
 

 
 
 
 
 
 
 

SMX® RTOS 
 

 

 

 

Quick Start 
 
 
 
 
 

Version 5.4 
 

July 2025 
 
 
 
 
 
 

by 
David Moore 

 
 
 
 
 
 
 

 
 
 
 
 



  

 
 
 
 
 

© Copyright 2004-2025 
 

Micro Digital Associates, Inc. 
 (714) 437-7333 

support@smxrtos.com 
www.smxrtos.com 

 
All rights reserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

smx is a registered trademark of Micro Digital, Inc. 
smx product names are trademarks of Micro Digital, Inc. 

Other product names are trademarks of their respective companies. 
smx is protected by patents listed at www.smxrtos.com/patents.htm and patents pending. 

 

http://www.smxrtos.com/patents.htm


 

Contents 
 
INSTALLATION .................................................................................................................................................. 1 

SMX ............................................................................................................................................................... 1 
Compiler and Tools ........................................................................................................................................ 1 

DOCUMENTATION ........................................................................................................................................... 2 

Manuals .......................................................................................................................................................... 2 
BSP Notes ...................................................................................................................................................... 2 
Release Notes and Text Files ......................................................................................................................... 2 
Conventions .................................................................................................................................................... 2 

GLOBAL CONCEPTS ........................................................................................................................................ 3 

smx vs. SMX .................................................................................................................................................. 3 
Directory Structure ......................................................................................................................................... 3 
Protosystem .................................................................................................................................................... 4 
Demos ............................................................................................................................................................. 4 
RTOS Porting Files ........................................................................................................................................ 5 
Version Numbers ........................................................................................................................................... 5 
Build Information ........................................................................................................................................... 5 
Module Defines .............................................................................................................................................. 5 
Optimization ................................................................................................................................................... 5 
Conditionals ................................................................................................................................................... 5 
Naming Convention ....................................................................................................................................... 6 

GETTING STARTED .......................................................................................................................................... 7 

ARM-M — IAR ............................................................................................................................................. 8 

PROTOSYSTEM ................................................................................................................................................ 10 

Project File ................................................................................................................................................... 10 

CONFIGURATION ........................................................................................................................................... 11 

Summary ...................................................................................................................................................... 11 
Application Configuration (acfg.h) .............................................................................................................. 11 
smx Kernel Configuration (xcfg.h) .............................................................................................................. 11 

SMX STARTUP AND SCHEDULER OPERATION .................................................................................... 14 

SUPPORT ............................................................................................................................................................ 16 

Support Site .................................................................................................................................................. 16 
Bug Fixes ...................................................................................................................................................... 16 

APPLICATION DEVELOPMENT.................................................................................................................. 17 

Main Steps .................................................................................................................................................... 17 
Guidelines ..................................................................................................................................................... 17 
app.c ............................................................................................................................................................. 17 
Simplification ............................................................................................................................................... 18 
Debugging .................................................................................................................................................... 18 
BSP API ....................................................................................................................................................... 19 



  

UTILITIES .......................................................................................................................................................... 20 

TIPS ...................................................................................................................................................................... 22 

 



1 

Installation 

SMX releases are posted online, and the access information is emailed. We create a release 
of exactly the modules you ordered, for the processor and tools you are using. We configure 
header files and demos, and we test it on a common evaluation or development board. This 
ensures you get a quick start. 

SMX 
Installation is as simple as downloading and unzipping the release file and adding 
\SMX\BIN to your path so our utilities can be found. 

Compiler and Tools 
See the SMX Target Guide for any extra steps and tips about installing your compiler and 
tools. Look for an Installation section at the beginning of the section for your compiler and 
tools. 

 



2  

Documentation 

Manuals 
Manuals are provided in PDF form at www.smxrtos.com/doc. 
 
• SMX Quick Start — overview of SMX® Modular RTOS (this manual) 
• SMX Target Guide — details about processors and tools 

• SecureSMX User’s Guide — explains use of security features based on the MPU 

• smx kernel manuals 

o smx User’s Guide — explains use of smx and multitasking 
o smx Reference Manual — kernel API and glossary of terms 
o smxAware User’s Guide — kernel-aware debugger plugin 

 

BSP Notes 
These are PDF files that summarize important information about target boards. They show 
memory layout, peripherals supported, important notes, and other details and tips about the 
board. One of these is provided in the DOC directory for the BSP you ordered. 

Release Notes and Text Files 
Text files in the DOC directory provide additional information about the modules 
(products) you licensed that is not covered in the manuals. The smx release notes (e.g. 
smx54.txt) contain important notes and changes from the previous version of smx. 

Conventions 
Since the SMX Target Guide is organized in a hierarchy several levels deep, we often use 
the following convention to refer to sections in it:  Section1/ Section2/ Section3/ ….   
Section 3 is a sub-section of Section 2, which is a sub-section of Section 1. The space is put 
after each slash for readability and word-wrapping. We use backslashes in file paths. 

http://www.smxrtos.com/doc


3 

Global Concepts 

smx vs. SMX 
smx means the smx multitasking kernel. SMX means the RTOS, which includes smx and 
middleware. 
 
Directory Structure 

Main Directories 

APP Protosystem directory. See Protosystem section below. Contains demos too. 
BIN Utilities. 
BSP Board and processor support code. 
CFG Global configuration files; mainly preinclude files and similar files related to 

specifying modules to link and the target hardware to build for. 
DOC Documentation, including BSP notes and release notes. 
ESMX Example files that link with the Protosystem. 
SA smxAware. Copy to tool directory. See smxAware User’s Guide. 
SSMX SecureSMX files for MPU, portals, etc. 
XBASE smxBase files. This is the framework for all SMX modules. Contains 

general definitions, common/core Protosystem files, and OS porting layer 
used by middleware modules. 

XMW Middleware (file system, TCP/IP, etc. from third parties) 
XPORT Porting files to migrate from other RTOSes to SMX, such as FRPort for 

FreeRTOS and TXPort for ThreadX. 
XSMX smx kernel directory. Stores the smx source and header files. 

Build Directories (XXX.YYY\ZZZ)  

XXX.YYY is the build directory.  The project files and other build files are stored here. 
 
 XXX designates the compiler: 
  IAR IAR Embedded Workbench 
 YYY designates the processor: 
  AM ARM-M (e.g. Cortex-M) 
 
ZZZ is the output directory. The object files, library, executable, map, etc. are stored here 

after running a build. This directory is created automatically by the build. The name is 
usually Debug, Release, or ROM. 

 
Benefits of SMX Directory Structure 

• Files for each module (product) are separate. Header files for a module are kept with 
the module’s source files. This makes it easy to see what files comprise each 
module; it is much cleaner than mixing hundreds of unrelated files in one directory. 



4  

• Allows keeping Debug, Release, ROM, and other versions built simultaneously; not 
necessary to “clean” between these different builds. 

• Avoids mixing object files with source code files. 

• Allows dual-build releases (two compilers and/or processors). This makes it easier 
to migrate to another, if the need should arise. 

Protosystem 
The Protosystem is the framework for your application. It also serves as a sample 
application that runs demos for the different SMX modules. Demos are added by enabling 
macros in the appropriate configuration file. For IDE builds, this is set in the “preinclude” 
files in the CFG directory. See the section for the compiler you are using in the SMX Target 
Guide for more information about these. Similarly, SMX modules are enabled at the top of 
the preinclude files. 

The Protosystem is stored in the APP directory, with some common, core files in XBASE. 

You should build and run the Protosystem, as shipped, before making changes to it. 
Run the demos provided for the SMX modules you licensed. See the Getting Started section 
for your tools, below, for directions to do this. Keep the APP directory pure; create copies 
of it (with new names) for application development and experimentation. 

More information about the Protosystem is given in the SMX Target Guide, such as a 
listing of the core files and those that are processor-dependent. The former are in the 
Common Notes section; the latter are in each of the processor sections. 

Demos 
Demo code is important because it serves as a confidence test you can immediately build 
and run to verify operation of SMX modules. It also serves as example code that can teach 
you the basics of using a module. All demos are stored in the APP\DEMOS directory. Only 
the appropriate demos are included for the modules you licensed. All of this code can be 
discarded. 

Demos plug into the Protosystem. They are enabled by uncommenting lines in the main 
preinclude file, e.g. CFG\iararm.h (and adding or un-excluding the source files to the project 
for IDE builds). Some or all demos for the SMX modules you ordered are enabled, as 
shipped. We suggest you build and run first without changing the configuration. Some 
demos cannot be run together because of competition for the screen or keyboard. Enabling 
one demo at a time may be a good idea to see what each does. It will then be pretty clear 
which demos will run together. These limitations apply only to the demos; all SMX 
modules work together. 



5 

RTOS Porting Files 
Files in XPORT map other RTOS services onto SMX, to make it easier to migrate to SMX. 
These files map other RTOS services onto SMX. Currently available are FRPort for 
FreeRTOS (in subdir FR) and TXPort for ThreadX (in subdir TX). (CMPort is for CMSIS 
(in subdir CM) but is only a minimal set of functions to support FatFs.) Add the files for the 
RTOS you are using to your App project. First you can run the tests in the FR and TX 
directories (but set SMX_CFG_SSMX to 0 in XSMX config files).  

Version Numbers 
1. SMX_VERSION (in xdef.h) indicates the current version of the smx kernel. It can be 

used by third party developers to condition their code to support different versions of 
smx. smx_Version is an smx global variable that is initialized to this value. It is used by 
smxAware so it can properly display control blocks and other structures that differ 
between smx versions. 

2. The version number in the comment at the top of each file indicates the version when 
that particular file was last modified. 

Build Information 

Build Versions 

Build target names are typically Debug, Release, and ROM, or similar. See Build Targets in 
the section for the compiler you are using, in the SMX Target Guide. 

Debug No or low optimization, debug symbolics enabled, located for RAM. 

Release Max or high optimization, no debug symbolics, located for RAM. 

ROM Same as Release but located for ROM/Flash. 

SMX_BT_DEBUG is defined in the project files for the Debug build targets. 

Module Defines 
Supported third party middleware has a define for each in CFG\iararm.h to enable it. Demos 
are enabled by a similar define for each, with _DEMO in the name. 

Optimization 
By default, project files are set to optimize for speed rather than size (for build targets that 
enable optimization). 

Conditionals  
Although preprocessor conditionals can make code harder to read, they avoid the need for 
us to maintain multiple versions of each file. Having to remember to make every fix and 



6  

improvement to multiple copies of the same file is error prone, no matter how careful one 
is. Having one file is safer. If the conditionals in a particular file are distracting while you 
are debugging it or making modifications, we recommend that you delete the conditional 
sections that do not apply to your release, such as sections for compilers and processors that 
you are not using. Some editors allow hiding conditional sections. Refer to Common Notes/ 
Target Defines in the SMX Target Guide for a list of the more important defines used in 
conditionals. If you are in doubt about one you encounter, please ask us. 

Naming Convention 
In SMX code, identifiers have a 2 or 3-letter prefix indicating the module (product) they are 
part of, such as smx_, so that each has its own namespace, to avoid conflicting with your 
code or third-party libraries. sb_ is used for smxBase and BSP. The prefix is lower case for 
functions, macros, and variables. It is capitalized for constants (#defines). The underscore is 
used to make it convenient to search application code for all calls made to a particular 
module such as the smx kernel and to visually separate the prefix from the name. Searching 
for smx without the underscore would produce many extraneous matches. Type names are 
generally not prefixed, to keep the names shorter and simpler. There are relatively few data 
types used in a program compared to #defines, variables, and functions, so there is not as 
much of a namespace issue. Structure field names are purposely kept short, which is fine 
since each structure is its own namespace. 

 



7 

Getting Started 

The directions in the following sections will help you get started with your tools. However, 
keep in mind that tools are always changing, so if you encounter difficulty, contact us. 

The directions here are purposely terse. The other sections of this manual and the SMX 
Target Guide fill in the details. 

 



8  

ARM-M — IAR 
 

Tool Setup 

See IAR Embedded Workbench ARM in the ARM-M section of the SMX Target Guide. 

Building the Protosystem 

 1 Start Embedded Workbench (the IDE). (We only support building from the IDE; we 
do not provide makefiles to build from the command line.) 

 2 File | Open | Workspace. Browse to the command level subdirectory: 
\SMX\APP\IAR.AM. Go into the subdirectory for the board you are using and 
double-click on the App_.eww file there. 

 3 Edit \SMX\CFG\iararm.h to match your target (if not already set properly). This is a 
“preinclude” file included by the IDE ahead of each file. Changing it marks all files 
to be rebuilt. 

 4 Press the Make button. 

Running and Debugging the Protosystem 

 1 Build the Protosystem (APP), as above. 

 2 Connect your JTAG unit to your target board and host. See ARM-M/ Tools/ JTAG 
Units in the SMX Target Guide for more information. 

 3 Connect a terminal or terminal emulator (115200-8-N-1) to the first COM port so 
you can see demo output from app.c. 

 4 Press the Debug button to download the app to the target. It should execute the 
startup code and stop at main(). 

 5 Press the Go button. From there, you can step or run. If the board has LEDs, you 
should see them count up (in binary if it is a row of LEDs). 

 6 Press the Stop button to break execution. 

 7 When running, you can press Esc at the terminal to exit the application. This runs 
aexit() under the Idle task, at maximum priority. aexit() calls some exit functions, 
displays a message to the terminal indicating whether it is a normal exit or the error 
that caused the exit, then calls sb_Exit() which calls sb_Reboot(). These can be 
filled in with user code. 

 8 We recommend putting a breakpoint in smx_EMHook() in sys.c so that you will 
know immediately if an smx error occurs. The call stack shows how you got there. 



9 

Enabling smxAware 

See the smxAware User’s Guide for detailed setup information and instructions for use. 

 1 Copy the smxAware .dll, .ewplugin, and .exe files from \SMX\SA to 
arm\plugins\rtos\smx in the IAR EWARM directory. 

 2 Start Embedded Workbench. (Or exit and re-start so the DLL will be loaded.) 
smxAware should already be enabled in the project, but check it: 

 In the project Options, select Debugger in the left pane and the Plugins tab in the 
right pane. Put a checkmark next to smxAware in the list of plugins to load. 

 3  Start a debug session as usual (see previous section). A new “smxAware” entry is 
added to the main menu. 

Building, Running, and Debugging SMX Module Demos 

 1 Enable the demo(s) in App\acfg.h. 

 2 Configure the demo(s), if desired, at the top of their .c files. 

 3 Follow the same instructions as for Running and Debugging the Protosystem, 
above. 

 4 If you have difficulty, read the appropriate .txt files in \SMX\DOC, if there is one. 
Otherwise, please ask. 

What To Do Now 

 1 See the ARM-M section of the SMX Target Guide for more information about CPU 
and tool issues. See the IAR subsection for more information about using this 
compiler with SMX. 

 2 See the BSP notes PDF in the DOC directory for information about the board and 
processor. 

 3 Read the sections following these Getting Started sections, and begin application 
development. 

 



10  

Protosystem 

The Protosystem is the framework for your application. It builds several core application 
files plus BSP files, startup code, kernel, and middleware. It is stored in the APP directory. 

More information about the Protosystem is given in the SMX Target Guide, such as a list of 
the core files and those that are CPU-dependent. The former are in the Common Notes 
section; the latter are in each of the CPU sections. 

Project File  
We intend that you use the Protosystem project file for your application. You should add 
your files to it and remove demo files. 

Project files may have some files excluded from the build. IDEs commonly support this. It 
is easier to re-enable such a file than to browse to it and add it to the project if necessary in 
the future. You may delete unused files from the project if you prefer. 



11 

Configuration 

The smx kernel and middleware each has its own local configuration. There is also 
application configuration. This section summarizes where to find documentation about 
various configuration settings, and it documents smx kernel and application configuration 
settings. 

Summary 
1. Application configuration is done in acfg.h and the linker command file (.icf) in the 

Protosystem (APP). Guidance is given below. 

2. smx kernel configuration is done in xcfg.h (and assembly .inc) in XSMX. Settings are 
documented below. 

3. smxBase configuration is done in bcfg.h in XBASE. Settings are documented in the 
smxBase User’s Guide. 

4. BSP configuration is done in bsp.h and bsp.inc in the subdirectory for your BSP. Many 
or most of the settings are probably already correct for your target, but check each to be 
sure. See the comments there and the information at the start of the BSP API section in 
the smxBase User’s Guide. 

5. Some places in the code are tagged for your attention. Search (grep) for “USER:” to find 
them. 

Application Configuration (acfg.h)  
Settings are mostly for number or size and are self-explanatory or documented by the 
comment next to each. The NUM settings limit the number of control blocks of the 
indicated type and the corresponding setting should be increased if the error manager 
reports an SMXE_INSUFF_xxx error. 

smx Kernel Configuration (xcfg.h)  
Settings with CFG in the name indicate configuration settings that add features. Others are 
generally number or size settings. 

SMX_CFG_DIAG 

If 1, extra diagnostic information is collected such as LSR queue high water mark and  
counters of system calls (total and each). Setting to 0 removes this additional code and 
improves performance slightly. Typically this would be enabled during development 
and disabled for release. 

SMX_CFG_EVB 

If 1, the Event Buffer is present; if 0 it is not. The Event Buffer is used by smxAware to 
display its event timelines graph and textual event buffer. 



12  

SMX_CFG_PROFILE 

If 1, profiling is enabled. Set to 0 when bringing up a new port or making time 
measurements. See the smx User’s Guide for information about smx profiling. 

SMX_CFG_STACK_SCAN 

If 1, stack scanning and clearing code is present; if 0 it is not. Scanning is the best way 
to determine stack usage to enable stack size tuning. This information is stored in the 
TCB and is displayed in smxAware graphically and textually. 

SMX_CFG_SSMX 

If 1, SecureSMX support is enabled (using Cortex-M MPU). See the SecureSMX 
User’s Guide. 

SMX_CFG_MPU_ENABLE 

Set to 0 to temporarily disable use of the Cortex-M MPU and privilege/unprivileged 
operation, if it is interfering with development or debugging. In this case, the MPU is 
never enabled, all code runs privileged, and system calls are direct, not through SVC. 

SMX_CFG_PORTAL 

If 1 and SMX_CFG_MPU settings are 1, portals are enabled. See the SecureSMX 
User’s Guide. 

SMX_CFG_RTLIM 

If 1, enables runtime limiting of tasks. 

SMX_CFG_TOKENS 

If 1, tokens are enabled to prevent unauthorized use of smx objects. See the SecureSMX 
User’s Guide. 

SMX_IDLE_RTLIM 

Number of idle passes per runtime limit frame. 

SMX_LOCK_NEST_LIMIT 

Maximum lock nesting. Set as desired. SMXE_EXCESS_LOCKS is reported if this 
limit is exceeded. 

SMX_CFG_RTCB_SIZE 

Number of run time counter samples in smx_rtcb. 

SMX_CFG_RTC_FRAME 

Determines rtc frame in ticks. 



13 

SMX_ PRI_NUM 

Specifies the number of priority levels. Must be <= 127. Note that 0xFF is reserved to 
mean no change for some API calls. 

SMX_PRIORITIES enum 

These are the predefined task priority levels. Although numbers could be passed for 
priorities, an enum allows using meaningful names. You can add new levels < 127 
(0xFF). These are used in SMX modules and the application, so that is why this is 
located in xcfg.h rather than acfg.h. 

 



14  

SMX Startup and Scheduler Operation 

startup code -> main() -> smx_Go() -> smx_SchedRunTasks() -> ainit() -> tasks 

 1 startup code is usually written in assembly language. Details of routines and files 
vary for each board and compiler. See the section Protosystem / BSP Files in the 
section for your CPU in the SMX Target Guide. This code calls main(). 

 2 main() calls smx_Go(). Minimize changes to main(). Instead add code to ainit(). 
Prior to calling smx_Go(), interrupts are masked. The interrupt mask that was in 
effect is later restored by ainit() (see below). 

 3 smx_Go() initializes smx. The smx_Idle task is created and started here. Finally 
smx_Go() calls smx_SchedRunTasks(), in the scheduler. 

 4 smx_SchedRunTasks() is the smx task scheduler. Since smx_Idle task was set to 
maximum priority, it is the first to run. ainit() is its code, initially (in main.c). 

 5 ainit() restores the interrupt mask that had been in effect in main() before they were 
masked. Normally, the startup code should have had all interrupts already masked, 
so they still remain masked, but if there had been a need to enable an interrupt prior 
to main(), this would re-enable it. (As a general rule, interrupts should be unmasked 
individually right after each ISR is hooked.) Then ainit() creates some tasks and 
calls mw_modules_init(), which performs some additional initialization of 
middleware modules, such as file system, TCP/IP, etc. Then it calls appl_init(), 
which creates application tasks. These tasks do not run yet, since smx_Idle is 
maximum priority and it does not suspend itself (see note 4 below). The last step of 
ainit() is to call smx_TaskStartNew(), which sets smx_Idle’s code to 
smx_IdleTaskMain() and lowers its priority to 0. 

 Important:  ainit() and all routines it calls must not call SSRs that suspend, or other 
tasks will start running before initialization is complete. See note 4 below. 

 6 tasks  Once smx_TaskStartNew() completes, the system is multitasking! The 
highest priority task in the ready queue is dispatched. (If there is more than one, the 
first task that was started is the first to run.) From this point on, the highest priority 
task will run. Every interrupt and every smx call designated as an SSR in the 
Reference Manual is an entry into the scheduler. The scheduler first runs any LSRs. 
If the current task is locked, execution returns to it. Otherwise, the scheduler looks 
to see if a higher priority task has become ready. If so, the current task is 
immediately suspended and the higher priority task is resumed or started. 

Notes: 

  1. The smx scheduler (xsched.c) consists of: 
a. LSR scheduler 
b. Task scheduler 
c. smx_SSR_ENTER() and smx_SSR_EXIT() routines (begin and end all system 

services (SSRs)) 



15 

 
Note that SSR and ISR exit call the prescheduler (smx_PendSV_Handler written in 
assembly) to call the LSR and Task schedulers. 
 

  2. ISRs branch to the scheduler only if LSRs are waiting to run, for efficiency. (See the 
check of smx_lqctr in smx_ISR_EXIT.) Also, nested ISRs do not enter the scheduler, 
and instead return to the point of interrupt. 

 
  3. Locking is accomplished by the smx_DO_CTTEST() macro, which is used by SSRs 

(see xsmx.h). If the current task is locked, smx_sched is not set, so after the scheduler 
runs any waiting LSRs, the task scheduler is not entered, and instead the scheduler 
returns to the current task. 

 
  4. ainit() actually runs in the multitasking environment, as the idle task. It completes 

before any other tasks run, because it is set to maximum priority. However, this would 
not be true if idle were to suspend or stop itself by calling an SSR with a timeout. Then 
some other task could run before the system was fully initialized, thus causing an error. 
(Note that locking idle is not a solution because that does not prevent it from suspending 
or stopping itself.) Note that your application init in appl_init() is called by ainit(), so it 
also must not call SSRs that suspend or stop. 

 
  5. Setting smx_Idle task’s code to ainit() and then later switching it to smx_IdleMain() 

demonstrates how a task’s main function can be changed at any time. 
 



16  

Support 

Support Site 
Check www.smxrtos.com/support regularly for fixes, enhancements, and technical 
information. To access it, you must supply a password. You will be notified whenever it 
changes, if you have given us your email address and you are current on your maintenance 
and support contract. To get the password, email support@smxrtos.com. Indicate the 
company you work for that licensed our software and the serial number of your license / 
release. 

Bug Fixes 
As fixes are made, we post entries on the Product Fixes page of the support site. These are 
categorized by product, and dates are marked next to each entry to make it easy to see which 
are new since you last checked. Each entry is a link to more information about the fix and 
how to apply it. Sometimes fixed source files are provided. Contact support@smxrtos.com 
if you need help applying fixes. If many are needed, it might be better to request an update. 



17 

Application Development 

Before you begin work on your application, please build and run the Protosystem, as 
shipped, as a confidence test. The project file set to build and link some or all of the SMX 
modules you licensed. Please follow the instructions in the Getting Started section of this 
manual, for your processor and tools. 

Main Steps 
1. Make a copy of the APP (Protosystem) directory, naming it for your application. (Keep 

the original, pure directory so you can do confidence tests or experimentation, in a copy 
of it.) 

2. Replace app.c with one or more application files. 

3. Configure. 

4. Remove any unnecessary code and conditionals (optional). 

Guidelines 
1. To allow you to easily integrate future updates of smx we suggest that you 

minimize modification to the Protosystem files. Of course, you may remove any 
irrelevant code from them, but you should not add application code to them. Put your 
code into new files. You should tag all changes you make to SMX files. 

2. We recommend putting application initialization routines into each application file. 
These should be called from appl_init() which, in turn, is called by ainit() in main.c. 
Each initialization routine creates smx objects, starts tasks, etc. as needed by the code in 
its file. Similarly, there should be exit routines in each application file, if the application 
exits. These should be called from appl_exit(), which in turn, is called by aexit(). 

app.c 
To start your application, create a new app.c like this: 
 /* app.c */ 
 
 #include "smx.h" 
 #include "smxmain.h" 
 
 void appl_init(void) 
 { 
 } 
 
 void appl_exit(void) 
 { 
 } 
 
These are the hooks for you to initialize and exit your application. Add code to appl_init() to 
create your main smx task(s) and other objects. You do not need to create everything here. 



18  

You can create smx objects (tasks, semaphores, exchanges, etc.) from any task, at any time, 
so typically, you just add code here to create the main objects, to get the system started. 

Create any other files and include smx.h and smxmain.h in them. That’s it! 

Simplification 
The Protosystem is purposely kept minimal, and demo code is separated into the DEMO 
directory and app.c. There is not much code in the Protosystem files, so there is not a lot to 
strip out. However, here are some things you can do: 

• Demos should be disabled and not linked, of course. 

• Replace app.c with your own (see the section app.c, above). 

• Strip out conditionals for other compilers and modules (products) you aren’t using. 
However, since you may want to update to a new version of SMX (which means 
moving your app to the new Protosystem), you ought to minimize this. 

Debugging 
The topic of debugging and diagnostics could easily fill a whole manual, and someday 
maybe it will. Until then, these are a few helpful notes: 

1. smx Errors are listed alphabetically in the Glossary section of the Reference Manual, 
at SMXE_xxx. If an smx error occurs, look there for information about possible causes 
and things to try. These are kernel errors, only. 

2. The Protosystem opcon task recognizes a couple keys that change the terminal display: 

 Ctrl-D changes the output mode to suppress ANSI Esc sequences for cursor positioning 
and color, and it displays messages sequentially at the first column of the terminal. This 
allows capturing a clean log from the terminal program. In TeraTerm, for example, use 
File | Log… to set the output file name. Then terminal output will also be saved to the 
file. This is helpful to review and to send us for technical support. 

 Ctrl-E clears the screen and displays the contents of the error buffer. Errors are 
displayed in red, inline with other messages in the right half of the screen, normally, but 
this is a way to look at the smx errors condensed. Note that the error buffer is cyclic and 
also may be bigger than the number of lines on the terminal, so a * marks the most 
recent error. 

3. If you suspect an smx error is occurring but cannot tell because you have no terminal or 
display or it has been switched to graphics mode, you can put a breakpoint at 
smx_EMHook() in sys.c. While there you can inspect errnum to find out which error 
occurred and smx_ct to see which task caused it (or LSR, if smx_clsr is set). The call 
stack shows how you got there. 

4. Debugging a multitasking application is more challenging than debugging sequential 
code. When you step over an instruction, it is possible an interrupt will occur, causing a 



19 

task switch and then a return to the current task, without you being aware. It looks to 
you like the debugger ran only the instruction you stepped over, when, in fact, a 
considerable amount of other code may have run. It is easy to be misled into thinking 
that if something went wrong during that step, such as an smx error being flagged or a 
watched variable being corrupted, that the instruction you stepped over was the culprit. 
However, it could have been caused by an entirely different task that ran during that 
instant. Keep this in mind. Debugging can be further complicated if multiple tasks share 
the same code, since it may become necessary to determine which task is currently 
running. Adding smx_ct->name to the debugger Watch window is recommended. 

5. smxAware is a big help. This is a DLL and EXE that adds smx-awareness to the 
debuggers we support. It allows viewing smx objects by name and setting task-aware 
breakpoints for some debuggers. It shows stack usages, which is a big help for catching 
stack overflows. Versions with GAT (Graphical Analysis Tool) allow you to view event 
timelines, profiling, stack usage, and memory layout. smxAware Live is a remote 
monitoring version. 

6. Stack Overflow can be a difficult bug to track because the symptoms usually arise long 
after the corruption — often not until the task with the corrupted stack is resumed. smx 
helps greatly by doing automatic stack scanning and stores the number of bytes used, in 
the TCB (in the shwm field, meaning stack high-water mark). This information is 
displayed textually in the Stack window in smxAware and graphically by smxAware 
GAT. Stack checking is configured in acfg.h. Set STACK_SCAN to 1. Also, we 
recommend you enable stack padding during development (set STACK_PAD_SIZE) so 
the system will continue running if a stack only overflows into its pad. 

7. Stepping over the smx_TaskStartNew() call at the end of ainit() causes the 
Protosystem to free run. This is because smx_TaskStartNew() assigns a new function to 
the task and restarts it using that code, so execution never returns following the call. 
This is true when stepping over any call to this function. 

BSP API 
The Board Support Package (BSP) API is a set of low-level functions that interface to the 
hardware, for use by SMX and the application. Primarily the API contains routines for 
hooking, masking, and configuring interrupts. The API is defined in XBASE\bapi.h and 
implemented in bsp.c in each BSP (and XBASE\bbase.c for some common routines). There 
is one bsp.c file for each board/platform supported. You may add any additional hardware 
initialization code to sb_PeripheralsInit(). See the BSP API section of the SMX Target 
Guide for detailed information. 



20  

Utilities 

These are utilities that are exceptionally useful for software development. We highly 
recommend that you use them. 

Diff 

BeyondCompare (www.scootersoftware.com) is a very good utility for differencing source 
files. It has 2 panes that show the directory tree and allows easily navigating and opening 
files for side-by-side comparison, with differences highlighted. It is inexpensive and has a 
free evaluation period. It is easy to see which files are different and to transfer changes from 
one to the other, incrementally or all at once. A good use of this tool is to copy changes to 
your main-line code after experimenting. Rather than experiment in your working directory, 
make a copy of it. When you have it working, compare the two trees. You can review and 
transfer the changes to your main-line code individually. This is great for catching 
temporary changes you should have reversed. 

Another use is to find the change(s) that broke the application. Restore a backup of your 
development directory and verify it builds and runs ok. Then open your latest working 
directory in one pane and the restored version in the other and transfer changes a little at a 
time, re-testing each time, to isolate what caused the problem. 

Grep 

Grep is an invaluable tool for finding things in unfamiliar code. It allows searching for a 
text string in all files in a directory (and even in nested subdirectories). This is especially 
helpful when trying to find where a function or variable is defined. The one supplied with 
Borland C++ is simple and works well. Dig up an old version of this compiler to get it, if 
you don’t already have a grep utility. There are only 4 switches you need to know: 
 -d+ search subdirectories too 
 -i+ ignore case 
 -l+ list file names only (don’t show matching lines from files) 
 -w+ whole-word search 
 
Put quotes around multi-word search strings. 

Shell 

For command line users, we recommend you use a shell utility such as FAR 
(www.rarlab.com) rather than using the Windows command line for your build 
environment, since SMX has nested subdirectories, and you will quickly tire of typing the 
cd command to get down to the build directories. Shell utilities show what is in each 
directory much more cleanly than the dir command, and they are very efficient for copying 
and moving files and whole directories. They are far superior to Windows Explorer for this 
purpose, although they may not look as pretty. FAR is a clone of the venerable Norton 
Commander that supports long file names. 



21 

Terminal Emulator 

The Protosystem assumes a terminal is connected to display messages and to take user 
input. (Assume 115200-8-N-1, unless told otherwise.) You can connect your target board’s 
serial port to a spare serial port on your host system and run a terminal emulator. We 
recommend Tera Term Pro, which is easy to use, small, and free. 



22  

Tips 

1. smx terminology and error messages are documented in the Glossary section of the smx 
Reference Manual. 

2. Grep the code for “USER:”  to find places where you may want to make changes. This 
is a convenient way for us to tag things for your attention. 

3. smx kernel errors are recorded in the error buffer, and they are displayed on the  
terminal. Error handling code is in xem.c. You can modify it to do what you want. Put a 
breakpoint on smx_EMHook() in sys.c or smx_EM() in xem.c, and if hit, look at the 
call stack in the debugger to see how you got there. 

 



23 

Index 

ainit(), 14, 15 
APP directory, 4 
app.c 

minimal, 17 
appl_init(), 14, 15 
application development, 17 
BeyondCompare utility, 20 
BSP notes, 2 
bug fixes, 16 
build directory, 3 
build targets, 5 
build versions, 5 
code 

conditionals, 5 
command line, 20 
conditional code, 5, 18 
configuration, 11 

application, 11 
smx kernel, 11 

conventions 
documentation, 2 

debugging, 18 
defines 

module, 5 
demos, 4 
developing application, 17 
diff utility, 20 
directories 

build, 3 
library, 3 
main, 3 
output, 3 
Protosystem, 3 

directory structure, 3 
benefits, 3 

DOC directory, 2 
documentation, 2 

conventions, 2 
dual-build, 4 
enhancements, 16 
event timelines, 19 
executable directory, 3 
FAR utility, 20 
fixes, 16 
FRPort, 5 
getting started, 7 
grep utility, 20 
IAR 

ARM, 8 
idle task, 15 
initialization 

application, 14 
smx, 14 

installation, 1 
compiler and tools, 1 
SMX, 1 

main(), 14 
makefile 

simplifying, 10 
manuals, 2 
map file directory, 3 
memory usage, 19 
module defines, 5 
mw_modules_init(), 14 
naming convention, 6 
optimization, 5 
output directory, 3 
profiling, 19 
project file 

simplifying, 10 
Protosystem, 4, 10 

building 
IAR ARM, 8 

running and debugging 
IAR ARM, 8 

simplifying, 18 
ready queue, 14 
release notes, 2 
RTOS Porting, 5 
scheduler, 14 
searching code, 20 
shell utility, 20 
smx errors, 18, 22 
SMX module defines, 5 
smx_EMHook(), 22 
smx_Go(), 14 
smx_Idle, 15 
smx_IdleMain(), 15 
smx_SchedRunTasks, 14 
smx_TaskStartNew(), 14, 19 
smx_Version, 5 
SMX_VERSION, 5 
smxAware, 19 

IAR ARM, 9 
stack high-water mark, 19 
stack overflow, 19 
stack usage, 19 
startup, 14 
support, 16 
support site, 16 
sys.c, 18, 22 
Tera Term Pro utility, 21 



24  

terminal emulator, 21 
tips, 22 
tips files, 2 
TXPort, 5 
updated files, 16 
USER comments, 22 

utilities, 20 
version numbers, 5 
website 

manuals, 2 
support, 16 

xsched, 14 
 


	Installation
	SMX
	Compiler and Tools

	Documentation
	Manuals
	BSP Notes
	Release Notes and Text Files
	Conventions

	Global Concepts
	smx vs. SMX
	Directory Structure
	Main Directories
	Build Directories (XXX.YYY\ZZZ)
	Benefits of SMX Directory Structure

	Protosystem
	Demos
	RTOS Porting Files
	Version Numbers
	Build Information
	Build Versions

	Module Defines
	Optimization
	Conditionals
	Naming Convention

	Getting Started
	ARM-M — IAR
	Tool Setup
	Building the Protosystem
	Running and Debugging the Protosystem
	Enabling smxAware
	Building, Running, and Debugging SMX Module Demos
	What To Do Now


	Protosystem
	Project File

	Configuration
	Summary
	Application Configuration (acfg.h)
	smx Kernel Configuration (xcfg.h)

	SMX Startup and Scheduler Operation
	Notes:

	Support
	Support Site
	Bug Fixes

	Application Development
	Main Steps
	Guidelines
	app.c
	Simplification
	Debugging
	BSP API

	Utilities
	Tips

