

smx®

Reference Manual

Version 4.4.0

October 2017

by Ralph Moore

© Copyright 1988-2017

Micro Digital Associates, Inc.
2900 Bristol Street, #G204

Costa Mesa, CA 92626
(714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved.

Revisions

 date version comments

 9/88 1.x preliminary
 12/88 1.0 first release
 6/89 1.1 changes resulting from detailed cross comparison with code and resolution of inconsistencies
 8/89 1.1 minor corrections
 1/90 1.2 minor corrections
 6/90 1.3 revision updates
 2/91 2.0 major revision including addition of new calls and terms
 1/92 2.1 addition of event management calls and minor corrections
 4/92 2.2 changes to some macros and miscellaneous corrections
 3/94 3.1 major revision and addition of new calls
 5/96 3.2 simplified smx call descriptions; added protected mode and other changes; added and updated

glossary entries
 7/01 3.5 major revision to update to v3.5 and changes to eliminate x86 bias
 5/04 3.6 update to v3.6
 5/05 3.7 update to v3.7
 3/07 3.7 C-only API, one-shot tasks, and minor changes
 7/09 3.7 corrections and clarifications
 10/10 4.0 update to v4.0
 10/11 4.0 updates for new scheduler and other changes
 10/12 4.1 update to v4.1 and Glossary rewrite
 1/14 4.2 update to v4.2
 5/14 4.2.1 update to v4.2.1
 5/15 4.3 update to v4.3
 2/16 4.3.1 heap
 5/16 4.3.2 heap
 10/17 4.4 update to v4.4

smx is a Registered Trademark of Micro Digital, Inc.
smx is protected by patent 9,336,072 and one or more patents pending.

Table of Contents

smx Calls .. 1

smx_Block and smx_BlockPool ...5
smx_BlockGet ... 5
smx_BlockMake .. 6
smx_BlockPeek ... 8
smx_BlockRel ... 8
smx_BlockRelAll .. 9
smx_BlockUnmake ... 10
smx_BlockPoolCreate ... 12
smx_BlockPoolCreateDAR ... 13
smx_BlockPoolDelete ... 14
smx_BlockPoolPeek .. 15

smx_CLib...16
smx_CLibEnter ... 16
smx_CLibExit ... 16

smx_Conv ..18
smx_ConvLinearToPointer ... 18
smx_ConvPointerToLinear ... 18
smx_ConvMsecToTicks .. 19
smx_ConvSecToTicks... 19
smx_ConvTicksToMsec .. 20
smx_ConvTicksToSec... 20

smx_Delay ..21
smx_DelayMsec .. 21
smx_DelaySec ... 21
smx_DelayTicks .. 22

smx_ERROR ...23
smx_ERROR ... 23
smx_EBDisplay ... 23

smx_EVB ...24
smx_EVBInit ... 24
smx_EVB_LOG .. 25

smx_EventFlags and smx_EventGroup ..26
smx_EventFlagsPulse .. 26
smx_EventFlagsSet ... 27
smx_EventFlagsTest ... 28
smx_EventFlagsTestStop .. 29
smx_EventGroupClear .. 31
smx_EventGroupCreate .. 31
smx_EventGroupDelete .. 32

smx_EventGroupPeek ... 33
smx_EventQueue ..34

smx_EventQueueClear .. 34
smx_EventQueueCount ... 34
smx_EventQueueCountStop ... 37
smx_EventQueueCreate .. 39
smx_EventQueueDelete .. 40
smx_EventQueueSignal .. 41

smx_Go ..42
smx_Go ... 42

smx_Heap ..43
smx_HeapBinPeek .. 43
smx_HeapBinScan .. 44
smx_HeapBinSeed .. 46
smx_HeapBinSort ... 47
smx_HeapCalloc ... 49
smx_HeapChunkPeek ... 50
smx_HeapExtend .. 51
smx_HeapFree ... 52
smx_HeapInit .. 54
smx_HeapMalloc .. 55
smx_HeapPeek .. 57
smx_HeapRealloc .. 58
smx_HeapRecover .. 59
smx_HeapScan .. 61
smx_HeapSet ... 63

smx_HT ..65
smx_HT ... 65

smx_ISR ...67
smx_ISR_ENTER ... 67
smx_ISR_EXIT ... 69

smx_LSR ..70
smx_LSR_INVOKE .. 70
smx_LSRsOff .. 72
smx_LSRsOn .. 73

smx_Msg ..74
smx_MsgBump ... 74
smx_MsgGet ... 75
smx_MsgMake .. 76
smx_MsgPeek ... 77
smx_MsgReceive .. 78
smx_MsgReceiveStop ... 80
smx_MsgRel ... 81
smx_MsgRelAll .. 82
smx_MsgSend ... 83
smx_MsgUnmake .. 85

smx_MsgXchg ...87
smx_MsgXchgClear .. 87
smx_MsgXchgCreate .. 88
smx_MsgXchgDelete .. 89
smx_MsgXchgPeek ... 90

smx_Mutex ..91
smx_MutexClear ... 91
smx_MutexCreate ... 92
smx_MutexDelete ... 92
smx_MutexFree ... 93
smx_MutexGet .. 94
smx_MutexGetStop ... 95
smx_MutexRel .. 96

smx_Pipe ..98
smx_PipeClear .. 98
smx_PipeCreate ... 98
smx_PipeDelete ... 99
smx_PipeGet ... 101
smx_PipeGet8 ... 102
smx_PipeGet8M .. 103
smx_PipeGetWait .. 104
smx_PipeGetWaitStop .. 106
smx_PipePut .. 108
smx_PipePut8 .. 109
smx_PipePut8M .. 110
smx_PipePutWait .. 111
smx_PipePutWaitStop ... 112
smx_PipeResume .. 113
smx_PipeStatus ... 114

smx_Sem ..116
smx_SemClear .. 116
smx_SemCreate ... 116
smx_SemDelete ... 118
smx_SemPeek ... 118
smx_SemSignal ... 119
smx_SemTest .. 120
smx_SemTestStop ... 123

smx_SSR ..125
smx_SSR_ENTER .. 125
smx_SSR_EXIT .. 126

smx_Sys ..128
smx_SysEtimeGet ... 128
smx_SysPseudoHandleCreate ... 128
smx_SysStimeGet ... 129
smx_SysPowerDown .. 129
smx_SysWhatIs ... 131

smx_Task ...132
smx_TaskBump ... 132
smx_TaskCreate .. 133
smx_TaskDelete .. 134
smx_TaskHook.. 135
smx_TaskLocate .. 137
smx_TaskLock .. 138
smx_TaskLockClear .. 139
smx_TaskPeek ... 139
smx_TaskResume .. 140
smx_TaskSetStackCheck .. 142
smx_TaskSleep.. 143

smx_TaskSleepStop .. 144
smx_TaskStart ... 145
smx_TaskStop ... 148
Task Autostop ... 149
smx_TaskSuspend ... 151
smx_TaskUnhook .. 152
smx_TaskUnlock ... 153
smx_TaskUnlockQuick ... 154

smx_Timer ...155
smx_TimerDup.. 155
smx_TimerPeek ... 156
smx_TimerReset .. 157
smx_TimerSetLSR .. 158
smx_TimerSetPulse ... 159
smx_TimerStart ... 160
smx_TimerStop ... 162

smx Glossary ... 164

smx Calls

1

smx Calls

This section covers all smx system services, including SSRs, functions, and macros. For simplicity, these
are often referred to as smx calls or just calls. Each description provides all information necessary to
properly use the subject smx call. Read the smx User’s Guide for information concerning the theory and
application of smx services. This is helpful to properly use smx services.

The smx Glossary at the end of this manual defines all smx terms and symbols. It provides complete,
detailed information on every aspect of smx, and should be referenced whenever the meaning of a term or
symbol is in doubt.

Names in all caps are generally data types, manifest constants, macros, or enumerated constants. Names
such as atask are handles (pointers) for objects such as tasks. Hence, to access afield in atask control block,
we use atask->afield. It is also possible to access afield via the control block structure: tcb.afield. These two
methods are equivalent and both are used. A function is identified by parentheses after the name — for
example smx_TaskStart().

Format of the Calls Section

The synopsis of the call is listed first. It employs the ANSI standard for function prototypes. Following it are
these fields:

Type Indicates whether the call is an SSR, macro, function, etc. See the smx Glossary section for
discussion of call types.

Summary Summary of what the call does.

Compl Complementary call. This is the call that performs the inverse operation.

Parameters Describes the parameters of the call, if any.

Returns Shows what, if anything, is directly returned by the call. If 0, FALSE, or NULL is returned, it

may be assumed that the call has been aborted and that nothing has been changed, unless
otherwise indicated.

Errors Lists the error types which may occur for the call. See the Glossary for descriptions of error

types. If a listed error is detected, no operation occurs except to log the error and return a
failure indication, unless otherwise specified. Some secondary errors (from called SSRs or
smxBase functions) may not be listed, but can occur during operation.

Descr Description of the call. It helps when reading a call description to remember that if a call is

made from a task, that task is the current task while the call is executing. Similarly, if a call is
made from an LSR, that LSR is the current LSR while the call is executing.

smx Calls

2

Notes Specifics concerning control block fields, etc. This information is not necessary to properly

use the call, but may be helpful for debugging or for better understanding.

TaskMain The prototype for the task’s main function (for the task being stopped) is shown here for a

stop call, as well as the parameter passed to the task’s main function when the task is
restarted. The parameter to the main function can be void if you do not need to reference the
value passed in. This is the case when specifying an infinite timeout (SMX_TMO_INF) in the
stop call. Otherwise, you are advised to do error checking and handle the case where the stop
call times out.

Example These are intended to illustrate the common uses of calls. As such, they are often

unencumbered with error checking. See the Reliability chapter of the smx User’s Guide for
discussion of error checking.

Notes and Restrictions
(1) Timeouts are specified in ticks but their true resolution is determined by how often

smx_TimeoutLSR runs. This is configured by TIMEOUT_PERIOD in acfg.h.
(2) No task code following a stop call will not execute. Execution will continue from the

start of the task’s main function, including errors and timeouts. The return value is
passed in as the task main parameter. Note: stop and start calls which specify the task
are an exception to this.

(3) Bare functions should not be used in tasks because they are not protected from
preemption.

(4) Bare functions can used in ISRs, but must be protected from other ISRs accessing the
same object. This can be done by disabling interrupts. Bare functions do not disable
interrupts.

(5) Bare functions and SSRs may not be mixed on the same end of a pipe (e.g. having an
ISR and a task both putting packets into the same pipe).

(6) Create calls: If a name is passed, the control block’s name field is set to point to it. If
you manually add a name to the handle table with smx_HT_ADD(), you must
remove it with smx_HT_DELETE() before deleting the object.

(7) Stop SSRs: The parameter of the task main function should be the same type as the
return value of the suspend SSR — e.g. void task_main(MCB_PTR msg). Use void if
the parameter is not used — e.g. void task_main(void).

(8) LSR and task main function parameters: On some processors, such as ColdFire,
there are separate address and data registers. If the compiler passes parameters in
registers rather than on the stack, you must define the parameter to be a data type
(e.g. integer) rather than a pointer. (Note that smx handles are pointers.) If it is
necessary to pass a pointer, define the type to be u32 and then typecast it to the
pointer type within the LSR or task main function, as follows:

 void task_main(u32 par)

{
 MCB_PTR msg = (MCB_PTR)par;
 /* use msg */
}

smx Calls

3

 When the LSR or task is dispatched, the parameter is passed as data, so the value will
be in a data register. If the LSR or task function were defined to take a pointer
parameter, it would be expected in an address register, and the code would fail.
Examples in the smx manuals are written for the typical processor and show handles
as parameters (i.e. CB_PTRs).

(9) UG = smx User’s Guide.

Reference abbreviations

QS SMX Quick Start Manual

RM smx Reference Manual

UG smx User’s Guide

SB smxBase User’s Guide

SPP smx++ Developer’s Guide

The above abbreviations may be followed by Chapter Names and section names

smx_Block, smx_BlockPool

5

smx_Block and smx_BlockPool

smx_BlockGet

BCB_PTR smx_BlockGet (PCB_PTR pool, u8 **bpp, u32 clrsz)

Type SSR

Summary Gets an smx block by combining a data block from a block pool and a BCB from the BCB

pool.

Compl smx_BlockRel()

Parameters pool Pool to get block from.
 bpp Pointer to block pointer to load. NULL if none.
 clrsz Number of bytes to clear from the start of block.

Returns blk Handle of smx block obtained.
 NULL No block available or error.

Errors SMXE_INV_PCB
 SMXE_OUT_OF_BCBS

Descr Gets a block from the specified block pool for use as the data block and a BCB from the BCB

pool, initializes the BCB and links it to the data block. Clears the first clrsz bytes of the data
block up to its size and loads the address of the data block into bpp, unless it is NULL. bpp is
intended to be used to load data into the data block. The current task or LSR becomes the smx
block owner. Returns the block handle. If pool is invalid or if out of BCBs, aborts, returns
NULL, and bpp is not changed.

Notes 1. For proper operation there must be at least as many BCBs as there are active smx blocks

in a system at any given time.
 2. Interrupt safe with respect to sb_BlockGet() and sb_BlockRel() operating on the same

block pool.
Example

BCB_PTR build_msg(PCB_PTR pool)
{
 u8* dbp;
 BCB_PTR blk;

 blk = smx_BlockGet(pool, &dbp, 4);
 /* load blk using dbp */
 return blk;
}

smx_Block, smx_BlockPool

6

 This function gets a message from the specified pool, loads data into it, and returns the block
handle.

smx_BlockMake

BCB_PTR smx_BlockMake (PCB_PTR pool, u8 *bp)

Type SSR

Summary Makes a block from a bare block using its pointer.

Compl smx_BlockUnmake()

Parameters pool Base pool of the block. NULL if none
 bp Block pointer.

Returns blk Handle of block obtained.
 NULL Insufficient resources or error.

Errors SMXE_OUT_OF_BCBS
 SMXE_INV_PARM

Descr Makes a block from a bare block, using its pointer. Gets BCB from BCB pool, initializes it

and returns its handle. The pool pointer is stored in the BCB (NULL if no pool). If pool !=
NULL, bp is range-checked; if pool == NULL, bp is checked for non-zero. If either test fails
operation is aborted and NULL is returned.

Notes 1. The pool parameter is not used in this operation. It can be supplied so that a base block

can be released back to the correct pool, at a later time.
 2. For proper operation there must be at least as many BCBs as there are active blocks in a

system at any given time.
 3. Bare blocks can be statically defined, obtained from a base block pool, DAR, heap, or

ROM, or any other source.

smx_Block, smx_BlockPool

7

Example:
#define WIDTH 4;
#define LENGTH 20;
PCB in_pool; /* base pool */
PICB_PTR in_pipe;
u8 pp[WIDTH*LENGTH];

in_pipe = smx_PipeCreate(&pp, WIDTH, LENGTH, "in_pipe");

void inISR(void);
 {

 static u8 *bp, *dp;
 u8 ch = UART_In();

 switch (ch)
 {
 case: STX
 bp = sb_BlockGet(&in_pool, 4);
 dp = bp;
 break;
 case: ETX
 smx_LSR_INVOKE(inLSR,(u32)bp)
 break;
 default:
 *dp++ = ch;
 }
}

void inLSR(u32 bp);
{
 BCB_PTR blk;

 blk = smx_BlockMake(&in_pool, (u8*)bp);
 if (!smx_PipePutWait(in_pipe, &blk, NO_WAIT))
 smx_BlockRel(blk, 0);
} /* eb8 */

 inISR() runs whenever an UART input interrupt occurs. It gets the incoming character from
the UART. If it is the start of text (STX) a base block is obtained from in_pool. Subsequent
characters are loaded into the base block. When the end of text (ETX) is received, inLSR() is
invoked. inLSR() uses smx_BlockMake() to make the base block at bp into an smx block and
then puts its handle, blk, into in_pipe where a task waits to process it. Note that this is a no-
copy operation. Note also, that if in_pipe is full, the block is released so a memory leak will
not occur. Unfortunately, the data is also lost.

smx_Block, smx_BlockPool

8

smx_BlockPeek

u32 smx_BlockPeek (BCB_PTR blk, SMX_PK_PARM par)

Type SSR

Summary Returns the current value for the argument specified.

Parameters blk Block to peek at.
 par What to peek at.

Returns value Value of par.
 0 Value, unless error.

Errors SMXE_INV_BCB
 SMXE_INV_PARM

Notes This service can be used to peek at a block. Valid arguments are:

 SMX_PK_BP Block pointer.
 SMX_PK_NEXT Next block in the free list, if block is free, else 0.
 SMX_PK_ONR Block owner, 0 if none.
 SMX_PK_POOL Block pool, 0 if note.
 SMX_PK_SIZE Block size.

Example

TCB_PTR task;

task = (TCB_PTR)smx_BlockPeek(blk, SMX_PK_ONR);
if (task == smx_ct)
 smx_BlockRel(blk, 0);

smx_BlockRel

BOOLEAN smx_BlockRel (BCB_PTR blk, u16 clrsz)

Type SSR

Summary Releases a block obtained by smx_BlockGet() or made by smx_BlockMake().

Compl smx_BlockGet()

Parameters blk Block to release.

Returns TRUE Block released.
 FALSE Block not released due to error.

smx_Block, smx_BlockPool

9

Errors SMXE_INV_BCB
 SB_INV_POOL
 SB_INV_BP

Descr Releases a block obtained by smx_BlockGet() or made by smx_BlockMake. Aborts

immediately if blk is invalid or it has already been released. Otherwise, releases the data
block back to its base pool, if it is a base block. In this case, the base pool must be valid, and
the block pointer must point within it, otherwise the release is aborted. Clears clrsz bytes up
to the end of the block. Also releases the BCB back to its pool. Returns TRUE if successful.
Fails and returns FALSE, otherwise.

Notes 1. This SSR can be used to release an smx block, which was made from a bare block.
 2. This SSR will not produce reliable results if blk has already been released or unmade

because the BCB may have already been assigned to another smx block. To guard against
this happening, clear its handle (blk) immediately after a BCB has been returned to its
pool.

 3. Interrupt safe with respect to sb_BlockGet() and sb_BlockRel() operating on the same
base block pool.

Example

BCB_PTR blk;
u32 sz;

sz = smx_BlockPeek(blk, SMX_PK_SIZE);
smx_BlockRel(blk, sz);

 This clears the data block of blk, except the first 4 bytes, and releases it. Note: The first 4
bytes of a free data block are used for the free list link to the next block.

smx_BlockRelAll

u32 smx_BlockRelAll (TCB_PTR task)

Type SSR

Summary Releases all blocks owned by task and returns the number released.

Parameters task Task whose blocks are to be released.

Returns Number of blocks released.

Errors SMXE_INV_TCB

Descr Searches the BCB pool and releases all blocks owned by task. Returns number of blocks

released.

smx_Block, smx_BlockPool

10

Example
void stop_task(TCB_PTR atask)
{
 smx_BlockRelAll(atask);
 smx_TaskStop(atask);
}

 Unlike smx_TaskDelete(&atask), smx_TaskStop(atask) does not automatically release all

blocks owned by atask. In this example, all of atask’s blocks are released, then it is stopped.
This may be necessary because atask may own one or more blocks when another task stops it.

smx_BlockUnmake

u8 *smx_BlockUnmake (PCB_PTR *pool, BCB_PTR blk)

Type SSR

Summary Unmakes a block made by smx_BlockMake() into a bare block.

Compl smx_BlockMake()

Parameters pool Place to put pool handle if it is not NULL.
 blk Block to unmake.

Returns >0 Block unmade.
 NULL Invalid BCB or blk has already been unmade or released.

Errors SMXE_INV_BCB

Descr Unmakes an smx block made by smx_BlockMake() or a block obtained by smx_BlockGet()

by converting it into a bare block by releasing its BCB. Returns NULL if the BCB is invalid
or the block has already been unmade or released. Otherwise, returns the address of the data
block and loads its pool handle into the user-supplied pool location, unless NULL. (For a
base block, the code receiving the block must know its pool handle.)

Notes 1. Interrupt safe with respect to sb_BlockGet() and sb_BlockRel() operating on the same

block pool.
 2. Following unmake, use sb_BlockRel() to release the base or smx data block back to its

pool, when no longer needed.

Example

PICB_PTR out_pipe;
u8 * pkt_ptr;
PCB_PTR pkt_pool;
u32 pkt_sz;

smx_Block, smx_BlockPool

11

smx_LSRInvoke(outLSR, (u32)out_pipe);

void outLSR(u32 pipe);
{
 BCB_PTR blk;

 if (smx_PipeGet((PICB_PTR)pipe, (u8*)&blk))
 {
 pkt_sz = smx_BlockPeek(blk, SMX_PK_SIZE);
 pkt_pool = (PCB_PTR)smx_BlockPeek(blk, SMX_PK_POOL);
 pkt_ptr = smx_BlockUnmake(&pkt_pool, blk);

 StartISR(outISR);
}

}

void outISR(void);
{

 if (pkt_sz > 0)
 {

 UART_Out(*pkt_ptr);
 if (pkt_sz--)
 pkt_ptr++;
 }
 else
 {
 UART_Stop();
 sb_BlockRel(pkt_pool, pkt_ptr, 0);
 }
} /* eb9 */

 This example is the opposite of that shown for smx_BlockMake(). It is assumed that a task

invokes outLSR() whenever it puts a block handle into out_pipe. outLSR() gets the next
block handle from out_pipe, determines its size, then unmakes it into a bare block at pkt_ptr.
Note that the pool handle from the BCB is loaded into pkt_pool. outLSR() then starts
outISR(). The UART interrupts each time it needs another character and outISR provides the
character until all characters have been sent. outISR then stops the UART and releases the
bare block back to pkt_pool. Note that pkt_pool could be an smx block pool, a base block
pool, or NULL. In the latter case, the block is not released to any pool. Regardless of how blk
was formed, it is released to where it belongs.

 Notes:
 1. Using outLSR() is not essential — its functions could be performed by a
 task.
 2. The data block is not cleared, when it is released, in order to minimize ISR
 execution time.
 3. If, for some reason, there is no block handle in out_pipe, nothing happens.

smx_Block, smx_BlockPool

12

smx_BlockPoolCreate

PCB_PTR smx_BlockPoolCreate (u8 *p, u8 num, u16 size, const char *name)

Type SSR

Summary Creates an smx block pool of num size blocks at bp.

Compl smx_BlockPoolDelete()

Parameters p Pointer to memory for pool.
 num Number of blocks.
 size Block size.
 name Name to give block pool, NULL for none.

Returns pool Pool handle.
 NULL Insufficient resources or error.

Errors SMXE_INV_PAR p is not > 0 and a multiple of SB_DATA_ALIGN,

 num is not > 0, size is not > 0 and a multiple of
 SB_DATA_ALIGN.

 SMXE_INSUFF_DAR Unable to create PCB, BCB, or MCB pool.
 SMXE_OUT_OF_PCBS

Descr Tests for valid parameters and returns NULL, if not. Creates PCB, BCB, and MCB pools, if

not already created, and gets PCB for pool. If fail any of these, reports error and returns
NULL. Calls sb_BlockPoolCreate() to creates block pool of num*size blocks at p. Loads
name. If successful, initializes PCB and returns block pool handle. If not, returns PCB to its
pool and returns NULL.

 SB_DATA_ALIGN is defined in the processor architecture header file (e.g. barm.h). It

normally is 4 bytes for 32-bit processors. For processors, which cannot write a 32-bit value to
a byte boundary, such as ARM, attempting to write a 32-bit value to the start of an unaligned
block will corrupt memory below the block, and writes within the block may not go where
expected. Even if a processor can write a word on a byte boundary, performance is greatly
improved by aligning all blocks on 4-byte boundaries.

Note The block from which the block pool is created can be allocated in any manner and can be

anywhere in memory, even in ROM. It is assumed to be large enough for the block pool. The
block pool does not require any extra bytes — no padding is introduced.

smx_Block, smx_BlockPool

13

Example
#define NUM 100;
#define SIZE 20;
PCB_PTR poolA;

u8 p[NUM*SIZE]; /* static pool */
 -OR-
u8 *p = (u8*)smx_HeapCalloc(NUM, SIZE); /* heap pool */

if ((poolA = smx_BlockPoolCreate(p, NUM, SIZE, "poolA") != NULL)
 /* proceed */

 Creates a block pool of NUM blocks, of SIZE bytes in either a static block of memory or in a
block allocated from the heap. Note that if the smx_HeapCalloc fails, p == 0 and
smx_BlockPoolCreate() will also fail.

smx_BlockPoolCreateDAR

PCB_PTR smx_BlockPoolCreateDAR (SB_DCB_PTR dar, u8 num, u16 size, u16 align, const char *name)

Type SSR

Summary Allocates block for pool from dar and creates a block pool of num size blocks.

Parameters dar Handle of DAR Control Block (DCB)
 num Number of blocks.
 size Block size.
 align Alignment in bytes (e.g. 4 or SB_CACHE_LINE)
 name Name to give block pool, NULL for none.

Returns pool Handle of pool created.
 NULL Insufficient resources or error.

Errors SMXE_INSUFF_DAR Unable to create pool or PCB, BCB, or MCB pool.
 SMXE_INV_PAR num is not > 0, size is not > 0 and a multiple of
 SB_DATA_ALIGN.
 SMXE_OUT_OF_PCBS

Descr Performs the same function as smx_BlockPoolCreate() except that it allocates space for the

pool from a DAR. If it fails, the pool space is returned to the DAR. The advantage of using
this SSR is that it is more automatic than smx_BlockPoolCreate(). There is no need to define
a static block or to get a block from the heap and to make sure that the block is the right size
and properly aligned for the pool. By properly defining DARs, it is possible to put the pool in
the best memory for its usage (e.g. fast memory if the pool is actively used).

smx_Block, smx_BlockPool

14

Example
#define NUM 100;
#define SIZE 20;
SB_DCB_PTR sb_adar;
PCB_PTR poolA;

if ((poolA = smx_BlockPoolCreateDAR(sb_adar, NUM, SIZE, SB_DATA_ALIGN, "poolA") != NULL)
 /* proceed */

This does the same thing as the smx_BlockPoolCreate() example, except that the pool is
taken from ADAR.

smx_BlockPoolDelete

u8 *smx_BlockPoolDelete (PCB_PTR *pool)

Type SSR

Summary Deletes an smx block pool.

Compl smx_BlockPoolCreate() and smx_BlockPoolCreateDAR()

Parameters pool Pointer to pool handle.

Returns >0 Pool deleted.
 NULL Error.

Errors SMXE_BLK_IN_USE One or more blocks are in use.
 SMXE_INV_PCB

Descr Deletes a block pool created by smx_BlockPoolCreate() or smx_BlockPoolCreateDAR().

Aborts if pool is invalid or one or more blocks are still in use; reports error and returns
NULL. Otherwise clears and releases PCB, clears pool handle, and returns a pointer to the
start of the released pool block.

Note User is responsible for dealing with the pool block. If it came from the heap it can be freed,

but otherwise it must be reused.

Example

void * bp;
PCB_PTR poolA;

bp = (void*)smx_BlockPoolDelete(&poolA);
smx_HeapFree(bp);

 If the pool delete fails, bp will be NULL and smx_HeapFree() will do nothing. If bp is not
within the heap, smx_HeapFree() will abort with error.

smx_Block, smx_BlockPool

15

smx_BlockPoolPeek

u32 smx_BlockPoolPeek (PCB_PTR pool, SMX_PK_PARM par)

Type SSR

Summary Returns the current value for the parameter specified.

Parameters pool Block pool to peek at.
 par Parameter to return.

Returns value Value of par.
 0 Value, unless error.

Errors SMXE_INV_PCB Invalid block pool handle.
 SMXE_INV_PARM Invalid argument.

Notes This service can be used to peek at a block pool. Valid arguments are:

 SMX_PK_NUM Number of blocks in pool.
 SMX_PK_FREE Number of free blocks in pool.
 SMX_PK_FIRST First free block in pool.
 SMX_PK_MIN First physical block in pool.
 SMX_PK_MAX Last physical block in pool.
 SMX_PK_NAME Name of the pool.
 SMX_PK_SIZE Size of the blocks in pool.

Example

SCB_PTR semA;

void app_init(void)
{
 u32 lim = smx_BlockPoolPeek(poolA, SMX_PK_FREE);
 semA = smx_SemCreate(SMX_SEM_RSRC, lim, "sr");
}

 This shows using smx_BlockPoolPeek() during initialization of semA, which is used to
control access to poolA.

smx_CLib

16

smx_CLib

smx_CLibEnter

BOOLEAN smx_ClibEnter (void)
BOOLEAN smx_ClibEnterNoWait (void)

Type Macro that maps to SSR

Summary Tests the in_clib semaphore using smx_SemTest() with timeout SMX_TMO_INF or

SMX_TMO_NOWAIT, respectively. One of these should be used immediately before calls
to functions in the C run-time library that are not known to be reentrant. Some C run-time
libraries are reentrant (because they are protected by a semaphore), so for them, the macro
can be defined to do nothing.

 in_clib is defined and created in the Protosystem. It is not an smx global since it is not needed

if your C run-time library is reentrant. Also, you may wish to define several semaphores,
instead of just this one, to protect different groups of related functions in the C library.

Parameters none

Returns TRUE Ok.
 FALSE Error or timeout.

Example

smx_CLibEnter()
_ltoa(ctr, &buffer, 10);
smx_CLibExit()

smx_CLibExit

BOOLEAN smx_ClibExit (void)

Type Macro that maps to SSR

Summary Signals the in_clib semaphore using smx_SemSignal(). This should be used immediately

after calls to functions in the C run-time library that are not known to be reentrant. See
smx_CLibEnter().

Parameters none

smx_CLib

17

Returns TRUE Signal sent.
 FALSE Error.

Example See smx_CLibEnter()

smx_Conv

18

smx_Conv

smx_ConvLinearToPointer

u8 *smx_ConvLinearToPointer (u32 linear_addr)

Type Unrestricted macro

Summary Converts a linear address to a pointer. In flat memory architectures, a linear address and

pointer are equal. This may not be true if the memory management unit (MMU) is used.

Parameters linear_addr Linear address to convert.

Returns pointer

Example

u8 *ptr = smx_ConvLinearToPointer(0x50000);

 Returns 0x50000.

smx_ConvPointerToLinear

u32 smx_ConvPointerToLinear (void *ptr)

Type Unrestricted macro

Summary Converts a pointer to a linear address. In flat memory architectures, a linear address and

pointer are equal. This may not be true if the memory management unit (MMU) is used.

Parameters ptr Pointer to convert.

Returns linear address

Example

u32 linaddr = smx_ConvPointerToLinear(0x50000000);

 Returns 0x50000000.

smx_Conv

19

smx_ConvMsecToTicks

int smx_ConvMsecToTicks (int msec) (rounded up)
int smx_ConvMsecToTicksRound (int msec) (rounded to nearest)

Type Unrestricted macros

Summary Converts milliseconds into ticks, rounded up to the next tick or rounded to the nearest tick,

respectively. The precision of the conversion depends on the tick rate. Low tick rates result in
poor precision. For example, at 10 ticks/sec, 1 tick is 1000/10 == 100 msec. At 250 ticks/sec,
1 tick is 4 msec. A tick rate of 1000 gives exact conversion.

Parameters msec Time in milliseconds to convert.

Returns time in ticks

Example

u32 nticks = smx_ConvMsecToTicks(25);

 Converts 25 milliseconds into the number of ticks, at the tick rate specified by smx_cf.sec,

rounded up to the nearest integer. For a tick rate of 100Hz, nticks = 3.

smx_ConvSecToTicks

int smx_ConvSecToTicks (int sec)

Type Unrestricted macro

Summary Converts seconds into ticks. This macro is intended to convert small differential times, not

smx_stime, which could cause overflow.

Parameters sec Time in sec to convert.

Returns time in ticks

smx_Conv

20

smx_ConvTicksToMsec

int smx_ConvTicksToMsec (int ticks) rounded up
int smx_ConvTicksToMsecRound (int ticks) rounded to nearest value

Type unrestricted macro

Summary Converts ticks into milliseconds, rounded up to the next millisecond or rounded to the nearest

millisecond, respectively. This macro is intended to convert a small differential time, not
smx_etime, which could cause overflow.

Parameters ticks Time in ticks to convert.

Returns time in milliseconds

smx_ConvTicksToSec

int smx_ConvTicksToSec (int ticks) rounded up
int smx_ConvTicksToSecRound (int ticks) rounded to nearest value

Type Unrestricted macro

Summary Converts ticks into seconds, rounded up to the next second or rounded to the nearest second,

respectively.

Parameters ticks Time in ticks to convert.

Returns time in sec

smx_Delay

21

smx_Delay

smx_DelayMsec

BOOLEAN smx_DelayMsec (int msec)

Type Macro that maps to SSR

Summary Delays for at least the specified number of milliseconds, as close as possible, to the precision

of the tick rate. The precision of the delay is 1 tick, which may be many milliseconds,
depending on the tick rate. Uses smx_ConvMsecToTicks() to convert to ticks, adds 1, then
calls smx_EventQueueCount() to do the delay. May be used only from tasks, not ISRs since it
calls an SSR, and not from LSRs since it waits. The main purpose of this routine is for use in
drivers, for example, where the specification requires a delay of some number of
milliseconds. It is understood that the delay must be at least that number of milliseconds.

Parameters msec Time to delay, in milliseconds.

Returns TRUE Delay completed.
 FALSE Error.

Example

smx_DelayMsec(5);

 This delays 5 milliseconds as close as possible for the tick rate. For a 100 Hz tick rate, this

would delay between 10 and 20 milliseconds.

smx_DelaySec

BOOLEAN smx_DelaySec (int sec)

Type Macro that maps to SSR

Summary Delays for the specified number of seconds, using smx_EventQueueCount(). Adds 1 tick so

the delay is at least as long as intended, since the next tick may be just about to occur. It is
unlikely this delay needs to be so precise, but adding 1 tick is done for consistency with the
other smx_Delay macros. This macro is provided for completeness and to make user code
more readable than calling smx_EventQueueCount().

Parameters sec Time to delay, in sec.

Returns TRUE Delay completed.
 FALSE Error.

smx_Delay

22

Example

smx_DelaySec(3); /* wait 3 seconds */

smx_DelayTicks

BOOLEAN smx_DelayTicks (int ticks)

Type Macro that maps to SSR

Summary Delays for the specified number of ticks, using smx_EventQueueCount(). Adds 1 tick so the

delay is at least as long as intended, since the next tick may be just about to occur. There is
probably not much need for this macro, but it is provided for completeness and to make user
code more readable than calling smx_EventQueueCount().

Parameters msec Time to delay, in ticks.

Returns TRUE Delay completed.
 FALSE Error.

Example

smx_DelayTicks(100); /* wait 100 ticks */

smx_ERROR

23

smx_ERROR

smx_ERROR

void smx_ERROR (SMX_ERRNO errnum, VOID_PTR handle)

Type Macro calling a bare function

Summary This is the smx error service macro. It switches to System Stack, then calls smx_EB(), which

is the smx error manager. smx_EB() saves errnum in smx_errno and in the current task’s err
field; it increments smx_errctr and smx_errctrs[errnum]; it makes entries in EB and EVB; and
it enqueues an error message for later display. Certain errors may also result in the current
task being restarted or the system being rebooted. These are determined by the value of
errnum. See UG Error Manager for more discussion.

 smx_srnest must be > 0 when smx_ERROR() is called, in order to avoid reentry due to an

interrupt. Also, it may not be called from an ISR, for the same reason. Interrupts are enabled
during execution of smx_EB(). The related macros, smx_ERROR_EXIT() and
smx_ERROR_RET(), are used within SSRs to call smx_ERROR().

smx_EBDisplay

void smx_EBDisplay (void)

Type Bare function

Summary Displays all entries in EB from start to end in the left panel of the display. Will scroll from

bottom to top if EB has more records than there are display lines on the screen. If
SMX_CFG_ERROR_MSGS is true, will show full error messages, else just error numbers.
Normally called when the user presses ^E at the terminal. Should be called only from a low-
priority task because it polls the UART to send characters.

smx_EVB

24

smx_EVB

smx_EVBInit

void smx_EVBInit (u32 flags)

Type Bare function

Summary Creates and initializes the Event Buffer.

Parameters flags Flags to indicate what to log:
 SMX_EVB_EN_TASK
 SMX_EVB_EN_LSR
 SMX_EVB_EN_ISR
 SMX_EVB_EN_ERR
 SMX_EVB_EN_USER
 SMX_EVB_EN_SSR1-8 SSR groups 1-8.
 SMX_EVB_EN_SSRS All SSR groups.
 SMX_EVB_EN_ALL.

Returns none

Descr Initializes the event buffer and specifies which types of events to log. See the EVB_EN

constants in xevb.h. The EVB_EN flags can also be changed via smxAware. See UG Event
Logging for more discussion.

Example

void smx_Go(void)
{
 ...
 smx_EVBInit(EVB_EN_ALL); /* enable logging of all events */
 ...
}

smx_EVB

25

smx_EVB_LOG

void smx_EVB_LOG_ISR (u32 handle)
void smx_EVB_LOG_ISR_RET (u32 handle)
void smx_EVB_LOG_LSR (u32 handle)
void smx_EVB_LOG_LSR_RET (u32 handle)
void smx_EVB_LOG_SSR0 (u32 id) to smx_EVB_LOG_SSR6 (u32 id, u32 par1, …, par6)
void smx_EVB_LOG_USER0 (u32 handle) to smx_EVB_LOG_USER6 (u32 handle, u32 par1, …, par6)

Type Bare macros and functions

Summary Add events to the Event Buffer.

Parameters handle Task handle or LSR/ISR pseudo handle.
 id SSR ID
 par SSR parameter or User value.

Returns None

Descr These macros add events to the Event Buffer. Most events are logged automatically by smx,

but it is necessary to bracket ISRs and LSRs with the macros shown above in order to log
their entry and exit. The user event can be used anywhere in the code to serve as a timestamp
and to show the values of up to six variables.

 The ISR and LSR macros are written as macros, for speed; the others call functions, to

minimize code space. Functions that can be called from assembly are provided for use from
assembly ISRs and LSRs. See xevb.h and xevb.c. For ISRs written using an assembly shell,
put the above C macros in the C body of the ISR. Specifically, put smx_EVB_LOG_ISR()
right after smx_ISR_ENTER() and smx_EVB_LOG_ISR_RET() right before
smx_ISR_EXIT(). These will mark the time spent in the body of the ISR, not in
saving/restoring registers and in smx_ISR_ENTER() and smx_ISR_EXIT().

Example

void appl_init(void)
{
 VOID_PTR lsr1_h = create_pseudo_handle(); /* LSRs do not have handles */
 smx_HT_ADD(lsr1_h, "lsr1");
}

void lsr1(u32 par)
{
 smx_EVB_LOG_LSR(lsr1);
 /* lsr1 code */
 smx_EVB_LOG_LSR_RET(lsr1);
}

 This example shows how to log an LSR into the Event Buffer. A pseudo handle is created for
it because LSRs do not have handles. Logging an ISR is similar.

smx_EventFlags, smx_EventGroup

26

smx_EventFlags and smx_EventGroup

smx_EventFlagsPulse

BOOLEAN smx_EventFlagsPulse (EGCB_PTR eg, u16 pulse_mask)

Type SSR

Summary Pulses event flags on and off that were not already set.

Compl smx_EventFlagsTest() and smx_EventFlagsTestStop()

Parameters eg Event flags group.
 pulse_mask Flags to pulse.

Returns TRUE Flags pulsed.
 FALSE Flags not pulsed.

Errors SMXE_INV_EGCB Invalid event group handle.

Descr See smx_EventFlagsSet() for operational description. This service is useful in situations

where it is desired to resume tasks that are already waiting for specified flags. It does not have
a pre-clear mask. If a pulsed flag was already set, it will be left set unless cleared by a post
clear flag of a resumed task. If a pulsed flag was reset, it will be left reset.

Example

#define AND SMX_EF_AND
#define F2 0x2
#define F1 0x1
EGCB eg;

void t2aMain(void)
{
 smx_EventFlagsPulse(eg, AND+F2+F1);
}

 Resumes tasks already waiting for F2&F1. Neither flag is left set if it was not already set.

smx_EventFlags, smx_EventGroup

27

smx_EventFlagsSet

BOOLEAN smx_EventFlagsSet (EGCB_PTR eg, u16 set_mask, u16 pre_clear_mask)

Type SSR

Summary Clears flags in eg selected by 1 bits in pre_clear_mask, sets flags selected by 1 bits in

set_mask, and resumes waiting tasks which now match eg->flags.

Compl smx_EventFlagsTest() and smx_EventFlagsTestStop()

Parameters eg Event group.
 set_mask Flags to set.
 pre_clear_mask Flags to pre-clear

Returns TRUE Flags cleared and set.
 FALSE Flags not cleared and set.

Errors SMXE_INV_EGCB Invalid event group handle.

Descr Pre-clears flags selected by pre_clear_mask in event group, and sets flags selected by

set_mask. Then, if at least one new flag has been set, the task wait queue is searched for
matches to eg->flags. Each task’s test_mask (including ANDOR and AND) and
post_clear_mask are obtained from its TCB. The test mask is compared to eg->flags and if
there is a match, the task is resumed (i.e. moved to rq). The flags causing the match are
recorded in the rv field of the TCB and will be returned when the task starts running. (They
are the return value of the test operation, which caused the task to wait.)

 After this, the match flags are ANDed with the post_clear_mask for the task. For example: if

flags causing a match = M & A and the post_clear_mask = A, then the result is A. This
allows auto clearing event flags, like A, without auto clearing mode flags, like M. The result
of the AND is the reset mask for the task.

 If there are multiple tasks waiting, the above procedure is repeated for each one. When all

tasks have been processed, their reset masks are ORed; then the 1’s complement of the OR is
ANDed with eg->flags. Thus all flags causing matches, after filtering by corresponding
post_clear_masks, are reset. See smx_EventFlagsTest() and UG Event Groups for more
discussion and examples.

Example

#define TXRDY 0x40
EGCB modem_eg;

void start_transmit(void)
{
 smx_EventFlagsSet(modem_eg, TXRDY, 0);
}

 Sets transmit ready flag in the modem_eg event group and resumes any tasks waiting for it.
There is no pre-clear, in this case.

smx_EventFlags, smx_EventGroup

28

smx_EventFlagsTest

u32 smx_EventFlagsTest (EGCB_PTR eg, u32 test_mask, u16 post_clear_mask, u32 timeout)

Type SSR

Summary Tests for a match between eg->flags and test_mask. If found, ct is continued, returns the flags

causing the match, and clears those selected by the post_clear_mask. Suspends ct if no match
is found and timeout > 0.

Compl smx_EventFlagsSet() and smx_EventFlagsPulse().

Parameters eg Event group.
 test_mask Flags to test.
 post_clear_mask Flags to reset of those causing a match.
 timeout Timeout in ticks.

Returns flags Flags causing match.
 0 No match, timeout, or error.

Errors SMXE_INV_EGCB Invalid event group handle.
 SMXE_INV_PARM test_mask == 0.
 SMXE_WAIT_NOT_ALLOWED Call from LSR with timeout > 0.

Descr Tests flags in event group vs. test_mask. If match, clears matching flags selected by

post_clear_mask, continues task, and returns flags which caused the match. If test_mask bit
16 is 1 (0x10000), tests for the AND of flags. If test_mask bit 17 is 1 (0x20000), tests for the
AND/OR of flags (AND/OR overrides AND). Both bits zero specifies to test for the OR of
flags. Bits 15 - 0 are the test pattern to compare to eg->flags. For AND/OR testing, flags in
AND terms must be adjacent. For example, ABC, AB + C, or A +BC can be tested for, but
not AC + B. For efficiency, terms should be as close to the LSB, as possible — e.g. ABC in
bits 2, 1, and 0.

 If there is no match, and timeout > 0, saves test_mask and post_clear_mask in ct->sv, sets

ct->flags.ef_andor, if ANDOR, sets ct->flags.ef_and, if AND, enqueues task in eg wait
queue, in FIFO order, loads ct timeout, and suspends ct. Suspend is not allowed for an LSR.
Fails and returns 0 if no match and no timeout or LSR.

If the timeout elapses the task resumes with 0 return value. Otherwise, when a match occurs,
due to an smx_EventFlagsSet() or to an smx_EventFlagsPulse() from another task or LSR,
this task resumes with its return value equal to the flags that caused the match.

 Operation from an LSR is the same as from a task except that waits are not allowed. Hence,

an LSR can determine if flags are currently set, but it cannot wait for them. What it can do is
to schedule itself, via a timer, to test again in the future.

Notes (1) Clears smx_lockctr if called from a task and timeout != SMX_TMO_NOWAIT.

smx_EventFlags, smx_EventGroup

29

Example
#define AND SMX_EF_AND
#define TXRDY 0x4
#define DSR 0x2
#define CTS 0x1
EGCB_PTR modem_eg;

void transmitMain(void)
{
 while (smx_EventFlagsTest(modem_eg, AND+TXRDY+DSR+CTS, TXRDY+DSR+CTS, tmo))
 {
 /* send next message */
 }
}

 The transmit task waits for the modem_eg flags: TXRDY, DSR, and CTS to all be TRUE.
The flags are auto-reset, then the task sends the next message and waits upon the flags, again.
This example could be improved by adding:

 #define MRDY 0x8 /* message ready */

 while (smx_EventFlagsTest(modem_eg, AND+TXRDY+DSR+CTS+MRDY,
 TXRDY+DSR+CTS+MRDY, INF))
 {
 /* send next message */
 }

 MRDY is set by the task, which is preparing messages to send:

 smx_EventFlagsSet(modem_eg, MRDY, 0);

 and the other flags are set by a UART LSR.

smx_EventFlagsTestStop

void smx_EventFlagsTestStop (EGCB_PTR eg, u32 test_mask, u16 post_clear_mask, u32 timeout)

Type Limited SSR — tasks only.

Summary Same as smx_EventFlagsTest() except that ct is always stopped, then restarted when it is time

for it to run.

Compl smx_EventFlagsSet() and smx_EventFlagsPulse().

Parameters eg Event group.
 mask Flags to test.

smx_EventFlags, smx_EventGroup

30

 post_clear_mask Flags to reset of those causing match.
 timeout Timeout in ticks.

Errors SMXE_OP_NOT_ALLOWED Called from LSR
 SMXE_INV_EG Invalid event group handle.
 SMXE_INV_PARM test_mask == 0.

Descr See smx_EventFlagsTest() for operational description. ct always stops, then restarts instead

of resuming. The flags causing a match are returned via the parameter in taskMain(par), when
task restarts.

Notes (1) If called from an LSR, aborts operation and returns to LSR.
 (2) smx_lockctr is cleared if called from a task.

TaskMain void task_main(u32 par)

par flags Flags causing match.
 0 No match.

Example

The equivalent example of the above smx_EventFlagsTest() example is:

void transmitMain(u32 par)
{
 if (par > 0)
 /* send message */
 smx_EventFlagsTestStop(modem, AND+TXRDY+DSR+CTS, TXRDY+DSR+CTS, tmo);
}

 This task would initially be started as follows:

 TCB_PTR transmit;
 smx_TaskStart(transmit, 0);

 The first time transmit runs, it will test the modem flags and stop. If there is a match, it will

immediately restart and the matching flags will be passed into transmitMain() as par.
Otherwise, it will wait for a match. In this example, it is assumed that if there is an error or
timeout, the correct solution is to try again.

smx_EventFlags, smx_EventGroup

31

smx_EventGroupClear

BOOLEAN smx_EventGroupClear (EGCB_PTR eg, u16 init_mask)

Type SSR

Summary Clears event group.

Parameters eg Event group to clear.
 init_mask Values to set flags.

Returns TRUE eg cleared.
 FALSE eg not cleared.

Errors SMXE_INV_EG Invalid event group handle.

Descr Resumes all waiting tasks with 0 return values and sets eg->flags = init_mask. Typically used

for system recovery.

Example

EGCB_PTR eg;

smx_EventGroupClear(eg, F1);

 Clears eg task wait list and leaves eg->flags = F1.

smx_EventGroupCreate

EGCB_PTR smx_EventGroupCreate (u32 init_mask, const char *name)

Type SSR

Summary Creates an event group with 16 flags.

Compl smx_EventGroupDelete()

Parameters init_mask Initial values of flags.
 name Name to give event group (NULL for none).

Returns handle Event group created.
 NULL Event group not created.

Errors SMXE_OUT_OF_QCBS

Descr Allocates an event group control block from the QCB pool and initializes it. If allocation fails

because no block is available, returns NULL. Loads init_mask into EGCB flags field and
name into EGCB name field. Rest of fields are cleared.

smx_EventFlags, smx_EventGroup

32

Example
#define CM 8
EGCB_PTR comm_eg;

void comm_init(void)
{
 comm_eg = smx_EventGroupCreate(CM, "comm_eg");
}

 Creates an event group with handle and name comm_eg and flag CM set.

smx_EventGroupDelete

BOOLEAN smx_EventGroupDelete (EGCB_PTR *eg)

Type SSR

Summary Deletes an event group.

Compl smx_EventGroupCreate()

Parameters *eg Address of the handle of the event group to delete.

Returns TRUE Event group deleted.
 FALSE Event group not deleted.

Errors SMXE_INV_EGCB Invalid event group handle

Descr Deletes an event group created by smx_EventGroupCreate(). First resumes waiting tasks,

giving them 0 return values and clearing their timeouts. Then clears the EGCB, returns it to
the QCB pool, removes the event group name from HT, and clears the eg handle (i.e. *eg ==
NULL) so eg cannot be used again.

Example

EGCB_PTR eg;

smx_EventGroupDelete(&eg);

smx_EventFlags, smx_EventGroup

33

smx_EventGroupPeek

u32 smx_EventGroupPeek (EGCB_PTR eg, SMX_PK_PARM par)

Type SSR

Summary Returns the current value for the parameter specified.

Parameters eg Event group to peek.
 par Parameter to return.

Returns value Value for par.
 0 Value, unless error..

Errors SMXE_INV_EGCB
 SMXE_INV_PARM

Notes This service can be used to peek at an event group. Valid arguments are:

 SMX_PK_FLAGS Flags
 SMX_PK_TASK Number of tasks waiting
 SMX_PK_FIRST First task waiting
 SMX_PK_NAME Name of event group

Example

EGCB_PTR eg;
u32 num_tasks;
TCB_PTR first_task;

num_tasks = smx_EventGroupPeek(eg, SMX_PK_TASK);
if (num_tasks > 0)
 first_task = (TCB_PTR)smx_EventGroupPeek(eg, SMX_PK_FIRST);
else
 first_task = NULL;

.

smx_EventQueue

34

smx_EventQueue

smx_EventQueueClear

BOOLEAN smx_EventQueueClear (EQCB_PTR eq)

Type SSR

Summary Clears an event queue.

Compl None

Parameters eq Event queue to clear.

Returns TRUE Event queue cleared.
 FALSE Error.

Errors SMXE_INV_EQCB

Descr Resumes all tasks waiting at eq with FALSE return values and deactivates their timeouts.

This call would normally be used in a recovery situation, such as starting event processing
over.

 If the current task is not locked, it may be preempted by a higher priority task that was

waiting at eq.
Example

EQCB_PTR eq;

smx_EventQueueClear(eq);

smx_EventQueueCount

BOOLEAN smx_EventQueueCount (EQCB_PTR eq, u32 count, u32 timeout)

Type limited SSR — tasks only

Summary Suspends the current task on event queue eq for count number of events. Fails if timeout ticks

elapse before all events occur.

Compl smx_EventQueueSignal()

smx_EventQueue

35

Parameters eq Event queue to wait at.
 count Number of events to wait for.
 timeout Timeout in ticks.

Returns TRUE Count completed.
 FALSE Error, zero count or timeout, or timed out..

Errors SMXE_OP_NOT_ALLOWED
 SMXE_INV_EQCB
 SMXE_BROKEN_Q

Descr If count is 0 or timeout is 0, continues the current task and returns FALSE. If both are

nonzero, the current task is suspended on eq until it has been signaled count times or for
timeout ticks. Then the task is resumed with TRUE or FALSE, respectively.

 To enqueue the current task, the differential count of each task already enqueued in eq, is

subtracted, in order, from count until the result would be less than 0 or the end of the queue
has been reached. The current task is enqueued just ahead of this point or at the end of the
queue. The calculated differential count is loaded into the sv field of the current task’s TCB
and it is subtracted from the differential count of the following task, if there is one. For
example, if the event queue looks like this:

QCB 5

TCBs

8 12

 and a task with a count of 10 is enqueued, the event queue will then look like this:

QCB 2

added

8 3 12

 If smx_EventQueueCount() is used to count ticks, it can produce delays which are accurate to

one tick. Overhead is proportional to the length of the queue and is only incurred on each
smx_EventQueueCount() call. The overhead per signal to eq is not affected by the length of
the queue, unless many tasks are resumed by one signal. See smx_DelayMsec() macro.

Notes (1) If called from an LSR, operation aborts and returns to LSR.
 (2) Clears smx_lockctr if called from a task and timeout != SMX_TMO_NOWAIT.
 (3) The in_evq TCB flag is set to indicate that the task is in an event queue.

smx_EventQueue

36

Example 1
#define SEC SB_TICKS_PER_SEC
XCB_PTR out_port1, in_port1, pool;
EQCB_PTR msg_rec;

void receiveMain(void)
{
 MCB_PTR msg;
 while (msg = smx_MsgReceive(in_port1, SMX_TMO_INF))
 {
 /* Process msg */
 smx_EventQueueSignal(msg_rec);
 }
}

void statusMain(void)
{
 u8 *mbp;
 MCB_PTR status_msg;

 while (1)
 {

 status_msg = smx_MsgGet(pool, &mbp, 0);
 if (smx_EventQueueCount(msg_rec, 8, SEC))
 *mbp = OK;
 else
 *mbp = LOW;
 smx_MsgSendPR(status_msg, out_port1, 0, NO_REPLY);
}

}

 If 8 messages are received in less than a second, OK status is returned. Otherwise LOW status
is returned.

smx_EventQueue

37

Example 2
int pulses = 5;

void alarmMain(void)
{
 if (pulses--)
 {
 turn_on_alarm();
 smx_EventQueueCount(smx_TicksEQ, 100, SMX_TMO_INF);
 turn_off_alarm();
 smx_EventQueueCount(smx_TicksEQ, 100, SMX_TMO_INF);
 }
}

 In this example, an alarm is on 100 ticks, then off 100 ticks. This is repeated 5 times.
smx_TicksEQ is a standard event queue which is signaled every tick. When done, the alarm
task autostops.

smx_EventQueueCountStop

void smx_EventQueueCountStop (EQCB_PTR eq, u32 count, u32 timeout)

Type limited SSR — tasks only

Summary Same as smx_EventQueueCount() except that ct is always stopped, then restarted when it is

time for it to run.

Compl smx_EventQueueSignal()

Parameters count Number of events to wait for.
 eq Event queue to wait at.
 timeout Timeout in ticks.

Errors SMXE_OP_NOT_ALLOWED
 SMXE_INV_EQCB
 SMXE_BROKEN_Q

Descr See smx_EventQueue() for operational description. ct always stops, then restarts instead of

resuming. Pass or fail is returned via the parameter in taskMain(par), when the task restarts.

Notes (1) If called from an LSR, aborts operation and returns to LSR.
 (2) smx_lockctr is cleared if called from a task.

TaskMain void task_main(BOOLEAN par)

par TRUE Count completed.
 FALSE Zero count or timeout, or timed out.

smx_EventQueue

38

Example 1
XCB_PTR out_port1, in_port1, pool;
EQCB_PTR msg_rec;
BOOLEAN start;

void receiveMain(void)
{
 MCB_PTR msg;
 while (msg = smx_MsgReceive(in_port1, SMX_TMO_INF))
 {
 /* Process msg */
 smx_EventQueueSignal(msg_rec);
 }
}

void statusMain(BOOLEAN all_msgs_rec)
{
 u8 *mbp;
 MCB_PTR status_msg;

 if (start)
 start = FALSE;
 else
 {
 status_msg = smx_MsgGet(pool, &mbp, 0);
 if (all_msgs_rec)

 *mbp = OK;
 else
 *mbp = LOW;

 smx_MsgSendPR(status_msg, out_port1, 0, NO_REPLY);
 }
 smx_EventQueueCountStop(msg_rec, 8, SEC);
}

 This example is equivalent to that shown for smx_EventQueueCount(). The start flag is
necessary to get the status task to wait on msg_rec the first time. See UG One Shot Tasks for
more discussion of one-shot tasks.

smx_EventQueue

39

Example 2
BOOLEAN on = FALSE;
int pulses = 5;

void alarmMain(void)
{
 if (pulses--)
 {

 if (!on)
 {
 turn_on_alarm();
 on = TRUE;
 smx_EventQueueCountStop(smx_TicksEQ, 100, SMX_TMO_INF);
 }
 else
 {
 turn_off_alarm();
 on = FALSE;
 smx_EventQueueCountStop(smx_TicksEQ, 100, SMX_TMO_INF);
 }
}

}

 This example is equivalent to that shown for smx_EventQueueCount(). Note that ct stops,
then restarts after 100 ticks. The global variables on and pulses control operation. This is a
good application of a one-shot task — it uses a stack briefly then releases its stack for 100
ticks.

smx_EventQueueCreate

EQCB_PTR smx_EventQueueCreate (const char *name)

Type SSR

Summary Creates an event queue.

Compl smx_EventQueueDelete()

Parameters name Name to give event queue or NULL for none.

Returns handle Event queue created.
 NULL Event queue not created due to Error.

Errors SMXE_OUT_OF_QCBS

smx_EventQueue

40

Descr Gets a queue control block from the QCB pool and initializes it as an EQCB. Loads name
into it. Returns the EQCB address as the event queue handle.

Example

EQCB_PTR SignalsEQ;

void appl_init(void)
{
 SignalsEQ = smx_EventQueueCreate("SignalsEQ");
}

 In this example, an event queue is set up to count signals. It would be signaled from an LSR

or task with:

smx_EventQueueSignal(SignalsEQ);

smx_EventQueueDelete

BOOLEAN smx_EventQueueDelete (EQCB_PTR *eq)

Type SSR

Summary Deletes an event queue.

Compl smx_EventQueueCreate()

Parameters eq Event queue to delete.

Returns TRUE Event queue deleted or eq already NULL.
 FALSE Error.

Errors SMXE_INV_EQCB

Descr Deletes an event queue created by smx_EventQueueCreate(). First resumes all waiting tasks,

with FALSE return values and clearing their timeouts. Then clears the EQCB, releases it to
the QCB pool, and clears eq.

Example

EQCB_PTR smx_TicksEQ;

smx_EventQueueDelete(&smx_TicksEQ);

smx_EventQueue

41

smx_EventQueueSignal

BOOLEAN smx_EventQueueSignal (EQCB_PTR eq)

Type SSR

Summary Signals an event queue. The top task waiting there may be resumed.

Compl smx_EventQueueCount(), smx_EventQueueCountStop()

Parameters eq Event queue to signal.

Returns TRUE Signal sent.
 FALSE Signal not sent due to error.

Errors SMXE_INV_QCB
 SMXE_WRONG_TYPE_QUEUE

Descr If eq is an event queue and it is not empty, decrements the first task’s count. If the resulting

count is greater than zero, no further action is taken. Otherwise, resumes the first task with
TRUE and clears its in_evq flag and timeout. Does the same for all other tasks with 0
differential counts. Stops at the first task with a non-zero differential count or if the queue is
empty. When there are no tasks left in eq, sets eq->fl = NULL and eq->tq = 0.

Example 1

EQCB_PTR revs;
TCB_PTR wheel;

void revISR(void)
{
 smx_LSR_INVOKE(revLSR, 0);
}

void revLSR(u32 par)
{
 smx_EventQueueSignal(revs);
}

void wheel_main(void)
{
 while (smx_EventQueueCount(revs, N, INF)
 {
 /* perform N revs operation */
 }
}

 Each time a wheel turns, it causes a pulse, which triggers an interrupt and revISR runs. It
invokes the revLSR, which signals the revs event queue. The wheel task runs every N
revolutions.

smx_Go

42

smx_Go

smx_Go

void smx_Go (void)

Type function

Summary Initializes smx from information in the configuration table, smx_cf.

Parameters none

Returns none

Errors SMXE_INSUFF_DAR
 SMXE_SMX_INIT_FAIL

Descr smx_Go() allocates space for smx structures and creates task timeout array, LSR queue, stack

pool, ready queue, smx_TicksEQ, smx_ts semaphore, and smx_Idle. It then starts smx_Idle
with ainit() as its main function and begins operation in the task environment. The above are
the dominant errors; other errors may be reported. This function is intended to be called only
once from main().

 smx_Go() uses constants in smx_cf, which should be initialized in main.c from constants in

acfg.h. These control the amounts of memory used by smx control blocks and other smx
structures, as well as the tick rate, stack parameters, and other smx features.

Example

void main(void)
{
 sb_IRQsMask();
 smx_Go();
}

It is important to mask interrupts until ainit() begins running.

smx_Heap

43

smx_Heap

The following heap services are provided by the eheap embedded system heap. They meet the ANSI C/C++
Standard for malloc(), free(), realloc(), and calloc() and offer additional services, which are described in this
section. See the Heap and Heap Management chapters in the smx User’s Guide for more information
concerning eheap and how to best use these services.

smx_HeapBinPeek

u32 smx_HeapBinPeek (u32 binno, SMX_PK_PARM par)

Type SSR

Summary Returns information concerning the selected heap bin.

Parameters binno Bin number.
 par What to peek at.

Returns value Value of par.
 0 Value, unless error.

Errors SMXE_INV_PARM Invalid parameter.

Descr Used to obtain information about heap bins. binno is the bin number. The parameter, par, is of

type SMX_PK_PARM. Available parameters are:

 SMX_PK_COUNT Number of chunks in bin.
 SMX_PK_FIRST Address of first chunk in bin, NULL if empty.

SMX_PK_LAST Address of last chunk in bin, NULL if empty.
SMX_PK_SIZE Minimum chunk size for bin.

 SMX_PK_SPACE Free space in bin.

 HeapBinPeek() reports SMXE_INV_PARM and returns 0, if par is not one of the above or if
binno is not in the range 0 to smx_top_bin. It also returns 0 if the bin is empty, except for
SMX_PK_SIZE. This service is an SSR. Using it is recommended over directly reading bin
parameters, which can result in incorrect readings due to preemption by another task.

Example
CCB_PTR cp;

cp = (CCB_PTR)smx_HeapBinPeek(14, SMX_PK_FIRST);

 This example gets a pointer to the first chunk in bin 14.

smx_Heap

44

smx_HeapBinScan

BOOLEAN smx_HeapBinScan (u32 binno, u32 fnum, u32 bnum)

Type SSR

Summary Scans forward through free chunk list of binno for broken links and fixes what it can. Can

scan backward to fix broken forward links.

Parameters binno Bin to scan.
 fnum Number of chunks to scan forward per run.
 bnum Number of chunks to scan backward per run.

Returns TRUE Done or unfixable error encountered.
 FALSE Continue scanning.

Errors SMXE_HEAP_BRKN Cannot fix heap.
 SMXE_HEAP_FIXED A heap fix was made.
 SMXE_INV_PARM Invalid parameter.

Descr smx_HeapBinScan() scans the specified bin free chunk list and fixes broken links that it finds

or reports SMXE_HEAP_BRKN if a link is unfixable. Normally it is called once per pass of
the idle task and scans fnum chunks forward, per run. It is an SSR, so it cannot be interrupted
by another heap service, during a run. Scans are broken into runs, to permit higher priority
tasks to run, without missing their deadlines. If binno is out of range, or if either fnum or
bnum is 0, SMXE_INV_PARM is reported and TRUE is returned.

 A global pointer, smx_bsp, points at the next chunk to scan, at the start of a run. If it is

NULL, a new scan begins from the bin free forward link, ffl. smx_bsp is set to NULL by
smx_HeapInit() and also when a bin scan completes. Repetitively calling
smx_HeapBinScan() each time it returns FALSE, results in moving through the bin’s free
chunk list, fnum chunks at a time, until the end of the list is reached and TRUE is returned.

 If the bin is empty, TRUE is returned immediately. If broken, the bin’s free back link, fbl, is

fixed first. If the bin ffl is out of heap range, it and fbl are set to NULL and the bin’s bmap bit
is also cleared. This makes the bin empty. Then SMXE_HEAP_BRKN is reported and TRUE
is returned. In this case, the chunks that were in the bin are no longer available for allocation,
however the heap can continue operating. If cmerge is ON, these chunks may eventually be
merged with other chunks, as they are freed, and thus their free memory becomes available,
again. Therefore, it may not be necessary to take further action, in this case.

 If the bin has only one-chunk, TRUE is returned after fixing broken links and binx8 in the

chunk, if necessary.

 If the bin has more than one chunk, cp is advanced one chunk at a time until fnum chunks

have been checked or the end of the bin free list has been reached. The free forward link of
each chunk is heap-range checked before use. If it fails, smx_heap.mode.bs_fwd is turned
OFF, the smx_bfp (bin fix pointer) is set to the end of the binno free list, and FALSE is
returned. Thereafter, when smx_HeapBinScan() is called, it will scan backward bnum
chunks, at a time, fixing broken ffl’s, as it goes, until it reaches smx_bsp. Then

smx_Heap

45

smx_heap.mode.bs_fwd is turned back ON and FALSE is returned. Thereafter, when
smx_HeapBinScan() is called, forward scan will resume from smx_bsp. Normally, only the
one broken ffl will need to be fixed – i.e. the one at smx_bsp. If no further broken links are
found, forward scan will continue, fnum chunks per run, until the end of the heap is reached.
Then the scan stops and TRUE is returned.

 If a free() preempts between runs it may add a chunk to the start or the end of the bin free list,

but this does not affect either smx_bsp or smx_bfp, so nothing is done. If a malloc() preempts
between runs, it may take the chunk pointed to by either scan pointer. In this case, the scan is
aborted and a new forward scan is started from the beginning of the bin free chunk list.

 If the backward scan finds a broken back link before it reaches smx_bsp, then it is not

possible to fix the broken forward link at smx_bsp. So, instead, the gap is bridged from
smx_bsp to smx_bfp and SMXE_HEAP_BRKN is reported. The bridge allows the scan to
finish and the heap can continue operating. This is like the broken bin ffl, above, but only part
of the bin has been lost. See UG Heap Management chapter for more information.

Notes (1) Because it is expected to run frequently, smx_HeapBinScan() makes no entries in the

event buffer, other than those due to reported errors or fixes.
 (2) Whenever a fix is made, SMXE_HEAP_FIXED is reported, and the scan continues.
Example

void IdleMain(void)
{
 static u32 i = 0;
 ..
 if (smx_HeapBinScan(i, 2, 10))
 i = (i == smx_top_bin ? 0 : i+1);

...
}

 This is an example of bin scanning in the idle task. smx_HeapBinScan() is called once per
pass through IdleMain() and it scans 2 chunks, at a time. When a bin is finished,
smx_HeapBinScan() returns TRUE and i is incremented to scan the next larger bin. If the top
bin has just been scanned, then i is cleared and scanning starts over at bin 0.

 If the heap has 20,000 free chunks it will take 10,000 passes of idle to scan all bins. If idle

runs an average of 100 times per second, it will take 100 seconds to scan all bins. This is
probably often enough. If not, fnum can be increased. Note that a backward scan will cover
10 chunks per run. This is because the backward scan is both faster and more urgent since a
broken forward link has been found.

 If smx_HeapBinScan() cannot fix a break, it reports SMX_HEAP_BRKN. This is treated as

an irrecoverable error by the error manager, smx_EM(), which calls smx_EMExitHook().
The latter is the place to put heap recovery or system reboot code. See UG Heap Management
chapter.

smx_Heap

46

smx_HeapBinSeed

BOOLEAN smx_HeapBinSeed (u32 num, u32 bsz)

Type SSR

Summary Gets a big enough chunk to divide into num chunks for blocks of size bsz and puts them into

the correct bin for their size.

Parameters num Number of blocks.
 bsz Size of each block, in bytes.

Returns TRUE Blocks seeded.
 FALSE Block not seeded due to error.

Errors Same as smx_HeapMalloc() and smx_HeapFree().

Descr This service is used to seed a bin with num chunks with a specified block size, bsz. The bin is

not specified because it depends upon the chunk size, which in turn depends upon debug
mode being ON or OFF. If ON, debug chunks will be generated; if OFF inuse chunks will be
generated. smx_BinSeed() shares internal subroutines with smx_HeapMalloc() and
smx_HeapFree() and thus returns the same errors that they do.

 smx_BinSeed() calculates the necessary chunk size for bsz and debug mode, multiplies it by

num, and malloc’s a big-enough chunk from the heap for that much space. It then splits the
chunk into num chunks, physically links them together into the heap. Debug information is
loaded into each chunk if debug mode is ON. cmerge mode is turned OFF, the new chunks
are freed to their bin, cmerge is restored, and TRUE is returned.

 This service, combined with monitoring bin populations, may be a good way to maintain

effective bin populations. See the UG Heap chapter.

Note Due to the way malloc() works, the big chunk may be slightly bigger than necessary. As a

consequence the last chunk may be larger than the others and may be put into a higher bin.

Example

u32 GetBlocksReady(u32 area, u32 bsz);
{
 u32 num = area/bsz;

 if (smx_HeapBinSeed(num, bsz);
 return num;
 else
 return 0;
}

 This function gets as many chunks for block size, bsz, as it can within the specified area, and
returns the number put into the bin for the corresponding chunk size. It returns 0 if bin
seeding fails.

smx_Heap

47

smx_HeapBinSort

BOOLEAN smx_HeapBinSort (u32 binno, u32 fnum)

Type SSR

Summary Sorts bin’s free chunk list by increasing chunk size.

Parameters binno Bin number.
 fnum Number of chunks to sort per run.

Returns TRUE Sort has been completed, was not needed, or error found.
 FALSE Sort not complete.

Errors SMXE_INV_PARM fnum is 0.

Descr This service is used to put chunks in order, by increasing size in large bin free lists. It is an

SSR, so that it cannot be interrupted by another heap service during a run. A run consists of
fnum loops sorting fnum chunks, or more, so higher priority tasks can preempt between runs.
fnum is chosen so that higher priority tasks do not miss their deadlines. Of course the smaller
that fnum is, the longer bin sorting will take.

 smx_HeapMalloc() and the other heap allocation services take the first large-enough chunk

from a large bin. If the bin’s free list is sorted, this will be the best fit chunk, which is
optimum to reduce fragmentation; a sorted bin also improves average allocation times for the
smaller chunks in a large bin.

 If binno is less than or equal to the top bin number and its bin sort map, smx_bsmap, bit is

ON, that bin is sorted. If binno is greater than the top bin number, the smallest bin selected by
bsmap is chosen. Calling smx_HeapBinSort() repetitively results in sorting that bin, then
sorting the next larger bin, etc. until all bins have been sorted. For each bin, FALSE indicates
to continue calling smx_HeapBinSort() and TRUE indicates to stop, either because the job is
done or an error has been found. Hence, the binno bin will be sorted or the smallest bin will
be sorted, depending upon binno vs. the top bin number.

 The bsmap bit for a bin is set if smx_HeapFree() puts a chunk at the end of the bin’s free list.

This happens when the chunk is larger than the first chunk in the bin. Otherwise the chunk is
put at the start of the bin’s free list, in which case no sort is needed and the bsmap bit is not
set. Small bins never need sorting, hence their bsmap bits are never set. Therefore, bsmap
shows only large bins that need sorting.

 A bin’s bsmap bit is reset when a sort begins for the bin. If a preempting free sets the bit, due

to putting a chunk at the end of the bin, the sort is aborted and restarted on the next run. If a
preempting malloc takes a chunk from the bin, it also sets the bin’s bsmap bit, causing the
sort to start over. Starting over is not detrimental to a sort, because any sorting already done is
preserved. Otherwise each run starts from where the last run left off.

 The sort algorithm is a bubble sort with last turtle insertion. The last turtle is the last chunk in

the bin free list that may be smaller than a chunk ahead of it. When starting a bin sort, it will
be the last chunk put at the end of the bin by the last free, if any. As a run progresses, if it

smx_Heap

48

finds a chunk larger than the last turtle, it puts the last turtle ahead of it and the chunk that
was before the last turtle becomes the new last turtle. After k passes through the free list, the
last k chunks are guaranteed by the bubble sort to be sorted, but due to last turtle moves, more
than k chunks may actually be sorted. Each pass ends with the current last turtle. When no
chunks have been moved during a pass, the sort is complete.

Notes (1) Heap sorting need not be perfect. The combination of chunks in a bin, at a given time, is

statistical. Hence taking a somewhat larger chunk than necessary due to imperfect sorting
is not likely to be significant.

 (2) Because it is expected to run frequently, smx_HeapBinSort() makes no entries in the
event buffer, other than those due to reported errors or fixes.

Example

void smx_HeapManager(void)
{
 smx_HeapBinSort(smx_top_bin + 1, 4);
 …
}
void IdleTaskMain(void)
{
 smx_HeapManager();
 …
}

 Here, smx_HeapBinSort() will check smx_bsmap to find the smallest large bin that needs
sorting. If smx_bsmap == 0, it will abort and return TRUE. Otherwise it will start a sort on
the selected bin and do a run of 4 chunks. The same bin will continue to be sorted, 4 chunks
at a time, on each idle pass. This bin is remembered between runs by smx_csbin. When the
bin is sorted, smx_HeapBinSort() sets smx_csbin to -1 in order to enable a new bin to be
selected on the next pass of idle and it returns TRUE. This process continues, automatically
sorting bins, as needed. Assuming that idle runs frequently, it should keep all large bins
adequately sorted. If not, chunks per run can be increased or the above code could be moved
to a higher priority task.

 Note: smx_HeapManager() also performs auto merge control, heap scanning, and heap bin

scans.

smx_Heap

49

smx_HeapCalloc

void* smx_HeapCalloc (u32 num, u32 sz)

Type SSR

Summary Allocates space for an array of num elements of sz bytes from the heap and clears all

elements.

Compl smx_HeapFree()

Parameters num Number of elements.
 sz Size of each element, in bytes.

Returns pointer to allocated array.
 NULL Array not allocated due to error.

Errors Same as smx_HeapMalloc()

Descr Allocates a single block of memory from the heap of (num * sz) bytes with fill mode OFF.

The contents of the block are cleared, fill mode is restored, and a pointer to the block is
returned. This service uses the malloc() subroutine. Hence, it reports the same errors and
returns the same result as smx_HeapMalloc().

Example

#define NUM_RECS 10
typedef struct {
 u32 field1;
 u32 field2;
} REC;
REC *rp;
u32 i, error;

void array_op(void)
{
 if (rp = (REC*)smx_HeapCalloc(NUM_RECS, sizeof(REC)))
 for (i = 0; i < NUM_RECS; i++, rp++)
 {
 rp->field1 = i;
 rp->field1 = 2*i;
 }
 else
 /* report error */
}

smx_Heap

50

smx_HeapChunkPeek

u32 smx_HeapChunkPeek (void* vp, SMX_PK_PARM par)

Type SSR

Summary Returns the information specified by par concerning a chunk in the heap, given a pointer to

either the chunk or the block in it.

Parameters vp Chunk or block pointer.
 par What to peek at.

Returns value Value of par.
 0 Value, unless error.

Errors SMXE_INV_PARM Invalid parameter.

Descr Used to return information about heap chunks. vp is the chunk or block address. If it is out of

heap range or is not 4-byte aligned, SMXE_INV_PARM is reported, and 0 is returned.

 The parameter, par, is of type SMX_PK_PARM. Permitted values are:

 SMX_PK_BINNO Chunk bin number (0 if not free, dc, or tc).
 SMX_PK_BP Data block pointer from cp (0 if free).
 SMX_PK_CP Chunk pointer from bp (0 if free).
 SMX_PK_NEXT Address of next chunk in the heap.
 SMX_PK_NEXT_FREE Address of next chunk in this bin (0 if last chunk, dc, tc, or not free).
 SMX_PK_ONR Chunk owner (0 if not debug chunk).
 SMX_PK_PREV Address of previous chunk in heap.
 SMX_PK_PREV_FREE Address of previous chunk in bin (0 if first chunk, dc,tc, or not free).
 SMX_PK_SIZE Chunk size.
 SMX_PK_TIME Time chunk allocated (0 if not debug chunk).
 SMX_PK_TYPE Chunk type (free == 0, inuse == 1, debug == 3).

 HeapChunkPeek() returns 0 and reports SMXE_INV_PARM, if par is not one of the above
values. If a chunk is inuse, it cannot be in a bin, thus 0 is returned. Since 0 is a valid bin
number, the chunk should be tested for free. Care must be taken that vp is a valid chunk
pointer in all cases, except par == SMX_PK_CP, in which case it must be a valid data block
pointer.

 This service is an SSR. Using it is recommended over directly reading chunk parameters. The

latter may result in incorrect readings, due to preemption by another task or due to attempting
to read an invalid field for the chunk type. As shown above, smx_HeapChunkPeek() returns 0
in such a case. It usually is advisable to read the chunk type first to make sure that the
expected chunk information is actually available. It also is advisable to check that the return
value is not 0 before using it, except in the cases of bin number and type, where 0 returns are
valid.

smx_Heap

51

Example
u8* bp;
CCB_PTR cp;
int time = 0;
#define DEBUG 3

if (cp = (CCB_PTR)smx_HeapChunkPeek(bp, SMX_PK_CP))
 if (smx_HeapChunkPeek(cp, SMX_PK_TYPE) == DEBUG)
 time = smx_HeapChunkPeek(cp, SMX_PK_TIME);

 Starting with a block pointer, this example show how to get the chunk pointer, cp, then
determine when the block was allocated, if it is in a debug chunk.

smx_HeapExtend

BOOLEAN smx_HeapExtend (u32 xsz, u8* xp)

Type SSR

Summary Adds a memory extension to the heap.

Parameters xsz Extension size, in bytes.
 xp Extension pointer.

Returns TRUE Heap extended.
 FALSE Heap not extended due to error.

Errors SMXE_INV_PARM xsz is zero or xp is not above current heap.

Descr smx_HeapExtend() is used to extend the heap to additional memory space. xsz is the size of

the additional space and xp is a pointer to the start of it. This space can come from ADAR or
from other memory, but it must be above the current heap. If not, smx_HeapExtend() reports
SMXE_INV_PARM, and returns FALSE. This is also the case if xsz == 0. Otherwise, xsz is
increased to 16 or set to the next 8-byte boundary and xp is moved up to the next 8-byte
boundary, if necessary.

 smx_HeapExtend() handles both the case where the extension is adjacent to the top of the

current heap and the case where there is a gap in between. In both cases, ec (end chunk) is
moved to the top of the extension. In the adjacent case, the extension is merged with the top
chunk, tc, and the merged chunk becomes the new tc. In the gap case, an artificial inuse
chunk is created from the old ec to cover the gap and the extension becomes the new tc. The
old tc is freed to a bin. tc and the freed chunk are filled if fill mode is ON. Then smx_heap
HCB is updated and TRUE is returned.

smx_Heap

52

Example
#define HEAP_EXT 4096
u8* xp;
BOOLEAN ok;

if (smx_errno = SMXE_INSUFF_HEAP)
{
 xp = sb_DARAlloc(sb_adar, HEAP_EXT, 8) /* 8-byte align */
 ok = smx_HeapExtend(HEAP_EXT, xp);
}

if (ok)
 /* retry allocation */

 This example shows extending the heap by 4096 bytes in order to recover from an
SMXE_INSUFF_HEAP error. Note that if the ADAR allocation fails, HeapExtend() will also
fail, because xp will be NULL.

smx_HeapFree

BOOLEAN smx_HeapFree (void* bp)

Type SSR

Summary Frees a block to the heap that was previously allocated from the heap.

Compl smx_HeapMalloc(), smx_HeapCalloc(), and smx_HeapRealloc()

Parameters bp Pointer to block to free.

Returns TRUE Block freed or already free.
 FALSE Block not freed due to an error.

Errors SMXE_HEAP_ERROR Block is already free.
 SMXE_INV_CCB Forward or backward link is out of range.
 SMXE_INV_PARM Derived cp is out of range or not 8-byte aligned

Descr Frees the block pointed to by bp back to the heap. If bp is NULL, no operation is performed

and TRUE is returned, per the ANSI C/C++ standard. bp is converted to its corresponding
chunk pointer, cp. If cp is out of range or not 8-byte aligned, smx_HeapFree() reports
SMXE_INV_PARM and returns FALSE.

 If the chunk is already free, the same occurs, except SMXE_HEAP_ERROR is reported. This

is done to help detect double frees. However it is not 100% effective because the chunk may
have already been reallocated, in which case it would not be free, and this service would free
it again, causing a difficult error to find.

smx_Heap

53

 Next, the forward and backward links of the chunk are range-checked. If either is out of
range, HeapFree() stops, reports SMXE_INV_CCB, and returns FALSE. This is another way
that a double free might be detected — i.e. if the chunk were freed, merged with a lower
chunk, allocated, and then the old pointers were overwritten with data (since they would be in
the new data block).

 The above tests and errors are enabled by SMX_HEAP_SAFE (xcfg.h), which can be turned

for speed.

 If merging is enabled (smx_heap.mode.cmerge == ON), HeapFree() checks if the lower

chunk is free and merges it if it is, then it checks if the upper chunk is free and merges it, if it
is. Chunks to be merged, except dc or tc, are removed from their bins before merging them.
Then the bin for the final free chunk, unless it is dc or tc, is found and the chunk is put into
that bin,. If a merger was made with dc, smx_dcp is updated; if a merger was made with tc,
smx_tcp is updated. Only upward mergers into dc or tc dc are permitted and these chunks are
never put into bins. heap_used is reduced by the size of the freed chunk.

 If chunk filling is enabled (smx_heap.mode.fill ON) a free block is loaded with the

FREE_FILL pattern; dc or tc is loaded with the DTC_FILL pattern. This greatly increases the
time required to free a block and should be used selectively to assist debugging.

 If either smx_hsp or smx_hfp was pointing at the freed chunk and it was merged with a lower

chunk, the scan pointer is backed up to the new chunk. If a chunk is put at the end of a large
bin, the smx_bsmap bit for the bin is set. This indicates that the bin needs to be sorted.

Example

void function(void)
{
 void *dp;

 dp = smx_HeapMalloc(100);
 /* use temporary block of memory via dp */
 smx_HeapFree(dp);
}

 This example gets a block of 100 bytes from the heap, uses it, then frees it back to the heap.

smx_Heap

54

smx_HeapInit

BOOLEAN smx_HeapInit (u32 sz, u8* hp)

Type SSR

Summary Initializes the heap. Automatically called by the first heap allocation call or can be called

directly to initialize or reinitialize the heap.

Parameters sz Size of heap, in bytes.
 hp Heap pointer. If NULL, heap is allocated from ADAR.

Returns TRUE Heap has been initialized or was already initialized.
 FALSE Heap not initialized due to error.

Errors SBE_INSUFF_DAR Insufficient ADAR.
 SMXE_INV_PARM Invalid parameter or ADAR allocation failed.

Descr Like other smx objects, the heap is automatically initialized the first time that it is used. In

this case, smx_HeapInit(sz, hp) is called by the first call to a heap allocation service. This is
done so that the heap can be used by C++ initializers. In that call, sz = HEAP_SPACE and hp
= HEAP_ADDRESS, which are defined in acfg.h. If HEAP_ADDRESS is NULL, then space
for the heap is allocated from ADAR. Otherwise, the heap is started at hp. If sz < 321 or
allocation from ADAR fails, smx_HeapInit() reports SMXE_INV_PARM, and returns
FALSE. smx_HeapInit() can also be directly called before the first heap allocation. This may
be preferable in a system where there are no C++ initializers requiring the heap.

 smx_HeapInit(sz, hp) initializes the heap if smx_heap.mode.init is OFF, else it returns TRUE

and nothing is done. (smx_heap is the heap control block, HCB.) If they are not multiples of
8, sz is adjusted to the next lower multiple of 8 and hp is adjusted to the next higher multiple
of 8. This is done so that the heap and all chunks in it will be 8-byte aligned. After the heap
has been initialized, smx_heap.mode.init is set to ON. This prevents initialization from
accidentally occurring twice. smx_heap.mode.init must be OFF before directly calling
smx_HeapInit().

 Following initialization, the heap consists of four chunks: start chunk (sc), donor chunk (dc),

top chunk (tc), and end chunk (ec). sc and ec are inuse chunks with no data They are each 8
bytes in size. dc is a free chunk, which initially contains HEAP_DC_SIZE (acfg.h) bytes. tc is
a free chunk, which initially contains the remaining free space of the heap = HEAP_SPACE –
HEAP_DC_SIZE - 24. dc normally is much smaller than tc; it is the source for SBA chunks.
tc is the source for larger chunks.

 The heap is controlled by smx_heap, the static heap control block (HCB). smx_HeapInit()

loads smx_heap.pi = sc and smx_heap.px = ec; it sets the cbtype and initializes the mode field
so that cmerge and fill flags are turned OFF; amerge, init, hs_fwd, and bs_fwd flags are
turned ON. It also clears the smx_bin[] free list pointers and the bin map, smx_bmap, so all
bins are empty. It loads smx_bin_sizes[] from SMX_HEAP_BIN_SIZES (xcfg.h), and
initializes the other heap variables. For the debug version (SMX_BT_DEBUG defined) dc

1 after being adjusted to next lower multiple of 8, if necessary

smx_Heap

55

and tc are filled with the SMX_HEAP_DTC_FILL (xcfg.h) pattern. This is not done for the
release version for faster boot time.

Examples

smx_HeapSet(SMX_ST_INIT, OFF);
smx_HeapInit(0x8000, 0x20004000);

smx_HeapSet(SMX_ST_INIT, OFF);
smx_HeapInit(0x8000, 0);

The first example shows creating a 32KB heap at memory location 0x20004000. The second
example shows creating a 32KB heap in ADAR. Note that the smx_heap.mode.init flag is
turned OFF first, in both cases.

smx_HeapMalloc

void* smx_HeapMalloc (u32 sz)

Type SSR

Summary Allocates a block of at least sz bytes from the heap.

Compl smx_HeapFree()

Parameters sz Size of block to allocate, in bytes.

Returns bp Block pointer.
 NULL Insufficient space or error.

Errors SMXE_INV_PARM Invalid parameter.
 SMXE_INSUFF_HEAP Insufficient space in heap.

Descr Allocates a block of at least sz bytes from the heap. Calls smx_HeapInit() if the heap is not

already initialized (i.e. smx_heap.mode.init == ON.) A chunk is allocated from the heap to
contain the block. If debug mode is OFF, an inuse chunk is allocated and the block within it
will be 8-byte aligned. If debug mode is ON, a debug chunk will be allocated and the block
within it will be 4-byte aligned if SMX_HEAP_FENCES (xcfg.h) is odd, or 8-byte aligned if
SMX_HEAP_FENCES is even. The minimum block size that can be allocated is 16-bytes.
The block size can be larger than sz, if an exact-fit chunk was not found.

 If sz is 0, SMXE_INV_PARM is reported and NULL is returned. This test is enabled by

SMX_HEAP_SAFE (xcfg.h), which can be turned off for speed. If sz is less than 16, it is
rounded up to 16. If sz is not a multiple of 8, it is adjusted to the next higher multiple of 8.
For example, if sz = 27, it will be adjusted to 32. Hence, there is no problem with allocating
odd sizes and they will be automatically adjusted to large enough sizes. However, it should be
noted that no space savings results from such size requests.

smx_Heap

56

 Basically, allocation operates as follows: a small chunk comes from the right-size bin in the
small bin array (SBA) or from the donor chunk (dc), if the SBA bin is empty. If dc is not big
enough, the chunk comes from the first larger occupied bin, or from the top chunk (tc) if no
upper bin is occupied. A large chunk comes from an upper bin or from tc. See the UG Heap
Chapter for a more details concerning how heap allocation works. If the first big-enough
chunk found it too big, it is split and the remant is put into a bin for its size. The remnant must
be at least MIN_FRAG (xheap.c) bytes, or no split is made.

 The smallest block that may be returned is sz, if sz is a multiple of 8, or the next multiple of 8,

if not. This is the adjusted size, adj_sz. The largest block that may be returned is adj_sz +
MIN_FRAG. The latter is defined to prevent excessively small chunks due to splitting. As
delivered, it is 32 + CHK_OVH (chunk overhead.)

 If debug is ON, a debug chunk is allocated instead of an inuse chunk. It consists of adding a

chunk debug control block (CDCB) to the start of the chunk and adding fences before and
after the allocated data block. Heap fences are word-size and their pattern is defined by
SMX_HEAP_FENCE_FILL (xcfg.h). The number of fences above and below is defined by
SMX_HEAP_FENCES (xcfg.h) A debug chunk can be much larger than the data block it
contains and much larger than an inuse chunk with the same-size data block.

 The size of the allocated chunk is added to smx_heap_used and the high-water mark,

smx_heap_hwm, is increased if heap_used is larger than it. If smx_heap.mode.fill is ON, the
SMX_HEAP_DATA_FILL (xdef.h) pattern is written into all words of the data block.

 If allocation fails, NULL is returned and SMXE_INSUFF_HEAP is reported. This is a good

reason for always checking the return value before using it.

 If either bin scan pointer, smx_bsp or smx_bfp, was pointing at the chunk allocated, the bin

scan is restarted. Also the smx_bsmap bit for the bin is set, which results in the bin sort being
restarted.

 See the UG Heap Chapter for discussion of the eheap allocation algorithm and heap recovery

methods. See the UG Heap Maintenance chapter for discussion of customizing a heap for
better performance.

Example

void* bp;

if (bp = smx_HeapMalloc(204))
{
 /* access block using bp */
 smx_HeapFree(bp);
}

 In this example, a block of 208 bytes is allocated from the heap, since 204 is not a multiple of
8. The block could be larger if an exact-fit chunk could not be found. When no longer needed,
the block of memory is released back to the heap.

smx_Heap

57

smx_HeapPeek

u32 smx_HeapPeek (SMX_PK_PARM par)

Type SSR

Summary Returns information concerning the heap mode.

Compl smx_HeapSet()

Parameters par What to peek at.

Returns value Value of par.
 0 Value, unless error.

Errors SMXE_INV_PARM Invalid parameter.

Descr Used to obtain information about the heap. The parameter, par, is of type SMX_PK_PARM.

Permitted values are:

 SMX_PK_AUTO Automatic chunk merge control is enabled.
 SMX_PK_BS_FWD Bin scan forward.

SMX_PK_DEBUG Allocate debug chunks.
SMX_PK_FILL Fill blocks, fences, dc, and tc with appropriate patterns.
SMX_PK_HS_FWD Heap scan forward.
SMX_PK_INIT Heap has been initialized.
SMX_PK_MERGE Merge chunks, when freed.

 SMX_PK_USE_DC Allocation from donor chunk is enabled.

 HeapChunkPeek() returns 0, and reports SMXE_INV_PARM, if par is not one of the above.
Otherwise, it returns the value of the mode (ON or OFF). This service is an SSR. Using it is
highly recommended over directly reading heap modes, which may result in incorrect
readings, due to preemption by other tasks.

Example
if (smx_HeapPeek(SMX_PK_MERGE))
 /* chunks are being merged, when freed */
else
 /* chunks are not being merged, when freed */

 This might be used to monitor how automatic merge control is doing or to decide what action
to take if a heap failure has occurred.

smx_Heap

58

smx_HeapRealloc

void* smx_HeapRealloc (void *cbp, u32 bsz)

Type SSR

Summary Allocates a new size block from an existing heap block. Preserves existing contents and

conforms to the ANSI C/C++ Standard.

Compl smx_HeapFree()

Parameters cbp Pointer to block to reallocate.
 bsz New block size.

Returns nbp New block pointer.
 NULL Insufficient space or error.

Errors Same as smx_HeapMalloc() and smx_HeapFree().

Descr Reallocates an existing block pointed to by cbp to a new block of size, bsz, and returns a new

block pointer, nbp. Can be used to either downsize or upsize the current block @cbp.
smx_HeapRealloc() is considerably more complex than the other two heap allocation
services. However, it uses the same subroutines as smx_HeapMalloc() and smx_HeapFree(),
so the same discussion for them concerning size, errors, etc. applies to it.

 Per the ANSI C/C++ Standard: if cbp == NULL, a block of bsz bytes is allocated from the

heap; if bsz == 0, cbp is freed to the heap. Otherwise, if cbp is not within heap range or not 8-
byte aligned, SMXE_INV_PARM is reported and NULL is returned. If bsz is greater than 0,
but less than 16, it is automatically rounded up to 16 and if bsz is not a multiple of 8, it is
rounded up to the next multiple of 8.

 The current chunk size is determined and the necessary new chunk size is determined. If

smx_heap.mode.debug is OFF the latter will be for an inuse chunk, else it will be for a debug
chunk. This is true, regardless of the type of the current chunk, which is being reallocated.
Hence, smx_HeapRealloc() can be used to convert an inuse chunk to a debug chunk or vice
versa, without losing data in the data block.

 There are two possibilities for reallocation, due to relative chunk sizes:

 current chunk is big enough, then it is split into a new, exact-fit chunk and a new free

chunk2. The new free chunk is merged with the chunk after3, if it is free and cmerge is ON.
The block pointer returned, nbp, is the same as cbp and the block size is equal to or slightly
larger than bsz4. Note that data up to the new size is preserved and that data above that size is
lost.

 current chunk is not big enough, then the current chunk is freed. This may result in its

being merged with a lower free chunk or a upper free chunk, or both, which could result in a

2 There is a limitation on chunk splitting. See discussion in UG Heap Chapter, chunk splitting section.
3 When discussing chunks, “before” and “after” or “lower” and “upper” refer to physical chunk positions.
4 See discussion in smx_HeapMalloc().

smx_Heap

59

chunk that is now big enough for the new block. However, the odds of that occurring are
small, so the new free chunk is put into a bin, and the allocation sub-function is called to get
the best-fit chunk that can be found. Then data is copied from the current block to the new
block, if necessary5, and the new block pointer, nbp, is returned. Also, the unused upper
portion of the chunk is split off into a new free chunk, if it is big enough2.

 If a big-enough chunk cannot be found, the preceding free, merge, and bin load operations are

reversed, realloc() fails, SMXE_INSUFF_HEAP is reported, and NULL is returned. In this
case, the initial block is undisturbed and can continue being used via the cbp pointer. Means
to recover from this failure are the same as described for smx_HeapMalloc().

 In all cases, data is preserved up to the end of the current block or to the end of the new block,

whichever is smaller. To assure this, fill mode is turned OFF, then restored at the end of this
service. Thus heap fill is suspended for all smx_HeapRealloc() operations.

Example

void *bp, *nbp;

bp = smx_HeapMalloc(200);
/* use 200-byte block via bp */
/* need another 200 bytes */
nbp = smx_HeapRealloc(bp, 400);
/* use 400-byte block via nbp */

 This example allocates 200 bytes from the heap, uses it for a while, then increases the block
size to 400 bytes. When a block is being increased in size, the most likely scenario is that a
larger chunk will be allocated elsewhere in the heap, the data from the old block will be
copied to the new block, then the old chunk will be freed. In the above example, nbp is
unlikely to be the same as bp. Hence, care must be exercised to update any secondary pointers
(e.g. read pointer, write pointer, etc.). The contents from byte 0 to byte 199 of the original
block are guaranteed to be unchanged, even though the block may have been moved.

smx_HeapRecover

BOOLEAN smx_HeapRecover (u32 sz, u32 fnum)

Type Function.

Summary Tries to find enough free space for sz block comprised of adjacent free chunks.

Parameters sz Block size needed.
 fnum Number of chunks to scan per run.

Returns TRUE Chunk available to allocate.
 FALSE No chunk found.

5 It is possible that the chunk and data block do not move, even though they are larger, in which case block contents are
not copied.

smx_Heap

60

Errors SMXE_INV_PARM Invalid parameter

Descr This service is intended to recover from a situation where a large chunk cannot be allocated

because the heap has been fragmented into too many smaller free chunks. Recovery is
possible only if enough free space is found in adjacent free chunks. Otherwise, this service
fails and some other means must be used to allocate the needed chunk.

 smx_HeapRecover() scans the lower heap, from sc to dc for small chunks or the upper heap

from the chunk after dc to ec for large chunks. It searches for adjacent free chunks to merge.
If a big-enough chunk can be formed by merging, it removes the free chunks (except dc and
tc) from their bins and merges them. If the merged chunk is not dc nor tc, it puts the merged
chunk into its proper bin, else it updates smx_dcp or smx_tcp, then returns TRUE.

 This service does not merge chunks that it cannot use nor that it does not need. cmerge mode

is ignored. If successful, smx_HeapRecover() should be followed by retrying the allocation
that failed. Returns FALSE if a big-enough chunk is not found, or if sz or fnum are 0.
Searching for small chunks stops at the end of the heap section (at dc or tc), if nothing is
found.

 This service is implemented as a function instead of an SSR, in order to be faster. It is called

once per use and it is designed to allow preemption, every fnum chunks, so higher-priority
tasks or LSRs can preempt and run. It locks the current task during each scan and unlocks the
current task after each scan is complete, unless the current task is already locked. If fnum
expires on a free chunk, the scan continues until a big-enough free space is found, an inuse
chunk is found, or the end of the lower or upper heap is reached. If a big-enough free space is
found, the current task remains locked until the chunks to be merged have been removed
from their bins, merged into the new big-enough chunk, and the new chunk has been put into
a bin, unless it is dc or tc.

 LSRs are turned OFF after the current task is locked and they are turned ON before it is

unlocked, unless LSRs were already locked. This is because heap services can be called form
LSRs.

Example

void* bp;
TCP_PTR StoppedTask;

void ProcessTaskMain()
{

while (1)
{
 if (bp = smx_HeapMalloc(1000))
 {
 /* process data using bp */
 smx_HeapFree(bp);
 }
 else
 break;
}

smx_Heap

61

smx_TaskStartPar(RecoveryTask, 1000);
StoppedTask = self;

}

void RecoveryTaskMain(u32 size)
{
 if (smx_HeapRecover(size, 100))
 smx_TaskStart(StoppedTask);
 else
 /* extend heap or stop all tasks using heap and reinitialize heap */
}

In the above example, if smx_HeapMalloc() fails in ProcessTask, RecoveryTask is started
with the needed size as a parameter, the ProcessTask’s handle is put into StoppedTask, and
ProcessTask stops. RecoveryTask runs at a different priority and may run next, or not. When
it does run, it calls smx_HeapRecover(), which tests 100 nodes, at time, then unlocks
RecoveryTask so that higher priority tasks can preempt and run. If a big-enough free chunk is
formed, RecoveryTask restarts ProcessTask, which tries again. If a big-enough free chunk is
not found, ProcessTask remains stopped while other recovery techniques are tried.

smx_HeapScan

BOOLEAN smx_HeapScan (CCB_PTR cp, u32 fnum, u32 bnum)

Type SSR

Summary Scans forward through the heap for errors and makes fixes when it can. Scans backward

through the heap to fix broken forward links.

Parameters cp Chunk pointer to start scan. Start at smx_hsp, if NULL.
 fnum Number of chunks to scan forward per run.
 bnum Number of chunks to scan backward per run.

Returns TRUE Stop scanning – done or unfixable error encountered.
 FALSE Continue scanning.

Errors SMXE_HEAP_BRKN Heap cannot be fixed.
 SMXE_HEAP_FENCE_BRKN Broken fence found (fixed in release version).
 SMXE_HEAP_FIXED A heap fix was made.
 SMXE_INV_PARM Invalid parameter.

Descr smx_HeapScan() is intended to perform continuous forward heap scans and to fix or report

heap problems that it finds. Normally it is called once per pass of the idle task and forward
scans fnum chunks. It is an SSR, so it cannot be interrupted by another heap service during a
scan.

smx_Heap

62

 cp can be set to start a scan at a specific chunk in the heap, however, it is usually set to
NULL, in which case, the scan starts from smx_hsp (heap scan pointer). smx_hsp is set to
NULL by smx_HeapInit() and when a heap scan is completed. As a result, the scan will begin
at the start of the heap the next time smx_HeapScan() is called. At the end of each run,
smx_hsp points to the next chunk to scan. Repetitively calling smx_HeapScan() with cp ==
NULL, results in forward scanning through the heap, fnum chunks at a time, until the end of
the heap is reached. Then TRUE is returned.

 For each chunk, its forward link (fl) is heap-range checked and also checked that it points

after the current chunk. If not, an attempt is made to fix fl, using the chunk’s size, if it is a free
or debug chunk (inuse chunks have no size field). If this fails, then smx_heap.mode.hs_fwd is
turned OFF, the smx_hfp (heap fix pointer) is set to the end of the heap, and FALSE is
returned. As a consequence, the next time smx_HeapScan() is called, it will scan backward
bnum chunks, per run, fixing broken fl’s, as it goes, until it reaches smx_hsp. Normally only
the one broken fl will be fixed – i.e. the one at smx_hsp. Then smx_heap.mode.hs_fwd is
turned back ON and FALSE is returned. The next time smx_HeapScan() is called, the
forward scan will resume.

 Continuing the forward scan, the back link + flags (blf) of the next chunk is checked. If it is

broken, the back link is fixed and its flags are restored. For a free or debug chunk, sz is
checked and fixed if wrong. For a debug chunk, the lower and upper fences are checked. If a
broken fence is found for the debug version of smx (SMX_BT_DEBUG == 1),
smx_HeapScan() reports SMXE_HEAP_FENCE_BRKN and returns TRUE. This stops the
scan so that the broken fence can be inspected. In the release version, broken fences are fixed,
and the scan continues.

 Whenever a fix is made, SMXE_HEAP_FIXED is reported and the scan continues. FALSE

means to continue and TRUE means to stop. If free() preempts between runs and merges the
chunk pointed to by smx_hsp or smx_hfp with a lower free chunk, it backs up smx_hsp or
smx_hfp to point to the new chunk. Malloc() operations do not affect these pointers.

 If the backward scan finds a broken back link before it reaches smx_hsp, then it is not

possible to fix the broken forward link at smx_hsp. So, instead, the gap is bridged from
smx_hsp to smx_hfp and SMXE_HEAP_BRKN is reported. This is done by setting
smx_hsp->fl = smx_hfp and smx_hfp->flb = smx_hsp + flags. The bridge allows the scan to
finish and may allow the system to limp along, but stronger measures are needed. See UG
Heap Management chapter for more information on heap scanning.

Notes (1) Because it is expected to run frequently, smx_HeapBScan() makes no entries in the event

buffer, other than those due to reported errors or fixes.

smx_Heap

63

Example
void IdleMain(void)
{
 ...
 smx_HeapScan(NULL, 2, 100);

...
}

 This example shows heap scanning in the idle task. smx_HeapScan() is called once per pass
through IdleMain() and will continuously scans 2 chunks, per run, starting over when it
reaches the end of the heap. It will fix what it can and report what it can’t.

 If the heap has 200,000 chunks it will take 100,000 passes to scan. This might be too often; if

slowed down to once per tick, it would take 1000 seconds (about 17 minutes) to complete a
pass. This is probably fast enough. Note that a backward scan will cover 100 chunks at a
time. This is because the backward scan is both faster and more urgent.

 If smx_HeapScan() cannot fix a break, it reports SMX_HEAP_BRKN. This is treated as an

irrecoverable error by the error manager, smx_EM(), which calls smx_EMExitHook(). The
latter is the place to put heap recovery or system reboot code. See UG Heap Management
chapter.

smx_HeapSet

BOOLEAN smx_HeapSet (SMX_ST_PARM par, u32 val)

Type SSR

Summary Sets the specified heap mode to ON or OFF.

Compl smx_HeapPeek()

Parameters par Parameter to set.
 val Value to set.

Returns TRUE Parameter has been set.
 FALSE Parameter not set due to error.

Errors SMXE_INV_PARM Invalid parameter

Descr Used to control heap modes. par is of type SMX_ST_PARM. Available parameters are:

smx_Heap

64

 SMX_ST_AUTO Automatic free chunk merge control.
 SMX_ST_DEBUG Debug mode control.
 SMX_ST_FILL Block fill mode control.
 SMX_ST_MERGE Free chunk merge control.
 SMX_ST_USE_DC Use donor chunk control.

 and the available values are ON and OFF. These modes are discussed in detail in UG

sections. Briefly: SMX_ST_AUTO enables automatic control of chunk merge (cmerge) mode
implemented in the idle task. SMX_ST_DEBUG controls debug mode, which causes
allocations to create debug chunks. SMX_ST_FILL controls fill mode, which enables filling
blocks with patterns, when allocated or freed. It also enables filling dc and tc with patterns.
SMX_ST_MERGE control cmerge mode, which applies to free operations.
SMX_ST_USE_DC controls whether allocations come from the donor chunk, if the selected
SBA bin is empty.

 This service is an SSR. Using it is highly recommended over directly setting internal heap

modes, which may result in incorrect settings due to preemption of the current task. If par is
not recognized, returns FALSE and reports SMXE_INV_PARM. val is not checked: 0 ==
OFF, 1 == ON.

Example

smx_HeapSet(SMX_ST_MERGE, ON);

 This example turns on cmerge mode so that freed blocks will be merged with adjacent free
blocks.

smx_HT

65

smx_HT

smx_HT

void smx_HT_ADD (VOID_PTR handle, const char *name)
void smx_HT_DELETE (VOID_PTR handle)
VOID_PTR smx_HTGetHandle (char *name)
const char * smx_HTGetName (VOID_PTR handle)

Types smx_HT_ADD C macro calls smx_HTAdd().
 smx_HT_DELETE C macro calls smx_HTDelete().
 smx_HTGetHandle reentrant function
 smx_HTGetName reentrant function

Summary Add and delete entries to the handle table (HT). Query HT for handles or names. Used by

smxAware.

Parameters handle Handle to add to the handle table or to find.
 name Name to add to handle table or to find.

Returns none

Errors SMXE_HT_DUP Duplicate entry
 SMXE_HT_FULL Handle table full

Descr smx_HT_ADD() adds an entry for handle to the handle table. smx_HT_DELETE() deletes

the entry. Most smx create calls automatically add an entry to the handle table, and most
delete calls delete the entry. These macros are generally used to give names to objects which
have no control blocks, such as ISRs and LSRs. If you manually add a name to the handle
table, you must manually delete it before deleting the object.

 If SMX_CFG_HT (in xcfg.h), smx_HT_ADD() and smx_HT_DELETE() map onto the

functions smx_HTAdd() and smx_HTDelete(), respectively. Otherwise, they map to nothing.
The macros should be called instead of calling the functions directly. smx_HT_ADD()
reports SMXE_HT_FULL if the handle table is full. If either parameter is 0, it aborts and
does nothing. If SMX_CFG_HT_SCAN_DUP (in xcfg.h), scans to see if name is already in
the handle table and reports SMXE_HT_DUP if it is.

 smx_HTGetHandle() returns the handle that corresponds to the name specified, or NULL, if

no entry is found. smx_HTGetName() returns the name that corresponds to the handle
specified, or the null string, if no entry is found.

smx_HT

66

 Handle table structure:

handle

handle table

0x12345678
name

\0T a s k A

Example

VOID_PTR MyISRH;
TCB_PTR TaskA, h;
char *n;

void appl_init(void)
{
 MyISRH = smx_SysPseudoHandleCreate();
 smx_HT_ADD(MyISRH, "MyISR");
 TaskA = smx_TaskCreate(taska_main, PRI_NORM, 0, SMX_FL_NONE, "TaskA");
}

void print_report(TCB_PTR task, void *isr)
{
 const char *task_name, *isr_name;

 task_name = smx_HTGetName(task);
 isr_name = smx_HTGetName(MyISR);
 /* print report with task and ISR names */
}

void appl_exit(void)
{
 smx_TaskDelete(&TaskA);
 smx_HT_DELETE(MyISRH);
}

 A pseudo handle is just a number that is outside the range of normal handles. See RM
smx_SysPseudoHandleCreate(). In appl_init(), smx_HT_Name() assigns “MyISR” to this
handle and creates an entry in HT. smx_TaskCreate() automatically creates an HT entry for
TaskA.

 The print_report() function is able to get the names from the task and ISR handles passed to it

by using smx_HTGetName(). This enables it to print a report with names, instead of handles.
smxAware uses HT in a similar way.

 In appl_exit(), smx_TaskDelete() automatically deletes the TaskA entry in HT and

smx_HT_DELETE() is called to delete the MyISR entry in HT.

smx_ISR

67

smx_ISR

smx_ISR_ENTER

smx_ISR_ENTER()

Type C and assembly macros

Summary Used to begin an smx ISR.

Compl smx_ISR_EXIT()

Parameters none

Returns none

Descr An smx interrupt service routine must begin with smx_ISR_ENTER(). Operations often

performed are saving volatile registers on the current stack, incrementing smx_srnest, and
switching to SS. Some processors (e.g. Cortex-M3) do all of these automatically and
smx_ISR_ENTER() is a NOP. Others require all of these to be done (e.g. some ARM’s). In
addition, some processors necessitate using assembly macros; others allow C macros.
Implementation of smx_ISR_ENTER() is a complex subject. See UG Interrupt Handling and
TG for your processor and tool suite.

Example 1

void interrupt AnISR(void)
{
 smx_ISR_ENTER();
 /* ISR body here */
 smx_ISR_EXIT();
}

 This example is for a processor, which does hardware interrupt vectoring and which permits
ISRs to be written in C. In this case, smx_ISR_ENTER() and smx_ISR_EXIT() are C
macros. This is the ideal case.

smx_ISR

68

Example 2
 EXTERN AnISRC
 PUBLIC AnISR
AnISR:
 smx_ISR_ENTER
 LDR r0, =AnISRC
 MOV lr, pc
 BX r0 ;call AnISRC()
 smx_ISR_EXIT

void AnISRC(void)
{
 /* ISR body here */
}

 This example is for a processor that does hardware vectoring, but requires assembly ISRs.

ColdFire is an example. This is handled above by creating an assembly shell, AnISR, which
is linked to the interrupt. It calls the ISR body, AnISRC, which written in C. It is easier to
write the ISR body in C, but of course it can be written entirely in assembly, if performance is
an issue. In this case, smx_ISR_ENTER() and smx_ISR_EXIT() are assembly macros.

Example 3

 PUBLIC smx_irq_handler

smx_irq_handler:
 smx_ISR_ENTER
 ; call dispatcher
 ldr r1, =sb_IRQDispatcher
 mov lr, pc
 bx r1
 smx_ISR_EXIT

void AnISRC(void)
{
 /* ISR body here */
}

 This example is for a processor that requires software vectoring. Some ARM processors are

an example. This is handled by creating sb_IRQDispatcher(), which figures out which ISR to
call, then calls it, such as AnISR() shown above. sb_IRQDispatcher() is supplied as part of
smxBSP for the processor, and need not be written by the user. It can be found in the
processor / tool assembly module (e.g. xarm_iar.s).

 Normally all ISRs will be written in C for this kind of processor, since software dispatching is

slow to begin with. In this case, smx_ISR_ENTER() and smx_ISR_EXIT() are assembly
macros.

smx_ISR

69

smx_ISR_EXIT

smx_ISR_EXIT()

Type C and assembly macros

Summary Used to end an ISR. Binds interrupt service routine to smx scheduler.

Compl smx_ISR_ENTER()

Parameters none

Returns none

Descr All interrupt service routines which use smx_ISR_ENTER() must end with

smx_ISR_EXIT(). If smx_srnest is greater than 1, decrements smx_srnest, pops registers
pushed by smx_ISR_ENTER() and does an interrupt return to the interrupted service routine
or scheduler. If smx_srnest is 1, and if the LSR queue (lq) is not empty, branches to the
prescheduler, which calls the LSR scheduler. If lq is empty, clears smx_srnest, switches to
the current task stack, pops the registers pushed by smx_ISR_ENTER(), and does an interrupt
return to the current task. When all LSRs have run, the prescheduler determines whether to
call the task scheduler or to return to the current task.

Examples See smx_ISR_ENTER().

smx_LSR

70

smx_LSR

smx_LSR_INVOKE

void smx_LSR_INVOKE (LSR_PTR lsr, u32 par)
BOOLEAN smx_LSRInvoke (LSR_PTR lsr, u32 par)

Types smx_LSR_INVOKE unrestricted C macro/function for use from ISRs and LSRs
 smx_LSRInvoke SSR for use from tasks

Summary Invokes a link service routine and passes a parameter to it.

Parameters lsr LSR to invoke.
 par Parameter to pass to LSR.

Returns TRUE LSR invoked.
 FALSE Error.

Errors SMXE_LQ_OVFL

Descr Places the LSR address, lsr, followed by the parameter, par, into the LSR queue, lq. If lq is

full, reports SMXE_LQ_OVFL and aborts. If smx_LSRInvoke() is called from a task, lsr will
preempt and run immediately, unless LSRs are off (see below). If smx_LSR_INVOKE() is
called from an ISR or an LSR, lsr will run after all LSRs ahead of it in lq have run.
smx_LSR_INVOKE() converts to smx_LSRInvokeF().

 Assembly versions of smx_LSRInvokeF() do not exist, but can be derived from disassembly

of the C versions, then optimized, if desired.

LSR Main void lsr(u32 par)

 When lsr is dispatched, par is accessible to it as a normal C function parameter.

Notes: (1) The interrupt enable state is saved and disabled at the start, then restored at the end.

 (2) Use only the macro version in ISRs. Do not call the SSR smx_LSRInvoke() from ISRs.

The macro does not return a value because it is for use from ISRs; it only fails if the LSR
queue overflows; and there is nothing the ISR can do to retry since LSRs will not run until
the ISR completes.

 (3) Pointer parameters: For processors with separate address and data registers, such as

ColdFire, see the note about LSR and task main function parameters at the start of the
Calls section.

smx_LSR

71

Example
SCB_PTR send_done;

void send_main(void)
{
 MCB_PTR msg;
 char *mbp;
 u32 size;

 msg = smx_MsgGet(send_pool, &mbp, 0);
 size = smx_MsgPeek(msg, SMX_PK_SIZE);
 fill_msg(&mbp, size);
 smx_LSRInvoke(send_LSR, (u32)msg);
 smx_SemTestStop(send_done, SMX_TMO_INF);
}

void send_next_ISR(void)
{
 smx_LSR_INVOKE(send_LSR, 0);
}

void send_LSR(u32 val)
{
 static char *cp;
 static MCB_PTR msg;

 switch (val)
 {
 case 0:
 if (*cp != '\0')
 {
 output(&cp);
 cp++;
 }
 else
 (
 smx_MsgRel(msg, 0);
 smx_SemSignal(send_done);
 }
 break;
 default:
 msg = (MCB_PTR)val;
 cp = (char *)smx_MsgPeek(msg, SMX_PK_DP);
 output(&cp);
 cp++;
 }
}

smx_LSR

72

 The send task gets a message, fills it, then invokes send_LSR() with the message handle as
the parameter. send_LSR() loads this into the static msg, loads the first character pointer into
the static cp, sends the first character, increments cp, and waits. When the output device needs
the next character, it interrupts to cause send_ISR() to invoke send_LSR() with a 0 parameter.
send_LSR() sends the next character. This continues until send_LSR() reaches the null
character, at which time it releases the message back to its pool and signals the send_done
semaphore to restart the process.

 This example shows the value of being able to invoke an LSR from either a task or an ISR.

In this case, invoking from a task serves to get the output process started and invoking from
an ISR serves to keep it going.

smx_LSRsOff

void smx_LSRsOff (void)

Type Bare C macro

Summary Inhibits LSRs from running.

Compl smx_LSRsOn()

Parameters none

Returns none

Errors none

Descr Used in combination to prevent LSRs from running. This makes the code atomic because an

interrupt cannot cause a preemption. Particularly useful for code directly accessing or altering
smx control blocks or other globals and to prevent undesirable preemptions. Effect is similar
to smx_TaskLock(), except that locking does not prevent LSRs and SSRs from running.

Example

void atask_main(void)
{
 smx_LSRsOff();
 atask->fun = new_function;
 smx_LSRsOn();
}

smx_LSR

73

smx_LSRsOn

BOOLEAN smx_LSRsOn (void)

Type SSR

Summary Re-enables LSRs and runs any that are waiting

Compl smx_LSRsOff()

Parameters none

Returns TRUE

Errors none

Descr Re-enables LSRs.

Example See above.

smx_Msg

74

smx_Msg

smx_MsgBump

BOOLEAN smx_MsgBump (MCB_PTR msg, u8 pri)

Type SSR

Summary May change message priority; requeues the message .

Parameters msg Message to change priority and requeue.
 pri Priority to change to, or SMX_PRI_NOCHG.

Returns TRUE Success.
 FALSE Error.

Errors SMXE_INV_MCB
 SMXE_INV_PRI pri > SMX_MAX_PRI
 SMXE_INV_XCB

Descr If msg is valid and pri <= SMX_MAX_PRI, changes msg priority to pri and requeues it if it is

in a valid exchange queue. If pri is SMX_PRI_NOCHG, does not change msg priority, but
msg will still be requeued if in a valid exchange queue.

Example

void em9(void)
{
 MCB_PTR msg1, msg2;
 u8 pri2;

 msg1 = smx_MsgGet(msg_pool, NULL, 0);
 smx_MsgSend(msg1, xa);
 msg2 = smx_MsgGet(msg_pool, NULL, 0);
 smx_MsgSend(msg2, xa);
 pri2 = (u8)smx_MsgPeek(msg2, SMX_PK_PRI);
 smx_MsgBump(msg2, ++pri2);
 smx_MsgXchgClear(xa);
}

 In this example, two messages are obtained and sent to xa.. Then, smx_MsgPeek() is used to
get the priority of msg2, which is bumped up by one. As a consequence, msg2 will now be
ahead of msg1 in the xa message queue.

smx_Msg

75

smx_MsgGet

MCB_PTR smx_MsgGet (PCB_PTR pool, u8 **bpp, u16 clrsz)

Type SSR

Summary Gets a message by combining a message body from a block pool and an MCB from the MCB

pool.

Compl smx_MsgRel()

Parameters pool Pool to get message body from.
 bpp Pointer to message body (block) pointer. NULL if none.
 clrsz Number of bytes to clear from the start of message body.

Returns msg Handle of message obtained.
 NULL Out of blocks or error.

Errors SMXE_INV_PCB
 SMXE_OUT_OF_MCBS

Descr Gets a block from the specified block pool for use as the message body and an MCB from the

MCB pool, initializes the MCB and links it to the message body. Clears the first clrsz bytes of
the message body up to its size and loads the address of the message body into bpp, unless it
is NULL. bpp is intended to be used to load data into the message body. Returns the message
handle. If pool is invalid or if out of MCBs, aborts, returns NULL, and bpp is not changed.
The current task or current LSR becomes the message owner.

Notes 1. For proper operation there must be at least as many MCBs as there are active messages in

a system at any given time.
 2. Interrupt safe with respect to sb_BlockGet() and sb_BlockRel() operating on the same

block pool.

Example

MCB_PTR build_msg(PCB_PTR pool)
{
 u8* mbp;
 MCB_PTR msg;

 msg = smx_MsgGet(pool, &mbp, 4);
 /* load message using mbp */
 return msg;
}

 This function gets a message from the specified pool, loads data into it, and returns the
message handle.

smx_Msg

76

smx_MsgMake

MCB_PTR smx_MsgMake (PCB_PTR pool, u8 *bp)

Type SSR

Summary Makes a message from a bare block.

Compl smx_MsgUnmake()

Parameters pool Base pool of the block. NULL if none
 bp Block pointer.

Returns msg Handle of message obtained.
 NULL Insufficient resources or error.

Errors SMXE_OUT_OF_MCBS
 SMXE_INV_PARM bp == NULL

Descr Makes a message from a bare block. Gets MCB from MCB pool, initializes it, and returns its

handle. The pool pointer is stored in the MCB (NULL if no pool).

Notes 1. For proper operation there must be at least as many MCBs as there are active messages in

a system at any given time.
 2. Bare blocks can be statically defined, obtained from a base pool, DAR, heap, or ROM,

or any other source.

Example:

PCB in_pool;
XCB_PTR in_xchg;

void inISR(void);
{
 u8 ch;
 u8 *mbp, *dp;

 ch = UART_In();
 switch (ch)
 {
 case: STX
 mbp = sb_BlockGet(&in_pool, 4);
 dp = mbp;
 break;
 case: ETX
 smx_LSR_INVOKE(inLSR, (u32)mbp)
 break;
 default:
 *dp++ = ch;
 }

smx_Msg

77

void inLSR(u32 mbp);
{
 MCB_PTR msg;

msg = smx_MsgMake(&in_pool, (u8*)mbp);
smx_MsgSend(msg, in_xchg);

}

 inISR() runs whenever an UART input interrupt occurs. It gets an incoming character from
the UART. If it is the start of text, STX, a base block is obtained from in_pool. This is an
interrupt-safe function designed for ISR usage. Subsequent characters are loaded into the base
block. When the end of text, ETX, is received, inLSR() is invoked. inLSR() runs after all
ISRs complete. It uses smx_MsgMake() to make the base block at mbp into a message and
then sends the message to in_xchg, where a task waits to process it. Note that this is a no-
copy operation.

smx_MsgPeek

u32 smx_MsgPeek (MCB_PTR msg, SMX_PK_PARM par)

Type SSR

Summary Returns the current value for the parameter specified.

Parameters msg Message to peek at.
 par Argument to return.

Returns value Value of par.
 0 Value, unless error.

Errors SMXE_INV_MCB
 SMXE_INV_PARM
 SMXE_BROKEN_Q
 SMXE_UNKNOWN_SIZE

Descr This service can be used to peek at a message. Valid arguments are:

 SMX_PK_BP Body pointer.
 SMX_PK_ONR Owner.
 SMX_PK_NEXT Next msg in queue. NULL, if none.
 SMX_PK_PRI Priority.
 SMX_PK_POOL Pool.
 SMX_PK_REPLY Reply field. 0 if mcb.rpx = 0xFFFF (= no reply).
 SMX_PK_SIZE Size.
 SMX_PK_XCHG Exchange where msg is waiting. 0, if none, or broken queue.

smx_Msg

78

 If there is no pool, SMX_PK_SIZE will return 0 and report SMXE_UNKNOWN_SIZE. This
is because message size is stored in the pool PCB. Hence, if a message is made from a free
block its size must be stored outside of the message.

Example

u8 *mbp;
MCB_PTR msg;
BOOLEAN pass;
XCB_PTR xchgM, reply;

if (msg = smx_MsgReceive(xchgM, &mbp, TMO))
{
 pass = process_msg(msg);
 reply = (XCB_PTR)smx_MsgPeek(msg, SMX_PK_REPLY);
 *mbp = pass;
 smx_MsgSendPR(msg, reply, 0, NO_REPLY);
}

 This is an example where a message is received from xchgM and processed. pass indicates if
processing was successful. smx_MsgPeek() is used to find the reply exchange, the first byte
of msg is set equal to pass, and msg is send to the reply exchange, where the sender waits for
acknowledgement. Note that it is not necessary to know the origin of the message.

smx_MsgReceive

MCB_PTR smx_MsgReceive (XCB_PTR xchg, u8 **bpp, u32 timeout)

Type SSR

Summary Gets a message from xchg. If xchg is empty, suspends the current task for timeout ticks. Fails

if timeout ticks elapse before a message is received.

Compl smx_MsgSend()

Parameters xchg Exchange to get message from.
 bpp Pointer to message body (block) pointer. NULL if none.
 timeout Timeout in ticks.

Returns msg Message handle.
 NULL Error or timeout.

Errors SMXE_INV_XCB
 SMXE_INV_PRI Message priority is invalid for a pass exchange.
 SMXE_WAIT_NOT_ALLOWED Called from LSR with nonzero timeout.

Descr If xchg is a normal exchange, dequeues the first message waiting at it and returns the

message handle. The task or LSR that made the call becomes the message owner. Also loads

smx_Msg

79

the message body pointer into bpp for access to the message body. If xchg is empty and
timeout is not 0, suspends ct on xchg for timeout period. ct is enqueued in priority order. If a
message is sent to xchg before the timeout elapses, ct resumes with the message handle as the
return value and the message body pointer is loaded into bpp. If the timeout elapses or was 0,
ct resumes with a NULL return value and nothing is loaded into bpp. Timeouts are not
permitted for LSRs.

 If xchg is a pass exchange, changes task priority unless the message priority is not less than

SMX_MAX_PRI. It first changes the normal priority of ct to that of the message. It then
changes the current priority of ct to that of the message, unless ct owns a mutex. If ct owns a
mutex, current priority is changed up, but not down in order to preserve priority promotion by
the mutex. (Moving current priority down to normal priority will occur when ct has released
all mutexes.) Requeues ct in the ready queue if its priority has changed. Note: If ct’s priority
is decreased it may be preempted, unless it is locked. For an LSR, receiving from a pass
exchange is the same as receiving from a normal exchange since LSRs have no priority.

 If xchg is a broadcast exchange, and a message is waiting, ct receives the message handle

and the message body pointer is loaded into bpp. However, msg remains enqueued at xchg
and its sender remains its owner. If no message is waiting at xchg, ct is enqueued at xchg in
FIFO order. Operation for a message received before the timeout elapses or after it elapses, is
similar to a normal exchange, except that msg remains enqueued at xchg and its sender
remains its owner.

Notes (1) Clears smx_lockctr if called from a task and timeout != SMX_TMO_NOWAIT.

Example

XCB_PTR in_xchg;
MCB_PTR msg;

void task_Main(void)
{
 u8 *mbp;
 while (1)
 {

 if (msg = smx_MsgReceive(in_xchg, &mbp, TMO))
 /* process msg using mbp */
 else
 /* do something else */
}

}

 In the above example, task gets msg from the in_xchg and processes it, using mbp. task will

wait up to TMO ticks, then there is no message, it will do something else. This process
continues indefinitely.

smx_Msg

80

smx_MsgReceiveStop

void smx_MsgReceiveStop (XCB_PTR xchg, u8 **bpp, u32 timeout)

Type limited SSR — tasks only

Summary Same as smx_MsgReceive() except that ct is always stopped, then restarted when it is time

for it to run.

Compl smx_MsgSend()

Parameters xchg Exchange to get message from.
 bpp Pointer to message body (block) pointer. NULL if none.
 timeout Timeout in ticks.

Errors SMXE_INV_XCB
 SMXE_INV_PARM bpp points to a location in the current stack.
 SMXE_INV_PRI Message priority is invalid for a pass exchange.
 SMXE_OP_NOT_ALLOWED Called from an LSR.

Descr See smx_MsgReceive() for operational description. ct always stops, then restarts instead of

resuming. The message handle is returned via the parameter in taskMain(par), when the task
restarts.

Notes (1) If called from an LSR, aborts operation and returns to LSR.
 (2) smx_lockctr is cleared if called from a task.

TaskMain void task_main(MCB_PTR msg)

par handle Message handle received.
 NULL Error or timeout.

 Note: For processors with separate address and data registers, such as ColdFire, see Note 8 in

smx Calls notes and restrictions.

Example
XCB_PTR input;
MCB_PTR data;
u8* mbp;

void task_Main(u32 msg)
{
 if (msg != NULL)
 /* process data using mbp */
 else
 /* do something else */
 smx_MsgReceiveStop(input, &mbp, TMO);
}

smx_Msg

81

 The above example is equivalent to the example shown before for smx_MsgReceive(). Note
that there is no while loop — when a message is received or a timeout occurs, smx restarts
task and passes the message handle or NULL as the task_Main() parameter. Also note that
mbp is defined as a static variable — it cannot be defined as an auto variable, because the
stack changes.

smx_MsgRel

BOOLEAN smx_MsgRel (MCB_PTR msg, u16 clrsz)

Type SSR

Summary Releases a message obtained by smx_MsgGet().

Compl smx_MsgGet()

Parameters msg Message to delete.

Returns TRUE Message released.
 FALSE Invalid MCB or msg is not owned by current task.

Errors SMXE_INV_MCB

Descr Releases a message obtained by smx_MsgGet(). Releases the block used for the message

body and the MCB back to their pools. Clears clrsz bytes up to the end of the block. Returns
TRUE if successful. Fails and returns FALSE if msg is not valid. This can include an invalid
handle or invalid pool or mbp fields in the MCB. The operation also fails if the message is
not owned by the current task. The latter is done for safety to prevent a task , which no longer
owns a message from releasing it. Note: an LSR can release a message that it does not own.
This is done to allow message handles to be passed to LSRs as LSR parameters.

 Will first dequeue a message if it is in a queue. This allows a broadcast task to release a

message it sent to a broadcast exchange, since it still owns the message.

Note Interrupt safe with respect to sb_BlockGet() and sb_BlockRel() operating on the same block

pool.

Example

u32 release_msgs(XCB_PTR xchg)
{
 MCB_PTR msg;
 U32 i, sz;

 for (i=0; (msg = smx_MsgReceive(xchg, SMX_TMO_NOWAIT)); i++)
 {
 sz = smx_MsgPeek(msg, SMX_PK_SIZE);
 smx_MsgRel(msg, sz);

smx_Msg

82

 }
 return i;
}

 All messages waiting at xchg are removed, cleared, and released. The number of messages
released is returned to the caller.

smx_MsgRelAll

u32 smx_MsgRelAll (const TCB_PTR task)

Type SSR

Summary Releases all messages owned by task and returns number released.

Parameters task Task whose messages are to be released.

Returns Number of messages released.

Errors SMXE_INV_TCB

Descr Searches entire MCB pool and releases all messages owned by task. Messages are dequeued

before release. Returns number of messages released.

Example

void stop_task(TCB_PTR atask)
{
 smx_MsgRelAll(atask);
 smx_TaskStop(atask);
}

 Unlike smx_TaskDelete(&atask), smx_TaskStop(atask) does not automatically release all
messages owned by atask. In this example, all of atask’s messages are released, then it is
stopped. This may be necessary because atask may own a message at the time that another
task stops it.

smx_Msg

83

smx_MsgSend

BOOLEAN smx_MsgSend (MCB_PTR msg, XCB_PTR xchg)
BOOLEAN smx_MsgSendPR (MCB_PTR msg, XCB_PTR xchg, u8 pri, void *reply)

Type macro and SSR

Summary Sends a message to an exchange. Delivers msg to the top waiting task, if any.

Compl smx_MsgReceive(), smx_MsgReceiveStop()

Parameters msg Message to send.
 xchg Exchange to send message to.
 pri Priority to set msg to unless SMX_PRI_NOCHG.
 reply Where to send reply. NULL if no reply is expected.

Returns TRUE Message sent.
 FALSE Message not sent due to error.

Errors SMXE_INV_MCB invalid or ct or clsr is not the owner.
 SMXE_INV_XCB
 SMXE_INV_PARM reply is not a QCB handle, nor NULL.

Descr smx_MsgSend() is a macro that calls smx_MsgSendPR() with 0 priority and NULL reply.

 If xchg is a normal exchange, msg is enqueued in its wait queue, unless there are one or

more tasks waiting. If so, msg is delivered to the first task. This task becomes the new owner
and it is resumed. If there is no task waiting at the exchange, msg is enqueued in priority
order, unless its priority is 0, in which case it is enqueued in FIFO order. The latter will
probably be the norm, in most systems. Also xchg becomes the message owner. Hence, the
message will not be released if the task is deleted or smx_MsgRelAll(task) is called. Note that
the task making this call must be the message owner, else the call fails. This is done for
safety to prevent the same message from being sent twice, except in the special case of a
broadcast exchange. Note: an LSR can send a message that it does not own. This is done to
allow message handles to be passed to LSRs as LSR parameters.

 If xchg is a pass exchange, operation is the same with the addition that the receiving task

assumes the message’s priority. See the discussion of this above under smx_MsgReceive().

 If xchg is a broadcast exchange, operation is quite different. Tasks are enqueued in FIFO

order and all are resumed at once by MsgSend(). Each task receives the msg handle and the
message body pointer is loaded into the its mbp location. However, the sending task remains
the owner and the message “sticks” to the broadcast exchange, meaning that it will be
“received” by all subsequent receives until replaced or released. The message can be replaced
by sending another message to the xchg or it can be released by the initial sender. In the first
case, the message will be automatically released; any task can cause this to happen. In the
second case, the initial sender is the message owner, so only it can release the message. See
UG broadcasting messages for more information.

smx_Msg

84

 The reply parameter allows the sender to tell the msg recipient where to reply. Usually it is an
exchange handle to send a reply message, but it could be a semaphore, event group, or event
queue. These are all in the QCB pool. The reply handle is stored in the MCB in the form of a
16-bit index, rpx, into the QCB pool, instead of a 32-bit handle in order to save space. If the
reply parameter == NULL, then rpx is set to 0xFFFF, meaning no reply. See UG using the
reply field for more information. If the pri parameter = SMX_PRI_NOCHG, the message
priority is not changed. This allows a task to move a message from one exchange to another
without changing its priority.

Example1

typedef struct
{
 u32 hdr;
 u8 data[N];
} *MB_PTR;

PCB_PTR free_msgs;
XCB_PTR port0;

BOOLEAN send_msg(void)
{
 MCB_PTR msg;
 MB_PTR mbp;

 if((msg = smx_MsgGet(free_msgs, &mbp, SMX_TMO_NOWAIT)) != NULL)
 {
 mbp->hdr = TEST;

 for (i = 0; i < N; i++)
 mbp->data[i] = i;

 smx_MsgSend(msg, port0);
 return TRUE;
 }
 else
 return FALSE;
}

 In this example, a message block is obtained, filled with a test pattern, and sent to another
exchange called port0. Message priority is set to 0 and no reply is expected. Returns TRUE if
a message is sent, FALSE otherwise.

Example 2 See UG client/server example for a reply example.

smx_Msg

85

smx_MsgUnmake

u8 *smx_MsgUnmake (PCB_PTR *pool, MCB_PTR msg)

Type SSR

Summary Unmakes a message made by smx_MsgMake() to a bare block.

Compl smx_MsgMake()

Parameters pool Place to put pool handle if != NULL.
 msg Message to unmake.

Returns >0 Message unmade.
 NULL Invalid MCB or msg is not owned by current task.

Errors SMXE_INV_MCB

Descr Reverses smx_MsgMake() by converting an smx message to a bare block by releasing its

MCB. Fails and returns NULL if msg is not valid. This can include an invalid handle or
invalid pool or mbp fields in the MCB. The operation also fails if the message is not owned
by the current task. The latter prevents a task, which no longer owns a message, from
unmaking it, which is done for safety. Note: an LSR can unmake a message that it does not
own. This is done to allow message handles to be passed to LSRs as LSR parameters.

 Otherwise, returns the address of the data block and loads its pool handle, if any, into the

user-supplied location, unless NULL. (For a base block, the code receiving the block must
know its pool handle.)

Example

u8* bpi;
PCB_PTR msg_pool;
PCB_PTR ppi;

void SendMsg(void)
{
 u8* mbp;
 MCB_PTR msg;

 msg = smx_MsgGet(msg_pool, &mbp, 4);

 /* load NULL terminated message using mbp */

 smx_LSRInvoke(outLSR, (u32)msg);
}

smx_Msg

86

void outLSR(u32 m)
{
 MCB_PTR msg = (MCB_PTR)m;

bpi = smx_MsgUnmake(&ppi, msg);
UART_Out(*bpi++);

}

void outISR(void)
{
 if (*bpi != 0)
 {
 UART_Out(*bpi++);
 }
 else
 {
 sb_BlockRel(ppi, bpi, 0);
 UART_Stop();
 }

 }

 This example is the opposite of that shown for smx_MsgMake(). It is assumed that a task

calls SendMsg(), which gets a message, loads it, then invokes outLSR() with msg as its
parameter. outLSR() unmakes the message, thus loading bpi and ppi for outISR(). outLSR()
then outputs the first character to start UART output. The UART interrupts each time it needs
another character and outISR() provides the character until all characters have been sent.
outISR() releases the block back to msg_pool, which is pointed to by ppi, in this case. In
other cases, it could point to a base block pool or be NULL. If NULL, the block is not
released to any pool. Regardless of how msg was formed, its message block is released to
where it belongs.

 Notes:

 1. Using outLSR() is not essential — its functions could just as well be
performed by a task, if preferred.

 2. The above example implements no-copy message output.

smx_MsgXchg

87

smx_MsgXchg

smx_MsgXchgClear

BOOLEAN smx_MsgXchgClear (XCB_PTR xchg)

Type SSR

Summary Clears an exchange.

Parameters xchg Exchange to clear.

Returns TRUE Exchange cleared or already clear.
 FALSE Error.

Errors SMXE_INV_XCB
 SMXE_BROKEN_Q

Descr At the time it is cleared, a message exchange can have a task queue, a message queue, or no

queue. Clears an exchange by resuming all waiting tasks with NULL return values, for a task
queue, or releasing all waiting messages, for a message queue. Appropriate xchg fields are
cleared. Returns TRUE, if successful or FALSE if invalid xchg. Aborts and reports error if
task or message queue is broken.

Example

TCB_PTR serverA, serverB;
BOOLEAN modeA;

BOOLEAN toggle_server(void)
{
 BOOLEAN pass = FALSE;

 smx_TaskLock();
 if (modeA)
 {
 pass = smx_TaskStop(serverA, INF);
 pass $= smx_MsgXchgClear(port_in);
 pass &= smx_TaskStartPar(serverB, port_in);
 }
 else
 {
 pass = smx_TaskStop(serverB, INF);
 pass $= smx_MsgXchgClear(port_in);
 pass &= smx_TaskStartPar(serverA, port_in);
 }

smx_MsgXchg

88

 modeA ^= TRUE;
 smx_TaskUnlock();
 return pass;
}

 This function toggles the task serving port_in. It does so by stopping the current server,
clearing the port_in exchange, then starting the alternate server. This is done with ct locked so
that the complete operation is atomic. Since all messages have been released, client tasks will
presumably time out and try again.

smx_MsgXchgCreate

XCB_PTR smx_MsgXchgCreate (SMX_XCHG_MODE mode, const char *name)

Type SSR

Summary Creates a message exchange, which operates in the selected mode.

Compl smx_MsgXchgDelete()

Parameters mode Operating mode.
 name Name to give exchange, NULL if none.

Returns xchg Handle of exchange created.
 NULL Insufficient resources or error.

Errors SMXE_OUT_OF_QCBS
 SMXE_WRONG_MODE

Descr Creates an exchange of the mode specified:

 mode exchange
 SMX_XCHG_NORM Normal
 SMX_XCHG_PASS Pass
 SMX_XCHG_BCST Broadcast

 Allocates an exchange control block from the QCB pool and initializes it. If allocation fails

because of an invalid mode or no block is available, returns NULL. Otherwise returns the
exchange handle. Creates QCB pool on first use.

smx_MsgXchg

89

Example
XCB_PTR port_in, port_out;

void appl_init(void)
{
 port_out = smx_MsgXchgCreate(SMX_XCHG_NORM, "port_out");
 port_in = smx_MsgXchgCreate(SMX_XCHG_PASS, "port_in");
}

 This example shows the creation of a normal and a pass exchange.

smx_MsgXchgDelete

BOOLEAN smx_MsgXchgDelete (XCB_PTR *xchg)

Type SSR

Summary Deletes an exchange.

Compl smx_MsgXchgCreate()

Parameters xchg Exchange to delete.

Returns TRUE Exchange deleted or already NULL.
 FALSE Error.

Errors SMXE_INV_XCB
 SMXE_BROKEN_Q

Descr Deletes an exchange created by smx_MsgXchgCreate(). Resumes all waiting tasks with

FALSE return values or releases all waiting messages. Clears and releases the XCB, removes
its name from HT, and clears its handle. Aborts and reports error if task or message queue is
broken.

Example

BOOLEAN remove_server(TCB_PTR serverA, XCB_PTR port_in)
{
 BOOLEAN pass = FALSE;

 if (smx_TaskStop(serverA, INF))
 if (smx_MsgXchgDelete(port_in))
 pass = TRUE;
 return pass;
}

 In this example, serverA is first stopped; if successful, port_in is deleted. Returns TRUE if

both succeed. Normally only one server task serves a server exchange. It makes sense if it has

smx_MsgXchg

90

been stopped to release all messages waiting at its exchange, since they will not be serviced.
Deleting the exchange insures that more messages cannot be sent.

smx_MsgXchgPeek

u32 smx_MsgXchgPeek (XCB_PTR xchg, SMX_PK_PARM par)

Type SSR

Summary Returns the current value for the parameter specified.

Parameters xchg Message exchange to peek at.
 par Argument to return.

Returns value Value of par.
 0 Value, unless error.

Errors SMXE_INV_XCB Invalid message exchange handle.
 SMXE_INV_PARM Invalid argument.

Notes This service can be used to peek at an exchange. Valid arguments are:

 SMX_PK_TASK First task waiting on this exchange. NULL, if none.
 SMX_PK_MSG First message waiting on this exchange. NULL, if none.
 SMX_PK_MODE Mode of the exchange (BCST, PASS or NORM).
 SMX_PK_NAME Name of the exchange.

Example

 u32 count_msgs(XCB_PTR xchg)
 {
 CB_PTR cb;
 u32 ctr = 0;

 smx_TaskLock();
 if ((cb = (CB_PTR)smx_MsgXchgPeek(xchg, SMX_PK_MSG)) != NULL)
 for (; cb->cbtype != SMX_CB_MCB; cb = smx_MsgPeek(cb, SMX_PK_NEXT))

 ctr++;
 smx_TaskUnlock();
 return ctr;
 }

This function returns the number of messages waiting at xchg. Note the combined use of
smx_MsgXchgPeek() and smx_MsgPeek(). It is necessary to lock the current task in order to
achieve accurate results. Hence, this is not an optimum way to implement this capability. It
would be better to add an SMX_PK_NUM_MSG argument to smx_MsgXchgPeek().

smx_Mutex

91

smx_Mutex

smx_MutexClear

BOOLEAN smx_MutexClear (MUCB_PTR mtx)

Type SSR

Summary Frees mtx regardless of owner and nesting count, and clears the task queue by resuming all

tasks in it, with a FALSE returns.

Compl smx_MutexGet()

Parameters mtx Mutex to clear.

Returns TRUE Mutex cleared.
 FALSE Error.

Errors SMXE_BROKEN_Q
 SMXE_INV_MUCB

Descr If the mutex is owned, removes the mutex from the owner’s mutex-owned list, and adjusts the

priority of the owner to that of the highest priority mutex it still owns or to normpri, if none. It
the owner priority has changed and it is in a queue, requeues it. Resumes all tasks waiting at
mtx, with FALSE returns. Reports broken queue, if encountered and stops. Puts MUCB in its
cleared state.

 Normally, smx_MutexRel() is what a task should call to release a mutex it owns.

smx_MutexClear() is called by smx_MutexDelete(), and it can also be used for recovery.

Example

MUCB_PTR mtx;

void task_main(void)
{
 mtx = smx_MutexCreate(1, PRI_HI, "mtx");
 //...
 smx_MutexClear(mtx);
}

smx_Mutex

92

smx_MutexCreate

MUCB_PTR smx_MutexCreate (u8 pi, u8 ceiling, const char *name)

Types SSR

Summary Creates a mutex.

Compl smx_MutexDelete()

Parameters pi Enable priority inheritance if != 0.
 ceiling Ceiling priority of mutex if != 0.
 name Name to give mutex or NULL for none.

Returns handle Mutex created.
 NULL Insufficient resources or error.

Errors SMXE_OUT_OF_MUCBS

Descr If pi != 0, priority inheritance is enabled. If ceiling != 0, it specifies the ceiling priority of the

mutex. These are used to avoid unbounded priority inversion of tasks. See UG Mutexes for
discussion of this topic.

Example

MUCB_PTR mtx;

void task_main(void)
{
 mtx = smx_MutexCreate(1, PRI_HI, "mtx");
 //...
 smx_MutexGet(mtx, TMO);
 /* critical section */
 smx_MutexRel(mtx);
}

smx_MutexDelete

BOOLEAN smx_MutexDelete (MUCB_PTR * mtx)

Type SSR

Summary Deletes a mutex created by smx_MutexCreate().

Compl smx_MutexCreate()

Parameters mtx Mutex to delete.

smx_Mutex

93

Returns TRUE Mutex deleted.
 FALSE Error.

Errors SMXE_INV_MUCB

Descr Clears the mtx task queue by resuming all tasks in it with FALSE, removes the mutex from

the owner’s mutex-owned list, and adjusts the priority of the owner to that of the highest
priority mutex it still owns or to normpri, if none. Then frees and clears the MUCB and clears
its handle in mtx.

Example

MUCB_PTR mtx;

void task_main(void)
{
 mtx = smx_MutexCreate(1, PRI_HI, "mtx");
 //...
 smx_MutexDelete(&mtx);
}

smx_MutexFree

BOOLEAN smx_MutexFree (MUCB_PTR mtx)

Type SSR

Summary Makes the next waiting task the new owner or frees the mutex if none waiting, regardless of

owner and nesting count.

Compl smx_MutexGet()

Parameters mtx Mutex to free.

Returns TRUE Mutex freed.
 FALSE Error.

Errors SMXE_BROKEN_Q
 SMXE_INV_MUCB

Descr Makes the next waiting task the new owner or frees the mutex if no task waiting. Resumes

the previous owner with FALSE and adjusts its priority to the highest owned mutex priority
or to normal priority, if none. The previous owner is requeued, if its priority changes. Differs
from smx_MutexRel() in that smx_ct does not need to be the owner. Differs from
smx_MutexClear() in that it does not clear the task wait queue of mtx.

smx_Mutex

94

 Normally, smx_MutexRel() is what a task should call to release a mutex it owns.
smx_MutexFree() is called by smx_TaskDelete() if the task owns a mutex. It also should be
called before stopping a task that owns a mutex.

Example
void stop_task(TCB_PTR task)
{
 while (task->mtxp != NULL)
 smx_MutexFree(task->mtxp);
 smx_TaskStop(task, INF);
}

 This function frees all mutexes owned by task before stopping it. It can be called from any
task, since the task does not need to own the mutexes.

smx_MutexGet

BOOLEAN smx_MutexGet (MUCB_PTR mtx, u32 timeout)

Types SSR

Summary Gets mutex, if free and returns TRUE. Otherwise, ct is suspended and put into mutex’s wait

queue.

Compl smx_MutexRel(), smx_MutexFree(), smx_MutexClear()

Parameters mtx Mutex to get.
 timeout Timeout in ticks.

Returns TRUE Got mutex.
 FALSE Error or timeout.

Errors SMXE_INV_MUCB
 SMXE_LSR_NOT_OWN_MTX Called from an LSR.

Descr When the current task gets a mutex, it becomes the owner of the mutex. The onr field of the

MUCB is set to the task’s handle and the mutex is added to the task’s mutex-owned list.
TRUE is returned. If the mutex has a ceiling priority that is higher than the task’s current
priority, the task’s priority is promoted to it. If the task already owns the mutex, the mutex’s
nesting counter is incremented and TRUE is returned.

 If another task already owns the mutex and timeout is non-zero, ct is suspended and priority

enqueued in mtx’s wait queue. If priority inheritance is enabled in mtx, the priority of the
owner is promoted to ct->pri, if it is greater. This enables the owner to finish its operation
without preemption by mid-priority tasks (to prevent unbounded priority inversion) and to
release the mutex to the waiting task sooner.

smx_Mutex

95

 This function cannot be called from an LSR, since LSRs cannot own mutexes. Attempting to
do so results in an error and the call aborts without doing anything.

Notes (1) Clears smx_lockctr if called from a task and timeout != SMX_TMO_NOWAIT.

Example

MUCB_PTR mtx;

void taskMain(void)
{

 smx_MutexGet(mtx, tmo);
 /* critical section */
 smx_MutexRel(mtx);
}

 This example shows protecting a critical section of code with a mutex.

smx_MutexGetStop

void smx_MutexGetStop (MUCB_PTR mtx, u32 timeout)

Type limited SSR — task only

Summary Same as smx_MutexGet() except that ct is always stopped, then restarted when it is time for it

to run.

Compl smx_MutexRel(), smx_MutexFree(), smx_MutexClear()

Parameters mtx Mutex to get.
 timeout Timeout in ticks.

Errors SMXE_INV_MUCB
 SMXE_OP_NOT_ALLOWED Called from an LSR.

Descr See smx_MutexGet() for operational description. ct always stops, then restarts instead of

resuming. Pass or fail is returned via the parameter in taskMain(par), when the former ct
restarts.

Notes (1) If called from an LSR, aborts operation and returns to LSR.
 (2) smx_lockctr is cleared if called from a task.

TaskMain void task_main(BOOLEAN par)

par TRUE Got mutex.
 FALSE Error or timeout.

smx_Mutex

96

Example
MUCB_PTR mtx;
BOOLEAN pass = 1;

pass = smx_MutexGet(mtx, tmo);
smx_TaskStartPar(taskA, 0);

void taskA_Main(BOOLEAN pass)
{
 if (pass)

 {
 /* do critical section */
 smx_MutexRel(mtx);
 }
 else
 /* startup or deal with timeout or error */
 smx_MutexGetStop(mtx, TMO);
}

 The above example shows protecting a critical section with a mutex for a one-shot task.
When first started, since par = 0, taskA attempts to get mtx and then stops. When it gets mtx,
it restarts, and since par == 1, it does the critical section. It then releases mtx, so another task
can run and attempts to re-acquire it and stops. taskA waits up to TMO ticks. If it fails to get
mtx, since par == 0, it does not enter the critical section, but rather recovers from the timeout
or error and tries again.

smx_MutexRel

BOOLEAN smx_MutexRel (MUCB_PTR mtx)

Type SSR

Summary Releases mtx if owned by ct and nesting count == 1, else if nest count > 1 just decrements it.

Compl smx_MutexGet()

Parameters mtx Mutex to release.

Returns TRUE Mutex released.
 FALSE Error.

Errors SMXE_INV_MUCB
 SMXE_LSR_NOT_OWN_MTX
 SMXE_MTX_ALRDY_FREE
 SMXE_MTX_NON_ONR_REL
 SMXE_BROKEN_Q

smx_Mutex

97

Descr If mtx is already free or ct is not its owner, operation aborts and an error is generated.
Similarly if mtx is invalid or this function was called from an LSR. Otherwise, decrements
the mtx nesting count and if not zero, returns with TRUE. If nesting count is zero, removes
mtx from ct’s mutex-owned list, and, if ct does not own any other mutexes, its priority is
restored to its normal priority. Otherwise smx_ct->pri is set to the highest ceiling priority or
the highest waiting task priority for other mutexes owned by ct. If ct’s priority changes, it is
requeued in rq and test for preemption is enabled.

 If one or more tasks are waiting in the mtx wait list, the top task is made the new mtx owner,

mtx is put into its mutex-owned list, and its priority is promoted to mtx ceiling, if greater.

 This is the function that normally should be called to release a mutex obtained with

smx_MutexGet(). Two similar functions are provided for special purposes:
smx_MutexClear() and smx_MutexFree(). See their descriptions.

Example See the smx_MutexGet() example.

smx_Pipe

98

smx_Pipe

smx_PipeClear

BOOLEAN smx_PipeClear (PICB_PTR pipe)

Type SSR

Summary Clears pipe and resumes all tasks waiting to put packets.

Parameters pipe Pipe handle.

Returns TRUE Pipe Cleared.
 FALSE Error.

Errors SMXE_INV_PICB

Descr Sets pipe read and write pointers to the start of the pipe buffer, thus clearing the pipe. Then

resumes all tasks waiting on the pipe with FALSE. Intended for use from tasks or LSRs. Is
protected from interrupts.

Example

BOOLEAN restart_pipe_operation(PICB_PTR pipe)
{
 return(smx_PipeClear(pipe));
}

smx_PipeCreate

PICB_PTR smx_PipeCreate (void *ppb, u8 width, u16 length, const char *name)

Type SSR

Summary Creates a pipe.

Compl smx_PipeDelete()

Parameters ppb Pointer to pipe buffer, which points to a block allocated by the user for the pipe

buffer. For best performance, this buffer should be aligned on a 32-bit or cache-line
boundary and located in SRAM.

 width Width of pipe in bytes. Can be 1 to 255. Pipe cell size = pipe width.

smx_Pipe

99

 length Length of the pipe in cells; can be up to 64K – 1. Pipe length is one greater than the
maximum number of packets that can be stored in the pipe. This is because one cell
is sacrificed to distinguish a full pipe from an empty pipe.

 name Name to give pipe; NULL, if none.

Returns handle Pipe created.
 NULL Pipe not created due to error.

Errors SMXE_INV_PARM ppb == NULL, width == 0, or length == 0
 SMXE_OUT_OF_PICBS

Descr Gets a PICB and initializes it. Accepts the block pointed to by ppb as the pipe buffer. Loads

pipe name, if any, into PICB. Returns address of PICB as the pipe handle. The cell size
determines the maximum packet size that the pipe will accept.

Warning The pipe buffer must be >= width * length bytes. If it is larger there is no problem, but if it is

smaller, then pipe data will overwrite whatever is after the pipe. To be safe, the user should
allocate space with (width * length).

Example

#define PW 8
#define PL 10
u8 pbuf[PW*PL];
PICB_PTR pkt_pipe;

void pipe_init(void)
{
 pkt_pipe = smx_PipeCreate(pbuf, PW, PL, "pkt_pipe");
}

 This example creates an 8-byte-wide packet pipe. An array is defined for the pipe buffer and

its address is passed as a parameter to pipe create. Buffers can be statically defined, as shown,
or obtained from a block pool, the heap, or a DAR. It is recommended to use constants, for
width and length. If, for example, PL were changed to 20, the pipe buffer would
automatically be re-sized so that data following pkt_pipe would not be overwritten.

smx_PipeDelete

void *smx_PipeDelete (PICB_PTR *php)

Type SSR

Summary Deletes a pipe.

Compl smx_PipeCreate()

Parameters php Pipe handle pointer.

smx_Pipe

100

Returns pbuf Pipe buffer address.
 0 Pipe not deleted due to error.

Errors SMXE_INV_PICB

Descr Deletes a pipe by resuming all waiting tasks with FALSE return values, releasing its PICB

back to the PICB pool, and clearing its handle so it cannot be used again. The user must
manage the pipe buffer (e.g. re-use it or release it back to its block pool or the heap).

Example

#define PW 8
#define PL 10

PICB_PTR open_pipe(const char *name)
{
 void *ppb;

 ppb = smx_HeapMalloc(PW*PL);
 return(smx_PipeCreate(ppb, PW, PL, name));
}

BOOLEAN close_pipe(PICB_PTR pipe)
{
 void *ppb;

 ppb = smx_PipeDelete(&pipe);
 return(smx_HeapFree(ppb));
}

 The open_pipe function shows allocating a pipe buffer from the heap using predefined width
and length constants, then creating the pipe and returning its handle. The close_pipe function
shows the inverse action of deleting the pipe, then using the pipe buffer address to free it back
to the heap. This illustrates the convenience of return of the pipe buffer address from pipe
delete. However, as discussed in the smx User’s guide, it is not a good idea to allocate pipe
buffers from the heap for pipes that are routinely created and deleted. Note, in the second
function, that if pipe delete failed, ppb would be 0, heap free would fail, and close pipe would
return FALSE.

smx_Pipe

101

smx_PipeGet

BOOLEAN smx_PipeGet (PICB_PTR pipe, void *pdst)
void smx_PipeGetPkt (PICB_PTR pipe, u8 *pdst)

Type Bare functions

Summary Gets the next packet from pipe and loads it into the buffer at pdst. First is for LSR and task

usage. Second is for ISR usage.

Compl smx_PipePut functions and SSRs.

Parameters pipe Pipe handle. Operation is aborted if not valid.
 pdst Destination pointer to store packet. Operation is aborted if zero.

Returns TRUE Packet transferred.
 FALSE Packet not transferred.

Errors SMXE_INV_PARM
 SMXE_INV_PICB

Descr If pipe is not empty, smx_PipeGet() copies the oldest packet from it to the buffer at pdst,

advances the pipe’s read pointer to the next cell, and returns TRUE; otherwise returns
FALSE. Also returns FALSE if pipe is invalid or if pdst is NULL. Does not wait.
smx_PipeGet() may be used in time-critical sections of user code such as in LSRs and tasks,
which cannot wait. If this function is used in tasks, it must be protected from preemption,
since it is not an SSR.

 smx_PipeGetPkt() is for use in ISRs. It does no error checking and will not return reliable

data if the pipe is empty or an error is encountered. Its use will not interfere with an
interrupted complementary function operating on the same pipe, providing it is not operating
on the same packet.

Notes 1. Use only with complementary functions at the other end of the pipe.
 2. Will not resume a task waiting on pipe to put a packet.
 3. Two ISRs should not get from the same pipe.
 4. A packet pipe (i.e. width > 1) is considered empty unless a full packet is present.

Example

PICB_PTR pkt_pipe; /* width = 8 */

void out_pkt(u8 *out_port)
{
 u8 mb[8];
 u32 i;

 while (smx_PipeGet(pkt_pipe, mb))
 {
 for (i = 0; i < 8; i++)
 {

smx_Pipe

102

 *out_port = mb[i];
 }
 }
}

 In this example, an 8-byte packet is being output from the 8-byte-wide pkt_pipe, byte by byte.
These packets are probably formatted messages, having a common structure. Hence, it makes
sense for the task loading the pipe to deal with packets, not with a byte stream. Note that
smx_PipeGet() does not wait if the pipe is empty; instead, it returns FALSE, the while
statement fails, and out_pkt() exits. It must be called again to output another packet.

smx_PipeGet8

BOOLEAN smx_PipeGet8 (PICB_PTR pipe, u8 *bp)

Type Bare function

Summary Gets the next byte from pipe and loads it into the byte pointed to by bp. For ISR and LSR

usage. Does not wake up a waiting task.

Compl smx_PipePut functions and SSRs.

Parameters pipe Pipe handle. Assumed to be valid.

Returns TRUE Byte transferred.
 FALSE Byte not transferred.

Errors None

Descr If pipe is not empty, returns the oldest byte in it, advances the pipe’s read pointer to the next

cell, and returns TRUE; otherwise returns FALSE. This is the fast version of smx_PipeGet()
for byte gets; it may be used in time-critical sections of user code such as in ISRs and LSRs.
If this function is used in a task, it must be protected from preemption, since it is not an SSR.
This function, in an ISR, will not interfere with an interrupted complementary function in a
task or LSR that is operating on the same pipe.

Notes 1. Use only with complementary functions at the other end of the pipe.
 2. Will not resume a task waiting on pipe to put a byte. Use smx_PipeResume(pipe) for this

purpose.
 3. Two ISRs should not get from the same pipe.

Example

PICB_PTR out_pipe;

void out_chars(u8 *out_port)
{
 u8 ch;

smx_Pipe

103

 while(smx_PipeGet8(out_pipe, &ch))
 {
 out_port = ch;
 }
}

 In this example, all of the characters in out_pipe are sent to out_port each time the out_chars
function is called. The function stops running when the pipe has been emptied. This function
might be called from an LSR that was invoked from a timer or from an ISR invoked by an
interrupt.

smx_PipeGet8M

u32 smx_PipeGet8M (PICB_PTR pipe, u8 *bp, u32 lim)

Type Bare function

Summary Gets the next bytes from pipe up to lim or until pipe is empty and loads them into the buffer

at bp. For ISR and LSR usage. Does not wake up a waiting task.

Compl smx_PipePut functions and SSRs.

Parameters pipe Pipe handle. Assumed to be valid.
 bp Buffer pointer to load bytes.
 lim Limit on bytes transferred.

Returns Number of bytes transferred.

Errors None

Descr Transfers the oldest bytes in pipe to the buffer at bp, up to the limit specified or until pipe is

empty, advances the pipe’s read pointer and bp for each byte transferred, and returns the
number of bytes actually transferred. This is the fast version of smx_PipeGet8() for multi-
byte transfers, as may occur with UARTs and other high-speed serial controllers that have
internal buffers. It may be used in time-critical sections of user code such as in ISRs and
LSRs. If this function is used in tasks, it must be protected from preemption, since it is not an
SSR. This function, in an ISR, will not interfere with an interrupted complementary function
in a task or LSR that is operating on the same pipe.

Notes 1. Use only with complementary functions at the other end of the pipe.
 2. Will not resume a task waiting on pipe to put a byte. Use smx_PipeResume(pipe) for this

purpose.
 3. Two ISRs should not get from the same pipe.

smx_Pipe

104

Example
PICB_PTR out_pipe;
u8 bp[10];
u32 numx;

numx = smx_PipeGet8M(out_pipe, bp, 10);

 In this example, up to 10 bytes in out_pipe are transferred to bp[]. The limit prevents

overflowing bp[]. numx is the actual number of bytes transferred; it can be used to determine
how many bytes to process downstream. This function might be called from an LSR that was
invoked from a timer or from an ISR invoked by an interrupt (e.g. due to an empty UART
output buffer).

smx_PipeGetWait

BOOLEAN smx_PipeGetWait (PICB_PTR pipe, void *pdst, u32 tmo)

Type SSR

Summary Gets the next packet from pipe and loads it into the buffer at pdst. Waits if pipe is empty. For

task and LSR usage.

Compl smx_PipePut functions and SSRs.

Parameters pipe Pipe handle. Operation is aborted if not valid.
 pdst Destination pointer to store packet. Operation is aborted if zero.
 tmo Timeout in ticks. If called from an LSR, tmo must be 0.

Returns TRUE Packet transferred.
 FALSE Packet not transferred.

Errors SMXE_INV_PARM
 SMXE_INV_PICB
 SMXE_WAIT_NOT_ALLOWED

Descr If pipe is not empty, transfers the oldest packet in pipe to the buffer at pdst and advances the

pipe’s read pointer to the next cell in the pipe. If another task was waiting to put a packet,
puts its packet into pipe, resumes the waiting task, and sets its return value = TRUE. If cannot
get a packet and tmo > 0, the current task is suspended, until either it gets a packet or a
timeout occurs. Can be used from a task or an LSR. If called from an LSR, tmo must be 0.

Notes 1. Use only with complementary functions at the other end of the pipe.
 2. May be mixed with smx_PipeGetWaitStop()s at the same end of the pipe.
 3. Multiple waiting tasks are enqueued in priority order.
 4. A packet pipe (i.e. width > 1) is considered empty unless a full packet is present.
 5. Clears smx_lockctr if called from a task and timeout != SMX_TMO_NOWAIT.

smx_Pipe

105

Example
PICB_PTR in_pipe, ctrl_pipe, data_pipe; /* all widths = 8 */
TCB_PTR msg_switch_task;
struct ctrl_msg
{
 u8 type;
 u8 dest;
 u8 rdg[6];
};

void msg_switch_main(void)
{
 struct ctrl_msg m;
 BOOLEAN done;

 while (smx_PipeGetWait(in_pipe, &m, 100))
 {
 if(m.dest == 1)
 {
 done = smx_PipePutWait(ctrl_pipe, &m, 100);
 }
 else
 {
 done = smx_PipePutWait(data_pipe, &m, 100);
 }
 if(!done) break;
 }
 report_problem();
}

 In this example, the msg_switch task waits on in_pipe for a message. If a message is
received, it tests the dest field to determine where to send the message. If the dest field is 1,
the message is sent to the ctrl_pipe, otherwise it is sent to data_pipe. If either output pipe is
full, the task will wait. In all three cases a maximum wait of 100 ticks is specified, after which
a problem is reported and the task stops. Once the problem is resolved, the task can be
restarted.

smx_Pipe

106

smx_PipeGetWaitStop

void smx_PipeGetWaitStop (PICB_PTR pipe, void *pdst, u32 tmo)

Type limited SSR — task only

Summary Same as smx_PipeGetWait() except that ct is always stopped, then restarted when it is time

for it to run.

Compl smx_PipePut functions and SSRs.

Parameters pipe Pipe handle.
 psrc Destination pointer to store packet.
 tmo Timeout in ticks.

Errors SMXE_OP_NOT_ALLOWED Called from an LSR.
 SMXE_INV_PARM pdst is NULL
 SMXE_INV_PICB Invalid pipe handle

Descr See smx_PipeGetWait() for operational description. ct always stops, then restarts instead of

resuming. Pass or fail is returned via the parameter in taskMain(par), when task restarts.

Notes 1. Use only with complementary functions at the other end of the pipe.
 2. May be mixed with smx_GetWaits()s at the same end of the pipe.
 3. Multiple waiting tasks are enqueued in priority order.
 4. A packet pipe (i.e. width > 1) is considered empty unless a full packet is present.
 5. If called from an LSR, aborts operation and returns to LSR.
 6. smx_lockctr is cleared if called from a task.

TaskMain void task_main(BOOLEAN par)

par TRUE Packet transferred
 FALSE Packet not transferred

Example

PICB_PTR key_pipe; /* byte wide pipe */
TCB_PTR key_task;
u8 key_buf[40];
u8 input_key(u8 key_port);
void process_key(u8 *bp);
void report_problem(void);
void key_task_main(BOOLEAN got_key);

void key_task_init(void) /* initial task main function when created */
{
 key_task->fun = (FUN_PTR)key_task_main;
 smx_PipeGetWaitStop(key_pipe, (void *)key_buf, 100); /* wait for first key */
}

smx_Pipe

107

void key_task_main(BOOLEAN got_key)
{
 if(got_key)
 process_key(key_buf);
 else
 report_problem();
 smx_PipeGetWaitStop(key_pipe, (void *)key_buf, 100); /* wait for next key */
}

void key_LSR(u32 par)
{
 smx_PipeResume(key_pipe);
}

void key_ISR(void) /* invoked by interrupt */
{
 u8 ch;

 ch = input_key(key_port);
 smx_PipePut8(key_pipe, ch);
 smx_LSR_INVOKE(key_LSR, 0) /* key received, start task */
}

 In this example, key_task is a one-shot task. Note that key_task_init() performs the initial

pipe get wait stop operation. Prior to this, the task entry point is changed to key_task_main(),
which expects a got_key TRUE/FALSE parameter from the get operation. When the get
operation in key_task_init() gets a key, it starts key_task at key_task_main(), where the key is
processed and another get wait stop operation is started. The get operations wait up to100
ticks to get keys. More detail is shown below the task code: key_ISR() is the ISR that gets a
key from the key port, puts it in the key_pipe and invokes key_LSR. key_LSR performs a
pipe resume to awaken the waiting key task on key_pipe.

 Note that it is possible that several key interrupts could occur before key_task is able to run –

especially if it is a low priority task. Hence there could be several keys waiting in key_pipe.
This causes no harm because the get operation will immediately restart key_task for each key
that it finds in key_pipe. key_task does not actually stop, it just keeps restarting, which takes
no more time than resuming. This code could be more efficiently written for an incoming data
stream, but for keystrokes it should be adequate.

smx_Pipe

108

smx_PipePut

BOOLEAN smx_PipePut (PICB_PTR pipe, void *psrc)
void smx_PipePutPkt (PICB_PTR pipe, u8 *psrc)

Type Bare functions

Summary Puts the packet from the buffer at psrc into pipe. First is for LSR and task usage. Second is for

ISR usage.

Compl smx_PipeGet functions and SSRs.

Parameters pipe Pipe handle. Operation is aborted if not valid.
 psrc Pointer to source of packet. Operation is aborted if zero.

Returns TRUE Packet transferred.
 FALSE Packet not transferred.

Errors SMXE_INV_PARM
 SMXE_INV_PICB

Descr If the pipe is not full, smx_PipePut() copies the packet in the buffer at psrc into it, advances

the pipe’s write pointer to the next cell, and returns TRUE; otherwise returns FALSE. Also
returns FALSE if pipe is invalid or if psrc is NULL. Does not wait. smx_PipePut() may be
used in time-critical sections of user code such as in LSRs and tasks, which cannot wait. If
this function is used in tasks, it must be protected from preemption, since it is not an SSR.

 smx_PipePutPkt() is for use in ISRs. It does no error checking and will not operate reliably if

the pipe is full or an error is encountered. Its use will not interfere with an interrupted
complementary function operating on the same pipe, providing it is not operating on the same
packet.

Notes 1. Use only with complementary functions at the other end of the pipe.
 2. Will not resume a task waiting on pipe to get a packet.
 3. Two ISRs should not put to the same pipe.

smx_Pipe

109

Example
u8 in_port;
PICB_PTR msg_pipe; /* width = 10 */
u8 mb[10];

void input(u8 ch, u8 port);

void in_pkt_ISR(void)
{
 u32 i;

 for(i = 0; i < 10; i++)
 input(mb[i], in_port);
 smx_PipePut(msg_pipe, mb);
}

 In this example, a 10-byte packet is being received through the serial in_port, for each
interrupt. Each assembled packet is then being put into the msg_pipe, which is 10 bytes wide.
These packets are probably formatted messages, having a defined structure. Hence, it makes
sense for the task unloading msg_pipe to deal with a packet stream, instead of a byte stream.

smx_PipePut8

BOOLEAN smx_PipePut8 (PICB_PTR pipe, u8 byte)

Type Bare function

Summary Puts byte into pipe. For ISR and LSR usage.

Compl smx_PipeGet functions and SSRs.

Parameters pipe Pipe handle. Assumed to be valid.
 byte Byte to put into pipe.

Returns TRUE Byte put into pipe.
 FALSE Byte not put into pipe.

Errors None

Descr If pipe is not full, puts byte into pipe, advances the pipe’s write pointer to the next cell, and

returns TRUE; otherwise returns FALSE. This is the fast version of smx_PipePut() for byte
puts; it may be used in time-critical sections of user code such as in ISRs and LSRs. If this
function is used in a task, it must be protected from preemption, since it is not an SSR. This
function, in an ISR, will not interfere with an interrupted complementary function in a task or
LSR that is operating on the same pipe.

Notes 1. Use only with complementary functions at the other end of the pipe.
 2. Will not resume a task waiting on pipe to get a byte.

smx_Pipe

110

 3. Two ISRs should not put to the same pipe.

Example

PICB_PTR key_pipe; /* byte wide pipe */
u8 input_key(u8 key_port);

void key_ISR(void)
{
 u8 ch;

 ch = input_key(key_port);
 smx_PipePut8(key_pipe, ch);
 smx_LSR_INVOKE(key_LSR, 0) /* key received, start task via LSR */
}

 In this example, key_ISR() is invoked by an interrupt when a key is available for input. It gets

the key from key_port and puts it into key_pipe. It then invokes key_LSR to start the task
waiting on key_pipe to process the key. For more of this example, see
smx_PipeGetWaitStop().

smx_PipePut8M

u32 smx_PipePut8M (PICB_PTR pipe, u8 *bp, u32 lim)

Type Bare function

Summary Puts multiple bytes from buffer at bp into pipe up to lim or until pipe is full. For ISR and LSR

usage.

Compl smx_PipeGet functions and SSRs.

Parameters pipe Pipe handle. Assumed to be valid.
 bp Buffer pointer to get bytes.
 lim Limit on bytes transferred.

Returns Number of bytes transferred.

Errors None

Descr Transfers bytes from the buffer at bp to pipe, up to the limit specified or until pipe is full,

advances the pipe’s write pointer and bp for each byte transferred, and returns the number of
bytes actually transferred. This is the fast version of smx_PipePut8() for multi-byte transfers,
as may occur with UARTs and other high-speed serial controllers. It may be used in time-
critical sections of user code such as in ISRs and LSRs. If this function is used in tasks, it
must be protected from preemption, since it is not an SSR. This function, in an ISR, will not
interfere with an interrupted complementary function in a task or LSR that is operating on the
same pipe.

smx_Pipe

111

Notes 1. Use only with complementary functions at the other end of the pipe.
 2. Will not resume a task waiting on pipe to get a byte.
 3. Two ISRs should not put to the same pipe.

Example

PICB_PTR out_pipe;
u8 out_buf[NUM];
u32 numx;

numx = smx_PipePut8M(out_pipe, out_buf, NUM);

 In this example, up to NUM bytes are transferred from out_buf[] to out_pipe. The limit

prevents exceeding out_buf[]. numx is the actual number of bytes transferred; it can be used
to determine when to ask for more bytes (e.g. --numx < 3). This function might be called
from an LSR that was invoked from a timer or from an ISR needing more bytes in out_pipe
(assuming the ISR is using smx_PipeGet*() to get bytes to send out).

smx_PipePutWait

BOOLEAN smx_PipePutWait (PICB_PTR pipe, void *psrc, u32 tmo)

Type SSR

Summary Puts the packet from the buffer at psrc into pipe. Waits if pipe is full..

Compl smx_PipeGet functions and SSRs.

Parameters pipe Pipe handle. Operation is aborted if not valid.
 psrc Pointer to source of packet. Operation is aborted if zero.
 tmo Timeout in ticks. If called from an LSR, tmo must be 0, else operation is aborted.

Returns TRUE Packet transferred.
 FALSE Packet not transferred.

Errors SMXE_INV_PARM
 SMXE_INV_PICB
 SMXE_WAIT_NOT_ALLOWED

Descr If another task is waiting to get a packet, gives the packet in the buffer at psrc to it and

resumes the waiting task with TRUE, else if the pipe is not full, copies the packet into pipe
and advances pipe’s write pointer to its next cell. Returns TRUE, in both cases. If neither case
and tmo > 0, the current task is suspended until either its packet is accepted or the timeout
occurs. Can be used from a task or an LSR. If called from an LSR, tmo must be 0.

Notes 1. Use only with complementary functions at the other end of the pipe.
 2. May be mixed with smx_PutWaitStop()s at the same end of the pipe.
 3. Multiple waiting tasks are enqueued in priority order.
 4. Clears smx_lockctr if called from a task and timeout != SMX_TMO_NOWAIT.

smx_Pipe

112

Example See smx_PipeGetWait() example.

smx_PipePutWaitStop

void smx_PipePutWaitStop (PICB_PTR pipe, void *psrc, u32 tmo)

Type limited SSR — task only

Summary Same as smx_PipePutWait() except that ct is always stopped, then restarted when it is time

for it to run.

Compl smx_PipeGet functions and SSRs.

Parameters pipe Pipe handle.
 psrc Pointer to source of packet.
 tmo Timeout in ticks.

Errors SMXE_OP_NOT_ALLOWED
 SMXE_INV_PARM
 SMXE_INV_PICB

Descr See smx_PipePutWait() for operational description. ct always stops, then restarts instead of

resuming. Pass or fail is returned via the parameter in taskMain(par), when task restarts.

Notes 1. Use only with complementary functions at the other end of the pipe.
 2. May be mixed with smx_PutWaits()s at the same end of the pipe.
 3. Multiple waiting tasks are enqueued in priority order.
 4. If called from an LSR, aborts operation and returns to LSR.
 5. smx_lockctr is cleared if called from a task.

TaskMain void task_main(BOOLEAN par)

par TRUE Packet transferred.
 FALSE Packet not transferred.

Example

PICB_PTR crt_pipe;
TCB_PTR crt_task;
u8 crt_buf1[80], crt_buf2[80];
BOOLEAN tog;

void crt_task_init(void)
{
 crt_task->fun = (FUN_PTR)crt_task_main;
 tog = TRUE;
 smx_PipePutWaitStop(crt_pipe, crt_buf1, 100);

smx_Pipe

113

}

void crt_task_main(BOOLEAN msg_out)
{
 u8 *mp;
 if(msg_out)
 tog = (tog == TRUE ? FALSE : TRUE);
 mp = (tog == TRUE ? crt_buf1 : crt_buf2);
 smx_PipePutWaitStop(crt_pipe, mp, 100);
}

 In this example, crt_task is a one-shot task. Note that crt_task_init() performs the initial pipe

put wait stop operation. Prior to this, the task entry point is changed to crt_task_main(), which
expects a msg_out TRUE/FALSE parameter from the put operation. When the put operation
in crt_task_init() puts a packet, it starts crt_task at crt_task_main(), where output toggles
between buffers unless a buffer does not get put into crt_pipe, in which case, it is put again.
The put operation waits up to 100 ticks to put a buffer.

smx_PipeResume

BOOLEAN smx_PipeResume (PICB_PTR pipe)

Type SSR

Summary Resumes tasks waiting on pipe, if wait condition true.

Parameters pipe Pipe handle. Operation is aborted if not valid.

Returns TRUE Operation performed.
 FALSE Operation not performed because of invalid pipe.

Errors SMXE_INV_PICB

Descr Resumes tasks waiting in pipe’s task queue. Processes tasks in priority order. For each

waiting task, completes its put or get operation, if possible, and resumes the waiting task with
TRUE. If put or get operation cannot be completed leaves task in the pipe wait queue and
returns.

 If there is no task waiting, then smx_PipeResume() does nothing. If more than one task is

waiting on pipe get, each will get one packet and be resumed in FIFO order, for as many
packets as are available. Conversely, if more than one task is waiting on pipe put, each will
put its packet and be resumed in FIFO order, for as many slots as are available.

 An ISR can invoke an LSR to call this function in order to wake up a task waiting on pipe to

put or get packets. Intended for use from tasks and LSRs. Is protected from interrupts.

smx_Pipe

114

Notes 1. All tasks waiting on a pipe must be waiting for the same thing — to put or to get a packet.
 2. A packet pipe (i.e. width > 1) is considered empty unless a full packet is present.

Example

void key_LSR(void)
{
 smx_PipeResume(key_pipe);
}

void key_ISR(u8 key_port)
{
 u8 ch;

 ch = input_key(key_port);
 smx_PipePut8(key_pipe, ch);
 smx_LSR_INVOKE(key_LSR, 0);
}

 In this example, key_ISR is loading key_pipe, a character at a time, then invoking key_LSR
to wake up the task, which is waiting to process keys. This is done by calling
smx_PipeResume(). Note that key_LSR does not need to know what task is waiting, if any.

smx_PipeStatus

u32 smx_PipeStatus (PICB_PTR pipe, PSS *ppss)

Type SSR

Summary Returns the number of packets in pipe and pipe status information.

Parameters pipe Pipe handle. Operation is aborted if not valid.
 ppss Pointer to a pipe status structure supplied by the user. NULL, if no status is desired.

Returns N Number of packets in pipe.
 0 No packets in pipe or invalid pipe.

Errors SMXE_INV_PICB

Descr Loads width, size, flags, and number of tasks waiting into pipe status structure, if specified,

and returns number of packets in pipe. Protected from interrupts.

Note A partial packet is not counted.

smx_Pipe

115

Example 1
TCB_PTR pipe_input_task;

void regulate_pipe(PICB_PTR pipe)
{
 if(smx_PipeStatus(pipe, 0) > 3)
 pipe_input_task->pri++; /* increase task priority */
 if(smx_PipeStatus(pipe, 0) < 2)
 pipe_input_task->pri--; /* decrease task priority */
}

 In this example, the number of packets in pipe is compared to 3 to increase the priority of
pipe_input_task and to 2 to decrease it. Note that no Pipe Status Structure is specified, since
other status is not of interest.

Example 2

void send_msg(const char *);

void increase_msgs(PICB_PTR pipe)
{
 PSS pipe_stat;
 smx_PipeStatus(pipe, &pipe_stat);
 if((pipe_stat.numtasks > 1) && !(pipe_stat.flags & SMX_FL_PUT))
 send_msg("Increase message input rate");
}

 In this example, if more than one task is waiting for packets, a message is sent to the operator
to increase the message input rate. In this case, a pipe status structure (PSS) is specified to
determine how many tasks are waiting and if they are waiting to get packets.

smx_Sem

116

smx_Sem

smx_SemClear

BOOLEAN smx_SemClear (SCB_PTR sem)

Type SSR

Summary Clears a semaphore.

Compl None

Parameters sem Semaphore to clear.

Returns TRUE Semaphore cleared.
 FALSE Error.

Errors SMXE_INV_SCB

Descr Resumes all tasks waiting at sem with FALSE return values and deactivates their timeouts.

Then resets the semaphore count to its original value, when created. This call would normally
be used in a recovery situation, such as following a SIG_CTR_OVFL error.

 If the current task is not locked, it may be preempted by a higher priority task that was

waiting at sem
Example

SCB_PTR printer_avail;

smx_SemClear(&printer_avail);

smx_SemCreate

SCB_PTR smx_SemCreate (SMX_SEM_MODE mode, u8 lim, const char *name)

Type SSR

Summary Creates a semaphore of the specified mode and limit and sets its internal count, accordingly.

Compl smx_SemDelete()

Parameters mode Mode of operation (see below).
 lim Count limit.
 name Name to give semaphore or NULL for none.

smx_Sem

117

Returns handle Semaphore created.
 NULL Insufficient resources or error.

Errors SMXE_INV_PAR mode or lim not in range
 SMXE_OUT_OF_QCBS

Descr Gets a semaphore control block (SCB) from the QCB pool and loads the cbtype, mode, count,

lim, and name fields. Returns the address of SCB as the semaphore handle.

 An smx semaphore is capable of operating in one of 6 modes:

 mode lim semaphore
 SMX_SEM_RSRC 1 Binary resource
 SMX_SEM_RSRC >1 Multiple resource (counting semaphore)
 SMX_SEM_EVENT 1 Binary event
 SMX_SEM_EVENT 0 Multiple event
 SMX_SEM_THRES t Threshold
 SMX_SEM_GATE 1 Gate

 For more discussion of modes of operation, see UG Semaphores.

 SMX_SEM_MODE is defined in xdef.h as an enum, for debugging convenience. If mode is

not a recognized value, if lim == 0 for RSRC or THRES mode, or if lim != 1 for GATE
mode, an SMXE_INV_PAR error is reported and create fails. The internal count is set to lim
for RSRC semaphores and to 0 for all others.

Example

SCB_PTR all_data_here, printer_avail, simple_sem, binary_sem;

void appl_init(void)
{
 printer_avail = smx_SemCreate(SMX_SEM_RSRC, 1, "printer_avail");
 all_data_here = smx_SemCreate(SMX_SEM_THRES, 4, "all_data_here");
 simple_sem = smx_SemCreate(SMX_SEM_EVENT, 0, "simple_sem");
 binary_sem = smx_SemCreate(SMX_SEM_EVENT, 1, "binary_sem");
}

 appl_init() creates four semaphores: printer_avail is a binary resource semaphore, which
regulates access to one printer. When a task is done with the printer it signals printer_avail.
This resumes the top task waiting at printer_avail. all_data_here is a threshold semaphore,
with a threshold of 4. It requires 4 signals before resuming the first waiting task. This
semaphore could regulate a processing task which requires four sets of data before starting.
simple_sem is a multiple event semaphore. It stores every event received. binary_sem is a
binary event semaphore. All events, after the first are ignored.

smx_Sem

118

smx_SemDelete

BOOLEAN smx_SemDelete (SCB_PTR *sem)

Type SSR

Summary Deletes a semaphore.

Compl smx_SemCreate()

Parameters *sem Address of the handle of the semaphore to delete.

Returns TRUE Semaphore deleted.
 FALSE Error.

Errors SMXE_INV_SCB

Descr Deletes a semaphore created by smx_SemCreate(). First resumes waiting tasks, giving them

FALSE return values and deactivating their timeouts. Then clears the semaphore control
block, releases it to the QCB pool, and clears sem.

Note If the current task is not locked, it may be preempted by a higher priority task that was

waiting at sem.

Example

SCB_PTR printer_avail;

smx_SemDelete(&printer_avail);

smx_SemPeek

u32 smx_SemPeek (SCB_PTR sem, SMX_PK_PARM par)

Type SSR

Summary Returns the current value for the parameter specified.

Parameters sem semaphore to peek.
 par Argument to return.

Returns value Value of par.
 0 Value, unless error.

Errors SMXE_INV_SCB Invalid message exchange handle.
 SMXE_INV_PARM Invalid argument.

Notes This service can be used to peek at a semaphore. Valid arguments are:

smx_Sem

119

 SMX_PK_FIRST First task waiting on this sem.
 SMX_PK_LAST Last task waiting on this sem.
 SMX_PK_MODE Mode.
 SMX_PK_COUNT Current count.
 SMX_PK_LIMIT Limit.
 SMX_PK_NAME Name.

Example
 SCB_PTR sem;

TCB_PTR top_task;

 top_task = (TCB_PTR)smx_SemPeek(sem, SMX_PK_FIRST);

smx_SemSignal

BOOLEAN smx_SemSignal (SCB_PTR sem)

Type SSR

Summary Signals a semaphore. Operation depends upon the semaphore mode — see below.

Compl smx_SemTest(), smx_SemTestStop()

Parameters sem Semaphore to signal.

Returns TRUE Signal sent.
 FALSE Error.

Errors SMXE_INV_SCB
 SMXE_SIG_CTR_OVFL

Descr mode action
 RSRC: Resume top task with TRUE, else for count < lim, count++.
 EVENT: Resume top task with TRUE, else:
 if lim == 1 and count < lim, count = 1.
 if lim != 1 and count < 255, count++, else: SMXE_SEM_CTR_OVFL.
 THRES : If count < 255: count++ else: SMXE_SEM_CTR_OVFL
 If task waiting and count >= lim: count - lim and resume top task with TRUE.
 GATE : Resumes all waiting tasks with TRUE.

 RSRC and EVENT semaphores with lim == 1 are called binary semaphores. For more

discussion concerning usage see UG Semaphores.

 If the current task is not locked, it may be preempted by a higher priority task that was

waiting at sem.

Notes If the mode is not recognized, SMXE_INV_SCB is reported.

smx_Sem

120

Example
SCB_PTR ready_for_msg;
TCB_PTR calc;
XCB_PTR input;

 /* create a binary resource semaphore */
ready_for_msg = smx_SemCreate(RSRC, 1, "ready_for_msg");

void calc_main(void)
{
 u8 *dp;
 MCB_PTR msg;

 while (1)
 {
 smx_SemSignal(ready_for_msg);
 if(msg = smx_MsgReceive(input, &dp, SEC))
 /* process block */
 else
 /* report problem */
 }
}

 In this example, calc signals the ready_for_msg semaphore then waits at the input exchange
for a message. Some other task should be waiting at the ready_for_msg semaphore, ready to
send another message. If a message is received in less than a second, calc processes it.
Otherwise, calc reports that there is a problem.

smx_SemTest

BOOLEAN smx_SemTest (SCB_PTR sem, u32 timeout)

Type SSR

Summary Tests if sem has a pass condition. If so, decreases sem count and continues ct. Otherwise,

suspends ct on sem.

Compl smx_SemSignal()

Parameters sem Semaphore to test.
 timeout Timeout in ticks.

Returns TRUE OK.
 FALSE Error or timeout.

Errors SMXE_INV_SCB

smx_Sem

121

 SMXE_WAIT_NOT_ALLOWED

Descr mode action
 RSRC: If count > 0: decrement count and continue current task with TRUE, else priority

enqueue it in sem wait queue and activate its timeout, unless NO_WAIT or INF. If
NO_WAIT, continue current task with FALSE.

 EVENT: Same.
 GATE: Same.
 THRES : If count >= lim: count = count - lim and continue current task with TRUE, else

priority enqueue it in sem wait queue and activate its timeout, unless NO_WAIT or
INF. If NO_WAIT, continue current task with FALSE.

 Waits forever if timeout == INF. Otherwise, if the timeout elapses before a pass condition

occurs, waiting task resumes with FALSE. Operation from an LSR is the same as from a
task, except that waits are not allowed (i.e. timeout must be NO_WAIT).

Notes (1) Clears smx_lockctr if called from a task and timeout != SMX_TMO_NOWAIT.

Example 1

SCB_PTR start_cycle, data_ready;
TCB_PTR get[N], process;
u8 *name[] = ("get0", "get1", ...);

start_cycle = smx_SemCreate(GATE, 1, "start_cycle"); /* gate semaphore */
data_ready = smx_SemCreate(THRES, N, "data_ready"); /* threshold semaphore */

void init_main(void)
{
 for (i = 0; i < N; i++)
 {
 get[N] = smx_TaskCreate(get_main, PR2, 200, 0, name[N]);
 smx_TaskStart(get[N]);
 }
 smx_SemSignal(start_cycle);
}

void get_main(void)
{
 while(1)
 {
 if (smx_SemTest(start_cycle, TMO))
 {
 /* acquire data and store in global area */
 smx_SemSignal(data_ready);
 }
 else
 /* notify of timeout or error */

smx_Sem

122

 }
}

void process_main(void)
{
 while(1)
 {
 smx_SemTest(data_ready, INF))
 /* process global data */
 smx_SemSignal(start_cycle);
 }
}

 In this example, there are N get tasks and one process task. After being created and started,

the get tasks wait at the start_cycle gate semaphore. When all are waiting, a signal is given to
start them all at once. As each get task finishes, it signals the data_ready threshold
semaphore, then goes back to wait at the start_cycle gate semaphore. After N signals, the
process task is resumed. It processes the data, then signals the start_cycle gate semaphore and
the operation repeats. The above example also illustrates how to handle timeouts or errors for
smx_SemTest(). If the get tasks need to wait on data or resources, then multiple get tasks will
result in more efficient usage of the processor than one get task, since some get tasks can run
while others are waiting.

Example 2

SCB_PTR printer_ready; /* binary resource semaphore */
TCB_PTR t2a, t3a;

printer_ready = smx_SemCreate(RSRC, 1, "printer_ready");

void t2a_main(void)
{
 ...
 smx_SemTest(printer_ready, TMO);
 /* send data to printer */
 smx_SemSignal(printer_ready);
}

void t3a_main(void)
{
 ...
 smx_SemTest(printer_ready, TMO);
 /* send data to printer */
 smx_SemSignal(printer_ready);

 }

 This example shows sharing a printer between two tasks by using the printer_ready binary

resource semaphore. Every task accessing the printer must use this semaphore, as shown, in
order to avoid conflicts.

smx_Sem

123

smx_SemTestStop

void smx_SemTestStop (SCB_PTR sem, u32 timeout)

Type limited SSR — task only

Summary Operates the same as smx_SemTest(), except that ct is always stopped, then restarted when it

is time for it to run.

Compl smx_SemSignal()

Parameters sem Semaphore to test.
 timeout Timeout in ticks.

Errors SMXE_OP_NOT_ALLOWED
 SMXE_INV_SCB

Descr See smx_SemTest() for operational description. ct always stops, then restarts instead of

resuming. Pass or fail is returned via the parameter in taskMain(par), when task restarts.

Notes (1) If called from an LSR, aborts operation and returns to LSR.
 (2) smx_lockctr is cleared if called from a task.

TaskMain void task_main(BOOLEAN par)

par TRUE Got semaphore.
 FALSE Error or timeout.

Example

SCB_PTR data_ready, start_cycle;

for (i = 0; i < N; i++)
{
 get[n] = smx_TaskCreate(get_main, PR2, 0, 0, name[n]);
 smx_TaskStartPar(get[n], 1);
}

void get_main(BOOLEAN pass)
{
 if (pass)
 {

/* acquire data and store in global area */
smx_SemSignal(data_ready);
smx_SemTestStop(start_cycle);

 }
 else
 /* notify of timeout or error */
}

smx_Sem

124

 This is equivalent to the first example for smx_SemTest(), using one-shot get tasks. Note that

the get tasks are created with no stacks and also that each runs as soon as it is started, because
par == 1. Each get task gets and stores data, signals the data_ready threshold semaphore, and
then does a test stop at the start_cycle gate semaphore. While stopped, none of the get tasks
uses a stack.

 As noted in smx_SemTest() Example 1, the reason for using multiple get tasks is that they

can separately wait for inputs, thus improving processor efficiency. As structured above, a get
task must retain its stack while waiting for an input, hence the stack pool might need, for
example, to have 5 stacks to efficiently support 10 get tasks. The number of stacks could be
reduced by redesigning the get tasks to stop when waiting for inputs.

smx_SSR

125

smx_SSR

smx_SSR_ENTER

void smx_SSR_ENTERn (u32 id, u32 par1, ... , u32 parn)

Type macro

Summary Used to begin a system service routine (SSR).

Compl smx_SSR_EXIT()

Parameters id SSR ID — see xdef.h
 par1-6 Parameters of the call.

Returns none

Descr All system service routines (SSRs) must begin with smx_SSR_ENTERn(), which first

increments smx_srnest, then calls the corresponding smx_EVBLogSSRn() function, if
SMX_CFG_EVB in xcfg.h is set. id identifies the SSR. It is put first in the event buffer
(EVB) record after the beginning of record marker (0x5555rrss, where rr = record type and ss
= its size). The SSR’s parameters are placed next in the EVB record, in order. Seven different
enter macros and log functions provide an exact match of SSR parameters to record
parameters, so that all are stored without wasted space.

 It is possible to selectively enable logging of groups of SSRs. This helps to save space in the

EVB, by eliminating unneeded SSR records. In the SSR ID, the SSR Group field allows
SSRs to be grouped into 9 groups: SG0, which is never logged, and SG1-8, which are logged
if the corresponding bit of smx_evben is set. All smx SSRs are initially put into SG1.
Selected SSRs can be moved into other groups, by changing their SG field (in their IDs in
xdef.h) so that groups of SSRs can be selectively enabled or disabled. An SSR can belong to
more than one group (since groups are specified by bits).

 The flags in smx_evben can be controlled during debugging via smxAware. When EVB is

initialized from smx_Go() all flags are set.

 Custom SSRs require new IDs, if they are to be logged. IDs are defined in xdef.h. Each ID

specifies: module (01 for smx), SSR Group, number of parameters, and function ID. The ID
format is 0xMMSSPIII. For custom SSRs, it is probably best to assign a new module number
so they can be kept separate from new smx SSRs in future releases. We plan is to assign IDs
to other SMX products, in the future, so it would be best to pick a high number.

smx_SSR

126

Example
BOOLEAN NewSystemService(TCB_PTR task)
{
 smx_SSR_ENTER1(MY_CALL_ID, task);
 /* do my_function */
 return(smx_SSR_EXIT(TRUE, MY_CALL_ID));
}

 This example shows the use of smx_SSR_ENTER1() and smx_SSR_EXIT() for a typical

system service with one parameter, and which returns a BOOLEAN. In between, you can put
any C statements. Note that all intermediate returns and error exits must also call
smx_SSR_EXIT(), as shown.

 Although it is typical for SSRs to return a BOOLEAN or handle, it is not necessary to return

anything. The return type of an SSR may be void, in which case it will end with just
smx_SSR_EXIT(0, id), with no return.

 When creating a custom SSR, it is best to start with an smx SSR that is close to what you

want and modify it. For more information see UG, Service Routines, custom SSRs.

smx_SSR_EXIT

u32 smx_SSR_EXIT (ret, id)

Type function

Summary Used to end a system service routine (SSR).

Compl smx_SSR_ENTER()

Parameters ret Value to return (or preliminary value for calls that wait).
 id SSR ID.

Returns result:

 1. SSR calls which can be immediately satisfied (e.g. smx_MsgReceive() and a message is

waiting at the exchange): The same value specified in the value parameter is returned to
the caller (or passed in as the start parameter — see note 3a).

 2. SSR calls which must wait to be satisfied (e.g. smx_MsgReceive() and no message is

waiting at the exchange): In this case, the current task will be suspended or stopped. tcb.rv
must be preloaded with the value that is appropriate if a timeout occurs (normally FALSE
or 0).

 a. If the waiting condition is satisfied before timeout elapses (e.g. a message is sent to the
exchange), tcb.rv is overwritten with the appropriate return value by the complementary
call (in this case, smx_MsgSend() sets tcb.rv to the message handle). tcb.rv is what is
eventually returned to a task that resumes or passed to a stopped task that restarts.

smx_SSR

127

 b. If the waiting condition is not satisfied before the timeout elapses, the preloaded value is
returned or passed.

 3. Return method
 a. suspend SSRs and others: return value in the appropriate register, as is done for any C

function.
 b. stop SSRs: “return” value by passing it as the parameter to the task when it is restarted.

Descr For a suspend call, if smx_srnest > 1, returns to the point of interrupt with the SSR result. For

a stop call, restarts the current task and passes the SSR result as the main function parameter.
 If smx_srnest == 1, tests if there is an LSR in lq or if a scheduler flag (STOP, SUSP, or

TEST) is set. If so, branches to the prescheduler, which calls the LSR scheduler or the task
scheduler, as appropriate. In this case, control may pass to another task and the current task
may be suspended or stopped. If there is no waiting LSR an no scheduler flag set, operation is
the same as for smx_srnest > 1.

 All SSRs must end with:

 return(smx_SSR_EXIT(value, id));

 or
 smx_SSR_EXIT(0, id);

 if there is no return value.

Example See example above.

smx_Sys

128

smx_Sys

smx_SysEtimeGet

u32 smx_SysEtimeGet (void)

Type Bare macro

Summary Gets the current elapsed time in ticks.

Parameters none

Returns smx_etime

Descr Returns etime in ticks. See UG Timing, etime and stime.

Example

u32 etime;

etime = smx_SysEtimeGet();

smx_SysPseudoHandleCreate

void* smx_SysPseudoHandleCreate (void)

Type Bare function

Summary Creates a pseudo handle to identify an objects that does not have a handle.

Parameters none

Returns pseudo handle
 0 if no more pseudo handles available.

Descr Creates a pseudo handle to identify objects that do not have handles, such as ISRs, LSRs, and

user-define events. These can be used in the smx_EVB_LOG macros to log when ISRs and
LSRs run, in the Event Buffer. A pseudo handle is a void pointer that is in the range of
SMX_PSEUDO_HANDLE_MIN to SMX_PSEUDO_HANDLE_MAX, which are defined
in xdef.h. Each new pseudo handle is 1 greater than the previous one created.

Note Requires SMX_CFG_EVB.

smx_Sys

129

Example See smx_EVB_LOG().

smx_SysStimeGet

u32 smx_SysStimeGet (void)

Type Bare macro

Summary Gets current system time in seconds.

Parameters none

Returns smx_stime

Descr Returns stime in seconds from its initial value. See UG Timing, etime and stime.

Example

u32 stime;

stime = smx_SysStimeGet();

smx_SysPowerDown

BOOLEAN smx_SysPowerDown (u32 sleep_mode)

Type SSR

Summary Puts processor into specified sleep mode. Restores all tick-related timing when power

resumes.

Parameters sleep_mode Sleep mode desired (e.g. DEEP_SLEEP).

Returns TRUE Processor slept until awakened.
 FALSE sleep_mode == 0.

Errors None

Descr If sleep mode > 0, enters SSR and calls sb_PowerDown(sleep_mode). This is a user-

implemented BSP or Base function, which saves the tick counter count and puts the processor
into the desired sleep mode. Upon resumption of operation, sb_PowerDown() determines
how many tick counter clocks have elapsed, calculates and loads the new tick counter value
and returns the number of ticks lost.

smx_Sys

130

 smx_SysPowerDown() tests the first timer in tq, the first task in smx_TicksEQ(), and the next
task to timeout. It determines which of these events would have occurred first and if that
event would have occurred during power down. If so, it performs the timeout operation for
that event, then searches to find the next oldest event during power down and processes it.
This process continues until all events, which would have occurred during power down, have
been processed. The result is that LSRs and tasks are enqueued to run in the order they would
have run, had power interruption not occurred.

 The tick recovery process is not dependent upon the time lost, but rather upon how many

timeouts would have occurred during that time. Hence, it can be effectively used in
applications where long power interruptions occur. Cyclic and pulse timer events are
requeued, when processed. If they reoccur within the power-down time, they will again be
processed normally. Therefore, these timers will appear to operate normally, provided that lq
is large enough to handle all LSR invocations. If not, earlier LSRs will be lost.

 After tick recovery is complete, stime is updated and the SSR is exited. Following this, LSRs

then tasks will execute in the order invoked or resumed. Since interrupts are enabled, during
smx_SysPowerDown(), smx_TickISR() can run and can invoke smx_KeepTimeLSR(),
which will run after other LSRs have run. Thus, new ticks will not be lost and LSRs will run
in their order of occurrence.

Example

void smx_IdleMain(void)
{
 while(TRUE)
 {
 ...
 if (idle_done)
 smx_SysPowerDown(SLEEP);
 }
}

 This is the normal use of smx_SysPowerDown() — i.e. at the end of an idle loop, after idle
has completed all of its work. At this point there is no useful work left to do, hence the
processor can be put into sleep mode. Of course, once the processor is put into sleep mode, it
is then dependent upon an event or interrupt to wake it up.

smx_Sys

131

smx_SysWhatIs

SMX_CBTYPE smx_SysWhatIs (void *hdl)

Type SSR

Summary Returns control block type for handle.

Parameters hdl Handle.

Returns type Type of control block.
 0 Control block type is not recognized.

Descr Returns the control block type of the control block pointed to by hdl. Returns NULL if hdl

does not point to a valid control block. hdl is not range checked, so it is possible that it may
return an invalid cbtype. It is advisable to check that the handle is in range for the cbtype
returned before using the cbtype.

Example

SCB_PTR sx;

sx = smx_SemCreate(SMX_SEM_RSRC, 1, "sem");
...
if (smx_SysWhatIs(sx) == SMX_CB_SEM)
 smx_SemSignal(sx);

smx_Task

132

smx_Task

smx_TaskBump

BOOLEAN smx_TaskBump (TCB_PTR task, u8 pri)

Type SSR

Summary Changes task priority and requeues the task.

Parameters task Task whose priority to change.
 pri New priority, unless SMX_PRI_NOCHG.

Returns TRUE Task priority changed.
 FALSE Error.

Errors SMXE_BROKEN_Q
 SMXE_INV_PRI pri > SMX_MAX_PRI
 SMXE_INV_TCB

Descr Changes task priority to pri, unless pri == SMX_PRI_NOCHG: task->normpri = pri and task-

>pri = pri, if task owns no mutexes. Otherwise task->pri is promoted, but not demoted.
Whether or not task->pri is changed, task is requeued at the end of its priority level, unless it
is in a FIFO queue or not in a queue. If task is waiting for a mutex, the mutex owner’s priority
is promoted, if it is less than pri and priority inheritance is enabled for the mutex. If the
current task is not locked, it may be preempted.

 The current task can bump itself. This can result in it being preempted.

Example

void taskA_main(void)
{
 smx_TaskUnlock();

 while (smx_TaskBump(smx_ct, SMX_PRI_NOCHG))
 {
 /* do main function */
 }
}

 After the first bump, each time taskA completes its main function, it bumps itself to the end

of its priority level. This allows other tasks at the same priority level to run. If they also
bump themselves to the end, this is good way to implement cooperative multitasking.

smx_Task

133

smx_TaskCreate

TCB_PTR smx_TaskCreate (FUN_PTR fun, u8 pri, u32 stack_size, u32 flags, const char *name)

Type SSR

Summary Creates a task with fun as its main function and with the parameters specified.

Compl smx_TaskDelete()

Parameters fun Main function.
 pri Priority.
 stack_size Stack size.
 flags Flags to specify characteristics of the task:
 SMX_FL_LOCK start locked
 SMX_FL_NONE no flags specified to set
 name Name to give task or NULL for none.

Returns handle Task created.
 NULL Insufficient resources or error.

Errors SMXE_INV_PRI pri > SMX_MAX_PRI.
 SMXE_INV_DAR Insufficient DAR to create stack & TCB pools on first call.
 SMXE_INSUFF_HEAP Insufficient heap for permanent stack.
 SMXE_OUT_OF_TCBS TCB pool empty.

Descr Gets a task control block from the TCB pool. fun() becomes the main function (i.e. the entry

point) for the task and pri becomes its priority.

 If stack_size is 0, the task will be given a stack from the stack pool when it begins running.

That stack is not permanently bound to the task and will be released when the task next stops.
Otherwise, a permanent stack is assigned to the task from the heap of stack_size bytes. This
stack is permanently bound to the task. The stack bottom is aligned as specified by
SB_STACK_ALIGN. As a consequence, the actual stack size may be less than expected. For
more details see UG Stacks.

 SMX_FL_LOCK, sets the task’s start locked flag. This causes the task to always start in the

locked state, which is useful for initialization and for one-shot tasks; it is similar to an ISR
starting with interrupts disabled. Other task flags are set as follows: stack high water mark
valid ON (shwm = 0), stack check ON, permanent stack OFF if stack_size is 0, else ON, all
others OFF.

 The specified task name is stored in the TCB. This is useful when debugging to confirm that

one is looking at the correct TCB. Short names are recommended. HT is used by smxAware.

 The last step is to return the address of the TCB as the task handle. This handle identifies the

task and is used whenever the task is referred to. It should be stored in a global location
named for the task.

smx_Task

134

Example
TCB_PTR taskA, taskB;

void taskX_main(void)
{
 smx_TaskLock();
 taskA = smx_TaskCreate(taskA_main, PRI_NORM, 0, SMX_FL_NONE, "taskA");
 smx_TaskStart(taskA);
 taskB = smx_TaskCreate(taskB_main, PRI_LO, 1000, SMX_FL_NONE, "taskB");
 smx_TaskStart(taskB);
 smx_TaskStart(taskA);
}

 The above code creates two tasks and starts them. taskA has normal priority. It will be

assigned a stack pool stack when it is dispatched. taskB has low priority. It is permanently
bound to a 1000 byte stack from the heap. The task doing the initialization is locked so that
tasks A and B will not preempt it until it is done. As a consequence, even though taskA is
started after taskB, it will run first because it has higher priority. Note that taskX is
automatically unlocked when it auto stops.

smx_TaskDelete

BOOLEAN smx_TaskDelete (TCB_PTR *task)

Type SSR

Summary Releases resources owned by task and deletes it.

Compl smx_TaskCreate()

Parameters task Task to delete.

Returns TRUE Task deleted.
 FALSE Error.

Errors SMXE_INV_PARM smx_ct was passed
 SMXE_INV_TCB

Descr Releases all owned blocks, messages, timers, and mutexes. Dequeues task if it is in a queue.

Frees the task’s stack back to the heap, if permanent, or to the stack pool, if not. Deactivates
the task timeout, releases its TCB back to the TCB pool, then clears its handle. At this point,
task has ceased to exist. An attempt to use task will result in an SMXE_INV_TCB error.

 If task has already been deleted (task == NULL), operation is aborted and SMXE_INV_TCB
is reported.

smx_Task

135

 The current task may delete itself. However, its handle must be passed in, not smx_ct (which
is an alias pointer). Passing smx_ct is not permitted because it would be cleared, causing smx
to malfunction.

Note Heap are not automatically released because they may contain blocks or messages owned by

other tasks or LSRs. Hence, avoiding heap memory leaks is left to application code.

Example

TCB_PTR old_task;

 if (!smx_TaskDelete(&old_task))
 /* check old_task handle */

smx_TaskHook

BOOLEAN smx_TaskHook (TCB_PTR task, FUN_PTR entry, FUN_PTR exit)

Type SSR

Summary Hooks entry and exit routines to task, which run when the task is resumed or suspended

Compl smx_TaskUnhook()

Parameters task Task to hook entry and/or exit routines to.
 entry Entry routine address.
 exit Exit routine address.

Returns TRUE Task hooked.
 FALSE Error.

Errors SMXE_INV_TCB

Descr smx_TaskHook() is used to hook entry and exit routines to task. It hooks the specified task by

setting task->flags.hookd. Then the address of entry is loaded into task->hookentry and exit is
loaded into task->hookexit. If only one routine is needed, pass NULL for the other. This
causes smx smx_NullF() to be hooked, which simply returns. The hookd flag is not set if both
entry and exit are NULL.

 Hooking operates as follows: when task is to be resumed, the scheduler calls the entry

routine. When task is to be suspended, the scheduler calls the exit routine. Exit and entry
routines can be used to transparently preserve extended task states on a task-specific basis.
For example, coprocessor registers can be saved and restored only for tasks using the
coprocessor.

 Exit and entry routines are normal C functions, defined as follows:

smx_Task

136

 void routine(void)

 To minimize impact upon interrupt latency, they are called with interrupts enabled. Interrupts
can be disabled, if necessary to prevent ISRs from running. Exit and entry routines are task-
safe, so there is no need to be concerned about other tasks, LSRs, or SSRs running. SSRs
must not be called from these routines.

 Exit and entry routines operate as extensions to the scheduler, hence their execution times

directly add to task suspend and resume times. Therefore, they should be as fast as possible
and may need to be written in assembly language. If so, be sure to preserve non-volatile
registers, as with any C function.

Notes 1. Stopping a task does not call the exit routine and starting a task does not call the entry

routine. Hence, in one-shot tasks it may be necessary to call these functions directly if it
is expected that an extended state will be preserved across a stop/start transition.

 2. Due to the fly-back mechanism of the smx scheduler, it is possible for entry and exit to be

called without the task actually running in between.

Example 1

void atask_main(void)
{
 smx_TaskHook(smx_ct, atask_entry, atask_exit);
 /* other initialization */
 while(work_to_do)
 {
 /* task functions performed */
 }
 smx_TaskUnhook(smx_ct);
}

PUBLIC _atask_entry, _atask_exit

_atask_entry:
 ; restore variables, stacks, etc. used by atask
 ret

_atask_exit:
 ; save variables, stacks, etc. used by atask
 ret

 In this example, atask hooks the atask_entry and atask_exit routines to itself. While atask

loops, it can be preempted, suspended, or resumed. If atask leaves the while loop, it unhooks
itself, which is not essential — rehooking the exit and entry routines, when it restarts, will
cause no harm, but might confuse someone reading the code.

Example 2
smx_TaskHook(smx_ct, atask_entry, NULL);

 Here, the exit routine is not necessary — perhaps the atask_entry just sends a pulse.

smx_Task

137

smx_TaskLocate

VOID_PTR smx_TaskLocate (TCB_PTR task)

Type SSR

Summary Locates the queue which a task is in.

Parameters task Task to locate.

Returns handle pointer to queue task is in.
 NULL task is not in a queue or error.

Errors SMXE_BROKEN_Q
 SMXE_INV_TCB

Descr Returns a pointer to the queue that task is in, if it is in a queue, or NULL if not in a queue.

Aborts and reports SMXE_BROKEN_Q if no queue control block is found.

Example

BOOLEAN resume_task(TCB_PTR task, MCB_PTR ack_msg)
{
 pass = 0;
 CB_PTR q;

 q = (CB_PTR)smx_TaskLocate(task);
 switch (q->cbtype)
 {
 case SMX_CB_XCHG:
 smx_MsgSendPR(ack_msg, q, 0, 0);
 pass = TRUE;
 break;
 case SMX_CB_SEM:
 smx_SemSignal(q);
 pass = TRUE;
 }
 return(pass);
}

 This function allows resuming a task which may be waiting at an exchange for an ack_msg
or for a signal at an exchange. Otherwise, task is left alone.

smx_Task

138

smx_TaskLock

BOOLEAN smx_TaskLock (void)

Type Bare function

Summary Increments the lock counter, which blocks the current task from being preempted.

Parameters None

Returns TRUE ct locked.
 FALSE ct is locked, but lock counter was not incremented.

Errors SMXE_EXCESS_LOCKS

Descr Increments smx_lockctr, unless smx_lockctr would reach

SMX_CFG_LOCK_NEST_LIMIT, in which case, it aborts and reports excess locks. The
current task is locked as long as the lock counter is non-zero.

 CAUTION: All smx services that stop or suspend ct will break its lock. Also smx services

that may suspend ct will break its lock, unless NO_WAIT is specified, or the service is called
from an LSR.

Note In order to output the excess locks error message, smx_lockctr is temporarily reduced to 1,

then put back to SMX_CFG_LOCK_NEST_LIMIT.

Example

u32 hour;

void hourly_main(void)
{
 smx_TaskLock()
 hour++;
 smx_TaskUnlock()
}

 In this example, other tasks are blocked from accessing hour while it is being updated.

smx_Task

139

smx_TaskLockClear

BOOLEAN smx_TaskLockClear (void)

Type SSR

Summary Clears the lock counter, thus allowing the current task to be preempted.

Parameters none

Returns TRUE Lock counter cleared and ct unlocked.
 FALSE ct is unlocked, but lock counter was not 1.

Errors SMXE_INSUFF_UNLOCKS

Descr If smx_lockctr is not 1, gives a warning. Clears smx_lockctr and tests for preemption. Called

from smx_TaskUnlock() when smx_lockctr == 1. Also recommended to be called, instead of
smx_TaskUnlock(), at the end of lock nesting in the task main function, as a precaution to
assure that the lock counter is zero.

Example

u32 hour;

void hourly_main(void)
{
 smx_TaskLock()
 hour++;
 smx_TaskLockClear()
}

 In this example, other tasks are blocked from accessing hour while it is being updated. Using
this lock clear to unlock assures that the task will be unlocked even if there have been more
locks than unlocks.

smx_TaskPeek

u32 smx_TaskPeek (TCB_PTR task, SMX_PK_PARM par)

Type SSR

Summary Returns the current value for the parameter specified.

Parameters task Task to peek at.
 par Parameter to return value.

smx_Task

140

Returns value Value of par.
 0 Value, unless error.

Errors SMXE_INV_TCB
 SMXE_INV_PARM

Descr This service allows peeking at a task. Valid arguments are:

 SMX_PK_NEXT Next task linked to task in a queue; NULL, if none.
 SMX_PK_LAST Previous task linked to task in a queue; NULL, in none.
 SMX_PK_STATE State.
 SMX_PK_ERROR Error last reported for task.
 SMX_PK_INDEX Index of task in TCB pool. Also used for timeout array.
 SMX_PK_NAME Name.
 SMX_PK_PRI Priority.
 SMX_PK_PRINORM Normal priority.
 SMX_PK_TMO Timeout remaining.

Notes 1. SMX_PK_ERROR cannot be used for the current task because it will return the result
 for itself (i.e. SMXE_OK). Instead, use SMX_ERR.

Example

TCB_PTR atask;
u32 time;

time = smx_TaskPeek(atask, SMX_PK_TMO);
if (time > 10)
 smx_TaskResume(atask);

 In this example, if atask has more than 10 ticks left to wait, resume it with a failure indication.

smx_TaskResume

BOOLEAN smx_TaskResume (TCB_PTR task)

Type SSR

Summary Dequeues task from any queue it may be in and puts it into the ready queue at the end of its

priority level.

Compl smx_TaskSuspend()

Parameters task Task to resume.

Returns TRUE task resumed.
 FALSE Error.

Errors SMXE_INV_TCB

smx_Task

141

 SMXE_BROKEN_Q

Descr Dequeues task from any queue it may be in. If in an event queue the differential count of the

following task is increased by the differential count of task. If task is in a pipe queue,
performs the equivalent of smx_PipeResume(). Then if task is still not resumed, resumes it
with a FALSE return for the put or get operation. For any other queue, task is resumed as if a
timeout had occurred. If the queue is broken, operation is aborted and an error reported.

 smx_TaskResume() can cause a task to be removed from a queue it was just put into (e.g. a

semaphore). The call it had suspended on (e.g. smx_SemTest()) will then appear to fail and
task’s timeout is disabled.

 Operation is the same for bound and unbound tasks. Hence smx_TaskResume() can be used

when it is not known which mode task is in. For example, if task had been stopped by
smx_SemTestStop() it will be restarted, but if it had been suspended by smx_SemTest(), it
will be resumed.

 If the current task is unlocked, it will be preempted, if task has higher priority. The current

task may resume itself. The net result of this is that it is moved to the end of its rq level. If the
current task is still the top task in rq or if it is locked, it is continued. Otherwise, it is
preempted by the new first task in the level.

Example

void taskn_main(void)
{
 do
 {
 /* perform operations for this task */
 } while(smx_TaskResume(smx_ct));
}

 This is an example of round-robin scheduling. If other equal priority tasks are written this

way and are in rq, each will run, then move itself to the end of the rq level by calling
smx_TaskResume(smx_ct). When all of these tasks have run, the process will repeat. Higher
priority tasks can preempt the round-robin tasks, but lower priority tasks are locked out. For
this reason, round-robin scheduling is normally used only at priority 0.

smx_Task

142

smx_TaskSetStackCheck

BOOLEAN smx_TaskSetStackCheck (TCB_PTR task , BOOLEAN state)

Type SSR

Summary Enables stack checking if state is ON; otherwise, disables it.

Parameters task Task whose stk_chk flag should be changed.
 state TRUE to set; FALSE to clear.

Returns TRUE Flag changed
 FALSE Error

Errors SMXE_INV_TCB

Descr If task->flags.stk_chk is 1, the task’s stack is checked for overflow when it is suspended,

stopped, or deleted. If task->flags.stk_chk is 0, these tests are not performed. This service is
used when a foreign stack is in use (such as when a BIOS call is made) in order to avoid false
stack overflow errors.

Example
void function(void)
{
 /* stack checking is initially on */
 ...
 smx_TaskSetStackCheck(smx_ct, FALSE)
 /* call function which changes stacks */
 smx_TaskSetStackCheck(smx_ct, TRUE)
 ...
}

 Stack checking must be disabled for any function which changes stacks, because if a preempt
occurs during the function the smx stack check code will report false overflow errors.

smx_Task

143

smx_TaskSleep

BOOLEAN smx_TaskSleep (u32 time)

Type limited SSR — tasks only

Summary Suspends the current task until the specified system time (time == stime).

Parameters time Time to awaken, in seconds.

Returns TRUE ct has been delayed.
 FALSE No delay due to invalid time.

Errors SMXE_INV_TIME time <= stime
 SMXE_OP_NOT_ALLOWED Called from an LSR

Descr If time is greater than stime, the current task is suspended, and its timeout is set to

 smx_etime + (time - smx_stime) * smx_cf.sec

 where smx_cf.sec is the number of ticks per second. The amount added to etime must be less

than 2exp31. This allows sleeping up to 248 days for a 100 tick per second clock rate. When
the task times out, it is resumed with TRUE. Resolution is one second.

 If time is less than or equal to stime, continues the current task, returns FALSE, and reports

SMXE_INV_TIME.

Notes (1) If called from an LSR, aborts operation and returns to LSR.
 (2) smx_lockctr is cleared if called from a task.

Example 1

smx_TaskSleep(smx_SysStimeGet() + 10); /* sleep until 10 seconds from now */

Example 2
u32 next_hour = smx_stime + (3600 - (smx_stime % 3600));
smx_TaskStart(hourly);

void hourly_main(void)
{
 while(smx_TaskSleep(next_hour))
 {
 /* perform hourly function */
 next_hour += (3600 - (next_hour % 3600));
 }
}

 In this example, the hourly task wakes up at the start of the next hour and performs it hourly
function. It then performs its hourly function, every hour on the hour.

smx_Task

144

smx_TaskSleepStop

void smx_TaskSleepStop (u32 time)

Type limited SSR — tasks only

Summary Stops the current task until the specified system time. Resolution is one second.

Parameters time Time to sleep, in seconds from now.

Errors SMXE_INV_TIME time <= stime
 SMXE_OP_NOT_ALLOWED Called from an LSR

Descr See smx_TaskSleep() for operational description. ct always stops, then restarts instead of

resuming. Pass or fail is returned via the parameter in taskMain(par), when task restarts.

Notes (1) If called from an LSR, aborts operation and returns to LSR.
 (2) smx_lockctr is cleared if called from a task.

TaskMain void task_main(BOOLEAN par)

par TRUE Current task has been delayed
 FALSE No delay due to invalid time

Example

TCB_PTR hour;
u32 next_hour;
#define ENTER -1;

next_hour = smx_stime;
smx_TaskStartPar(hour, FALSE);

void hourMain(BOOLEAN pass)
{
 if (pass)
 /* perform hourly function */
 next_hour += (3600 - (next_hour % 3600));
 smx_TaskSleepStop(next_hour);
}

 This is the equivalent one-shot task for the previous example. In this example, next_hour is

set equal to stime and hour task is started with pass == FALSE. This prevents performing the
hourly function, the first time. The hour task sets next_hour to the start of the next hour and
sleeps until then. Pass == 1, from smx_TaskSleepStop() causes the hourly function to be
performed and this process will repeat until stopped.

smx_Task

145

smx_TaskStart

BOOLEAN smx_TaskStart (TCB_PTR task)
BOOLEAN smx_TaskStartPar (TCB_PTR task, u32 par)
BOOLEAN smx_TaskStartNew (TCB_PTR task, u32 par, u8 pri, FUN_PTR fun)

Type SSR

Summary smx_TaskStart() puts task into the ready queue at the end of its priority level. Stops it first, if

necessary. smx_TaskStartPar() starts task and passes par to it. smx_TaskStartNew() restarts a
task with fun as its main function and pri as its priority, and passes par.

Compl smx_TaskStop()

Parameters task Task to start.
 par Parameter to pass to task.
 fun New main function.
 pri New priority.

Returns TRUE Task started.
 FALSE Error.

Errors SMXE_BROKEN_Q
 SMXE_INV_PRI
 SMXE_INV_TCB

Descr All three Start()’s can be called from any task or LSR. Each dequeues task from any queue it

may be in. If in an event queue, its differential count is added to that of the next task. If in a
pipe queue, calls smx_PipeResume_F(); if task is not restarted by this, restarts it with a
FALSE parameter for the put or get operation. Task’s stack pointer (tcb.sp) is cleared, its
timeout is stopped, and its stack is released back to the stack pool, unless permanent. (If
SMX_CFG_STACK SCAN is TRUE, the stack is actually put into the scanstack pool and
later moved to the freestack pool after it has been scanned and refilled with the test pattern.)

 If the current task starts itself, the result is that it is stopped and moved to the end of its rq

level. Its stack is later released by the scheduler. These actions occur even if the current task
is locked. If the current task is still the top task in rq, or locked, it is immediately restarted.
Otherwise, it is preempted. In either case, code statements following any of the task starts do
not execute.

 If an LSR starts the current task, operation is as the same, except that the task start returns to

the LSR, as it would to a task, other than ct.

 When task is restarted, it is given a new stack, if the old one was released, and it starts from

the beginning of its main function. It will be started locked, if its strt_lockd flag is set.

 smx_TaskStart() is used primarily to start a new task or to restart a stopped task. Since it will

restart any existing task, it may also be used to abort a task and restart it, even if the task is
locked.

smx_Task

146

 smx_TaskStartPar() is a convenient way to start a task and pass a parameter to it, if its main
function accepts a parameter. If not, the parameter is ignored. StartPar() is used primarily to
start one-shot tasks. If task is stopped on a pipe, TRUE or FALSE from the stopped pipe
operation will be overwritten with par.

 smx_TaskStartNew() allows changing the task’s main function, its priority, and passing a

parameter if its main function accepts a parameter. smx_TaskStartNew() loads fun into
task->fun; loads pri into task->priority and task->normpri, unless pri ==
SMX_PRI_NOCHG; resets task->flags.hookd flag; and starts task.

TaskMain void task_main(u32 par) or void task_main(void)

 par is passed via task->rv for smx_TaskStartPar() or smx_TaskStartNew(). task->rv is

unaffected for smx_TaskStart(). If the processor has separate data and address registers, see
the note concerning task main function parameters in smx_Calls Notes and Restrictions.

Example 1

TCB_PTR load_task, waiting_task;
XCB_PTR data_msgs;

waiting_task = smx_TaskCreate((FUN_PTR)waiting_task_main, PRI_HI, 0, SMX_FL_NONE,
 "waiting_task");

void load_task_main(void)
{
 u8 *dp;
 MCB_PTR msg;

 while (msg = smx_MsgReceive(data_msgs, &dp, TMO))
 {

 /* load msg */
 msg->onr = waiting_task;
 smx_TaskStartPar(waiting_task, (u32)msg);

 }
}

void waiting_task_main(MCB_PTR msg)
{
 /* process msg */
}

 load_task obtains a message, changes its owner to waiting_task and starts waiting task, with
msg as its parameter. It is assumed that waiting_task has equal or greater priority so it will
run and process the message before load_task gets the next message. Note that it is a one-shot
task.

smx_Task

147

Example 2
void tx_doneLSR(void)
{
 smx_TaskStartPar(tx, 0);
}

void tx_main(u32 timeout)
{
 if(timeout)
 /* resend message */
 else
 /* send next message */

 smx_EventQueueCountStop(smx_TicksEQ, TX_TIMEOUT, SMX_TMO_INF);
}

 tx_doneLSR is invoked by tx_ISR when a message transmission is complete. It restarts the tx
task with timeout == 0, causing it to send the next message. If the message is not transmitted
in time, the delay will complete and tx will restart with timeout = TRUE, causing it to resend
the message.

Example 3
void appl_init(void)
{
 gp = smx_TaskCreate(gp_init, PRI_MAX, 0, SMX_FL_NONE, "gp");
 smx_TaskStart(gp);
}

void gp_init(void)
{
 /* perform initialization */
 smx_TaskStartNew(smx_ct, 0, PRI_NORM, gp_run);
}

void gp_run(void)
{
 /* perform normal operations */
}

 In this example, the gp task is initially started at maximum priority with gp_init() as its code.

When initialization of gp is complete, smx_TaskStartNew() causes gp to start gp_run() with
normal priority. This is commonly used for one-shot tasks, which require initialization.

smx_Task

148

smx_TaskStop

BOOLEAN smx_TaskStop (TCB_PTR task, u32 timeout)

Type SSR

Summary Dequeues task, releases its stack if not a permanently bound stack, and sets its timeout to

restart it after timeout ticks.

Compl smx_TaskStart()

Parameters task Task to stop.

Returns TRUE OK (not possible if task is stopping itself).
 FALSE Error.

Errors SMXE_INV_TCB

Descr Dequeues task from any queue it may be in. If task is in an event queue, its differential count

is added to that of the next task, if any. If its stack is from the stack pool, it is put into the
freestack pool, unless SMX_CFG_STACK_SCAN is true. If so, the stack is put into the
scanstack pool so that it will be scanned and cleared by smx_StackScan(), then released to the
freestack pool. task’s stack pointer (tcb.sp) is cleared, so all local variables and task’s run
context are lost. task’s timeout is set according to the value of timeout (see Notes below).
When the timeout elapses or if it was 0, task is restarted — i.e. it is put into rq at the end of its
priority level.

 This is the only system service which can stop another task and set its timeout. Hence, it can

be used to cause another task to restart immediately or after a delay. smx_lockctr() is cleared
due to smx_TaskStop() or any other stop function.

 A task may also stop itself, even if it is locked. If a task does stop itself, smx_TaskStop() is

the last statement it executes. The current task may also be stopped by an LSR, even if
locked.

Notes (1) task’s timeout is set to timeout[tn] = smx_etime + timeout, unless timeout ==

SMX_TMO_NOWAIT, SMX_TMO_NOCHG, or SMX_TMO_INF. In the first and
third cases, timeout[tn] is made inactive. In the second case, timeout[tn] is not changed.
In the second and third cases, task is not immediately enqueued in rq.

 (2) smx_lockctr is cleared if task is ct.

TaskMain void task_main(u32 par) or void task_main(void)

 task->rv is unaffected. If the processor has separate data and address registers, see the note

concerning task main function parameters in smx_Calls Notes and Restrictions.

smx_Task

149

Example
TCB_PTR task_stop, t;

/* t needs to be stopped */
smx_TaskStartPar(task_stop, (u32)t);

void task_stop_main(TCB_PTR t)
{
 /* release all blocks, msgs, mutexes, and heap blocks owned by t */
 smx_TaskStop((TCB_PTR)t, SMX_TMO_INF);
}

 task_stop releases all objects that t owns, then stops it indefinitely, so that it can cause no
further damage. t ends up in a dormant state from which it can be restarted only by another
task.

Task Autostop

 return (par)
 or
 }

Type C statement

Parameters par Value passed to task if restarted.

Errors none

Descr When used in the main function of a task, return() or the final } have the same effect as

smx_TaskStop(smx_ct, SMX_TMO_INF). If a return value is specified in return(), it is
loaded into smx_ct->rv. Thus, a task can pass a value, such as a message handle, back to
itself. Otherwise, smx_ct->rv is loaded with whatever value is in the register the C compiler
uses to return a value.

 When used in an LSR, return() or the final } return control to the LSR scheduler. Any return

value is ignored.

TaskMain

u32 task_main(u32 par)
{
 ...
 return(par);
}

 OR

smx_Task

150

void task_main(void)
{
 ...
}

Example 1

TCB_PTR comm;
PCB_PTR blocks;
u8 *bp;

void appl_init(void)
{
 BCB_PTR block;

 comm = smx_TaskCreate(comm_main, PRI_NORM, 0, SMX_FL_NONE, "comm");
 block = smx_BlockGet(blocks, &bp, 0);
 block->onr = comm;
 comm->rv = (u32)bp;
 smx_TaskStart(comm);
}

u32 comm_main(u32 bp)
{
 u8 *dp = (u8*)bp;

 /* use dp as working pointer to access the block */
 return(bp);
}

 In the above, appl_init() first creates the comm task. It then gets a block from the block pool,
transfers it to comm, and starts comm. In the above, comm accepts the block pointer passed
to it by appl_init() and passes this pointer back to itself each time it stops. In this way, an
unbound task can preserve local information from one run to the next.

Example 2

 return((u32)smx_MsgReceive(input, 0, TMO));
}

 and

 smx_MsgReceive(input, 0, TMO);
}

 and

 smx_MsgReceiveStop(input, 0, TMO);
}

smx_Task

151

 produce the same result — the current task is stopped and the value returned by
smx_MsgReceive() is passed to it. The last example does not use a stack block while waiting
for a message whereas the other two do. Hence it is the best way to implement the
smx_MsgReceive in this case (since the task eventually stops in all cases).

smx_TaskSuspend

BOOLEAN smx_TaskSuspend (TCB_PTR task, u32 timeout)

Type SSR

Summary Dequeues task and sets its timeout to resume after timeout ticks.

Compl smx_TaskResume()

Parameters task Task to suspend.

Returns TRUE Task suspended.
 FALSE Error.

Errors SMXE_INV_TCB

Descr Dequeues task from whatever queue it may be in. If task is in an event queue, its differential

count is added to that of the next task, if any. If the current task is suspending another task,
the other task’s return value is not changed unless it was in an event queue. If task is already
suspended or stopped, this call has no effect, except to possibly change its timeout. task’s
timeout is set according to the value of timeout (see Notes below).

 This is the only system service which can suspend another task and set its timeout. Hence it

can be used to delay another task without restarting it. When the timeout elapses, the other
task will resume if it was suspended or restart if it was stopped. However, if the task was in a
wait queue, it will be dequeued and the call that put it there will fail.

 If ct is suspending itself or if it is suspended by an LSR, its run context is saved in its Register

Save Area (RSA). When a task suspends itself, smx_TaskSuspend() is the last statement
executed until the task is resumed after timeout. If ct is locked, smx_lockctr is cleared. Hence,
it no longer will be locked when it resumes.

Notes 1. task’s timeout is set to timeout[tn] = smx_etime + timeout unless timeout ==

SMX_TMO_NOWAIT, SMX_TMO_NOCHG, or SMX_TMO_INF. In the first and
third cases, timeout[tn] is made inactive. In the second case, timeout[tn] is not changed.
In the second and third cases, task is not immediately enqueued in rq. The final stack
pointer is loaded into smx_ct->sp, so task can be resumed.

 2. Clears smx_lockctr if task is ct. smx_TaskSuspend(smx_ct, SMX_TMO_NOWAIT) is
the only case of a NO_WAIT self-suspend that clears smx_lockctr. The reason for this is
that it bumps ct to the end of its ready queue level and thus ct may actually be suspended.

smx_Task

152

Example
TCB_PTR taskA;

void function(void)
{
 smx_TaskSuspend(taskA, SMX_TMO_INF);
 smx_TaskSuspend(smx_ct, SEC);
 /* statements after this will not execute for one second */
 ...
}

 In this example, the function suspends taskA, indefinitely, then suspends itself for a second.
In so doing, it preserves the context and local variables of both tasks.

smx_TaskUnhook

BOOLEAN smx_TaskUnhook (TCB_PTR task)

Type SSR

Summary Unhooks the entry and exit routines from task.

Compl smx_TaskHook()

Parameters task Task to unhook.

Returns TRUE Task unhooked.
 FALSE Error.

Errors SMXE_INV_TCB

Descr Clears the hookd flag and the entry and exit routine pointers in task’s TCB. Since the exit and

entry routines run each time the task is suspended and resumed, task switching time is saved
if the hooking is done only for sections that need it, rather than for the whole task.

 Another reason to unhook a task is if it is to be restarted and there might be a problem if it

starts out hooked, such as if a buffer does not exist at entry to the task since the task itself
allocates it.

Example See smx_TaskHook()

smx_Task

153

smx_TaskUnlock

BOOLEAN smx_TaskUnlock (void)

Type Bare function

Summary Decrements the lock counter. If it becomes 0, unlocks the current task and tests for

preemption.

Parameters none

Returns TRUE Operation performed.
 FALSE ct was already unlocked.

Errors SMXE_EXCESS_UNLOCKS

Descr Decrements smx_lockctr; if smx_lockctr is already 0, aborts and issues

SMXE_EXCESS_UNLOCKS error; if it is already 1, calls smx_TaskLockClear() to clear
smx_lockctr and to check if a higher-priority task is ready to run. If so, ct is preempted.

Note Any smx function that might suspend or stop the current task will also clear the lock, whether

or not suspension or stopping actually occurs.

Example 1

u32 hour;

void hour_incr(void)
{
 smx_TaskLock()
 hour++;
 smx_TaskUnlock()
}

 In this example, other tasks are blocked from accessing hour while it is being updated.

Example 2

void hourly_main(void)
{
 smx_TaskLock()
 hour_incr();
 if (hour > 24)
 hour = 0;
 smx_TaskUnlock()
}

 This example works with the previous example to show why lock nesting is necessary. The
hour_incr() routine could be called alone, so it must be locked. But hourly_main() also needs
to be locked. The lock counter handles this situation.

smx_Task

154

Example 3
smx_TaskLock();
smx_SemSignal(semA);
smx_MsgReceive(xchgA, &dp, tmo);

 In this example, the task lock prevents ct from being preempted if there is a higher priority
task waiting at semA. smx_MsgReceive() clears the lock, whether it waits or not. Use of the
lock, in this way, prevents an unnecessary potential task switch.

smx_TaskUnlockQuick

BOOLEAN smx_TaskUnlockQuick (void)

Type Bare function

Summary Decrements lock counter. If it becomes 0, unlocks the current task, but does not test for

preemption.

Parameters none

Returns TRUE Operation performed.
 FALSE ct was already unlocked

Errors SMXE_EXCESS_UNLOCKS

Descr Decrements smx_lockctr; if smx_lockctr is already 0, aborts and issues

SMXE_EXCESS_UNLOCKS warning. This function is intended for quick protected
accesses to global variables, when the overhead of an SSR is not desirable. If a higher priority
task is ready, it will not run until the next SSR or LSR.

Example

u32 hour;

void hourly_main(void)
{
 smx_TaskLock()
 hour++;
 smx_TaskUnlockQuick()
}

 In this example, other tasks are blocked from accessing hour while it is being updated. Using
this version of unlock eliminates the overhead of an SSR, but a higher priority task may be
kept waiting.

smx_Timer

155

smx_Timer

smx_TimerDup

BOOLEAN smx_TimerDup (TMCB_PTR *tmrbp, TMCB_PTR tmra, const char *name)

Type SSR

Summary Creates a duplicate timer tmrb from tmra and enqueues it after tmra in tq.

Parameters tmra Timer to duplicate.
 tmrbp Pointer to location for tmrb handle.
 name Name to give timer or NULL for none.

Returns TRUE Timer duplicated.
 FALSE Error. Timer not duplicated.

Errors SMXE_INV_PARM
 SMXE_INV_TMCB
 SMXE_OUT_OF_TMCBS
 SMXE_TMR_STOPPED

Descr Gets a TMCB for tmrb and copies all fields from tmra into it, except for name, diffcnt

(differential count), hptr (handle pointer), and onr. Then enqueues tmrb after tmra with
tmrb->diffcnt == 0. Loads tmrbp into tmrb->hptr and tmrb into tmrbp. Loads the current LSR
pointer or task handle into tmrb->onr. Hence, any task or LSR can duplicate a timer and will
be identified as the owner of the duplicate timer. tmrb is effectively an exact duplicate of tmra
and has all of the same properties, except as noted.

 Returns FALSE, and reports SMXE_INV_PARM error, if tmrbp == NULL, *tmrbp !=

NULL (tmrb is in use), or tmra == NULL (tmra has timed-out or has been stopped). Returns
FALSE and reports SMXE_INV_TMCB error, if tmra is not a valid timer handle. Returns
FALSE and reports SMXE_OUT_OF_TMCBS error if no TMCB is available for tmrb.

Example

TMCB_PTR atmr, btmr;

smx_TimerStart(&atmr, 10, 0, aLSR, "atmr");
smx_TimerDup(&btmr, atmr, "btmr");

 In this example, btmr is created as a duplicate of atmr and it is enqueued in tq immediately
after atmr with 0 differential count. btmr can then be changed, if desired, by any services
described below.

smx_Timer

156

smx_TimerPeek

u32 smx_TimerPeek (TMCB_PTR tmr, SMX_PK_PARM par)

Type SSR

Summary Returns the current value for the parameter specified.

Parameters tmr Timer to peek at.
 par Parameter to return to return value.

Returns value Value of par.
 0 Value, unless error.

Errors SMXE_INV_PARM
 SMXE_INV_TMCB
 SMXE_TMR_STOPPED

Descr This service allows peeking at an active timer. Valid arguments are:

 SMX_PK_COUNT Number of timeouts since cyclic or pulse timer started.
 SMX_PK_DELAY Delay for next pulse HI or LO, if STATE == LO or HI, resp.
 SMX_PK_DIFF_CNT Differential count from timer ahead.
 SMX_PK_LSR LSR to be invoked on timeout.
 SMX_PK_MAX_DLY Total remaining time until timeout of last timer in tq.
 SMX_PK_NAME Name of timer.
 SMX_PK_NEXT Next timer in tq. NULL, if none.
 SMX_PK_NUM Number of timers in tq.
 SMX_PK_ONR Task or LSR that created tmr.
 SMX_PK_OPT LSR parameter option. (See smx_TimerSetLSR().)
 SMX_PK_PAR Parameter value to pass to LSR, if opt = SMX_TMR_PAR.
 SMX_PK_PERIOD Period of cyclic or pulse timer.
 SMX_PK_STATE LO/HI pulse state.
 SMX_PK_TIME_LEFT Total remaining time until timeout for tmr.
 SMX_PK_WIDTH Pulse width of pulse timer.

 If timer has already timed out (i.e. tmr == NULL), or par is invalid, returns 0 and reports

SMXE_INV_PARM error. If tmr is not a valid timer handle, returns 0 and reports
SMXE_INV_TMCB error.

Example

TMCB_PTR atmr;
TCB_PTR task;

smx_TimerStart(&atmr, 5, 10, aLSR, "atmr");
...
task = (TCB_PTR)smx_TimerPeek(atmr, SMX_PK_ONR);

 In this example, atmr is created. At some later time (and probably by a different task) its
owner is determined. The type cast is typical because TimerPeek() returns a variety of
parameter types — all as u32. The above will not work if atmr owner is an LSR. Instead:

smx_Timer

157

void* hdl;
LSR_PTR lsr;

hdl = (void*)smx_TimerPeek(atmr, SMX_PK_ONR);
if (smx_SysWhatIs(hdl) == SMX_CB_TASK)
 task = (TCB_PTR)hdl;
else
 lsr = (LSR_PTR)hdl;

smx_TimerReset

BOOLEAN smx_TimerReset (TMCB_PTR tmr, u32 *tlp)

Type SSR

Summary Stops a timer then restarts it with its current delay. Saves its time left in tlp, unless NULL.

Parameters tmr Timer to reset.
 tlp Pointer to location to store time left.

Returns TRUE Timer restarted.
 FALSE Error. Timer not restarted.

Errors SMXE_INV_TMCB

Descr Dequeues timer from the timer queue, tq. Its differential count is added to that of the next

timer, if any. The total time remaining for timer is computed and loaded into the location
pointed to by tlp, unless tlp is NULL. Then requeues timer in tq using its current delay and
returns TRUE.

 If the timer is a one-shot timer, its current delay is its initial delay (i.e. the delay it was started

with). For cyclic and pulse timers, the current delay is the initial delay until the first period
starts. Then, for a cyclic timer, the current delay is the period, and for a pulse timer, the
current delay is the delay until the end of the current HI or LO period — i.e. the time until the
next timeout.

 If the timer has already timed out (i.e. tmr == NULL), returns FALSE and loads 0 into tlp,

unless it is NULL. The timer cannot be restarted in this case because its TMCB has already
been cleared and returned to the TMCB pool. If tmr is not a valid timer handle, aborts
operation with FALSE, loads 0 into tlp unless it is NULL, and reports an
SMXE_INV_TMCB error.

Example

TMCB_PTR atmr;

smx_TimerStart(&atmr, 10, 0, aLSR, "atmr");

smx_Timer

158

while (1)
{
 while (wait_for_event()) {}
 /* perform actions */
 smx_TimerReset(atmr, NULL);
}

void aLSR(u32 par)
{
 /* deal with timeout */
}

 In this example, atmr is started. Then the while loop waits for an event. When the event
occurs, it performs the required actions, then resets atmr. If the next event does not occur
within 10 ticks, atmr times out and invokes aLSR to deal with the timeout. In this case,
wait_for_event() is not an smx service, so it has no timeout.

smx_TimerSetLSR

BOOLEAN smx_TimerSetLSR (TMCB_PTR tmr, LSR_PTR lsr, SMX_TMR_OPT opt, u32 par)

Type SSR

Summary Changes LSR, LSR option, and LSR parameter for the specified timer.

Parameters tmr Timer to change.
 lsr LSR.
 opt LSR option.
 par LSR par.

Returns TRUE Timer changed.
 FALSE Error. Timer not changed.

Errors SMXE_INV_PARM
 SMXE_INV_TMCB
 SMXE_TMR_STOPPED

Descr Loads new values for LSR, LSR option, and LSR parameter into the timer’s TMCB. The

LSR option controls what is passed to the LSR when it is invoked:

 SMX_TMR_PAR par stored in TMCB.
 SMX_TMR_STATE pulse state (LO/HI).
 SMX_TMR_TIME etime at timeout.
 SMX_TMR_COUNT number of timeouts since start.

 These options help to reduce the need for LSR peeks. When a timer is started, the LSR option

defaults to SMX_TMR_PAR and the LSR parameter defaults to 0. This service is used to

smx_Timer

159

change them, as well as the LSR, if desired. Note: The timeout counter is a 16-bit value, so it
will rollover at 2^16 timeouts, if the cyclic or pulse timer runs that long.

 If timer has already timed out (i.e. tmr == NULL), lsr == NULL, or opt is invalid, returns

FALSE and reports SMXE_INV_PARM error. If tmr is not a valid timer handle, returns
FALSE and reports SMXE_INV_TMCB error.

Example

TMCB_PTR atmr;

smx_TimerStart(&atmr, 10, 10, aLSR, "atmr");
smx_TimerSetLSR(atmr, aLSR, SMX_TMR_COUNT, 0);

void aLSR(u32 count)
{
 if (count < 100)
 /* perform function */
 else
 smx_TimerStop(atmr, NULL);
}

 In this example, atmr is started, then it is modified to pass the timeout count to aLSR. After
100 timeouts, aLSR stops further action.

smx_TimerSetPulse

BOOLEAN smx_TimerSetPulse (TMCB_PTR tmr, u32 period, u32 width)

Type SSR

Summary Changes period and pulse width for specified timer.

Parameters tmr Timer to change.
 period Timer period.
 width Pulse width.

Returns TRUE Timer changed.
 FALSE Timer not changed due to error.

Errors SMXE_INV_PARM
 SMXE_INV_TMCB
 SMXE_TMR_STOPPED

Descr Loads new values for timer period and pulse width into its TMCB. These values do not take

effect until the next period. For example, if this service is called in the middle of a pulse (state
== HI), the pulse is allowed to complete normally and the inter-pulse period is allowed to
complete normally. Or if called in the middle of an inter-pulse period (state == LO), that
period is allowed to complete normally. In either case, the new width and new period will be

smx_Timer

160

applied starting with the next period. This assures smooth transitions for modulation
techniques.

 When a timer is started, its width is 0, by default. Hence this service converts a cyclic timer

into a pulse timer if width > 0. Otherwise, it can be used to change the period of a cyclic
timer, without having to restart the timer. Because the period or width or both can be
changed, this service can be used for pulse width modulation (PWM), pulse period
modulation (PPM), or frequency modulation (FM). (See UG Timer sections for more
discussion.)

 If timer has already timed out (i.e. tmr == NULL) or width >= period, returns FALSE and

reports SMXE_INV_PARM error. If tmr is not a valid timer handle, returns FALSE and
reports SMXE_INV_TMCB error.

Example

TMCB_PTR atmr;

smx_TimerStart(&atmr, 5, 10, aLSR, "atmr");
smx_TimerSetPulse(atmr, 10, 2);
smx_TimerSetLSR(atmr, aLSR, SMX_TMR_STATE, 0);

void aLSR(u32 pulse)
{
 if (pulse == HI)
 Lamp(ON);
 else
 Lamp(OFF);
}

 In this example, atmr is started, then changed to a pulse timer with a pulse width of 2 ticks
and a period of 10 ticks (i.e. 2 ticks HI and 8 ticks LO). The timer is set to pass the pulse state
to aLSR when it times out. This is used to turn a lamp on or off. In this example, after the 5
tick start delay, the first 2 tick pulse will occur and it will occur every 10 ticks, thereafter.

smx_TimerStart

BOOLEAN smx_TimerStart (TMCB_PTR *tp, u32 delay, u32 period, LSR_PTR lsr, const char *name)
BOOLEAN smx_TimerStartAbs (TMCB_PTR *tp, u32 time, u32 period, LSR_PTR lsr, const char *name)

Type SSR

Summary Creates and starts a new timer or restarts an existing timer.

Compl smx_TimerStop()

smx_Timer

161

Parameters tp Pointer to location for timer handle.
 delay Timeout, in ticks, from now.
 time Absolute time from startup (i.e. etime == 0).
 period Period, if cyclic timer, 0 if not.
 lsr LSR to invoke at timeout.
 name Name to give timer or NULL for no name.

Returns TRUE Timer created and started or restarted.
 FALSE Timer not created due to error.

Errors SMXE_INV_PARM tp == NULL, delay == 0, or lsr == NULL.
 SMXE_INV_TMCB *tp is not a valid timer handle.
 SMXE_OUT_OF_TMCBS

Descr If *tp == NULL, this call creates a timer and starts it running. A timer control block (TMCB)

is allocated from the TMCB pool (smx_tmcbs), and the start parameters: delay, period, lsr,
and name are loaded into it. In addition, the TMCB onr field is set to the current task or the
current LSR, depending upon which made this call. Other TMCB fields are set to default
values, which can be changed by other timer services.

 If an existing timer is being restarted (i.e. *tp != NULL), the timer is dequeued from the timer

queue, tq. Then the delay, period, lsr, and name fields in the TMCB are loaded with the new
values passed.

 In either case, the timer is enqueued in the timer queue, tq, based upon its expiration time (i.e.

etime + delay). Its computed differential count is stored in its TMCB, and it is singly-linked
into tq. This process is similar to that for an event queue. (See smx_EventQueueCount().)
Then its handle is loaded into the location at tp.

 The address of the user’s timer handle variable is saved in the TMCB so the timer handle can

be cleared when the timer stops or is stopped. This is necessary to avoid an aliasing problem
for one-shot timers. If not done, a timer could time out before it is accessed again. This would
release the TMCB which could then be re-used for a new timer. Then, a subsequent operation
for the old timer would operate on the new timer — not what was intended.

 smx_TimerStartAbs() is identical to smx_TimerStart() except that it accepts an absolute time

from system start (i.e. etime), rather than a delay. This is useful to assure that correct timing
relationships are maintained between multiple timers. If delays were used, a tick might occur
between timer starts, resulting in timers not being synchronized as expected. See the User’s
Guide for an example of using absolute timer starts.

 If tp == NULL (NULL pointer reference), delay == 0 or time <= smx_etime (timeout already

passed), or lsr == NULL (no action possible), FALSE is returned SMXE_INV_PARM error
is reported. If starting a new timer and no TMCB is available, FALSE is returned and an
SMXE_OUT_OF_TMCBS error is reported. If restarting a timer and its handle is not valid,
FALSE is returned and SMXE_INV_TMCB error is reported. In this case the intended timer
will continue running as if nothing happened.

Notes 1. Do not declare a timer handle as an auto variable. When the timer times out or is stopped,

the timer handle location will be cleared. This will cause an error if the function that
started the timer has returned and this location is being used by another function.

smx_Timer

162

 2. If time left is needed, it is recommended that the timer be stopped then restarted.
 3. Failure to restart a running timer, due to an error, does not stop it.
 4. tp points to a slot used by a task used to store the handle of a timer that it started. This slot
 should must not be used by any other task, else errors will occur due to one task restarting

another task's timer.

Examples

TMCB_PTR atmr;

smx_TimerStart(&atmr, 10, 0, aLSR, "atmr");

void aLSR(u32 par)
{
 /* perform timeout function */
}

 The above example shows creating a one-shot timer that invokes aLSR to perform a timeout

function after 10 ticks. This occurs only once, and atmr deletes itself.

smx_TimerStart(&atmr, 10, 10, aLSR, "atmr");

 This creates a cyclic timer which does the same after 10 ticks, then every 10 ticks, thereafter,

until it is stopped.

smx_TimerStop

BOOLEAN smx_TimerStop (TMCB_PTR tmr, u32 *tlp)

Type SSR

Summary Stops timer, loads its time left into location tlp, and deletes timer.

Compl smx_TimerStart(), smx_TimerStartAbs()

Parameters tmr Timer to stop.
 tlp Pointer to location to store time left.

Returns TRUE Timer stopped or was already stopped.
 FALSE Timer not stopped due to error.

Errors SMXE_INV_TMCB

Descr Removes timer from the timer queue, tq. Its differential count is added to that of the next

timer, if any. The total time remaining for timer is computed and loaded into the location
pointed to by tlp, unless tlp is NULL. The timer handle is automatically cleared so that the
timer cannot be accessed again. (This was the location provided by smx_TimerStart().) After
stopping a timer, its TMCB is cleared and returned to the timer pool.

smx_Timer

163

 If tmr == NULL, 0 is loaded into *tlp, and TRUE is returned. The condition occurs if
attempting to stop a timer that has already stopped, been stopped, or never started. If tmr is
not a valid timer handle, FALSE is returned and SMXE_INV_TMCB error is reported.

Note Do not create a derivative timer handle because it will not be automatically cleared, which

can cause an aliasing problem — see discussion in smx_TimerStart()

Example

TMCB_PTR atmr;
u32 time_left;

smx_TimerStop(atmr, &time_left);

 This shows stopping the timer started in the example for smx_TimerStart(). The total time left
for the timer before it would have timed out is stored in time_left. This might be useful, for
example, to determine if shorter or longer timeouts should be used.

smx Glossary

164

smx Glossary

This section briefly defines smx terminology and refers to other documents for details. Terms are in
alphabetical order. When searching for a term, note that the smx_ or SMX_ prefix is generally omitted (else
nearly all entries would be under “s”). So, for example, look for “ct”, not “smx_ct”. The main exception to
this is that errors are all listed under “SMXE_” in order to keep them together.

The entries in this glossary often have a more implementation details than text in other places and thus may
help to give a better understanding of the entries.

adjusted size of a block allocated from the heap is the next larger multiple of 8 if the requested size is not
a multiple of 8. This is the size that is allocated.

allocation policy as applied to the heap, means specifying how a best-fit chunk is found and also
specifying the minimum remnant size for splitting a new chunk from a larger chunk that
has been found. The allocation policy effects performance vs. memory efficiency.

access conflict Occurs when two routines try to simultaneously access a non-sharable system resource.
Access conflicts due to preemption are very similar (and equally troublesome) to those
caused by hardware interrupts. It helps to use data hiding as much as possible and to use
messages and pipes to transmit data from task to task, rather than to use global variables.
See also: critical section and lock.

accurate With respect to timing, means accurate to a tick.

active task A task which is running or suspended, but not stopped.

ADAR application dynamically allocated region. One of two DARs created by smx. This DAR
contains the stack pool, usually the heap, and user-defined block and message pools. It can
be used for other dynamic user objects. See UG Memory Management.

AND == SMX_EF_AND. Bit 16 set in an event flags mask.

ANDOR == SMX_EF_ANDOR. Bit 17 set in an event flags mask. Overrides AND (bit 16).

atomic Indivisible. As applied to software means that a group of statements, cannot be interrupted
by other software, which shares variables or resources. Generally, SSRs are atomic. To
protect a task’s code from other tasks, lock the task; to protect from LSRs disable LSRs;
and to protect from ISRs, disable interrupts.

amerge mode is controlled by the smx_heap.mode.amerge flag. It starts ON (except if MIN_RAM) and
can be turned OFF or ON via smx_HeapSet(). In the ON state, automatic merge control is
enabled. Example code for this is in smx_HeapManager() in main.c of the Protosystem. See
discussion in UG Heap Management. In the OFF state, chunk merging can be manually
controlled.

automatic merge control See above.

smx Glossary

165

autostop Returning from a task’s main function or running through the last brace (“}”) results in an
autostop. If this occurs, the task is stopped forever and must be restarted by another task.

background In an smx system, tasks are considered to be in the background, and ISRs and LSRs are
considered to be in the foreground.

bare block is a data block which is not linked to an smx control block. Examples are base blocks, DAR
blocks, heap blocks, and static blocks.

base block is a data block from an smxBase block pool. It is obtained with sb_BlockGet(). See SB.

base block pool is an smxBase data block pool created by sb_BlockPoolCreate(). A base pool is controlled
by a pool control block of type PCB, which is identical to an smx PCB, but statically
defined. See UG Memory Management, base block pools and SB Base Block Pools.

bare function An ordinary C function that is part of the smx or smxBase API and is prefixed with smx_
or sb_. “bare” emphasizes that the function is not task-safe and care should be exercised if
called from a task. Normally used in ISRs, LSRs, and SSRs.

bare macro An ordinary C macro. See bare function description above.

BCB block control block There is one BCB per smx block. It contains a block pointer, pool
handle, and owner (task or LSR) handle. A BCB is free if its owner ==
SMX_ONR_NONE is free.

BCB pool All BCBs are in a pool, which is controlled by the smx_bcbs pool control block. The
singly-linked list of free BCBs is pointed to by smx_bcbs.pn. The link pointer is in the first
word of each free BCB. The last free BCB has a NULL link.

BCB_PTR BCB pointer type. Variables of this type contain smx block handles.

best-fit chunk The chunk in a large heap bin, which is the smallest chunk that is big enough to satisfy an
allocation request. If the bin is sorted, this will be the first large-enough chunk found in the
bin.

bin See heap bin.

bin leak occurs when cmerge is ON and chunks freed are merged with adjacent free chunks and the
resulting larger free chunks are moved to larger bins. Also occurs when cmerge is OFF and
chunks are split and remnants are moved to smaller bins.

bin-type heap A heap that uses bins to store free chunks. Each bin stores one or more chunk sizes.

binary semaphore has only two states: 0 and 1. smx_SemSignal() puts it into the 1 state if no tasks are
waiting; smx_SemTest() puts it into the 0 state. Once in the 1 state, additional signals have
no effect; once in the 0 state, additional tests suspend tasks having timeouts. See also UG
Semaphores.

block A block is a group of adjacent memory locations. A block may be any size. There are many
types of blocks: smx blocks, message blocks, base blocks, DAR blocks, heap blocks, static
blocks, etc. See descriptions in UG Memory Management and SB Base DAR Functions
and Block Pools.

block migration refers to the process of making a block into a message to pass it to the background or
unmaking a message into a block to pass it to the foreground. See UG Exchange Messaging

smx Glossary

166

block pool A pool of equal-size blocks controlled by a pool control block. See base block pool and
smx block pool.

bmap bin map has one bit per bin. If the bit is set, the bin contains at least one chunk.

BOOLEAN A TRUE(1)/FALSE(0) variable. This is the traditional C definition. To enhance reliability,
we recommend that you test for TRUE as !0 rather than 1.

bound mode If a task has a stack, it is in the bound mode and, if not, it is in the unbound mode. If the
task’s stk_perm flag is set, it has a permanently bound stack. Otherwise, the stack is bound
to the task by the scheduler when the task is dispatched.

 Normal tasks are always in the bound mode. One-shot tasks are created in the unbound
mode and vary between bound and unbound depending upon whether they are
running/suspended or stopped.

broadcasting consists of sending one message to a broadcast exchange. Any tasks receiving from the
exchange will receive the message handle and data pointer. However, they can only read
the message. See slave task and master task.

bs_fwd mode is controlled by the smx_heap.mode.bs_fwd flag. It starts ON and controls the direction of
heap bin scans. It is an internal mode and is not user controlled.

bsmap bin sort map has one bit per bin. If the bit is set, the bin needs to be sorted.

CB control block

 A structure that stores control information for a system object. Each object type (e.g. task,
semaphore, or message) requires a different control block format since different control
information is associated with each.

 The format of the first 3 fields is common to all control blocks, except BCBs and PCBs. All
have a forward link, backward link, and control block type. Control blocks are created and
initialized by the Create functions, such as smx_TaskCreate(). One control block is required
per object; it is assigned when the object is created. Control block handles are used to
access control blocks. See handle for more information.

 Control blocks are cleared when released so that new control blocks are always empty. This
is not only safer but it is clearer when looking at them while debugging, since it is obvious
whether it is in use or not.

 For further information on a specific control block type, look in this glossary under the
cbtype or subtype name given above. All smx control block types are defined in xtypes.h.

cbtype control block type. This field is present in nearly all control blocks; it is always in the
same position, if present. Values are defined in xdef.h, for example SMX_CB_TASK.

CCB chunk control block is placed at the start of a free chunk. It provides information
necessary to manage the free chunk. A CCB contains 24 bytes.

CDCB chunk debug control block is placed at the start of a debug chunk. It provides information
necessary to debug allocated block problems. A CDCB contains 24 bytes.

ceiling See priority ceiling.

smx Glossary

167

CHK_OVH chunk overhead consists of the metadata in a chunk which is necessary to manage it. The
size of an allocated chunk must be at least = block_size + CHK_OVH.

chunk A block of memory used by the heap. A chunk consists of a header used by the heap code
and a data block used by the application. A chunk is thus larger than the data block, which
it contains. The smx heap supports three types of chunks: free, inuse, and debug.

cmerge mode is controlled by the smx_heap.merge.cmerge flag. Normally it starts OFF. In this state,
chunk merging by smx_HeapFree() is inhibited, which helps to populate heap bins. When
ON, merging of chunks is enabled. This helps to avoid allocation failures by reducing
fragmentation. Can be turned ON or OFF via smx_HeapSet(). See amerge mode for
automatic control.

client task is provided a service by a server task. Typically, a client task sends a message or proxy
message to a message exchange, then waits for a response. See UG Exchange Messaging.

clsr current LSR. Address of current LSR or 0 if no LSR is running. While an LSR is running,
the current task is effectively suspended. Stored in smx_clsr.

cmerge smx_heap.mode.cmerge. Starts OFF. Can be turned ON or OFF by smx_HeapSet(). When
ON, chunks are merged with adjacent free chunks when freed. When OFF chunk merging
does not occur.

complementary call The smx call that performs the inverse operation of a particular call e.g.:
smx_MsgSend() vs. smx_MsgReceive(), and smx_SemSignal() vs. smx_SemTest().

complementary pipe function An smx pipe function that may be used at the other end of the same pipe.

configuration table See smx_cf below.

context switch Same as task switch.

control block See CB.

control block pool smx control blocks are grouped into pools controlled by pool control blocks (PCBs).
For example, the TCB pool is controlled by smx_tcbs, which is a statically allocated
smxBase PCB. Control block pools are allocated from SDAR, when first needed (usually
by the corresponding create function). See specific pool types and UG Under the Hood,
dynamic control blocks, for further information.

counting semaphore is the same as a resource semaphore.

coupled ISR See smx ISR.

critical section A section of code which modifies shared data or which accesses a shared system resource.
Critical sections must be protected from interrupts and preemptions. See atomic.

ct current task. is the currently running task. It handle is stored in smx_ct. smx_ct == NULL
should occur only during startup, since the smx_Idle task should always be ready to run. Do
not use smx_ct in ISRs or LSRs since the current task may have already been removed
from rq and enqueued elsewhere.

current delay for a timer — If the timer is a one-shot timer, its current delay is its initial delay (i.e. the
delay it was started with). For cyclic and pulse timers, the current delay is the initial delay
until the first period starts. Then, for a cyclic timer, the current delay is the period and for a
pulse timer, the current delay is the delay until the end of the current HI or LO period —
i.e. the time until the next timeout.

smx Glossary

168

DAR dynamically allocated region — A region of memory for dynamically allocated
structures. smx ships with SDAR for smx objects and ADAR for application objects.
Additional DARs can be created for special purposes. See SB Dynamically Allocated
Regions.

data abort An exception due to accessing unimplemented memory.

data block is a block intended to hold data, as distinct from a control block, which holds control
information.

dc See donor chunk.

DCB_PTR DAR control block pointer points to a structure containing the pointers for a DAR. See
bdef.h for definition. A DAR control block is initialized by sb_DARInit().

deadline is the time when a task must complete an operation or a system failure may occur, in a hard
real-time system.

deadlock or deadly embrace occurs when two tasks are waiting upon resources owned by each other. As a
consequence, neither can complete. To avoid deadlocks, tasks should get resources in the
same order and release them in the reverse order or use mutexes and ceiling priority.
Timeouts serve to break deadlocks.

debug chunk is a heap chunk, which is currently inuse and which contains debug metadata. The debug
metadata consists of a Chunk Debug Control Block, CDCB and fences surrounding the data
block. The number of fences is user-specified.

debug mode is a flag in smx_heap.mode.debug. It starts OFF and can be turned ON or OFF via
smx_HeapSet(). When ON, allocations produce debug chunks; when OFF, allocations
produce inuse chunks.

debug version The version of the smx library, middleware, or application intended for debugging. It is
compiled with no optimization, debug symbolics enabled, and SMX_BT_DEBUG defined.
The latter is used to enable alternative debug code for smx, such as putting tables into RAM
instead of ROM.

dequeue The process of removing a task or a message from a queue. This is done by changing
forward and backward links (fl and bl) in appropriate control blocks. Dequeueing is a
logical process. Control blocks are not moved — all stay in the same physical location.
When a queue becomes empty or an object is not in a queue, its fl == NULL.

dispatch Dispatching a task is the process of starting it to run. This is done by the scheduler.

 For a one-shot task, it is necessary to get a stack from the freestack pool. The scheduler
then starts the task by calling its main function, with tcb.rv as its parameter. If a stack is not
available, SMXE_OUT_OF_STKS is reported and the scheduler goes on to the next ready
task. This error is reported only once. The task remains in rq until a stack is available.

 The first time a normal task is dispatched, it is started like a one-shot task, except it already
has a stack. When a task has been suspended, the scheduler resumes it by returning past the
point of suspension. This requires restoring registers and passing back the return value if an
SSR was called.

distributed message assembly is where components of a message (e.g. header and payload) are assembled
by different tasks, which have each received a pointer the blank message body. See UG
Exchange Messaging, broadcasting and proxy messages.

smx Glossary

169

donor chunk is located between the lower heap and the upper heap. Initially it is located immediately
after start chunk. It supplies small chunks for the lower heap, which are of SBA size. If the
SBA bin for the desired size is empty, the chunk is taken from dc. This helps to maintain
locality of SBA chunks. dc must be large enough to hold a chunk control block (CCB).

dormant A task is dormant if it is stopped with no timeout. Such a task will not run again unless it is
started by another task.

double free occurs when free() attempts to free a chunk, which is already free. If the chunk has not
already been reallocated, this is detected and SMXE_HEAP_ERROR is reported.

dynamic A dynamic object can be created and deleted, at run time. All smx objects can be
dynamically created, and all, except DAR block pools, can be dynamically deleted. See
also static.

dynamic merge control Control of heap chunk merging that is implemented on a task or function-specific
basis.

dynamically allocated region See DAR.

EB See error buffer.

ec See end chunk.

EG event group consists of event flags and masks. Each event flag is one bit in a 14-bit field in
an EGCB, which can be set or reset by service calls. Each mask defines an AND, OR, or
AND/OR combination of the event flags. Each waiting task has its own mask. When a
match occurs, due to setting a flag, all tasks with matching masks are resumed. See UG
Event Groups.

EGCB event group control block controls an event group. It contains forward and backward links
for the task wait queue, flags, and the event group name..

EGCB pool See QCB pool.

EGCB_PTR EGCB pointer type. Variables of this type contain event group handles.

EM smx_EM(). See Error Manager.

EMHook smx_EMHook() is a callback function for the user to add error processing code inside of
smx_EM(). Can also be used to set an error breakpoint. See UG Error Manager, error
manager hook.

end chunk is the last chunk in the heap. It is an 8-byte, inuse chunk with no data block. smx_heap.px
points to it.

enqueue The process of putting a task or a message into a queue. This is done by changing forward
and backward links (fl and bl) in appropriate control blocks to add the new item to the
queue. Most queues are priority queues, in which case it is necessary to search in order to
place the task or message after the last object of equal priority. Some queues are FIFO
queues for which the new object is placed at the end of the list. The ready queue is a
layered priority queue — see ready queue. Enqueueing is a logical process. Control blocks
are not moved — all stay in the same physical location.

entry routine A hooked entry routine, which is transparently called by the scheduler prior to resuming a
task. See hook routine.

smx Glossary

170

EQCB event queue control block controls an event queue. It contains forward and backward
links for the task wait queue, tq flag, and the event queue name.

EQCB pool See QCB pool.

EQCB_PTR EQCB pointer type. Variables of this type contain event queue handles.

EREC error record format for the error buffer (EB) contains fields for etime, error number, and
a handle identifying the source of the error.

error buffer smx_EB is an array of error records stored cyclically — the oldest is overwritten by the
newest. EB is allocated from SDAR and cleared during initialization.

error manager smx_EM(). The smx error manager is called whenever an error is detected by smx. It is
usually called via the smx_ERROR() or smx_ERROR_EXIT() macros in SSRs. It updates
the err globals below, as well as tcb.err for the current task. If enabled, it saves information
in EB and EVB, and displays an error message on the console. For most errors, control then
goes back to the point of call with a failure indication. Severe errors may lead to restarting
the current task or exiting the application. See UG Error Management.

error type smx error types are defined in SMX_ERRNO in xdef.h. An enum is used for compilers
which permit byte enums; for other compilers, defines are used. There are nearly 70 types
of errors.

errctr smx error counter, stored in smx_errctr. Counts all errors since system startup. sb_errctr is
the corresponding variable in the smxBase error manager.

errctrs smx error counters array, stored in smx_errctrs[]. Contains a one byte counter for each
smx error type. Accessed using smx_errno as the index. Compare the sum of all counters to
smx_errctr to determine if any have overflowed.

errno smx error number, stored in smx_errno. Stores the error number of the last smx error
detected. To determine the last error caused by a particular task, consult task->err, instead.
Error numbers are defined in the SMX_ERRNO enum in xdef.h. sb_errno is the
corresponding variable in the smxBase error manager. Keep in mind that some smx
services use smxBase services, so the smxBase service may be the actual cause of failure.
Consult sb_errno when debugging, if it is unclear what is the cause of an smx error. Note:
SMX_ERR will register that an error has occurred.

etime elapsed time in ticks since the last reset. 31 bits. For 100 ticks per second, allows 248 days
of elapsed time. Used for timeouts and waits. Stored in smx_etime.

etime rollover Occurs when etime and all active timeouts are >= 2exp31. When a rollover occurs, the top
bit of etime and all active timeouts is cleared. This is performed in the idle task, with LSRs
turned off so that smx_KeepTimeLSR() and smx_TimeoutLSR() (which perform all timing
functions) cannot run.

EVB See event buffer.

event buffer smx_EVB logs system events, such as task switches, LSR runs, ISR runs, SSR calls, and
user events. Each record starts with a start-of-record marker, 0x5555rrss, where rr = record
type and ss = record size in words. For example, 0x55550304 is the ISR start record (see
record types in xevb.h). All records include a precision timestamp and other fields such as
the current ISR, LSR, or task handle, user parameters, etime, error number, and SSR id and
parameters. This information is analyzed by smxAware to display an event log and
graphical event timelines.

smx Glossary

171

event flag In an event group, setting an event flag signals that an event has occurred. This may cause a
match and result in one or more tasks being resumed and the event flag being reset. See UG
Event Groups.

event queue An event queue permits a task to be resumed or restarted after a specified number of events
have occurred. Tasks are enqueued in order, by differential counts. Signals decrement the
first task’s counter until it is zero. Then it is resumed or restarted. If the next task’s counter
is zero it also is resumed or restarted. If not, it is decremented by subsequent signals.
Examples of events are: alarms, rotations, triggers, pulses, etc. A task using an event queue
will miss events while it is not enqueued in the event queue (i.e. when it is running or ready
to run). If this is not acceptable, a semaphore should be used instead. See UG Event
Queues.

exchange An message exchange is an smx object, which permits messages to be exchanged between
tasks. It is defined by an exchange control block, XCB. Exchanges have three modes of
operation:

 SMX_XCHG_NORM Normal exchange.
 SMX_XCHG_PASS Pass exchange.
 SMX_XCHG_BCST Broadcast exchange.

 These operate similarly. See descriptions of each type, below and UG Exchange
Messaging.

exchange messaging a messaging technique wherein messages are exchanged between senders and
receivers via exchanges. See UG Exchange Messaging.

exit routine A hook routine, which is transparently called by the scheduler when suspending a task. See
hook routine.

external fragmentation In a memory management system, external fragmentation refers to wasted space
due to blocks being smaller than useful or more blocks in a pool than are ever needed.

FALSE 0 or !TRUE. See BOOLEAN.

fence is a known pattern, such as 0xAAAAAAA3, in a debug chunk before and after the data
block. The pattern is determined by SMX_HEAP_FENCE_FILL in xcfg.h. This can be any
pattern as long as bits 1 and 0 are 1’s. The number of fences after the data block is
SMX_HEAP_FENCES (xcfg.h) and before is SMX_HEAP_FENCES + 1.

fill mode is controlled by the smx_heap.mode.fill flag. It starts OFF and can be turned ON or OFF
by smx_HeapSet(). When ON, all blocks freed or allocated, dc, tc, and new fences are filled
with unique patterns. When OFF they are not.

flyback There are two flybacks implemented in the scheduler: start flyback and resume flyback.
Since the scheduler runs almost completely with interrupts enabled, just before starting or
resuming a task, it checks if any LSRs are ready to run. If so, it runs them, then flies back to
run another task if higher priority. This is done to minimize LSR and task latencies.

foreground In an smx system, ISRs and LSRs are considered to be in the foreground, and tasks are
considered to be in the background.

foreign stack A foreign stack is a non-smx stack. Some third-party library routines switch to their own
stack. This is especially likely if they are called via a software interrupt. Stack checking
must be inhibited while using a foreign stack, using smx_TaskSetStackCheck().

smx Glossary

172

fragmentation as applied to a heap means that chunks become smaller and smaller and thus less useful.
Severe fragmentation may result in failure to be able to allocate larger chunks.

frame Relative to smx, means the profile frame used to capture profile information. The length, in
ticks, is set by RTC_FRAME in acfg.h. See UG Precise Profiling.

free() Generic heap free operation that frees inuse chunks to the heap.

free chunk A heap chunk that is not in use and thus free to be allocated. A free chunk consists of a 24-
byte Chunk Control Block, CCB and free space.

free chunk list Doubly-linked list of free chunks in a heap bin. Free forward links (ffl’s) and a free
backward links (fbl’s) in the bin and in each chunk are used to create the list. All chunks in
the list are of the correct size for the bin.

gate semaphore For a gate semaphore, all waiting tasks are resumed by one signal. See UG Semaphores.

handle In an smx system, the handle of an object is the address of its control block. A handle is
stored in a variable of type _CB_PTR (e.g. TCB_PTR), which should be named after the
object (e.g. atask). Handles are returned by smx calls, which create objects, and they are
passed to other smx calls, which operate on objects. Handles are generally treated as object
identifiers, not as pointers, since they are used only as arguments for smx services.

handle table Stores handles and pointers to names. Used by smxAware. Handles are added by
smx_HT_ADD(); they are removed by smx_HT_DELETE(). The following diagram
shows the handle table structure.

handle

handle table

0x12345678
name

\0T a s k A

hard real-time means that a system failure may occur if a deadline is not met.

HCB heap control block is a static control block, which controls the heap. It contains a pointer
to the start chunk of the heap, pi, a pointer to the end chunk of the heap, px, the heap mode,
and the heap name.

heap A heap is a region of memory from which variable-size blocks can be dynamically
allocated and to which they can be dynamically freed, when no longer needed.

heap failure Inability for the heap to supply a desired size block. Usually caused by excessive
fragmentation. This is indicated by the SMXE_INSUFF_HEAP error.

heap bin A heap bin is the head of a free list of doubly-linked chunks of a certain size or of a certain
range of sizes.

heap block is a data block allocated from the heap. It is contained within a chunk.

heap bridge is formed when heap links cannot be fixed by smx_HeapScan(). When this happens, the
chunk with a broken forward link is linked to the chunk with a broken backward link. Thus
many chunks may be bridged over.

HEAP_CZMAX Configuration constant in acfg.h used in auto-merge control. It defines the maximum
dynamic chunk size expected for the application, excluding one-time allocations on startup.

smx Glossary

173

If neither the largest chunk in the top bin nor the top chunk are at least this large, cmerge is
turned ON.

heap fence A one-word pattern defined in xcfg.h as SMX_HEAP_FENCE_FILL. Fences surround a
data block in a debug chunk. There are SMX_HEAP_FENCES, defined in xcfg.h, above
the data block and SMX_HEAP_FENCES +1 below the data block. The fence pattern can
be changed, but bits 1 and 0 must be 1. (These are the alternate DEBUG and INUSE flags.)

heap range test is a test of a chunk pointer to verify that it is within the range of the heap, i.e.:
smx_heap.pi <= cp <= smx_heap.px. eheap tests all pointers, before use, in order to find
broken pointers and to avoid data abort exceptions. If the heap has been extended over a
gap, this test will be less effective. Note: If SMX_HEAP_SAFE is not OFF, some heap
range tests are disabled for speed.

heap stack A stack taken from the heap, if stack size is not 0 in smx_TaskCreate(). A heap stack is
permanently bound to a task and remains bound until the task is deleted. The stk_perm flag
in a task’s TCB, if set, indicates if the task has a permanent stack.

HEAP_TZMIN Configuration constant in acfg.h used in auto-merge control. If the sum of chunk sizes in
the top bin (smx_tbsz) plus the top chunk size is less than this value, cmerge is turned ON.
See UG Heap Theory, deferred merging for more details.

high-water mark is the maximum number of bytes of stack or heap used since startup. Each task stack
high-water mark is saved in task->shwm. The system stack high-water mark is saved in
smx_Nulltask->shwm. The heap high-water mark is saved in smx_heap_hwm. These
values are displayed in smxAware and can be used to tune stack and heap sizes.

hook routines are routines called by the scheduler for a hooked task. The hook exit routine performs task-
specific functions when the task is preempted or suspended, and the hook entry routine
reverses these functions when the task is resumed. Typically, this feature is used to extend
the task context, to save additional data on suspend and to restore it on resume. Hook
routines can be used for other purposes, such as time measurement. Exit and entry routines
must preserve non-volatile registers that they use

host system Refers to the development system on which application software is edited, compiled, and
linked and which runs the debugger

hs_fwd mode is controlled by the smx_heap.mode.hs_fwd flag. It starts ON and controls the direction of
heap scans. It is an internal mode, not user controlled.

ht See handle table.

idleup Indicates that idle has been boosted temporarily to a higher priority in order to complete
scanning a stack in the scanstack pool and moving it to the freestack pool so that a waiting
unbound task can run. Stored in smx_idleup.

init mode is controlled by the smx_heap.mode.init flag. It starts OFF and is set ON when the heap
has been initialized. It can be turned ON or OFF by smx_HeapSet(). It must be turned OFF
to reinitialize the heap.

internal fragmentation In a heap, internal fragmentation refers to wasted space due to a chunk being
larger than necessary for the block it contains. In a block pool, it refers to wasted space due
to blocks being larger than usually necessary and to block pools containing more blocks
than usually necessary.

smx Glossary

174

interrupt An action which interrupts program execution by means of the processor’s interrupt
mechanism. Also called a hardware interrupt. Interrupts cause Interrupt Service Routines
(ISRs) to run.

interrupt latency is the time from the occurrence of an interrupt until the ISR to process it starts running.
Interrupt latency = processor latency + smx latency + application latency. The latter two are
caused by disabling interrupts for critical sections of code. smx does not disable interrupts
in LSRs and SSRs, and only briefly in the scheduler and other places in smx. smx interrupt
latency is comparable to processor latency.

interrupt service routine See ISR.

inuse chunk A heap chunk, which is currently being used. It contains 8-bytes of metadata plus the data
block being used by the application.

ISR interrupt service routine. A function which handles a hardware or software interrupt. An
ISR is usually invoked via a vector stored in an interrupt vector table (IVT), however
various mechanisms are used by various processors. An smx ISR is one that invokes an
LSR. As a consequence, it must start with smx_ISR_ENTER() and end with
smx_ISR_EXIT(). Non-smx ISRs are free of this requirement as long as they have higher
priority than any smx ISR, or they do not enable interrupts. ISRs cannot call smx services.
other than smx_LSR_INVOKE() and bare pipe functions. See UG Service Routines.

large bin A heap bin that stores a range of chunk sizes, which are 8-byte aligned and multiples of 8
bytes.

large chunk A large chunk is one that fits into an upper bin.

last turtle is the last chunk in a large heap bin free list that might be smaller than a chunk before it. It
is called a turtle because it moves forward very slowly in a bubble sort.

least-big-enough Means to find the smallest free chunk in the heap that is big enough for the requested
block size. This is also called the best-fit chunk.

limited SSR An smx service that can only be called from tasks not LSRs. These are primarily SSRs that
would stop or suspend the current task as a side effect of their running.

linear address In a system with the memory management unit (MMU) disabled, the linear address is equal
to the physical address. When the MMU is enabled (i.e. paging is enabled), the linear
address is translated into a physical address by the MMU.

linear heap has only a physical structure and must be searched sequentially to find large-enough chunks
to allocate.

link service routine See LSR.

localization As applied to heaps, means to allocate chunks, which are close in time, to be physically
close in order to increase cache hits, assuming the chunks are being used by the same task.

locked A task is locked if smx_lockctr > 0. When locked, a task cannot be preempted. See UG
Tasks.

logical structure A heap structure that provides a more efficient means of searching for block
allocations than the physical structure. eheap provides an array of heap bins for this
purpose.

smx Glossary

175

lower bin array That portion of the smx_bin[] array that contains the small bin array, SBA, also known as
lower bins.

lq LSR queue is a queue which contains the address and parameter of each invoked LSR, in
the order invoked. lq is cyclic. If it overflows (i.e. a newly invoked LSR overwrites one that
has not yet executed), SMXE_LQ_OVFL is reported.

LSR link service routines perform deferred interrupt processing and call system services, which
ISRs cannot do. LSRs are normally invoked from ISRs, although they can be invoked from
tasks and LSRs. An LSR is passed a 32-bit parameter each time it is invoked. Unlike tasks,
the same LSR can be invoked multiple times, usually with a different parameter each time.
Once all ISRs are done, LSRs execute in the order they were invoked. This is helpful to
handle bursts of interrupts. For more information, see UG Service Routines.

LSR_PTR is the standard LSR format: void lsr(u32 par). LSRs never return any value. The LSR
parameter can be defined as a different type:

 void msg_LSR(MCB_PTR msg);

 but when invoked both must be typecast:
 smx_LSR_INVOKE((LSR_PTR)msg_LSR, (u32)msg);

main() Application entry point for C/C++ programs, called by startup code. See startup for more
information.

main function The main function of a task is the function which the scheduler calls when it starts the task.
Its address is stored in tcb.fun.

malloc() Generic name for all heap allocation services.

master task A task which sends messages to a broadcast exchange. The master task retains control of
the message and can release it or send it elsewhere. See slave task and UG Exchange
Messaging, broadcasting messages.

MCB message control block. Each active smx message has an MCB, which contains important
message parameters. These include its forward and backward links for enqueueing, priority,
reply index, data block pointer, block pool, and owner.

MCB pool All MCBs are in a pool, which is controlled by the smx_mcbs pool control block. The
singly-linked list of free MCBs is pointed to by smx_mcbs.pn. The link pointer is in the
first word of each free MCB. The last free MCB has a NULL link.

MCB_PTR MCB pointer type. Pointers of this type store message handles.

memory leak is loss of usable memory. This normally occurs in a heap due to failure to free blocks when
no longer needed. Reallocating the blocks, when needed again, results in steady loss of free
heap space.

message An smx message consists of a data block and a message control block, MCB linked
together. Messages are identified by their handles, which are MCB pointers. They are sent
between tasks and LSRs via exchanges to transfer data and control information.
smx_MsgGet() gets a data block from an block pool and links it to an MCB from the MCB
pool. smx_MsgRel() reverses this process. See UG Exchange Messaging.

message body same as message data block.

smx Glossary

176

MIN_FRAG Configuration constant in xheap.c or eheap.c that defines the minimum fragment (remnant)
that can be split off of a larger chunk during an allocation. This should be at least as large as
the minimum chunk size that an application needs, in order to prevent accumualtion of
unusable chunks in lower bins.

mode flag In an event group, a mode flag represents a mode of operation, such as startup. Generally it
is not desirable to clear mode flags when a match occurs. See UG Event Groups.

MUCB mutex control block controls a mutex. It has forward and backward links for a task queue,
priority inheritance flag, priority ceiling, owner, next mutex in owned list, nesting count,
and name. The owner is the task that currently owns the mutex. The mutex owned list links
other mutexes together that are owned by the same task. The nesting count is incremented
each time the same task gets the mutex and decremented each time it is released.

MUCB pool All MUCBs are in a pool, which is controlled by the smx_mucbs pool control block. The
singly-linked list of free MUCBs is pointed to by smx_mucbs.pn. The link pointer is in the
first word of each free MUCB. The last free MUCB has a NULL link.

MUCB_PTR MUCB pointer type. Pointers of this type store mutex handles.
macro smx macro names are all caps, except the smx_ prefix, so they can be distinguished from

functions. smx constants are all caps, including the SMX_ prefix to distinguish them from
smx macros. smx multiline macros are enclosed with {} in their definitions, so they can be
called like functions.

message queue of other kernels is the same as an smx pipe used for intertask communication. See UG
Pipes.

migration See block migration.

multicasting consists of sending proxy messages to multiple exchanges. This provides more control than
broadcasting. See UG Exchange Messaging, proxy messages and multicasting.

mutex A mutex is a “mutual exclusion” semaphore. It is used to limit access to critical sections of
code and system resources that cannot be shared. A mutex can have two states: free and
owned. Only one task at a time can own a mutex. See MUCB and UG Mutexes.

NMI non-maskable interrupt cannot be inhibited by the processor’s interrupt flag(s). This can
cause access problems for shared resources and thus should be used with extreme caution.
An smx ISR should never be hooked to a non-maskable interrupt because smx relies on
disabling interrupts to protect critical sections.

non-volatile registers The registers that a C/C++ compiler expects to remain unchanged by a function call.
When an SSR causes a task switch, smx saves these registers and restores them when the
task is resumed. See also volatile registers.

non-smx ISR An ISR which does not interact with smx. If such an ISR does not enable interrupts or if it
has higher priority than all smx ISRs, then there is no restriction on how it may be written.
However, if neither of these conditions is met, then it must be started with
smx_ISR_ENTER() and ended with smx_ISR_EXIT(). See also UG, Service Routines, two
ISR types.

normal exchange The ordinary type of exchange used to convey messages between tasks. Sending a
message to a normal exchange results in it being passed to the top task waiting at that
exchange. If not task is waiting, the message is enqueued at the exchange and given to the
first task that receives a message from the exchange. See UG Exchange Messaging.

smx Glossary

177

NULL Means a null pointer — i.e. 0. We generally try to use NULL rather than 0 for pointers.

object There are three types of objects in an smx system:
(1) application objects
(2) system objects
(3) smx objects

 Application objects consist of arrays, functions, etc. which are unique to the application.

 System objects (or simply, objects) consist of tasks, pools, blocks, messages, exchanges,
queues, etc. created by an application. smx++ provides system objects from which
application objects may be derived. See SPP.

 smx objects consist of control blocks, variables, and constants used by smx to control the
system. Generally, smx handles these objects, and the user need not be concerned with
them.

one-shot task is a task which stops when done and releases its stack. Hence, one-shot tasks can greatly
reduce RAM requirements in systems having many tasks. A one-shot task is created with 0
for the stack size parameter. See UG One-Shot Tasks.

pass exchange This type of exchange is like a normal exchange, except that it passes the priority of the
message to the task receiving the message, unless the message priority is 0. See UG
Exchange Messaging.

OR == SMX_EF_OR. OR condition in an event flag mask. Means bits 16 and 17 are both
zero. Not actually required, but used for clarity of intention.

PCB pool control block controls an smx block pool. It has pointers to the first and last blocks of
the pool, a free block list pointer, block size, and the number of blocks in the pool, and the
pool name.

PCB pool All PCBs are in a pool, which is controlled by the smx_pcbs pool control block. The
singly-linked list of free PCBs is pointed to by smx_pcbs.pn. The link pointer is in the first
word of each free PCB. The last free PCB has a NULL link.

PCB_PTR PCB pointer type. Pointers of this type store pool handles.

permanent stack is a stack that is bound to a task when the task is created. Permanent stacks come from
the heap, and unlike a temporary stack, a permanent stack remains bound to the task even if
it stops. It is only released when the task is deleted.

physical address is the address actually placed on a memory bus. Unless a memory management unit
(MMU) is used for paging, physical addresses and linear addresses are the same.

physical heap structure consists of all chunks in the heap doubly-linked together in physical address
order. Every chunk has a forward link, fl, and a backward link + flags, blf, for this purpose.
The flags are DEBUG (bit 1) and INUSE (bit 0). Adding flags to the back link is possible
because all chunks are 8-byte aligned, hence address bits 0, 1, and 2 are always 0 and not
needed for addressing. The flags must be stripped from blf before using it as a pointer to the
previous chunk.

PICB pipe control block controls a pipe. It contains forward and backward links for a task
queue, pipe read and write pointers, pipe start and end pointers, pipe width, flags, and pipe
name. The PICB is allocated and initialized when a pipe is created.

smx Glossary

178

PICB pool All PICBs are in a pool, which is controlled by the smx_picbs pool control block. The
singly-linked list of free PICBs is pointed to by smx_picbs.pn. The link pointer is in the
first word of each free PICB. The last free PICB has a NULL link.

PICB_PTR PICB pointer type. Pointers of this type store pipe handles.

pipe An smx object which permits transfer of bytes or packets between tasks and between tasks
and ISRs or LSRs. Packet size is determined when the pipe is created and may be 1 to 255
bytes. Tasks and LSRs use put wait SSRs to put characters into pipes and get wait SSRs to
get characters from them. ISRs use put8 and put packet functions and get8 and get packet
functions, respectively.

 A pipe is empty when the read and write pointers are equal. A pipe is full when the write
pointer is exactly one cell behind the read pointer. Put and get SSRs result in tasks waiting
on pipes when an operation cannot be completed. Put and get functions, which are intended
for ISR usage, do not wait and also cannot resume or restart a waiting task. See UG Pipes.

pool A pool consists of contiguous blocks of equal size. smx uses base block pools (see SB Base
Block Pools) for all smx control blocks. See block pool for smx data blocks. See UG
Memory Management for more discussion of pools.

precise With respect to timing, means precise to a tick counter clock. The tick counter clock rate
depends upon hardware and may correspond to one instruction clock time or many
instruction clock times. Generally, however, it is much more precise than a tick.

precise profiling See profiling.

preemptible An smx task is preemptible if it is not locked. Preemption can only be performed by a
higher priority task.

porting layer A set of functions, macros, and defines that isolate the characteristics of a library that
change from one target and operating system to another. The goal of a porting layer is to be
able to port a library to another environment by changing only the things in the porting
layer, leaving the bulk of the code unchanged.

preemption is the process of one task running in place of another. The preempted task is suspended and
the preempting task is started or resumed. In smx, preemption is caused by a higher-priority
task becoming ready to run due to an external event (i.e. an interrupt), a service call from
the preempted task, or a timeout. When caused by an interrupt, preemption can literally
occur between any two machine instructions in the preempted task. Hence care must be
taken to protect critical sections in tasks.

preemptive scheduling is one of many scheduling algorithms used by operating systems. Preemptive
scheduling means that the highest priority ready task always runs, unless the current task is
locked. This is the most appropriate scheduling algorithm for hard-real-time systems, and it
is the main one used by smx.

smx Glossary

179

priority smx task and message priorities range from 0 to 126. 0 is the lowest priority and 126 is the
highest priority. All tasks and messages have priorities. An enumerated data type is a good
way to define priorities. For example:

 typedef enum {PRI_MIN, PRI_LO, ...} PRIORITIES;

 This provides good readability and allows a new level to be easily added. This enum with 8
levels has already been defined in xcfg.h. These levels are used by SMX middleware. See
UG Tasks, task priority.

priority ceiling is a priority possessed by an object. A task assumes this priority when it owns the object.
smx mutexes can be assigned priority ceilings. The ceiling should equal the highest priority
of any task that may own the object. This avoids unbounded priority inversion and also
eliminates deadlocks for objects having the same ceiling. See UG Mutexes.

priority inheritance is the process of promoting a mutex owner’s priority to that of the highest priority task
waiting for the mutex. This is done to prevent unbounded priority inversion for the highest
priority waiting task. smx mutexes support priority inheritance. They also provide for
propagation from one mutex to another mutex when the owner of the first is waiting for the
second. Propagation can cover any number of mutexes. smx mutexes also implement
staggered priority demotion when a mutex is released. See UG Mutexes.

priority inversion occurs when a lower priority task keeps a higher priority task waiting for a resource.
This is normal and predictable. Unbounded priority inversion occurs when the lower
priority task is preempted by one or more mid-priority tasks. The resulting delay of the
higher priority task is unpredictable and may cause it to miss a deadline. smx provides
priority ceiling and priority inheritance to deal with this problem.

process A process is usually an independent program loaded by an operating system from disk and
consisting of many threads (AKA tasks). smx does not support processes.

processor architecture is frequently used to refer to header and other files. Typical processor architectures
are ARM, ARM-M, ColdFire, etc. Within an architecture there are different processor
families, which may be made by different vendors. In addition, there are different tool sets.
For your delivery or evaluation kit, you need to deal with only one combination of these.

 However we must deal with a hundred processor families and half a dozen tools — a vastly
more complex endeavor. This results in fairly deep directory trees, for example:
BSP\ARM\AT91\SAM9\AT91SAM9G20EK\Atmel. The last level contains vendor files
for the specific processor. The next level up contains files specific to AT91SAM9G20EK,
such as boot_gcc.s or boot_iar.s. The next level up contains files specific to SAM9 such as
bsp.c. This process is repeated up to the top level. The reason for spreading files throughout
a directory tree is to minimize file duplication — files are put at the level where they cover
all combinations below.

 Due to differences between processors, it has not been possible to adapt a uniform naming
system. Hence, we often refer to “the processor architecture header file”, for example.
Hopefully, in your specific instance, you can figure out what that means. See TG for more
information.

profiling smx provides precise and coarse profiling. Precise profiling records run time counts (RTCs)
in the TCBs of all tasks and also run time counts for all ISRs, combined, and all LSRs,
combined. Counts are accumulated for a frame, which can be any number of ticks from 1 to
about 68,000, then loaded into the RTC buffer, which cyclically stores RTCB_SIZE

smx Glossary

180

samples for later display by smxAware or transfer to a file. smx overhead is recorded as the
difference between total counts per frame and the sum of all RTCs. Coarse profiles (% idle,
% work, and % overhead) are calculated from RTCs and smoothed for console display. See
UG Precise Profiling.

Protosystem An smx mini-application that serves as a foundation for application development and
allows running the demos supplied with smx products. See QS Protosystem.

proxy message consists of an MCB which points to a real message data block. A proxy message can be
made from a real message with smx_MsgMake(NULL, dp), where dp points to the real
message data block. Proxy messages are used for multicasting and distributed message
assembly.

PSS Pipe Status Structure. Used to store pipe width, length, flags, number of packets, and
number of waiting tasks. Loaded by an smx_PipeStatus() call.

ptime means precise time. This is the time derived from the input clock of the tick counter and
used for profiling, time measurement, event buffer timestamps, and polling delays. It is
accurate to one tick counter clock. sb_PtimeGet() is used to get ptime. See SB BSP/ Time
Functions.

QCB queue control block. smx has four types of queue control blocks:

EGCB Event group.
EQCB Event queue.
SCB Semaphore.
XCB Exchange.

 All queue control blocks are in the QCB pool and have similar formats. See each for more
information.

QCB pool All QCBs are in a pool, which is controlled by the smx_qcbs pool control block. The
singly-linked list of free QCBs is pointed to by smx_qcbs.pn. The link pointer is in the first
word of each free QCB. The last free QCB has a NULL link.

QCB_PTR QCB pointer type. Pointers of this type store queue handles.

queue Most smx queues are doubly linked lists of tasks or messages as shown in the following
example:

fl fl fl fl
bl

QCB TCB
(first) TCB TCB

(last)

bl bl bl

 TCBs are added or removed by changing links. For example to remove the first TCB, fl of
the QCB is changed to point to the next TCB and its bl is changed to point to the QCB.
Then, the first TCB is free to be linked into another list, such as the ready queue. Message
queues are the same, except that MCBs are linked in instead of TCBs. Most smx queues are
headed by QCBs of various types.

smx Glossary

181

 The smx objects which may contain a task or a message queue are as follows:

object name queue types

SMX_CB_EG event group task FIFO
SMX_CB_EVQ event queue task count
SMX_CB_NXCHG normal exchange task or msg priority
SMX_CB_PIPE pipe task priority
SMX_CB_PXCHG pass exchange task or msg priority
SMX_CB_RQ ready queue task multi-level priority
SMX_CB_SEM semaphore (!gate) task priority
SMX_CB_SEM semaphore (gate) task FIFO
SMX_CB_TQ timer queue timer count

queue messaging of other kernels is the same as pipe messaging by smx. See UG Pipes.

ready queue holds tasks that are ready to run. It consists of one level per priority, starting at 0 and going
up to the SMX_MAX_PRIORITY specified in acfg.h. smx_rq is created by smx_Go(). The
levels are in increasing priority order, which allows a level to be directly accessed by using
its priority as an index. The highest priority level accepts tasks at that level and above. The
lowest level (0) is used by smx_Idle and can also be used for other low priority tasks. It is
the level for time-sliced tasks, if SMX_CFG_TIMESLICE != 0.

 A task is enqueued in smx_rq, by indexing into it using the task’s priority, then enqueueing
the task at the end of the level. This is a very fast process, which is independent of the
number of tasks in smx_rq. The smx_rqtop pointer is maintained in order to dequeue the
top task quickly. When a task is running, smx_rqtop normally points at its TCB. When it
stops running, smx_rqtop points at the next task to run.

real message is a message with both a message body and MCB as compared to a proxy message which
has only an MCB. See UG Exchange Messaging.

register save area (RSA) is the area below a stack block which is used by the scheduler to save a task’s
non-volatile registers when it is suspended. tcb.sbp points to the start of RSA. RSA size is
typically about 40 bytes, depending upon the processor. It is set by SMX_RSA_SIZE in the
processor architecture header file (e.g. xarm.h), since it is processor dependent.

release version is the version of the smx library, middleware, or application intended to be embedded in the
shipped product. It is compiled at high optimization, with debug symbolics disabled, and
SMX_BT_DEBUG undefined. For an application, the release version is typically compiled
at high optimization like the ROM version, but intended to run from RAM, under the
debugger. See also: debug version and ROM version.

remnant The remainder of a chunk after splitting a chunk. It must be at least MIN_FRAG (xheap.c)
bytes or the initial chunk will not be split. It will always be above the allocated chunk. If the
chunk above it is free and cmerge is ON, it will be merged with it.

reply smx_MsgSendPR() has a reply parameter. It is a QCB handle. Its index is stored in the
MCB of the message being sent. This allows the receiving task to respond to the QCB type
(e.g. send a message to an exchange or signal a semaphore). This is useful for client / server
designs.

resource In a multitasking system, the term resource is generally used to mean something that tasks
must share, such as a peripheral, data in memory, or a subroutine. Resources normally must

smx Glossary

182

be protected with smx objects such as semaphores or mutexes. See UG Resource
Management..

resource semaphore has an internal count corresponding to the number of resources it controls. Each
smx_SemTest() decrements the counter and passes until the count reaches 0. After that,
tasks must wait at the semaphore for signals indicating resources released by other tasks.
See also semaphores.

response time The time from the occurrence of an interrupt until an ISR, LSR, or task begins running to
process the interrupt event. ISR response time is governed by interrupt latency, including
that caused by other ISRs. LSR response time is the sum of all ISR run times that might
occur ahead of it and of all LSR run times that may be enqueued ahead of it. Task response
time is the sum of the above plus task switching time, assuming that it is the highest priority
task. Of course disabling interrupts, turning LSRs off, and locking the current task add to
response times.

restart Means that a task has been stopped and now is restarting from the beginning of its
task_main(). A task restart can be due to the occurrence of the event for which the task was
waiting, a timeout, or a direct start or resume from another task or LSR. Whenever a task is
stopped, it cannot resume, it must restart. See UG Tasks, starting and stopping tasks and
UG One-Shot Tasks.

resume When a task resumes, it continues running from where it was suspended. All registers are
restored to their previous values, even though other tasks and service routines may have run
in the interim. Many smx services suspend a task until a desired event occurs, then resume
it. Suspended tasks can also be directly resumed by another task or LSR.

RM smx Reference Manual — abbreviation used in citations. Usually followed by the name of
an smx service.

ROM version The version of an application intended to be embedded in the shipped product. It is
compiled at high optimization with debug symbolics disabled, and located for ROM. See
also: release version and debug version.

round-robin scheduling means that tasks run one after the other until all have run and then the process
repeats over and over. This is normally a cooperative scheduling algorithm, in which
running tasks voluntarily yield to allow the next task run. This can be accomplished by
using smx_TaskBump() for a task to move itself to the end of its priority level in rq. All
tasks in the round-robin group must have the same priority. Note that higher priority tasks
can preempt at any time, but lower priority tasks can run only when the round-robin group
stops running.

rq See ready queue.

rqtop Points to the top task in the ready queue. This is the first task in the top occupied level of
the ready queue and normally will be the next task to run. Stored in smx_rqtop.

RSA See register save area.

run context The run context of a task consists of the contents of all registers, the task’s stack, its local
variables and the information in its TCB. All of these must be preserved when a task is
suspended so that the task can be resumed from exactly where it left off. Volatile registers
need not be saved for an SSR and are saved on the task stack for an interrupt. Nonvolatile
registers are saved in the task’s Register Save Area (RSA), and the task stack pointer is
saved in task->sp.

smx Glossary

183

 If a coprocessor is present, its registers are also part of the context of any task using it. smx
provides hooked exit and entry routines to save extended contexts. See hook routines.

SBA See small bin array.

SB_DATA_ALIGN Minimum alignment for 32-bit data writes. Typically 4 bytes. See processor
architecture header file (e.g. barm.h).

SB_TICKS_PER_SEC Ticks per second. Defined in bsp.h in each BSP.

sc See start chunk.

scan pattern is a recognizable pattern loaded into a stack for stack scanning. It is defined as
SB_STK_FILL_VAL in barm.h. We use 0xCDCDCDCD, but you can use any value you
wish.

SCB semaphore control block. Each semaphore has an SCB, which contains important
semaphore parameters. These include forward and backward links for the task queue,
mode, signal counter, signal limit/threshold, and name.

SCB pool See QCB pool.

SCB_PTR SCB pointer type. Variables of this type contain semaphore handles.

sched An internal smx flag, stored in smx_sched, which tells the scheduler what to do:

SMX_CT_STOP Stop the current task.
SMX_CT_SUSP Suspend the current task.
SMX_CT_TEST Test for preemption (anything higher priority to run?)

 In the first two cases, ct has already been removed from rq. This flag is set by SSRs
scheduler The smx scheduler is a preemptive scheduler. It consists of a prescheduler, LSR scheduler,

and task scheduler. The prescheduler is entered from smx_SSRExit() or smx_ISR_EXIT().
It runs the LSR scheduler if smx_lqctr > 0, then runs the task scheduler if smx_sched > 0,
else it continues the current task, smx_ct. The LSR scheduler runs LSRs in FIFO order
from the LSR queue. The task scheduler starts tasks, suspends tasks, resumes tasks, and
autostops tasks. The process of starting or resuming a task is called dispatching a task. The
top task in the ready queue is normally the next task dispatched. It also gets stacks for one-
shot tasks. If none is available, it skips over the one-shot task, until a stack is available, and
runs the next task in rq.

 The scheduler runs with interrupts enabled, except briefly, in a few places. This necessitates
flybacks to insure that the latest LSR ready to run, runs before any task. The scheduler uses
the system stack and is written in C, with a few assembly macros.

scheduling Scheduling consists of determining what to run next. LSRs take precedence over tasks.
They are scheduled from the LSR queue in FIFO order. Tasks are scheduled by going to the
highest occupied priority level of rq (pointed to by smx_rqtop), then picking the first task in
that level — the so called top task.

SDAR system dynamically allocated region. One of two DARs created by smx. This DAR
contains smx objects such as control blocks, rq, lq, etc. It is recommended that SDAR be
located in on-chip SRAM for best performance and that it be isolated from application
memory for reliability. See UG Memory Management.

smx Glossary

184

semaphore Semaphores are used for resource management and event signaling. smx support six types
of semaphores, each intended for a different purpose. smx_SemTest() allows a task to test if
a condition is true at a semaphore. If not, the task waits at the semaphore. smx_SemSignal()
allows a task or LSR to signal that a resource has been released or an event has occurred,
which resumes or restarts the top waiting task or tasks. See UG Semaphores.

server LSR A server LSR is typically invoked by a task, ISR, or another LSR to access a resource. A
server LSR is particularly useful to prevent access conflicts between ISRs, LSRs, and tasks
in any combination. See UG, Resource Management, server LSRs for more information.

server task A server task typically waits at an exchange for messages from clients. When it receives a
message from a client, it performs the indicated service, such as a file access, then sends a
reply to the client. Server tasks are a good way to regulate access to resources and also to
perform lengthy functions for other tasks, such as decryption. See also: UG Resource
Management

service routine smx provides three types of service routines:

 ISR Interrupt service routine
LSR Link service routine
SSR System service routine

 Unlike subroutines, which are linked by the linker at fixed places in the code, service
routines are managed by smx and tend to occur asynchronously. See also ISR, LSR, SSR,
and UG Service Routines.

shared stack A stack from the stack pool, which is shared by one-shot tasks.

signal is sent to a semaphore or to an event queue to signal that an event has occurred.

slave task A task which receives messages from a broadcast exchange. A slave task does not get
control of a broadcast message. It gets only its handle and message body pointer and
normally is permitted only to read the message. See master task and UG Exchange
Messaging, broadcasting messages.

sleep mode The mode into which the processor is put when the smx_SysPowerDown() service is
called. This is processor dependent. Some processors have only one mode, others like
Cortex-M have SLEEP and DEEP_SLEEP modes. Some processor have even more.

small bin A heap bin that stores a single chunk size.

small bin array (SBA) is an array of small heap bins in the smx_bin[] array, starting at size 24 and
consisting of consecutive bin sizes that are multiples of 8 (e.g. 24, 32, 40, ...) up to the top
SBA bin. SBA bins can be accessed very quickly by converting the desired block size to an
index into the SBA (binno = size/8 – 3).

small chunk A small chunk is one that fits into an SBA bin.

smx block An smx block consists of a data block and a block control block, BCB linked together. smx
blocks are identified by their handles, which are BCB pointers. They can be sent between
tasks and LSRs via pipes to transfer data and control information. However, they are
normally uses for local task storage. smx_BlockGet() gets a data block from an block pool
and links it to an BCB from the BCB pool. smx_BlockRel() reverses this process. See UG
Memory Management.

smx Glossary

185

smx_bfp Bin fix pointer used by smx_HeapBinScan() to point to the starting chunk for the next
backward run.

smx block pool A data block pool created by smx_PoolCreate(). An smx block pool is controlled by a pool
control block (PCB), which is identical to a base PCB, except that smx PCBs are
dynamically allocated, whereas base PCBs are statically defined. See UG Memory
Management, smx block pools.

smx_bsp Bin scan pointer used by smx_HeapBinScan() to point to the starting chunk for the next
forward run.

smx call same as an smx service. Can be an SSR, function, or macro. See the smx Calls section of
this manual.

smx_cf smx configuration table is defined in xtypes.h and is initialized in main.c from user-
defined configuration constants in acf.h. smx_cf contains the configuration constants most
frequently changed. By putting them in this table, it is not necessary to recompile smx in
order, for example, to change NUM_TASKS. This is helpful during debug and also permits
shipping evaluation kits with smx in object form. It is recommended that this table be
located in ROM for shippable software.

smx_clsr smx global variable that stores the address of the current LSR or 0 if not in an LSR. See
clsr.

smx_ct smx global variable that stores the handle of the current task. See ct.

SMX_ERR Status from the last smx service for this task. If == SMXE_OK, the return value is valid; if
== SMXE_TMO, a timeout has occurred and the return value is not valid; otherwise an
error has occurred, SMX_ERR is the error number and the return value is not valid.

smx_heap_hwm heap high-water mark = the largest value of smx_heap_used since the heap was last
initialized.

smx_heap_used The total heap space currently allocated, including chunk overhead.

smx_hfp Heap fix pointer used by smx_HeapScan() to point to the starting chunk for the next
backward run

smx_hsp Heap scan pointer used by smx_HeapScan() to point to the starting chunk for the next
forward run.

SMXE_ABORT An irrecoverable error has occurred. smx_exit() is called to shut down the system.

SMXE_ABORT_TASK An irrecoverable error has occurred for a task. smx_EMExitHook() is called to
allow the user to stop the task, shut down the system, or whatever is appropriate.

SMXE_BLK_IN_USE A block pool cannot be deleted because one or more of its blocks are still in use.

SMXE_BROKEN_Q Occurs when an invalid (i.e. out of range) link (fl or bl) or an unexpected cbtype is
found while tracing a queue. Using a broken queue is hazardous because enqueueing or
dequeueing objects on it can cause writes to wrong memory locations. Hence, smx services
abort when a broken queue is found. The scheduler attempts to fix rq if it is broken.

SMXE_CLIB_ABORT A C run-time library function aborted due to an error and called abort() or exit().
Our implementation exits the application, but you may wish to change this.

smx Glossary

186

SMXE_EXCESS_LOCKS Reported if smx_TaskLock() is called more than
SMX_CFG_LOCK_NEST_LIMIT times.

SMXE_EXCESS_UNLOCKS Reported by smx_TaskUnlock() and smx_TaskUnlockQuick() if
smx_lockctr is already 0. Indicates that the number of unlocks does not match the number
of locks due to a programming error or unexpected execution path.

SMXE_HEAP_BRKN smx_HeapScan()cannot fix the heap or smx_HeapBinScan() cannot fix a bin and it
may be necessary to reinitialize the heap or reboot the system. This is treated as a non-
recoverable error and smx_EMExitHook() is called to deal with the problem.

SMXE_HEAP_ERROR Indicates that a double free has been attempted and averted.

SMXE_HEAP_FENCE_BRKN A heap fence in a debug chunk does not match
SMX_HEAP_FENCE_FILL (xcfg.h) pattern. This typically indicates a data block
overflow.

SMXE_HEAP_FIXED smx_HeapScan() has fixed a heap problem or smx_HeapBinScan() has fixed a bin
problem. No action is required. This notice will be logged in the event and error buffers.

SMXE_HT_DUP smx_HTAdd() and smx_HT_ADD() report this if the name being added is already in the
handle table. Enabled by SMX_CFG_HT_SCAN_DUP.

SMXE_HT_FULL The handle table is full. Increase HT_SIZE in acfg.h.

SMXE_INIT_MOD_FAIL Occurs when the call to smx_modules_init() in the Protosystem fails. This
routine is called by ainit() to initialize the smx component modules (e.g. smxFS,
smxUSBH, etc.). If this error occurs, step through this routine to determine which
initialization routine failed.

SMXE_INSUFF_DAR Not enough space in the specified DAR to get a block of the requested size. More
space needs to be allocated for the DAR. See discussion in Dynamically Allocated Regions
section in smx_Base manual showing how to allocate DAR memory.

SMXE_INSUFF_HEAP Not enough heap to allocate a block of the requested size. More space needs to
be allocated for the heap. One way to do this is to increase HEAP_SPACE in acfg.h.
During operation, other methods can be used, such as calling smx_HeapRecover().

SMXE_INSUFF_UNLOCKS Reported by smx_TaskLockClear() if smx_lockctr is not 1, as expected.
Indicates that the number of unlocks does not match the number of locks due to a
programming error or unexpected execution path.

SMXE_INV_BCB smx block handle is not in the BCB range. Check if smx_BlockGet() or
smx_BlockMake() failed.

SMXE_INV_CCB The chunk control block, CCB, pointed to by the chunk pointer for the block being
freed has a forward link or backward link out of range. As a consequence, the free
operation cannot be completed and has been aborted.

SMXE_INV_EGCB Event group handle does not point to a valid event group control block. Check if
smx_EGCreate() failed.

SMXE_INV_EQCB Event queue handle does not point to a valid event queue control block. Check if
smx_EventQueueCreate() failed.

SMXE_INV_MCB Message handle does not point to a valid message control block Check if
smx_MsgGet() or smx_MsgMake() failed.

smx Glossary

187

SMXE_INV_MUCB Mutex handle does not point to a valid mutex control block Check if
smx_MutexCreate() failed.

SMXE_INV_PARM An invalid parameter, not covered by other error types, has been passed to an smx
call. Check parameters vs. description in RM for the smx service.

SMXE_INV_PCB Pool handle does not point to a valid pool control block Check if
smx_BlockPoolCreate() or smx_BlockPoolCreateDAR() failed.

SMXE_INV_PICB Pipe handle does not point to a valid pipe control block Check if smx_PipeCreate()
failed.

SMXE_INV_PRI The priority passed to a system service is greater than SMX_MAX_PRI defined in
xcfg.h. smx automatically adjusts such priorities down to SMX_MAX_PRI when
encountered.

SMXE_INV_QCB Queue handle does not point to a valid queue control block Check the eq parameter
of smx_EventQueueSignal().

SMXE_INV_SCB Semaphore handle does not point to a valid semaphore control block Check if
smx_SemCreate() failed.

SMXE_INV_TCB Task handle does not point to a valid task control block Check if smx_TaskCreate()
failed.

SMXE_INV_XCB Exchange handle does not point to a valid exchange control block Check if
smx_MsgXchgCreate() failed.

SMXE_INV_TIME Detected by smx_TaskSleep(time) or smx_TaskSleepStop(time) if the time
parameter is already less than or equal to stime or if it is so large that more than (2exp31 -
1) need be added to etime to convert to a tick timeout.

SMXE_INV_TMCB Timer handle does not point to a valid timer control block Check if
smx_TimerStart() failed.

SMXE_INV_XCB Exchange handle does not point to a valid exchange control block Check if
smx_MsgXchgCreate() failed.

SMXE_LQ_OVFL Indicates that the LSR queue has overflowed. It is usually due to LSRs not being
allowed to run. There are several possible causes for this:

(1) LSRs have been disabled by smx_LSRsOff() and not re-enabled by
smx_LSRsOn().

(2) An LSR is hung due to a programming error. In this case, LSRs continue to be
enqueued since interrupts are enabled, but execution never returns to the LSR
scheduler to run them.

(3) smx_srnest is always > 1, so the LSR scheduler is never called. srnest should be
0 or a small value. If not, it has been corrupted. Watch it in the debugger.

(4) Too many LSRs are being invoked due to an ISR error.
(5) The processor is being overloaded by interrupts. This may be remedied by

increasing LQ_SIZE in acfg.h.
SMXE_LSR_NOT_OWN_MTX Reported by smx_MutexGet() and smx_MutexRel() if called from an

LSR. Mutexes are only for use by tasks.

smx Glossary

188

SMXE_MTX_ALRDY_FREE Reported by smx_MutexRel() if a task tries to release a mutex that is
already free. This indicates that the task has called smx_MutexRel() more than
smx_MutexGet() due to a programming error or unexpected execution path.

SMXE_MTX_NON_ONR_REL Reported by smx_MutexRel() if a task attempts to release a mutex that
it does not own. Only the owner can release a mutex. A non-owner can release a mutex
with smx_MutexFree() or smx_MutexClear(), if necessary in special situations.

SMXE_NO_CBLKS This error results from an smx create call, such as smx_TaskCreate(), if it is unable
to allocate a needed control block pool from SDAR. (Create calls automatically allocate
control block pools the first time they are called.) This error indicates that there is
insufficient SDAR.

SMXE_NULL_PTR_REF The value at address 0 changed since initialization, which suggests a null
pointer was used. This is checked in the idle task and at exit. See main.c. This checking is
enabled by NULL_PTR_REF_CHECK in acfg.h. It should only be enabled for targets that
have RAM at 0, since it is useless if flash is at address 0, and could cause a processor fault
if no memory is at 0. It may be that RAM is mapped to 0 only for some build targets such
as Debug but not others, in which case a check of SMX_BT_DEBUG or similar could be
added to conditionally enable it.

SMXE_OBJ_IN_USE smx++ error. Occurs when a destructor has been called and the object is still in use.
See smx++ manual.

SMXE_OBJ_NOT_CREATED smx++ error. Occurs when an object method is used and the object has
not been created. See smx++ manual.

SMXE_OK No system error.

SMXE_OP_NOT_ALLOWED Occurs when a limited SSR is called from an LSR. Programming error.

SMXE_OUT_OF_BCBS, SMXE_OUT_OF_MCBS, SMXE_OUT_OF_MUCBS,
SMXE_OUT_OF_PCBS, SMXE_OUT_OF_PICBS, SMXE_OUT_OF_QCBS,
SMXE_OUT_OF_TCBS, SMXE_OUT_OF_TMCBS

Out of control blocks of the type specified. This type of error occurs when a create call is
unable to get a control block with smx_ControlBlocksGet_F(). Usually these errors indicate
that the corresponding NUM value in acfg.h needs to be increased. For example, an
SMXE_OUT_OF_TCBS error indicates that NUM_TASKS in acfg.h should be increased.
However, it can also mean that SDAR is too small and no pool was created. SDAR is sized
automatically in APP\mem.c based upon configuration settings, but alignment requirements
of CB pools may require additional padding. In this case, increase SDAR_SIZE_ADD in
acfg.h.

SMXE_OUT_OF_STKS Applies to shared stacks from the stack pool. If stack scanning is not enabled,
out of stacks occurs if the freestack pool is empty, when a task that is being dispatched
needs a stack (i.e. it is unbound). If stack scanning is enabled, it occurs if both the freestack
and scanstack pools are empty, when a task that is being dispatched needs a stack. This
error is only reported the first time it occurs, to avoid cluttering the error buffer, and also
since it may not be an error. This is because smx permits running lean on shared stacks.

 The scheduler will run the next task in the ready queue that already has a stack. Each time
the scheduler is entered it will try to run the top unbound task again. Eventually, the task
will run when a stack becomes available. To the extent that the resulting performance is
acceptable, it is possible to have fewer than the number of shared stacks that might be

smx Glossary

189

needed at one time. Otherwise, it is necessary to increase the value of NUM_STACKS in
acfg.h.

SMXE_Q_FIXED The scheduler detected a broken link in the ready queue and was able to fix it.

SMXE_RQ_ERROR Detected by the scheduler during task dispatch. The scheduler will attempt to fix rq.

SMXE_SEM_CTR_OVFL The signal counter in an event or threshold semaphore has overflowed the
0xFF limit. This error occurs on a smx_SemSignal() call. It usually indicates that the task
which should be testing the semaphore is not doing so — possibly because it is being
starved or due to a programming error.

SMXE_SMX_INIT_FAIL smx initialization has failed. Step through smx_Go() in your debugger to see
where it fails. First, you may want to expand smx_ebi in the watch window to see the first
error reported. smxAware displays the error buffer, but it may not work if not enough has
been initialized before the point of failure.

SMXE_STK_OVFL Detected in the scheduler when a task is about to be stopped or suspended, and stack
checking is enabled for the task (tcb.flags.stk_chk set). Indicates that the task’s stack
pointer exceeds the stack top (tcb.stp) or that the stack high water mark (tcb.shwm) exceeds
the stack size (tcb.ssz). If a stack pad is present and nothing else has been damaged,
operation continues normally. Otherwise: if the stack block has been exceeded (i.e. memory
“above” it has been damaged), smx_EMExitHook() is called, which the user can implement
to stop the task, abort the application, etc. Stack pad size is set by STACK_PAD_SIZE in
acfg.h. One size applies to all stacks, except that SS has no stack pad. Ample sizes are
recommended during debugging. Another possible cause of this error is use of a foreign
stack when a task switch occurs.

 Note: This error is logged and displayed only once per task, unless the task is restarted. It is
however recorded in the global and task err and counters, every time it occurs. See also UG
Stacks.

SMXE_TMR_STOPPED A timer operation cannot be performed because the timer has already stopped.

SMXE_UNKOWN SIZE An smx peek operation cannot determine the requested size. This occurs, for
example, if the size of a message made from a static block is requested (since there is no
PCB).

SMXE_WAIT_NOT_ALLOWED An operation was aborted because a wait was not allowed. This
occurs when an LSR makes a call which would result in waiting. LSRs must use the
SMX_TMO_NOWAIT timeout parameter for SSRs that can wait.

SMXE_WRONG_MODE A create function has an unrecognized mode.

SMXE_WRONG_TYPE_QUEUE Indicates an attempt to access a wrong type queue — for example
receive a message from a semaphore, send a signal to an exchange, etc.

smx ISR An ISR which interacts with smx. It must start with smx_ISR_ENTER() and it must end
with smx_ISR_EXIT(). The latter calls smx_PreSched() when an smx ISR has invoked an
LSR See UG, Service Routines, interrupt service routines.

SMX_PRI_NOCHG No change to task’s priority. Used in smx_TaskBump() and smx_TaskStartNew().
Defined in xdef.h.

SMX_TMO A timeout has occurred for the last smx service from the current task.

smx Glossary

190

SMX_TMO_INF Infinite timeout. Used in SSRs that have a timeout parameter. Sets the task’s timeout to
0xFFFFFFFF, which is the timeout disabled value.

SMX_TMO_NOCHG No change to task’s timeout. This timeout value only makes sense in an SSR that
is acting upon another task, such as smx_TaskStop() or smx_TaskSuspend(). See the
discussions of these services for more details. If this timeout value is used in an SSR that
acts upon the current task (e.g. smx_MsgReceive()), the result is the same as INF.

SMX_TMO_NOWAIT No timeout — i.e. do not wait. Use of this value for a timeout parameter results in
a non-blocking call. LSRs must always specify this value for a timeout, since they cannot
wait.

SMX_VERSION Defined in xdef.h and the processor-architecture_tool.inc file. Indicates the version of
smx as 0xVVST, meaning VV.S.T. This should be used in preprocessor conditionals to
handle differences in versions of smx.

SOUP Software of Unknown Pedigree. Typically applies to third party software, especially free
software. Such software frequently uses the heap and may use it badly.

srnest service routine nesting level, stored in smx_srnest. Records the nesting level of service
routines. When any smx ISR, LSR, or SSR starts, srnest is incremented, and when it
finishes srnest is decremented, unless it is 1, in which case the scheduler may be started.
For example, an LSR may call an SSR, which is interrupted by an ISR. At this point srnest
would be 3. (Note that for ARM-M processors, srnest is not incremented/decremented in
ISRs because a hardware mechanism is used, instead.)

SS See system stack.

SSR system service routine. Most smx services are implemented as SSRs. An SSR is a function
which starts with smx_SSR_ENTER() and ends with smx_SSR_EXIT(). Between the enter
and exit macros, operations can safely be performed on smx objects, such as control blocks.
SSRs are task-safe. An SSR can call another SSR, in which case, the programmer must
ensure that there will be no smx object conflicts. See UG Service Routines and RM
smx_SSR_ENTER() and smx_SSR_EXIT() for discussion about writing SSRs.

stack Each task requires a stack when it is running or suspended (but not when it is stopped).
Tasks can have either permanent stacks or shared stacks. A permanent stack remains bound
to a task as long as the task is not deleted. A shared stack is bound to a task when the task is
dispatched and returned to the stack pool when the task is stopped. smx allows tasks to be
stopped while waiting for events such as semaphore signals, messages, etc. Such tasks are
called one-shot tasks.

 Permanent stacks are allocated from the heap. The size of each stack may vary for each task
and is set by the stack size parameter in smx_TaskCreate(). Shared stacks are allocated
from the stack pool which is created by smx_Go(). The size of stack pool stacks is set by
STACK_SIZE in acfg.h. See UG Stacks.

stack high water mark Actual stack usage is stored in tcb.shwm for easy inspection in the debugger or via
smxAware. The stack high-water mark indicates the maximum stack usage by the task,
even if the it does not have a permanent stack. It is used to detect overflow and to tune
stack sizes.

stack pool The stack pool is allocated from ADAR by smx_AllocStacks(), the first time that
smx_TaskCreate() is called. Stacks are also filled with the scan pattern. Stacks in the stack

smx Glossary

191

pool are shared between one-shot tasks. NUM_STACKS, STACK_SIZE, and
STACK_PAD_SIZE, in acfg.h control stack pool attributes.

stack scan Permanent stacks are filled with a known pattern when bound to tasks. Shared stacks are
filled when put into the freestack pool. Each stack is periodically scanned by the idle task,
from the top of the stack (pad) down to the first change of pattern. The difference between
tcb.sbp (stack bottom pointer) and this is recorded as the stack high water mark in
tcb.shwm. Stack scanning is a very reliable means to determine maximum stack usage,
unless the stack overflows past the pad. In this case, make the pad bigger during
development.

stack size Task stack size is determined by the stack size parameter in smx_TaskCreate() when a task
is created or by STACK_SIZE in acfg.h for stack pool stacks. Stacks must be large enough
for the maximum nesting of functions and SSRs called by the task. Actual stack size may
be a little less than requested, due to alignment on an SB_STACK_ALIGN boundary.
Space allocated from the heap == stack size + RSA_SIZE + STACK_PAD_SIZE. The size
for stack pool stacks is the same, except alignment bytes are added. See also UG Stacks.

start The process of adding a task to the ready queue at the end of its priority level. The task
does not actually start running until it becomes the top task. See smx_TaskStart() and
related services.

start chunk is the first chunk in the heap. It is an 8-byte, inuse chunk with no data block. smx_heap.pi
points to it.

starting bin The lowest bin that might contain a big-enough chunk. If this bin is empty, the search goes
up to the first occupied higher bin.

startup code Code that runs from the processor reset vector to initialize the processor and prepare for
entry to a C/C++ program. Usually it is written in assembly language. After the hardware
initialization, it calls a function provided by the C compiler to clear uninitialized data, copy
initialized data from ROM to RAM, run C++ static initializers, and then branch to main().
See QS: smx Startup and Scheduler Operation.

starvation Means that a task is not getting enough processor time to do its job. Profiling helps to
identify this problem. Various strategies can be employed to correct it.

state A task can be in one of four states:

null A task which has not been created is in the null state. It has no TCB and it is
nonexistent for smx.

ready The task is ready to run — it is in the ready queue, but not actually running.

run The task is actually running. Its TCB is still in rq.

wait The task is waiting for an event to occur. It may or may not be in a queue and its
timeout may or may not be set.

 Only one task at a time may be in the run state. That task is known as the current task and
its handle is stored in smx_ct. Any number of tasks may be in the other states.

static block is a data block which is statically defined, e.g.:

smx Glossary

192

 u8 block[100];

statically defined means defined at compile time and assigned to memory at link time as opposed to
dynamically defined, such as an allocation from a DAR or the heap.

static initializers are routines generated by a C++ compiler to initialize static (e.g. global) objects by
calling their constructors. These are called during startup code after static data has been
initialized, but before main() is called. Since global objects may include smx objects, it is
necessary that all smx create calls automatically create any smx objects that they need, if
not already created. For example, the first smx_TaskCreate() call initializes SDAR, if not
already done, then allocates the TCB and stack pools.

stime system time is the 32-bit elapsed time, in seconds, from a reference time. stime is stored in
smx_stime, which is initialized by sb_StimeSet(), called from ainit(). It is used by smx
sleep functions and may be used to time-stamp files. See UG etime and stime and SB
sb_StimeSet.

stop ends execution of a task such that it cannot be resumed and must be restarted from its
beginning. When the current task stops itself with a stop call, it is dequeued from rq, put
into the wait state, and is usually enqueued on a wait queue for an event. When ct stops
another task with smx_TaskStop() or smx_TaskStart(), the other task is dequeued from any
queue it may be in. Either way, a stopped task returns its stack to the stack pool, unless its
stk_perm flag is set, and its stack pointer is cleared and thus its context is lost. If a test
condition (e.g. semaphore set) is satisfied immediately, task stop still occurs, but it is
followed immediately by task start.

stop call An SSR that causes a task to be stopped. Tasks are stopped and must be restarted, even if
the expected condition is satisfied immediately. These SSRs include those that have Stop in
their names and the smx_TaskStart SSRs.

stop on To stop a task on a queue means to stop the task, then enqueue it on the queue.

stuck chunk A heap chunk at the back of a large bin that is not a useful size. This can happen if cmerge
is OFF, and chunk allocations from the bin are being satisfied by smaller chunks in front of
it and larger sizes are being taken from the next bin.

suspend Pauses execution of a task such that it can be resumed from where it was suspended. When
the current task suspends itself, with a suspend SSR, it is dequeued from rq, its context is
saved in its RSA, and it usually is enqueued on a wait queue for an event. When ct
suspends another task, using smx_TaskSuspend() or smx_TaskResume() the other task is
dequeued from any queue it may be in. Either way, the suspended task retains its stack and
its stack pointer is saved in its TCB. If a test condition (e.g. semaphore set) is satisfied
immediately, the task simply continues.

suspend call An SSR that causes a task to be suspended, unless the expected condition is satisfied
immediately.

suspend on To suspend a task on a queue means to suspend the task, then enqueue it on the queue.

system service A service provided by smx. It can be an SSR, bare function, or a macro. Only SSRs are
task-safe. All smx system services are prefixed with “smx_”. smxBase services may also be
referred to as system services. These are limited to bare functions or macros and are
prefixed with “sb_”. See SB Base and Utility.

system stack The system stack (SS) is used for startup, initialization (including C++ static initializers),
ISRs, LSRs, the scheduler, and the error manager. SS implementation depends upon

smx Glossary

193

processor architecture. During initialization, it is filled with a scan pattern and it is
periodically scanned by the idle task, along with task stacks. It is recommended that SS be
located in on-chip SRAM for best performance of ISRs, LSRs, and the smx scheduler.

target target system is the hardware upon which the application software runs, as distinct from
the host or development system upon which the software is developed.

task An smx task consists of a Task Control Block (TCB), a main function, a stack, and a
timeout. A task is created by smx_TaskCreate() and can be deleted by smx_TaskDelete().
See UG Tasks and UG One-Shot Tasks.

task-safe Means that a service is safe from task and LSR preemption. SSRs achieve this because an
LSR must wait for the current SSR to complete and another task cannot start until the
current SSR completes. See UG Service Routines.

task state See state.

task context consists of all register contents, TCB, task stack, and stack pointer. All of these must be
preserved so the task can be resumed where it left off. Extended task context might include
coprocessor registers, global variables, and other information specific to the task. These can
be saved and restored with hooked exit and entry routines.

task locking A task can be locked using smx_TaskLock() to prevent it from being preempted while in a
critical section or to prevent unnecessary task switches. The lock can be removed with
smx_TaskUnlock() or smx_TaskUnlockQuick().

task switch occurs due to preempting, stopping, or suspending the current task and starting or resuming
another. Performed by the smx task scheduler.

TCB task control block. Each task is assigned a TCB when it is created. A TCB has many
fields, which are used by smx task services and other services. See UG Tasks and UG One-
Shot Tasks.

TCB pool All TCBs are in a pool, which is controlled by the smx_tcbs pool control block. The singly-
linked list of free TCBs is pointed to by smx_tcbs.pn. The next-link pointer is in the first
word of each free TCB. The last free TCB has a NULL link.

TCB_PTR TCB pointer type. Pointers of this type store task handles.

tc See top chunk.

temporary stack A stack given to a one-shot task from the stack pool when it is dispatched. The stack is
released back to the stack pool when the task stops.

TG SMX Target Guide — abbreviation used in citations.

thrashing Means that many unnecessary task switches are occurring. These waste processor
bandwidth and can hurt performance. smx provides mechanisms, such as task locking, to
control thrashing.

thread Short for “thread of execution.” In the broad definition, as used for smx, includes tasks,
LSRs, and ISRs.

thread-safe Means the same as task-safe.

smx Glossary

194

threshold semaphore resumes the next waiting task after T signals have been received, where T is the
threshold. When a task is resumed, the internal count is reduced by T. See UG Semaphores,
threshold semaphore.

TickISRHook() Callback function to hook into the tick ISR. Can be used to piggyback ISRs on the tick
interrupt for testing or to add more capability to the tick ISR without modifying it.

tight heap A heap that has very little margin because of insufficient RAM and thus is prone to failure
due to fragmentation.

timeout All calls which put tasks into the wait state permit a timeout to be specified. Timeouts
ensure that tasks will not wait forever, and they also break task deadlocks.
SMX_TMO_NOWAIT can be specified if no wait is desired. SMX_TMO_INF can be
specified if no timeout is desired. A seldom-used parameter, SMX_TMO_NOCHG, can
only be used from another task with a call such as smx_TaskStop(task,
SMX_TMO_NOCHG). This could be used to cause a task to stop waiting for an event, but
not start until its original timeout completes. The maximum permitted timeout is (2exp31-
1) ticks, which is the maximum value of etime. The resolution of task timeouts is controlled
by TIMEOUT_PERIOD in acfg.h.

timeout[] smx_timeout[] is an array of 32-bit timeouts, one per TCB. Task timeouts (not to be
confused with “timers”) are in the same order as TCBs in the TCB pool. A task’s timeout
can be accessed via the task’s index:

 timeoutn = timeout[taskn->indx];

 Each task timeout stores a future etime value, or 0xFFFFFFFF, if it is inactive. The smallest
currently active timeout (smx_tmo_min) is periodically compared to smx_etime. This
comparison is performed by smx_TimeoutLSR(). If smx_tmo_min is less than or equal to
etime, a timeout has occurred and smx_TImeoutLSR() resumes or restarts the
corresponding task. It then searches smx_timeout[] for the next smallest timeout and loads
it into smx_tmo_min. If it is also 0 (i.e. two tasks have timed out at once),
smx_TimeoutLSR() invokes itself, which allows other LSRs to run before it runs again.
This timeout mechanism achieves low overhead, if the number of tasks is not too great
and/or the resolution is not too fine. See also UG Timing, timeouts.

TIMEOUT_PERIOD is a configuration setting in acfg.h that sets smx_cf.tmo_period, which controls how
often smx_tmo_min is compared to smx_etime — i.e. how often smx_TimeoutLSR() runs.
Hence, it controls the resolution of task timeouts. Small resolutions, such as 1 tick, are used
for accurate timing. Large resolutions such as 10 or 100 ticks are used for safety.

timer A timer is a system object, consisting of a timer control block (TMCB) linked into the timer
queue (tq). smx supports both one-shot and cyclic timers. Both are created and started by
smx_TimerStart(), which allows specifying a relative time from now and a cycle time. If
the cycle time is zero, the timer is called a one-shot timer; it is automatically deleted after it
times out. Otherwise, the timer becomes a cyclic timer with the specified cycle time. Cyclic
timers are requeued immediately so there is no cumulative timing error.

 Timers are enqueued in tq in order of their times, each with a calculated differential time in
its TMCB. Decrementing of the first TMCB counter is done by smx_KeepTimeLSR().
Operation is similar to an event queue. Timers operate with a 1 tick resolution. When a
timer times out, the specified LSR is invoked with the specified parameter. Since LSRs
cannot be blocked by tasks, this provides low-jitter operation for control or sampling.

smx Glossary

195

time-slice scheduling is a task scheduling algorithm in which each task is given an equal time to run. smx
provides time slicing only for priority 0 tasks. SMX_CFG_TIME_SLICE in acfg.h is the
time slice period. If 0, time slicing is disabled. Note that preempting tasks will use time
from a time-sliced task’s period. See also preemptive scheduling and round-robin
scheduling.

TMCB timer control block A timer control block is assigned to a timer and initialized when the
timer is started by smx_TimerStart(). A TMCB has forward and backward links to link into
the timer queue, owner, interval, differential count, LSR, par, and a handle pointer. These
are used by timer services and the smx_TimeoutLSR(). See UG Timers.

TMCB pool All TMCBs are in a pool, which is controlled by the smx_tmcbs pool control block. The
singly-linked list of free TMCBs is pointed to by smx_tmcbs.pn. The next-link pointer is in
the first word of each free TMCB. The last free TMCB has a NULL link.

TMCB_PTR TMCB pointer type. Pointers of this type store timer handles.

token is an object, such as an smx message, that represents a resource. Whatever task possesses
the token is allowed to access the resource. This can work better than a resource semaphore
or a mutex, because a token can contain information about the resource that enables the task
to use it.

top bin The last heap bin in smx_bin[]. It handles all chunk sizes from its minimum size up.

top chunk is the last chunk before the end chunk in the heap. Initially, it and the donor chunk contain
all free heap space. Allocations which cannot be satisfied by the SBA, donor chunk, nor
larger bins come from tc. It must be large enough to hold a chunk control block (CCB).

top message The first message in the message queue of an exchange.

top task The first task in the highest occupied priority level of rq. This is generally the current task.
(If ct is locked, some other task could be current task.)

tq timer queue, is pointed to by smx_tq. See also: timer.

thread same as task.

TRUE 1. (However, test for !0.)

u8 unsigned 8-bit integer.

u16 unsigned 16-bit integer.

u32 unsigned 32-bit integer.

UBA See upper bin array.

UG smx Users Guide — abbreviation used in citations. Usually followed by a Chapter Name
or section name.

unbound mode Task has no stack. See bound mode.

unbounded priority inversion See priority inversion.

unlocked See locked

upper bin array (UBA) That portion of smx_bin[] that is above the SBA. It contains upper bins.

smx Glossary

196

unrestricted macro can be invoked from any service routine or task.

use_dc mode is controlled by the smx_heap.mode.use_dc flag. It starts in the ON state. It can be set ON
or OFF by smx_HeapSet(). When ON, an SBA-size chunk is taken from the donor chunk if
the SBA bin for it is empty. When OFF, allocation skips dc and goes to the next larger
occupied bin, instead. If no space is allocated for the donor chunk (HEAP_DC_SIZE is 0 in
acfg.h) then use_dc should be turned OFF. It can also be turned off to improve
performance, if dc becomes too small.

volatile registers The registers that the C/C++ compiler expects to be changed by a function call, and
therefore saves them before the function call and restores them after. See also non-volatile
registers.

XCB exchange control block Each exchange has an XCB, which contains important exchange
parameters. These include forward and backward links for task and message queues, mode,
task queue flag, message queue flag, and name. See UG Exchange Messaging.

XCB pool See QCB pool.

XCB_PTR XCB pointer type. Variables of this type contain exchange handles.

	smx Calls
	Format of the Calls Section
	smx_Block and smx_BlockPool
	smx_BlockGet
	smx_BlockMake
	smx_BlockPeek
	smx_BlockRel
	smx_BlockRelAll
	smx_BlockUnmake
	smx_BlockPoolCreate
	smx_BlockPoolCreateDAR
	smx_BlockPoolDelete
	smx_BlockPoolPeek

	smx_CLib
	smx_CLibEnter
	smx_CLibExit

	smx_Conv
	smx_ConvLinearToPointer
	smx_ConvPointerToLinear
	smx_ConvMsecToTicks
	smx_ConvSecToTicks
	smx_ConvTicksToMsec
	smx_ConvTicksToSec

	smx_Delay
	smx_DelayMsec
	smx_DelaySec
	smx_DelayTicks

	smx_ERROR
	smx_ERROR
	smx_EBDisplay

	smx_EVB
	smx_EVBInit
	smx_EVB_LOG

	smx_EventFlags and smx_EventGroup
	smx_EventFlagsPulse
	smx_EventFlagsSet
	smx_EventFlagsTest
	smx_EventFlagsTestStop
	smx_EventGroupClear
	smx_EventGroupCreate
	smx_EventGroupDelete
	smx_EventGroupPeek

	smx_EventQueue
	smx_EventQueueClear
	smx_EventQueueCount
	smx_EventQueueCountStop
	smx_EventQueueCreate
	smx_EventQueueDelete
	smx_EventQueueSignal

	smx_Go
	smx_Go

	smx_Heap
	smx_HeapBinPeek
	smx_HeapBinScan
	smx_HeapBinSeed
	smx_HeapBinSort
	smx_HeapCalloc
	smx_HeapChunkPeek
	smx_HeapExtend
	smx_HeapFree
	smx_HeapInit
	smx_HeapMalloc
	smx_HeapPeek
	smx_HeapRealloc
	smx_HeapRecover
	smx_HeapScan
	smx_HeapSet

	smx_HT
	smx_HT

	smx_ISR
	smx_ISR_ENTER
	smx_ISR_EXIT

	smx_LSR
	smx_LSR_INVOKE
	smx_LSRsOff
	smx_LSRsOn

	smx_Msg
	smx_MsgBump
	smx_MsgGet
	smx_MsgMake
	smx_MsgPeek
	smx_MsgReceive
	smx_MsgReceiveStop
	smx_MsgRel
	smx_MsgRelAll
	smx_MsgSend
	smx_MsgUnmake

	smx_MsgXchg
	smx_MsgXchgClear
	smx_MsgXchgCreate
	smx_MsgXchgDelete
	smx_MsgXchgPeek

	smx_Mutex
	smx_MutexClear
	smx_MutexCreate
	smx_MutexDelete
	smx_MutexFree
	smx_MutexGet
	smx_MutexGetStop
	smx_MutexRel

	smx_Pipe
	smx_PipeClear
	smx_PipeCreate
	smx_PipeDelete
	smx_PipeGet
	smx_PipeGet8
	smx_PipeGet8M
	smx_PipeGetWait
	smx_PipeGetWaitStop
	smx_PipePut
	smx_PipePut8
	smx_PipePut8M
	smx_PipePutWait
	smx_PipePutWaitStop
	smx_PipeResume
	smx_PipeStatus

	smx_Sem
	smx_SemClear
	smx_SemCreate
	smx_SemDelete
	smx_SemPeek
	smx_SemSignal
	smx_SemTest
	smx_SemTestStop

	smx_SSR
	smx_SSR_ENTER
	smx_SSR_EXIT

	smx_Sys
	smx_SysEtimeGet
	smx_SysPseudoHandleCreate
	smx_SysStimeGet
	smx_SysPowerDown
	smx_SysWhatIs

	smx_Task
	smx_TaskBump
	smx_TaskCreate
	smx_TaskDelete
	smx_TaskHook
	smx_TaskLocate
	smx_TaskLock
	smx_TaskLockClear
	smx_TaskPeek
	smx_TaskResume
	smx_TaskSetStackCheck
	smx_TaskSleep
	smx_TaskSleepStop
	smx_TaskStart
	smx_TaskStop
	Task Autostop
	smx_TaskSuspend
	smx_TaskUnhook
	smx_TaskUnlock
	smx_TaskUnlockQuick

	smx_Timer
	smx_TimerDup
	smx_TimerPeek
	smx_TimerReset
	smx_TimerSetLSR
	smx_TimerSetPulse
	smx_TimerStart
	smx_TimerStop

	smx Glossary

