
  

 
 

smxWiFiTM User’s Guide 
 

802.11 MAC 
 

Version 1.50 
October 5, 2020 

by Yingbo Hu 
 
 
 
Table of Contents 
 

1. Overview .............................................................................................................................................. 1 
1.1 Types of WiFi Networks ................................................................................................................. 2 
1.2 Types of Security ............................................................................................................................. 2 

2. Files ....................................................................................................................................................... 4 
2.1 Directory Structure .......................................................................................................................... 4 
2.2 Files ................................................................................................................................................. 4 

3. Using smxWiFi ..................................................................................................................................... 6 
3.1 Installation ....................................................................................................................................... 6 
3.2 Getting Started ................................................................................................................................. 6 
3.3 Configuration Settings ..................................................................................................................... 6 
3.4 Building the Library ...................................................................................................................... 10 
3.5 Building and Running the Demos .................................................................................................. 10 

4. APIs .................................................................................................................................................... 11 
4.1 APIs for the TCP/IP Stack ............................................................................................................. 11 
4.2 APIs for the Application ................................................................................................................ 15 
4.3 APIs for Security ........................................................................................................................... 24 
4.4 APIs for WiFi Simple Configuration (WSC) ................................................................................ 28 
4.5 APIs for WiFi Peer-to-Peer (P2P) ................................................................................................. 30 
4.6 APIs for SoftAP ............................................................................................................................. 34 
4.7 APIs for ATE Testing .................................................................................................................... 35 
4.8 Chipset Driver Interface ................................................................................................................ 37 

5. Built-In Features ............................................................................................................................... 39 
5.1. Country/Region............................................................................................................................. 39 
5.2. BSS Scanning ............................................................................................................................... 39 
5.3. MAC Layer Management Entity .................................................................................................. 40 

6. WPA Supplicant Support ................................................................................................................. 43 
6.1. WiFi Peer-to-Peer (P2P) ............................................................................................................... 43 
6.2. WiFi Display ................................................................................................................................. 43 
6.3. WiFi Enterprise (PEAP/MSCHAPv2) .......................................................................................... 43 
6.4. WiFi Enterprise Test Environment ............................................................................................... 44 
6.5. WiFi Simple Configuration (WSC) / EAP-WSC ......................................................................... 44 
6.6. Requirement for Real Time Clock ................................................................................................ 45 



  

7. Optional Features .............................................................................................................................. 46 
7.1 SoftAP Support .............................................................................................................................. 46 

8. Application Notes .............................................................................................................................. 47 
8.1 Connecting to a Hidden AP ........................................................................................................... 47 
8.2 Improving Performance ................................................................................................................. 47 
8.3 Switching between APs ................................................................................................................. 47 
8.4 Reconnecting to an AP .................................................................................................................. 48 
8.5 RAM Usage of the WiFi Stack ...................................................................................................... 48 
8.6 WiFi Simple Configuration (WSC) Steps ..................................................................................... 48 
8.7 WiFi Peer-to-Peer (P2P) Steps ...................................................................................................... 50 

9. Limitations ......................................................................................................................................... 52 

Appendix A. Porting Notes ................................................................................................................... 53 
A.1 C Library Function Requirements ................................................................................................ 53 
A.2 wfport.* ......................................................................................................................................... 53 

Appendix B. Memory Usage and Performance Summary ................................................................ 54 
B.1 Size ................................................................................................................................................ 54 
B.2 Performance .................................................................................................................................. 55 
B.3 Connection Time ........................................................................................................................... 56 

Appendix C. Tested Devices ................................................................................................................. 58 
C.1 WiFi Dongles ................................................................................................................................ 58 
C.2 Access Points ................................................................................................................................ 59 
C.3 RADIUS Servers ........................................................................................................................... 60 
C.4 WiFi Peer-to-Peer (P2P) Devices ................................................................................................. 60 
C.5 Clients for SoftAP ......................................................................................................................... 60 

Appendix D. References ........................................................................................................................ 61 
 
 
 
 
 
 

© Copyright 2008-2020 
 

Micro Digital Associates, Inc. 
2900 Bristol Street, #G204 

Costa Mesa, CA 92626 
(714) 437-7333 

support@smxrtos.com 
www.smxrtos.com 

 
All rights reserved. 

 
 

smxWiFi is a Trademark of Micro Digital Inc. 
smx is a Registered Trademark of Micro Digital Inc.



 

 1 

1. Overview 
smxWiFi is an 802.11 MAC stack for embedded systems. It supports 802.11a/b/g/i/n/ac. It enables the 
embedded system to add wireless communication capability. You also need a multitasking OS such as 
SMX®, and a WiFi chipset driver, such as Ralink RT2573, RT2860, RT2870, RT3070, RT3572, RT5370, 
RT5572, MT7601, and MT7612. You may also need a USB stack such as smxUSBH, and a TCP/IP 
stack, such as smxNS. The following diagram summarizes the relationships among these components. 

 
 

TCP/IP 

Virtual Ethernet 
driver 

 

smxWiFi network 
Layer 

smxWiFi MLME layer 

smxWiFi Application 
Interface Layer 

UI application for 
Connection 

management and Link 
status monitor 

WiFi Chipset Interface 
 

smxNS 

RT5572 
/MT7601 
/MT7612 

Driver 

USB host stack and 
USB host controller driver 

 

smxUSBH 

Other WiFi 
Chipset 

driver for 
Non-USB 
interface 

Other USB 
interface 
chipset 
driver 

 

smxWiFi 

WiFi Chipset & Radio Frequency IC 

Antenna 

RT2860/
RT2760 

PCI 
interface 

driver 



 

 2 

To learn how protocols supported by smxWiFi correspond to the certification programs of Wi-Fi 
Alliance, such as Wi-Fi DirectTM, Wi-Fi Protected SetupTM, Wi-Fi Protected Access®, WPATM, and 
WPA2TM, see www.smxrtos.com/wificert.htm. Note that the names of functions, settings, and other 
identifiers from the code that are documented in this manual are suggestive of these terms. 

1.1 Types of WiFi Networks 
BSS: Basic Service Set. A group of stations that communicate with each other. 
 
Infrastructure BSS: This type of network needs one or more Access Points. 
 
Independent BSS (Adhoc): Stations within the network communicate directly with each other. 
There is no Access Point. This mode is not commonly used any more. You can enable P2P or 
SoftAP features to implement peer to peer communication. These are extra cost options. 
 

1.2 Types of Security 
There are two components for security. One is the Authentication Type and the other is the 
Encryption Algorithm/Protocol. 
 
Authentication Types include: 
 
Open System:  There is no special authentication. WiFi stations can connect to each other, without 
any password or key. 
 
Shared Key (obsolete):  An old Authentication type, only used with WEP. It is not secure so 
should not be used anymore. 
 
WPA:  WiFi Protected Access. This is a marketing standard put together by the Wi-Fi Alliance. It 
is based on 802.11i draft version. It may use TKIP as the pairwise/group key encryption so not 
recommend to use on AP and station. 
 
WPA-PSK:  WPA Personal. Based on 802.11i pre-shared key authentication. It may use TKIP as 
the pairwise/group key encryption so not recommend to use on AP and station. 
 
WPA-EAP:  WPA Enterprise. Uses the authenticated key mode that derives keys from the 802.1X 
standard. It may use TKIP as the pairwise/group key encryption so not recommend to use on AP 
and station. 
 
WPA2:  WPA version 2. It is the same as 802.11i. 
WPA2-PSK:  Same as WPA-PSK but for WPA version 2 (802.11i) 
WPA2-EAP:  Same as WPA-EAP but for WPA version 2 (802.11i) 

 
WPA3-SAE:  WPA3-Personal, Latest security protocol based on Simultaneous Authentication of 
Equals (introduced by 802.11s), SAE is a variant of the Dragonfly Key Exchange defined in 
RFC 7664.  smxWiFi support for WPA3 is under development. 
WPA3-EAP:  Similar to WPA3 but use EAP and optional 192 bit key. 

 

http://www.smxrtos.com/wificert.htm


 

 3 

Encryption Protocols include: 
 
WEP (obsolete):  Wired Equivalent Privacy. It is the first WiFi encryption algorithm, based on 
RC4. There are two key lengths, 64-bit and 128-bit. It is not secure so should not be used 
anymore. 
 
TKIP:  Temporal Key Integrity Protocol. This encryption protocol is also based on RC4 but with 
some improvements, such as add message integrity check (MIC). It is not secure so should not be 
used anymore. 

 
AES:  Advanced Encryption Standard, also called Counter Mode with CBC-MAC Protocol 
(CCMP). 
 
When discussing WiFi security, these two components are combined. For example: 
 
WEP64 means shared key authentication and WEP 64-bit encryption. 
WEP128 means shared key authentication and WEP 128-bit encryption. 
WPA-PSK/AES means WPA-PSK authentication and AES encryption protocol. 



 

 4 

2. Files  
Like other SMX® RTOS products, all source code for smxWiFi is stored in its own directory, named 
XWIFI, under the main SMX directory. Below is a summary of the directory structure.  

2.1 Directory Structure  
SMX  
 APP 
  DEMO wifidemo.c (for smxNS and SMX) 
  NORTOS Build directory for standalone (non-SMX) releases. Has demo too. 
 XNS smxNS TCP/IP stack  
 XUSBH smxUSBH USB Host stack 
  CDC WiFi chipset drivers (e.g. MediaTek MTxxxx). 
 XWIFI WiFi Stack and porting layer files  
  wpa_supplicant     Open Source WPA supplicant for the WPA-EAP, P2P, and WPS 
  XX.YY Build directory for SMX releases  

2.2 Files  
FILE  DESCRIPTION  
wfcfg.h  WiFi stack configuration file.  
wfport.c, h  Hardware related porting functions. 
wfnet.c, h  WiFi APIs, used by the TCP/IP and 

application to transfer data and 
control/inquire the status of the stack.  

wfdrv.h  Internal data structures and API 
definitions for the WiFi stack. 

wfaction.c Handler of the WiFi management 
operation, action. 

wf11ac.c Handler for 802.11ac, such as 11ac only 
action, VHT capability and operation IE 
generation, MCS rate calculation etc. 

wfact11n.c Handler of the 802.11n only Action. 

wfapeap.c  EAPOL state machine between 
smxWiFi SoftAP mode and open 
source WPA supplicant. 

wfapwpa.c  WPA key management functions for 
SoftAP. 

wfasso.c Handler of the WiFi management 
operation, association. 

wfauth.c  Handler of the WiFi management 
operation, authentication. 

wfba.c  Handler of the WiFi Block ACK. 
wfbsst.c  Handler of the WiFi BSS table 

database. 



 

 5 

wfconn.c  Handler of the WiFi connection. 
wfdisp.c  WiFi Display function between 

smxWiFi and open source WPA 
supplicant. 

wfdls.c  Handler of the direct link setup. 
wfdrs.c Handler for dynamic rate switching. 
wfdrv.c  Utility functions of the WiFi stack. 
wfeap.c  EAPOL state machine between 

smxWiFi and open source WPA 
supplicant. 

wfmlme.c  MLME layer of the WiFi stack. 
wfsync.c  Handler of WiFi sync. 
wfaes.c  Simple AES GTK decryption. 
wfwep.c  WEP function (obsolete). 
wfhash.c  Key hash function. 
wfp2p.c, h, wfp2psm.h  Peer-to-Peer state machine between 

smxWiFi and open source WPA 
supplicant. 

wfrt2860.c, h  Ralink RT2860/2760 chipset driver. 
wfsoftap.c  SoftAP function. 
wftkip.c  TKIP MIC function. 
wfwpa.c  WPA key management functions for 

station. 
wfwps.c, wfwpssm.h  WiFi Simple Configuration state 

machine between smxWiFi and open 
source WPA supplicant. 

XUSBH\CDC\umt*.*, urt*.* Chipset drivers. 



 

 6 

3. Using smxWiFi 

3.1 Installation 
smxWiFi is installed by copying files from the distribution media.  

3.2 Getting Started 
smxWiFi is configurable to smxNS, smxUSBH, and the processors and compilers it supports. If you are 
using smxWiFi with another TCP/IP stack, WiFi chipset driver, processor, or compiler, see Appendix A. 
Porting Notes, and implement the porting layer for your environment first, before using smxWiFi. 

3.3 Configuration Settings 
If you change any settings, you should do a clean rebuild of the smxWiFi library and the WiFi chipset 
driver (which is typically in the smxUSBH library). 

3.3.1 wfcfg.h 
wfcfg.h contains 802.11 MAC configuration constants that allow you select features and working mode. 

SWF_DRV_RT250X_USB 
Set to “1” to use Ralink RT250x or RT2573 USB WiFi Chipset driver. 

 
SWF_DRV_RT2870_USB 

Set to “1” to use Ralink RT2870 USB WiFi Chipset driver. This is a 2x2 802.11n 2.4GHz band only 
dongle driver. 

 
SWF_DRV_RT3070_USB 

Set to “1” to use Ralink RT3070 USB WiFi Chipset driver. This is a 1x1 802.11n 2.4GHz band only 
dongle driver. 

 
SWF_DRV_RT3572_USB 

Set to “1” to use Ralink RT3572 USB WiFi Chipset driver. This is a 2x2 802.11n dual band 2.4GHz 
and 5GHz dongle driver. 

 
SWF_DRV_RT5370_USB 

Set to “1” to use Ralink RT5370 USB WiFi Chipset driver. This is a 1x1 802.11n 2.4GHz band only 
dongle driver. 

 
SWF_DRV_RT5572_USB 

Set to “1” to use Ralink RT5572 USB WiFi Chipset driver. This is a 2x2 802.11n dual band 2.4GHz 
and 5GHz dongle driver. 

 
SWF_DRV_MT7601_USB 

Set to “1” to use MediaTek MT7601 USB WiFi Chipset driver. This is a 1x1 802.11n 2.4GHz band 
only dongle driver. 

 



 

 7 

SWF_DRV_MT7612_USB 
Set to “1” to use MediaTek MT7612 USB WiFi Chipset driver. This is a 2x2 802.11ac dual band 
2.4GHz and 5GHz dongle driver. 

 
SWF_DRV_RT2860_PCI 

Set to “1” to use Ralink RT2860 PCI WiFi Chipset driver. This is a 2x2 802.11n dual band card. 
 
Note: As of v1.12, you may enable multiple chipset drivers (those you purchased), and smxWiFi will 
use the proper driver for the WiFi dongle that is plugged in. smxWiFi currently only supports one 
interface at a time. 

 
SWF_ENABLE_11N 

Set to “1” to enable 802.11n support such as the HT (High Throughput) PHY and BA (Block ACK). 
This should always be enabled. 

 
SWF_ENABLE_11AC 

Set to “1” to enable 802.11ac support such as the VHT (Very High Throughput) PHY. You can 
disable this feature even if your chipset driver supports 802.11ac; the chipset will then work for 11n 
mode only. SWF_ENABLE_11N must also be enabled 

 
SWF_ENABLE_ADHOC_11N 

Set to “1” to enable 11n HT support for adhoc network. 
 
SWF_ENABLE_SECURITY_WEP (obsolete) 
SWF_ENABLE_SECURITY_WPA 
SWF_ENABLE_SECURITY_EAP 

Set to “0” to disable the WEP, WPA-PSK, or WPA-EAP security features. Disabling security will 
improve the performance and reduce the code size and RAM requirement. 

 
SWF_ENABLE_ENTERPRISE 

Set to “1” to enable WiFi Enterprise support. WiFi Enterprise is based on WPA-EAP security. The 
EAP method for the enterprise we currently support is PEAP/MACHAPv2. 

 
SWF_ENABLE_SOFTAP 
SWF_ENABLE_SOFTAP_11N 

Set to “1” to enable SoftAP and SoftAP 11n mode support. 
 
SWF_MAX_CLIENT_NUM 
 Maximum number of clients for SoftAP. 
 
SWF_ENABLE_DRS 

Set to “1” to enable software Dynamic Rate Switching. smxWiFi will adjust the transmit rate 
according to the RSSI value from the AP (signal strength) and Packet Error Ratio (signal quality). 
Dynamic rate switching is important for VHT at higher MCS values such as MCS8/9(QAM256). If 
transmit rate is not setup properly, there will be a lot of re-transmit, which will not only slow down 
the throughput of this station, but also use too much air time, which will also slow down the whole 
wireless throughput at that frequency. 

 Some chipsets may have a built-in DRS algorithm. You can disable this setting to reduce the 
overhead introduced by the smxWiFi algorithm. For the current chipset drivers smxWiFi supports, 
this needs to be always enabled. For details of this feature, see 5.3.2.1 Dynamic Rate Switching.  



 

 8 

 
SWF_ENABLE_P2P 

Set to “1” to enable WiFi Peer-to-Peer (P2P) support. (Devices with this feature that are certified by 
the Wi-Fi Alliance can claim support for Wi-Fi DirectTM.) Requires WiFi Simple Configuration, so 
SWF_ENABLE_WPS should also be set to 1 if you enable this feature. May also require SoftAP. If 
SoftAP is not enabled, P2P cannot work as Group Owner. 

 
SWF_ENABLE_DISPLAY 

Set to “1” to enable Wi-Fi Display support. (Devices with this feature that are certified by the Wi-Fi 
Alliance can claim support for Wi-Fi MiracastTM.) Requires Wi-Fi Peer-to-Peer, so 
SWF_ENABLE_P2P should also be set to 1 if you enable this feature.  
 
Note: smxWiFi implements only a small part of what is needed for full WiFi Display capability; it 
adds only what is needed to supplement P2P. For full support, it is necessary to implement additional 
protocols for WiFi and TCP/IP, new capabilities in the WiFi chipset driver, video/audio 
encoder/decoder, and possibly more. As a result, this feature is quite incomplete and only 
partially tested. 

 
SWF_ENABLE_WPS 

Set to “1” to enable WiFi Simple Configuration support. (Devices with this feature that are certified 
by the Wi-Fi Alliance can claim support for Wi-Fi Protected SetupTM.) It is based on WPA-EAP 
security, using WSC method. To be the Registrar requires SoftAP. 

 
SWF_DEFAULT_BSS_TYPE_INFRA 

Set to “1” to set the BSS type to Infrastructure, which means you need an Access Point. Otherwise, 
the BSS type will be Independent BSS (Peer-to-Peer connection or Adhoc). It can be changed by 
swf_SetBssType(). Adhoc mode is not recommended anymore because it lacks sufficient security. 

 
SWF_DEFAULT_CHANNEL 

The default channel for this BSS if you are using Adhoc mode. It can be changed by 
swf_SetAdhocChannel() 

 
SWF_DEBUG_LEVEL 

The debug level of the WiFi stack. 
 
SWF_ADHOC_BEACON_LOST_TIME 
SWF_INFRA_BEACON_LOST_TIME 
SWF_AUTH_TIMEOUT 
SWF_ASSOC_TIMEOUT 
SWF_DISASSOC_TIMEOUT 
SWF_DEAUTH_TIMEOUT 
SWF_JOIN_TIMEOUT 
SWF_MIN_SCAN_TIMEOUT 
SWF_MAX_SCAN_TIMEOUT 
SWF_FAST_SCAN_TIMEOUT 
SWF_MONITOR_INTERVAL 
 Timeout settings. You don’t need to change most of them for most processors, but if you are using a 

slow processor such as ARM7 at 48MHz, you may need to increase some of the timeout values to 
make sure smxWiFi will not lose important data. For example, if scan timeout is too short and a lot of 
APs are using that channel, swf_BssScan() may not get all the BSS information because some APs’ 
beacons may be lost. For detailed information, please contact Micro Digital. 

 



 

 9 

SWF_CONNECT_RETRY 
Number of times to retry for authentication and association 

 
SWF_MAX_BSS_TABLE_LEN 
 Possible BSS networking in your area. If you have more APs than this setting, swf_BssScan() may 

not report all of them. Increasing it will increase the RAM usage. For detailed information, please 
contact Micro Digital. 

 
SWF_MAX_EVENT_QUEUE_LEN 
 Internal event queue size. You don’t need to change these for most processors but if you are using a 

slow processor such as ARM7 at 48MHz, you may need to increase them to make sure smxWiFi will 
not lose important data. For detailed information, please contact Micro Digital. 

 
SWF_MLME_TASK_STK_SIZE 
 MLME task stack size. If WPA-EAP is enabled, more stack is needed to run the whole EAP, WPS, or 

P2P state machine. 
 
SWF_ENABLE_TX_BURST 
 Set to “1” to enable transmit burst mode for high performance data transfer. Enabling this feature will 

require more RAM and system resources. (One more task will be created.) 
 
SWF_ENABLE_BSS_2040_COEXIST 
 Set to “1” to enable BSS 20/40Mhz coexist feature support. Eanabling it may increase the system’s 

overhead and may reduce performance. SWF_ENABLE_11N also must be enabled. 
 
SWF_ENABLE_DLS 
 Set to “1” to enable Direct Link Setup feature support. Enabling it will require an additional 0.5KB of 

RAM. 
 
SWF_ENABLE_ROAMING 
 Set to “1” to enable client roaming. Not finished yet so don’t enable it. 
 
SWF_DISABLE_11N_WEP_TKIP 
 Set to “1” to force disabling 802.11n if the AP is using WEP or TKIP encryption. WEP and TKIP are 

not recommended for 802.11n. 
 
SWF_CACHE_WPA_KEY 
 Set to “1” to cache the WPA key. It is useful for slow stations that cannot return the first message of 

the WPA 4-way handshake within 100ms when the link is up. Enabling it will require an additional 
0.5KB of RAM. 

 
SWF_CACHE_EAP_CREDENTIALS 
 Set to “1” to cache the EAP credentials, such as username, password, certificate’s file name, etc., in 

the connection profile. Enabling it will require additional RAM. 
 
SWF_KEEP_ALIVE_INTERVAL 
 This specifies how often the station will send NULL frames during idle time so the AP will not 

disconnect the station. Unit is milliseconds (ms). 
 



 

 10 

SWF_STAY_AWAKE_INTERVAL 
SWF_AWAKE_SETUP_INTERVAL 
 Power save features. Unit is milliseconds (ms). SWF_KEEP_ALIVE_INTERVAL is the time the 

station will remain in the awake state after the last data is transmitted. In other words, this station will 
stay awake even when there is no activity between the station and AP for at least this time. In power 
save mode, the station still needs to wakeup during each beacon interval to check if the AP buffered 
any packets for it. Some slow systems may need some time to enter the sleep and wakeup state. The 
station will only sleep for (beacon interval - SWF_AWAKE_SETUP_INTERVAL) so it will not miss 
the next beacon. 

3.4 Building the Library  
After configuring wfcfg.h (see previous section), build the library with the makefile or project file 
supplied in the build directory (e.g. IAR.ARM). It is built just like all other SMX module libraries, as 
documented in the SMX Quick Start. If a makefile is provided, run the mak.bat file to invoke it. Run 
it without arguments for syntax.  

3.5 Building and Running the Demos  
For SMX releases, the demos are stored in \SMX\APP\DEMO. For this product it is:  

wifidemo.c main demo file  

The demo file is integrated with the smx Protosystem. It is enabled just like all other SMX module 
demos, as documented in the SMX Quick Start. For makefile builds, simply uncomment the macros swifi 
in pro.mak and swifidm in demodefs.mki.  

You also need to enable smxNS so you can transfer data through TCP/IP stack. A new virtual Ethernet 
device has been added to the smxNS to interface with the WiFi stack, so the networking data packet will 
be transferred from TCP/IP -> WiFi stack -> Ralink RT2573/RT2870 class driver -> USB Host stack -> 
WiFi Dongle or TCP/IP -> WiFi stack -> Ralink RT2860 chipset driver -> WiFi PCI card. 



 

 11 

4. APIs 
This section describes the API for smxWiFi to the TCP/IP stack and the application. All the APIs are 
defined in smxwifi.h. For example code showing use of these APIs, check wifidemo.c use in an 
application and smxNS wifi.c for use in a TCP/IP stack. 

4.1 APIs for the TCP/IP Stack 
The TCP/IP stack needs to call the following functions to transmit and receive Ethernet packets. Note that 
smxWiFi is already integrated with our TCP/IP stack, smxNS. 

 
int  swf_Init(void); 

int  swf_Open(void); 

int  swf_Close(void); 

int  swf_Release(void); 

void swf_RegisterNotify(PWIFIFUNC handler); 

int  swf_GetNodeID(u8 *pMACAddr); 

int  swf_SendPacket(u8 *pData, uint len); 

int  swf_IsInserted(void); 

int  swf_IsOpen(void); 

 

 

int swf_Init (void);  
 
Summary Initialize the WiFi stack.  
 
Descr  Call this API to initialize the whole WiFi stack. You should not call any other APIs 

before this API returns successfully. 
 
Parameters  None 
 
Returns  0 WiFi stack has been initialized successfully. 
  <0 Error occurred when doing the initialization. 
 
See Also  swf_Release() 

 

 



 

 12 

int swf_Open (void);  
 
Summary Open a WiFi interface so it can be used.  
 
Descr  Call this API to open the WiFi interface. You also need to call swf_Connect() to 

connect this station to an access point or peer station. This function is an 
asynchronous function. You need to check if the dongle is present first by calling 
swf_IsInserted(). 

 
Parameters  None 
 
Returns  0 Interface has been opened for the WiFi stack. 
  <0 Error occurred when opening the interface. 
 
See Also  swf_Close() 

 

 

int swf_Close (void);  
 
Summary Close a WiFi interface. 
 
Descr  Call this API to close the interface of WiFi stack when you don’t need to use it any 

more.  
 
Parameters  None  
 
Returns  0 Interface closed. 
  <0 Error occurred when closing the interface. 
 
See Also  swf_Open() 

 

 

int swf_Release (void);  
 
Summary Shutdown the WiFi stack.  
 
Descr  Call this API to shutdown the whole WiFi stack. You should not call any other APIs 

after this API returns. 
 
Parameters  None 
 
Returns  0 WiFi stack has been shutdown. 
  <0 Error occurred when shutting down the stack. 
 
See Also  swf_Init() 

 



 

 13 

int swf_RegisterNotify (SWF_PRECVPKTCBFUNC handler);  
 
Summary Register the receive data call back function.  
 
Descr  Can be called any time after swf_Init() has been called. The callback function will be 

called each time the WiFi stack gets a data packet. The TCP/IP stack may need to 
combine the header and payload data into one Ethernet packet. The callback function 
should return as soon as possible. Recommended operation is just to copy the 
incoming packet into the TCP/IP’s buffer and notify the TCP/IP stack and then return 
immediately. 

 
Parameters  handler Pointer to the call back function. 
 
  The callback function is defined as: 

typedef int (*SWF_PRECVPKTCBFUNC)(u8 *pHeader, uint HeadLen,  
u8 *pPayload, uint len); 

pHeader is the pointer of the Ethernet packet header. 
HeadLen is the length of the header. 
pPayload is the pointer of the Ethernet payload. 
Len is the length of the payload packet. 

 
Returns  None  
 
See Also  swf_SendPacket() 

 
 
 
int swf_GetNodeID (u8 *pMACAddr);  
 
Summary Get the hardware’s MAC address.  
 
Descr   Can be called any time after swf_Init() and swf_Open() have been called.  
 
Parameters  pMACAddr The buffer pointer of the MAC address. Must be at least 6 bytes. 
 
Returns  0  Got the MAC address.  

<0  The WiFi device does not exist. For example, a USB dongle is not plugged in. 
 
See Also  swf_RegisterNotify() 

 

 

int swf_SendPacket (u8 *pData, uint len, BOOLEAN bLast);  
 
Summary Send an Ethernet packet out through the WiFi stack.  
 
Descr  Can be called any time after swf_Init() and swf_Open() have been called. If 

SWF_ENABLE_TX_BURST is 0, this API is a blocking function; it will not return 



 

 14 

until the data have been sent out to the chipset. 
 
Parameters  pData Pointer to the Ethernet packet buffer. 
  Len  The length of the packet. 
 bLast If the TCP/IP stack has more data packets to send, the IP stack may split the 

large TCP packet into multiple fragments. The WiFi device driver may have the 
ability to send multiple packets. Normally a burst transfer will get much better 
performance. Set this parameter to FALSE if you have more data to send.  

 
Returns  0 Data have been sent out successfully. 
  <0 Error occurred during the transmission. 
 
See Also  swf_RegisterNotify() 

 
 
int swf_IsInserted (void);  
 
Summary Check if the WiFi dongle or device is inserted.  
 
Descr  Can be called anytime after swf_Init() has been called. After the dongle is inserted, 

you may need to call swf_Open() when you are ready to open the WiFi interface. 
 
Parameters  None 
 
Returns  1 WiFi dongle is present.  
  0 WiFi dongle was removed. 
 
See Also  swf_Init(), swf_Open() 

 
 
int swf_IsOpen (void);  
 
Summary Check if the WiFi dongle or device has been opened by the TCP/IP stack.  
 
Descr  Can be called anytime after swf_Init() has been called. 
 
Parameters  None 
 
Returns  1 WiFi dongle is open. 
  0 WiFi dongle is not open or it is removed. 
 
See Also  swf_Init(), swf_Open() 



 

 15 

4.2 APIs for the Application 
The application can call the following functions to control the connection of the WiFi network and get the 
status of the link. You must call these APIs after swf_Open() returns success. 

 
int  swf_Connect(char *pNewSSID, BOOLEAN bAutoReconnect, u8 *pNewBSSID,  

uint iChannelWidth); 

int  swf_Disconnect(void); 

int  swf_IsConnected(void); 

int swf_RegDevEvtCallback(SWF_PDEVEVTCBFUNC func); 

int  swf_GetConnProfile(SWF_CONN_PROFILE *pConnProfile); 

int  swf_GetLinkStatus(uint *pSignalStrength, uint *pLastRssi, uint *pLinkQuality, uint *pTxRate); 

int  swf_ScanBss(uint iScanType); 

int  swf_ScanBssByChannel(uint iScanType, u8 *pChannelList, uint iChannelListNum); 

int  swf_GetScanChannelList(u8 *pChannelList, uint *piChannelListNum); 

int  swf_GetBssNum(void); 

int  swf_GetBssInfo(uint index, SWF_BSS_INFO *pInfo); 

int  swf_SetBssType(uint iType); 

int  swf_SetAdhocChannel(uint iChannel); 

int  swf_SetPowerSaveMode(BOOLEAN bEnable); 

 
 
int swf_Connect (char *pNewSSID, BOOLEAN bAutoReconnect, u8 *pNewBSSID, uint iChannelWidth);  
 
Summary Connect to a new BSS. 
 
Descr   Call this API to connect your station to a new SSID. 
 
Parameters  pNewSSID String pointer to the new SSID. The length must be less than 32. 
 bAutoReconnect TRUE if you want smxWiFi to re-connect if the connection gets lost. 

We don’t recommend setting this parameter to TRUE because if 
the AP changed its security settings, smxWiFi will still use the 
old settings, and reconnection will always fail. 

 pNewBSSID Data of the new BSS’s BSSID. Must be 6 bytes. If the SSID is 
unique, you can pass NULL to this parameter. If two BSSes have the 
same SSID, you may use this parameter to indicate which BSS you 
want to connect. Choosing which BSS to connect among multiple 
SSIDs is not done by smxWiFi. The application needs to implement 
it based on the scan result and desired criteria, such as the highest 
RSSI value or 5G band preferred over 2.4G band. 

 iChannelWidth Preferred channel width. For 802.11n and 802.11ac, the AP may 
support wider channel bandwidth, such as 40MHz or 80Mhz, 



 

 16 

even 160Mhz, but the client can use narrow bandwidth. It can 
choose to use either 20Mhz or 40Mhz bandwidth to transmit 
packets to the AP. Normally wider bandwidth will get better 
throughput but also is subject to more adjacent channel 
interference. Using wider bandwidth will NOT always increase 
throughput, especially in a busy/noisy environment. To match the 
AP’s channel width and adjust by Dynamic Rate Switching, pass 
SWF_CHAN_WIDTH_AUTO for this parameter. If you know 
there are a lot of APs (more than 3) on the same channel, by the 
scan result, we recommend using narrow channel bandwidth. For 
example, the application can use 20Mhz instead of 40Mhz. If the 
number of APs at the same channel is more 5, don’t use 80Mhz 
(802.11ac only). Use 20Mhz instead. 

Returns  0 WiFi stack is connected to that BSS. 
  <0 WiFi stack is not connected. 
 
See Also  swf_Disconnect() 

int swf_Disconnect (void);  
 
Summary Disconnect the current connection 
 
Descr   Call this API to disconnect your station from the network 
 
Parameters  None 
 
Returns  0 WiFi stack has been disconnected from the BSS. 
  <0 WiFi stack is not connected. 
 
See Also  swf_Connect() 

 
 
BOOLEAN swf_IsConnected (void);  
 
Summary Check if the station is connected to a BSS. 
 
Descr  Call this API to check the connect status. WiFi will try to connect to the BSS when 

you call swf_Connect(). A TRUE return from swf_Connect() does not mean you 
have fully connected to that AP. Connecting requires a few steps, and it is an 
asynchronous procedure, for example, the WPA-PSK key 4-way handshake and EAP 
authentication, so you can poll the status by calling this function or wait for the 
SWF_DEVEVT_CONNECTED event. 

 
Parameters  None 
 
Returns  TRUE WiFi stack has connected to the BSS. 
  FALSE WiFi stack is not connected. 
 
See Also  swf_Connect(), swf_Disconnect() 



 

 17 

int swf_RegDevEvtCallback(SWF_PDEVEVTCBFUNC func)  
 
Summary Register a callback function for device events such as link up/down event. 
 
Descr   Call this API to register a callback function to get the async event. Callback functions 

are called when the WiFi device is opened or closed, or the link goes up or down. For 
example, the Access Point wants to disconnect this station or the Access Point 
disappeared. 

 
Parameters  func   The callback function pointer. The callback function is defined as: 

typedef void (* SWF_PDEVEVTCBFUNC)(uint iEvent); 
iEvent is one of the following events: 
SWF_DEVEVT_OPEN 
SWF_DEVEVT_CLOSE 
SWF_DEVEVT_LINKUP 
SWF_DEVEVT_LINKDN 
SWF_DEVEVT_LINKDN_AP 
SWF_DEVEVT_CONNECTED 
SWF_DEVEVT_EAP_SUCCESS 
SWF_DEVEVT_EAP_FAIL 
SWF_DEVEVT_WPS_SUCCESS 
SWF_DEVEVT_WPS_FAIL 
SWF_DEVEVT_SOFTAP_UP 
SWF_DEVEVT_SOFTAP_DN 
SWF_DEVEVT_SOFTAP_ADD_CLIENT 
SWF_DEVEVT_SOFTAP_REMOVE_CLIENT 
SWF_DEVEVT_SCAN_CHANNEL 

 
SWF_DEVEVT_OPEN happens when swf_Open() succeeds. If swf_Open() is 
called in another task, as is done in smxNS, this event is a good signal to inform the 
user’s task it can do the connection procedure. 

  SWF_DEVEVT_CLOSE happens when swf_Close() is called. 
SWF_DEVEVT_LINKUP happens when the station has already associated with the 
desired AP. That normally happens when swf_Connect() returns success. 
SWF_DEVEVT_LINKDN happens when the station loses the AP’s beacon signal. 
For example, the AP’s power is off. 
SWF_DEVEVT_LINKDN_AP happens when the AP de-authenticates or de-
associates this station. For example the AP’s settings have been changed, and the AP 
need to reboot. 
SWF_DEVEVT_CONNECTED happens when the connection is ready to be used 
to transfer network data. After the station associates with the AP, if WPA security is 
enabled, extra authentication/key management steps will occur. Unless these steps are 
finished, the link between the station and AP cannot be used to transfer application’s 
network data. 
SWF_DEVEVT_EAP_SUCCESS happens when the EAP authentication succeeds.  
SWF_DEVEVT_EAP_FAIL happens when the EAP authentication fails, such as if 
you input the wrong username/password, or the EAP authentication type is not 
supported by the server, although that is unlikely. 
SWF_DEVEVT_WPS_SUCCESS happens when WSC succeeds.  
SWF_DEVEVT_WPS_FAIL happens when WSC fails. For example, you enabled 



 

 18 

WSC version 2 but set WEP/TKIP as the encryption. 
SWF_DEVEVT_SOFTAP_UP happens when SoftAP function is UP. You need to 
call swf_StartSoftAP () first. 
SWF_DEVEVT_SOFTAP_DN happens after you call swf_StopSoftAP () to shut 
down the SoftAP. 
SWF_DEVEVT_SOFTAP_ADD_CLIENT happens when a WiFi station is 
authenticated to the SoftAP. 
SWF_DEVEVT_SOFTAP_ REMOVE_CLIENT happens when a WiFi station is 
deauthenticated from the SoftAP. 
SWF_DEVEVT_SCAN_CHANNEL happens when the wifi station begin to scan 
Bss on a new channel. 
 

 
Returns  0 Callback function is registered. 
  <0 WiFi stack is not initialized yet. 
 
See Also  swf_Connect() 

 

int swf_GetConnProfile (SWF_CONN_PROFILE *pConnProfile);  
 
Summary Get the current connection profile including BSSID, SSID, Authentication and 

encryption, WPA passphrase or key, WEP key or default key ID. 
 
Descr  Call this API after you have connected to an AP. The profile can be saved and used to 

speed up the next connection to the same AP. 
 
Parameters  pConnProfile Pointer to the profile structure. SWF_CONN_PROFILE is defined as. 

typedef struct 
{ 
    u8   Bssid[6]; 
    u8   Channel; 
    u8   BssType; 
 
    uint ChannelWidth 
    uint AuthMode; 
    uint Encryption; 
    uint KeyIndex; 
    uint KeyLen; 
     
    u8   Key[32]; 
    char Passphrase[64]; 
 
    char Ssid[33]; /* 32 + null */ 
} SWF_CONN_PROFILE; 
Bssid is the BSS’s MAC address. Normally it is the Access Point’s MAC address for an 
infrastructure BSS network, but this may not always be the case. 
Channel is the RF channel of the BSS. 
BssType is the BSS type. May be SWF_BSS_TYPE_ADHOC for IBSS or 
SWF_BSS_TYPE_INFRA for infrastructure BSS. 



 

 19 

ChannelWidth is the preferred channel bandwidth:  SWF_CHAN_WIDTH_AUTO, 
SWF_CHAN_WIDTH_20, or SWF_CHAN_WIDTH_40. 
AuthMode is the Authentication Mode of the BSS. See swf_SetAuthMode() for valid 
values.  
Encryption is the Encryption algorithm of the BSS. See swf_SetAuthMode() for valid 
values. 
KeyIndex is the default key index. It is always 0 for WPA. 
KeyLen is the length of the key. If WEP is used, the keylen is either 5 or 13. If WPA-PSK 
is used, KeyLen is string length of the WPA-PSK passphrase, and the real master length 
is always 32. If WPA_EAP is used. KeyLen is always 32. 
Key is the array of either the WEP key (5 or 13 bytes) or WSC master key (always 32 
bytes). 
Passphrase is the WPA_PSK passphrase. If WPA_EAP is used, this passphrase is null. 
Ssid is the name of the BSS.  

 
Returns  0 WiFi stack is connected to the network and the Profile data is valid. 
  <0 WiFi stack is not connected to an AP yet. 
 
See Also  swf_IsConnected() 

 

 

int swf_GetLinkStatus (uint *pSignalStrength, uint *pLastRssi, uint *pLinkQuality, uint *pRxRate, 
uint *pTxRate);  

 
Summary Get the current signal strength, RSSI, link quality, and transfer rate 
 
Descr  Call this API to get the link status of network. May be called after 

swf_IsConnected() returns TRUE 
 
Parameters  pSignalStrength  Signal strength, percentage 0 to 100 
  pLastRssi  Beacon frame RSSI value, dBm 
 pLinkQuality Link quality, percentage 0 to 100. For transmit only, Link 

Quality was calculated by the Packet Error Ratio 
pRxRate Receiving rate. Unit is 100Kbit/s. For example, if the rate is 

54Mbit/s then it will return 540. 
pTxRate Transmit rate. Unit is 100Kbit/s. For example, if the rate is 

54Mbit/s it will return 540. 
 
Returns  0 WiFi stack is connected to the network. 
  <0 WiFi stack is not connected. 
 
See Also  swf_IsConnected() 

 

 



 

 20 

int swf_ScanBss (uint iScanType);  
 
Summary Scan all the BSSs. 
 
Descr  Call this API to scan all the available WiFi networks (BSSs). This API is a blocking 

function; it will not return until the scan is done. It will scan both 2.4G and 5G bands 
according to the chipset PHY configuration and country region settings. If there is no 
region stored in the chipset, smxWiFi will default to scan channel 1-11 (US/FCC) on 
2.4G band and channel 36-48 and 149-165 (US/FCC without DFS) on 5G band. It 
will also use either active or passive scan which will stay in different dwell time on 
each channel. You need to call swf_GetBssNum() and swf_GetBssInfo()  after it 
returns success to get the retrieved BSS information. 

 
Parameters  iScanType  Scan type for the BSS Scan operation. Should be one of the following 

macros: 
SWF_BSS_SCAN_PASSIVE 
SWF_BSS_SCAN_ACTIVE 
SWF_BSS_SCAN_FAST_ACTIVE 

 
When SWF_BSS_SCAN_PASSIVE is passed as parameter, smxWiFi will 
only listen to the beacon frame at that channel. The dwell time is 
SWF_MAX_SCAN_TIMEOUT (200ms) defined in wfcfg.h 
When SWF_BSS_SCAN_ACTIVE is passed as parameter, smxWiFi will 
send probe request at that channel and wait for the probe response frame sent 
back from all the APs. The dwell time is SWF_MIN_SCAN_TIMEOUT 
(100ms) defined in wfcfg.h. 
When SWF_BSS_SCAN_FAST_ACTIVE is passed as parameter, smxWiFi 
will do the similar operation as SWF_BSS_SCAN_ACTIVE but stay at that 
channel a much shorter time. The dwell time is 
SWF_FAST_SCAN_TIMEOUT (30ms) defined in wfcfg.h. Normally this 
parameter can be used in roaming mode or there is not too much APs in the 
environment. 

 
Returns  0 WiFi stack has finished scanning. 
  <0 WiFi stack cannot scan the BSS. 
 
See Also  swf_GetBssNum(), swf_GetBssInfo() 

 



 

 21 

int swf_ScanBssByChannel (uint iScanType, u8 *pChannelList, uint iChannelListNum);  
 
Summary Scan BSSs on only user-specified channels. 
 
Descr  Call this API to scan available BSSs on user-specified channels. This API is a 

blocking function; it will not return until the scan is done. You need to call 
swf_GetBssNum() and swf_GetBssInfo() after it returns success to get the retrieved 
BSS information. The API can be used to do a quick scan of the BSS in particular 
channels. 

 
Parameters  pChannelList   List of channels to scan. 
  iChannelListNum Number of channels in the channel list. 
 iScanType   Scan type for the BSS Scan operation. Use same Macros 

described in  swf_ScanBss(). 
 
 
Returns  0 WiFi stack has finished scanning. 
  <0 WiFi stack cannot scan the BSS. 
 
See Also  swf_ScanBss(), swf_GetBssNum(), swf_GetBssInfo() 

 

 

int swf_GetScanChannelList (u8 *pChannelList, uint *piChannelListNum);  
 
Summary Get scan channel list when you need to call swf_ScanBss(). 
 
Descr  Call this API to get the channel list when you call swf_ScanBss(). By calling this 

API, you will know how many channels you need to scan so you can estimate the 
time swf_ScanBss() will take. Ensure the list is big enough to hold all the possible 
channels. The channel number also depends on the country region settings of your WiFi 
chipset. 

 
Parameters  pChannelList   List of channels to scan.  
  ipChannelListNum Pointer to the number of channels in the channel list. 
 
Returns  0 Got channel list. 
  <0 WiFi device is not open yet. 
 
See Also  swf_ScanBss(), swf_GetBssNum(), swf_GetBssInfo() 

 



 

 22 

int swf_GetBssNum (void);  
 
Summary Get the number of available BSSs. 
 
Descr  Call this API after swf_ScanBss() returns success to get the number of available 

BSSs. Then you can call swf_GetBssInfo() multiple times to iterate through the 
information of each BSS. 

 
Parameters  None 
 
Returns  >= 0 Number of available BSSs. 
  <0 WiFi stack cannot scan the BSS. 
 
See Also  swf_ScanBss(), swf_GetBssInfo() 

 

int swf_GetBssInfo (uint index, WIFI_BSS_INFO *pInfo);  
 
Summary Get information about the specified BSS. 
 
Descr  Call this API after swf_ScanBss() returns success, while iterating through the BSSs, 

to decide which BSS you want to connect to. 
 
Parameters  index Index of the scanned BSS. Should be 0 to swf_GetBssNum() – 1. 
  pInfo Pointer to the information structure. WIFI_BSS_INFO is defined as: 

 
typedef struct  
{ 
    u8   Bssid[6]; 
    u8   Channel; 
    u8   BssType; 
 
    uint ChannelWidth; 
    uint SignalStrength; 
    uint iAuthMode; 
    uint iEncryption; 
    BOOLEAN bWPSSupported; 
    u8   Ssid[33]; 
} SWF_BSS_INFO; 
 
Bssid is the BSS’s MAC address. Normally it is the Access Point’s MAC address 
for an infrastructure BSS network, but this may not always be the case. 
Channel is the primary RF channel of the BSS. 
BssType is the BSS type, may be SWF_BSS_TYPE_ADHOC for IBSS or 
SWF_BSS_TYPE_INFRA for infrastructure BSS. 
ChannelWidth is the BSS’s channel bandwidth. It can be 
SWF_CHAN_WIDTH_20 or  SWF_CHAN_WIDTH_40 for 802.11n mode BSS or  
SWF_CHAN_WIDTH_80 for 802.11ac mode BSS 
SignalStrength is the signal strength of the BSS. It only indicates the signal 
strength at the last scanning time. The value is percentage from 0-100, not dBm.  
iAuthMode is the Authentication Mode of the BSS. See swf_SetAuthMode() for 



 

 23 

valid values. If the Encryption is WEP, iAuthMode is hard-coded to Shared, 
but you may need to check what is the exact setting for the APs. Do not pass 
it directly to swf_SetAuthMode() for the WEP case. 
iEncryption is the Encryption algorithm of the BSS. See swf_SetAuthMode() for 
valid values. 
bWPSSupported indicates if this BSS supports WSC (WiFi Simple 
Configuration) 
Ssid is the name of the BSS. If this AP does not broadcast the SSID (Hidden AP), 
this field will be “”. 

 
Returns  0 Got the BSS information. 
  <0 WiFi stack cannot scan the BSS. 
 
See Also  swf_ScanBss(), swf_GetBssNum(), swf_SetAuthMode() 

 

 

int swf_SetBssType (uint iType);  
 
Summary Change the current BSS type. 
 
Descr   Call this API to change the current BSS type between IBSS and Infrastructure. 
 
Parameters  iType SWF_BSS_TYPE_ADHOC for IBSS or SWF_BSS_TYPE_INFRA for 

infrastructure 
 
Returns  0  BSS type changed.  
  <0 Cannot change the current BSS type. 
 
See Also  swf_Connect(), swf_Disconnect() 

 

 

int swf_ SetAdhocChannel (uint iChannel);  
 
Summary Set the channel for the adhoc network. 
 
Descr   Call this API to change the channel for the IBSS. The channel is only valid if this 

station will create the IBSS. To join an IBSS, it will use the peer’s channel. 
 
Parameters  iChannel iChannel to be used 
 
Returns  0  Channel set.  
  <0 Failed to set the channel. 
 
See Also  swf_Connect(), swf_Disconnect() 

 



 

 24 

int swf_ SetPowerSaveMode (BOOLEAN bEnable);  
 
Summary Enable the power save mode. 
 
Descr   Power save mode is disabled by default, you need to call this API to enable it after 

swf_Open() return success. You can call this API again to disable power save mode. 
 
Parameters  bEnable  TRUE for enable and FALSE for disable. 
 
Returns  0  Power Save Mode changed.  
  <0 Failed to change Power Save Mode. 
 
See Also  swf_Open() 

 

4.3 APIs for Security 
The application can call the following functions to set the security feature the WiFi network. You must 
call these APIs after swf_Open() returns success. 

 
int  swf_SetAuthMode(uint iAuthMode, uint iEncrypt); 

int  swf_SetWepDefaultKeyID(uint iKeyId); 

int  swf_SetWepSharedKey(uint iKeyId, u8 *pKey, uint iKeyLen); 

int  swf_GenerateWPAKey(char *pPassphrase, char *Ssid, u8 *pKey); 

int  swf_SetWPAKey(u8 *pKey); 

int  swf_SetEAPCredentials(char *pIdentity, char *pPassword, u8 *pRootCA,  
u8 *pClientCertificate, u8 *pPrivateKey, u8 *pPrivateKeyPassword,  
uint iMethodVendor, uint iMethodID); 

int  swf_WPSStartPBC(void);  

int  swf_WPSStartPIN(u32 pin);  

int  swf_WPSGeneratePIN(u32 *pin);  

 

 

int swf_SetAuthMode (uint iAuthMode, uint iEncrypt);  
 
Summary Set the authentication mode and encryption algorithm. 
 
Descr  The default authentication mode is Open System and no encryption. You can call this 

API to change it to Shared/WEP or WPA-PSK/TKIP, WPA-PSK/AES 
Note: Shared/WEP is obsolete and should not be used anymore. TKIP is also not 
recommended. If you are using WEP encryption, you need to manually select to use 
Open or Shared Authentication because the user can select either open or shared 



 

 25 

authentication, and the beacon does not indicate which one the station should use. 
Selecting the wrong Authenication will cause connection failure. 

Parameters  iAuthMode Valid AuthMode are the following: 
 
  SWF_AUTH_MODE_OPEN   
  Security features are disabled if you set this mode. This is the default setting.  
  SWF_AUTH_MODE_SHARED (obsolete) 
  Old Authentication Mode. Only works with WEP encryption. 
  SWF_AUTH_MODE_WPANONE  
  WPA for Adhoc mode only. 
  SWF_AUTH_MODE_WPAPSK  
  WPA Pre-shared Key mode. 
  SWF_AUTH_MODE_WPA2PSK   
  WPA2 Pre-shared Key mode. WPA2 is also known as 802.11i. 
  SWF_AUTH_MODE_WPAEAP  
  WPA Enterprise. 
  SWF_AUTH_MODE_WPA2PSK   
  WPA2 Enterprise 
 
 iEncrypt Valid Encryption values: 
 

SWF_ENCRYP_NONE 
No encryption. Only pass this parameter with Open System authentication. 
SWF_ENCRYP_WEP (obsolete) 
Use WEP as the encryption algorithm/protocol. Only pass this parameter with 
Open or Shared authentication 
SWF_ENCRYP_TKIP (not recommended) 
Use TKIP as the encryption protocol.  
SWF_ENCRYP_AES 
Use AES (CCMP) as the encryption protocol.  

 
Returns  0  Authentication/Encryption has been set.  
  <0 Cannot set the authentication mode and encryption algorithm. 
 
See Also  swf_SetWepDefaultKeyID(), swf_SetWepSharedKey(), swf_GenerateWPAKey(), 

swf_SetWPAKey() 

 

 

int swf_SetWepDefaultKeyID (uint iKeyId);  
 
Summary Set the default KeyID of WEP (obsolete). 
 
Descr  WEP has at most 4 shared keys. Call this API to set the default key index. You need 

to make sure the default key index is the same as your Access Point’s. Call this API 
after you call swf_SetAuthMode(); 

 
Parameters  iKeyId Default Key Index. Valid values are from 0 to 3. 
 
Returns  0 Default Key Index has been changed. 



 

 26 

 
See Also  swf_SetWepSharedKey() 

int swf_SetWepSharedKey (uint iKeyId, u8 *pKey, uint iKeyLen);  
 
Summary Set the shared key of WEP (obsolete). 
 
Descr  WEP has at most 4 shared keys. Call this API with a different key index to set each 

key individually. Call this API after you call swf_SetAuthMode(). 
 Note: You need to know the key length the AP is using. The station has no way 

to know whether it is 40-bit or 108-bit automatically. The beacon does not 
indicate this information. 

 
Parameters  iKeyId  Key Index. Valid values are from 0 to 3. 
 pKey  Pointer to the key data. 
 iKeyLen  The length of the key data. If you want to use WEP64 then the data 

length should be 5 (40 bit), if you want to use WEP128 then the data 
length should be 13 (108 bit). 

 
Returns  0  Shared key has been set. 
  < 0 Key is not valid (length is not 5 or 13) 
 
See Also  swf_SetWepDefaultKeyID() 

 

 

int swf_GenerateWPAKey (uint char *pPassphrase, char *Ssid, u8 *pKey);  
 
Summary Generate the WPA-PSK key by passphrase and SSID. 
 
Descr  A WPA-PSK network needs the user to input a passphrase. The WPA-PSK PMK is 

generated using the passphrase and the network’s SSID. Generating the key is a time-
consuming job on a slow processor so call this function to generate the key and save it 
to a configuration file so you don’t need to recalculate it. Call this API after you call 
swf_SetAuthMode(). 

 You may not need to use this function for a WPA-EAP (Enterprise) network.  
PMK may be generated and transferred by authentication server 

 
Parameters  pPassphrase The passphrase string. Must be 8 to 63 bytes, null terminated. 
 Ssid  The SSID of your network, null terminated. 
 pKey Pointer to the buffer to hold the generated key. The buffer must be at 

least 40 bytes but only the first 32 bytes are used for the key. 
 
Returns  0  Key was generated. 
  < 0 Current authentication is not WPA-PSK or WPA2-PSK. 
 
See Also  swf_SetWPAKey() 

 



 

 27 

int swf_SetWPAKey (u8 *pKey);  
 
Summary Set the saved WPA key to the stack. 
 
Descr  Set the WiFi stack’s WPA-PSK key, previously generated by 

swf_GenerateWPAKey(). If the passphrase and SSID have not changed since the last 
swf_GenerateWPAKey() call, the previously generated WPA key can be used. Call 
this API after you call swf_SetAuthMode(). 

 Don’t call this function for a WPA-EAP (Enterprise) network. 
 
 
Parameters  pKey Pointer to the buffer holding the generated key. Buffer must be 32 bytes. 
 
Returns  0  Key was set. 
  < 0 Current authentication is not WPA-PSK or WPA2-PSK. 
 
See Also  swf_GenerateWPAKey()  

 
int swf_SetEAPCredentials (char *pIdentity, char *pPassword, u8 *pRootCA, u8 *pClientCertificate,  

u8 *pPrivateKey, u8 *pPrivateKeyPassword, uint iMethodVendor, uint iMethodID);  
 
Summary Set the Credentials of the WPA-EAP network. 
 
Descr  Set the Credentials of the WPA-EAP network. The WPA key will be transferred by 

the authenticator during the EAP authentication procedure. Call this API after you 
call swf_SetAuthMode(). Don’t call this function for a WPA-PSK network. 

 
Parameters  pIdentity Username of your account. smxWiFi will only save the address of this 

string, so the memory storing it should not be changed during the whole 
authentication session. 

 pPassword Password of your account. smxWiFi will only save the address of this 
string, so the memory storing it should not be changed during the whole 
authentication session.  

 pRootCA The file name of the root CA. The file must be X.509 in DER (binary) 
or PEM (Base64 text) format. You may want a file system to save this 
CA, but a file system is not required. Check with Micro Digital about 
how to do it without one. Certificates require RTC support to compare 
the certificate’s valid date. The code is in the wpa_supplicant porting 
layer for smxWiFi os_xbase.c  

 pClientCertificate   The file name of the client certificate. A file system is not 
necessary. See pRootCA.  

  This feature is not tested yet so always pass NULL to it. 
 pPrivateKey Key for the client certificate.  
  This feature is not tested yet so always pass NULL to it. 
 pPrivateKeyPassword The private key password.  
  This feature is not tested yet so always pass NULL to it. 
 iMethodVendor Desired EAP authentication method Vendor. Normally pass 0. 
 iMethodID  Desired EAP authentication method ID. Only MD5, MSCHAPV2, and 

PEAP are tested. For use of WPA-EAP that requires a key, use 25 for 



 

 28 

PEAP. 
 
Returns  0  Credentials were set. 
  < 0 Current authentication is not WPA-EAP or WPA2-EAP. 
 
See Also  swf_SetAuthMode() 

 

 

4.4 APIs for WiFi Simple Configuration (WSC) 
The application can call the following functions to do WiFi Simple Configuration (WSC) operations. 
(Devices with this feature that are certified by the Wi-Fi Alliance can claim support for Wi-Fi Protected 
SetupTM.) You must call these APIs after swf_Open() returns success. 

 
int  swf_WPSStartPBC(BOOLEAN bAP, u8 *pPeerAddr);  

int  swf_WPSStartPIN(BOOLEAN bAP, u32 pin);  

int  swf_WPSGeneratePIN(u32 *pin);  

 

 
int swf_WPSStartPBC (BOOLEAN bAP , u8 *pPeerAddr);  
 
Summary Start WSC PBC (Push Button Configuration) protocol. 
 
Descr  Try to start the WSC Push Button Configuration. Normally you should push the 

actual button on the AP or start the AP’s PBC via the configuration page of that AP 
first. If bAP is FALSE, your device is WSC Enrollee. You also need to call 
swf_ScanBss() first before you call this function. This API will check the scanned 
result returned by the swf_ScanBss() to make sure there is at least one AP which is in 
the active Push Button Configuration mode. If bAP is TRUE, your device is WSC 
Registrar. Normally you should call swf_StartSoftAP() first to let your device work 
in SoftAP mode. 

 
Parameters  bAP  If WSC is Registrar for the SoftAP mode. 
 pPeerAddr When this device is WSC Registrar, this parameter is the peer WSC 

Enrolle MAC address for the P2P Group Owner and SoftAP. Should 
pass NULL if you don’t care about the enrollee’s MAC address or 
bAP is FALSE 

 
Returns  0  Start PBC succeeded. 

< 0 No APs have the active Push Button Configuration in the latest scan result, or 
for the SoftAP mode, no client connected to the AP during the WSC walk 
time period. 

 
See Also  swf_Connect() 



 

 29 

int swf_WPSStartPIN (BOOLEAN bAP, u32 pin);  
 
Summary Start WSC PIN (PIN configuration) protocol. 
 
Descr  Try to start the WSC PIN configuration. Normally you input the 8 digit number pin 

on the AP’s configuration page first. If bAP is FALSE, your device is WSC Enrollee 
and you also need to call swf_ScanBss() first before you call this function. This API 
will check the scanned result returned by the swf_ScanBss() to make sure there is at 
least one AP which is in the active PIN Configuration mode. PIN can be permanent, 
such as on a label, or generated dynamically and displayed on your device’s display 
panel. It is the application’s job to retrieve the permancent pin from the storage of 
your device. The PIN is 7-digit PIN and 1-digit checksum. You need to use a special 
code to generate the permanent PIN. See our swf_WPSGeneratePIN() code as an 
example. If bAP is TRUE, your device is WSC Registrar and you need to call 
swf_StartSoftAP() first to let your device work in SoftAP mode. 

 
Parameters  bAP If this device is WSC Registrar for SoftAP mode. 
 
Returns  0  Start PIN succeeded. 

< 0 No APs have the active PIN configuration in the latest scan result or for the 
SoftAP mode, no client connected to the AP for WSC. 

 
See Also  swf_Connect() 
 
 
 
 
int swf_WPSGeneratePIN (u32 *pin);  
 
Summary Generate new WSC PIN. 
 
Descr  Call this API to generate the random 8-digit PIN. 
 
Parameters  Pointer to the PIN. 
 
Returns  0  PIN generated. 
  < 0 Device is not open yet. 
 
See Also  swf_Connect() 
 



 

 30 

4.5 APIs for WiFi Peer-to-Peer (P2P) 
The application can call the following functions to do WiFi Peer-to-Peer (P2P) operations. (Devices with 
this feature that are certified by the Wi-Fi Alliance can claim support for Wi-Fi DirectTM.) You must call 
these APIs after swf_Open() returns success. 

 

int  swf_P2PStartFind(uint iTimeout);  

int  swf_P2PStopFind(void); 

void swf_P2PRegEvtCallback(SWF_PP2PEVTCBFUNC handler); 

int  swf_P2PDoFormation(const u8 *DevAddr, u8 *pDevIntendedAddr, u32 pin, 
u8 *pOpChannel, uint iGOIntent); 

int  swf_P2PGetDeviceNum(void); 

int  swf_P2PGetDeviceInfo(uint index, SWF_P2P_DEVICE_INFO *pDevInfo); 

int  swf_P2PPrepareGroupOwner(char *Passphrase, char *Ssid); 

 

int  swf_P2PStartFind(uint iTimeout);  

Summary Start P2P find procedure. 
 
Descr  Try to start the P2P find procedure. The device will first scan all the P2P social 

channels (1, 6 and 11) to find if there is any P2P device around. Then it will listen at 
the listen channel (set in the wfcfg.h) at random intervals to let other P2P devices find 
it. This procedure will continue until it reaches the timeout, but this function will 
return immediately. 

 
Parameters  The timeout value the find procedure should last, in seconds. 
 
Returns  0  Start find succeeded. 
 < 0 This device has already connected to a device, or another find procedure is in 

progress. 
 
See Also  swf_P2PStopFind() 
 
 
 
int  swf_P2PStopFind(void); 

Summary Stop P2P find procedure. 
 
Descr  Stop the find procedure that is in progress. You need to call this function to stop the 

find procedure before the user wants to connect to the found P2P device or you get 
the event that another P2P device wants to connect to this device. 

 
Parameters  none 
 



 

 31 

Returns  0  Stop find succeeded. 
 < 0 No find procedure is in progress for this device. 
 
See Also  swf_P2PStartFind() 
 
 
 

void swf_P2PRegEvtCallback(SWF_PP2PEVTCBFUNC handler); 

Summary Register the P2P device event callback function. 
 
Descr  Register the P2P device event callback function so you will get the P2P device async 

event. P2P needs user input so those async events will allow the application to do the 
interactive communication between the user’s application (GUI most likely) and the 
WiFi stack. You must call this function before you call swf_P2PStartFind(). 

 
Parameters  handler  P2P device event callback function. It is defined as  
 typedef int (* SWF_PP2PEVTCBFUNC)(uint iEvent, void *pInfo); 
 
 iEvent may be one of the following macros: 

SWF_P2PEVT_FOUND_DEVICE 
 This event will happen when the find procedure finds a new device. 
SWF_P2PEVT_CONNECT_REQUEST 

This event will happen when this WiFi device detects a connect request from 
another P2P device. 

 
pInfo is a pointer to SWF_P2P_DEVICE_INFO which contains the basic 
information of the P2P device which triggered this event. 
SWF_P2P_DEVICE_INFO is defined as 
typedef struct 
{ 
    u8   DevAddr[6]; 
    u8   PriDevType[8]; 
    char DeviceName[33]; 
    char Manufacturer[65]; 
    char ModelName[33]; 
    char ModelNumber[33]; 
    char SerialNumber[33]; 
    u16  ConfigMethods; 
}SWF_P2P_DEVICE_INFO; 
DevAddr is the Device Address (MAC) of this P2P device. 
PriDevType is the primary device type. The first two bytes are the category; 
0050F204 is the Wi-Fi Alliance OUI; and the last two bytes are the Sub Category. 
For details about the Device Type see the comments about 
SWF_WPS_DEVICE_TYPE in wfcfg.h  
DeviceName is the Device’s name. 
Manufacturer is the Manufacturer’s name. 
ModelName is the Model’s name. 
ModelNumber is the Model Number (text). 



 

 32 

SerialNumber is the Serial Number (text). 
ConfigMethods is the supported Configuration Methods (bitmap) of this device. Valid 
bitmaps are 
 SWF_P2P_CONFIG_METHOD_PBC 

SWF_P2P_CONFIG_METHOD_PIN_DISPLAY 
SWF_P2P_CONFIG_METHOD_PIN_KEYPAD 

 
Returns  none 
 
See Also  swf_P2PStartFind(), swf_GetP2PDeviceInfo() 
 

 

int  swf_P2PDoFormation(const u8 *DevAddr, u8 *pDevIntendedAddr, u32 pin, u8 *pOpChannel, 
uint iGOIntent); 

Summary Do P2P Group Formation. 
 
Descr  After the user decides to connect to the found P2P device or after this P2P device gets 

a connect request from another P2P Device, the smxWiFi stack needs to do the Group 
Formation first by using this function. You need to call swf_P2PStartFind() first to 
find the nearby P2P device and also let the other device find this P2P device. 

 After the Group Formation is done and succeeds, if the role of this device is 
client, this function will also do the WSC enroll for the application. After that, it 
is still necessary to call swf_Connect() to do the real connection. It is the same 
procedure as for a normal WSC Enrollee. If P2P device will become Group 
Owner, it needs to call swf_StartSoftAP() to switch to SoftAP mode and then 
start the WSC session and finally wait for the client to connect to this P2P 
Group Owner. 

 
Parameters  DevAddr The MAC address of the peer device. You can get the address by 

calling swf_P2PGetDevInfo(). 
 pDevIntendedAddr  Pointer to the intended address of the peer device. This 

function will fill the buffer of this intended address during the group 
formation procedure. 

 pOpChannel  Pointer to the operation channel of the peer device. This function will 
fill the channel during the group formation procedure. 

 iGOIntent  This P2P device Group Formation Group Owner intent. The intent is 
a value from 0 to 15. 15 means this device must be Group Owner. 0 
means this device does not want to become group owner. Go intent 
normal should be a random number but if SWF_ENABLE_SOFTAP 
is 0, Group Owner Intent will be reset to 0 internally. 

 pin  The WSC pin during the Group Formation. If you want to use 
PushButton method, pass 0 for the pin. 

 
Returns  > 0 P2P Group Formation is done and this device will become Group Owner. 

0 P2P Group Formation is done and this device will become client. 
 < 0 P2P Group Formation failed. 
 
See Also  swf_WPSStartPCB(),swf_WPSStartPIN() 



 

 33 

int  swf_P2PGetDeviceNum(void); 

Summary Get the total P2P device number smxWiFi found during the find procedure. 
 
Descr  Call this function to get the total device we found during the find procedure. 
 
Parameters  none 
 
Returns  The number of the P2P device we found 
 
See Also  swf_P2PStartFind(), swf_P2PGetDeviceInfo() 
 

 

int  swf_P2PGetDeviceInfo(uint index, SWF_P2P_DEVICE_INFO *pDevInfo); 

Summary Get the detailed P2P device information. 
 
Descr  Call this function to get the detailed P2P device information. For the details of 

structure SWF_P2P_DEVICE_INFO, see the comments in function 
swf_P2PRegEvtCallback() 

 
Parameters  index  The device index, must be 0 to GetP2PDeviceNum() – 1 
 pDevInfo Pointer to the SWF_P2P_DEVICE_INFO. 
 
Returns  0  smxWIFi gets the required P2P Device Information 
 < 0 smxWiFi cannot get the required P2P Device Information. 
 
See Also  swf_P2PStartFind(), swf_P2PGetDeviceInfo() 
 
 
 
int  swf_P2PPrepareGroupOwner(char *Passphrase, char *Ssid); 

Summary Prepare the Group Owner information. 
 
Descr  Call this function if swf_P2PDoFormation() result is this P2P device need to become 

Group Owner. The application passes the WPA passphrase of the group owner. This 
function will generate the required WPA key by the passphrase. This function will 
also generate the SSID of this Group Owner by following rule of the P2P spec. 

 
Parameters  Passphrase  Pass phrase for the WPA key of this group owner. It is NULL 

terminated string, string length must be 8 to 63. 
 Ssid Pointer to the generated SSID, Buffer size must be larger than 32 

byte. 
 
Returns  0  smxWIFi Prepared the information required to start the group owner. 
 < 0 smxWiFi cannot get the required P2P Device Information. 
 
See Also  swf_P2PDoFormation() 
 



 

 34 

4.6 APIs for SoftAP 
The application can call the following functions to start and stop the SoftAP. You must call these APIs 
after swf_Open() returns success. 

 
int  swf_StartSoftAP (char *pSSID, uint iChannel, uint iBandWidth, uint 

iGroupKeyUpdateInterval);  

int  swf_StopSoftAP (void);  

 
 
int swf_StartSoftAP (char *pSSID, uint iChannel, uint iBandWidth, uint 
iGroupKeyUpdateInterval);  
 
Summary Start SoftAP. 
 
Descr  Try to start the SoftAP. The parameter of this function indicates the SSID and 

channel you want to use for this BSS. If WPA security is used, you also need to 
indicate the group key update interval. You need to call swf_SetAuthMode() to step 
up the authentication and encryption of this BSS. You also need to call 
swf_GenerateWPAKey()/swf_SetWPAKey() if WPA is used. You also need to call 
swf_SetWepSharedKey()/swf_SetWepDefaultKeyID() if WEP is used. 

 
Parameters  pSSID NUL-terminated SSID of this BSS, at most 32 bytes. 
 iChannel Operation channel of this BSS 
 iBandWidth Bandwidth of the channel, 1 for 40MHz and 0 for 20MHz. 
 iGroupKeyUpdateInterval If WPA is used, this parameter is used to specify the 

group key update interval, in seconds. If 0, SoftAP will not update 
group key. 

 
Returns  0  Start SoftAP success. 
  < 0 Start SoftAP fail. 
 
See Also  swf_Open(), swf_StopSoftAP() 

 
 
int swf_StopSoftAP (void);  
 
Summary Stop SoftAP. 
 
Descr  Try to stop the SoftAP.  
 
Parameters  none 
 
Returns  0  Stop SoftAP success. 
  < 0 Stop SoftAP failed or SoftAP has not been started yet. 
 
See Also  swf_Close(), swf_StartSoftAP() 



 

 35 

4.7 APIs for ATE Testing 
The application can call the following functions to do ATE testing. 

 
int  swf_ATESendRawData(u8 *pData, uint size); 

int  swf_ATESetTxContMode(BOOLEAN bEnable); 

int  swf_ATESetTxPower(uint iPercentage); 

int  swf_ATESetTxRate(uint iMode, uint MCS, uint iBandWidth, uint iGapInterval, uint NSS); 

int  swf_ATESwitchChannel(uint iChannel); 

 
Here is an example of the testing to transfer some data @ 130Mbps at channel 6 with 100% Tx 
power. 
 
            swf_ATESetTxPower(100); 
            swf_ATESetTxRate(2, 15, 0, 0, 1);/* HTMIX, MCS15, 20MHz, LongGI, 2SS */ 
            swf_ATESwitchChannel(6); 
             
            while(1) 
               swf_ATESendRawData((u8 *)"12345678901234567890", 20); 
 
 
int swf_ATESendRawData (u8 *pData, uint size);  
 
Summary Send raw ATE data packet. 
 
Descr  Send the data buffer you provide during ATE testing. An 802.11 header will still be 

added to the packet by the WiFi stack. 
 
Parameters  pData Data packet buffer pointer 
 size Size of the data packet 
 
Returns  0  Data sent. 
  < 0 Device is not open yet. 
 
See Also  swf_ATESwitchChannel() 
 
 
 
int swf_ATESetTxContMode(BOOLEAN bEnable); 
 
Summary Enable/Disable the Tx continues mode. 
 
Descr  Let the dongle continue to send data packets. 
 
Parameters  bEnable Enable/Disable 
 



 

 36 

Returns  0  Mode set. 
  < 0 Device is not open yet. 
See Also  ATESendRawData() 
 
 
int swf_ATESetTxPower (uint iPercentage);  
 
Summary Set the Tx power percentage. 
 
Descr  Set the power percentage. You need to call swf_ATESwitchChannel() again to make 

the power setting take effect. 
 
Parameters  iPercentage Percentage of Tx power, 1-100 
 
Returns  0  Percentage set. 
  < 0 Device is not open yet. 
 
See Also  swf_ATESwitchChannel() 
 
 
int swf_ATESetTxRate(uint iTxRate, uint iBandWidth, uint iGapInterval);  
 
Summary Set the Tx rate. 
 
Descr  Set the Tx rate. Check the 802.11 spec for the relationships between Rate, 

Bandwidth, and Gap Interval. 
 
Parameters  iTxRate TxRate. Unit is 100kbps. For example 54mbps is 540. 
 iBandWidth 0 for 20 Mhz, 1 for 40Mhz. It is ignored if the TxRate is 11b/g rate. 
 iGapInterval Short or long GI. 0 for long GI, 1 short GI. It is ignored if the is 11b/g 

rate. 
 
Returns  0  Tx rate is set. 
  < 0 Device is not open yet or the Tx Rate/Bandwidth/GI combination is invalid. 
 
See Also  swf_ATESwitchChannel() 
 
 
int swf_ATESwitchChannel(uint iChannel);  
 
Summary Switch the channel for the ATE test. 
 
Descr  Switch the channel you want to use to do the ATE test. 
 
Parameters  iChannel Channel number 
 
Returns  0  Channel is changed. 
  < 0 Device is not open yet. 
 
See Also  swf_ATESetTxRate () 



 

 37 

4.8 Chipset Driver Interface 
smxWiFi defines a set of APIs to interface with the chipset so the core stack is independent of the 
hardware. New chipset drivers must follow this interface and add it to the smxWiFi stack in the 
WiFiInit() function. 
 
Micro Digital does not recommend that anyone other than a Micro Digital developer write a 
new chipset driver. The interface may not be suitable for some chipsets. 
 
The chipset (hardware) interface is defined as: 
typedef struct 
{ 
    int (*Init) (SWF_SHARED_INFO *); 
    int (*Release) (void); 
    int (*Reset) (void); 
    int (*Start) (void); 
    int (*Stop) (void); 
    int (*GetMACAddr)(u8 *pMACAddr); 
    int (*SendMgmtPacket)(u8 *pBuffer, uint iLen, u8 Mode, u8 MCS, BOOLEAN AckRequired); 
    int (*SendDataPacket)( u8 *Header, uint iHeaderLen, u8 *pPayload, uint iPayloadLen, u8 Mode, u8 

MCS, BOOLEAN bAckRequired,BOOLEAN bRTSCTSFrame, BOOLEAN 
bFrag); 

    int (*SendRTSCTSPacket)(u8 *Frame, uint iLen, u8 Mode, u8 MCS, u8 FrameGap, u8 Type); 
    int (*SendNullFrame)(u8 *pHeader, uint size, u8 Mode, u8 MCS); 
    int (*EnableIbssSync)(u8 *pBeaconBuf, uint FrameLen, u8 Mode, u8 MCS, uint BeaconPeriod); 
    int (*SwitchChannel)(uint iChannel, s8 TxPower); 
    void (*RegRecvPacket)(RECVPACKETNOTIFY pNotify); 
    int (*SetLEDStatus)(u8 bStatus); 
    int (*SetSignalLED)(long Dbm); 
    int (*SetSlotTime)(BOOLEAN bUseShortSlotTime); 
    int (*SetBSSID)(u8 *pBssid); 
    int (*SetPowerSaveMode)(uint psm); 
    int (*ForceWakeup)(void); 
    int (*SleepThenAutoWakeup)(u16 TbttNumToNextWakeUp, uint BeaconPeriod); 
    int (*EnableBssSync)(uint BeaconPeriod); 
    int (*DisableSync)(void); 
    int (*SuspendMsduXmit)(void); 
    int (*ResumeMsduXmit)(void); 
    int (*SetTxPreamble)(u16 TxPreamble); 

int (*PrepareChannel)(uint iChannel); 
int (*LinkUp)(u8 BssType, BOOLEAN bUseShortSlotTime, BOOLEAN bShortPreamble); 

    int (*LinkDown)(uint channel); 
    int (*SetTxRate)(u32 NewBasicRateBitmap); 
    int (*SetRadio)(BOOLEAN bOn); 
    int (*EnableRX)(void); 
    int (*GetTimeStamp)(u32 *pdwLow, u32 *pdwHigh); 
    int (*ScanFinishResetRF)(void); 
    int (*ScanAdjustRF)(uint channel); 
    int (*TuningRF)(BOOLEAN IsIdle); 
    int (*GetCounters)(void); 



 

 38 

    int (*AdjustTxPower)(u32 PeriodicRound, s8 TxPwer); 
    int (*ResetRawCounters)(void); 
    int (*LostBeaconAction)(void); 
    int (*AdjustRTSProtection)(s16 dbm); 
    int (*RSSI2SignalStrength)(u8 Rssi); 
    int (*AddSharedKey)(uint KeyID, uint Wcid); 
    int (*RemoveSharedKey)(uint KeyID, uint Wcid); 
    int (*AddPairwiseKey)(uint WCID); 
    int (*RemovePairwiseKey)(uint WCID); 
    int (*RxAntEvalAction)(void); 
    int (*AddBASession)(uint Wcid, uint TID); 
    int (*RemoveBASession)(uint Wcid, uint TID); 
    int (*SetTxContMode)(BOOLEAN bEnable);  
#if SWF_ENABLE_SOFTAP 
    int (*GetGroupKeyWcid)(void); 
    int (*AddClient)(u8 *pMACAddr, uint Aid); 
    int (*RemoveClient)(uint Aid); 
#endif 
}SWF_WLAN_HW_OPER_T; 
 



 

 39 

5. Built-In Features 
smxWiFi has the following features built-in. 

5.1. Country/Region 
WiFi needs to run under certain regulatory domains, which the application may need to set up first. 
smxWiFi has a simple built-in country region database in wfdrv.c. Regulatory agencies may or may 
not allow end users to change this setting. For example, FCC will not allow any end user to change 
country settings. Regulatory domain information can also be programmed to the wireless hardware 
module you are using. smxWiFi will first read country settings from the hardware/chipset. If there is 
no country set in the chipset, smxWiFi will default to use the FCC/US region but no DFS channels. 
For 2.4GHz, it will use channel 1-11. For 5GHz band, it will use channel 36-48 and 149-165. These 
are UNII-1 and UNII-3 bands. After smxWiFi gets the country information, it generates the allowed 
channel list and Tx power table according to the country region database. So, the settings in the 
hardware/chipset will take priority. 
 
This default regions settings can be changed in function WiFiInitData() in wfnet.c by the following 
code: 
 
    /* CountryRegion for BG band, default to US/FCC */ 
    pWiFi->SharedInfo.CountryRegion     = SWF_REGION_0_BAND_BG; 
    /* CountryRegionABand, default to US/FCC without DFS  */ 
    pWiFi->SharedInfo.CountryRegionForABand = SWF_REGION_10_BAND_A; 
 

5.2. BSS Scanning 
smxWiFi can trigger the BSS scan by calling swf_ScanBss(). This scan can be active or passive. 
Passive scan will only listen for the beacon frame of each SSID at that channel. Active scan will send 
probe request to all APs first and then wait for the probe response from the APs at that channel. The 
dwell time for this station to stay at that channel depends on the scan type. 
SWF_MAX_SCAN_TIMEOUT is for passive scan, SWF_MIN_SCAN_TIMEOUT is for active 
scan,  and SWF_FAST_SCAN_TIMEOUT is for fast active scan which should be used for most 
likely roaming purpose. All the dwell times are configurable.  
 
Active scan will save time. The station does not need to stay at that channel at least one beacon 
interval (at least 102.4ms for most AP) to get beacon information. If the beacon interval on a certain 
AP is not 102.4ms, waiting 200ms may not be enough to get that AP’s information. The scan result 
may not have that AP at all. 100 ms should be enough for active scan. But you still need to make sure 
the processor is fast enough to handle all the probe responses (maybe 5-10, depending on how many 
APs are there) within that dwell period. DFS channels will not allow active scan. smxWiFi will force 
to use passive scan when it needs to do scanning on those DFS channels. 
 
You can also call swf_ScanBssByChannel() to scan only the channel(s) of interest, such as 5G 
channels only. The default channel list is built based on the country/region settings. Don’t pass 
channels that are not allowed in the country/region. 
 
After BSS scanning is done, you normally need to call swf_GetBssNum() and swf_GetBssInfo() to 
get the list of APs in your environment. BssInfo structure returned by swf_GetBssInfo() includes 



 

 40 

basic information about that AP, such as SSID, BSSID, primary channel, signal strength, channel 
bandwidth, authentication/encryption. WPS supported, etc. Multiple APs may have the same SSID 
but each AP’s BSSID should be unique.  

5.3. MAC Layer Management Entity  
smxWiFi will do most MLME tasks, such as connect to certain BSSID by either user’s selection 
(after BSS scan) or saved profile information.  

5.3.1 Start Connection 
Multiple APs with the same SSID may exist. Normally this means those APs belong to the same 
ESSID. Your application needs to decide which AP to connect. The application may choose the one 
with strongest signal, for example. If multiple APs with same SSID exist, BSSID need to be passed 
in swf_Connect() so smxWiFi will know which one to connect. 
 
smxWiFi will first switch to that channel and make sure it will still get beacon frame from that 
BSSID. Then it will start the connect handshake:  
 
 Authentication  
 Association  
 4-way handshake when RSN/WPA enabled  
 
After the handshake is done, smxWiFi will send the SWF_DEVEVT_LINKUP event to the 
application by the callback function. 

5.3.2 Maintain Connection 
smxWiFi will also sync the BSS information by continually tracking the beacon frame. If there is no 
beacon coming in within 2 seconds (hard coded), smxWiFi will believe that AP is gone and notify 
the application by the SWF_DEVEVT_LINKDN event. 
 
smxWiFi will also monitor any DEAUTH or DEASSOC frames from the AP. If smxWiFi receives 
any of these management frames, it will notify application by the SWF_DEVEVT_LINKDN_AP 
event. 
 
smxWiFi also has very simple power management in station mode. It can let the chipset go to sleep 
mode and periodically wake up to check activities with the AP. The main MCU will not be in sleep 
mode. Only the wireless chipset will go to sleep mode to save power. 
 
smxWiFi also has a monitor task that runs once a second for additional tasks, which includes RF 
tuning (depends on chipset function), transmit power adjustment, dynamic rate switching, radar 
detection, software antenna diversity evaluation, station roaming evaluation, etc.  
 

5.3.2.1 Dynamic Rate Switching 
 
smxWiFi will automatically adjust the transmit rate according to packet error ratio. Basic logic is: 
 

1) After the client connects to the AP, smxWiFi will check the RSSI from the beacon frame 



 

 41 

and decide which transmit rate it should use. RSSI vs. rate table is listed in wfdrs.c, which 
comes from the 802.11 spec and common knowledge about the required SNR and RSSI 
value for each MCS rate. 
 

2) After setting the initial rate by RSSI, the rate will be changed when number of transmit 
packets is larger than 15/second. The main factor to decide the rate is the packet error ratio. 
It is a percentage value defined as: 

 total transmit retry counter/total tx counter. 
 

smxWiFi DRS code has multiple rate tables for each mode (CCK/OFDM, HT and VHT). 
Bandwidth (20/40/80 MHz) and number of spatial stream. 
For each table, it contains multiple entries. Each entry will have the following fields: 

 STBC: Use or not use STBC 
 ShortGI: 800ns GI or 400ns GI 
 BW: 20M/40M/80MHz channel bandwidth 
 Mode: CCK, OFDM, HTMIX, HTGF or VHT PHY mode. 
 MCS: Modulation and Coding Scheme index value this entry should use. 
 NSS: HT/VHT PHY only, Number of Spatial Stream 
 UpThld: The PER threshold that should increase the transmit rate. For example, if 

PER value is less than 8(%), smxWiFi will increase the transmit rate to next 
level. 

 DnThld: The PER threshold that should decrease the transmit rate. For example, if 
PER value is more than 15(%), smxWiFi will decrease the transmit rate to 
previous level. 

 
Here is a sample of the table, 802.11ac 2SS: 
 
#define VHT2S_INIT_INDEX 6/* The index that maps to close -65dBm */ 
const static SWF_RATE_TABLE_ENTRY RateTableVht2S[] =  
{ 
/*                        [Mode]                                             [MCS/NSS]    [UpThld]  [DnThld] */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_20,SWF_MODE_VHT,0,  SWF_MCS_0,1,     

20,       100},   /* 0  VHT MCS0, 20MHz, 2SS, 13Mbps */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_20,SWF_MODE_VHT,0,  SWF_MCS_1,1,     

20,        50},   /* 1  VHT MCS1, 20MHz, 2SS, 26Mbps  */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_40,SWF_MODE_VHT,0,  SWF_MCS_1,1,     

20,        30},   /* 2  VHT MCS1, 40MHz if supported, 2SS, 54Mbps */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_40,SWF_MODE_VHT,0,  SWF_MCS_2,1,     

15,        30},   /* 3  VHT MCS2, 40MHz if supported, 2SS, 81Mbps */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_40,SWF_MODE_VHT,0,  SWF_MCS_3,1,     

15,        25},   /* 4  VHT MCS3, 40MHz if supported, 2SS, 108Mbps */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_80,SWF_MODE_VHT,0,  SWF_MCS_3,1,     

15,        25},   /* 5  VHT MCS3, 80MHz if supported, 2SS, 234Mbps */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_80,SWF_MODE_VHT,0,  SWF_MCS_4,1,     

10,        25},   /* 6  VHT MCS4, 80MHz if supported, 2SS, 351Mbps */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_80,SWF_MODE_VHT,0,  SWF_MCS_5,1,     

10,        20},   /* 7  VHT MCS5, 80MHz if supported, 2SS, 468Mbps */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_80,SWF_MODE_VHT,0,  SWF_MCS_6,1,     

10,        20},   /* 8  VHT MCS6, 80MHz if supported, 2SS, 562.5Mbps */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_80,SWF_MODE_VHT,0,  SWF_MCS_7,1,     

10,        20},   /* 9  VHT MCS7, 80MHz if supported, 2SS, 585Mbps */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_80,SWF_MODE_VHT,0,  SWF_MCS_8,1,      

8,        15},   /* 10 VHT MCS8, 80MHz if supported, 2SS, 702Mbps */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_800,SWF_BAND_WIDTH_80,SWF_MODE_VHT,0,  SWF_MCS_9,1,      

8,        15},   /* 11 VHT MCS9, 80MHz if supported, 2SS, 780Mbps */ 
     {SWF_STBC_NONE,SWF_GAP_INTERVAL_400,SWF_BAND_WIDTH_80,SWF_MODE_VHT,0,  SWF_MCS_9,1,      

8,        15},   /* 12 VHT MCS9, ShortGI, 80MHz if supported, 2SS, 866.7Mbps */ 
}; 
 



 

 42 

smxWiFi will use the MCS index which maps to –65dBm as the default rate. It is 6 in 
this case. It will use VHT mode PHY, LongGI, STBC is 0, 80MHz bandwidth. MCS 
value 4, the rate will be 351Mbps. After one second, if the PER is 10, which did not hit 
either the Up or Down threshold, it will remain the same transmit rate, if the PER is 4, 
then smxWiFi will increase to the level to entry 7, which is 468Mbps (use MCS 5 instead 
of 4). If the PER is 30, smxWiFi will decrease the level to entry 5, which is 234Mbps 
(use MCS 3 instead of 4). Transmit rate will keep changing if the PER remains in the Up 
or Down range until it reached the highest or lowest rate defined in the table. In this 
sample table, the highest rate is MCS9 with ShortGI. 

 
Note: DRS is disabled for SoftAP mode. The algorithm needs to be improved to support 
SoftAP mode. 

5.3.2.2 Transmit Power Adjust 
smxWiFi will also automatically adjust the transmit power. Most of the code is implemented in the 
chipset driver because transmit power most likely depends on antenna and PA design of the 
hardware/chipset. 

5.3.2.3. Radar Detection 
smxWiFi has also built-in radar channel database. If the current connection is on a radar channel, it will 
keep doing radar scan to comply the regulatory requirement. This feature has not been fully tested. To use 
DFS channel, the device needs to get certified. Special testing needs to be done in order to get that 
certificate. 

5.3.2.4. Software Antenna Diversity Evaluation 
smxWiFi can also do periodic antenna diversity evaluation if chipset supports this feature. Details are 
implemented in the chipset driver. For example, select the receive path number according to RSSI value. 
If RSSI is lower, the chipset driver will use less receive path to boost the signal. 

5.3.2.5. Station Roaming 
An smxWiFi station can do roaming if the signal from the current AP is not good. It can re-associate to 
another BSS with the same SSID but better signal. This feature has not been fully tested and is disabled 
by default. 



 

 43 

6. WPA Supplicant Support 
smxWiFi WPA supplicant support is an optional feature based on the open source wpa_supplicant 
v2.0. This code has a BSD license. 
 
Only EAP-MD5, EAP-MSCHAPV2, EAP-PEAP have been tested. EAP_WSC has been tested for 
WSC. 
 
The code for most other EAP types can be compiled, but you need to test it. See the comments in 
build_config.h. 

6.1. WiFi Peer-to-Peer (P2P) 
WiFi Peer-to-Peer (P2P) is an optional feature built on WPA supplicant support. It depends on WiFi 
Simple Configuration and WPA2 security. It is a protocol designed to replace the legacy ad-hoc 
(IBSS) protocol for interconnecting WiFi devices. Improvements over ad-hoc include easier 
connection and the latest security, WPA2. When used with SoftAP, the device can be either the 
Group Owner (server) or client; otherwise, it can only be the client. It is based on the P2P protocol 
specification from the Wi-Fi Alliance. 
 
1. SWF_ENABLE_SOFTAP also must be set to 1 to allow this WiFi device to become Group 

Owner. 
2. wfcfg.h includes some configuration related to your device, such as operation and listen channel 

and postfix of the Group Owner SSID. You may change it if desired. See the comments in that 
file. 

3. Optional features such as service discovery are not support yet. 
4. P2P has been tested against Android tablet/phone. 

6.2. WiFi Display 
WiFi Display is an optional feature built on WPA supplicant support. It depends on WiFi Peer-to-
Peer.  
 
1. SWF_ENABLE_P2P also must be set to 1. 
2. Optional features such as service discovery are not support yet. 
3. smxWiFi implements only a small part of what is needed for full WiFi Display capability; it adds 

only what is needed to supplement P2P. For full support, it is necessary to implement additional 
protocols for WiFi and TCP/IP, new capabilities in the WiFi chipset driver, video/audio 
encoder/decoder, and possibly more. As a result, this feature is quite incomplete and only 
partially tested. 

6.3. WiFi Enterprise (PEAP/MSCHAPv2) 
MD5 and MSCHAP cannot be used to derive the WPA key, so only PEAP has been tested to work 
with smxWiFi in this version. Because Windows only supports SmartCard and PEAP/MSCHAPV2, 
if your Windows PC works fine with your authentication server, smxWiFi should also work. 
 
1. Some versions of the PEAP spec use “client PEAP encryption” as the label to calculate TK. The 

latest spec (v10) uses “client EAP encryption” so we hardcode the label as “client EAP 



 

 44 

encryption”. 
2.  We hardcode the PEAP inner method to MSCHAPV2. 
 
If you want to dynamically configure these two variables, contact Micro Digital. 

6.4. WiFi Enterprise Test Environment 
A RADIUS server is required to test WPA Enterprise. Your Access Point needs to set the Wi-Fi 
security to WPA-Enterprise. You also need to know the RADIUS server’s IP address, the port 
number the RADIUS server is listening to (default is 1812), and the secret between the AP and your 
RADIUS server. You need to ask your network administrator for this information. 

You can also build your RADIUS server on any Linux PC using FreeRADIUS server 
(http://freeradius.org/).  

More detailed information can be found at the FreeRADIUS Server FAQ 
http://wiki.freeradius.org/guide/faq#How-to-Find-and-Install-FreeRADIUS? 

Remember to set up your Linux PC’s firewall to enable port 1812. 

Here set up steps we used for FreeRADIUS Server on Fedora 13: 

1. Download freeradius-2.1.10-1.fc13.i686.rpm and all the depends rpm and install it. 

2. FreeRADIUS server config file is in /etc/raddb 

3. Open /etc/raddb/users, add the following line at the top of that file to add the user 

wifitester Cleartext-Password := “wifitester” 

4. Open /etc/raddb/clients.conf, and add the following lines at the end of the file to add the AP: 

client 192.168.1.1 { 
 secret   = ap 
 shortname  = ap 
} 
 
5. Set your Linux PC’s IP address to static 192.168.1.30. 

6. On the AP WiFi security settings page, input the RADIUS server address as ‘192.168.1.30’, the 
secret as ‘ap’, and port as default 1812. Save the settings. 

7. On the Linux PC, run radiusd –X to start the server. 

8. Begin the WiFi Enterprise testing. 

6.5. WiFi Simple Configuration (WSC) / EAP-WSC 
WiFi Simple Configuration (WSC) is an optional feature built on WPA supplicant support. The 
method EAP-WSC is mainly just for this. This simplifies connection to an AP or other device. 
(Devices with this feature that are certified by the Wi-Fi Alliance can claim support for Wi-Fi Protected 
SetupTM.) 
 
1. By default, WSC version 2 is enabled, so WEP and TKIP may not be set up properly. In some 

old APs, WEP and TKIP can be used even if WSC is enabled. To support this kind of AP, you 



 

 45 

need to comment out CONFIG_WPS2 in build_config.h 
2. We only generate an 8-digit PIN. 
3. wfcfg.h includes some information about your device, such as the name of your device and 

manufacturer. You may change it as desired. See the comments in that file. 
4. This WSC implementation is only tested as Enrollee and through the in-band channel. 
5. Both Enrollee and Registrar are tested. Registrar needs the SoftAP feature. 
6. WSC key exchange proceduce needs some DH Key generation and derivation operations, so low 

speed ARM7 or ARM Cotex-M without instruction and data cache is not recommended for 
WSC, especially as Registrar (AP), because it may not meet the timing requirement.  

6.6. Requirement for Real Time Clock 
RTC is highly recommended for the Enterprise support because the random generation code 
os_get_random() in os_xbase.c needs the real time as the random number seed. Also when checking 
the server certificate, wpa_supplicant also needs real time to validate the certificate. If you have a 
RTC on the board, please set CONFIG_RTC in build_config.h and implement the function 
os_get_time() in os_xbase.c to get it. 

We provide some workaround code in os_xbase.c to use the build date/time of the smxWiFi library 
as the current time. This approach may not work for some RADIUS servers’ certificates such as the 
FreeRADIUS Server default server certificate. For that case, we highly recommend you add a RTC 
to your hardware. Otherwise, do not enable the definition of CONFIG_RTC in build_config.h 



 

 46 

7. Optional Features 
Also see section 6. WPA Supplicant Support. 

7.1 SoftAP Support 
SoftAP is an optional feature that provides simple AP function support to allow connection from 
other WiFi devices. It cannot be used to replace a full-function Access Point. SoftAP is an advanced 
feature and involves some complicated key generation and data encryption/decryption operations, so 
we recommend using a processor which is more powerful than a 200MHz ARM9. Otherwise 
performance may be bad, and the client may time out for various reasons. 
 
SoftAP supports the following features: 
1. Open, shared, WPA-PSK/WPA2-PSK authentication, and TKIP and AES encryption. 
2. 802.11 a/b/g/n band. 
 
Limitations in the current version: 
1. Client power save is not supported. 
2. Dynamic rate switching is not supported. 
3. Communication between clients (routing) needs the TCP/IP stack’s support. Currently smxNS 

does not support it so you cannot even ping from one client to another client. However, each 
client can communicate with the SoftAP. This limitation is due to smxNS having only one WiFi 
interface, yet it would handle data from multiple devices. smxNS would need to know about all 
the clients connected to that interface and route data to the right one. 

 



 

 47 

8. Application Notes 

8.1 Connecting to a Hidden AP 
smxWiFi allows you to connect to a hidden AP (one which does not broadcast the SSID information 
in its beacon). There are two methods to connect to a hidden AP: 
 
1. If you know the BSSID (MAC address) of the AP, you can call swf_Connect() and pass “” as 

SSID and pass the BSSID information to it. This is the fastest way. It is useful for connecting to a 
hidden AP. Note: You can get the security settings of the AP by comparing the BSSID and the 
BSSID Information returned by swf_GetBssInfo(). swf_SetAuthMode() needs to be called before 
swf_Connect(). This method can also be used when you try to re-connect to a saved hidden AP. 

 
2. If you know the SSID, you can still pass the SSID to swf_Connect().  smxWiFi will check if 

there are any APs in the BSS table which already have that SSID. If there is no such named AP 
and there are any hidden AP(s) in the scanned BSS table, smxWiFi will try to connect to each 
hidden AP one by one. So the connect time may be a little longer than a normal AP. Note: 
Because we don’t know which AP is the one you really need to connect to at this time, the caller 
(application) needs to know the security settings of the AP. Normally that requires user’s input. 
swf_SetAuthMode() needs to be called before swf_Connect(). For details, check our sample code 
in wifidemo.c, TEST_HIDDEN conditional sections. 

8.2 Improving Performance 
smxWiFi performance is not only related to hardware speed. It is also related to the environment, 
Access point configuration, and how the TCP/IP stack calls the smxWiFi API to send data packets. 
The real world environment and shielded room are different. Multiple Access Points may be using 
the same channel, which will dramatically reduce performance. Also if one AP is configured to 
support both 802.11b/g/n, then low speed 802.11b may also reduce performance. Our testing shows 
that simply disabling b or g support will improve the n dongle performance by about 10%. 
 
Sending bigger data packets by TCP/IP normally will improve performance because the WiFi chipset 
driver has the ability to send burst packets. One big TCP packet may become multiple IP fragments 
but if the TCP/IP stack can tell the WiFi stack there are more data pending (through the bLast 
parameter of the swf_SendPacket() function) then the chipset function may hold those packets and 
send them together to the hardware to get better performance. Our testing shows this kind of burst 
sending can improve performance by almost 100% under some conditions. We modified our Ralink 
dongle drivers to accumulate as much as possible until the transmit buffer is full, then send out one 
big packet. SWF_ENABLE_TX_BURST need to be set to 1 and the Ralink dongle driver may need 
an additional 40KB RAM to support this feature.  

8.3 Switching between APs 
The correct steps to switch between APs are: 
 

1. Call swf_Disconnect() to disconnect the station from the AP. 
2. Call swf_ScanBss() to get the latest BSS information. Make sure the desired AP is within the 

resulting BSS table. Do not depend on the saved information because the AP’s settings may 



 

 48 

be changed, such as the channel and security settings. 
3. Set up the correct AuthMode and Key, according to the information in the BSS table. Make 

sure to pass the correct AuthMode and key length for the WEP case. 
4. Call swf_Connect() again with the new SSID. 

8.4 Reconnecting to an AP 
There are two conditions under which you may want to reconnect to an AP: 
 

1. The AP is still on but your application needs to temporarily disconnect from the network and 
will connect to the same AP again later. Do similar steps to those in section 8.3 Switching 
between APs. 

2. The application gets the SWF_DEVEVT_LINKDN or SWF_DEVEVT_LINKDN_AP event. 
Your application needs to keep calling swf_ScanBss() until it finds the AP’s SSID again in 
the table, then do the steps 3 and 4 in section 8.3 Switching between APs. The application also 
needs to set up a timeout value for the scan BSS operation, such as two minutes. If that AP 
still does not show up, then the application should stop trying and report to the user the link 
was lost. The user then can select another AP or go check the AP. 

 
Do not use the bAutoReconnect parameter for the swf_Connect() unless you know for certain that the 
AP will always be started with the same settings. In the normal case, a user could have changed the 
AP settings, and then this reconnect will always fail. 

8.5 RAM Usage of the WiFi Stack 
Global handles are allocated when you call swf_Init() and released when you call swf_Release(). 
That memory will be used during the whole life of the WiFi stack. Handle’s size is about 8KB – 
12KB, depending upon the features you enabled, such as 11n or security options. The WiFi stack will 
also need additional dynamic memory during the connection procedure, such as the WPA key 
generation, WPA 4-way handshake, and EAP authentication. This phase may need an additional 
10KB of RAM, and that memory will be released to heap after the connection is done. If your system 
has tight memory constraints, you can try to release some application memory before the WiFi 
connection phase or you can start some network server only after the WiFi connection is established. 
The whole WiFi connection procedure, even for Enterprise or WSC, should only take at most 10 
seconds. 

8.6 WiFi Simple Configuration (WSC) Steps 
WiFi Simple Configuration needs user’s action at both the AP and the station. See the demo code in 
wifidemo.c, TEST_WPS_PBC and TEST_WPS_PIN, for the code for the station. 
 

1. For Push Button Configuration (PBC), normally the user needs to do something on the AP to 
activate PBC mode. This is done by pressing the physical WSC/WSP button or clicking the 
virtual WSC/WSP button in the AP’s configuration UI (typically through a web browser 
interface). The AP will wait for 120 seconds for the device to connect to it. During this time, 
the station also needs to go to the PBC mode. From the application’s point of view, the 
application need to: 

a. Call swf_ScanBss()  to get the latest BSS information. 
b. Call swf_GetBssInfo() to get BSS information for all APs and check if the 



 

 49 

bWPSSupported flag is set to TRUE for at least one scanned BSS. If none of the 
bWPSSupported flags is set, it reports an error to the user that WSC is not enabled in 
any the APs in this area. 

c. If at least one AP’s bWPSSupported flag is set, call swf_WPSStartPBC() to start 
PBC. If this function returns a negative value, report to the user that no AP is in the 
active PBC mode. User may need to press the physical WSC/WPS button on the AP 
again. 

d. swf_WPSStartPBC() will not return until the WSC protocol is finished. If it returns 0, 
call swf_GetConnProfile() to get the AP’s settings. The application can save the 
profile for future use. This profile already contains all the necessary information for 
the station to connect to that AP later. Sometimes the AP will disconnect 
(Deauthentication) first. If the application wants to connect to that AP immediately, 
just call swf_Connect(ConnProfile.Ssid, FALSE, ConnProfile.Bssid). The application 
does not need to scan the BSS or set up the security features again if connecting to 
that AP immediately after the WSC procedure. 

e. If the swf_WPSStartPBC() returns fail, the application needs to call 
swf_Disconnect() and then report an error to user. A possible reason for the failure is 
WEP is enabled while using WSC version 2, or WSC timed out. 

 
2. For PIN configuration, normally the user should get the PIN of the device first. The 

application can use the preset PIN on the label/display of the station or generate a dynamic 
PIN every time it wants to do WSC. swf_WPSGeneratePIN() can be used to generate the 
dynamic PIN. This function is also useful to create a function to create the preset PINs for all 
devices. Then the user needs to input the PIN in the AP’s configuration UI (typically through 
a web browser interface) and start the PIN configuration. The AP will wait for 120 seconds 
for the device to connect to it. During this time, the station also needs to go to the PIN mode. 
From the application’s point of view, the application needs to: 

a. Call swf_ScanBss()  to get the latest BSS information. 
b. Call swf_GetBssInfo() to get BSS information for all APs and check if the 

bWPSSupported flag is set to TRUE for at least one scanned BSS. If none of the 
bWPSSupported flags is set, it reports an error to the user that WSC is not enabled in 
any the APs in this area. 

c. If at least one AP’s bWPSSupported is set, call swf_WPSStartPIN(pin) to start the 
PIN configuration, if this function returns a negative value, report to the user that no 
AP is in the active PIN mode. The user may need to re-input the PIN and restart the 
procedure on the AP again. 

d. If swf_WPSStartPIN() will not return until the WSC protocol is finished. If it returns 
0, call swf_GetConnProfile() to get the AP’s settings. The application can save the 
profile for future use. This profile already contains all the necessary information for 
the station to connect to that AP later. The application also needs to call 
swf_Disconnect() so it can established the connection with the new information. 
Sometimes the AP will disconnect (Deauthentication) first. If the application wants to 
connect to that AP immediately, just call swf_Connect(ConnProfile.Ssid, FALSE, 
ConnProfile.Bssid). The application does not need to scan the BSS or set up the 
security features again if connecting to that AP immediately after the WSC 
procedure. 

e. If swf_WPSStartPIN()  returns fail, the application needs to call swf_Disconnect() 
and then report an error to user. A possible reason for the failure is WEP is enabled 
while using WSC version 2, or it timed out. 

 



 

 50 

8.7 WiFi Peer-to-Peer (P2P) Steps 
WiFi Peer-to-Peer needs user action at both devices. See the demo code in wifidemo.c, in the 
TEST_P2P and TEST_P2P_CONNECT (TEST_P2P_PBC/ TEST_P2P_LABEL/ TEST_P2P_PIN) 
case. 
 

1. When smxWiFi is idle (device is open but has not connected to any BSS yet), call 
swf_P2PStartFind() to start the find procedure. A 30-second timeout value may be a common 
find procedure time. After this function returns 0 (success), the user’s task should keep 
monitoring the SWF_P2PEVT_CONNECT_REQUEST and 
SWF_P2PEVT_FOUND_DEVICE events. When the application gets the 
SWF_P2PEVT_FOUND_DEVICE event, it may need to display the found device so the user 
can select it and try to connect to this P2P device. If the application gets the 
SWF_P2PEVT_CONNECT_REQUEST event, it means one of the peer devices is trying to 
connect to the application. The user application should pop up a prompt (window) to let the 
user to accept it or not. If the user does not want to accept it, just ignore this event and do 
nothing.  

2. Either the user wants to connect to one of the found P2P devices or accept the connect 
request from the found P2P device. The application needs to call swf_P2PStopFind() first and 
then swf_P2PDoFormation() to do the group formation of these two P2P devices. 

3. If swf_P2PDoFormation() succeeds 
a. If the role of this device is client, the application must call swf_GetConnectProfile() 

to get the required profile information and then call swf_Connect() to do the normal 
connect to the Group Owner. 

b. If the role of the device is Group Owner, it needs to call 
swf_P2PPreapreGroupOwner() to generate the WPA key and get the Group Owner’s 
SSID. Then the application needs to start the SoftAP by calling swf_StartSoftAP() 
and also call swf_WPSStartPBC() or swf_WPSStartPin() to start the WSC Registrar. 
If the WSC Enrollee connects to the registrar within the 120 second time limit, 
swf_WPSStartPBC() or swf_WPSStartPIN() will return success and the Group 
Owner should wait for the client to do a normal connection. If 
swf_P2PDoFormation() failed, the application should report this to the user and do 
the P2P find again. 

4. If the device is Group Owner and the peer device leaves, the application should stop the 
SoftAP and return to normal state, so this WiFi device can start a new P2P session, become a 
SoftAP, or connect to an AP. 

 
Instructions for running the P2P demo code: 

 
1. In wifidemo.c set TEST_P2P, TEST_P2P_CONNECT, and TEST_P2P_PIN to 1. All other 

TEST_xxx macros should be 0. 
2. After you start the code and plug in the wifi dongle, the demo will keep scanning the P2P device. 

You will see “Scanning P2P” on the terminal screen. 
3. On your P2P-enabled Android device, go to Settings->Wireless and network, and tap the Wi-Fi 

Direct button. 
4. The Android device will try to scan for available devices. It will display “My device name” such 

as “Android_f6b4”" and also available devices such as “smxWiFi Device”. 
5. At the same time, this device will display “Found Device Android_f6b4”. 
6. Wait for about 20 seconds, and this device will try to automatically connect to the first P2P 

device it found, such as “Android_f6b4”. 
7. On the Android device, it will pop up dialog to let the user choose to accept this request. Select 



 

 51 

Accept. 
8. This device will display a few status updates, and then will display “Link is Connected” (Client 

case) or “Client connected to SoftAP” (GroupOwner case) and the Android device will display 
Connected. 

9. If web server is enabled in nsdemo.c, you can use the Android device’s web browser to access it 
by inputting http://192.168.1.1 

10. You can also use the Android device’s terminal app to access the telnet server at 192.168.1.1 if it 
is enabled in the nsdemo.c. 

11. If you set TEST_P2P_CONNECT to 0, you need to initiate the connection on  
the Android device. Just tap the “smxWiFi Device”. This device will display “Waiting for User to 
Accept” and wait 5 seconds to simulate the user’s action. It will always accept the request. 

 



 

 52 

9. Limitations 

The current version of smxWiFi has some limitations: 

• It requires a multitasking environment; standalone operation is not supported. 

• Roaming is untested. 

• Protected management frame (PMF) is not supported yet. 

It also has limitations in its 802.11n support: 

• For the Action request, we only support Block Ack, BSS 20/40MHz Public, and DLS. 

It also has limitations in its 802.11ac support: 

• 160Mhz (or 80MHz+80MHz) channel bandwidth support is not complete because we don’t have 
hardware that supports it. 

• Tx Beamforming and MU-MIMO are not supported. 



 

 53 

Appendix A. Porting Notes 
smxWiFi was developed for use with the SMX® RTOS, but it can be ported to any RTOS through the 
smxBase porting layer interface. Please see the smxBase User’s Guide for details. 

smxWiFi can only work with a multitasking OS. 

A.1 C Library Function Requirements 
This is a list of C library functions that smxWiFi calls. If your compiler does not provide some of these, 
you should implement them yourself. 

• memcpy() 
• memcmp() 
• memset() 
• strcpy() 
• strlen() 

A.2 wfport.*  
wfport*.h defines and implements hardware related macros and functions, such as byte order swap 
macros and PCI bus register access functions. 

smxWiFi uses the interface defined by smxBase for different OSs, compilers, and CPU architectures. As 
shipped, these files have been implemented for SMX® RTOS. For details, please read the smxBase 
User’s Guide. 

 



 

 54 

Appendix B. Memory Usage and Performance Summary 

B.1 Size 

B.1.1 Code Size 
Code size varies widely depending upon CPU, compiler, and optimization level. The figures below are 
intended as an example. 

Component ARM 
Thumb-2 
IAR v6.10 

ARM 
 

IAR v6.10 

CF 
 

CW v7.1 

X86 
 

VC++ v6.0 

smxWiFi core stack 802.11abg 30.5 KB 47.5 KB 53 KB 36 KB 

smxWiFi 802.11n 4 KB  7.5 KB  7.5 KB 6.5 KB 

smxWiFi 802.11ac 2 KB  3 KB N/A N/A 

smxWiFi WEP + WPA security 21.5 KB 27.5 KB 25 KB 23 KB 

smxWiFi Display (partial) 4 KB 5KB N/A N/A 

smxWiFi Enterprise 58 KB 92.5 KB 106 KB N/A 

smxWiFi Peer-to-Peer (P2P)  57 KB 82 KB N/A N/A 

smxWiFi Simple Configuration 24 KB 38 KB 49 KB N/A 

smxWiFi SoftAP 12 KB 20 KB N/A N/A 

MediaTek MT7601 chipset driver 76 KB 90 KB N/A N/A 

MediaTek MT7612 chipset driver 160 KB 190 KB N/A N/A 

Ralink RT2573 chipset driver 20.5 KB 23 KB 31 KB 21 KB 

Ralink RT2860 chipset driver N/A N/A N/A 38 KB 

Ralink RT2870 chipset driver 31.5 KB 37 KB 44 KB 36 KB 

Ralink RT3070 chipset driver 34.5 KB 40 KB 49 KB 38 KB 

Ralink RT3572 chipset driver 32.5 KB 39 KB 47 KB 39 KB 

Ralink RT5370 chipset driver 43.5 KB 50 KB 61 KB 48 KB 

Ralink RT5572 chipset driver 36 KB 46 KB 55 KB 45 KB 

 



 

 55 

B.1.2 Data Size (RAM Requirement) 
 
Component Size 

smxWiFi core stack 802.11abg 9 KB 

smxWiFi 802.11n 3 KB 

smxWiFi 802.11ac 0.5 KB 

smxWiFi WEP + WPA security 4 KB 

smxWiFi Display (partial) 1 KB 

smxWiFi Enterprise 5 KB 

smxWiFi Peer-to-Peer (P2P) 6 KB 

smxWiFi Simple Configuration 4 KB 

smxWiFi SoftAP  (2+2*num clients) 
KB 

MediaTek MT7601 chipset driver 12 KB 

MediaTek MT7612 chipset driver 20 KB 

Ralink RT2573 chipset driver 8 KB 

Ralink RT2860 chipset driver 20 KB 

Ralink RT2870 chipset driver 12 KB 

Ralink RT3070 chipset driver 12 KB 

Ralink RT3572 chipset driver 12 KB 

Ralink RT5370 chipset driver 12 KB 

Ralink RT5572 chipset driver 12 KB 

 

Core Stack RAM requirement is related the settings in wfcfg.h. Please contact us if you need to reduce the 
RAM requirement. 

B.2 Performance 
For raw data performance testing, the code sends 1 or 10 burst UDP packets by swf_SendPacket() 
function. The payload size of the UDP packet is 1472. The code is in wifidemo.c. 

For smxNS performance testing, the code sends 1 or 10 burst UDP packets by sendto() function. The 
payload size of the UDP packet is 1472. The code is in wifidemo.c. 

The AP was working for 11n only and used 5Hz Channel 44. There were no other APs using any 5GHz 
channel during the testing. 



 

 56 

B.2.1 Ralink RT3572 Chipset Driver Raw UDP Data without TCP/IP Stack 
USB Host Controller 10 packet burst send 1 packet send 

AT91SAM9M10 (400MHz EHCI) 12500 KB/s (100Mbps) 5900 KB/s (47.2Mbps) 

B.2.2 Ralink RT3572 Chipset Driver UDP with smxNS 
USB Host Controller 10 packet burst send 1 packet send 

AT91SAM9M10 (400MHz EHCI) 11900 KB/s (95Mbps) 5800 KB/s (46.4Mbps) 

B.2.3 Ralink RT3572 Chipset Driver TCP with smxNS 
USB Host Controller 64KB burst send 1500 bytes send 

AT91SAM9M10 (400MHz EHCI) 6300 KB/s (50Mbps) 1700 KB/s (13.6Mbps) 

 

B.3 Connection Time 
A WiFi station needs some time to connect to an Access Point or other station. The following are the 
testing results. Security is disabled. 802.11n support is disabled. 

Time to connect to access point and/or other station: 

USB Host Controller, Board, Speed WiFi Chip Open Dev Scan BSS Connect 

AT91SAM9X35-EK Atmel board 
(400MHz) 

MT7612 0.5 s 4 s (dual band, passive) 

2s (dual band, active) 

0.2 s 

AT91SAM9XE512-EK Atmel board 
(200MHz) 

RT2573 1 s 2 s 0.5 s 

AT91SAM9XE512-EK Atmel board 
(200MHz) 

RT3070 5 s 4 s 0.5 s 

LM3S9B96-DK TI board (80MHz) RT2573 1.5 s 2.6 s 0.5 s 

LM3S9B96-DK TI board (80MHz) RT3070 2 s 3 s 0.5 s 

LPC2388 Keil board (72MHz) RT2573 3.5 s 5.8 s 1 s 

LPC2388 Keil board (72MHz) RT3070 12 s 5 s 1.5 s 

LPC2468 Embedded Artists board 
(48MHz) 

RT2573 2 s 3 s 1 s 

LPC2468 Embedded Artists board 
(48MHz) 

RT3070 14 s 6 s 1.5s 

LPC2939 Hitex board (120MHz) RT2573 3 s 6 s 0.5 s 

LPC2939 Hitex board (120MHz) RT3070 11 s 5 s 1 s 



 

 57 

MCF5329EVB Freescale board 
(200MHz) 

RT2573 1 s 2 s 0.5 s 

MCF5329EVB Freescale board 
(200MHz) 

RT3070 5 s 5 s 0.5 s 

LPC1788EA board (120MHz) MT7601 1.5 s 4 s 0.5 s 

RT2870 has not been tested but should be similar to RT3070. RT3070 times are longer than RT2573 
because the firmware to download to the dongle is much larger than for RT2573 and there are more 
registers to set up. Also the protocol is less efficient (three USB control request packets are sent instead of 
two for each four bytes of data). The times for processors with OHCI controllers are much higher than for 
those with EHCI or proprietary controllers because the OHCI controller is less efficient for sending 
control requests. 

 



 

 58 

Appendix C. Tested Devices 

C.1 WiFi Dongles 
Caution: 

Vendors may change the chipset used in a particular model of WiFi dongle and just mark it with a 
different version number. For example, Linksys WUSB54GC uses RT2573 but WUSB54GC-EU v3 uses 
RT3070. Linksys WUSB600N uses RT2870 but WUSB600N ver.2 uses RT3572. Belkin F5D7050 v300x 
uses a Ralink chipset but other Belkin dongles use an Atheros chipset, which is not supported by 
smxWiFi yet. Please make sure your dongle is exactly the same as listed below. 

Also even if your dongle uses one of the supported MediaTek/Ralink chipsets, it may be necessary to add 
a new entry to the table in the driver with the vendor ID and product ID. These IDs can be determined by 
plugging the dongle into a Windows PC. On XP: In Device Manager, expand Network Adapters. Right 
click on the line for the WiFi dongle and select Properties. On the Details tab, select Device Instance Id 
from the drop list. 

• AmbiCom M600N-USB (RT2870) 

• AmbiCom WL150N-nUSB  (RT3070) 

• AmbiCom WL150N-USBx  (RT3070) 

• Asus USB-N13 (RT3072) 

• Belkin F5D7050 v3002 (RT2573) 

• Belkin F5D8053 v3001 (RT2870) 

• Buffalo WLI-UC-G300N (RT2870) 

• D-Link DWA-140 (RT2870) 

• D-Link DWA-160B2 (RT5572) 

• D-Link EWUGRL2700 (RT2573) 

• Linksys AE1000 (RT3572) 

• Linksys WUSB54GC (RT2573) 

• Linksys WUSB54GC v3 (RT3070) 

• Linksys WUSB600N ver.2 (RT3572) 

• MediaTek 7601 (MT7601) 

• NETGEAR A6210 AC1200 (MT7612) 

• Ralink 2070 (RT2573) 

• Ralink 3070 WS-WNU682N (RT3070) 

• Ralink 5370 OEM dongle (RT5370) 



 

 59 

• Samsung, WIS09ABGN LinkStick USB Adapter (RT2870) 

• SparkLAN WUBM-273ACN dongle (MT7612) 

• SparkLAN WUBR-170GN dongle (RT3370) 

• SparkLAN WUBR-507N  dongle (RT3572) 

• SparkLAN WUBR-508N dongle (RT5572) 

• W483 802.11n PCI Card (RT2860) 

C.2 Access Points 
• Apple AirPort Extreme A1034 Router 

• Apple AirPort Extreme A1354 802.11n Router 

• ASUS RT-AX58U Wireless-AX Dual-Band Wi-Fi Router 

• Belkin N150 Wireless Router 

• Cisco 861W Router 

• Cisco AIR-AP1262N-A-K9 

• D-Link DIR-601 Router 

• D-Link DIR-615 Router 

• D-Link DIR-625 RangeBooster N Router (Fails. Ours defective or problem for all?) 

• D-Link DIR-655 Extreme N Router 

• FRITZ!Box Fon WLAN 7270 

• Linksys E1200 Wireless-N Router 

• Linksys E4200 Wireless-N Router 

• Linksys E4500 Wireless-N Router 

• Linksys E5400 Dual-Band WiFi 5 Router 

• Linksys WRT54G Wireless Router 

• Linksys WRT160N Wireless-N Router 

• Linksys WRT320N Dual-Band Wireless-N Router 

• Linksys WRT400N Dual-Band Wireless-N Router 

• NETGEAR WGR614 v6 Wireless Router 

• NETGEAR WNDR3300 RangeMax Dual Band Wireless-N Router 

• NETGEAR WNR2000 N300 Wireless Router 

• Pakedge WA-2200 802.11ac Wave 2 AP 



 

 60 

• Pakedge WR-1 802.11ac Wave 2 Router 

• TP-Link Archer A6 MU-MIMO Router 

• TP-Link TL-WR841ND Wireless N Router 

• TRENDnet TEW-432BRP 11g Wireless Router 

C.3 RADIUS Servers 
• Cisco ACS v5.2 (tested by a customer) 

• FreeRADIUS Server v2.1.10 on Fedora 13 

• ZyXEL NWA3160-N Built-In RADIUS Server 

C.4 WiFi Peer-to-Peer (P2P) Devices 
• Android 4.0.4, 4.1, 4.2.2 Samsung Note Tablet and Phone 

• Android 4.2.2 Asus Memo 7 HD Tablet 

• Android 9.0 Samsung Tablet 2 (2017) 

• Netgear Push2TV3000 

C.5 Clients for SoftAP 
• Android 4.0.4, 4.1, 4.2.2 Samsung Note Tablet and Phone 

• Android 4.2.2 Asus Memo 7 HD Tablet 

• Android 9.0 Samsung Tablet 2 (2017) 

• Apple iBook G4 laptop OS X 10.5.8 

• Apple iPad 2nd Generation iOS 9.0 

• Apple MacBook Pro 2017 version 

• Linux with with Ralink WiFi chipset driver 

• Microsoft Windows XP with Ralink, Realtek, and Atheros WiFi chipset driver 

• Microsoft Windows 10 with Intel Ax200, Broadcom WiFi chipset driver 

 



 

 61 

Appendix D. References 
 

• ANSI/IEEE Std 802.11, 2016 Edition 
• ANSI/IEEE Std 802.11, 2012 Edition 
• IEEE Std 802.11b-1999 
• IEEE Std 802.11g-2003 
• IEEE Std 802.11i-2004 
• IEEE Std 802.11n-2009 
• IEEE Std 802.1X-2004 
• Wi-Fi Protected Setup Specification Version 1.0h December 2006 
• Wi-Fi Peer-to-Peer (P2P) Technical  Specification Version 1.1 
• Wi-Fi Display Technical  Specification Version 1.0.0 
• RFC 1321 The MD5 Message-Digest Algorithm 
• RFC 2898 The PKCS #5: Password-Based Cryptography Specification Version 2.0 
• RFC 3174 US Secure Hash Algorithm 1 (SHA1) 
• RFC 3748 Extensible Authentication Protocol (EAP) 
• draft-josefsson-pppext-eap-tls-eap-10.txt Protected EAP Protocol (PEAP) Version 2 
• Federal Information Processing Standards Publication 197, Announcing the 

ADVANCED ENCRYPTION STANDARD (AES) 
• 802.11 Wireless Networks The Definitive Guide (2nd_Edition) 
 

 


	1. Overview
	1.1 Types of WiFi Networks
	1.2 Types of Security

	2. Files 
	2.1 Directory Structure 
	2.2 Files 

	3. Using smxWiFi
	3.1 Installation
	3.2 Getting Started
	3.3 Configuration Settings
	3.4 Building the Library 
	3.5 Building and Running the Demos 

	4. APIs
	4.1 APIs for the TCP/IP Stack
	4.2 APIs for the Application
	4.3 APIs for Security
	4.4 APIs for WiFi Simple Configuration (WSC)
	4.5 APIs for WiFi Peer-to-Peer (P2P)
	4.6 APIs for SoftAP
	4.7 APIs for ATE Testing
	4.8 Chipset Driver Interface

	5. Built-In Features
	5.1. Country/Region
	5.2. BSS Scanning
	5.3. MAC Layer Management Entity 

	6. WPA Supplicant Support
	6.1. WiFi Peer-to-Peer (P2P)
	6.2. WiFi Display
	6.3. WiFi Enterprise (PEAP/MSCHAPv2)
	6.4. WiFi Enterprise Test Environment
	6.5. WiFi Simple Configuration (WSC) / EAP-WSC
	6.6. Requirement for Real Time Clock

	7. Optional Features
	7.1 SoftAP Support

	8. Application Notes
	8.1 Connecting to a Hidden AP
	8.2 Improving Performance
	8.3 Switching between APs
	8.4 Reconnecting to an AP
	8.5 RAM Usage of the WiFi Stack
	8.6 WiFi Simple Configuration (WSC) Steps
	8.7 WiFi Peer-to-Peer (P2P) Steps

	9. Limitations
	Appendix A. Porting Notes
	A.1 C Library Function Requirements
	A.2 wfport.* 

	Appendix B. Memory Usage and Performance Summary
	B.1 Size
	B.2 Performance
	B.3 Connection Time

	Appendix C. Tested Devices
	C.1 WiFi Dongles
	C.2 Access Points
	C.3 RADIUS Servers
	C.4 WiFi Peer-to-Peer (P2P) Devices
	C.5 Clients for SoftAP

	Appendix D. References

