks, it must be protected from preemption, since it
is not an SSR.

1. Use only with complementary functions at the other end of the pipe.
2. Will not resume a task waiting on pipe to get a packet.
3. Two ISRs should not put to the same pipe.

u8 in_port;
PICB_PTR msg_pipe; /* width =10 */
u8 mb[10];

void input(u8 ch, u8 port);

103

smx_Pipe

104

void in_pkt_ISR(void)

{
u32 i
smx_ISR_ENTER();
for(i=0; i< 10; i++)
input(mbli], in_port);
smx_PipePutPkt(msg_pipe, &mb);
smx_ISR_EXIT();
}

In this example, a 10-byte packet is being received through the serial in_port, for each
interrupt. Each assembled packet is then being put into the msg_pipe, which is 10 bytes wide.
These packets are probably formatted messages, having a defined structure. Hence, it makes
sense for the task unloading msg_pipe to deal with a packet stream, instead of a byte stream.

smx_PipePutPktWait

bool smx_PipePutPktWait (PICB_PTR pipe, void* psrc, u32 timeout=0,

Type
Summary
Compl

Parameters

Returns

Errors

Descr

SMX_PIPE_MODE mode=SMX_PUT_TO_BACK)
SSR

Puts the packet from the buffer at psrc into pipe. Waits if pipe is full..
smx_PipeGetPkt functions and SSRs.

pipe Pipe handle.

psrc Pointer to source of packet.

timeout Timeout in ticks or msec if [SMX_FL_MSEC.

mode SMX_PUT_TO_BACK or SMX_PUT_TO_FRONT.

true Packet transferred.

false Packet not transferred.

SMXE_INV_PAR psrc is NULL.
SMXE_INV_PICB Invalid pipe handle.

SMXE_WAIT_NOT_ALLOWED Called from an LSR with timeout > 0.

For mode == 0: If the pipe is empty and another task is waiting to get a packet, gives the
packet at psrc to the waiting task, resumes it with true, and returns true. Else, if the pipe is not
full, copies the packet at psrc into pipe at pipe’s write pointer, advances write pointer to the
next cell, cyclically, and returns true. If the pipe is full and timeout > 0, sets smx_ct->
flags.pipe_put = 1 and smx_ct-> flags.pipe_front = 0, and suspends the smx_ct on pipe. If no
timeout returns false.

For mode == 1: If the pipe is empty and another task is waiting to get a packet, gives the
packet at psrc to the waiting task, resumes it with true, and returns true. Else, if another task is
not waiting and the pipe is not full, moves pipe’s read pointer back one cell, cyclically, copies
the packet at psrc into pipe at the read pointer, and returns true. If the pipe is full and timeout

Notes

Example

smx_Pipe

> 0, sets smx_ct-> flags.pipe_put = 1 and smx_ct-> flags.pipe_front = 1, and suspends the
smx_ct on pipe. If no timeout returns false.

If pipe->cbfun is not NULL, the callback function cbfun(PICB_PTR pipe) is called. See also
smx_PipeSet().

1. Use only with complementary functions at the other end of the pipe.

2. May be mixed with smx_PipePutPktWaitStop()’s at the same end of the pipe.

3. Multiple waiting tasks are enqueued in priority order.

4. Clears smx_locketr if called from a task and timeout is not 0.

See smx_PipeGetPktWait() example. As shown in the example, because pipe_cbf() accepts a

pipe handle as a parameter, it can be shared between pipes in a system to record how many
times each pipe msg is put.

smx_PipePutPktWaitStop

void smx_PipePutPktWaitStop (PICB_PTR pipe, void* psrc, u32 timeout=0,

Type
Summary
Compl

Parameters

Errors

Descr

TaskMain

par

Notes

SMX_PIPE_MODE mode=SMX_PUT_TO_BACK)
Limited SSR — tasks only

Same as smx_PipePutPktWait() except that ct is always stopped.
smx_PipeGetPkt functions and SSRs.

pipe Pipe handle.

psrc Pointer to source of packet.

timeout Timeout in ticks or msec if |[SMX_FL_MSEC.

mode SMX_PUT_TO_BACK or SMX_PUT_TO_FRONT.

SMXE_INV_PAR psrc is NULL.
SMXE_INV_PICB Invalid pipe handle.
SMXE_OP_NOT_ALLOWED Called from an LSR.

See smx_PipePutPktWait() for operational description. The current task always stops, instead
of suspending, then restarts instead of resuming. Pass or fail is returned via the parameter in
taskMain(par), when task restarts. If pipe->cbfun is not NULL, the callback function
cbfun(PICB_PTR pipe) is called. See also smx_PipeSet().

void task_main(bool par)

true Packet transferred.
false Packet not transferred.

1. Use only with complementary functions at the other end of the pipe.
May be mixed with smx_PipePutPktWait()’s at the same end of the pipe.
Multiple waiting tasks are enqueued in priority order.

If called from an LSR, aborts operation and returns to LSR.

Clears smx_lockctr if called from a task, since it always stops.

S

105

smx_Pipe

106

Example

PICB_PTR crt_pipe;
TCB_PTR crt_task;
u8 crt_bufl[8];
u8 crt_buf2[8];
u8 pkt_ctr = 0;

void sys_init(void)

{
crt_task = smx_TaskCreate(crt_task_init, TP2, 0, 0, "crt_task™);
smx_TaskStart(crt_task);
}
void crt_task_init(u32)
{
void* pbp;
pbp = smx_HeapMalloc(8*4);
crt_pipe = smx_PipeCreate(pbp, 8, 4, "crt_pipe");
smx_PipeSet(crt_pipe, SMX_ST_CBFUN, (u32)pipe_ctrl);
smx_TaskStartNew (crt_task, true, SMX_PRI_NOCHG, crt_task_main);
}
void crt_task_main(u32)
{
ug8* mp;
mp = (mp == crt_bufl ? crt_buf2 : crt_bufl);
smx_PipePutPktWaitStop(crt_pipe, &mp, 100);
}
void pipe_ctrl(u32 pipe)
{
if (pipe == (u32)crt_pipe)
{
pkt_ctr++;
}
}

In this example, sys_init() creates the one-shot crt_task with main function crt_task_init() and
starts it. crt_task_init() creates crt_pipe and sets its callback function to pipe_ctrl(). crt_task
then restarts itself with crt_task_main(). crt_task toggles between crt_bufl and crt_buf2
putting an 8-byte packet from each into crt_pipe. On each put, pipe_ctrl() is called, which
increments pkt_ctr.

smx_Pipe

smx_PipeResume

bool smx_PipeResume (PICB_PTR pipe)

Type
Summary
Parameters

Returns

Errors

Descr

Note
Example

SSR
Resumes first task waiting on pipe, if wait condition true.

pipe Pipe handle.

true Operation performed.
false Operation not performed.
SMXE_INV_PICB Invalid pipe handle.

For the first waiting task, completes its put or get operation, if possible, and resumes the
waiting task with true. If put or get operation cannot be completed leaves task in the pipe wait
queue and returns false. Does not do put-to-front operation. If there is no task waiting, then
smx_PipeResume() does nothing and returns false.

An ISR can invoke an LSR to call this function in order to wake up a task waiting on pipe to
put or get packets. This enables 10 pipe functions at the ISR end of a pipe and pkt operations
at the task end of a pipe.

1. A packet pipe (i.e. width > 1) is considered empty unless a full packet is present.

LCB_PTR key LSR /*key LSR*

PICB_PTR key pipe /* pipe: width = 20, length =4 */
TCB_PTR key_task [* key processing task */

u32 key port; [* serial 10 port for key inputs */
ug8 cc=0; /* input character counter */

u8 pkt[20]; /* received packet */

void key ISR(void)
{
u8 ch = input_key(key_port);
smx_PipePut8(key pipe, ch);
if (cc++ == 20)
{
smx_LSR_INVOKE(key LSR, 0);
cc=0

}

void key_LSR_main(void)
{

smx_PipeResume(key_pipe);

}

107

smx_Pipe

108

void key_task_main(u32)

{
while (smx_PipeGetPktWait(key pipe, &pkt, 100)
{
ProcessPkt(pkt);
}
}

In this example, key task waits on key_pipe for 20-byte packets to process. The packets come
in via the serial port, key_port. Each byte received by key_port causes an interrupt serviced
by key ISR. key ISR loads each byte into the current write packet of key _pipe and counts
characters as received in cc. When the cc reaches 20, a full packet has been received, and
key_LSR is invoked. It resumes key_task, if it is waiting on key_pipe. Should key_task be
busy processing the previous packet, nothing happens. When key _task finishes processing the
last packet and returns to key_pipe, it will find the next packet or packets waiting for it and
process them.

smx_PipeSet

bool smx_PipeSet(PICB_PTR pipe, SMX_ST_PAR par, u32 v1, u32 v2)

Type
Summary
Compl

Parameters

Returns

Errors

Descr

SSR
Provides pipe control.

smx_PipePeek()

sem Pipe to set.

par Parameter to set.

vl Value 1.

v2 Value 2.

true Parameter has been set.

false Parameter has not been set due to error.

SMXE_INV_PICB Invalid pipe handle.
SMXE_INV_PAR par not recognized.
SMXE_PRIV_VIOL Privilege violation; cannot call from umode (SecureSMX).

par is of type SMX_ST_PAR. Available parameters are:

SMX_ST_CBFUN Pipe put callback function = v1.

Loads the put callback function into the pipe control block. Using this service is highly
recommended over directly setting internal pipe modes, which may result in incorrect settings
due to preemption of the current task. Also, direct pipe mode setting is not possible in umode
under SecureSMX.

smx_Pipe

Example
PICB_PTR pipea;

void pipea_cbfun(PICB_PTR pipe);
smx_PipeSet(pipea, SMX_ST_CBFUN, pipea_cbfun);

This example loads pipea_cbfun() into the pipea control block. See smx_PipePutPktWait()
for an example of usage.

109

smx_Sem

smx_Sem

See the smx User’s Guide, Semaphores chapter for usage information and more examples.

smx_SemClear

bool smx_SemClear (SCB_PTR sem)

Type SSR
Summary Clears a semaphore.
Compl None
Parameters sem Semaphore to clear.
Returns true Semaphore cleared.
false Semaphore not cleared due to error.
Errors SMXE_INV_SCB Invalid semaphore handle.
Descr Resumes all tasks waiting at sem with false return values and deactivates their timeouts.

Then resets a resource semaphore count to its original value, when created. This call would
normally be used in a recovery situation, such as following a SEM_CTR_OVFL error.

Example
SCB_PTR printer_avalil;

smx_SemClear(&printer_avalil);

smx_SemCreate

SCB_PTR smx_SemCreate (SMX_SEM_MODE mode, u8 lim, const char* name=NULL , SCB_PTR* shp=NULL)

Type SSR
Summary Creates a semaphore of the specified mode and limit and sets its internal count, accordingly.
Compl smx_SemDelete()
Parameters mode Mode of operation (see below).
lim Count limit.
name Name to give semaphore or NULL if none.
shp Semaphore handle pointer (see hp note in Notes and Restrictions).
Returns handle Semaphore created.

NULL Semaphore not created due to insufficient resources or error.

110

smx_Sem

Errors SMXE_INV_PAR mode or lim not in range
SMXE_OUT_OF_SCBS
Descr Gets a semaphore control block (SCB) from the SCB pool and loads the cbtype, mode, count,

lim, and name fields. Returns the address of the SCB as the semaphore handle. A semaphore
is capable of operating in one of 6 modes:

mode lim semaphore
SMX_SEM_RSRC 1 Binary resource
SMX_SEM_RSRC >1 Multiple resource (counting semaphore)
SMX_SEM_EVENT 1 Binary event
SMX_SEM_EVENT 0 Multiple event
SMX_SEM_THRES t Threshold
SMX_SEM_GATE 1 Gate

For more discussion of modes of operation, see smx User’s Guide, Semaphores chapter.
SMX_SEM_MODE is defined in xdef.h as an enum, for debugging convenience. If mode is
not a recognized value, if lim == 0 for RSRC or THRES mode, or if lim I= 1 for GATE
mode, an SMXE_INV_PAR error is reported and create fails. The internal count is set to lim
for RSRC semaphores and to O for all others.

Example
SCB_PTR all_data_here, printer_avail, multi_event_sem, binary _sem;

void appl_init(void)

{
printer_avail = smx_SemCreate(SMX_SEM_RSRC, 1, "printer_avail");
all_data_here = smx_SemCreate(SMX_SEM_THRES, 4, "all_data_here");
multi_event_sem = smx_SemCreate(SMX_SEM_EVENT, 0, "multi_event_sem");
binary_sem = smx_SemCreate(SMX_SEM_EVENT, 1, "binary_sem");

}

appl_init() creates four semaphores: printer_avail is a binary resource semaphore, which
regulates access to one printer. When a task is done with the printer it signals printer_avail.
This resumes the top task waiting at printer_avail. all_data_here is a threshold semaphore,
with a threshold of 4. It requires 4 signals before resuming the first waiting task. This
semaphore might regulate a processing task that requires four sets of data before starting.
multi_event_sem is a multiple event semaphore. It stores every event received. binary_sem is
a binary event semaphore. It does not accumulate more than one event. This is useful when
the task using the semaphore will process all waiting events (e.g. received characters) at once.

111

smx_Sem

112

smx_SemDelete

bool smx_SemDelete (SCB_PTR™* shp)

Type
Summary
Compl
Parameters

Returns

Errors

Descr

Example

SSR
Deletes a semaphore created by smx_SemCreate().

smx_SemCreate()

shp Semaphore handle pointer.

true Semaphore deleted.

false Semaphore not deleted due to error.
SMXE_INV_SCB Invalid semaphore handle.

Resumes waiting tasks, giving them false return values and deactivating their timeouts. Then
clears the semaphore control block, releases it to the SCB pool, and sets *shp == NULL so it
cannot be used again.

SCB_PTR printer_avalil;

smx_SemDelete(&printer_avail);

smx_SemPeek

u32 smx_SemPeek (SCB_PTR sem, SMX_PK_PAR par)

Type
Summary
Compl

Parameters

Returns

Errors

Descr

SSR
Returns the current value of the parameter specified.
smx_SemSet()

sem Semaphore to peek.
par What to return.

value Value of par.
0 Value, unless error.

SMXE_INV_SCB Invalid semaphore handle.
SMXE_INV_PAR Argument not recognized.

This service can be used to peek at a semaphore. Valid arguments are:

SMX_PK_FIRST First task waiting on this sem.
SMX_PK_LAST Last task waiting on this sem.
SMX_PK_MODE Semaphore mode.
SMX_PK_COUNT Current count.
SMX_PK_LIMIT Limit.

SMX_PK_NAME Name.

smx_Sem

Example

SCB_PTR sem;
TCB_PTR top_task;

top_task = (TCB_PTR)smx_SemPeek(sem, SMX_PK_FIRST);

smx_SemSet

bool smx_SemSet (SCB_PTR sem, SMX_ST_PAR par, u32 v1, u32 v2)

Type SSR
Summary Provides semaphore control.
Compl smx_SemPeek()
Parameters sem Semaphore to set.
par Parameter to set.
vl Value 1.
V2 Value 2.
Returns true Parameter has been set.
false Parameter has not been set due to error.
Errors SMXE_INV_PAR par not recognized.

SMXE_INV_SCB Invalid semaphore handle.
SMXE_PRIV_VIOL Privilege violation; cannot call from umode (SecureSMX).

Descr par is of type SMX_ST_PAR. Available parameters are:

SMX_ST_CBFUN Semaphore signal callback function = v1.

Loads the signal callback function into the semaphore control block. Using this service is
highly recommended over directly setting internal semaphore modes, which may result in
incorrect settings due to preemption of the current task. Also, direct sesmaphore mode setting
is not possible in umode.

Example
u32 sema_ctr;

smx_SemSet(sema, SMX_ST_CBFUN, sema_cbfun);

void sema_cbfun(SCB_PTR sem)
{

sema_ctr++;

}

This example loads sema_cbfun() into the sema control block. Each time sema is signaled,
sema_ctr is incremented. See smx_SemSignal() for an example of semaphore callback
function usage.

113

smx_Sem

smx_SemsSignal

bool smx_SemSignal (SCB_PTR sem)

Type SSR

Summary Signals a semaphore.

Compl smx_SemTest(), smx_SemTestStop()

Parameters sem Semaphore to signal.

Returns true Signal sent.
false Error.

Errors SMXE_INV_SCB Invalid semaphore handle or mode.
SMXE_SIG_CTR_OVFL Event or threshold counter has exceeded 255.

Descr Mode Action

RSRC: Resume top task with true if count >= lim, else count++.
EVENT: Resume top task with true if count >= lim, else:
If lim==1, count = 1.
If lim 1= 1 and count < 255, count++.
THRES : Resume top task and count -= lim if count >= lim, else:
If count < 255, count++.
GATE : Resume all waiting tasks with true.

If sem->cbfun is not NULL, the callback function cbfun(SCB_PTR sem) is called. For a
multiwait example see the smx_MsgXchgSet() example.

Example
TCB_PTR calc;
XCB_PTR in_xchg;
SCB_PTR get_msg;
u32 get_msg_ctr = 0;

void sem_init(void)

{
get_msg = smx_SemCreate(SMX_SEM_EVENT, 1, "get_msg");
smx_SemSet(get msg, SMX_ST_CBFUN, (u32)msg_count_cbf);

114

smx_Sem

void calc_main(u32)

{
u8* dp;
while (1)
{
if(smx_MsgReceive(in_xchg, &dp, 10))
{
ProcessMsg(dp);
smx_SemSignal(get_msg);
}
else
/* report message failure */
}
}
void msg_count_cbf(SCB_PTR sem)
{
if (sem == get_msQ)
get_msg_ctr++;
}

In this example, sem_init() creates get_msg binary event semaphore and loads
msg_count_cbf into its control block. calc_main() is called when the calc task starts running.
Waits at in_xchg for a message. If a message is received in less than 10 ticks, calc processes
the message, then signals get_msg. As a result, msg_count_cbf() is called, which increments
get_msg_ctr. Although simplistic, this illustrates a method to keep track of received messages
without creating a task to wait at the get_msg semaphore.

smx_SemTest

bool smx_SemTest (SCB_PTR sem, u32 timeout=0)

Type
Summary
Compl

Parameters

Returns

Errors

SSR
If sem has a pass condition, continues smx_ct. Otherwise, suspends it on sem.
smx_SemSignal()

sem Semaphore to test.
timeout Timeout in ticks or msec if [SMX_FL_MSEC.

true Test passed.
false Error or timeout.
SMXE_INV_SCB Invalid semaphore handle.

SMXE_WAIT_NOT_ALLOWED Called from an LSR.

115

smx_Sem

116

Descr

Note

Example 1

mode: action:

RSRC: If sem->count > 0, decrement count and continue smx_ct with true. Else, if timeout
> 0, suspend smx_ct on sem. If timeout == 0, continue current task with false.

EVENT: Same.

GATE: Same.
THRES : Same, except if sem->count >= lim: count -= lim.
Waits forever if timeout == INF. Otherwise, if the timeout elapses before a pass condition

occurs, waiting task resumes with false. Operation from an LSR is the same as from a task,
except that waits are not allowed.

1. Clears smx_lockctr if called from a task and timeout 1= SMX_TMO_NOWAIT.

SCB_PTR start_cycle, data_ready;
TCB_PTR get[N], process;
u8* name[] = ("get0", "getl", ..., “getN");

start_cycle = smx_SemCreate(GATE, 1, "start_cycle");
data_ready = smx_SemCreate(THRES, N, "data_ready");

void init_main(u32)

{
process = smx_TaskCreate(process_main, PR2, 200, 0, name[N]);
smx_TaskStart(process);
for (i=0; i <N;i++)
{
get[N] = smx_TaskCreate(get_main, PR2, 200, 0, name[N]);
smx_TaskStart(get[N]);
}
smx_SemSignal(start_cycle);
}
void get_main(u32)
{
do
{
/* process data and store it globally */
smx_SemSignal(data_ready);
} while (smx_SemTest(start_cycle, TMO));
/* notify of timeout or error */
}

Example 2

smx_Sem

void process_main(u32)

{
while(1)
{
smx_SemTest(data_ready, INF))
/* process global data */
smx_SemSignal(start_cycle);
}
}

In this example, there are N get tasks and one process task. After being created and started,
the process task waits at the data_ready threshold semaphore, and each get task processes
data and stores it, then signals the data_ready threshold semaphore and waits at the
start_cycle gate semaphore. After N signals to the data_ready threshold semaphore, the
process task is resumed. It processes the data, then signals the start_cycle gate semaphore,
causing all of the get tasks resume operation.

If the get tasks need to wait on data or resources, multiple get tasks will result in more
efficient usage of the processor than one get task attempting to get all of the data, since some
get tasks can run while others are waiting.

SCB_PTR printer_ready;
TCB_PTR t2a, t3a;

printer_ready = smx_SemCreate(RSRC, 1, "printer_ready");

void t2a_main(u32)

{
smx_SemTest(printer_ready, TMO);
/* send data to printer */
smx_SemSignal(printer_ready);

}

void t3a_main(u32)

{
smx_SemTest(printer_ready, TMO);
/* send data to printer */
smx_SemsSignal(printer_ready);

}

This example shows sharing a printer between two tasks by using the printer_ready binary
resource semaphore. Every task accessing the printer must first test this semaphore in order to
avoid conflicts.

117

smx_Sem

smx_SemTestStop

void smx_SemTestStop (SCB_PTR sem, u32 timeout=0)

Type Limited SSR — tasks only

Summary Operates the same as smx_SemTest(), except that ct is always stopped.

Compl smx_SemSignal()

Parameters sem Semaphore to test.
timeout Timeout in ticks or msec if SMX_FL_MSEC.

Errors SMXE_INV_SCB Invalid semaphore handle.
SMXE_OP_NOT_ALLOWED Called from an LSR.

Descr See smx_SemTest() for operational description. smx_ct stops instead of suspending, then
restarts instead of resuming. Pass or fail is returned via the parameter in taskMain(par), when
task restarts.

Notes 1. If called from an LSR, aborts operation and returns to LSR.

2. Clears smx_lockctr if called from a task, since it always stops.
TaskMain void task_main(bool par)

par true Got semaphore.
false Error or timeout.

Example

SCB_PTR data_ready, start_cycle;
TCB_PTR get[N], process;
u8* name[] = ("get0", "getl", ..., “getN");

start_cycle = smx_SemCreate(GATE, 1, "start_cycle");
data_ready = smx_SemCreate(THRES, N, "data_ready");

void init_main(u32)

{
process = smx_TaskCreate(process_main, PR2, 200, 0, name[N]);
smx_TaskStart(process);
for (i=0; i <N;i++)
{
get[N] = smx_TaskCreate(get_main, PR2, 0, 0, name[N]);
smx_TaskStart(get[N], 1);
}
}

118

smx_Sem

void get_main(bool pass)

{
if (pass)
{
[* process data and store it globally */
smx_SemSignal(data_ready);
smx_SemTestStop(start_cycle);
}
else
/* notify of timeout or error */
}
void process_main(u32)
{
while(1)
{
smx_SemTest(data_ready, INF))
/* process global data */
smx_SemSignal(start_cycle);
}
}

This is equivalent to example 1 for smx_SemTest(), using one-shot get tasks. Note that the
get tasks are created with no stacks and also that each runs as soon as it is started, because
pass == 1. Each get task gets and stores data, signals the data_ready threshold semaphore, and
then does a test stop at the start_cycle gate semaphore. While stopped, none of the get tasks
requires a stack.

If the get tasks do not need to wait for inputs, one stack will suffice for all of them, since only
one can run at a time. However, if a get task might need to wait for inputs, then achieving
efficient operation requires more than one stack. If a get task cannot get a stack, it simply
waits for a stack and the scheduler passes over it. Hence, the number of stacks needed can be
optimized for the probability of waiting for inputs.

119

smx_SSR

120

smx_SSR

See the smx User’s Guide, Service Routines chapter for usage information and more examples.

smx_SSR_ENTERX

void smx_SSR_ENTERXx (u32 id, u32 p1, ..., u32 px)

Type
Summary
Compl

Parameters

Returns

Descr

Example

Calls smx_SSREnterx(id, p1, ... px)
Used to begin a system service routine (SSR).

smx_SSREXit()

id SSR ID — see xdef.h.
pl-x Parameters of the call.
none

All system service routines (SSRs) must begin with smx_SSR_ENTERX(), which first
increments smx_srnest to block other SSRs. It then sets smx_ct->err = SMXE_OK, saves the
next program address of smx_ct in smx_ct->susploc, if SMX_DEBUG is defined and logs
the SSR in EVB if SMX_CFG_EVB and the smx_evben flag for the SSR is set (see smx
User’s Guide, Event Logging chapter, selective logging section).

Custom SSRs can be created. See smx User’s Guide, Service Routines chapter, custom SSRs
section. It is recommended to start by copying one that is similar.

bool NewSystemService(TCB_PTR task)

{
smx_SSR_ENTER1(MY_CALL _ID, task);
/* do my_function */
return(smx_SSRExit(true, MY_CALL_ID));
}

This example shows the use of smx_SSR_ENTERZ() and smx_SSREXit() for a typical
system service with one parameter, and which returns a bool. In between, you can put any C
statements. Although it is typical for SSRs to return a bool or handle, it is not necessary to
return anything. The return type of an SSR may be void, in which case it will end with just
smx_SSREXxit(0, id), with no return.

smx_SSR

smx_SSREXxit

u32 smx_SSRExit (ret, id)

Type
Summary
Compl

Parameters

Returns

Descr

Example

Function
Used to end a system service routine (SSR).
smx_SSR_ENTERN() or smx_SSREntern().

ret Value to return.
id SSR ID.

Returns the return value of the SSR (e.g. smx_TaskPeek() or that of the complementary SSR
(e.g. smx_MsgSend() for smx_MsgReceive()). If the wait times out returns 0.

For a suspend call, if smx_srnest > 1, returns ret to the point of call. For a stop call, passes ret
as the task main function parameter.

If smx_srnest == 1, tests if smx_lqgctr > 0 or if smx_sched > 0. If so, branches to the
prescheduler, which calls the LSR scheduler or the task scheduler or both. If not, decrements
smx_srnest and does the same as smx_srnest > 1, above.

An SSR must end with:
return(smx_SSREXit(ret, id));

if there is a return value, or:
smx_SSREXxit(0, id);

if there is no return value (i.e. void). All intermediate returns and error exits also must call
smx_SSR_EXIT().

See example above.

121

smx_Sys

122

smx_Sys

See the smx User’s Guide for discussion and more examples of smx_Sys services.
See the smxBase User’s Guide for time measurement functions (e.g. sb_TM_START).

smx_SysPseudoHandleCreate

void* smx_SysPseudoHandleCreate (void)
Type Bare function
Summary Creates a pseudo handle to identify an object that does not have a handle.

Parameters none

Returns pseudo handle
0 if no more pseudo handles available.
Descr Creates a pseudo handle to identify objects that do not have handles, such as ISRs and user-

defined events. These can be used to log ISRs and user-defined events in EVB. Pseudo
handles are also used by smxAware. They are in the range of
SMX_PSEUDO_HANDLE_MIN to SMX_PSEUDO_HANDLE_MAX, in xdef.h. Each new
pseudo handle is 4 greater than the previous one created.

Example See smx_EVB_LOG().

smx_SysPeek

u32 smx_SysPeek (SMX_PK_PAR par)

Type SSR

Summary Returns the current value of the parameter specified.

Parameters par What to return.

Returns value Value of argument.

0 Value, unless error.

Errors SMXE_INV_PAR argument is not recognized.

Notes This service can be used to peek at system variables. Valid arguments are:
SMX_PK_ETIME Elapsed time in ticks
SMX_PK_ETIME_MS Elapsed time in msec
SMX_ PK_SEC Ticks per second
SMX_PK_STIME System time in seconds

Example

smx_Sys

u32 mspt; /* milliseconds per tick */

mspt = 1000/smx_SysPeek(SMX_PK_SEC);

smx_SysPowerDown

bool smx_SysPowerDown (u32 sleep_mode)

Type
Summary
Parameters

Returns

Errors

Descr

SSR
Puts processor into sleep mode. Restores all tick-related timing when power resumes.
sleep_mode Sleep mode.

true Processor slept until awakened.
false sleep_mode == 0.

None

If sleep_mode > 0, enters SSR and calls sb_PowerDown(sleep_mode). This is a user-
implemented function, which saves the tick counter count and puts the processor into the
desired sleep mode. Upon resumption of operation, sh_PowerDown() determines how many
tick counter clocks have elapsed, calculates and loads the new tick counter value and returns
the number of ticks lost.

smx_SysPowerDown() tests the first timer in smx_tq and the next task to timeout. It
determines which of these events would have occurred first and if that event would have
occurred during power down. If so, it performs the timeout operation for that event, then
searches to find the next oldest event during power down and performs the timeout operation
for it. This continues until all events, which would have occurred during power down, have
occurred. The result is that LSRs and tasks are enqueued to run in the order they would have
run, had power interruption not occurred.

The tick recovery process is not dependent upon the time lost, but rather upon how many
timeouts would have occurred during that time. Hence, it can be effectively used in
applications where long power interruptions occur. Cyclic and pulse timer events are
requeued, when processed. If they reoccur within the power-down time, they will again be
processed normally. Therefore, these timers will appear to operate normally, provided that
smx_lq is large enough to handle all LSR invocations. If not, older LSR invocations will be
lost.

After tick recovery is complete, stime is updated and the smx_SysPowerDown() is exited.
Following this, LSRs then tasks will execute in the order invoked, resumed, or restarted.
Since interrupts are enabled during smx_SysPowerDown(), smx_TickISR() can run and can
invoke smx_KeepTimeLSR, which will run after other LSRs have run. Thus, new ticks will
not be lost and LSRs will run in their order of occurrence.

123

smx_Sys

Example

void smx_ldleMain(u32)

{ while(true)
{
if (idle_done)
smx_SysPowerDown(SLEEP);
}
}

This is the normal use of smx_SysPowerDown() — i.e. at the end of idle, after it has
completed all of its work. At this point there is no useful work left to do, hence the processor
can be put into SLEEP mode. Of course, once the processor is put into SLEEP mode, it is
then dependent upon an event or interrupt to wake it up.

smx_SysWhatls

SMX_CBTYPE smx_SysWhatls (void* h)

Type
Summary
Parameters

Returns

Errors

Descr

Example

124

SSR

Returns control block type for handle.

h Handle.

type Type of control block.

0 Control block type is not recognized.
SMXE_INV_PAR Invalid handle.

Returns the control block type of the control block pointed to by h. Returns NULL if h does
not point to a valid control block. h is not range checked, so it is possible that it may return an
invalid cbtype. It is advisable to check that the handle is in range for the cbtype returned
before using the cbtype.

SCB_PTR sx;

sx = smx_SemCreate(SMX_SEM_RSRC, 1, "sem");

if (smx_SysWhatls(sx) == SMX_CB_SEM)
smx_SemSignal(sx);

smx_Task

smx_Task

See the smx User’s Guide, Tasks chapter for usage information and more examples.

smx_TaskBump

bool smx_TaskBump (TCB_PTR task, u8 pri)

Type SSR
Summary Changes task priority, unless pri == SMX_PRI_NOCHG, and requeues the task.
Parameters task Task whose priority to change.
pri New priority, unless SMX_PRI_NOCHG.
Returns true Task priority changed.
false Error.
Errors SMXE_BROKEN_Q Task queue is broken.
SMXE_INV_PRI pri > SMX_MAX_PRI.
SMXE_INV_TCB Invalid task handle.
Descr Changes task->normpri = pri, and if task owns no mutexes, task->pri = pri, otherwise

task->pri is promoted, but not demoted. If pri == SMX_PRI_NOCHG, no priority changes
are made. Whether or not task->pri is changed, if task is in smx_rq, it is requeued at the end
of its priority level and it will preempt smx_ct if it is now the top task, or if task is in a
priority queue, it will be requeued at the end of tasks with the same priority. If task is waiting
for a mutex, the mutex owner’s priority is promoted, if it is less than pri and priority
inheritance is enabled for the mutex. If task is in a FIFO queue, it is not moved.

The current task can bump itself, which can result in it being preempted.

Example
void taskA_main(u32)
{
smx_TaskUnlock();
while (1)
{
/* do main function */
smx_TaskBump(smx_ct, SMX_PRI_NOCHG)
}
}

Each time taskA completes its main function, it bumps itself to the end of its priority level in
smx_rq. This allows other tasks at the same priority level in smx_rq to run. If they also bump
themselves to the end, round-robin or cooperative multitasking results.

125

smx_Task

126

smx_TaskCreate

TCB_PTR smx_TaskCreate (FUN_PTR fun, u8 pri, u32 tlssz_ssz, u32 fl_hn, const char* name=NULL,

Type
Summary
Compl

Parameters

Returns

Errors

Descr

u8* sbp=NULL , TCB_PTR* thp=NULL)
SSR

Creates a task with fun as its main function and with the parameters specified.
smx_TaskDelete()

fun Main function: void fun(u32 par)

pri Priority.

tlssz_ssz Task Local Storage (TLS) size (high 16 bits) and stack size (low 16 bits)
fl_hn Flags and the heap number, hn (low 4 bits), for stack. Flags:

SMX_FL_CHILD create child ptask.
SMX_FL_LOCK start locked.
SMX_FL_NONE no flags specified.
SMX_FL_UMODE task runs in unprivileged mode.
name Name to give task or NULL for none.
sbp Stack block pointer for preallocated stack, NULL for none.
thp Task handle pointer (see hp note in Notes and Restrictions).
handle Task created.
NULL Task not created due to insufficient resources or error.
SMXE_INV_PAR SecureSMX. CHILD & UMODE flags both set.
SMXE_INV_PRI pri > SMX_MAX_PRI.
SMXE_INSUFF_HEAP Insufficient heap for permanent stack.

SMXE_OUT_OF_TCBS TCB pool is empty.

Gets a task control block from the TCB pool. fun() becomes the main function (i.e. the entry
point) for the task and pri becomes its priority. For a preallocated stack (sbp = NULL) the
stack size is calculated by:

stksz = stksz - (SMX_SIZE_STACK_PAD + SMX_RSA_SIZE + tlssz);
and task->flags.stk_preall = 1. A preallocated stack can come from any source or be a
standalone block. For it, the skksz parameter is the stack block size.

If shp == 0, the task stack block is allocated from heap hn. The block size to allocate is
calculated by:

sbsz = SMX_SIZE_STACK_PAD + stksz + SMX_RSA_SIZE + tlssz;

If allocation fails, the TCB is released and NULL is returned. Both a preallocated stack and a
heap stack are permanently bound to the task, and task->flags.stk_perm is set.

If stksz == 0, the task will be given a stack from the stack block pool when it begins running.
That stack is not permanently bound to the task and will be released back to the stack block
pool when the task stops.

smx_Task

All stack blocks can have a stack pad above the stack, the stack, the Register Save Area
(RSA) below the stack, and Task Local Storage, TLS, below the RSA. The stack pad size is
determined by SMX_SIZE_STACK_PAD in acfg.h, RSA size is 32 for ARM-M, and TLS
size is determined by the tlssz_ssz parameter. The stack bottom (task->sbp) is aligned on an
SB_STACK_ALIGN boundary (8 bytes for ARM-M). As a consequence, the actual stack
size may be 4 bytes less than expected.

SMX_FL_LOCK, sets the task’s start locked flag. This causes the task to always start in the
locked state. This is useful to prevent task initialization from being interrupted. When
initialization is done the task can be unlocked with smx_TaskUnlock(). Start locked is also
useful for one-shot tasks. Other task flags are set as follows: stack high water mark valid ON
(shwm = 0), stack check ON, permanent stack OFF if stack size is 0, else ON, all others OFF.
The specified task name is stored in the TCB. This is useful when debugging to confirm that
one is looking at the correct TCB.

If stack scanning is enabled by SMX_CFG_STACK_SCAN in xcfg.h, the stack pad and
stack are filled with the SB_STK_FILL_VAL defined in bdef.h. Task stacks are periodically
scanned by idle, and task->shwm records the stack high-water mark. This is useful during
debugging to see how much of the stack is actually being used. When a task is suspended or
stopped and task->flags.stk_chk == 1, if shwm > stack size, SMXE_STK_OVFL is reported
and the error manager, smx_EM() runs.

The last step is to return the address of the TCB as the task handle. This handle identifies the
task and is used whenever the task is referred to. It should be stored in a global variable
named for the task.

Notes: 1. Allocating the task stack from heap hn is a convenience during initialization. However,
while running, if the heap is busy, the heap allocation may be forced to wait up to smx_htmo
ticks on the heap mutex. If a timeout occurs, task create will fail. If the heap mutex is released
before timeout, the task stack will be allocated, unless a large enough block cannot be found,
and task create should succeed. Even if the heap mutex is free initially, the heap allocation
may take some time, and task creation may be slower than expected. Using preallocated
stacks during runtime will get around these problems. Another solution is to do task creation
from low-priority tasks so critical tasks are not delayed.

2. Child pmode tasks can be created for non-MPU systems and the same limitations apply to
them as listed below.

SecureSMX with SMX_CFG_SSMX

The SMX_FL_CHILD flag can be used by a ptask to create a child ptask, and the
SMX_FL_UMODE flag can be used by a ptask to create a utask. Both flags cannot be true in
pmode —an SMXE_INV_PAR error results. Consequently, a ptask cannot create a umode
child task. In umode, neither flag is necessary — any task created by a utask is automatically a
child utask.

A task being created is given the default MPA, mpa_dflt, created by the user. The MPA can
then be changed using mp_MPACreate(). (See the SecureSMX User’s Guide.) Normally,
during debug, mpa_dfit allows access to a wide range of memory. But the release version
should permit no memory access, thus forcing a specific MPA to be assigned to the new task.

For ARMM?7, an MPU region is automatically created for a preallocated stack block or a
heap stack block and is loaded into MPA[7] when the task’s MPA is created. (Region
information is passed from smx_TaskCreate() to mp_MPACreate() using a few TCB fields

127

smx_Task

128

Example

that are not yet needed.) The same is done by the scheduler when a stack is allocated from the
stack block pool.

For ARMMS, if umode == 0 and a permanent task stack comes from mheap in sys_data, no
region is created for it when a task is created. Similarly, if a temporary stack comes from the
stack pool in sys_data, no region is created for it when a task is dispatched. For more
information see the Introduction and Getting Started sections of the SecureSMX User’s
Guide.

TCB_PTR taskA, taskB;

void taskX_main(u32)
{
smx_TaskLock();
taskA = smx_TaskCreate(taskA_main, PRI_HI, 0, SMX_FL_NONE, "taskA");
taskB = smx_TaskCreate(taskB_main, PRI_NORM, 1000, SMX_FL_NONE, "taskB");
smx_TaskStart(taskB);
smx_TaskStart(taskA);
smx_TaskUnlock();

}

The above code creates two tasks and starts them. taskA has normal priority. It will be
assigned a stack pool stack when it is dispatched. taskB has low priority. It is permanently
bound to a 1000 byte stack from the heap. The task doing the initialization is locked so that
tasks A and B will not preempt it until it is done. As a consequence, even though taskA is
started after taskB, it will run first because it has higher priority. If taskX had low priority and
were not locked, taskB would run first until it suspended or stopped, then taskX would run
and start taskA. When taskA suspended or stopped, taskX would run and autostop.

smx_TaskCurrent

TCB_PTR
Type
Summary
Parameters
Returns
Errors

Descr

smx_TaskCurrent (void)

Function

Returns the current task handle.

none

handle Current task.

none

It is preferrable to use this function in application code rather than reading smx_ct directly,

which cannot be done from umode under SecureSMX.

smx_Task

smx_TaskDelete

bool smx_TaskDelete (TCB_PTR* thp)

Type SSR

Summary Releases resources owned by the specified task, then deletes it.

Compl smx_TaskCreate()

Parameters thp Task handle pointer.

Returns true Task deleted.
false Task not deleted due to error.

Errors SMXE_INV_PAR smx_ct was passed instead of a task handle.
SMXE_INV_TCB Invalid task handle.

SMXE_STK_ OVFL Stack overflow for self-deleting task.

Descr Dequeues the task from queue it is in, if any. Next if thp->cbfun != NULL, calls the task’s
callback function:

thp->cbfun(SMX_CBF_DELETE)

It is recommended that this case of the task callback function be written to release all
resources owned by the task and to do any other shutdown operations needed. Writing this
case in parallel with the SMX_CBF_INIT case is a good way to avoid forgetting to release a
resource when a task is deleted.

smx_TaskDelete() calls an internal function, smx_TaskFreeAll(), which frees all timers, smx
blocks, messages, and mutexes owned by the task that were not freed by the callback, and it
deactivates its timeout. This is a general-purpose function that traverses each control block
table to find and free all owned control blocks. This likely to be slow in large systems.
Furthermore, non-owned objects such as bare blocks and child tasks cannot be found and thus
released.

If the above operations pass and the task’s stack was not preallocated, smx_TaskDelete()
frees it back to its heap, if permanent, or to the stack pool, if temporary. If stack free is
successful, releases the task’s TCB back to the TCB pool and sets *thp = NULL, so it cannot
be used again.

If the task is deleting itself, smx_TaskDeleteLSR is invoked, instead of the preceding code.
This LSR runs before the scheduler and before any other task, so it acts as an extension of
smx_TaskDelete() outside of the task being deleted. It tests for stack overflow, then frees the
stack. If stack free is successful, releases the TCB back to the TCB pool, sets *thp = NULL,
and sets smx_sched = SMX_CT_DELETE, which causes the task scheduler to skip current
task processing and dispatch the next task. If not successful, sets smx_sched =
SMX_CT_NOP, which results in the task scheduler not running and the task autostopping.
Task self-delete should always be the last statement before the final }. Any code after it may
execute with unpredictable results.

If any operation performed by smx_TaskDelete() fails, the task’s TCB and handle will still be
valid, thus delete can be retried. This is advisable, because the failure may have been due to a
heap mutex timeout. In the case of self-delete, retry must be done by another task.

129

smx_Task

130

Notes:

Example

1. Preemptively deleting one task by another task runs the risk of damaging a shared
structure such as a heap. Normally this is done only in a partitioned environment under
SecureSMX where potential damage is limited to the partition in which the deleted task is
located.

2. It generally is best for a task to delete itself, or to be deleted by a lower-priority task. This
ensures that the target task is not in the midst of a sensitive operation.

TCB_PTR t2a = smx_TaskCreate(t2a_main, TP2, 0, 0, "t2a");
smx_TaskSet(t2a, SMX_ST_CBFUN, (u32)t2a_CBF);
smx_TaskStart(t2a);

void 2a_main(u32)

{
[* perform operation */
smx_TaskDelete(&t2a);
}
void t2a_ CBF(u32 mode)
{
switch (mode)
{
case SMX_CBF_INIT:
[* get t2a objects and memory */
break;
case SMX_CBF_DELETE:
[* free t2a objects and memory */
}
}

The above example shows creating and starting a one-shot task, t2a, with a callback function.
When smx_TaskStart(t2a) runs, the scheduler calls t2a_ CBF(SMX_CBF_INIT) which gets
all objects and memory that t2a needs to perform its operation. When t2a finishes, it self-
deletes with smx_TaskDelete(&t2a). This calls t2za_ CBF(SMX_CBF_DELETE), which
releases all objects and memory that were obtained for t2a during initialization. Having these
two cases adjacent in one function helps to avoid resource leaks due to not freeing an object
or memory that was allocated to t2a.

smx_TaskLocate

void* smx_TaskLocate (TCB_PTR task)

Type
Summary
Parameters

Returns

SSR
Locates the queue which a task is in.
task Task to locate.

handle pointer to queue task is in.
NULL task is not in a queue or error.

smx_Task

Errors SMXE_BROKEN_Q No queue control block found.
SMXE_INV_TCB Invalid task handle.
Descr Returns a pointer to the queue that task is in, if it is in a queue, or NULL if itisnotina

queue. If in smx_rq, returns a pointer to the top level. Aborts and reports
SMXE_BROKEN_Q if no queue control block is found.

Example
bool resume_task(TCB_PTR task, MCB_PTR ack_msg)
{
CB_PTR gq;
g = (CB_PTR)smx_TaskLocate(task);
switch (g->cbtype)
{
case SMX_CB_XCHG:
smx_MsgSend(ack_msg, (XCB_PTR)q);
pass = true;
break;
case SMX_CB_SEM:
smx_SemSignal((SCB_PTR)q);
pass =true;
default:
pass = false;
}
return(pass);
}

This function allows resuming a task if it is waiting at an exchange for a message or waiting
at a semaphore for a signal. Otherwise, task is left alone.

smx_TaskLock

bool smx_TaskLock (void)
Type Bare function
Summary Increments the lock counter, which blocks the current task from being preempted.

Parameters None

Returns true ct locked.
false ct is locked, but lock counter was not incremented.
Errors SMXE_EXCESS LOCKS smx_lockctr == SMX_LOCK_NEST_LIMIT.
Descr Increments smx_lockctr up to SMX_LOCK_NEST_LIMIT. The current task is locked as

long as the lock counter is non-zero.

CAUTION: All smx services that stop or suspend ct will break its lock. Also smx services
that may suspend smx_ct will break its lock, unless NO_WAIT is specified, or the service is
called froman LSR.

131

smx_Task

Note In order to output the excess locks error message, smx_lockctr is temporarily reduced to 1,
then put back to SMX_LOCK_NEST_LIMIT.

Example
u32 hour;

void hourly_main(u32)

{

smx_TaskLock()
hour++;
smx_TaskUnlock()

}

In this example, other tasks are blocked from accessing hour while it is being updated.

smx_TaskLockClear

bool smx_TaskLockClear (void)
Type SSR
Summary Clears the lock counter, thus allowing the current task to be preempted.

Parameters none

Returns true Lock counter cleared and ct unlocked.
false ct is unlocked, but lock counter was not 1.
Errors SMXE_INSUFF_UNLOCKS smx_lockctr is cleared, but was > 1.
Descr Clears smx_lockctr and tests for preemption. Recommended to be called instead of

smx_TaskUnlock(), at the end of lock nesting in the task main function, as a precaution to
ensure that the lock counter is zero.

Example
u32 hour;

void hourly_main(u32)

{

smx_TaskLock()
hour++;
smx_TaskLockClear()

}

In this example, other tasks are blocked from accessing hour while it is being updated. Using
this lock clear to unlock ensures that the task will be unlocked even if smx_locketr > 1.

132

smx_TaskPeek

u32 smx_TaskPeek (TCB_PTR task, SMX_PK_PAR par)

Type
Summary
Compl

Parameters

Returns

Errors

Descr

SSR

Returns the current value of the parameter specified.

smx_TaskSet().

task Task to peek at.
par What to return.

value Value of par.

0 Value, unless error.

SMXE_INV_TCB Invalid task handle.
SMXE_INV_PAR Parameter not recognized.

This service allows peeking at a task. Valid arguments are:

SMX_PK_ERROR
SMX_PK_FUN
SMX_PK_HN
SMX_PK_INDEX
SMX_PK_LOCK
SMX_PK_MTX
SMX_PK_NAME
SMX_PK_NEXT
SMX_PK_PARENT
SMX_PK_PREV
SMX_PK_PRI
SMX_PK_PRINORM
SMX_PK_PRIV
SMX_PK_RTC
SMX_PK_RTLIM
SMX_PK_RTLIMCTR
SMX_PK_STATE
SMX_PK_TLSP
SMX_PK_TMO
SMX_PK_UMODE

Error last reported for task.
Task main function.

Heap number for stack from heap, NULL if not.

Index of task in TCB pool. Also used for timeout array.

Lock counter count.

First owned mutex.

Name.

Next task linked to task in a queue; NULL if none.
Task’s parent; NULL if none.*

Previous task linked to task in a queue; NULL, if none.

Priority.

Normal priority.

Privilege level.*

Runtime counter.

Runtime limit.*

Runtime limit counter.*
State.

Task local storage pointer.
Timeout remaining.

Task is in umode.*

* means available only if SMX_CFG_SSMX is true under SecureSMX.

smx_Task

133

smx_Task

Example

TCB_PTR atask;
u32 time_left;

time_left = smx_TaskPeek(atask, SMX_PK_TMO);
if (time_left > 10)
smx_TaskResume(atask);

Resume atask, if it has more than 10 ticks left to wait.

smx_TaskResume

bool smx_TaskResume (TCB_PTR task)

Type

Summary

Compl
Parameters

Returns

Errors

Descr

Example

134

SSR

Dequeues task from any gqueue it may be in and puts it into the ready queue at the end of its
priority level.

smx_TaskSuspend()

task Task to resume.

true Task resumed.

false Task not resumed due to error.
SMXE_INV_TCB Invalid task handle.

Dequeues task from any queue it may be in and disables its timeout. If in an event queue the
differential count of the following task is increased by the differential count of task. Task is
resumed with 0, as if a timeout had occurred. Hence, the call on which it suspended will fail.

The current task may resume itself. The net result is that it is moved to the end of its smx_rq
level. If the current task is still the top task in smx_rq or if it is locked, it is continued.
Otherwise, it is preempted. Either way, it returns with true.

smx_TaskResume() can be used for both suspended and stopped tasks. For example, if task
had been suspended by smx_SemTest() it will be resumed, but if it had been stopped by
smx_SemTestStop() it will be restarted.

TCB_PTR taskn;

void taskn_main(u32)

{
do
{
[* perform taskn operations */
} while (smx_TaskResume(smx_ct));
}

If other equal priority tasks are written this way and are in smx_rqg, each will run, then move
itself to the end of the rq level by calling smx_TaskResume(smx_ct). Higher priority tasks

smx_Task

can preempt the round-robin tasks, but lower priority tasks are locked out. Note similarity to
smx_TaskBump().

smx_TaskSet

bool smx_TaskSet (TCB_PTR task , SMX ST PAR par, u32 v1=0, u32 v2=0)

Type
Summary
Compl

Parameters

Returns

Errors

Descr

SSR

Provides task control.
smx_TaskPeek().

task Task to modify.

par Parameter to set.

vl First value.

V2 Second value.

true Parameter has been set.

false Parameter not set due to error.

SMXE_INV_PAR par not recognized.
SMXE_INV_TCB Invalid task handle.
SMXE_PRIV_VIOL Privilege violation; cannot call from umode (SecureSMX).

Used to modify task operation. par is of type SMX_ST_PAR. Available parameters are:

SMX_ST_CBFUN Set task callback function = vl & set task->flags.hookd, if v2 >0.
SMX_ST _FUN Set task main function = v1.

SMX_ST_IRQ Set task IRQ permission struct pointer = v1.*
SMX_ST_PRITMO Set task timeout priority = v1, save previous priority at v2.
SMX_ST_PRIV Set task privilege level = v1.*

SMX_ST_RTLIM Set top parent task runtime limit = v1 and runtime counter = 0.**
SMX_ST_STK CK Set task stack check flag = v1.

SMX_ST_STRT_LOCKD Set task start locked flag = v1.

SMX_ST_TAP Set top parent task token array pointer = v1.*
SMX_ST_UMODE Set task umode flag = v1.*

smx_TaskSet() can be called only from pmode. * means available only if SMX_CFG_SSMX
is set. ** means available only if SMX_CFG_RTLIM is set.

SMX_ST_FUN can be used to change a task’s main function. However smx_TaskStartNew()
is preferred for this since it allows also changing the parameter for the main function and the
task priority. In addition, it restarts the task.

For SMX_ST_PRITMO, task’s current normal priority is stored in the location pointed to by
v2. This is used to restore normal priority after timeout processing is complete. To set task
priority use smx_TaskBump().

Units for SMX_ST_RTLIM are clocks of the timer that generates the smx tick. task->rtlim
and task->rtlimctr can be set only in the top parent task. Child tasks have pointers in these
fields to the corresponding fields in their top parent tasks.

135

smx_Task

136

Example 1:

Example 2:

This service is an SSR. Using it is highly recommended vs. directly setting TCB flags and
fields, which may result in incorrect settings due to preemption of the current task. If par is
not recognized, returns false.

smx_TaskSet(task, SMX_ST_STK_CK, ON);

This example turns on stack checking for overflow when task is suspended, stopped, or
deleted. Stack checking must be disabled for any function which changes stacks, because if a
preempt occurs during the function the smx stack check code will report false overflow
errors. For example:

smx_TaskSet(smx_ct, SMX_ST_STK_CK, OFF);
/* call function which changes stacks */
smx_TaskSet(smx_ct, SMX_ST_STK_CK, ON);

smx_TaskSet(task, SMX_ST_CBFUN, task_cbf, 1);

This loads cbfun into task->cbfun and sets task->flags.hookd = 1. For information on how to
use task callback functions see the smx User’s Guide, Tasks chapter, task callback functions
section.

smx_TaskSleep

bool smx_TaskSleep (u32 time)

Type
Summary
Parameters

Returns

Errors

Descr

Note

Limited SSR — tasks only

Suspends the current task until the specified system time, stime.

time Time to awaken, in seconds from now.

true ct has been delayed.

false No delay due to error.

SMXE_INV_TIME time <= smx_stime

SMXE_OP_NOT_ALLOWED Called froman LSR
If time is greater than stime, smx_ct is suspended, and its timeout is set to
timeout = smx_etime + (time - smx_stime) * SMX_TICKS_PER_SEC

The amount added to etime must be less than 2*31. This allows sleeping up to 248 days for a
100 tick per second clock rate. When the task times out, it is resumed with true. Resolution is
one second.

Clears smx_lockctr if called from a task.

Example 1

Example 2

smx_Task

smx_TaskSleep(smx_SysPeek(SMX_PK_STIME) + 10); /* sleep until 10 seconds from
now */

TCB_PTR hourly;

u32 stime = smx_SysPeek(SMX_PK_STIME);
u32 next_hour = stime + (3600 - (stime % 3600));
smx_TaskStart(hourly);

void hourly_main(u32)

{
while(smx_TaskSleep(next_hour))
{
[* perform hourly function */
next_hour += 3600;
}
}

In this example, the hourly task wakes up at the start of the next hour and performs its hourly
function. It then performs its hourly function, every hour on the hour.

smx_TaskSleepStop

void smx_TaskSleepStop (u32 time)

Type
Summary
Parameters

Errors

Descr

TaskMain

par

Notes

Limited SSR — tasks only
Stops the current task until the specified system time.
time Time to awaken in seconds from now.

SMXE_INV_TIME time <= smx_stime
SMXE_OP_NOT_ALLOWED Called from an LSR

See smx_TaskSleep() for operational description. smx_ct always stops instead of suspending,
then restarts instead of resuming. Pass or fail is returned via the parameter in taskMain(par),
when task restarts.

void task_main(bool par)

true Current task has been delayed.
false No delay due to error.

1. If called from an LSR, aborts operation and returns to LSR.
2. Clears smx_locketr if called from a task, since it always stops.

137

smx_Task

Example
TCB_PTR hourly;
u32 stime = smx_SysPeek(SMX_PK_STIME);
u32 next_hour = stime + (3600 - (stime % 3600));
smx_TaskStart(hourly, false);

void hourly_main(bool pass)

{
if (pass)
{
/* perform hourly function */
next_hour += 3600;
}
smx_TaskSleepStop(next_hour);
}

This is the equivalent one-shot task for the previous example. In this example, next_hour is
set equal to stime and hourly task is started with pass == false. This prevents performing the
hourly function, the first time. The hour task sets next_hour to the start of the next hour and
sleeps until then. Pass == 1, from smx_TaskSleepStop() causes the hourly function to be
performed and this process will repeat until stopped.

smx_TaskStart

bool smx_TaskStart (TCB_PTR task, u32 par)
bool smx_TaskStartNew (TCB_PTR task, u32 par, u8 pri, FUN_PTR fun)

Type SSR

Summary smx_TaskStart() starts or restarts task with par after it has been created.
smx_TaskStartNew() restarts task with par, pri, and fun.

Compl smx_TaskStop()
Parameters task Task to start.
par Parameter to pass to task.
pri New priority.
fun New main function.
Returns true Task started.
false Task not started due to error.
Errors SMXE_INV_PRI pri > SMX_PRI_NUM and !SMX_PRI_NOCHG.
SMXE_INV_TCB Invalid task handle.
Descr Both Start()’s can be called from any task or LSR. Each dequeues task from any queue it may

be in. If in an event queue, its differential count is added to that of the next task. If task is not
smx_ct, task->sp is cleared, stack check is inhibited, and if not bound, its stack is freed (since
it will get a new stack when dispatched by the scheduler). Then task is put into the ready
queue, and its timeout is disabled.

138

Note

Example 1

smx_Task

If smx_ct starts itself, the result is that it is stopped and moved to the end of its smx_rq level.
Its stack is later released by the scheduler. These actions occur even if smx_ct is locked. If it
is still the top task in smx_rq, or locked, it is immediately restarted. Otherwise, it is
preempted. In either case, code statements following any of the task starts do not execute.

If an LSR starts the current task, operation is as the same, except that the task start returns to
the LSR, as it would to a task, other than smx_ct.

When task is restarted, it is given a new stack and it starts from the beginning of its main
function with par as its parameter. Since task is restarting, it is not necessary to indicate that
wait failed. It will be started locked, if its strt_lockd flag is set.

smx_TasksStart() is used primarily to start a new task or to restart a stopped task. Since it will
restart any existing task, it may also be used to abort a task and restart it, even if the task is
locked.

smx_TaskStartNew() loads fun into task->fun, loads pri into task->pri, normpri, and pritmo,
unless pri == SMX_PRI_NOCHG.

If task->cbfun is not NULL, the callback function cbfun(SMX_CBF_INIT) is called. This
function can be used to obtain all objects and memory that task needs to run. See also
smx_TaskSet() and smx_TaskDelete().

See CAUTION in smx_TaskStop().

LCB_PTR tx_LSR;
TCB_PTR tx_task;

void tx_ISR(void)

{
if (xmit_complete)
{
smx_LSR_INVOKE(tx_LSR, 0);
}
}
void tx_LSR_main(void)
{
smx_TaskStart(tx, 0);
}
void tx_task_main(u32 timeout)
{
if(timeout)
/* resend message */
else
/* send next message */
smx_TaskStop(smx_ct, TX_TIMEOUT);
}

tx_LSR is invoked by tx_ISR when a message transmission is complete. It restarts the tx task
with timeout == 0, causing it to send the next message. If the message is not transmitted in

139

smx_Task

time, the delay will complete and tx will restart with timeout = true, causing it to resend the
message.

Example 2
TCB_PTR gp_task;

void appl_init(void)

{
gp_task = smx_TaskCreate(gp_task_init, PRI_MAX, NO_STACK, SMX_FL_NONE,
“gp_task");
smx_TaskStart(gp_task);
}
void gp_task_init(u32)
{
[* perform initialization */
smx_TaskStartNew(smx_ct, 0, PRI_NORM, gp_task_run);
}
void gp_task_run(u32)
{
/* perform normal operations */
}

In this example, the gp_task is initially started at maximum priority with gp_task_init() as its
code. When initialization of gp_task is complete, smx_TaskStartNew() causes gp_task to
start gp_task_run() with normal priority. This approach is commonly used for one-shot tasks,
which require initialization.

smx_TaskStop

bool smx_TaskStop (TCB_PTR task, u32 timeout=SMX_TMO_INF)
Type SSR

Summary Dequeues task, releases its stack if not a permanently bound stack, and sets its timeout to
restart it after timeout ticks.

Compl smx_TaskStart()
Parameters task Task to stop.
timeout Timeout in ticks or msec if [SMX_FL_MSEC.
Returns true OK if task = smx_ct.
false Task not stopped due to error.
Errors SMXE_INV_TCB Invalid task handle.
Descr Dequeues task from any queue it may be in. If task is in an event queue, its differential count

is added to that of the next task, if any. task->sp is cleared, and a stack pool stack is released
to the freestack pool or, if SMX_CFG_STACK_SCAN is true, the stack is released to the

140

TaskMain
par

Notes

Example

smx_Task

scanstack pool and later moved to the freestack pool after it has been scanned and refilled
with the test pattern.

If timeout > 0 task’s timeout is set to timeout. If timeout == SMX_TMO_NOWAIT (0) or
when the timeout elapses, task is put into smx_rq at the end of its priority level. If timeout ==
SMX_TMO_NOCHG, task’s timeout is not changed.

This is the only system service which can stop another task and set its timeout. Hence, it can
be used to cause another task to restart immediately or to restart after a timeout.

A task may also stop itself, even if it is locked. In this case, smx_locketr() is cleared. If task
stops itself, smx_TaskStop() is the last statement it executes. smx_ct may also be stopped by
an LSR, even if is locked.

void task_main(u32 par)
true task was stopped (cannot be false).

1. During a stack scan, if the main stack high water mark exceeds the main stack size,
SMXE_STK_OVFL is reported. This will normally occur during idle.

2. CAUTION: Preempting a task and stopping it is likely to cause damage. Even stopping a
task that is not running could cause damage. The safest approach is for a task to stop itself.
Using task callback functions, might make stopping a task by other tasks safe. See smx
User’s Guide, Tasks chapter, task callback functions section.

TCB_PTR task;

void task_stop(TCB_PTR task)

{
/* release all blocks, msgs, mutexes, and heap blocks owned by task */
smx_TaskStop(task, SMX_TMO_INF);

}

task_stop() releases all objects that task owns, then stops it indefinitely. task ends up in a
dormant state from which it can be restarted only by another task. A task callback function
with case SMX_CBF_STOP could be defined to do the releases, then smx_TaskStop() could
be called directly.

141

smx_Task

Task or LSR Autostop

u32 task_main(u32 par)

{
return(par);
}
or

void task_main(u32)

{

}
Parameters par Value passed to task if it is restarted.
Errors none
Descr When used in the main function of a task, return() or the final } have the same effect as

smx_TaskStop(smx_ct, SMX_TMO_INF). If a return value is specified in return(), it is
loaded into smx_ct->rv. Thus, a task can pass a value, such as a message handle, back to
itself. Otherwise, smx_ct->rv is loaded with whatever value is in the register the C compiler
uses to return a value.

When used in an LSR, return() or the final } return control to the LSR scheduler. Any return
value is ignored.

Example 1
TCB_PTR comm;

u32 comm_main(u32 bp)

{
u8* dp = (u8*)bp;
/* use dp as working pointer to access the block */
return(bp);

}

In the above, comm accepts a block pointer passed to it by another task and passes this
pointer back to itself each time it stops. In this way, an unbound task can preserve local
information from one run to the next.

142

smx_Task

Example 2
void task_main(u32 msg)
{
return((u32)smx_MsgReceive(input, 0, TMO));
}
void task _main(u32 msgq)
{
smx_MsgReceive(input, 0, TMO);
}
void task_main(u32 msg)
{
smx_MsgReceiveStop(input, 0, TMO);
}

produce the same result — the current task is stopped, and the value returned by
smx_MsgReceive() is passed to it. The last example waits for a message without a stack. The
first two wait for a message with a stack. Since the stack is lost in all three cases, the last is
the best way to implement the smx_MsgReceive().

smx_TaskSuspend

bool smx_TaskSuspend (TCB_PTR task, u32 timeout=0)

Type SSR
Summary Dequeues task and sets its timeout to resume after timeout ticks.
Compl smx_TaskResume()
Parameters task Task to suspend. SMX_CT == smx_ct.
timeout Timeout in ticks or msec if [SMX_FL_MSEC.
Returns true Task suspended.
false Error.
Errors SMXE_INV_TCB Invalid task handle.
Descr Dequeues task from whatever queue it may be in. If task is in an event queue, its differential

count is added to that of the next task, if any. If task is already suspended or stopped, this call
has no effect, except to possibly change its timeout.

If timeout > 0 task’s timeout is set to timeout. If timeout == SMX_TMO_NOWAIT (0) or
when the timeout elapses, task is put into smx_rq at the end of its priority level. If timeout ==
SMX_TMO_NOCHG, task’s timeout is not changed.

This is the only system service which can suspend another task and set its timeout. Hence it
can be used to delay another task without restarting it. When the timeout elapses, the other

143

smx_Task

144

Notes

Example

task will resume if it was suspended or restart if it was stopped. However, if the task was in a
wait queue, it will be dequeued, and the call that put it there will fail.

If smx_ct is suspending itself or if it is suspended by an LSR, its run context is saved in its
Register Save Area (RSA). When a task suspends itself, smx_TaskSuspend() is the last
statement executed until the task is resumed after timeout. If smx_ct is locked, smx_lockctr is
cleared. Hence, smx_ct no longer will be locked when it resumes.

1. smx_TaskSuspend(smx_ct, SMX_TMO_NOWAIT) is the only case of a NO_WAIT self-
suspend that clears smx_lockctr. The reason for this is that it bumps smx_ct to the end of its
ready queue level and thus smx_ct may actually be suspended.

2. CAUTION: Although preemptively suspending a task by another task may not directly
damage a heap or other global structure, it should not be done for too long because it may
result in resources being tied up by the suspended task.

TCB_PTR taskA;

void function(void)

{
smx_TaskSuspend(taskA, SMX_TMO_INF);
smx_TaskSuspend(smx_ct, SEC);
/* statements after this will not execute for one second */
}

In this example, the function suspends taskA, indefinitely, then suspends itself for a second.
In so doing, it preserves the context and local variables of both tasks.

smx_TaskUnlock

bool smx_TaskUnlock (void)

Type
Summary
Parameters

Returns

Errors

Descr

Note

Bare function that calls SSR

Decrements smx_lockctr. If it becomes 0, unlocks the current task and tests for preemption.

none
true Operation performed.
false smx_ct was already unlocked.

SMXE_EXCESS_UNLOCKS

Decrements smx_locketr; if smx_locketr is already 0, aborts and issues
SMXE_EXCESS_UNLOCKS error; if it is already 1, calls smx_TaskLockClear() to clear
smx_lockctr and to check if a higher-priority task is ready to run. If so, smx_ct is preempted.

Any smx function that might suspend or stop the current task will also clear smx_lockctr,

whether or not suspension or stopping actually occurs. Thus protection is lost.

smx_Task

Example 1
u32 hour;

void hour_incr(void)

{

smx_TaskLock()
hour++;
smx_TaskUnlock()

}

In this example, other tasks are blocked from accessing hour while it is being updated.
Example 2
void hourly_main(u32)

{

smx_TaskLock()
hour_incr();
if (hour > 24)

hour = 0;
smx_TaskUnlock()

}

This example works with the previous example to show why lock nesting is necessary. The
hour_incr() routine could be called alone, so it must be locked. But hourly_main() also needs
to be locked. Using a counter handles this situation.

Example 3

smx_TaskLock();
smx_SemSignal(semA);
smx_MsgReceive(xchgA, &dp, tmo);

In this example, the task lock prevents ct from being preempted if there is a higher priority
task waiting at semA. smx_MsgReceive() clears the lock, whether it waits or not. Use of the
lock, in this way, prevents an unnecessary potential task switch.

smx_TaskUnlockQuick

bool smx_TaskUnlockQuick (void)
Type Bare function

Summary Decrements smx_lockctr. If it becomes 0, unlocks smx_ct, but does not test for preemption.

Parameters none

Returns true Operation performed.
false ct was already unlocked
Errors SMXE_EXCESS UNLOCKS
Descr Decrements smx_locketr. If smx_locketr is already 0, aborts and issues

SMXE_EXCESS_UNLOCKS warning. This function is intended for quick, protected

145

smx_Task

accesses to global variables where the overhead of an SSR is not desirable. If a higher priority
task is ready, it will not run until the next SSR or LSR finishes.

Example
u32 hour;

void hourly_main(u32)

{

smx_TaskLock()
hour++;
smx_TaskUnlockQuick()

}

In this example, other tasks are blocked from accessing hour while it is being updated. Using
this version of unlock eliminates the overhead of an SSR, but a higher priority task may be
kept waiting.

smx_TaskYield

bool smx_TaskYield (void)
Type SSR wrapper

Summary Requeues the current task at the end of its level of the ready queue, to allow others at that
level to run.

Parameters none

Returns true Task yielded.
false Task did not yield due to an error.

Errors SMXE_BROKEN_Q

Descr Calls smx_BumpTask(smx_ct, SMX_PRI_NOCHG). It is normally a macro, but for
SecureSMX it is a function so it can access smx_ct when called from umode via an SVC call.

Example
TCB_PTR taskA;

void taskA_main(u32)

{
do
{
/* perform taskA function */
} while(smx_TaskYield());
/* fix broken queue */
}

taskA performs its function, then yields to other tasks at its priority level in smx_rg. When
these tasks have performed their functions and yielded, taskA will run again, unless it failed
to yield initially.

146

smx_Timer

smx_Timer

See the smx User’s Guide, Timers chapter for usage information and more examples.

smx_TimerDup

bool smx_TimerDup (TMRCB_PTR* tmrbp, TMRCB_PTR tmra, const char* name=NULL)
Type SSR
Summary Creates a duplicate timer tmrb from tmra and enqueues it after tmra in tg.

Parameters tmrbp Pointer to location for tmrb handle.
tmra Timer to duplicate.
name Name to give timerb or NULL for none.

Returns true Timer duplicated.
false Timer not duplicated due to error

Errors SMXE_INV_OP Attempted multiple duplication of tmrb.
SMXE_INV_PAR tmrbp == NULL.
SMXE_INV_TMRCB Invalid tmrb handle.

SMXE_OUT_OF TMRCBS Out of timer control blocks.

Descr Gets a TMRCB for tmrb and copies all fields from tmra into it, except for name, diffcnt
(differential count), hptr (handle pointer), and onr. Then enqueues tmrb after tmra with
tmrb->diffcnt == 0. Loads tmrbp into tmrb->hptr and tmrb into tmrbp. Loads the current LSR
pointer or task handle into tmrb->onr. Hence, any task or LSR can duplicate a timer and will
be identified as the owner of the duplicate timer. tmrb is effectively an exact duplicate of tmra
and has all of the same properties, except as noted.

Example

LCB_PTR lsra;
TMRCB_PTR tmra, tmrb;

smx_TimerStart(&tmra, 10, 0, Isra, "tmra");
smx_TimerDup(&tmrm, tmra, "tmrb");

In this example, tmrb is created as a duplicate of tmrs and it is enqueued in tg immediately
after tmra with 0 differential count. tmrb can then be changed, if desired, by any of the
services described below.

147

smx_Timer

smx_TimerPeek

u32 smx_TimerPeek (TMRCB_PTR tmr, SMX_PK_PAR par)

Type SSR
Summary Returns the current value of the parameter specified.
Parameters tmr Timer to peek at.
par What to return.
Returns value Value of par.
0 Value, unless error.
Errors SMXE_INV_PAR par not recognized.
SMXE_INV_TMRCB Invalid timer handle.
Descr This service allows peeking at an active timer. Valid arguments are:
SMX_PK_COUNT Number of timeouts since cyclic or pulse timer started.
SMX_PK_DELAY Delay for next pulse HI or LO, if PULSE == LO or HlI, resp.
SMX_ PK_DIFF_CNT Differential count from timer before.
SMX_PK_LSR LSR to be invoked on timeout.
SMX_PK_LPAR Parameter value to pass to LSR, if tmr->opt = SMX_TMR_PAR.
SMX_PK_MAX_DELAY Total remaining time until timeout of last timer in tq.
SMX_PK_NAME Name of timer.
SMX_PK_NEXT Next timer in tq. NULL, if none.
SMX_PK_NUM Number of timers in tq.
SMX_PK_ONR Task or LSR that created tmr.
SMX_PK_OPT LSR parameter option. (See smx_TimerSetLSR().)
SMX_PK_PERIOD Period of cyclic or pulse timer.
SMX_PK_PULSE Pulse state: LO or HI.
SMX_PK_TIME_LEFT Total remaining time until timeout for tmr.
SMX_PK_WIDTH Pulse width of pulse timer.
Examplel

LCB_PTR Isra;
TCB_PTR taska,;
TMRCB_PTR tmra;

smx_TimerStart(&tmra, 5, 10, Isra, "tmra");
taska = (TCB_PTR)smx_TimerPeek(tmra, SMX_PK_ONR);

In this example, tmra is created. At some later time its owner task is determined.

148

Example2

smx_Timer

void* onr;
LCB_PTR Isrb;

onr = (void*)smx_TimerPeek(tmra, SMX_PK_ONR);
if (smx_SysWhatls(onr) == SMX_CB_TASK)

taska = (TCB_PTR)onr;
else

Isrb = (LCB_PTR)onr;

This example is for the case where tmra owner might be an LSR.

smx_TimerReset

bool smx_TimerReset (TMRCB_PTR tmr, u32* tip=NULL)

Type
Summary

Parameters

Returns

Errors

Descr

SSR

Stops a timer then restarts it with its current delay. Saves its time left in tlp, unless NULL.

tmr Timer to reset.

tlp Pointer to location to store time left.
true Timer restarted.

false Timer not restarted due to error.

SMXE_INV_TMRCB Invalid timer handle.

Dequeues tmr from the timer queue, tg. Its differential count is added to that of the next timer,
if any. The total time remaining for tmr is computed and loaded into the location pointed to
by tlp, unless tlp is NULL. Then requeues tmr in tq using its current delay and returns true.

If the tmr is a one-shot timer, its current delay is its initial delay (i.e. the delay it was started
with). For cyclic and pulse timers, the current delay is the initial delay until the first period
starts. After that, for a cyclic timer, the current delay is the period, and for a pulse timer, the
current delay is the delay until the end of the current HI or LO period.

If tmr has already timed out (i.e. tmr == NULL), returns false and loads 0 into tlp, unless it is
NULL. tmr cannot be restarted in this case because its TMRCB has already been cleared and
returned to the TMRCB pool.

149

smx_Timer

150

Example
TMRCB_PTR tmra;

smx_TimerStart(&tmra, 10, 0, Isra, "tmra");

while (1)

{
while (wait_for_event()) {}
[* perform actions */
smx_TimerReset(tmra, NULL);

}
void Isra_mainu32)
{
/* deal with timeout */
}

In this example, tmra is a 10 tick one-shot timer. Then the while loop waits for an event.
When the event occurs, it performs the required actions, then resets tmra. If the next event
does not occur within 10 ticks, tmra times out and invokes lIsra to deal with the timeout. In
this case, wait_for_event() is not an smx service, so it has no timeout.

smx_TimerSetLSR

bool smx_TimerSetLSR (TMRCB_PTR tmr, LCB_PTR Isr, SMX_TMR_OPT opt, u32 par=0)
Type SSR
Summary Changes LSR, LSR option, and LSR parameter for the specified timer.

Parameters tmr Timer to change.
Isr LSR.
opt LSR option.
par LSR par.
Returns true Timer changed.
false Error. Timer not changed.
Errors SMXE_INV_PAR Isr == NULL or opt > 3.
SMXE_INV_TMRCB Invalid timer handle.
Descr Loads new values for LSR, LSR option, and LSR parameter into the timer’s TMRCB. The

LSR option controls what is passed to the LSR when it is invoked:

SMX_TMR_PAR par stored in TMRCB.
SMX_TMR_STATE Pulse state: LO == 0, HI == 1.
SMX_TMR_TIME etime at timeout.

SMX_TMR_COUNT Number of timeouts since start.

These options help to reduce the need for peeks by the LSR. When a timer is started, the LSR
option defaults to SMX_TMR_PAR and the LSR parameter defaults to 0. This service is used

smx_Timer

to change them, as well as the LSR, if desired. Note: The timeout counter is a 16-bit value, so
it will rollover at 216 timeouts, if the cyclic or pulse timer runs that long.

Example

LCB_PTR lsra;
TMRCB_PTR tmra;

smx_TimerStart(&tmra, 10, 10, Isra, "tmra");
smx_TimerSetLSR(tmra, Isra, SMX_TMR_COUNT, 0);

void Isra_main(u32 count)

{
if (count < 100)
[* perform function */
else
smx_TimerStop(tmra, NULL);
}

In this example, tmra is started, then it is modified to pass the timeout count to Isra, instead of
tmra->par. After 100 timeouts, Isra stops tmra.

smx_TimerSetPulse

bool smx_TimerSetPulse (TMRCB_PTR tmr, u32 period, u32 width)
Type SSR
Summary Changes period and pulse width for specified timer.

Parameters tmr Timer to change.
period Timer period.
width Pulse width.

Returns true Timer changed.
false Timer not changed due to error.
Errors SMXE_INV_PAR Width >= period.

SMXE_INV_TMRCB Invalid timer handle.

Descr Loads new values for timer period and pulse width into its TMRCB. These values do not take
effect until the next period. For example, if this service is called in the middle of a pulse (state
== HlI), the pulse is allowed to complete normally and the inter-pulse period is allowed to
complete normally, then the new width takes effect. Or if called in the middle of an inter-
pulse period (state == LO), that state is allowed to complete normally, then the new width
takes effect. The new period takes effect following the new width. This ensures smooth
transitions for modulation techniques.

When a timer is started, its width is 0, by default. Hence this service converts a cyclic timer
into a pulse timer if width > 0. Otherwise, it can be used to change the period of a cyclic
timer, without having to restart the timer. Because the period or width or both can be
changed, this service can be used for pulse width modulation (PWM), pulse period

151

smx_Timer

152

Example

modulation (PPM), or frequency modulation (FM). See smx User’s Guide, Timer chapter
sections for more discussion of these.

LCB_PTR lsra;
TMRCB_PTR tmra;

smx_TimerStart(&tmra, 5, 10, Isra, "tmra");
smx_TimerSetPulse(tmra, 10, 5);
smx_TimerSetLSR(tmra, Isra, SMX_TMR_STATE, 0);

void Isra_main(u32 pulse)

{
if (pulse == HI)
Lamp(ON);
else
Lamp(OFF);
}

In this example, tmra is started, then changed to a pulse timer with a pulse width of 5 ticks
and a period of 10 ticks (i.e. 5 ticks HIl and 5 ticks LO). The timer is set to pass the pulse state
to Isra when it changes state. This is used to turn a lamp on or off.

smx_TimerStart

bool smx_TimerStart (TMRCB_PTR* tmrhp, u32 delay, u32 period, LSR_PTR Isr, const char*name=NULL)
bool smx_TimerStartAbs (TMRCB_PTR* tmrhp, u32 time, u32 period, LSR_PTR lIsr, const char* name=NULL)

Type
Summary
Compl

Parameters

Returns

Errors

Descr

SSR
Creates and starts a new timer or restarts an existing timer.
smx_TimerStop()

tmrhp Timer handle pointer.

delay Timeout, in ticks, from now.

period Period, if cyclic timer, O if not.

time Absolute time from startup (i.e. etime == 0).
Isr LSR to invoke at timeout.

name Name to give timer or NULL for no name.

true Timer created and started or restarted.
false Timer not created due to error.

SMXE_INV_PAR tmrhp == NULL, delay == 0, time < smx_etime, or Isr == NULL.
SMXE_INV_TMRCB Invalid timer handle.
SMXE_OUT_OF _TMRCBS Out of timer control blocks.

If *tmrhp == NULL, a new timer is being started. A timer control block (TMRCB) is
allocated from the TMRCB pool (smx_tmrcbs), and the start parameters: delay, period, Isr,
and name are loaded into it. In addition, the TMRCB onr field is set to the current task or to

Notes

Examples

smx_Timer

the current LSR, depending upon which made this call. Other TMRCB fields are set to
default values, which can be changed by other timer services.

If *tmrhp '= NULL an existing timer is being restarted. The timer is dequeued from the timer
gueue, tg. Then the delay, period, Isr, and name fields in the TMRCB are loaded with the new
values passed.

In either case, the timer is enqueued in the timer queue, tq, based upon its expiration time (i.e.
etime + delay). Its computed differential count is stored in its TMRCB, and it is singly-linked
into tg. Then its handle is loaded into the location at tmrhp.

The address of the user’s timer handle variable is saved in the TMRCB so the timer handle
can be cleared when the timer stops or is stopped. This is necessary to avoid an aliasing
problem for one-shot timers. If not done, a timer could time out before it is accessed again.
This would release the TMRCB which could then be re-used for a new timer. Then, a
subsequent operation for the old timer would operate on the new timer — not what was
intended.

When the timer times out, Isr is invoked with parameter stored in the TMRCB. This is set to
0, but can be changed by smx_TimerSetLSR(tmr, Isr, opt, par).

smx_TimerStartAbs() is identical to smx_TimerStart() except that it accepts an absolute time
from system start (i.e. etime == 0), rather than a delay. This is useful to ensure that correct
timing relationships are maintained between multiple timers. If delays were used, a tick might
occur between timer starts, resulting in timers not being synchronized, as expected. See the
smx User’s Guide, Timers chapter for an example of using absolute timer starts.

1. Do not declare a timer handle as an auto variable. When the timer times out or is stopped,
the timer handle location will be cleared. This will cause an error if the function that started
the timer has returned and this location is being used by another function.

2. Failure to restart a running timer, due to an error, does not stop it.

LCB_PTR lsra;
TMRCB_PTR tmra;

smx_TimerStart(&tmra, 10, 0, Isra, "tmra");

void Isra_main(u32 par)

{

[* perform timeout function */

}

The above example shows creating a one-shot timer that invokes Isra to perform a timeout
function after 10 ticks. This occurs only once, and tmra deletes itself.

smx_TimerStart(&tmra, 10, 10, Isra, "tmra");

This creates a cyclic timer which does the same after 10 ticks, then every 10 ticks, thereafter,
until it is stopped.

153

smx_Timer

154

smx_TimerStop

bool smx_TimerStop (TMRCB_PTR tmr, u32* tlp=NULL)

Type
Summary
Compl

Parameters

Returns

Errors

Descr

Note

Example

SSR
Stops timer, loads its time left into location tlp, and deletes timer.

smx_TimerStart(), smx_TimerStartAbs()

tmr Timer to stop.

tlp Pointer to location to store time left.
true Timer stopped or was already stopped.
false Timer not stopped due to error.

SMXE_INV_TMRCB Invalid timer handle.

Removes timer from the timer queue, tq. Its differential count is added to that of the next
timer, if any. The total time remaining for timer is computed and loaded into the location
pointed to by tlp, unless tlp is NULL. The timer’s TMRCB is cleared and returned to the
timer pool and *(tmr->tmhp) = NULL, so that the tmr cannot be accessed again.

If tmr == NULL, O is loaded into *tlp, and true is returned. The condition occurs if attempting
to stop a timer that has already been stopped, or never started.

Do not create a derivative timer handle because it will not be automatically cleared, which
can cause an aliasing problem — see discussion in smx_TimerStart()

TMRCB_PTR tmra;
u32 time_left;

smx_TimerStop(tmra, &time_left);

tmra is stopped, and the time left for the timer is stored in time_left.

smx Utility Functions

smx Utility Functions

smx_ConvMsecToTicks

u32 smx_ConvMsecToTicks (u32 msec) rounded up
u32 smx_ConvMsecToTicksRound (u32 msec) rounded to nearest value

Type Unrestricted macros
Parameters msec Time in milliseconds to convert.
Returns time in ticks

Descr Converts milliseconds into ticks, rounded up to the next tick or rounded to the nearest tick,
respectively, where the tick rate specified by SMX_TICKS_PER_SEC in acfg.h. The
precision of the conversion depends on the tick rate.

Example

u32 uticks = smx_ConvMsecToTicks(24);
u32 rticks = smx_ConvMsecToTicksRound(24);

For a tick rate of 100Hz, uticks = 3, rticks = 2.

smx_ConvTicksToMsec

u32 smx_ConvTicksToMsec (u32 ticks) rounded up
u32 smx_ConvTicksToMsecRound (u32 ticks) rounded to nearest value

Type Unrestricted macro
Parameters ticks Time in ticks to convert.
Returns time in milliseconds

Descr Converts ticks into milliseconds, rounded up to the next millisecond or rounded to the nearest
millisecond, respectively. This macro is intended to convert a small number of ticks, not a
large number such as smx_etime, which could cause overflow.

Example

u32 umsec = smx_ConvTicksToMsec(9);
u32 rmsec = smx_ConvTicksToMsecRound(9);

For a tick rate of 100Hz, umsec = 90, rmsec = 90.

smx_DelayMsec

bool smx_DelayMsec (u32 msec)
Type Macro that maps to SSR

Parameters msec Time to delay, in milliseconds.

155

smx Utility Functions

Returns true Delay completed.
false Error.
Descr Delays for at least the specified number of milliseconds, as close as possible, to the precision

of a tick, which may be many milliseconds, depending on the tick rate. Uses
smx_ConvMsecToTicks() to convert to ticks, then calls smx_TaskSuspend(SMX_CT,
ticks+1) to delay the current task. Adds 1 tick so the delay is at least as long as intended,
since the next tick may be just about to occur. May be used only from tasks, not ISRs since it
calls an SSR, and not from LSRs since it waits. During the delay the same and lower priority
tasks can run.

Example
smx_DelayMsec(5); /* wait 5 milliseconds */

For a 100 Hz tick rate, this would delay between 10 and 20 milliseconds, since 1 tick is the
minimum delay.

smx_DelayTicks

bool smx_DelayTicks (u32 ticks)

Type Macro that maps to SSR
Parameters ticks Time to delay, in ticks.
Returns true Delay completed.

false Error.

Descr Delays for the specified number of ticks, using smx_TaskSuspend(SMX_CT, ticks + 1).
Adds 1 tick so the delay is at least as long as intended, since the next tick may be just about to
occur.

Example

smx_DelayTicks(2);
For a 100 Hz tick rate, this would delay between 2 and 3 ticks.

smx_ERROR

smx_ERROR (SMX_ERRNO errno, u8 sev)
void smx_EMC(SMX_ERRNO errno, u8 sev)

Type Macro calling smx_EMC()

Summary smx_EMC() switches to the system (main) stack, if necessaryt, then calls the smx error
manager, smx_EM(). smx_EM() saves errno in smx_errno and in smx_ct->err or in
smx_clsr->err; it increments smx_errctr and smx_errctrs[errno]; it makes entries in EB and
EVB; and it displays an error message. It then calls smx_EMHook() to allow application-
specific error handling and recovery. If a stack overflow has occurred, subsequent stack
overflow reporting is inhibited, and the task is allowed to continue if the stack pad has not
been exceeded.

156

smx Utility Functions

smx_srnest must be > 0 when smx_ERROR() is called, in order to avoid reentry due to an
interrupt followed by an LSR or SSR. Also, it may not be called from an ISR, for the same
reason. Interrupts are enabled during execution of smx_EM)(). The macros,
smx_ERROR_EXIT() and smx_ERROR_RETY(), are used within SSRs to call
smx_ERROR().

smx_EBDisplay

void smx_EBDisplay (void)
Type Bare function

Summary Displays all entries in EB from start to end in the left panel of the display. Will scroll from
bottom to top if EB has more records than there are display lines on the screen. Should be
called only from a low-priority task because it polls the UART to send characters.

smx_Go

void smx_Go (void)

Type Function

Summary Initializes smx from information in acfg.h
Parameters none

Returns none

Errors SMXE_INSUFF_HEAP
SMXE_SMX_INIT_FAIL

Descr smx_Go() initializes the error manager, event buffer, ready queue, timer queue, and creates
the LSR queue, task timeout array, smx LSRs, smx_Idle, stack pool, and other smx objects. It
then starts smx_Idle with ainit() as its main function and begins operation in the task
environment. smx_ldle runs at maximum priority, PRI_SYS, until ainit() finishes. The above
are the dominant errors; other errors may be reported. This function is intended to be called
only once, from main().

smx_Go() uses constants in acfg.h. These control the amounts of memory used by smx
objects, as well as the tick rate, stack parameters, and other smx features.

Example
void main(u32)
{
sb_IRQsMask();
smx_Go();
}

It is important to mask interrupts (not just disable) until ainit() begins running.

157

smx Glossary

smx Glossary

This glossary defines smx terminology used in the manuals. Terms are in alphabetical order. The smx_ or
SMX_ prefix is generally omitted (else nearly all entries would be under “s”). So, for example, look for “ct”,
instead of “smx_ct”. An exception is that errors are listed under “SMXE” in order to keep them together.

access conflict Occurs when two routines try to simultaneously access a non-sharable system resource.

active task

adjusted size

Access conflicts due to preemption are similar to those caused by hardware interrupts. See
also: critical section and lock.

A task which is running or suspended, but not stopped.

of a block allocated from the heap is the next larger multiple of 8 if the requested size is not
a multiple of 8. This is the size that is actually requested.

allocation policy as applied to the heap, means specifying how a best-fit chunk is found and also specifying

ARMMY7
ARMMS

atomic

the minimum remnant size for splitting a new chunk from a larger chunk that has been
found. The allocation policy effects performance vs. memory efficiency.

Cortex-v7M processor.
Cortex-v8M processor.

As applied to code, means that a group of statements cannot be interrupted by other code.

automatic merge For eheap and smx heap means that chunk merging is automatically controlled.

autostop

background

bare block

bare function

bare macro

base block

Running through the last brace of a task’s main function results in the task automatically
stopping. When this occurs, the task can be restarted by another task.

In an smx system, tasks are considered to be in the background, and ISRs and LSRs are
considered to be in the foreground.

is a data block which is not linked to an smx control block. Examples are base blocks, DAR
blocks, heap blocks, and static blocks.

An ordinary C function that is part of the smx or smxBase APl and is prefixed with smx_
or sb_. “bare” emphasizes that the function is not task-safe and care should be exercised if
called from a task. Normally used in ISRs, LSRs, and SSRs.

An ordinary C macro similar to a bare function.

is a data block from an smxBase block pool. It is obtained with sb_BlockGet().

base block pool is an smxBase data block pool created by sb_BlockPoolCreate(). A base pool is controlled

BCB

BCB pool

BCB_PTR

by a pool control block of type PCB, which is identical to an smx PCB, but statically
defined. See smxBase User’s Guide for more information.

block control block. An smx block consists of a BCB linked to a bare block. BCBs come
from the smx_bcb pool. See xtypes.h.

consists of a singly-linked list of free BCBs pointed to by smx_bcbs.pn. The link pointer is
in the first word of each free BCB, and the last free BCB has a NULL link.

smx block handle type

159

smx Glossary

160

best-fit chunk The chunk in a large heap bin, which is the smallest chunk that is big enough to satisfy an

bfp

bin
bin leak

bin-type heap

allocation request. If the bin is sorted by increasing size, this will be the first large-enough
chunk found in the bin.

bin fix pointer (eh_hvp[hn]->bfp) is used by smx_HeapBinScan() to point to the starting
chunk for the next backward scan to fix a heap break.

See heap bin.

occurs when cmerge is ON and chunks freed are merged with adjacent free chunks and the
resulting larger free chunks are moved to larger bins.

A heap that uses bins to "store" free chunks. Chunks are not actually moved from the heap
to the bins. Rather they are linked into the bins. Each bin stores one or more chunk sizes.

binary semaphore has only two states: 0 and 1. smx_SemSignal() puts it into the 1 state if no tasks are

block

waiting; smx_SemTest() puts it into the O state. Once in the 1 state, additional signals have
no effect; once in the 0 state, additional tests suspend tasks having timeouts.

is two or more adjacent memory locations, excluding standard data types..

block migration refers to the process of making a block into a message to pass it to the background and

block pool

bmap

bool

bound

BPCB

bridge

broadcasting

bs_fwd mode

bsmap

unmaking a message into a block to pass it to the foreground. See smx User’s Guide,
Exchange Messaging chapter.

A pool of equal-size blocks controlled by a Pool Control Block (PCB). See base block pool
and smx block pool.

bin map has one bit per bin. If the bit is set, the bin contains one or more chunks.

A true(1)/false(0) variable. This is the traditional C definition. To enhance reliability, we
recommend that you test for true as !0 rather than 1.

A bound stack is a permanent stack that is released only if the task is deleted. In this case
task->flags.stk_perm is set. Bound stacks are either preallocated or allocated from a heap
when a task is created. In the latter case the size is specified in smx_TaskCreate().

block pool control block controls an eheap block pool. It has the number of blocks in the
pool, number inuse, maximum number inuse, pointers to the first and last blocks of the
pool, and the free block list pointer. See eheap.h.

is formed when heap links cannot be fixed by smx_HeapScan(). When this happens, the
chunk with a broken forward link is linked to the chunk with a broken backward link. Thus
chunks in between are bridged over. SMXE_HEAP_BRKN is reported. Bridging is
intended as a temporary measure to allow a controlled system shut down.

is accomplished by sending a message to a broadcast exchange. All tasks receiving from
the exchange will receive the message handle and the message block pointer, but not the
message block. The message block pointer allows a task to read the message. It may also be
used by a task to write its section of a message. This is called distributed message
assembly.

causes forward heap scans which is the method used to check for breaks.

bin sort map has one bit per heap bin. If the bit is set, the bin needs to be sorted.

bsp

smx Glossary

bin scan pointer (eh_hvp[hn]->bsp) is used by smx_HeapBinScan() to point to the
starting chunk for the next forward scan to check for heap breaks.

callback function A function called by the scheduler or certain smx services, which allows the user to add

CB

CBF_PTR
CBF2_PTR

cbtype

CCB

CDCB

CiCB

ceiling

CHK_OVH

chunk

client task

clsr

cmerge mode

custom operations. See descriptions in this manual for smx_EventFlagsSet(),
smx_EventGroupSet(), smx_MsgSend(), smx_PipeGetPktWait(),
smx_PipePutPktWaitStop(), smx_SemSet(), smx_SemSignal(), smx_TaskDelete(), and
smx_TaskStart(). See smx User’s Guide, Tasks chapter, task callback functions section for
details concerning task callbacks.

control block. A structure that stores control information for a system object. Each object
type (e.g. task, semaphore, or message) requires a different control block format since
different control information is needed for each. There is a pool for each type of control
block. For example, smx_mcbs, contains message control blocks. The size of a pool is
determined by a configuration constant in acfg.h, for example SMX_NUM_MSGS. See
xtypes.h, bdef.h, and eheap.h for control block formats.

callback function with one pararmeter.
callback function with two pararmeters.

control block type. This field is present in nearly all control blocks, and it is always in the
same position, if present. Values are defined in xdef.h, for example SMX_CB_TASK.

chunk free control block is placed at the start of a free chunk. It provides information
necessary to manage the free chunk. A CCB contains 24 bytes.

chunk debug control block is placed at the start of a debug chunk. It provides information
necessary to debug heap problems. In addition to fl and blf, it has chunk size, time of
allocation, owner, and one fence ahead of the data block. A CDCB contains 24 bytes.

chunk inuse control block is placed at the start of an inuse chunk. It provides forward and
backward links for the heap. A CICB contains 8 bytes.

See priority ceiling.

chunk overhead consists of the metadata in a chunk which is necessary to manage it. The
size of an allocated chunk at least = block_size + EH_CHK_OVH.

A block of memory used by the heap. A chunk consists of a chunk control block (CCB)
used by the heap code and a data block used by the application. A chunk is thus larger than
the data block, which it contains. The smx heap supports three types of chunks: free, inuse,
and debug.

is provided a service by a server task. Typically, a client task sends a message to a message
exchange, then waits for a response.

smx_clsr is the handle of the currently running LSR. If NULL, no LSR is running. While
an LSR is running, the current task is blocked from running.

for heap n is controlled by the hvn.mode.fl.cmerge flag, where hvn is the eheap variable
structure, EHV, for heap n. It controls whether freed chunks are merged. When ON, freed
chunks are merged with adjacent free chunks to avoid allocation failures by reducing
fragmentation. When OFF chunk merging is inhibited, which helps to build and maintain
bin populations. Can be turned ON or OFF via smx_HeapSet().

161

smx Glossary

162

complementary call The smx call that performs the inverse operation of a particular call. For example:
smx_MsgSend() vs. smx_MsgReceive().

complementary pipe function An smx pipe function that may be used at the other end of the same pipe.
Most combinations of PipePut functions and PipeGet functions are permitted.

context switch When a task switch occurs, the context of one task is replaced with the context of another
task. Typically a task context consists of the processor registers.

control block See CB.

control block pool smx control blocks are grouped into pools controlled by pool control blocks (PCBs).
For example, the TCB pool is controlled by smx_tcbs. Control block pools and their PCBs
are statically allocated.

counting semaphore is the same as a resource semaphore.

critical section A section of code which modifies shared data or which accesses a shared system resource.
Critical sections must be protected from interrupts and task preemptions.

ct smx_ct is the currently running task.
current chunk is the chunk that is currently being processed.

current delay For a one-shot timer, the current delay is its initial delay. For cyclic and pulse timers, the
current delay is the initial delay until the first period starts. Then, for a cyclic timer, the
current delay is its period and for a pulse timer, the current delay is the delay until the end
of the current HI or LO period.

DAR dynamically allocated region — A region of memory for dynamically allocated blocks. A
DAR is a primitive heap that allows allocating blocks but not freeing them (except the last
allocated). DARs are no longer used in smx but may be useful for other purposes. See
smxBase User’s Guide for DAR discussion.

data block is a block intended to hold data, as distinct from a control block, which holds control
information.
dc See donor chunk.

DCB_PTR DAR control block pointer points to a structure containing the pointers for a DAR. See
bdef.h for definition. A DAR control block is initialized by sb_DARInit().

deadline is the time when a task must complete an operation or a failure may occur.

deadlock or deadly embrace occurs when two tasks are waiting upon resources owned by the other. As a
consequence, neither can complete. To avoid deadlocks, tasks should get resources in the
same order and release them in the reverse order or use mutexes with ceiling priority.

debug chunk is an inuse heap chunk that contains a Chunk Debug Control Block, CDCB, and heap
fences around the data block. The number of fences is user-specified. The CDCB has
several more fields than the CICB to aid debugging heap problems and for heap
monitoring. See debug mode about controlling whether allocations become debug chunks.

debug mode for heap n is controlled by the hvn.mode.fl.debug flag, where hvn is the eheap variable
structure, EHV, for heap n. When ON, allocations produce debug chunks; when OFF,
allocations produce inuse chunks. It starts OFF and can be turned ON or OFF via
smx_HeapSet().

smx Glossary

debug version The version of smx, middleware, or application intended for debugging. It is compiled with

dequeue

dispatch

no optimization, debug symbolics enabled, and SMX_ DEBUG defined. The latter is used
to enable alternative debug code for smx, such as putting tables into RAM instead of ROM.

The process of removing a task or a message control block from a queue. Dequeueing is a
logical process. Control blocks are not moved — all stay in the same physical location.
When a queue becomes empty or an object is not in a queue, its fl == NULL. bl is not
changed, for efficiency.

Dispatching a task is the process of starting it to run. This is done by the task scheduler.
The task dispatched is the top task, unless the current task is locked, in which case it is the
one dispatched.

distributed message assembly is where components of a message (e.g. header and payload) are assembled

donor chunk

dormant

double free

dynamic

by different tasks, which have each received a pointer to the message block from a
broadcast exchange or a proxy message. See smx User’s Guide, Exchange Messaging
chapter, broadcasting messages and following sections.

is located between the lower heap and the upper heap. It supplies small chunks for the
lower heap. If the small bin array bin for the desired size is empty, the chunk is taken from
dc. This helps to separate small chunks from large chunks in order to reduce fragmentation.

A task is dormant if it is stopped with infinite timeout. Such a task will not run again unless
it is started by another task.

occurs when smx_HeapFree() attempts to free a chunk that has already been freed. If the
chunk has not already been reallocated or merged, this is detected and
SMXE_HEAP_ERROR reported.

A dynamic object can be created and deleted at run time. All smx objects can be
dynamically created and deleted.

dynamically allocated region See DAR.

EB
ec

EG

EGCB

EGCB pool

EGCB_PTR

eheap

EM

See error buffer.
See end chunk.

event group consists of 16 event flags in an event group control block, EGCB. The flags
can be set, reset, and tested by event flag service calls. The AND, OR, or AND/OR
combinations of the event flags can be tested. Multiple tasks can wait an event group, each
for its own combination of flags.

event group control block controls an event group. It contains forward and backward links
for the task wait queue, flags, and other fields. See xtypes.h.

consists of a singly-linked list of free EGCBs pointed to by smx_egcbs.pn. The link pointer
is in the first word of each free EGCB, and the last free EGCB has a NULL link.

event group handle type.

embedded heap. RTOS-agnostic heap developed for embedded systems. smx heap is
based upon it. See eheap User’s Guide for more information.

smx_EM(). See Error Manager.

163

smx Glossary

164

EMHook

end chunk

enqueue

EQCB

EQCB pool

EQCB_PTR
EREC

err

errctr

errctrs

errno

error buffer

error manager

error type

smx_EMHook() is a callback function from smx_EM() for the application to add custom
error processing and recovery code for errors.

is the last chunk of a heap. It is an 8-byte, inuse chunk with no data block. hvn.px points to
it.

The process of putting a task or a message into a queue. This is done by changing forward
and backward links (fl and bl) in appropriate control blocks to add the new item to the
gueue. Most queues are priority queues, in which case it is necessary to search in order to
place the task or message after the last object of equal priority. Some queues are FIFO
queues for which the new object is placed at the end of the list. The ready queue, smx_rq, is

a layered priority queue.. Enqueueing is a logical process. Control blocks are not moved;
all stay in the same physical location.

event queue control block controls an event queue. It contains forward and backward
links for the task wait queue, the event queue name, and other fields.

consists of a singly-linked list of free EQCBs pointed to by smx_eqcbs.pn. The link pointer
is in the first word of each free EQCB and the last free EQCB has a NULL link.

event queue handle type.

error record format for the error buffer (EB) contains fields for etime, error number, and
a handle identifying the source of the error. See xtypes.h.

smx_ct->err is the last error made by this task. If err == SMXE_TMO, a timeout has
occurred; otherwise an error has occurred. In either case, the return value is not valid.

smx_errctr counts all smx errors since system startup.
sb_errctr counts all smxBase errors since system startup.

smx error counters, smx_errctrs[]. Contains a one byte counter for each smx error type.
Accessed using smx_errno as the index. Compare the sum of all counters to smx_errctr to
determine if any have overflowed.

smx_errno stores the error number of the last error detected by smx. task->err is the last
error caused by a particular task.

sb_errno stores the error number of the last error detected by smxBase. Some smx
services use smxBase services, so an smxBase service may be the actual cause of a failure.

smx_EB is an array of error records stored cyclically — the oldest is overwritten by the
newest. Space for EB is allocated in the linker command file. It is initialized and cleared by
smx_EMInit().

smx_EM(errno, sev) is called whenever an error is detected by smx. It loads errno into
into smx_clsr->err or smx_ct->err then performs stack overflow processing. It then loads
errno into smx_errno, increments smx_errctr and smx_errctrs[errno], and saves information
in EB and EVB, if enabled, and displays an error message. smx_EMHook() is called to
perform custom error processing and recovery. For most errors, control then goes back to
the point of call with a failure return value. However, if an irrecoverable error has occurred,
smx_EMHook() stops the current task or exits the system.

smx error types are defined in xdef.h. An enum is used for compilers which permit byte
enums; defines are used for other compilers. There are 85 smx error types.

smxBase error types are defined in bdef.h. There are 16 smxBase error types.

etime

etime rollover

EVB
event buffer

event flag

event queue

exchange

smx Glossary

elapsed time in ticks since the last reset. 31 bits. For 100 ticks per second, allows 248 days
of elapsed time. Used for timeouts and waits. Stored in smx_etime.

Occurs when etime and all active timeouts are >= 2"31. When a rollover occurs, the top bit
of etime and all active timeouts is cleared. This is performed in the idle task, with LSRs
disabled so that smx_KeepTimeLSR and smx_TimeoutLSR, which perform all timing
functions, cannot run.

smx_EVB logs system events, such as task switches, LSR runs, ISR runs, SSR calls, and
user events. Each record starts with a start-of-record marker, 0x5555rrss, where rr = record
type and ss = record size in words. For example, 0x55550304 is the ISR start record (see
record types in xevh.h). All records include a precision timestamp and other fields such as
the current ISR, LSR, or task handle, user parameters, etime, error number, and SSR id and
parameters. This information is analyzed by smxAware to display an event log and
graphical event timelines.

An event group has 16 event flags, each of which indicates the occurrence of one event.
Setting an event flag may cause a match and result in one or more tasks being resumed.

An event queue permits a task to be resumed or restarted after a specified number of events
have occurred while it is waiting. Tasks are enqueued, in order, by their differential counts
so only the counter in the first task need be decremented.

A message exchange is an smx object, which permits messages to be exchanged between
tasks. It is defined by an exchange control block, XCB. Exchanges have three modes of
operation:

SMX_XCHG_NORM Normal exchange.
SMX_XCHG_PASS Pass exchange.
SMX_XCHG_BCST Broadcast exchange.

See descriptions of each type, below, and see smx User’s Guide. Exchange Messaging
chapter for more information.

external fragmentation refers to wasted space in a heap due to free blocks being more numerous and

false
fas

fence

fill mode

flyback

smaller than is useful and separated by inuse blocks so they cannot be merged.
0 or ltrue.
SecureSMX. First active slot in an MPU above static slots, if any.

is a word containing EH_FENCE_FILL defined in eheap.h. It can be any pattern as long as
bits 1 and 0 are 1’s. Fences surround the data block in debug chunks to permit small data
block overflows without damaging the heap.

is controlled by the hvn.mode.fl.fill flag in the heap n variable structure. It can be turned
ON or OFF by smx_HeapSet(). When ON, all blocks freed or allocated, dc, tc, and new
fences are filled with unique patterns. When OFF, fills do not occur.

There are two LSR flybacks implemented in the scheduler: start flyback and resume
flyback. Since the scheduler runs almost completely with interrupts enabled, just before
starting or resuming a task, it checks if any LSRs are ready to run. If so, it runs them, then
flies back to check if a higher priority task has become ready due to the LSRs. This is done
to minimize LSR and task latencies. The SVC handler has an LSR flyback at the end.

165

smx Glossary

166

foreground

foreign stack

fragmentation

frame

free()

free chunk

free chunk list

In an smx system, ISRs and LSRs are considered to be in the foreground, and tasks are
considered to be in the background.

A foreign stack is a non-smx stack. Some third-party library routines switch to their own
stacks. This is especially likely if they are called via a software interrupt. Stack checking
must be turned off while using a foreign stack. This can be done with smx_TaskSet(task,
SMX_ST_STK_CHK, 0) to turn off, and with 1 to turn on.

See external fragmentation. There also is internal fragmentation, which is wasted spare
space inside of heap chunks.

A unit of time for capturing profile information, specified in ticks by SMX_RTC_FRAME
in xcfg.h. SecureSMX also has a runtime limit frame. See the SecureSMX User’s Guide,
Runtime Limiting chapter.

Generic heap free operation that frees inuse chunks to the heap.

A heap chunk that is not in use and thus free to be allocated. A free chunk consists of a 24-
byte Chunk Control Block, CCB, and free space.

Doubly-linked list of free chunks in a heap bin. Free forward links (ffl’s) and free backward
links (fbl’s) in the bin and in each chunk are used to create the list. All chunks in the list are
of the correct size for the bin.

gate semaphore resumes all waiting tasks with one signal.

handle

handler mode

handle table

hard real-time

heap

heap bin

heap block

heap failure

A handle is a location in memory that contains the address of a control block. Hence, a
handle is a special type of pointer that points to the control block of an smx object.
Different smx objects have different handle types. For example, a task hasa TCB_PTR
handle type. Handles are used to access and control smx objects.

hmode is one of three Cortex-M modes of operation. This mode is privileged and uses the
main stack, also referred to as the main stack.

smx_ht allows assigning names to hon-smx objects. Handles are added by
smx_HT_ADD(), and they are removed by smx_HT_DELETE(). The handle table is used
by smxAware.

means that a system failure may occur if a deadline is not met.

A heap is a region of memory from which variable-size blocks can be dynamically
allocated and to which they can be dynamically freed, when no longer needed.

A heap bin heads a free list of doubly-linked chunks of a certain size or small range of
sizes. Chunks are freed to bins and allocated from bins, when possible. This results in faster
allocations than searching the heap for best-fit chunks.

is a data block allocated from the heap that is contained within a chunk.

Inability for the heap to supply a desired size block. Usually caused by excessive
fragmentation. This is indicated by the SMXE_INSUFF_HEAP error.

heap range test is a test of a chunk pointer to verify that it is within the range of the selected heap. smx

heap stack

range tests all chunk pointers, before use.

is a stack allocated from the heap. A heap stack is permanently bound to a task and remains
bound until the task is deleted.

hfp

hhwm

smx Glossary

heap fix pointer, hvn.hfp, points to the starting chunk for the next smx_HeapScan()
backward run.

heap high-water mark, hvn.nhwm, is the largest value of hused since the heap was last
initialized.

high-water mark is the maximum number of bytes of stack or heap used since initialization. Each task

hookd flag

host system

hs_fwd mode

hsp

ht
hused
idleup

init mode

stack high-water mark is saved in task->shwm. The main stack high-water mark is saved in
smx_sshwm. The heap high-water mark is saved in hvn.hhwm. These values are displayed
in smxAware and can be used to tune stack and heap sizes.

task->flags.hookd == 1 enables task->:

1. cbfun(SMX_CBF_EXIT) to be called by the scheduler to preserve an extended task
state on suspend.

2. cbfun(SMX_CBF_ENTER) to restore the extended task state on resume.
3. cbfun(SMX_CBF_STOP) to do operations on task stop, and
4. cbfun(SMX_CBF_START) to do operations on task start.

See smx_TaskSet() in this manual and the task callback function section of the Tasks
chapter in the smx User’s Guide for more information.

Refers to the development system on which application software is edited, compiled, and
linked and which runs the debugger

heap scan forward mode is controlled by the hvn.mode.fl.hs_fwd flag. It starts ON and
controls the direction of heap scans. It is an internal mode, not user controlled.

heap scan pointer points to the starting chunk for the next smx_HeapScan() forward run
See handle table.
heap used is the total heap space currently allocated, including chunk overhead.

smx_idleup indicates that the idle task has been temporarily boosted to a higher priority in
order to complete scanning a stack in the scanstack pool and moving it to the freestack pool
so that a waiting unbound task can run.

for a heap is controlled by the hvn.mode.fl.init flag. It starts OFF and is set ON when the
heap has been initialized. It can be turned ON or OFF by smx_HeapSet(). It must be turned
OFF to reinitialize the heap.

internal fragmentation In a heap, it refers to spare space in a chunk due to it being larger than necessary

interrupt

for the block it contains. In a block pool, it refers to wasted space due to blocks being larger
than usually necessary and to block pools containing more blocks than usually necessary.

An action which interrupts program execution by means of the processor’s interrupt
mechanism. Also called a hardware interrupt. Interrupts cause Interrupt Service Routines
(ISRs) to run.

interrupt latency is the time from the occurrence of an interrupt until the ISR to process it starts running.

Interrupt latency = processor latency + smx latency + application latency. The latter two are
caused by disabling interrupts for critical sections of code. smx does not disable interrupts

167

smx Glossary

168

in LSRs and SSRs, and only briefly in the scheduler and other places. smx interrupt latency
is comparable to processor latency.

interrupt service routine See ISR.

inuse chunk

ISR

large bin

last turtle

limited SSR

linear heap

A heap chunk which is currently being used. It contains the 8-byte chunk inuse control
block, CICB, the data block being used by the application, and spare space.

interrupt service routine. A function which handles a hardware interrupt. An ISR is
usually invoked via a vector stored in an interrupt vector table (IVT), however various
mechanisms are used by different processors. An smx ISR is one that may invoke an LSR.
As a consequence, it must start with smx_ISR_ENTER() and end with smx_ISR_EXIT().
Non-smx ISRs are free of this requirement as long as they have higher priority than any
smx ISR or do not enable interrupts. ISRs cannot call smx services other than
smx_LSR_INVOKE() and bare pipe functions. See smx User’s Guide, Service Routines
chapter for more information.

A heap bin that stores a range of chunk sizes.

is the last chunk in a large heap bin free list that might be smaller than a chunk before it. It
is called a turtle because it moves forward very slowly in a bubble sort.

An smx service that can only be called from tasks and not from LSRs. These are primarily
SSRs that stop the current task, such as smx_MsgReceiveStop().

A heap that must be searched sequentially to find a large-enough chunk to allocate.

link service routine See LSR.

localization

locked

As applied to heaps, means if chunks being allocated and freed during a short period of
time are physically close, cache hits will increase.

A task is locked if smx_lockctr > 0. When locked, a task cannot be preempted. However
ISRs and LSRs can run.

logical structure A heap structure that provides a more efficient means of searching for block allocations

g

LSR

than the physical structure. eheap provides an array of heap bins for this purpose.

LSR queue is a cyclic queue, which contains the handle and parameter of each invoked
LSR that is waiting to run, in the order that it was invoked. If Iq overflows due to a newly
invoked LSR overwriting an LSR that has not yet executed, SMXE_LQ_OVFL is reported.
In this case, SMX_SIZE_LQ in acfg.h should be increased.

link service routines perform deferred interrupt processing and call system services, which
ISRs cannot do. LSRs are normally invoked from ISRs, although they can be invoked from
tasks or LSRs. An LSR is passed a 32-bit parameter each time it is invoked. Unlike tasks,
the same LSR can be invoked multiple times, usually with a different parameter each time.
Once all ISRs are done, LSRs execute in the order they were invoked. This is helpful to
handle bursts of interrupts.

void Isr_main(u32 par) is the standard LSR function format. LSRs never return any value.
The LSR parameter can be defined as a different type:

void Isra_main(MCB_PTR msg);

macro

main()

main function

main stack

malloc()

master task

MCB

MCB pool

MCB_PTR

memory leak

smx Glossary

but when invoked msg must be typecast:

smx_LSR_INVOKE(lsra, (u32)msg);

There are three types of LSRs:

1. Trusted LSRs.
2. Safe LSRs (pmode).
3. Safe LSRs (umode).

Trusted LSRs are the type used in smx. They run in handler mode, like ISRs. Safe LSRs are
available only with SecureSMX. See smx User’s Guide, Service Routines chapter for more
information.

A set of statements inserted in place of an identifier, by the compiler or assembler
preprocessor. smx macro names are all caps, except for the smx_ prefix, so they can be
distinguished from functions. smx constants are all caps, including the SMX_ prefix to
distinguish them from smx macros.

Application entry point for C/C++ programs, called by startup code. See startup for more
information.

The main function of a task is the function which the task scheduler calls when it starts the
task. Its address is stored in task->fun. The main function of an LSR is the function which
the LSR scheduler calls when it starts the LSR. Its address is stored in Isr->fun.

The main stack (MS) is used for startup, initialization (including C++ static initializers),
ISRs, exception handlers, tLSRs, the scheduler, and the error manager. MS implementation
depends upon processor architecture. During initialization, it is filled with a scan pattern
and it is periodically scanned by the idle task along with task stacks to determine usage. It
is recommended that MS be located in on-chip SRAM for best performance.

Generic name for block allocation service of a heap.

A task which sends messages to a broadcast exchange. The master task retains control of
the message and can release it or send it elsewhere. See smx User’s Guide, Exchange
Messaging chapter, broadcasting messages section.

message control block. Each active smx message has an MCB, which contains message
parameters used by smx. These include its forward and backward links for enqueueing,
priority, reply index, data block pointer, block pool, and owner.

All MCBs are in a pool, which is controlled by the smx_mcbs pool control block. The
singly-linked list of free MCBs is pointed to by smx_mcbs.pn. The link pointer is in the
first word of each free MCB. The last free MCB has a NULL link.

Message handle type.

is loss of usable memory. This normally occurs in a heap due to failure to free blocks when
no longer needed and subsequently allocating them again, which results in steady loss of
free heap space. A typical example is a function that allocates a block at the start and frees
it at the end, but an early exit point is added that neglects to free the block. Debug chunks
help to identify leaked blocks by recording time of allocation and owner.

169

smx Glossary

170

message

message queue

MIN_FRAG

mode flag

MS
MSPLIM
MUCB

MUCB pool

MUCB_PTR

multicasting

mutex

NMI

non-smx ISR

An smx message consists of a data block and a message control block, MCB, linked
together. Messages are identified by their handles, which are MCB pointers. They are sent
between tasks and LSRs via exchanges.

of other kernels is the same as the smx pipe used for intertask communication.

Configuration constant in eheap.h that defines the minimum fragment (remnant) that can be
split off of a larger chunk during an allocation. This should be at least as large as the
minimum chunk size that an application needs, in order to prevent accumulation of
unusable small chunks.

In an event group, a mode flag represents a mode of operation, such as startup. Generally it
is not desirable to clear mode flags when a match occurs.

See main stack.
Main Stack Pointer Limit —an ARMMBS register used to catch main stack overflows.

mutex control block. Each active mutex has an MUCB, which contains mutex parameters
used by smx to control the mutex. It has forward and backward links for a task queue,
priority inheritance flag, priority ceiling, owner, next mutex in owned list, nesting count,
and name. The owner is the task that currently owns the mutex. The mutex owned list links
other mutexes together that are owned by the same task. The nesting count is incremented
each time the same task gets the mutex and decremented each time the same task releases
the mutex. See smx User’s Guide, Mutexes chapter for more information.

All MUCBs are in a pool, which is controlled by the smx_mucbs pool control block. The
singly-linked list of free MUCBS is pointed to by smx_mucbs.pn. The link pointer is in the
first word of each free MUCB. The last free MUCB has a NULL link.

Mutex handle type.

consists of sending proxy messages to multiple exchanges. This provides more control than
broadcasting. See smx User’s Guide, Exchange Messaging chapter, proxy messages and
multicasting section.

A mutex is a “mutual exclusion” semaphore. It is used to limit access to critical sections of
code and system resources that cannot be shared. A mutex has two states: free and owned.
Only one task at a time can own a mutex. See MUCB.

non-maskable interrupt cannot be inhibited by the processor’s interrupt flag(s). This can
cause access problems for shared resources and thus should be used with extreme caution.
An smx ISR should never be hooked to a non-maskable interrupt because smx relies on
disabling interrupts to protect critical sections.

An ISR which does not interact with smx. If such an ISR does not enable interrupts or if it
has higher priority than all smx ISRs, then there is no restriction on how it may be written.
However, if neither of these conditions is met, then it must be started with
smx_ISR_ENTER() and ended with smx_ISR_EXIT().

non-volatile registers are the registers that a C/C++ compiler expects to remain unchanged by a function

call. When an SSR causes a task switch, smx saves these registers and restores them when
the task is resumed. See also volatile registers.

normal exchange The ordinary type of exchange used to convey messages between tasks. Sending a

message to a normal exchange results in it being passed to the top task waiting at that

NULL
object

one-shot task

pass exchange

PCB

PCB pool

PCB_PTR

smx Glossary

exchange. If no task is waiting, the message is enqueued at the exchange and given to the
first task that receives a message from the exchange.

Means a null pointer. It is preferrable to use NULL rather than O for pointers.
There are three types of objects in an smx system:

1. Application objects.
2. System objects.
3. smx objects.
Application objects consist of arrays, functions, etc. which are unique to the application.

System objects consist of tasks, pools, blocks, messages, exchanges, queues, etc. created
by an application.

smx objects consist of control blocks, variables, and constants used by smx to control the
system. These are generally not available to the application.

is a task which stops when done and releases its stack. Thus, one-shot tasks do not have
infinite internal loops like normal tasks, but they can wait for resources in either the
suspended state or the stopped state.

is like a normal exchange, except that it passes the priority of the message to the task
receiving the message, unless the message priority is 0. This allows more important
messages to get expedited processing.

pool control block controls smx and smxBase block pools. It has pointers to the first and
last blocks of the pool, a free block list pointer, block size, the number of blocks in the pool,
and other information. The PCB typedef is defined in bdef.h for use by smxBase block
pools as well as smx block pools.

PCBs used for smx control block pools are statically defined in xglob.c.
smx_CBPoolsCreate() creates the smx control block pools. This function is called by
$Sub$$ _call_ctors() in IAR startup code, in order to initialize the control block pools
before C++ global object constructors run.

PCBs for dynamically-created pools are in a pool controlled by smx_pcbs. The singly-
linked list of free PCBs is pointed to by smx_pcbs.pn. The link pointer is in the first word
of each free PCB. The last free PCB has a NULL link.

Pool handle type.

permanent stack is a stack that is bound to a task when the task is created. Permanent stacks come from a

heap or are preallocated. Unlike a temporary stack, a permanent stack remains bound to a
task even if the task stops. It is only released when its task is deleted.

physical heap structure consists of all chunks in the heap, doubly-linked together in physical address

PICB

order. Every chunk has a forward link, fl, and a backward link + flags, blf, for this purpose.
The flags are SSP (bit 2), DEBUG (bit 1) and INUSE (bit 0). Adding flags to the back link
is possible because all chunks are 8-byte aligned, hence address bits 0, 1, and 2 are always

0 and not needed for addressing.

pipe control block. Each active pipe has a PICB, which contains pipe parameters used by
smx to control the pipe. It contains forward and backward links for a task queue, pipe read
and write pointers, pipe start and end pointers, pipe width, flags, and pipe name. The PICB
is allocated and initialized when a pipe is created.

171

smx Glossary

172

PICB pool

PICB_PTR
pipe

pmode

pool

porting layer

postchunk
prechunk

precise

All PICBs are in a pool, which is controlled by the smx_picbs pool control block. The
singly-linked list of free PICBs is pointed to by smx_picbs.pn. The link pointer is in the
first word of each free PICB. The last free PICB has a NULL link.

pipe handle typedef.

An smx object which permits transfer of packets or messages between tasks and between
tasks and LSRs. Packet size is specified when the pipe is created and may be 1 to 255 bytes.
Tasks and LSRs use put wait SSRs to put packets into pipes and get wait SSRs to get
packets from them. Tasks can wait on full or empty pipes. Messages can be put to the back
or to the front of a pipe. This type of pipe is also known as a “message queue”.

Pipes also permit transfer of bytes or packets between ISRs and LSRs or tasks. ISRs use
put8 and put packet functions to put bytes into pipes and get8 and get packet functions to
get them out. Put and get functions, which are intended for ISR usage, do not wait and also
cannot resume or restart a waiting task. This type of pipe is called an “1O pipe”.

SecureSMX. Privileged or protected mode.

A pool consists of contiguous blocks of equal size. smxBase provides base block pools and
base blocks, which are bare blocks. smx provides smx block pools and smx blocks, which
have block control blocks (BCBs) linked to bare blocks.

A set of functions, macros, and defines that allows moving software from one processor
and operating system to another, leaving the bulk of the software unchanged.

is the heap chunk that follows the current chunk.
is the heap chunk that precedes the current chunk.

With respect to timing, means precise to a tick counter clock. The tick counter clock rate
depends upon hardware and may correspond to one instruction clock time or many
instruction clock times.

precise profiling See profiling.

preemptible

preemption

An smx task is preemptible if it is not locked. Preemption of a task can only be performed
by a higher priority task.

is the process of one task running in place of another. The preempted task is suspended and

the preempting task is started or resumed. In smx, preemption is caused by a higher-priority
task becoming ready to run due to an external event, a service call from the preempted task,
or a timeout. When caused by an interrupt, preemption can literally occur between any two

machine instructions in the preempted task.

preemptive scheduling is one of many scheduling algorithms used by operating systems. Preemptive

priority

scheduling means that the highest priority ready task always runs, unless the current task is
locked. This is the most appropriate scheduling algorithm for hard-real-time systems, and it
is the main one used by smx.

smx task and message priorities range from 0 to 126. 0 is the lowest priority and PRI_NUM
is the highest priority. An enum is the best way to define priorities. For example:

enum {PRI_MIN, PRI_LO, PRI_NORM, PRI_HI, PRI_MAX};

smx Glossary

This allows a new level to be easily added:

enum {PRI_MIN, PRI_LO, PRI_LON, PRI_NORM, PRI_HI, PRI_MAX};

priority ceiling is a priority possessed by an object. A task assumes this priority when it owns the object.

smx mutexes can be assigned priority ceilings. The ceiling normally is the highest priority
of any task that may own the object. Priority ceiling avoids unbounded priority inversion
and also eliminates deadlocks for objects having the same ceiling.

priority inheritance is the process of promoting a mutex owner’s priority to that of the highest priority task

waiting for the mutex or of promoting a pass exchange owner’s priority to that of the
highest priority message waiting at the exchange. These are done to prevent unbounded
priority inversion for the highest priority waiting task or message. smx mutexes support
task priority inheritance. They also implement priority propagation to other mutexes, and
staggered priority demotion as a mutex is released by successive owners. smx pass
exchanges support message priority inheritance that remains in effect until the task receives
another message. The two forms of priority inheritance can be employed simultaneously
with the greater priority always prevailing.

priority inversion occurs when a lower priority task keeps a higher priority task waiting for a resource, or a

lower-priority message, which is being processed, blocks a higher-priority message,
waiting at a pass exchange, from being processed. This is normal and predictable.
Unbounded priority inversion occurs when the lower priority task is preempted by mid-
priority tasks. The resulting delay of the higher priority task is then unpredictable and may
cause it to miss a deadline. Likewise, the resulting delay of processing of the higher priority
message is then unpredictable and may cause a deadline to be missed. smx provides priority
ceiling and priority inheritance for mutexes and priority inheritance for pass exchanges to
deal with these problems.

priority promotion See priority inheritance.

priority propagation occurs when the owner of one mutex is waiting at another mutex and priority

promotion occurs at the first mutex. The new priority will be propagated to the owner of the
second mutex if its priority is lower. This process can continue for a string of mutexes.

processor architecture Typical processor architectures are ARM, ARM-M, ColdFire, etc. Within an

profiling

proxy message

PSPLIM

architecture there are different processor families and processors. See the smx Target Guide
for more information.

smx provides precise profiling and coarse profiling. Precise profiling records run time
counts (RTCs) in the TCBs of all tasks and also run time counts for all ISRs, and all LSRs.
Counts are accumulated for a frame, defined as SMX_RTC_FRAME in xcfg.h, then loaded
into the RTC buffer, which cyclically stores SMX_RTCB_SIZE samples for later display
by smxAware or transfer to a file. smx overhead is recorded as the difference between total
counts per frame and the sum of all RTCs. Coarse profiles (% idle, % work, and %
overhead) are calculated from RTCs and smoothed for console display. See smx User’s
Guide, Precise Profiling chapter.

consists of an MCB which points to a shared message data block. A proxy message can be
made from a real message with smx_MsgMake(dp, NULL), where dp points to the real
message data block. Proxy messages are used for multicasting and distributed message
assembly.

Process Stack Pointer Limit —an ARMMS register used to catch task stack overflows.

173

smx Glossary

174

ptask SecureSMX. Privileged or protected task.

ptime precise time. This is the time derived from the input clock of the tick counter and used for
profiling, time measurement, event buffer timestamps, and polling delays. It is accurate to
one tick counter clock. sh_PtimeGet() is used to get ptime.

queue Most smx queues are doubly linked lists of tasks or messages as shown in the following
example:
[» f > >l > —]
bl = bl = bl = bl
QCB TCB TCB
(frst) TCB (last)

QCB is the head of the list. It represents control blocks that have queues, such as XCBs.
TCBs are added or removed by changing links. For example to remove the first TCB, fl of
the QCB is changed to point to the next TCB and the next TCB’s bl is changed to point to
the QCB. Then, the first TCB’s fl is set to NULL to indicate that it is no longer in a queue.
Message queues are the same, except that MCBs are linked in instead of TCBs.

ready queue holds tasks that are ready to run. It has one level per priority, starting at PRI_MIN and
going up to PRI_SYS in xcfg.h. smx_rq is created by smx_Go(). The levels are in
increasing priority order, which allows a level to be directly accessed by using its priority
as an index. The highest priority level accepts tasks at that level and above. The lowest
priority level is used by smx_lIdle.

A task is enqueued in smx_rq, by indexing into it using the task’s priority, then enqueueing
the task at the end of the level. This is a very fast process, which is independent of the
number of tasks in smx_rg. The smx_rqtop pointer is maintained in order to dequeue the
top task quickly. When a task is running, smx_rqtop normally points at its TCB. When it
stops running, smx_rgtop points at the next task to run.

real message is a message with both a message body and MCB as compared to a proxy message which
has only an MCB.

register save area (RSA) is the area below a task stack which is used by the scheduler to save a task’s non-
volatile registers when it is suspended. tch.sbp points to the start of RSA. RSA size is
typically about 40 bytes, depending upon the processor. It is set by SMX_RSA_SIZE in the
processor architecture header file (e.g. xarmm.h), since it is architecture dependent.

release version is the version of smx, middleware, and application intended to be embedded in the shipped
product. It is compiled at high optimization, and with debug symbolics disabled.

remnant The remainder of a chunk after splitting a chunk. It must be at least EH_MIN_FRAG
(eheap.h) bytes or the initial chunk will not be split. It will always be above the allocated
chunk and it will be merged with a free postchunk if cmerge is ON

reply smx_MsgSend() has a reply parameter. It is an XCB handle. Its index is stored in the MCB
of the message being sent. This allows the receiving task to send a reply message, which is
useful for client/server designs.

smx Glossary

resource In a multitasking system, the term resource is generally used to mean something that tasks
use, such as an object, data, or a peripheral. Shared resources normally are protected with
mutexes or other means.

resource semaphore has an internal count corresponding to the number of resources it controls. Each
smx_SemTest() decrements the counter and passes until the count reaches 0. After that,
tasks must wait at the semaphore for signals indicating resources released by other tasks.

response time The time from the occurrence of an interrupt until an ISR, LSR, or task begins running to
process the interrupt. ISR response time is governed by interrupt latency of the processor
plus run times of higher-priority ISRs. LSR response time is the sum of all ISR run times
that might occur ahead of it and of all LSR run times that may be enqueued ahead of it.
Task response time is the sum of the above plus task switching time, assuming that it is the
highest priority task.

restart Means that a task has been stopped and now is restarting from the beginning of its
task_main(). A task restart can be due to the occurrence of the event for which the task was
waiting, a timeout, or a direct start from another task or LSR.

resume When a task resumes, it continues running from where it was suspended. All registers are
restored to their previous values, even though other tasks and service routines may have run
in the interim. Many smx services suspend a task until a desired event occurs, then resume
it. Suspended tasks can also be directly resumed by another task or LSR.

ROM version The version of an application intended to be embedded in the shipped product. It is
compiled at high optimization with debug symbolics disabled and located in ROM. See
also: release version and debug version.

round-robin scheduling means that tasks run one after the other until all have run and then the process
repeats. This is normally a cooperative scheduling algorithm, in which running tasks
voluntarily yield to allow the next task run. It can be accomplished by using
smx_TaskBump() for a task to move itself to the end of its priority level in rg. All tasks in
the round-robin group must have the same priority. Note that higher priority tasks can
preempt at any time, but lower priority tasks can run only when the round-robin group stops

running.
rq See ready queue.
rqtop smx_rqtop points to the top task in the ready queue. This is the first task in the top

occupied level of the ready queue and normally will be the next task to run.
RSA See Register Save Area.

run context The run context of a task consists of the contents of all registers, the task’s stack, its local
variables and the information in its TCB. All of these must be preserved when a task is
suspended so the task can be resumed from exactly where it left off. Volatile registers need
not be saved for an SSR and are saved on the task stack for an interrupt. Nonvolatile
registers are saved in the task’s Register Save Area (RSA), and the task stack pointer is
saved in task->sp.

If a coprocessor is present, its registers are also part of the context of any task using it. smx
provides task callback function calls for suspend (EXIT case) and resume (ENTRY) case to
save and restore extended contexts. See callback functions.

SBA See small bin array in eheap and smx heap.

175

smx Glossary

SC

scan pattern

SCB

SCB pool
SCB_PTR
sched

scheduler

scheduling

semaphore

server LSR

server task

176

See start chunk.

is a recognizable pattern loaded into a stack for stack scanning. It is defined as
SB_STK_FILL_VAL in bdef.h. We use 0x55555555, but you can use any value you wish.

semaphore control block. Each semaphore has an SCB, which contains important
semaphore parameters. These include forward and backward links for the task queue,
mode, signal counter, signal limit/threshold, and more.

smx_scbs, semaphore control block pool.
Semaphore handle typedef.

smx_sched is an internal smx variable, which tells the scheduler what to do:

SMX_CT_STOP Stop the current task.
SMX_CT_SUSP Suspend the current task.
SMX_CT_TEST Test for higher priority task to preempt.

In the first two cases, ct has already been removed from rqg. This flag is set by SSRs

The smx scheduler is a preemptive scheduler. It consists of a prescheduler, LSR scheduler,
and task scheduler. The prescheduler is entered from smx_SSREXit() or smx_ISR_EXIT().
It runs the LSR scheduler if smx_Igctr > 0, then runs the task scheduler if smx_sched > 0,
else it continues the current task, smx_ct, running. The LSR scheduler runs LSRs in FIFO
order from the LSR queue. The task scheduler starts tasks, suspends tasks, resumes tasks,
and autostops tasks. The process of starting or resuming a task is called dispatching a task.
The top task in the ready queue is the next task dispatched, unless smx_ct is stopped.

The scheduler runs with interrupts enabled, except briefly disabled in a few places. This
necessitates flybacks to ensure that the latest LSR ready to run, runs before any task. The
scheduler uses the main stack and is written in C, with a few assembly macros.

Scheduling consists of determining what to run next. LSRs take precedence over tasks.
LSRs run in the order they were enqueued. Tasks are scheduled by going to the highest
occupied priority level of rg (pointed to by smx_rqtop), then picking the first task in that
level — the so called top task.

Semaphores are used for resource management, event signaling, and gating. smx supports
six types of semaphores, each intended for a different purpose. smx_SemTest() allows a
task to test if a condition is true at a semaphore. If not, the task waits at the semaphore.
smx_SemSignal() allows a task or LSR to signal that a resource has been released or an
event has occurred.

A server LSR is typically invoked by a task, ISR, or another LSR to access a resource. A
server LSR is particularly useful to prevent access conflicts between ISRs, LSRs, and tasks
in any combination. See smx User’s Guide, Resource Management chapter, server LSRS
section for more information.

A server task typically waits at an exchange for messages from clients. When it receives a
message from a client, it performs the associated service, such as a file access, then sends a
reply to the client. Server tasks are a good way to regulate access to resources and also to
perform lengthy functions for other tasks, such as decryption. See smx User’s Guide,
Resource Management chapter, server tasks section for more information.

smx Glossary

service routine smx provides three types of service routines:

ISR Interrupt service routine
LSR Link service routine
SSR System service routine

Service routines are managed by smx and tend to occur due to events.
signal is an indication that an event has occurred.

slave task A task which receives messages from a broadcast exchange. A slave task does not get
ownership of a broadcast message. It gets only its handle and message block pointer.
Usually slave tasks just read broadcast messages. However, they may also load sections of
broadcast messages. See broadcasting.

sleep mode The mode into which the processor is put when the smx_SysPowerDown() service is
called. This is processor dependent. Some processors have only one mode, others like
Cortex-M have SLEEP and DEEP_SLEEP modes, and some processor have even more.

small bin A heap bin that stores a single chunk size.

small bin array (SBA) is an array of small heap bins in the bin[] array for a heap, starting at size 24 and
consisting of consecutive bin sizes that are multiples of 8 (e.g. 24, 32, 40, ...) up to sha_top
bin. SBA bins can be accessed very quickly by converting the desired block size to an SBA
index, e.g. binno = size/8 - 3.

small chunk A small chunk is one that fits into an SBA bin.

smx block An smx block consists of a data block and a block control block, BCB, linked together. smx
blocks are identified by their handles, which are BCB pointers. smx blocks are normally
used in the same ways as base blocks and bare blocks. Their advantage is that BCBs
contain an owner field, which can be used to ensure that all blocks owned by a task are
released when it is deleted. Also an smx block handle is set to NULL when it is released or
deleted. Hence smx blocks are more reliable than base and bare blocks.

smx block pool A block pool created by smx_PoolCreate(). An smx block pool is controlled by a pool
control block (PCB), which is identical to a base PCB, except that smx PCBs are
dynamically allocated, whereas base PCBs are statically defined.

smx call same as an smx service. Can be an SSR, function, or macro. See the smx Services section
of this manual.

SMXE_ABORT An irrecoverable error has occurred. aexit() is called to shut down the system or whatever
is appropriate.

SMXE_BF_VIOL A bus fault has occurred.
SMXE_BLK_IN_USE A block pool cannot be deleted because one or more of its blocks are still in use.

SMXE_BROKEN_Q Occurs when an invalid forward link or backward link is found while tracing a
queue. smx services abort when a broken queue is found. The scheduler attempts to fix rq if
it is broken, and xheap attempts to fix heap and bin queues.

SMXE_CLIB_ABORT A C run-time library function aborted due to an error and called abort() or exit(),
which call smx_EM().

177

smx Glossary

178

SMXE_EXCESS_LOCKS Reported if smx_TaskLock() is called more than SMX_LOCK_NEST_LIMIT
times.

SMXE_EXCESS_UNLOCKS Reported by smx_TaskUnlock() and smx_TaskUnlockQuick() if
smx_lockctr is already 0. Indicates that the number of unlocks exceeds the number of locks.

SMXE_HEAP_ALRDY _INIT Heap has already been initialized.

SMXE_HEAP_BRKN smx_HeapScan() cannot fix the heap or smx_HeapBinScan() cannot fix a bin
gueue and it may be necessary to reinitialize the heap or reboot the system. This is treated
as a non-recoverable error.

SMXE_HEAP_ERROR Indicates that a double free has been attempted and averted.

SMXE_HEAP_FENCE_BRKN A heap fence in a debug chunk does not match
SMX_HEAP_FENCE_FILL (xcfg.h) pattern. This typically indicates a data block has
overflowed.

SMXE_HEAP_FIXED smx_HeapScan() has fixed a heap problem or smx_HeapBinScan() has fixed a bin
gueue problem. No action is required. This notice will be logged in the event and error
buffers.

SMXE_HEAP_INIT_FAIL smx_Heaplnit() failed to initialize a heap.
SMXE_HEAP_RECOVER Automatic recovery from out of heap occurred.
SMXE_HEAP_TIMEOUT a heap wait timeout has occurred.

SMXE_HF_VIOL A hard fault has occurred. This may indicate an escalated MMF.

SMXE_HT_DUP smx_HTAdd() and smx_HT_ADD() report this error if the name being added is already
in the handle table.

SMXE_HT_FULL The handle table is full. Increase SMX_SIZE HT in acfg.h.

SMXE_INIT_MOD_FAIL smx_modules_init() has failed. This routine initializes the smx component
modules (e.g. smxFS, smxUSBH, etc.).

SMXE_INSUFF_HEAP Not enough heap to allocate a block of the requested size. Increase heap size in
the linker command file. smx_HeapExtend() can be used to extend the heap during
operation.

SMXE_INSUFF_UNLOCKS Reported by smx_TaskLockClear() if smx_locketr is not 1, as expected.
Indicates that the number of unlocks is less than the number of locks.

SMXE_INV_BCB smx block handle is not in the BCB range. Check if smx_BlockGet() or
smx_BlockMake() failed.

SMXE_INV_CCB The chunk control block, CCB, pointed to by the chunk pointer for the block being
freed has a forward link or backward link out of range. As a consequence, the free
operation cannot be completed and has been aborted.

SMXE_INV_EGCB Event group handle does not point to a valid event group control block. Check if
smx_EGCreate() failed.

SMXE_INV_EQCB Event queue handle does not point to a valid event queue control block. Check if
smx_EventQueueCreate() failed.

smx Glossary

SMXE_INV_FUNC SecureSMX: An attempt was made to call a function that is unavailable in the SVC
call table, smx_ssrt[] in svc.c.

SMXE_INV_LCB LSR handle does not point to a valid LSR control block.

SMXE_INV_MCB Message handle does not point to a valid message control block Check if
smx_MsgGet() or smx_MsgMake() failed.

SMXE_INV_MUCB Mutex handle does not point to a valid mutex control block Check if
smx_MutexCreate() failed.

SMXE_INV_OP Invalid operation. An attempt has been made to create, get, or make an smx object that
already exists. This prevents a hacker from exhausting a control block pool. This test is
effective only if parameter hp != NULL (the default value).

SMXE_INV_PAR An invalid parameter, not covered by other error types, has been passed to an smx call.
Check parameters vs. the smx service description.

SMXE_INV_PCB Pool handle does not point to a valid pool control block Check if
smx_BlockPoolCreate() failed.

SMXE_INV_PICB Pipe handle does not point to a valid pipe control block Check if smx_PipeCreate()
failed.

SMXE_INV_PRI The priority passed to a system service is greater than SMX_MAX_PRI defined in
xcfg.h. smx automatically adjusts such priorities down to SMX_MAX_PRI when
encountered.

SMXE_INV_SCB Semaphore handle does not point to a valid semaphore control block Check if
smx_SemCreate() failed.

SMXE_INV_TCB Task handle does not point to a valid task control block Check if smx_TaskCreate()
failed.

SMXE_INV_TIME Detected by smx_TaskSleep(time) or smx_TaskSleepStop(time) if the time
parameter is already less than or equal to stime or if it is so large that more than (2*31 - 1)
need be added to etime to convert it to a tick timeout.

SMXE_INV_TMRCB Timer handle does not point to a valid timer control block Check if
smx_TimerStart() failed.

SMXE_INV_XCB Exchange handle does not point to a valid exchange control block Check if
smx_MsgXchgCreate() failed.

SMXE_LQ_OVFL Indicates that the LSR queue has overflowed. It is usually due to LSRs not being
allowed to run. There are several possible causes for this:

1. LSRs have been disabled by smx_LSRsOff() and not re-enabled by smx_LSRsOn().

2. An LSR is hung due to a programming error. In this case, LSRs continue to be enqueued
since interrupts are enabled, but execution never returns to the LSR scheduler to run them.

3. smx_srnest is always > 1, so the LSR scheduler is never called. srnest should be 0 or a
small value. If not, it has been corrupted. Watch it in the debugger.

4. Too many LSRs are being invoked due to an ISR error.

5. The processor is being overloaded by interrupts. This may be remedied by increasing
SMX_SIZE_LQ in acfg.h.

179

smx Glossary

180

SMXE_LSR_NOT_OWN_MTX Reported by smx_MutexGet() and smx_MutexRel() if called from an
LSR. Mutexes are only for use by tasks.

SMXE_MMF_VIOL A memory manage fault has occurred.

SMXE_MSTK_OVFL The main stack has overflowed. Detected when MS is scanned or MSPLIM has
been exceeded.

SMXE_MTX_ALRDY_FREE Reported by smx_MutexRel() if a task tries to release a mutex that is
already free. This indicates that the task has called smx_MutexRel() more than
smx_MutexGet().

SMXE_MTX_NON_ONR_REL Reported by smx_MutexRel() if a task attempts to release a mutex that
it does not own. Only the owner can release a mutex. A non-owner can release a mutex
with smx_MutexFree() or smx_MutexClear(). But this should be done only in special
situations such as recovery.

SMXE_NO_ISR An interrupt to a vector with no ISR has occurred.
SMXE_NOT_MSG_ONR The current task does not own the message.
SMXE_OK No timeout nor error.

SMXE_OP_NOT_ALLOWED Limited SSR called from an LSR.

SMXE_OUT_OF BCBS, SMXE_OUT_OF EGCBS, SMXE_OUT_OF EQCBS,
SMXE_OUT_OF _LCBS, SMXE_OUT_OF _MCBS, SMXE_OUT_OF MUCBS,
SMXE_OUT_OF PCBS, SMXE_OUT_OF_PICBS, SMXE_OUT_OF _SCBS,
SMXE_OUT_OF TCBS, SMXE_OUT_OF TMRCBS, SMXE_OUT_OF XCBS

Out of control blocks of the type specified. This type of error occurs when a create call is
unable to get a control block from its pool. Usually these errors indicate that the
corresponding NUM value in acfg.h needs to be increased. For example, an
SMXE_OUT_OF_TCBS error indicates that SMX_NUM_TASKS in acfg.h should be
increased.

SMXE_OUT_OF_STKS The scheduler cannot get a stack from the stack pool for an unbound task. If
stack scanning is not enabled, out of stacks occurs if the freestack pool is empty. If stack
scanning is enabled, it occurs if both the freestack pool and scanstack pool are empty. This
error is only reported the first time it occurs, to avoid cluttering the error buffer, and also
since it may not be an error. This is because smx permits running lean on shared stacks.

The scheduler will run the next task in the ready queue that already has a stack (i.e. a bound
task). Each time the scheduler is entered it will try to run the top unbound task again.
Eventually, the task will run when a stack becomes available. If this performance
degradation is not acceptable, increase the value of SMX_NUM_STACKS in acfg.h.

SMXE_POOL_EMPTY A block pool is empty.

SMXE_PRIV_VIOL SecureSMX. An attempt was made to call a privileged smx service from
unprivileged mode, or a umode task attempted to operate on other than itself or one of its
child tasks.

SMXE_Q_FIXED The scheduler detected a broken link in a ready queue level and was able to fix it.

smx Glossary

SMXE_RQ_ERROR smx_rqtop is invalid. The scheduler attempts to fix smx_rqtop. If it fails, it reports
this error, then attempts to fix the rq level. It reports SMXE_Q_FIXED if it succeeds.
Otherwise the rq level is marked as empty.

SMXE_SEM_CTR_OVFL The signal counter in an event or threshold semaphore has overflowed the
OxFF limit. This error occurs on a smx_SemSignal() call. It usually indicates that the task
which should be testing the semaphore is not doing so — possibly because it is being
starved or due to a programming error.

SMXE_SSR_IN_ISR Indicates that an SSR has been called in an SSR if SMX_DEBUG is defined. This
also results in system shutdown.

SMXE_SMX_INIT_FAIL smx initialization has failed. Step through smx_Go() in your debugger to see
where it fails. First, you may want to expand smx_ebi in the watch window to see the first
error reported. smxAware displays the error buffer, but it may not work if not enough has
been initialized before the point of failure.

SMXE_STK_OVFL Detected in the scheduler when a task is about to be stopped or suspended and stack
checking is enabled for the task (task->flags.stk_chk == 1). Indicates that the task’s stack
pointer exceeds the stack top (task->sp < task->stp) or that the stack high water mark (task-
>shwm) exceeds the stack size (task->ssz). If there is a stack pad, and it has not been
exceeded, it is possible to continue operation. However this error is logged and displayed
only once per task, unless the task is restarted. If the stack pad has been exceeded, this error
is considered to be an irrecoverable error and smx_EMHook() will stop the task.

This error will also occur if using a foreign stack when a task switch occurs.

SMXE_TMO A timeout has occurred for the last smx service from the current task. If (task->pritmo) >
(task->pri), task->pri and task->prinorm are set to task->pritmo. This is to handle timeouts,
which require a higher priority than normal such as protocol timeouts.

SMXE_TOKEN_VIOL SecureSMX. The current task does not have a proper token to create or access an
object. Create and object modification operations require a HI_PRIV token.

SMXE_TOO_MANY_HEAPS The maximum number of heaps has already been created. Increase
EH_NUM_HEAPS in eheap.h.

SMXE_UF_VIOL A usage fault has occurred.

SMXE_UNKNOWN SIZE An smx peek operation cannot determine the requested size. This occurs, for
example, if the size of a message made from a static block is requested, since there is no
PCB.

SMXE_WAIT_NOT_ALLOWED An operation was aborted because a wait was not allowed. This
occurs when an LSR makes a call which would result in waiting. LSRs must use the
SMX_TMO_NOWAIT SSR timeout parameter.

SMXE_WRONG_HEAP The chunk or block pointer is outside of the range of the specified heap.
SMXE_WRONG_MODE smx_MsgXchgCreate() has an unrecognized mode.

SMXE_WRONG_POOL SecureSMX. For ARM-M v7, the block pointer or size are not multiples of the
region size, or the block size < 32. For ARM-M v8, the block pointer or size are not
multiples of 32, or the block size < 32.

181

smx Glossary

182

smx ISR An ISR which interacts with smx. It must start with smx_ISR_ENTER() and it must end
with smx_ISR_EXIT(). The latter calls smx_PreSched() when an smx ISR has invoked an
LSR.

SMX_PRI_NOCHG No change to a task or message priority, defined in xdef.h. Used in
smx_TaskBump(), smx_TaskStartNew(), and smx_Msg SSRs.

SMX_TICKS_PER_SEC Ticks per second. Defined in acfg.h.

SMX_TMO_DFLT Default timeout should be a large finite value that is not expected to occur during
normal operation. It should be used for all timeouts for which there is no better choice. The
intent is to enable system recovery if some unexpected failure occurs.

SMX_TMO_INF Infinite timeout should be used only in cases where the default timeout would be
inappropriate, such as servers that are called very seldom.

SMX_TMO_NOCHG No change to task’s timeout. This can be used in any SSR with a timeout. If the
task is already waiting, its timeout will not be changed. If the task is not waiting its timeout
will continue to be disabled. Most oftern used with smx_TaskStop() or
smx_TaskSuspend(). Has no effect on smx_ct.

SMX_TMO_NOWAIT No timeout results in a non-blocking call. LSRs must always specify this value
for a timeout, since they cannot wait.

SMX_VERSION Defined in xdef.h and the processor-architecture_tool.inc file. Indicates the version of
smx as 0xVVST, meaning VV.S.T. This should be used in preprocessor conditionals to
handle differences in versions of smx.

SOUP Software of Unknown Pedigree. Typically applies to third party software that may not be
available in source code form.

srnest smx_srnest is the service routine nesting level. It records the nesting level of service
routines and is 1 whenever the prescheduler or scheduler is running. When an SSR starts,
smx_srnest is incremented upon entry and decremented upon exit, unless it is 1. When an
LSR starts, smx_srnest is incremented upon entry and decremented upon exit. When an
ISR starts, smx_srnest is incremented upon entry and decremented upon exit (except for
ARM-M which has RETTOBASE flag for this). Since ISRs can nest or an LSR can call an
SSR or an SSR can call another SSR, smx_srnest can be larger than 1. If so, the ISR or SSR
will return to the point of call, upon exit. Otherwise, an ISR or SSR will transfer control to
the prescheduler and scheduler, upon exit.

SSP flag in heap chunk blf indicates that the last word in the chunk points to the beginning of
free space at the end of the chunk. If the postchunk is freed, this space will be merged with
it.

SSR system service routine is a function which starts with smx_SSR_ENTER() and ends with
smx_SSREXit(). Between these, LSRs that have been invoked by ISRs are blocked from

running, so that they cannot call other SSRs. However, an SSR can call another SSR or
system function. In this case, care must be taken to not access the same smx objects.

stack Every task requires a stack when it is running or suspended. A bound task also requires a
stack when stopped. An unbound task returns its stack to the stack pool when stopped. A
permanent stack remains bound to a task as long as the task is not deleted. smx allows
unbound tasks to be stopped while waiting for events such as signals, messages, etc. Such

stack block

smx Glossary

tasks are called one-shot tasks. Bound stacks are either pre-allocated or allocated from a
heap.

contains optional stack pad, stack, register save area, and optional task local storage, in that
order from stack block top to bottom.

stack high water mark Actual stack usage is stored in task->shwm. The stack high-water mark indicates

stack pad

stack pool

stack scan

stack size

start

start chunk

starting bin

the maximum stack usage by the task, even if it does not have a bound stack.

is an unused space located above every task stack. Its purpose is to absorb stack overflow
so the system can continue running. Its size is determined by SMX_SIZE_STACK_PAD,
in acfg.h. It is helpful to have a large stack pad during debugging. For release, a small stack
pad, rather than no stack pad, is recommended to increase system resilience The larger the
pad the greater the resilience. The stack pad is scanned ahead of the stack, so overflow into
it will be detected.

is allocated from the main heap by smx_StackPoolCreate() the first time smx_TaskCreate()
is called. Stacks in the stack pool are shared between unbound tasks. SMX_SIZE_STACK,
in acfg.h, determines the size of stack blocks in the stack pool. The actual stack size is:

stack size = SMX_SIZE_STACK - SMX_SIZE_STACK_PAD — SMX_RSA_SIZE

where SMX_SIZE_STACK_PAD is defined in acfg.h, and SMX_RSA_SIZE depends
upon the processor and is defined in xdef.h.

Bound stacks are filled with a known pattern when they are created. Unbound stacks are
filled with the same pattern when the stack pool is created and when released by stopped
tasks. Each stack is periodically scanned by the idle task, from the top of the stack pad,
task->spp, to the first change of pattern. The difference between this location and task->shp
(stack bottom pointer) is compared to the stack high water mark, task->shwm and replaces
it if larger. Stack scanning is a more accurate means to determine maximum stack usage
versus comparing the stack pointer to the stack top when the task is suspended or stopped,
because the stack pointer is not likely to be at its extreme at that time.

For stacks allocated by smx_TaskCreate(), the stack size is the same as requested, except it
might be slightly less due to alignment on an SB_STACK_ALIGN boundary. In this case,
stack block size calculated as follows:

stack block size = stack size + SMX_SIZE_STACK_PAD + SMX_RSA_SIZE

and this is what is allocated from the heap. Stack pool and preallocated stack sizes are
calculated from stack block size — see stack pool, above. Stacks must be large enough for
the maximum nesting of functions and SSRs called by the task, but need not take into
account ISR requirements, since ISRs use the main stack.

The process of adding a task to the ready queue at the end of its priority level. The task
does not actually start running until it becomes the top task. See smx_TaskStart() and
related services.

is the first chunk in the heap. It is an 8-byte, inuse chunk with no data block. smx_heap.pi
points to it.

The lowest bin that might contain a big-enough chunk. If this bin is empty, the search goes
up to the first occupied higher bin.

183

smx Glossary

184

startup code

starvation

state

Code that runs from the processor reset vector to initialize the processor and prepare for
entry into a C/C++ program. Usually it is written in assembly language. After the hardware
initialization, it calls a function provided by the C compiler to clear uninitialized data, copy
initialized data from ROM to RAM, call an application hook that smx uses to create smx
control block pools and to initialize heaps, run C++ static initializers, and branch to main().

Means that a task is not getting enough processor time to do its job. Profiling helps to
identify this problem. Various strategies can be employed to correct it.

A task can be in one of four states:

null A task which has not been created is in the null state. It has no TCB and it is
nonexistent for smx.

ready The task is ready to run — it is in the ready queue, but not actually running.
run The task is actually running. Its is still in rq.

wait The task is waiting for an event to occur. It may or may not be in a queue and its
timeout may or may not be set.

Only one task can be in the run state at a time. That task is known as the current task and
its handle is stored in smx_ct. Any number of tasks may be in the other states.

statically defined means defined at compile time and assigned to memory at link time as opposed to

static block

dynamically defined, such as an allocation from a heap.

is a data block which is statically defined, e.g.:

u8 block[100];

static initializers are routines generated by a C++ compiler to initialize static (e.g. global) objects by

stime

stop

stop call

calling their constructors. These are called during startup code after static data has been
initialized, but before main() is called. Since global objects may include smx objects, all
required smx control block pools are created before global object constructors are called.
Also all heaps needed by the global object constructors are initialized before they are
called.

system time is the 32-bit elapsed time, in seconds, from a reference time. stime is stored in
smx_stime, which is initialized by sb_StimeSet(), called from ainit(). It is used by smx
sleep functions and may be used to time-stamp files. The reference time is chosen by the
user.

task stop ends execution of a task. When smx_ct stops itself, it is dequeued from smx_rq,
put into its wait state, its stack pointer cleared, and it is enqueued on a wait queue, if
expecting an event. When smx_ct stops another task with smx_TaskStop() or
smx_TaskStart(), that task is dequeued from any queue it may be in, put into the wait state,
and its stack pointer is cleared. Due to clearing task->sp, the task’s context is lost. If task-
>flags.stk_perm flag is 0, the stack is returned to the stack pool. When the specified event
occurs or times out, the task is restarted from its main code beginning with a parameter
equal to the return value.

An SSR that causes a task to be stopped. Tasks are stopped and must be restarted, even if
the expected condition is satisfied immediately. These SSRs include those that have Stop in
their names and the smx_TaskStart() and smx_TaskStop() SSRs.

stuck chunk

suspend

suspend call

smx Glossary

A heap chunk at the back of a large bin that is not a useful size. This can happen if cmerge
is OFF, and chunk allocations from the bin are being satisfied by smaller chunks in front of
it and larger sizes are being taken from the next bin.

Pauses execution of a task such that it can be resumed from where it was suspended. When
smx_ct suspends itself, with a suspend SSR, it is dequeued from smx_rq, its context is
saved in its RSA, and it is enqueued on a wait queue, if expecting an event. When smx_ct
suspends another task, using smx_TaskSuspend() or smx_TaskResume() that task is
dequeued from any queue it may be in and put into the wait state. Either way, the
suspended task retains its stack, and its stack pointer is saved in task->sp. When the
specified event occurs or times out, the task is resumed from the point of suspension with
the return value.

An SSR that causes a task to be suspended, unless the expected condition is satisfied
immediately.

system function A non-SSR that performs an smx or smxBase service, for example: smx_TaskLock() and

smx_PipeGet8().

system service A service provided by smx. It can be an SSR, a function, or a macro. Only SSRs are task

target

task

task context

task locking

task-safe

task state

task switch

tc

TCB

preemption safe. All smx system services are prefixed with “smx_". smxBase services may
also be referred to as system services. These are limited to functions or macros and are
prefixed with “sb_". See the smxBase User’s Guide.

target system is the hardware upon which the application software runs, as distinct from
the host or development system upon which the software is developed.

An smx task consists of a Task Control Block (TCB), a main function, a stack, and a
timeout. A task is created by smx_TaskCreate() and can be deleted by smx_TaskDelete().
For SecureSMX a task also has a memory protection array (MPA) and it may have a token
array, IRQ permission array, and portal structures.

consists of all register contents, TCB, task stack, and stack pointer. All of these must be
preserved so the task can be resumed where it left off. Extended task context might include
coprocessor registers, global variables, and other information specific to the task. These can
be saved and restored with task callback function EXIT and ENTER cases.

A task can be locked using smx_TaskLock() to prevent it from being preempted while in a
critical section or to prevent unnecessary task switches. The lock can be removed with
smx_TaskUnlock() or smx_TaskUnlockQuick().

Means that a service is safe from task and LSR preemption. SSRs achieve this because an
LSR must wait for the current SSR to complete and another task cannot start until the
current SSR completes. See smx User’s Guide, Service Routines chapter.

See state.

occurs due to preempting, stopping, or suspending the current task and starting or resuming
another task. Performed by the smx task scheduler.

See top chunk.

task control block. Each task is assigned a TCB when it is created. A TCB has many
fields, which are used by smx task services and other services.

185

smx Glossary

186

TCB pool

TCB_PTR

All TCBs are in a pool, which is controlled by the smx_tcbs pool control block. The singly-
linked list of free TCBs is pointed to by smx_tcbs.pn. The next-link pointer is in the first
word of each free TCB. The last free TCB has a NULL link.

task handle typedef.

temporary stack A stack given to an unbound task from the stack pool when it is dispatched. The stack is

thread

thread-safe

released back to the stack pool when the task stops.
Short for “thread of execution.” Same as task.

Avoidance of data races between threads.

threshold semaphore resumes the next waiting task after T signals have been received, where T is the

threshold. When a task is resumed, the internal count is reduced by T. See smx User’s
Guide, Semaphores chapter, threshold semaphore section.

TickISRHook() callback function to hook into smx_TickISR() in smxmain.c. Can be used to piggyback

timeout

timeout([]

timer

ISRs on the tick interrupt for testing or to add more capability to the tick ISR without
modifying it.

All calls that can put tasks into the wait state permit a timeout to be specified. Timeouts
ensure that tasks will not wait forever and timeouts also break task deadlocks. It is
recommended that SMX_TMO_DFLT be used for all timeouts for which there is no clear
choice. SMX_TMO_NOWAIT can be specified if no wait is desired. SMX_TMO_INF can
be specified if no timeout is desired. SMX_TMO_NOCHG can only be used from another
task with a call such as smx_TaskStop(task, SMX_TMO_NOCHG). This could be used to
cause a task to stop waiting for an event, but not start until its original timeout completes.

The maximum permitted timeout is (231-1) ticks, which is the maximum value of etime.
The resolution of task timeouts is a tick. Timeouts may be specified in milliseconds by
ORing the value with SMX_FL_MSEC. The value is converted to ticks and rounded up.

smx_timeout[] is an array of 32-bit timeouts, one per TCB. A task’s timeout can be
accessed via the task’s index:

timeoutn = timeout[taskn->indx];

Each task timeout stores a future etime value or OXFFFFFFFF, if it is inactive. The smallest
currently active timeout is stored in smx_tmo_min, which is periodically compared to
smx_etime by smx_TimeoutLSR. If smx_tmo_min is less than or equal to etime, a timeout
has occurred, and smx_TimeoutLSR resumes or restarts the corresponding task. It then
searches smx_timeout[] for the next smallest timeout and loads its value into smx_tmo_min
and the task index into smx_tmo_indx. If it is also O (i.e. two tasks have timed out at once),
smx_TimeoutL SR invokes itself in order to allow other LSRs to run before it runs again.

A timer is a system object, consisting of a timer control block (TMRCB) linked into the
timer queue (smx_tq). smx supports both one-shot timers and cyclic timers. Both are
created and started by smx_TimerStart(), which allows specifying a time from now to
timeout and a cycle time. If the cycle time is zero, the timer is a one-shot timer, which is
automatically deleted after it times out. Otherwise, the timer is a cyclic timer with the
specified cycle time. Cyclic timers are requeued in smx_tg immediately so there is no
cumulative timing error.

smx Glossary

Timers are engqueued in smx_tq in order of their times, each with a calculated differential
time in its TMRCB. Decrementing of the first TMRCB counter is done by
smx_KeepTimeLSR. Timers have one tick resolution. When a timer times out, the
specified LSR is invoked with the specified parameter. Since LSRs cannot be blocked by
tasks, this provides low-jitter operation for control or sampling.

Timers can also generate pulses and be used for pulse width modulation, pulse period
modulation, and frequency modulation. See smx User’s Guide, Timers chapter for more
information on timers.

time-slice scheduling is a task scheduling algorithm in which each time-sliced task is given a guaranteed

TLS

TMRCB

TMRCB pool
TMRCB_PTR
token

top bin

top chunk

top message

top task

period to run. smx provides time slicing via runtime limiting. Note that preempting tasks
will not use time from a time-sliced task’s period. See also preemptive scheduling and
round-robin scheduling.

task local storage is a block of memory in the task stack below the register save area,
RSA. TLS should be used only with permanent stacks. It starts at task->sbp +
SMX_RSA_SIZE, which can be obtained by:

u8* tisp = (u8*)smx_TaskPeek(task, SMX_PK_TLSP);
and its size is determined by the tlssz_ssz parameter in smx_TaskCreate(), where:

tissz = tlssz_ssz >> 16;

TLS is best accessed by defining it to be a static structure or a static array. TLS variables
are not global variables and hence are safer, although smx_TaskPeek() allows obtaining the
TLS pointer of another task’s TLS (but not by umode tasks in SecureSMX). For
SecureSMX, TLS can save an MPU slot.

timer control block A timer control block is assigned to a timer and initialized when the
timer is started by smx_TimerStart(). A TMRCB has forward and backward links to link
into smx_tq, owner, interval, differential count, LSR, par, and a handle pointer. These are
used by timer services and smx_TimeoutLSR.

All TMRCB:s are in a pool, which is controlled by the smx_tmrcbs pool control block. The
singly-linked list of free TMRCBSs is pointed to by smx_tmrcbs.pn. The next-link pointer is
in the first word of each free TMRCB. The last free TMRCB has a NULL link.

timer handle typedef.

SecureSMX. Permits access to an smx object. See SecureSMX User’s Guide for more
information.

The last heap bin in smx_bin[]. It handles all chunk sizes from its minimum size up.

is the last chunk before the end chunk, ec, in heap hn. Initially, it and the donor chunk
contain all of free heap space. Allocations which cannot be satisfied by the SBA, donor
chunk, nor larger bins come from tc.

The first message in the message queue of an exchange.

The first task in the highest occupied priority level of rg. This is generally smx_ct, unless
smx_ct is locked.

187

smx Glossary

188

tq

true
u8

ulé
u32
UBA
umode

unbound

smx_tq, timer queue stores active timers in order of their timeouts. Each timer contains a
differential count, diffcnt, such that the sum of the diffcnt’ s to its position equals its
timeout. It takes a little longer to enqueue a timer, but only the diffcnt of the first timer need
be decremented each tick.

== 1. However, it is better to test for !0.

unsigned 8-bit integer.

unsigned 16-bit integer.

unsigned 32-bit integer.

See upper bin array.

SecureSMX. Unprivileged or user mode of the processor.

an unbound task has no permanent stack.

unbounded priority inversion See priority inversion.

unlocked

See locked

upper bin array UBA is that portion of bin[] array that is above the small bin array, SBA.

unrestricted macro can be invoked from any service routine or task.

utask

SecureSMX. Unprivileged or user task, which runs in umode.

volatile registers The registers that the C/C++ compiler expects to be changed by a function call, and

XCB

XCB pool

XCB_PTR

therefore does not depend upon them being preserved or saves them before the function call
and restores them after it. See also non-volatile registers.

exchange control block. Each exchange has an XCB, which contains exchange
parameters. These include forward and backward links for task and message queues, mode,
task queue flag, message queue flag, and name.

All XCBs are in a pool, which is controlled by the smx_xcbs pool control block. The
singly-linked list of free XCBs is pointed to by smx_xcbs.pn. The next-link pointer is in the
first word of each free XCB. The last free XCB has a NULL link.

exchange handle typedef.

	smx Services
	Services Format
	Notes and Restrictions

	smx_Block and smx_BlockPool
	smx_BlockGet
	smx_BlockMake
	smx_BlockPeek
	smx_BlockRel
	smx_BlockRelAll
	smx_BlockUnmake
	smx_BlockPoolCreate
	smx_BlockPoolDelete
	smx_BlockPoolPeek

	smx_EVB
	smx_EVBInit
	smx_EVB_LOG Macros

	smx_EventFlags and smx_EventGroup
	smx_EventFlagsPulse
	smx_EventFlagsSet
	smx_EventFlagsTest
	smx_EventFlagsTestStop
	smx_EventGroupClear
	smx_EventGroupCreate
	smx_EventGroupDelete
	smx_EventGroupPeek
	smx_EventGroupSet

	smx_EventQueue
	smx_EventQueueClear
	smx_EventQueueCount
	smx_EventQueueCountStop
	smx_EventQueueCreate
	smx_EventQueueDelete
	smx_EventQueuePeek
	smx_Event QueueSet
	smx_EventQueueSignal

	smx_Heap
	smx_HeapBinPeek
	smx_HeapBinScan
	smx_HeapBinSeed
	smx_HeapBinSort
	smx_HeapCalloc
	smx_HeapChunkPeek
	smx_HeapExtend
	smx_HeapFree
	smx_HeapInit
	smx_HeapMalloc
	smx_HeapPeek
	smx_HeapRealloc
	smx_HeapRecover
	smx_HeapScan
	smx_HeapSet

	smx_HT
	smx_HT

	smx_ISR
	smx_ISR_ENTER
	smx_ISR_EXIT

	smx_LSR
	smx_LSRCreate
	smx_LSRDelete
	smx_LSRInvoke
	smx_LSRsOff
	smx_LSRsOn

	smx_Msg
	smx_MsgBump
	smx_MsgGet
	smx_MsgMake
	smx_MsgPeek
	smx_MsgReceive
	smx_MsgReceiveStop
	smx_MsgRel
	smx_MsgRelAll
	smx_MsgSend
	smx_MsgUnmake

	smx_MsgXchg
	smx_MsgXchgClear
	smx_MsgXchgCreate
	smx_MsgXchgDelete
	smx_MsgXchgPeek
	smx_MsgXchgSet

	smx_Mutex
	smx_MutexClear
	smx_MutexCreate
	smx_MutexDelete
	smx_MutexFree
	smx_MutexGet
	smx_MutexGetFast
	smx_MutexGetStop
	smx_MutexPeek
	smx_MutexRel
	smx_MutexRelFast
	smx_MutexSet

	smx_Pipe
	smx_PipeClear
	smx_PipeCreate
	smx_PipeDelete
	smx_PipeGet8
	smx_PipeGet8M
	smx_PipeGetPkt
	smx_PipeGetPktWait
	smx_PipeGetPktWaitStop
	smx_PipePeek
	smx_PipePut8
	smx_PipePut8M
	smx_PipePutPkt
	smx_PipePutPktWait
	smx_PipePutPktWaitStop
	smx_PipeResume
	smx_PipeSet

	smx_Sem
	smx_SemClear
	smx_SemCreate
	smx_SemDelete
	smx_SemPeek
	smx_SemSet
	smx_SemSignal
	smx_SemTest
	smx_SemTestStop

	smx_SSR
	smx_SSR_ENTERx
	smx_SSRExit

	smx_Sys
	smx_SysPseudoHandleCreate
	smx_SysPeek
	smx_SysPowerDown
	smx_SysWhatIs

	smx_Task
	smx_TaskBump
	smx_TaskCreate
	smx_TaskCurrent
	smx_TaskDelete
	smx_TaskLocate
	smx_TaskLock
	smx_TaskLockClear
	smx_TaskPeek
	smx_TaskResume
	smx_TaskSet
	smx_TaskSleep
	smx_TaskSleepStop
	smx_TaskStart
	smx_TaskStop
	Task or LSR Autostop
	smx_TaskSuspend
	smx_TaskUnlock
	smx_TaskUnlockQuick
	smx_TaskYield

	smx_Timer
	smx_TimerDup
	smx_TimerPeek
	smx_TimerReset
	smx_TimerSetLSR
	smx_TimerSetPulse
	smx_TimerStart
	smx_TimerStop

	smx Utility Functions
	smx_ConvMsecToTicks
	smx_ConvTicksToMsec
	smx_DelayMsec
	smx_DelayTicks
	smx_ERROR
	smx_EBDisplay
	smx_Go

	smx Glossary

