smxNS™
User’'s Manual

Revision 2.92
September 2018

A

U S SOFTWARE.

EEEEEEEEEEEEEEEEEE

[T&] Micro Digital

Copyright and Trademark Information

Copyright 2006-2018 Micro Digital Associates Inc. for all new material written for SMX.

Copyright 1996-2006 Lantronix Inc. All rights reserved. No part of this publication may be
reproduced, translated into another language, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of Lantronix Inc.

Lantronix®, US Software®, and USNet® are trademarks of Lantronix, Inc. smxNS is a trademark of
Micro Digital Inc. Other brands and names are the property of their respective owners.

Lantronix Inc. makes no warranty of any kind with regard to this material, including but not limited to
the implied warranties of merchantability and fitness for a particular purpose. Lantronix Inc. assumes
no responsibility for any errors that may appear in this document. Lantronix Inc. makes no
commitment to update or to keep current the information contained in this document.

Lantronix Inc. 15353 Barranca Parkway, Irvine, CA 92618

Micro Digital Associates Inc. 2900 Bristol Street #G204, Costa Mesa, CA 92626
(714) 437-7333 support@smxrtos.com Www.Smxrtos.com

For support contact Micro Digital.

Documentation Conventions

Computer output and code examples: Courier, usually in a separate paragraph.

Function names and command names: Bold italic, usually followed by parentheses, as in main() function.
Variables: Courier italic (mt_busy).

File names: Times bold (the file usrclk.asm), usually in lower case.

Key names: Initial capital, in angle brackets, as in press <Enter>.

Menu names and selections, dialog box names, screen titles, window titles: Times bold, as in File menu.
Notes: Indicate important information.

Cautions: Indicate potential damage to hardware or data.

Revision History

Revision Date Notes
2.58 April 2006 Based on USNet 2.52.1 June 2005.
2.58 January 2007 Updated for new features.
2.59 July 2007 Added PPP, SNMP, and Web Server sections.

2.59 September 2007 Updated information about add-ons and demos.
2.59 February 2008 Added RTOS porting information.

2.60 July 2008 Updated naming, described Telnet debug.

2.63 October 2009 Updated naming, APIs, debug information.

2.63 July 2010 Updated naming, APIs.

2.70 October 2010 Changed porting layer to use smxBase.

2.70 August 2011 Updates, corrections, and new sections.

2.80 December 2013 Updates and addition of IPv6, mDNS Responder, and others.
2.81 July 2014 Added notes to DHCP server, DNS client, MTU.

2.90 July 2015 Updates for DPI error codes, CGl, SNMP and misc clarifications.

2.90 October 2015 Corrections and updates.
291 February 2017 Corrections and updates.

2.92 February 2018 Adds NC-SI, updates SNMP, misc updates.
2.92 September 2018 Portconfig() options, web server functions, AJAX/jQuery, misc.

Contents

I 1014 0o 11 [ox 4 o] o O POURORRR 1
OVBIVIBW ..ttt ettt bttt s a et s e s bttt e s besbeemeeebeeneeneesbeeneesbeanean 1
WRNAL IS SUPPIIEA ..o 2
SMXNS Design CoNSIAEIALIONS.oiviieiieiieie e eees 3

T4 SR TTPTTPTOPPPRURPRRPPN 3
(O 1 4 | PSP 4
a0 ST] oo o AR 4
103 = 1o 1o o SRS 4
REENTIANCY ...ttt ettt st b e be e nbe e sbe e 4
ROM RESIABINCE ...ttt ettt e ne et e 4
DBVICE DIFIVELS ...ttt sttt 4
a0] T USSR 4
Recommended ReadiNgcooiiiiieiiee e e 5
BOOKS .. 5
R OX 0T o] o o] =T [6
01U gl = 0 =T 1= Lo PRSPPSO 8
Overview of the DevelopmeNt PrOCESSccooiiieiiiieie e 8
Analyzing the Design Problemcoco o 9
Obtaining Design Tools and Verifying Your SYStemccccccvvevieiieniesieeneeneeens 9

2. QUICK STAITcvviiiiie e 10

INSTAIATION ... et 10
DITECLOIY STIUCTUIE.evieie ettt 10
V=151 o] o USRS 10
DOCUMENTALION ...ttt 10

POFTING .ttt 10

(0] 1 T[] U X o] o PR 11
Building the SMXNS Librarycccocoiiiieiiiicc e 11

Running the Main TSt Programsc.ccoeiiiiinieneieeeese st 11
GUIEINES TOF TESLING.....civiiieeie e e ae e e e sre e e e snee e 11
4]0 [=] .01 TSRS 12

3. Beginning Your Applicationcccccocvviiiviiiiin e, 17
Developing a Simple APPHCAtIONcoiiiiiiiiiieeee e 17

INCIUAE FHIES ...ttt 19
INIIALIZING SMXNS ... besre e 19

Establishing @ CONNECLION..........oiiiiiie et 20

Terminating SMXNSc.voiie e 22

Compiling Your AppliCatioNcccoiiiiiiiee e 23
COAE LISTINGS 1.ttt bbbttt a e 24
Developing Your APPHCAtiON.........ccciiiiieiiiice et 30
4, CoNFIGQUIALION ...ooiieic e 31
OVEIVIBW ..ottt st sttt et et et e et e et e e sbe e sbe e sbeesbeesaeesabeenbeenbeebeebeenree e 31
Configuring the Build Settings (NSCfg.N) ..o, 32
Configuring Local Parameters (NSCfQ.N) ..o, 32
SNS_MIN_RAM MACIOcoviiieieieieieiee sttt sse st sse e e ssessessesseseens 33
SNS_HW_RX_CHECKSUM MACI0 ...c.covviiiiiiiiiiiiieieeiee s 33
SNS_HW_TX_CHECKSUM MaCIO0.......coveiiiiiiiiieieieieiee e 33
SNS_CPU_CACHE_DATA MACIO ..cuvevveiieieiieiiesieieieesiesiesiesieseeeeeesessesseseeseeseens 33
SNS_BUFFS_IN_SRAM MACIOcoiiiiiiiiiiiiiesiesie ettt 33
NSDAR_SPACE MACIO ..coviiiiiiiiiieieesiee sttt sttt ettt st ssae e snaeenne e 34
NCONNS MAECTO ...ttt ettt ettt sb e sbe e see e s sabesabe s 34
NBUFFS IMECIO ...ttt nne e 34
VI LS AV - o] o PSPPSR 34
MAX_REASSEM MACTOeovirieiieiieiieiesie ettt 34
USSBUFALIGN IMECTO.....ccuiiiiiiiiiiiiesieie ettt 35
FRAGMENTATION MaCIO......eiviiiieiieiee ittt 35
IPOPTIONS IMACTO.....cevieiieiieiesiesie sttt sttt sttt ne s 35
USS_IP_MC_LEVEL MACIOeoitiiiiiiiieiisiesie et 35
IP_MC_DFLT_NETNO MACIO.....ceiviieieieiieiritesesesie e iesie st na e anas 36
KEEPALIVETIME IMAECIO ...c.ooviiiiieiieiise ettt s 36
RELAYING MACIO....c.ciiiiiiiiiiiiieitesie ettt bbb 36
ChKSUM_INASIM IMACKO.......ecvieiieiiieie sttt sa e ste st te e sae e e seeenes 36
DINS IMBCTO ..ttt bbbttt ettt ettt sb e b e sreesnb e s 36
NDINSS MACTO ...ttt sttt nr e sb e sre e s s anne s 37
TCP_SACK IMACIO ..ttt ettt sttt ettt sttt ettt nree e 37
LOCALHOSTNAME MAECIO0......ciiieiieieiiesiesiesienieeeese st sne e snenes 37
USERID Macro & PASSWD MACIOccviiiiriieiiiiiieeeeie et 37
USS_PROXYARP IMECI0......cciiiiiiiiiiiiiii ettt sttt st st i 37
FILE_SUPPORT IMACKOcuiiiiiiiiieiesieieeeie ettt sne e 37
SNS_DEBUG_LEVEL MACIOoviiiiiiiiiiiiisie e 38

I LN ISR Y = Ve o SRR 38
NNETISRS MACKOcviiiiiieieiisieeie ettt 38
SeleCting ProtOCOISccve i 38
SEIECTING DIFIVEIS ..ottt 39
5. Dynamic Protocol Interface........cccocvvviviieiiniin i, 41
L@ Y= V1= SRS 41
Blocking Versus Non-Blocking Operation..........ccccceeviveveeveeviesic e e e ese e 42
INCIUE FIES ...ttt ettt e e sbe e s be e sbeesaaesnbesareas 42
Initialization and TermMinNatioN...........cccooviii i e 42

N 1<) 1 OO S U PTUPTUPRRURPRN 43
POITCIBALE ...t sb e e 43
POITCONTIG. ...t 44
0] 1 ST 47
POIESTALE. ... s 48
0T 1 (=] 1 SRR 48
(O70] o] o 1=Tox 1 T0] o - F USROS RURRURRUPPR 49
Open, Close, Read, and WIILE.........cccveiiiiee e 49

[N [6] 01T o PR U PR PT PP OPRRPRTRN 51

N o] (0L PR USPRPRRN 53

AN =T Lo ST SOPRPRURPTP 54

N LT) (TSP SRPPRPP 55
Dynamic Protocol Interface MaCIOScccvveieeiieiic s 56
SOCKET_NOBLOCKc.titiiiieiieieieisit sttt st sne s 57
SOCKET _BLOCK ..ottt st sttt neane s 57
SOCKET _ISOPEN ...ttt ettt sttt nne e 57
SOCKET _HASDATA ..ottt ettt 57
SOCKET _CANSENDoctitiiiiieieeee ettt 58
SOCKET_ISSENDINGccotitiiiieieieieie ettt nne s 58
SOCKET_TESTFIN ..ottt st 58
SOCKET _ISFATAL ...ttt ettt e 58
SOCKET_MAXDAT ..ottt sttt ettt st st sa et neeneenennens 59
SOCKET_RXTOUT ..ttt et 59
SOCKET _REMADDRcoooiiieieteest sttt 59
SOCKET_LOCADDR ...ttt st e e 59
SOCKET_REMPORT ...ttt sttt 60
SOCKET _LOCPORT ...ttt sttt sttt st nneenes 60
SOCKET _PUSH ...ttt st nne s 60
SOCKET _FIN .ottt ettt 60
SOCKET _FAMILY .ottt sttt sttt enenneas 60
SOCKET_HASMYADDRScceieiieiiiiiiieiisie ettt see s 61
SOCKET_LOCSITEADDRScoiiiiiisiiiitsie et 61
SOCKET_REMADDRSGccooiiiiieieiieiee sttt 61
SOCKET_LOCLINKADDRScocieiiiiaiiiinie et 61
MUIEICAST APT (DP1) oottt e 62
1] (01 (€] 01U] L 1o RS T 62
USSHOSEGIOUPLBAVEevi ettt ettt ettt snte et e e nnbe e e e e eneas 62

N o] gl F= T o | [T 0o RS 63
EXAMPIES ... 63
Broadcasting EXAMPIES.........ooviiie i 64
TCP File Transfer EXamMPIEccoovoiiiiec e 64
Non-Blocking Operations EXamplescoooeiviieiniiiereceee e 65

6. BSD Socket INterface........cccccveviveiiie i 67
ADOUL BSD SOCKETS ..ottt neeseeeneas 67

SErUCTUIES AN DEFINITIONS . .vvviiieiee ittt e e e e e s e e e e e e s e s rrareeees 68

L0 01=] 0| ST P TP ORI 71
DING e 72
ClOSESOCKEL ... ivte ettt ettt st be e be e st e e sbe e st e e ear e e re e be e nreenrs 73
(010] 010 1= To! A OSSP UP PP 74
FONUISOCKELot 75
FreadaringO.....ccee e 75

0T U =] o] S 76
GetadAriNTO ..o s 77
OETPEEIMAME ...ttt et e r e nr e 79

0T ET0Tod (T Uy L SRR 80
0etSOCKOPL, SELSOCKOPLviiveeiiicie et 81
Q1= A 1] o TP TSP PP PP PP 83

10 0 (o] o S PESRSSTR 84
TOCEHISOCKEL ...t bbbt 85
LTS PSR OPRPPROPRR 86
FRAASOCKEL ...ttt 87
=103 UV S T PP PPT PP PPROPROTN 88
L=ToV a1 (0] 1 1 SRRSO 90

1= 08V 1 0 1S SRR 92
SEIBCESOCKEL ...ttt bbbttt bbb s 93
=] 0 PSP UT OO PROTRRPSRTR 95

<] 0T] SR 97
SEINALO .ttt bbbttt nbe s 98

S 1[0 (0 {01 o RSP 99
0 (] SO PR 100
WITEESOCKET ...ttt bbbttt bbb 101
MUILICAST APT (BSD)ecveeiiiie ettt sttt st ane s 102
7. Network Applications and Protocolsccccvvviiininiinnnn, 103
L@ Y= V1= TSR 103
ARP ettt et ne e ns 104
PIOXY ARP ..o 104
D [S PRSTSPSRSPRN 105
DHCP Client Configuration............c.ccoveieiiiieie e 105
DHCP Server ConfiIgUIationccoeriiiieieieisesieseseeeee e 107
DHCP Server Operation RESIHCIONSc.cecveieeiieeiie e ee e 108

[(O e =T o OSSP 109

D] 1R SPR 112
SEIDINS() ..ttt ettt nes 112
DINSIESOIVE() «veuveivieieiteeie sttt ettt st st re s te e e sreene e tesne e 112
FTP AN TETP ...ttt ettt ettt et et e e s baestaeenreenbeeas 113
SEAIT SBIVE ...ttt ettt ettt ettt e sbeeseeesnreanre s 113
SN FIIE . s 113
RECEIVE FIE ..ot 114
HT TP CHENT .ottt sttt eneenens 115
REtrieVE @ WED PAJEceoiecieeie ettt 115

Web Page Callback FUNCHIONccooiiiiiieii e 116

IGIMP [IMUILICAST.....ccuveitieciecctc ettt ettt sttt e re e sre e 116
10 1=] o S 116
FPVB ..o ettt 117
MDNS RESPONUEN ... 118
N SRR 121
NAT CONFIQUIALTIONveeiiecieciiece et sre e naesne s 121
N[O SO PRSUPPSRSPRON 123
PPPOE ... oottt ettt e 124
PPPOE CONFIQUIALIONveivieieiieciie ettt st 125

RS I SO 126
Using SLIP with Windows COMPULELScveiiiierieiiriie et se e 126
SIMIT P bbb bbbttt 127
RS NN 1 SRR SSSPR 129
Get TIME USING SNTP ...t 129
L]] TP 130
. Point To Point Protocol (PPP) ..., 131
L AT Y= YR 131
g S T T I T SRS 131
LCP PRASE ... cuiiiie ettt ettt ettt sttt et b e e e e be e be e sre e e snae s 132
Authentication Phase (PAP/CHAP)coov o 132
NCP PRESE ...ttt st e et et e be s e besreenaenne e 132
PPP N PraCliCevciiiiiiici ettt sttt sre st nreene s 133
L 157 U0 [OSSPSR 133
CONFIGUIALION ...ttt ras 134
SCIIPTING -ttt bbbt 137
NOtES 0N SPECIAL CASESvecvveerteeieerie e sttt e e se e s et et sre e sneesnee s 140
PPP IOCH ROULINESeiiviecie ettt ae et ste e sneesneesnaeanee s 148
DIESCIIPLION ...ttt bbb 148

(@] o1 [0 T I3 (] o SRS 148
UsIiNG PPP iOCtI() FOULINES.......ecviiieiicie sttt e 150
PPP dialapi ROUTINES.ccoviiiiiieicie sttt st ne 154
=TT] o] £ o) o S SS 154
Definitions OF APL.....coooi e 154
Dynamically Configuring SmxNS PPP Dial SCriptS......cccccvvvviveriivivniierevreeein 155
PPP PPPSIZ ROULINES ...ttt 156
ol 01T o SRS 156
Definition of Signals Available..............coooiiiiii e 156

Using PPP Signaling ROULINEScccueiiiiiiiiiiic e 157

9. Simple Network Management Protocol (SNMP).................... 159

INEFOAUCTION ...ttt 159
SNIMP OVEIVIBW ...ttt sttt sttt seenesnesnenaeneenes 159
Design of SMXNS SNIMP ..o 160

Building an ApPliCatioNccoovii i 161
Build-time Configuration.............cooiiiiiii e 161
Agent Use of Build-time ConStantSccocevviieieie e 165
APPIICALION INTEITACEovieeieiicise e 166

CUStOMIZING the AQENT....c..iiieiece et sreenees 174
Configuring the Agent MIB ..ot s 174
AdAING NEW MIBS ..ottt nneenes 179
Configuring the Transport Mappingccocereeierereeie e 186
EXErCISING the AGENT.....c.viiiiiiiieeee bbb 188

10. WED SEIVEN ...t 189

WWED SEIVEE OVEIVIBWviiiiiiciiiecie ettt 189
Web Server REQUITEMENTSoouiiiiie e 190

Building the WED SEIVETooeiiiiee e 190
BUilding fOr SMXNSccoviiiiiec e e 190

EXAMPIe WED SEIVET ... 190
Building the Example Web Server for Your Targetcccccevevviveveve e, 191
Connecting to the EXxample WEeD SEIVETcccooviveiiiieeneseese e 191
Adding Web Pages Using a File SyStemcccccoooviiiiiniiiiieeee e 191

USING The WED SEIVEN ... s s 193
USEI SEIVEr FUNCLIONS......uiiiiiiie ettt ettt re et ere e 193

HTTP Server REQUESE STFUCTUIEoouiiiiiiieieeeee et 197
Modules and HaNGIELSoviiiiiiieeeee e 199

Module FUNCLION DESCHIPLIONScveiviiicie e 200
MODCHKACCESS() v uveeureereesieeitieereeieesteesteesteesreeseeseesnteeteesteesteesreesneesreeeneeneeenes 200
Y (@7 ol 012 101 T SRS 201
MODCRKIOC() +. vttt 202
V(@ Ted o1 10 o=) S SS 202
Y L@ T o (U =T () SR URS 203
IMODIOG() -+ vveverere sttt bbbttt 204
MODIANSIALE() ...veeveecieesiie et e e ae e sreenns 204

REQUEST STFUCTUIE......coeiiiiieieee ettt sttt beere e 205
USING NSBIAPG .. 206
Server Configuration File..........cviv i 206
MIME INFOIMALION.iiiiiiiiicierieie s 212
AdATYPE COMMEANGc.viiiiiiiiiiiiie e 213
Page Configuration File ..o 214
Variable Configuration File ..o 216
AcCess Configuration File..........ccooiiiiiiiiie e 217

CGI Function Programming INterfaceccccooeviiiieiiniiiiee e 218
SYStemM SUPPOIT ROULINEScveiviiiiiicie ettt st nae s 219

Vi

CGI ROULINES ..ottt ettt e e e ettt e e e e e e e et e e e e e eee et eeeeeneeseeareenees 224

CGI Environment Variables...........coooiiiiiiieeee e 230
USMETA Programming INterfacecccccevieiiiiiiieceer e 233
52T Lo TSRS PORR 234
) R PO RSP PROPRRPR 235
FANCIUGR ... bbbt 236

20 01=] 0 0T] YOS PP PP 237
22V (=] 1 O TSRO P PP OPRRPR 237
AJAX AN JQUETY .ottt ettt et e e st ne e b sne e 238
i I o] o | o BRSPS 239
OVEBIVIBW ...ttt bbb bbbttt b ettt b e et ens 239
RTOS SUPPOIT ...ttt bbb b s r b e nre e nne s 239
Multitasking ConfigUIatioN..........ccccveviiieeiie i 239
CreatiNg TaSKS ...c.viuieiiiiieiisieete ettt 239
YIelding CONTIOL......cc.oiiiiiiieie e 240
L =ToT 0] 01 o] o SRS 240
YT =1 1TV SRRSO 241
LI TCTRS 0 o] 1 S 243
Compiler and ProCeSSOr SUPPOIT......ccviiiiiiieeieeie sttt s 243
Processor Supported But NOt COMPIIEr ..o 243
Neither Processor Nor Compiler Is SUppOrted.........cccooveveeveiveeienncc e 243
Hardware Configurationocoieiiiiiie e e 243
12, DEVICE DIIVEIS ..ottt 245
OVEBIVIBW ...ttt bbb bbbttt b ettt b e et ens 245
DAt STIUCTUIES. ...ttt ettt b e b e beesan e 245
MeSSh (MESSH) SEIUCLUIE......c..eiveiiciicie et 246
NEt (NET) SIIUCIUIE......c.eiviieiiieiieese e 247
SUPPOIT FUNCLIONS ..ottt eas 248
Disable and Enable INtErrUPLS........cveivieeie e 248
INSEAll INTEITUPE WVECTOT ...t 248
ReStOre INtEITUPL WECTON vee ittt 249
MaP 1/O AQAIESS......veiveiie ettt ettt sreene e aesne e 249
Adding Messages t0 @ QUEUE............cieriririeieieieisie sttt 249
Removing Messages from @ QUEUEccveiveeieeieeie e sie st 250
Writing/Reading to/from the Controller ... 251
Interacting with an EtNernet PHYccooviiiiiiiiieece e 252
Configuring & NEW PrOCESSOKcueiieiieieieeie st eee sttt see e see et see e e 252
N o] g oo [T TP PRRPPRORRN 252
WIFItING @ DEVICE DFIVEL ...c.oicvicii ettt et 253
(O T g Tod (=] gl T 1Y ST 253

vii

INEErTUPT HANAIET ... 255

TranSMIt ROULINGooeiieiiie et 256
OPEN CONNECLION ..ottt ra e besbeeaesteenneneas 257

(O (o1 @0 o T-Tod 1o WSS RTO PSRRI 257
Configure and STAM Uooveieeeecee et 257
SRUE DOWN ...ttt 259
Network ProtoCol TabIEcooviiiiiee e 259
BIOCK DIFIVELS ...ttt ettt ettt be e be e s be e sbe e st besbbeenbeenbeenbeens 260
INEEITUPT HANAIETciiceie e e 261
TranSMIt ROULINE ...coviiieiie ettt 265
Configure and SEArt UPcocviiiiieeeece et 267
PHY SUPPOIt FUNCLIONS ..ottt 269
POITING .. 270
SHUE DOWIN .ttt et et e s seeeneas 271
ProtoCOl TabIE......cviiiiei s 272
13. Technical Background............cccoooveiiiiieiiiiie e, 273
OVEIVIBW ...ttt bbbttt bbbttt ettt et e s 273
TCP RELIANSIMISSIONeeiiiiiiie ettt et re et eseeseeenes 273
IS [T [T o TRV AY T o (01 SR 274
TCP Delayed ACKo oottt st ettt re e sreanes 276
(7]l 1= e o O] a1 4 o] SRR 276
Sily WINAOW SYNAIOME ...ttt st s 277
TCP WiIndow Probeccooviiiiiiccic s 277
Address CoNFlICt DEtECTIONccceiiiiiieie e 277
YA] S O To] 1] oo [SRR 278
N =T 0 YT 0] (o]0 V2SS 279
B. Debugging TeChNIQUES.........cccoveiiiiieeiecee e 281
OVEBIVIBW ...ttt bbbt b bbbttt b bt ens 281
Displaying Trace Dataccccviiiiriiiieieieises et 281
DebUg OVEE TeINET ..o s 283
arpstat: Dump the ARP TabIe ..o 283
bufstat: Display Details for Frame BUffers........c.ccccooveviiiii e 284
ifstat: Display Network Interface State.........ccoccvvviiiieiiiiiie i 285
logdump: Display SMXNS LOG......ccoruerieiiiniiinieiesie e 286
memdump: Display MEeMOIY ..o 286
netstat: Display CONNECLION STALUSccvevieiviii e 286
ngstat: Show the State 0f CONNECTIONS........c.covviriiiieee s 287
routestat: Display Routing Informationccccoovviiiii s 288
Other COMIMANTSoiiiiiiiirie ettt sb e b 288

viii

NEIWOIK ANAIYZELS ..o s sne e 288

WINAOWS UTITITIES ..ottt 288
WWED SEIVELS ...ttt sttt b et sae e e e 289
VerifiCation TESTING......cccvcviiiiiie et 289
C. Dynamic Configurationccccvevveieeiiiesie e 291
L@ Y= Y 1= SRS 291
Configuration FUNCLIONS..........coiviiiiiiece ettt e 291
SEIDETAUITROULETceve ittt neas 291

D. Driver-Specific Information............cccooeveviiiiiiiiieniene e, 293
ACTILOL00 ...t e st e e s be e e st e e e b e e e nte e e st e e e naae e areeareas 293
N I SR 293
CRREC e bbb et nrae e 294

51 @31 I O SRRSO 294
Y1) O G SR 296

£ 723 1o), G PP P PTRPTRRN 296
NN e O30, O SRS 298
I T RS 299
P C 22X XX ettt bbbt res 299
NEZ000ttt e e e s et e et re e e be e e ta e anre e arae e areeareas 300
I I 1 1 S 301

YL I3 9, O, O, G O PPPP RO RUPPTRRTPIN 302
{15 = 5 PR 302
[0 =] o SR 303
WFT oo 303
E. Serialized MAC AdAressesS.......ccoooviiviiieiinsienieeiee e siee e 305
F. Memory Usage and Performanceccccccoevviviivennninnsnnnnn, 307
MemOry USAgGE (KB)cviiiiiiiiiiiie e 307
PEITOIMANCE. ... ettt st en e e 308

Introduction

1. Introduction

Overview

smxNS™ began from USNet® v2.58. Much has been changed, and improvements continue to be
made.

smxNS is a library of software routines that support TCP/IP protocols. It supports the TCP/IP
protocols shown in Table 1-1.

Table 1-1. smxNS Supported Protocols

Protocol | Description

TCP Transmission Control Protocol: Transport layer with
connections, flow control and error correction

UDP User Datagram Protocol: Simple connectionless
transport layer
IP Internet Protocol: The network layer.

Both IPv4 and IPv6 are supported.

ICMP Internet Control Message Protocol: Part of IP for
practical purposes

ARP Address Resolution Protocol: Retrieves a host’s netwec
controller’s hardware address, given the host’s Interne
address

Chapter 1

The logical relationships between the protocols are illustrated in the figure below:

Application
TCP/UDP
IP/ICMP
Link Layer

Device Driver

Device
A
\4

A
v

Network

Figure 1-1: Protocol Stack

smxNS’s TCP/IP protocol suite allows diverse systems to communicate with each other. It
implements a dual 1Pv4/IPv6 stack. IPv4 support and IPv6 support can be enabled individually or
together. More information about IPv6 is presented in the IPv6 section of Chapter 7, Network
Applications and Protocols.

Typically, smxNS software is used in a target embedded system that communicates to a server. The
target application interfaces with the outside world, performing some form of data collection. When
necessary, the target application opens a connection to the server and transmits the data. smxNS takes
on the responsibility of providing a reliable connection and reliable data transport when using TCP/IP.

The smxNS software library supports a number of different processors and compilers. Support for
one processor is provided in your release. If your application requires a processor or compiler that is
not supported, see Chapter 11, Porting for guidance. smxNS is supplied with full source code, so you
can port it or modify it any way you wish.

smxNS offers 2 API’s:
1. Dynamic Protocol Interface (DPI) — Simple, proprietary API. See Chapter 5.
2. Berkeley Sockets (BSD) — Standard API. See Chapter 6.

Please refer to Appendix A, Terminology for the definition of terms you are unfamiliar with.

What is Supplied

smxNS includes full source code for the library and sample application protocols and test programs
that are useful when building networking into your application.

nsdemo.c includes support for the following protocols:
e FTP client
o FTP server

o Loopback test (exercises core stack protocols)

Introduction

o DHCP server

o mDNS Responder

e Ping client

e POP email retrieval

e SMTP email sending

e SMTP email server

o SNMP agent

e Telnet server

o TFTP client (like FTP file transfer, but using UDP)
e TFTP server

e Web server

Support for these protocols can be turned on and off using switches at the top of the file.

nstels.c is a simpler application that includes support for a Telnet server.

smxNS Design Considerations

The smxNS design considers many of the special requirements of the embedded world, such as:
o Size

e Clarity

e External support

» Packaging

* Reentrancy

* ROM residence

» Device drivers

* Modularity

Size

The complete TCP/IP protocol, including all needed subroutines but excluding the application level,
totals about 25 kilobytes of code on an x86. The protocols can be individually configured, so the
minimum system is even smaller than this. The fixed RAM requirement is typically less than 1
kilobyte. Each active connection needs buffer space, which is dynamically allocated with the buffer
space requirements depending on the application. Stack usage is kept to a minimum by avoiding deep
function nesting and excessive autovariables.

Chapter 1

Clarity

The main code does not contain any conditional controls for different compilers or processors. Only
some of the porting files have code of this form:

#ifdef COMPILER SOSO
do it so-so

#else

do it right

#endif

All the support for different byte ordering or word size is invisible to the user.

External Support

The package, as delivered, uses only a few basic ANSI C services.

Packaging

smxNS is supplied and configured in source code. The applications are packaged as C subroutines.
There are only about 30 external routines, with names not likely to conflict with any other names.

Reentrancy

The code is reentrant and can be used with preemptive multitasking and nested interrupts.

ROM Residence

The code is ROMable in a wide sense of the word: All initialized data is type “const,” and there
are no attempts to change code or constants.

Device Drivers

smxNS considers drivers as extensions to hardware, and uses a separate data link layer. In other
words, the device drivers and link layers are designed as separate modules. This results in short and
simple drivers independent of the link layer, and allows new drivers to be added without requiring
recoding of the link layer. The link layer processes the link-level protocol such as Ethernet, SLIP, or
PPP.

Modularity

In addition to the main stack, smxNS offers various add-on modules, such as a web server, NAT
support, mDNS responder, and SNMP. By separating these from the main stack, you are saved cost
and memory space by omitting them if they are not needed.

Recommended Reading

Introduction

This manual documents smxNS only. It assumes you are already familiar with TCP/IP. If you are new
to TCP/IP, please read one or more of the books listed below. Also, this manual does not go into
detail about TCP/IP standards. These are documented fully in the RFC’s. See the Internet references

below.

Books

TCP/IP Hlustrated
Volume 1: The Protocols
W. Richard Stevens
ISBN 0-201-63346-9

TCP/IP Hlustrated

Volume 2: The Implementation
Gary R. Wright

W. Richard Stevens

ISBN: 0-201-63354-X

Internetworking with TCP/IP

Volume 1: Principles, Protocols, and Architecture

Douglas E. Comer
Second Edition
ISBN 0-13-468505-9

Internetworking with TCP/IP

Volume 2: Design, Implementation, and Internals

Douglas E. Comer
Second Edition
ISBN 0-13-125527-4

Troubleshooting TCP/IP

Analyzing the Protocols of the Internet
Mark A. Miller P.E.

ISBN 1-55851-268-3

The Simple Book

An Introduction to Internet Management
Second Edition

Marshall T. Rose

ISBN 0-13-177254-6

SNMP, SNMPv2, SNMPv3, and RMON 1 and 2
Practical Network Management

William Stallings

ISBN 0-201-48534-6

UNIX Network Programming
W. Richard Stevens
ISBN 0-13-949876-1

Foundations of WWW Programming with HTML & CGI

IDG Books
ISBN 1-56884-703-3

Chapter 1

CGI Programming in C and Perl
Thomas Boutell

Addison Wesly

ISBN 0-201-42219-0

CGI Developers Guide
Eugene Eric Kim
Sams Net

ISBN 1-57521-087-8

Zero Configuration Networking

The Defnitive Guide

Stuart Cheshire & Daniel H. Steinberg
O’Reilly

ISBN 0-596-10100-7

There are many books on web page design. This one is very good for low-level protocols, and has
cross-references to RFCs:

Internet Protocols Handbook
Dave Roberts

Coriolis Group Books

ISBN 1-883577-88-8

RFCs Supported

RFCs (requests for comment) are a series of documents that represent the TCP/IP standards as they
continue to evolve. All RFCs are available over the Internet by searching with a web browser. The
most important ones for sSmxNS are:

RFC 768 UDP
RFC791 IP
RFC 792 ICMP
RFC 793 TCP

RFC 821 SMTP

RFC 822 SMTP

RFC 959 File Transfer Protocol

RFC 1034 DNS

RFC 1035 Domain Names - Implementation and Specification

RFC 1101 DNS

RFC 1112 Host Extensions for IP Multicasting

RFC 1122 Explanations and clarifications of all the above, plus additions and corrections
RFC 1144 Compressing TCP/IP Headers for Low-Speed Serial Links
RFC 1157 Simple Network Management Protocol (SNMP)

RFC 1213 SNMP MIB-II

RFC 1320 The MD4 Message-Digest Algorithm

RFC 1321
RFC 1332
RFC 1334
RFC 1661
RFC 1662
RFC 1725
RFC 1867
RFC 1869
RFC 1876
RFC 1982
RFC 1989
RFC 1990
RFC 1994
RFC 2018
RFC 2045
RFC 2046
RFC 2047
RFC 2048
RFC 2049
RFC 2065
RFC 2068
RFC 2131
RFC 2132
RFC 2236
RFC 2433
RFC 2461
RFC 2462
RFC 2463
RFC 2516
RFC 2663
RFC 2863
RFC 3411
RFC 3414

Introduction

The MD5 Message-Digest Algorithm

The PPP Internet Protocol Control Protocol (IPCP)
PPP Authentication Protocols

The Point-to-Point Protocol (PPP)

PPP in HDLC-like Framing

POP

Form-based File Upload in HTML

SMTP

DNS

DNS

PPP Link Quality Monitoring

The PPP Multilink Protocol (MP)

PPP Challenge Handshake Authentication Protocol (CHAP)
TCP Selective Acknowledgment Options

MIME: Format of Internet Message Bodies

MIME

MIME

MIME

MIME

DNS

HTTP

Dynamic Host Configuration Protocol

DHCP Options and BOOTP Vendor Extensions
Internet Group Management Protocol, Version 2
Microsoft PPP CHAP Extensions

Neighbor Discovery for IPv6

IPv6 Stateless Address Autoconfiguration

ICMPV6

A Method for Transmitting PPP Over Ethernet (PPPoE)
IP Network Address Tranlator (NAT) Terminology and Considerations
The Interfaces Group MIB

An Architecture for Describing SNMP Management Frameworks

User-based Security Model for SNMPv3

Chapter 1

RFC 3174 Secure Hash Algorithm 1 (SHA1)

RFC 3826 The AES Cipher Algorithm in the SNMP User-based Security Model
RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses

RFC 4022 Management Information Base for TCP

RFC 4292 IP Forwarding Table MIB

RFC 4293 Management Information Base for IP

RFC 5227 IPv4 Address Conflict Detection

RFC 5322 Internet Message Format

RFC 5681 TCP Congestion Control

RFC 6056 Recommendations for Transport-Protocol Port Randomization

RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)
RFC 6762 Multicast DNS

RFC 6763 DNS-Based Service Discovery

Your Experience

This manual assumes you are familiar with TCP/IP and related protocols, C programming, make
utilities, and your target hardware. For help learning TCP/IP, see the previous section, Recommended
Reading. It is likely that you will need to become familiar with the assembly language of your target
processor. For command-line compilers, makefiles are provided with the source code to make
building the library and your applications easier and more efficient. You should understand how the
makefiles work and be familiar with standard utilities that pertain to your compiler/assembler.

If your hardware is not supported, you will need to develop several low-level interface routines. For
this reason, you should know how to perform device-level programming for your target hardware,
e.g., serial ports, timers, interrupts, etc.

Overview of the Development Process

The following text provides an overview of the typical process used to develop embedded networking
applications using smxNS.

These are the main steps in the development process:

Analyze the design problem and its constraints.

Obtain and install all of the development tools and verify their operation.

Install your SMX release, which includes smxNS.

Verify that the Network Controller hardware, network servers, and network cables are functional.
Compile the smxNS library.

Build and run the SMX Protosystem with the smxNS demo enabled \SMX\APP\DEMO\nsdemo.c).

N oo a &~ w D

Develop and debug your application.

Introduction

8. Generate your production code. Set the macro SNS_DEBUG_LEVEL in nscfg.h to 0 (to
optimize code space). Configure Ethernet interfaces with the ENA option so that each device
uses a unique MAC address.

Steps 1 and 2 are covered in the remainder of this chapter. The remaining steps are discussed in the
following chapters.

Analyzing the Design Problem

Proper configuration of smxNS and its dependencies is crucial to the success of your application. For
example, you must select a target processor that can handle all of the tasks required by the application.
When analyzing the application, you might want to ascertain the minimum network throughput and
response time requirements. You should know such things as what ROM/RAM resources are
available to the application and whether there is enough room for the target application. It might be
necessary to compile smxNS and SMX to know how much code space it will use, or to do a timing
and resource analysis to ensure adequate load and resource headroom. Be sure to allow room for
additional protocols or client/server applications that you might decide to use later.

Obtaining Design Tools and Verifying Your System

If possible, compile and load some simple test programs on the target hardware. Verify that you can
use your debugger or ICE tools while executing your test program on the target.

Chapter 2

2. Quick Start

Installation

smxNS is delivered as part of the SMX release. Manuals are supplied at www.smxrtos.com/doc.
Release notes are supplied in the \SMX\DOC and \SMX\XNS\doc directories. Please take time to
review these files.

Directory Structure

smxNS is installed into a hierarchical directory structure under \SMX\XNS, as shown:

doc Additional documentation
drvsrc Drivers and CPU support
<cpu> CPU-specific files
include smxNS header files
netsrc Core smxNS source code
supsrc Low-level code common across other products in this family

Other directories may be present if you have purchased smxNS add-on packages.

ipv6src smxNS Internet Protocol version 6

pppsrc smxNS PPP support package

snmpsrc smxNS SNMP package

websrc smxNS Web Server package
Version

The smxNS version number is indicated by SNS_VERSION in \SMX\XNS\include\smxns.h.

Documentation

Manuals are supplied in PDF format at www.smxrtos.com/doc. Also see the text files in the
SMX\XNS\doc directory for important additional information.

Porting

smxNS supports many processor and compiler combinations. However, if you need to port to a new
one, see the relevant sections in Chapter 11, Porting for guidance, and then return here.

smxNS provides many device drivers for network controllers. However, if yours is unsupported,
please see Chapter 12, Device Drivers for the information you need to develop your own driver.

10

http://www.smxrtos.com/doc

Quick Start

Configuration

It should be possible to run the packaged smxNS demo program with few or no changes. The IP
address of the system running smxNS is set with the LOCALIP macro at the top of the nsdemao.c file
in the \SMX\APP\DEMO directory.

If LOCALIP is set to 0.0.0.0, then smxNS will retrieve an IP address from a DHCP server, or you
could set this to an appropriate fixed address for your network. Other commonly adjusted settings are
collected at the top of nsdemo.c. There is a series of macros that specify which clients and servers
the test program will launch. There are also test specific settings such as the IP address of a test FTP
server, and account information for logging in to the test FTP server.

Other smxNS configuration options are documented in Chapter 4, Configuration.

Building the smxNS Library

Build the smxNS library from the build directory under \SMX\XNS, as you would build any other
SMX library. See the SMX Quick Start manual if you have not read it already.

One source code file might require modification in order to run smxNS’s test programs. nscfg.h,
resides in the include directory and is used to define how smxNS is configured for the application.
The number of physical connections, buffers, and other TCP/IP options are set here. For testing
purposes under the conditions assumed, neither file should need to be modified. File nscfg.h and its
parameters are described in section Configuring Local Parameters of Chapter 4, Configuration.

Running the Main Test Programs

Test programs which were separate in USNet have been combined into a single demo file nsdemo.c
in the \SMX\APP\DEMO directory.

Guidelines for Testing

» Test using the smxNS trace output. (See Appendix B, Trace Output.)

» Do not start with untested hardware. If you don’t have any diagnostics available, get a
commercial board that is reasonably close to your own and run smxNS in that board. Then move
to your own hardware.

» As much as possible, make sure that all the network cabling is verified before you start testing.

« If you make experimental changes to the test program, always keep the last test that worked as a
fallback position. Whenever a test fails, go back to what works and retry that. (A cable may have
become loose!) Then try a different, smaller step.

e Set SNS DEBUG_LEVEL = 3 in nscfg.h to help report error conditions in the stack. Do a grep
or search on “DEBUG_MSG” in the stack modules to locate error traps.

» The header file net.h contains error return number translations and meanings.
» Use the function Nprintf() or Nputstr() in your test programs as a trace output tool.

» Use a LAN analyzer to capture and troubleshoot your test programs’ data traffic during stack
communications.

11

Chapter 2

nsdemo

12

nsdemo.c combines several test programs and example servers into one demo. The specific tests are
controlled by a series of #define switches at the top of the file, and these are summarized below.

TEST_CRYPTO

Run a test to confirm cryptographic functions.

TEST_DHCP_SERVER

Start a DHCP server.

TEST_FTP_CLIENT

Run an FTP client that continuously uploads and downloads a test
file.

TEST_FTP_SERVER

Start an FTP server.

TEST_LOOPBACK

Test the core of the TCP/IP stack.

TEST_MDNS_RESP

Start an mDNS Responder.

TEST_PING_CLIENT

Run a Ping client.

TEST_POP_RECEIVE

Retrieve an email message from a POP server.

TEST_SMTP_SEND

Send an email message using an SMTP server.

TEST_SMTP_SERVER

Start an SMTP email server.

TEST_SNMP_AGENT

Start an SNMP agent so that the smxNS system will respond to
queries from an SNMP manager.

TEST_SNTP_CLIENT

Run the SNTP client that will retrieve the current time from a time
server,

TEST_SSL_SERVER

Start a version of the Web Server that uses the Secure Sockets Layer.

TEST_TELNET_SERVER

Start a Telnet server. The Telnet server provides a simple command
line that allows the state of the network stack to be displayed.

TEST_TTCP_SERVER

Run the TTCP server so that network performance can be measured.

TEST_WEB_SERVER

Start a Web server that will respond with canned web pages.

See Chapter 7 Network Applications and Protocols for information about these. The sections below

give details about these tests.

To run nsdemo, add it to the SMX Protosystem. For versions of SMX that use project files, add the
smxNS library and this demo to the project. Also add compiler command line defines for SMXNS and
SMXNS_DEMO. For versions of SMX that use makefiles, add the demo by enabling the SmxNS
library near the top of the Protosystem makefile, pro.mak, and enabling this demo near the top of

demodefs.mKi.

The nsdemo application and the smxNS stack provide feedback by logging messages with the
DEBUG_MSG() macro. For example, this line appears in nsdemo.c:

DEBUG_MSG2_ PARO ("smxNS Portinit for enet Failed\n");

These log messages are sent to both the debug terminal and the smxAware print buffer. The debug
terminal output is usually sent to an RS232 port on your target.

Quick Start

The debug macro is of the form DEBUG_MSGd_PARp, where d is the debug level from 1 to 6, and p
is the number of parameters in the format string from 0 to 10.

When running under an IDE, the strings directed to the smxAware print buffer can be reviewed by
opening the smxAware text display window and expanding the Print node in the object list. Viewing
the log messages this way allows you to see all of the most recent trace messages, and is more useful
for debugging.

FTP Client Test Overview

The FTP client test sets up the system under test to act as an FTP client. The system writes a file to an
FTP server, and then reads it back and verifies that the data has been transferred correctly. This test
will run in a continuous loop until the Escape key on the keyboard is pressed.

If you don’t already have an FTP server in the local network, the following are freely available and
relatively easy to set up:

o Filezilla Server, available at http://sourceforge.net/projects/filezilla/

e War FTP Daemon, available at http://www.warftp.org/

The following definitions in nsdemo.c should be reviewed before running the FTP client. You will
likely need to adjust these definitions and perhaps set up a user account under your FTP server in
order for the FTP client test to run successfully.

FTPSERVER IP address or DNS name for the FTP server.
FTPUSERID User name for the FTP account.
FTPPASSWD Password for the FTP account.

FTP Client Pass Indicator

If all is going well, you should see status report messages similar to the following.
9 FTtest OK

This indicates that the test program has completed 9 passes in which the test file has been uploaded to
the FTP server and then downloaded and compared. Additional information may be available from
the log messages or from the FTP server’s user interface.

If the test is not successful, you could verify that the FTP user account settings are working by playing
the role of the test program and logging into the server from a command line. For more detailed
debugging, you could increase the setting of SNS_DEBUG_LEVEL in XNS\include\nscfg.h for more
verbose logging, and you could review network activity using a network sniffer.

FTP Server Test Overview

The FTP server demonstrates the use of ftp_session_main() function to implement an FTP server.
The ftp_session_main() function handles all aspects of an FTP session with a client once the control
connection has been established. File system support may be provided either through the minimal
RAM based file system, or through traditional file system support such as smxFS.

13

http://www.warftp.org/

Chapter 2

Loopback Test Overview

The loopback test uses a wrap driver while executing read/write tests on your target. It sets up a TCP
connection through a loopback device driver, so that all communication takes place within the unit
under test. It exercises a number of features of the TCP layer by forcing unusual but valid behavior in
the outgoing TCP segments. These behaviors are introduced by writing directly to internal data
structures, which may create some issues for future maintenance, but this method is simple and allows
important features to be easily tested.

The loopback test sends trace update messages during execution, and if the test is successful it will
display about 30 lines of trace data with “No errors in LTEST” at the end of the trace. If you
don’t have trace capability, you can use your debugger to verify execution results by setting various
breakpoints in ltest().

In order to set up the loopback test, follow these steps.

1. Edit APPADEMO\nsdemo.c so that just TEST_BASE_NETWORK and TEST_LOOPBACK are
enabled

2. Compile and download the top level project

3. Start execution and allow it to run for about 20 seconds

Loopback Test Pass Indicators

The Loopback test will display the following trace output if the test passed.
This concise listing was created with the SNS_DEBUG_ LEVEL constant set to 3 in nscfg.h.

ARP 767676767676 -> 192.9.202.1
ARP 767676767676 -> 192.9.202.1
***SEND AND RECEIVE 20 MESSAGES
—20 MESSAGES OK

**x * FRAGMENTATION

***FRAGMENTATION WITH RETRANSMIT
reTX1l 14900 C1/204 ST1 SQ2669 MS741
—FRAGMENTATION OK

*** SEQUENCE NUMBER ROLLOVER
—ROLLOVER OK

***QVERLAPPING MESSAGES

—OVERLAP OK

***QUT OF ORDER MESSAGES

—OUT OF ORDER OK

***DUPLICATE MESSAGES

—DUPLICATE OK

** *RETRANSMISSION

reTX1l 45399 C1/204 ST2 SQ77c MS298
—RETRANSMISSION OK

no errors in LTEST

Potential Sources of Failure for the Loopback Test

Here are some sample problems that would cause LTEST to fail. Since LTEST doesn’t use any target
resources other than the CPU, RAM, and ROM, most problems are due to errors in environment
initialization.

14

Quick Start

» Target stack space is too small.

» Target memory RAM/ROM control registers are not set up properly.

POP Email Retrieval Test Overview

The POP email retrieval test will call the POPreceive() function to retrieve an email message from an
email server. The following items should be configured for this test.

TEST_POP_RECEIVE Set to 1 to launch the test.
TEST_POP_SERVER The IP address or URL of the POP server.
TEST_POP_USER The user name for the account on the POP server.

TEST_POP_PASSWORD The password for the account on the POP server.

SMTP Email Send Test Overview

The SMTP send test will call the SMTPsend() function to send a canned email message to an SMTP
server. The following items should be configured for this test.

TEST_SMTP_SEND Set to 1 to perform test.

TEST_EMAIL_ADDRESS The email address to which the test message will be sent. This
address is parsed in order to determine the SMTP server that is
used when sending the message.

TEST_SMTP_FLAGS Normally set to 0. Set to SMTP_USE_SSL to use SMTP over
SSL. This requires an SSL library.

MULTIPART Set to 1 to send a multipart message.

SMTP Server Test Overview

An SMTP server may be launched as part of nsdemo. Log messages will be written as email
messages are received.

SNMP Agent Test Overview

The SNMP agent may be started as one of the tasks run in nsdemo. The SNMP agent acts as a server
and provides network status information in response to requests sent by a Network Manager
application. The SNMP agent is discussed further in Chapter 9.

Telnet Server Test Overview

A Telnet server may be launched as part of nsdemo. telnetd task_main() sets up connections, and
sns_TelnetCli() interprets command lines and provides a response.

The Telnet session function sns_TelnetSessionMain() provides the following functions.

e It exchanges some basic control information with the client.

15

Chapter 2

It provides simple editing by allowing the backspace key to remove the last character typed from
the command line, and then redisplays the line.

It reads command lines, and calls the routine sns_TelnetCli() for each. The example in nsdemo.c
passes the command to sns_DebugCli() so that the command can be processed by the debug
interpreter. If the optional HTTP client module is configured (SNS_PROTO_HTTPC = 1), then
instead of running the command through the debug interpreter, the command string is interpreted
as a URL, and the HTTP client function attempts to retrieve the web page at that location.
nstels.c also implements a Telnet client, and if this version is built rather than nsdemo.c, then the

Telnet command processor simply echoes back the command that was received.

e Ifsns_TelnetCli() returns 0, then the telnet session will continue supplying command lines. If
sns_TelnetCli() returns -1, the session will be closed. The example in nsdemo.c returns -1 when
it is called with the string “quit”.

The command interpreter in nsdemo.c or nstels.c could serve as a starting place for a full featured
command line interface for the system running smxNS.

Web Server Test Overview

16

The Web server may be launched as part of nsdemo. The following configuration items may be

useful.

TEST_WEB_SERVER

Set to 1 to enable the Web server.

LOCALIP

The Web server will be accessible at this address.

NUM_WEBS_TASKS

This specifies how many tasks will be launched to fulfill individual
requests to retrieve a resource. Setting this to 0 will fulfill a request in
the context of the main Web server task.

When the Web server is running correctly, you should be able to enter the IP address of the system
running smxNS as the URL in a web browser, and a default web page should be displayed. More
information on the Web server is presented in Chapter 10.

Beginning Your Application

3. Beginning Your Application

Developing a Simple Application

Before developing your full application, it is instructive to develop a small simple first application.
Many of the problems encountered during development are eliminated by first working through the
test programs and creating a simple application. This section describes the rudimentary design of an
application consisting of a server program and a client program. The server will wait for the client to
establish a connection, then will wait for the client to send a request for data. Once the client has
established the connection to the server, it will send a request for some number of bytes of data. The
server then begins sending a buffer of data for a predefined number of times, while the client reads the
data, checks the data’s integrity, and sends a confirmation message.

The code presented in this section is intended to illustrate SmxNS’s Dynamic Protocol Interface (DPI)
as simply as possible; therefore, some of the code might seem inefficient. Refer to Chapter 5 in this
manual for more information on the DPI. If the application requires BSD sockets, also consult this
manual for information about smxNS’s BSD interface.

NOTE: The choice between TCP and UDP must be thought through properly. A common
misconception is that data transferred via TCP arrives in packets. Data transferred by
TCP should be thought of as a stream. If an application calls the write function three
times, each time writing 20 bytes of TCP data, the local stack may combine this
information into a single TCP segment with a 60-byte data payload. The remote side
read will then receive one 60-byte data chunk. The application-layer protocol is
responsible for parsing the data into useful information.

The first question to answer about a first application is “What is the data to be exchanged?” Most of
smxNS’s test programs send a buffer of sequential numbers that can be easily checked by the remote
host.

If the numbers in the received buffer do not match up, an error is generated. This type of data is
probably the easiest to generate and check quickly. An application can construct such a buffer of data
with this code:

#define DATA SIZE 100 /* Number of bytes in buffer */
ulé count; /* Index counter */

u8 junk [DATA SIZE] /* Buffer */

for (count=0; count<DATA SIZE;count)
junk [count] = count%256; /* Number is 0 -> 255 */

17

Chapter 3

18

Once the data has been received, the buffer can be checked by a similar section of code:

/*

** Data received and stored in junk/[]

*/

for (count=0; count<DATA SIZE;count) {
if (junk([count] != count%256)
DEBUG _MSG2 PARO (“ BAD DATA “);

The next question that needs to be addressed is “What roles do the server and client play?” Do they
exchange data? Does one side control the other? What protocols should be used in the exchange?
The server’s role in the application outlined above is very basic. It will control the transfer of a buffer
as outlined above, to the client via a TCP connection. The client’s role is to receive the buffer from
the server, then check the data’s integrity. This type of transfer could be used to send control
information from a server to a factory floor or to a remote sensing station.

Once the crucial design questions have been answered, the server and client need to be defined. Since
both the server and client will be running an image built from the smxNS source code, some small
differences need to be established so that one system will act as the server and the other as the client.

The server will be running the server application that listens for a network connection and the client
will be running the client application that establishes the connection and makes requests of the server.
This can be accomplished by using files specific to these network applications when building the top
level project. These files will also establish IP addresses and port numbers for the server and client.
In this example, one application file is called nsserver.c and the other is nsclient.c.

Since the application is going to be using TCP, port numbers must be assigned to both sides of the
connection. Port numbers must be consistent between the server and client. Because the server is
going to perform a passive open, it will listen on its local port for incoming messages from any remote
site’s port. The client side must receive and send to the same server port. The following section of
code defines the server- and client-specific information:

#define CLIENT IP “10.1.1.2” /* Client IP address */
#define SERVER IP “10.1.1.3” /* Server IP address */
#define CLIENT MAC “00:01:02:03:04:05" /* Client hardware addr */
#define SERVER MAC “00:01:02:03:04:06” /* Server hardware addr */
#define LOCALMASK “255.255.255.0” /* Set subnet mask here */

#define SERVER PORT 1500 /* Server port number */
#define DATA SIZE 200 /* Data buffer size in bytes */

#define ITERATIONS 10 /* Number of passes */

This information must be included in both the server and client programs. For the outlined sample
application, this information is stored in file nscs.h. A listing of nscs.h is included at the end of this
section. Port numbers below 1024 have conventions regarding their use, so for general applications
select port numbers greater than 1024.

The server and client programs will be very similar. There will be two differences between the two
programs: First, the client will have a complimentary set of Nread() and Nwrite() functions to that of

Beginning Your Application

the server. Second, the client will check the integrity of the incoming data. Other than these two
differences, the overall design considerations are the same. The design of the server will be presented
first, then the client design will be shown but without the detailed explanations.

The server program will have the name nsserver.c and the client, nsclient.c. Both these files must
reside in the demo directory. Any program using smxNS requires four main features:

* Include files
* Initialization
» The establishment of a connection

e Termination

Include Files

One smxNS header file must be included at the top of nsserver.c. The file is:

#include “smxns.h” /* Prototypes and definitions */
/*

** Tnclude application-specific information

*/

#include “nscs.h”

The file smxns.h in turn #includes the files nscfg.h, net.h, mtmacro.h, support.h, and socket.h. The
file nscfg.h contains smxNS’s configuration, such as the number of physical connections, buffers, and
options. The file net.h contains the function prototype information and type definitions. The file
mtmacro.h contains definitions associated with the multitasking environment. The file support.h
contains prototypes of internal support functions. Finally, the file socket.h specifies the BSD sockets
API. If the application requires any application-specific information stored in a header file, that file
should also be included.

Initializing SmMXNS

Two functions are required to initialize smxNS. The first, Ninit(), will zero all data structures, move
the netdata [] table from ROM to RAM, and initialize the stack. For systems built within the
SMX environment, this function is called as part of the system start up and doesn’t need to be
included in the network application. The second initialization function, Portinit(), initializes a
network interface driver and prepares it for sending and receiving network frames.

In smxNS, the call to Ninit() is integrated with the rest of the system start up. The calling sequence is
as follows.

ainit() [implemented in main.c]
Calls smx_modules_init() [implemented in initmods.c]

Calls smxns_init() [implemented in initmods.c]

19

Chapter 3

...and smxns_init() calls Ninit(). If there is a fatal error in networking initialization, system start up
will fail. Otherwise, ainit() continues to launch applications.

ainit() [implemented in main.c]
Calls appl_init() [implemented in app.c]
Calls nsdemo_init() [implemented in nsdemo.c]
... and nsdemo_init() launches the test program tasks.

When shutting down, a similar process occurs. Here the chain is exitx_main() calls
smx_modules_exit() calls smxns_exit() calls Nterm().

From the perspective of the application developer, the network application code can be considered to
start with a function modeled on nsdemo_init(), which typically launches one or more tasks that create
and use network sockets.

Let’s say that the server task is named server_task_main(). Here is some sample code that shows
typical start up of a network application task.

void server task main(uint dummy) {
int error code;

error_code = Portinit (“enet”, “7);
if (error code < 0) return;

Function Ninit() does not take any parameters. Function Portinit() takes two parameters defining the
physical connection to be initialized and any special parameters for the initialization.

Establishing a Connection

Once the initialization is complete, the server can open a connection via the Nopen() function. Since
the server is going to be doing a passive open, it will remain in the Nopen() function until the client
establishes a connection. If the connection was successfully established, Nopen() will return a
connection number; otherwise, it will return a negative number indicating an error. The connection
number is used by the Nread() and Nwrite() functions to indicate on which connection the operation
is to be performed.

The following code will create a passive open in the server:

/*

** Perform a passive open on port SERVER PORT
*/

conno = Nopen(“*”, "TCP/IP”, SERVER PORT, 0, 0);
if(conno < 0) return;

20

Beginning Your Application

Function Nopen() takes five parameters:

Parameter Description

first Specifies the name of the remote host. * indicates the server should accept a connection
from any host. To do an active open to a client, the “*” could be replaced with a string
containing the IP address of the client.

second Tells smxNS what protocol will be used in the connection. Other valid options are
“UDP/IP” or “ICMP/IP”.

third Tells smxNS which port the local host will be using.

fourth Indicates which port the remote site will be using. Since the server is doing a passive

open, the fourth parameter is zero to indicate the server should accept a connection from
any port at a remote host.

fifth A flag that can instruct SmxNS to do a non-blocking open if setto S NOWA.

If Nopen() returns with a connection number, the client has established a connection. Now the server
will wait for the client’s request, then begin transferring the data through the established connection
by using the Nwrite() function to send the data. An Nread() function receives confirmation from the
client if the data was intact. Both functions return the number of bytes written or read if successful;
otherwise, they return a negative error number. To write the buffer of sequenced data and check for
the client response, add this code to nsserver.c:

/* Call to Nopen() returns conno here */

/* Build junk[] data here */

/*

** Loop through data transfer. ITERATIONS

* % defined previously in code.

*/

for(i = 0; i<ITERATIONS;i++) {
/*
** Wait for request for number of bytes to send
*/

error_code = Nread(conno, data_size, sizeof (data_ size);
if (error code < 0) return;

/*
** Convert data req buffer to integer data requested here

*/

/*

** Write data

*/

error code = Nwrite (conno, junk, data request) ;
if (error code < 0) return;

21

Chapter 3

/*

** Read client response

*/

error_code = Nread(conno, status, sizeof (status));
if (error code < 0) return;

Both the Nwrite() and Nread() functions take three parameters. The first is the connection number,
which specifies the connection that will be used for the transfer. In the example above, the connection
number, conno, was returned by the Nopen() performed earlier. The second parameter for Nwrite()
is the buffer containing the data to send, and for Nread() the buffer is the storage place to receive the
data. The final variable is the maximum length of the buffer for Nread() and the data length to write
for Nwrite(). The length is specified in bytes.

Terminating SmxNS

After the data exchange is complete, both sides of the application are ready to terminate sSmxNS.
Each function in the termination sequence is a reciprocal function to those called to establish a
connection. Therefore, the first thing to do is close the connection by calling Nclose(). Finally,
smxNS is terminated by calling Nterm(), which actually calls the Portterm() function to shut down
the physical connections. It is common for a system to run its networking functions at all times, so
the call to Nterm() may be omitted. Add the following code to nsserver.c:

/*
** Terminate smxNS
*/
Nclose (conno) ; /* close the connection */
return;
} /* End of main */

Function Nclose() takes a single parameter, the connection number, conno, returned by Nopen().
For every open connection, a call to Nclose() is required. Function Portterm() also takes a single
parameter, the physical connection that needs to be shut down. In the defined application, Portterm()
could take the parameter “enet” since the local host has a single physical connection defined in the
netdata [] table. The parameter “*” indicates all connections should be shut down. Finally,
Nterm() does not take any parameters.

A source code listing of nsserver.c is included at the end of this section. The code listed is slightly
more complete than the code included above. It also contains comments describing what each section
of code is doing.

For nsclient.c, the overall structure in the program is the same, with two differences between the
smxNS calls themselves. The include files, defined constants, and the call to Ninit() are the same as
in nsserver.c. The first difference is in the call to Nopen(). Program nsclient.c will do an active
open to the server and the TCP port on the server. The following code should be in nsclient.c:

conno=Nopen (SERVER_IP, “TCP/IP”, Nportno(), SERVER PORT, O0);

22

Beginning Your Application

When the system running nsclient calls this Nopen(), it will begin to actively establish the connection
to the server. In this call to Nopen(), the client does not need a well-defined local port number, so a
call to Nportno() is used. Function Nportno() returns a random port number greater than 1024.

The second difference is in the calls to Nwrite() and Nread(). Since the client will be doing the
complimentary operations of the server, its data collection loop will be:

/%

** Loop through data transfer

*/

for(i = 0; i<ITERATIONS;i++) {

/*
** Generate random number between 1 and DATA SIZE
** then convert to a buffer “char data reqg[2].”
** Send request to server
*/
error code = Nwrite(conno, data req, sizeof (data req));
if (error_code < 0) return (error code) ;
/*
** Read the data from the server
*/
error_code = Nread(conno, junk, sizeof (junk)) ;
if (error code <= 0) return (error code) ;
/*
** This is where the data’s integrity would
** Dbe checked.
*/
/*
** Write out status
*/
error_code = Nwrite(conno, “All Done”, 8);
if (error code < 0) return (error code) ;

One can see that these operations are the compliments of the server side. Finally, the termination is
the same as in nsserver.c.

A source code listing of nsclient.c, with comments, is included following the listing of nsserver.c.

Compiling Your Application

The IDE project files or makefiles delivered with smxNS are designed to handle building an
application without major modifications. Make a copy of the smx Protosystem directory to work in
and create your application files there. In this example, make two copies of the Protosystem and
create nsclient.c in one and nsserver.c in the other. Add each to the project file or makefile in its
directory, in place of nsdemo.c.

Run the make and check for compiler errors and warnings. Address any that crop up before running
either program. Once both programs are built, they are ready to run by doing the following:

1. Ensure that the server and client are connected via Ethernet.
2. Run the nsserver executable on the server.

3. Run the nsclient executable on the client.

23

Chapter 3

The program server will print out a few messages, and then wait until the connection is made. Once
the client begins, trace messages should appear on both machines.

Code Listings

This section includes listings of nscs.h, nsserver.c, and nsclient.c.

Listing of nscs.h

/*
** Copyright 1997 U S Software Corp.
* %

** ngcs.h — Header file used by nsserver.c and nsclient.c

*/
/*

** Check to see if this has been included previously
*/

#ifndef _NSCS_H

#define NSCS H

/*

*% Useful constants. These should be included in nsserver.c and nsclient.c.
*/

#define CLIENT IP “10.1.1.2" /* Client IP address */

#define SERVER IP “10.1.1.3” /* Server IP address */

#define CLIENT MAC “00:01:02:03:04:05” /* Client hardware addr */
#define SERVER MAC “00:01:02:03:04:06” /* Server hardware addr */
#define LOCALMASK “255.255.255.0” /* Set subnet mask here */

#define SERVER_ PORT 1500 /* Server listens at this TCP port */
#define DATA SIZE 200 /* Size of data buffer in bytes */
#define ITERATIONS 10 /* Number of times to send data buffer*/
#endif /* NSCS H */

Listing of nsserver.c

*

nsserver.c Version 2.70

smxNS simple server test application. To be used
in conjunction with nsclient.c

New code and modifications:
Copyright (c) 2006-2011 Micro Digital Inc.
All rights reserved. www.sSmxXrtos.com

USNet sample code:
Copyright (c) 1997 United States Software Corporation

This software is confidential and proprietary to Micro Digital Inc.
It has been furnished under a license and may be used, copied, or
disclosed only in accordance with the terms of that license and with
the inclusion of this header. No title to nor ownership of this
software is hereby transferred.

Author: Richard Ames

Portable to any ANSI compliant C compiler.

%k ok ok ok o ok o F O X ok ok ok X o 3k %k Ok kO

24

http://www.smxrtos.com/

Beginning Your Application

**/
#ifdef SMXNS DEMO

/*

*%x TInclude at least the following files for an application
** ysing the Dynamic Protocol Interface.

*/

#include “smxns.h”

/*

** Useful constants. This is where any application-specific
** information would be included.

*/

#include “nscs.h”

/*

** Server starts here.
*/

#define MAIN STACK SIZE 1200

#ifdef _ cplusplus
extern "C" {

#endif

void nsdemo_init (void) ;
void nsdemo_exit (void) ;
#ifdef cplusplus

#endif
static SB_OS_ TASK HANDLE server task;

void server task main(uint dummy)

int error code; /* Error codes returned by interface */

int conno; /* Connection to remote client */

uint count; /* Count index in junk[] */

uint pass; /* Number of times data sent to client */
uint data_ request; /* Number of bytes client requested */

char junk [DATA SIZE]; /* Sample junk data */

char data size[2]; /* Buffer of number of bytes client wants */
char status[10]; /* Client status */

(void) dummy ;

sb_OS TASK_START PREEMPTIBLE () ;

/*

** Attempt to initialize the physical connections on this
** host.

*/

DEBUG_MSG3_PARO ("Server attempting a Portinit ()\n");
Portcreate (“enet”) ;

Portconfig(“enet”, “IP”, SERVER_IP);

Portconfig(“enet”, “MASK”, LOCAL MASK) ;
Portconfig(“enet”, “MAC”, SERVER MAC) ;

Portconfig(“enet”, “LINK”, “Ethernet”);
Portconfig(“enet”, “DRIVER”, “ETHCTRL") ;
error code = Portinit ("enet", “7);

if (error code < 0)

DEBUG_MSG1_PARI (
"Failed to initialize ports due to code %d\n", error_ code) ;

Nterm(); /* Terminate smxNS */
sb_0S_TASK FINISHED () ;
return;

}

/*

** Build the data buffer. The buffer is just numbers
** from 0 to 255.

*/

for (count=0; count<DATA SIZE;count++)

25

Chapter 3

junk [count] =count%256;
/*
** Open a server connection. The server will enter the
** LISTEN state and wait for the client to establish the
** connection. Nopen() returns the connection number.
** If conno<0 an error occurred.

*/
DEBUG_MSG3_ PARI ("Server doing an Nopen() on %d\n",SERVER_PORT) ;
conno = Nopen("*", "TCP/IP", SERVER_PORT, 0, 0);
if (conno < 0)
DEBUG_MSG1 PAR1 ("Failed to open connection due to code %d\n",conno) ;
Nterm(); /* Terminate smxNS */
sb_0S_TASK FINISHED () ;
return;
I

** Connection has been established. Begin writing buffer

** the number of times specified by ITERATIONS.

*/

DEBUG_MSG3_PAR1 ("Server writing data to client %d times\n", ITERATIONS) ;
for (pass=0;pass<ITERATIONS;pass++)

/*

** Read the client’s request for the number of bytes to send.
*/

data_request = 0;

error code = Nread(conno, data size, sizeof (data_size));

if (error code <= 0)

DEBUG_MSG1l_PAR1 ("Failed on data request due to code %d\n",
error code) ;
Nclose (conno) ;

Nterm() ;
sb_0S_TASK FINISHED () ;
return;
data_request = (0xff00 & (data size[0]<<8)) | /* convert to number */

(0x00ff & data_sizel[l]);
DEBUG_MSG3_ PAR1 ("Received request for %u\n", data request) ;
/*

** Write out the junk data to connection conno.
*/

error code = Nwrite(conno, junk, data request);
if (error_code < 0)

DEBUG_MSG1l_PAR1 ("Failed on writing data due to code %d\n",
error code) ;

Nclose (conno) ;

Nterm() ;

sb_0S_TASK FINISHED() ;

return;

}
/*
** Read status from client to see if it has finished
** reading. In this test we don’t care what the client
** wrote as long as the reading of the data was OK.
** The client will check the integrity of the data.
** Tf the data was received OK, then the client will send
** a small packet. Therefore we do not check status.
*
/
error code = Nread(conno, status, sizeof (status));
if (error_code < 0)

DEBUG_MSG1l PAR1 ("Failed on reading data due to code %d\n",error code) ;
Nclose (conno) ;
Nterm() ;
sb_0S_TASK FINISHED() ;
return;
}
/*

** Got this far? If so, we had a successful pass.

26

Beginning Your Application

*/
DEBUG_MSG3_ PAR1 (" Pass %d complete\n", pass+l);

DEBUG_MSG3_ PARO ("Server program completed successfully\n");
/* Close down the connection */

Nclose (conno) ;

sb_0S_TASK FINISHED() ;

return;

/***

* DEMO INITIALIZATION / CLEANUP
ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ko k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok /

void nsdemo_init (void)

DEBUG_MSG3 PARO ("Server Start\n");

sb_0S TASK CREATE PREEMPTIBLE (&server task, server task main, O,
SB_OS_TASK PRI NORM, MAIN STACK SIZE, "server task");

void nsdemo_exit (void)
{
}

#endif /* SMXNS DEMO */

Listing of nsclient.c

*
nsclient.c Version 2.70

smxNS simple client test application. To be used in conjunction with
nsserver.c.

New code and modifications:
Copyright (c) 2006-2011 Micro Digital Inc.
All rights reserved. www.smxrtos.com

/
*
*
*
*
*
*
*
*
*
* USNet sample code:
* Copyright (c) 1997 United States Software Corporation
*
*
*
*
*
*
*
*
*
*
*
*

This software is confidential and proprietary to Micro Digital Inc.
It has been furnished under a license and may be used, copied, or
disclosed only in accordance with the terms of that license and with
the inclusion of this header. No title to nor ownership of this
software is hereby transferred.

Author: Richard Ames

Portable to any ANSI compliant C compiler.

R R e
#ifdef SMXNS DEMO

/*

** TInclude at least the following files for an application
** ysing the Dynamic Protocol Interface.

*/

#include "smxns.h"

/*
*% Useful constants. This is where the application specific

** information would be included.
*

#include "nscs.h"

27

http://www.smxrtos.com/

Chapter 3

/*

** Client starts here.
*/

#define MAIN STACK SIZE 1200
#ifdef cplusplus
extern "C" {

#endif

void nsdemo_init (void) ;
void nsdemo_exit (void) ;
#ifdef _ cplusplus
#endif

static SB_OS_TASK HANDLE client task;

void client task main(uint dummy)

int error code; /* Error codes from function calls */

int conno; /* Physical connection number */

uint count; /* Count index in junk[] buffer */

uint pass; /* Number of times server sent data */
uint client port; /* Client-side port number */

uint data_request; /* Number of bytes requested by client */
int data_read; /* Number of bytes read by client */

char junk [DATA SIZE]; /* junk buffer */

char data_size([2]; /* Request sent to server */

(void) dummy ;
sb_0OS_TASK START PREEMPTIBLE() ;

/*

** Attempt to initialize the physical connections on
** this host.

*/

DEBUG_MSG3_PARO ("Client attempting a Portinit ()\n");
Portcreate (“enet”) ;

Portconfig(“enet”, “IP”, CLIENT_IP);
Portconfig(“enet”, “MASK”, LOCAL MASK) ;
Portconfig(“enet”, “MAC”, CLIENT MAC) ;

Portconfig(“enet”, “LINK”, “Ethernet”);
Portconfig(“enet”, “DRIVER”, “ETHCTRL”") ;
error code = Portinit ("enet", “7);

if (error code < 0)
DEBUG MSG1_PAR1 (
"Failed to initialize ports due to code %d\n",error code);
e
** Open a client connection. The client will establish
** the connection because the server is in the LISTEN
** gstate. Nopen() returns the connection number.
** Tf conno<0 an error occurred.
*/
client port = Nportno() ;
DEBUG_MSG3 PAR2("Calling Nopen() local port %d remote port %d\n",
client _port, SERVER_PORT) ;
conno = Nopen (SERVER IP, "TCP/IP", client port, SERVER PORT, O0);
if (conno < 0)

DEBUG _MSG1 PAR1 (" Failed to open connection due to code %d\n", conno);
sb_0S TASK FINISHED () ;
return;

/*
** Connection has been established. Begin writing buffer
** the number of times specified by ITERATIONS.

*/

28

Beginning Your Application

DEBUG_MSG3_PARI1 ("Client reading data from server %d times\n", ITERATIONS) ;
for (pass=0;pass<ITERATIONS; pass++)

/*

** Zero out the buffer to ensure we do not check the

** previously sent data.

*/

memset (junk, 0, DATA SIZE);

/*

** Generate a request for data. Number of bytes range from
** 1 to DATA_SIZE. Then send data request to the server.

*/

data_request = TimeMS () $DATA SIZE + 1; /* TimeMS returns ms count */
data size[0] = data_request>>8; /* Store number in buffer */
data_size[l] = 0x00ff & data request; /* Finish storing number */

DEBUG_MSG3_PAR1 ("Sending request for %u bytes\n",data request) ;
error_code = Nwrite(conno, data_size, sizeof (data size));
if (error code < 0)

DEBUG _MSG1 PAR1 (
"Failed on send data request due to code %d\n",error code);
Nclose (conno) ;
sb_0S_TASK FINISHED() ;
return;

}

/*

** Read the requested number of bytes of junk data
** from connection conno. DATA SIZE the maximum

** buffer size. Nread() will return the number of
** actual bytes read in error code.

*/

data read = Nread(conno, junk, DATA SIZE) ;

if (data_read < 0)

DEBUG_MSG1l PAR1 ("Failed on reading data due to code %d\n",error code) ;
Nclose (conno) ;

sb_0S_TASK FINISHED() ;

return;

}
/*
** Check the integrity of the data. The buffer
** received is supposed to contain numbers from 0
** to 255 in order. This section reads through junk[]
** and checks the values against expected values.
*
/

for (count=0; count<data_ read; count++)
if (junk[count] != count%256)

DEBUG_MSG1_ PARO ("Bad Data Received:\n");
DEBUG_MSG1_PARI1 (" Byte number %d ",count) ;
DEBUG_MSG1l PAR1 ("is %d ",junk[count]) ;
DEBUG_MSG1_PAR1 ("but should be %d\n", count%0x256) ;
Nclose (conno) ;

sb_OS_TASK FINISHED() ;

return;

/*
** Send the status to the server to indicate that the
** client successfully read the data.

*/
DEBUG_MSG3_PAR1 (" Data was intact. Read %u bytes\n",data_ read);
error code = Nwrite(conno, "All Done", 8);

if (error_code < 0)

DEBUG_MSG1 PAR1 ("Failed on writing data due to code %d\n",error code) ;
Nclose (conno) ;

sb_0S_TASK FINISHED() ;

return;

29

Chapter 3

** Got this far? If so, we had a successful pass.
*/
DEBUG_MSG3_PAR1 (" Pass %d complete\n",pass+1) ;

DEBUG_MSG3_PARO ("Client program completed successfully\n");

Nclose (conno); /* Close the connection */
sb_0S_TASK FINISHED () ;
return;

/***

* DEMO INITIALIZATION / CLEANUP
ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ko k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok /

void nsdemo_init (void)
DEBUG_MSG3_PARO ("Client Start\n");

sb_0OS TASK CREATE PREEMPTIBLE (&client task, client task main, O,
SB_0OS_TASK PRI _NORM, MAIN STACK SIZE, "client_ task");

void nsdemo_exit (void)

{
}

#endif /* SMXNS DEMO */

Developing Your Application

Congratulations on your success with your integration efforts! Now that you are ready to start
developing your application, there are a few points to keep in mind:

* Set SNS DEBUG LEVEL = 3 innscfg.h to help report error conditions in the stack. Do a
grep or search on DEBUG_MSG in the stack modules to locate error traps.

» The header file net.h contains error number translation.
» Use DEBUG_MSGY() in your application as a trace tool.
» Use a LAN analyzer to capture data traffic during stack communications.

» Use an incremental development approach when adding new functionality to your application.
Unit test each feature before integrating new features.

When you have finished developing your application, set SNS_DEBUG_LEVEL = 0 in nscfg.h.
This will remove the once-useful debug code from your final application build.

30

Configuration

4. Configuration

Overview

This section provides an in-depth look at the configuration of sSmxNS.

The following text assumes that your processor and compiler are supported. If they are not supported,
please refer to Chapter 11, Porting to complete all interface tasks before returning to this section. If
you are developing a new network controller driver see Chapter 12, Device Drivers.

Important configuration issues are covered in this chapter. The following table summarizes the
modules that contain configuration parameters. The text below the table briefly describes the purpose
of each module.

Table 4-1: Configuration Files

Configuration File(s) Location
Build Settings nscfg.h <root>\XNS\include\nscfg.h
Local Parameters nscfg.h <root>\XNS\include\nscfg.h
Protocol Selection nscfg.h <root>\XNS\include\nscfg.h
SSL Support nscfg.h <root>\CFG\iararm.h

Notes for Table 4-1:
<root> = \SMX

<xxx.yyy> = Build directory, as standard for SMX. xxx is compiler; yyy is CPU. Examples:
CW.CF, IAR.ARM, MC.P3,

Build Setting configuration: nscfg.h specifies macros to enable smxNS add-ons. The makefile or
project file compiles all files.

Local parameter configuration: nscfg.h contains site-dependent definitions, such as read/write
buffer sizes, packet size, and other parameters.

Protocol selection: You can remove the protocols that you will not use in the header file nscfg.h.
SSL Support: CSL_USSL should be defined as 1 to enable HTTPS or SMTP over SSL.

31

Chapter 4

Configuring the Build Settings (nscfg.h)

nscfg.h contains various configuration settings. Add-on selection is done in this file too.

Configuring Local Parameters (nscfg.h)

32

smxNS is configured mainly by editing file nscfg.h in the include directory. Other files are also
configurable, but do not have the scope of nscfg.h. These are the macros in the order they appear in
the file. Following this summary is more detailed information for each macro, except the first three

which are simple.

SNS_PROTO

SNS_DRV_
SNS_CRYPTO_
SNS_MIN RAM

selects which application and mid-level protocols to enable. The stack can
be configured to use IPv4, IPv6, or both (dual-stack) for the network layer.

selects which Ethernet driver to enable.
selects which cryptography functions to enable.

selects options to minimize RAM usage.

SNS_HW_RX CHECKSUM enables inbound hardware checksum calculation.

SNS HW TX CHECKSUM enables outbound hardware checksum calculation.

SNS CPU _CACHE DATA locates Ethernet receive buffers in non-cacheable memory.

SNS BUFFS IN SRAM locates network message buffers in SRAM.

NSDAR SPACE
NCONNS

NBUFFS

MTU
USSBUFALIGN
FRAGMENTATION
IPOPTIONS

amount of memory to reserve for web server.

sets the maximum number of open logical connections in one host.

sets the number of message buffers.

sets the Maxiumim Transmission Unit size.

sets the alignment boundary for the message buffer array.

sets whether the code to fragment and reassemble IP packets is included.

is the IP option support.

USS IP MC LEVEL sets the level of support for IP multicast.

IP MC DFLT NETNO sets the default interface for IP multicast.

KEEPALIVETIME
RELAYING
chksum INASM

DHCP

DNS
NDNSS
TCP_SACK

is the BSD socket keepalive time.
defines whether or not host is to relay.

tells smxNS that the checksum routine will be performed in assembly so the
routine in support.c will not be needed. Not all the CPUs supported by
smxNS have the checksum routine Nchksum() in assembly.

configures support for DHCP client functions.
configures support for DNS client functions.
Number of DNS servers.

enables selective ACK for TCP.

Configuration

LOCALHOSTNAME obtains smxNS’s host name.

USERID identifies a user for a PPP session.

PASSWD authenticates a user for a PPP session.

USS PROXYARP enables proxy ARP feature.

FILE SUPPORT configures file system support.

SNS _DEBUG _LEVEL sets the amount of debug output.

NNETS sets the maximum number of network controllers in one host.

NNETISRS specifies the number of interrupt vectors used by the network interfaces.

SNS MIN RAM Macro

This option selects a “minimum RAM?” configuration. It influences the default settings of other
options and a few sections in the code. A default setting based on the processor type is already set up,
but can be changed depending on the system needs.

SNS HW RX CHECKSUM Macro

This option enables hardware checksum calculations for inbound traffic by the Ethernet controller.
Checksums in the IP, TCP and UDP headers are calculated. If the checksum is incorrect, the
incoming frame is dropped. SNMP statistics are not maintained for frames that are dropped this way.
The Ethernet controller and driver must support hardware checksums. Enabling this setting decreases
host processing for incoming frames and should increase network thoughput.

SNS HW TX CHECKSUM Macro

This option enables hardware checksum calculations for outbound traffic by the Ethernet controller.
Checksums in the IP, TCP and UDP headers are calculated. The Ethernet controller and driver must
support hardware checksums. Enabling this setting decreases host processing for building outgoing
headers and should increase network throughput.

SNS CPU CACHE DATA Macro

This option is used to locate buffers that store incoming Ethernet frames in non-cached memory. This
is intended to avoid inconsistent memory values due to the cache controller not recognizing data
written via DMA by the Ethernet controller. In practice, turning on this setting has been useful even
in situations where special handling of the Ethernet frame buffers doesn’t appear to be necessary.

SNS BUFFS IN SRAM Macro

This setting specifies that Ethernet frame buffers should be located in SRAM. This may desirable for
reasons of cache consistency, or for performance reasons. This is typically enabled if
SNS_CPU_CACHE_DATA is enabled since internal SRAM is not cached.

33

Chapter 4

NSDAR_SPACE Macro

This is the number of bytes to reserve for use by the Web server. The size specified here is placed
into an smx DAR (Dynamically Allocated Region) for use by the web server. This memory will not
be allocated if the Web server is not used.

NCONNS Macro

This is the maximum number of open logical connections (“sockets”) in one host. When Nopen()
establishes a connection, it returns a value from 0 to (NCONNS-1). Enough memory is set aside to
handle these connections based on the value set. When estimating your need, consider that a TCP
close leaves the connection block reserved for about a minute.

When using the Sockets API, the diagnostic counter sns_TcpSynDrops will count the number of times
an incoming TCP connection attempt is dropped due to insufficient connections. This count can be
displayed using a source level debugger or by using the Telnet debug interface and entering the netstat
command. You can use this information to help tune the setting of NCONNS.

NBUFFS Macro

This is the number of working message buffers available to smxNS. When smxNS passes packets up
and down the stack, it uses these buffers. These buffers are also used for internal purposes. smxNS
contains a large number of dynamic queues, so there is no exact formula for NBUFFS. Too few
buffers will hurt performance. The rule of thumb is five buffers per possible active connection.

MTU Macro

Maximum Transmission Unit size, in bytes, for the system. This sets the size of the largest
unfragmented IP datagram that can be sent or received. The MTU directly affects the size of the
frame buffers.

Ethernet supports an MTU of 1500 bytes, but it can be set to 576 bytes to conserve memory, SLIP
interfaces are typically set to 576 bytes and PPP interfaces are typically 1500 bytes.

The MTU for the system should be the largest of any of the desired network interface MTUs. When
the system is configured to forward between interfaces and at least one interface is Ethernet, the MTU
should be set to 1500 bytes, since hosts on the Ethernet network won't be aware that smxNS could be
running with a reduced MTU.

MAX REASSEM Macro

34

Maximum size IP datagram that can be reassembled. If the system should be able to reassemble
datagrams larger than the MTU, change this value to the largest datagram size. All hosts are required
to reassemble a datagram of at least 576 bytes in size (per RFC 791).

Note that a typical setting for MAX_REASSEM is simply equal to the MTU, and the system normally
doesn’t need to reassemble fragmented datagrams. If the MAX_REASSEM size is adjusted to be
larger than the MTU, make sure the MTU is 1500 bytes.

Configuration

USSBUFALIGN Macro

This value specifies the alignment boundary for the start of the array of message buffers, and also the
alignment for the data area within a message buffer. The setting will depend on the memory access
characteristics for the host processor and the network controller. Changes to this setting should be
carefully reviewed.

FRAGMENTATION Macro

This value specifies whether or not to support fragmentation at the IP layer. Do not fragment packets
if you can avoid it. TCP and UDP can handle much larger data packets than Ethernet can, so the IP
layer will chop up or assemble large packets depending on this switch.

The largest IP datagram that can be reassembled depends on the size of the frame buffers, which is set
with the MAXBUF macro. The largest datagram size is MAXBUF — MESSH_SZ — LHDRSZ bytes,
which is typically MAXBUF — 46. Fragmented datagrams are not common, and typically are created
to accommodate link layers with unusually small frame sizes. Under most conditions, the default
setting for MAXBUF will be fine for use with fragmentation support enabled.

0 Do not do any type of fragmentation. Code is removed at compile time.
1 Reassemble incoming large data packets.
3 Reassemble incoming large data packets and fragment outgoing large packets.

IPOPTIONS Macro

This macro enables RFC IP option support, chiefly the source routing options. This is required in the
standard, but little used and perhaps obsolete. Uses up 90 bytes extra per connection block.

USS IP MC LEVEL Macro

This specifies the level of support to include for IP multicasting. The IP multicast feature allows for
efficient communication with a group of hosts.

The value is taken from RFC 1112, which defines the following IP multicast conformance levels:

Level 0 no support
Level 1 support sending multicast IP datagrams
Level 2 support sending and receiving multicast IP datagrams

The default setting is 0, which is fine for any system that makes no use of multicast IP datagrams.

Note that in order to receive multicast datagrams through an Ethernet interface, the device driver for
the interface must also include support for receiving multicast frames.

35

Chapter 4

IP MC DFLT NETNO Macro

This specifies the default network interface for IP multicasting. Multicast frames will be sent on this
interface unless the application changes the setting.

KEEPALIVETIME Macro

This is the time to keep a BSD socket connection open, in milliseconds. Default is 2 hours but
inactive, as required by the standard. To use, uncomment the line and change the value as needed.

RELAYING Macro

This specifies whether smxNS should relay packets. The TCP/IP standard requires relaying to be off

by default.
1 Relay packets to another host
2 Do not relay

chksum INASM Macro

This specifies whether the checksum routine is written in assembly or not. Define it if checksum is
in assembly. Some platforms that SmxNS supports do not have an assembly routine, such as
PowerPC, so this should be undefined.

DNS Macro

This value specifies if DNS support code should be included, and if it should be automatically called
when looking up the remote end of a network connection.

The following settings are defined:

undefined No DNS support code will be included.

1 DNS support code will be included, but not called automatically. It will be left to the
application to make a call to DNSresolve() when a domain name needs to be looked
up.

2 DNS support code will be included, and DNSresolve() will be called as part of

Nopen() or gethostbyname().

The default setting for DNS is undefined.

Note that a DNS server must be known to the system in order for DNSresolve() to succeed. This
information can be directly specified using the SetDNS() function, or it can be retrieved automatically
when the DHCPget() function is called.

36

Configuration

NDNSS Macro

This is the number of DNS servers available for DNS look ups. The default value is 2. The DNS
server IP addresses may be specified by calling SetDNS() or retrieved automatically through
mechanisms such as DHCP.

TCP SACK Macro

Define this macro to enable the selective ACK feature for TCP. The selective ACK feature can
improve throughput for TCP connections that suffer datagram loss for reasons other than congestion.

LOCALHOSTNAME Macro

smxNS must know its own host name, in several places such as PPP when negotiating a CHAP
session. The host name is specified with this macro.

For embedded targets, the supplied LOCALHOSTNAME() loads a fixed name. You will want to
keep the host names unique within a network, as you would on any network to avoid ambiguities.
There is no absolute rule against duplicate names; however, there may be consequences. For instance,
host XXX cannot open by name another host called XXX, or if a network had a host YYY and two
hosts XXX, YYY would communicate with the XXX listed first in the network configuration table
and the second XXX could not be reached in this manner. All XXX hosts, however, could still talk to
host YYY. Unless you have some special needs, it is best to keep your hostnames unique.

If you have a network with a large number of identical hosts, you may want to supply your own
LOCALHOSTNAME() macro. This could get the name from an EPROM or a similar source. It
could also read an identification off a network controller and match this to a table. This method of
course requires that all hosts have an identical hardware configuration.

USERID Macro & PASSWD Macro

These specify the user name smxNS should use when connecting to a remote site, or the name smxNS
expects when someone connects to SmxNS. These are used in PPP, and Dial-up connections. They
are used for establishing a PPP connection using PAP and/or CHAP.

USS PROXYARP Macro

Define this macro in order to allow the system running smxNS to respond to ARP requests on behalf
of other hosts. This can be useful, for example, when the system running smxNS should perform
bridge-like functions, relaying network frames to hosts on one network while making it appear that
the hosts are part of another network.

FILE SUPPORT Macro

This specifies file system support. Since smxNS may be paired with a number of file systems, with

differing APIs, this macro is used to specify the particular interface. The following file systems have
been defined.

0 Minimal RAMdisk. Supplied by smxNS.

37

Chapter 4

1 smxFS
2 SmxFFS
3 POSIX API

SNS_DEBUG_LEVEL Macro

This specifies the amount of information that is generated for use in debugging. The value set
between 0 and 6. When set to 0, no information is generated, and when set to 6, all debug messages
are written. The meaning of the levels is as follows:

: Disables all debug output and debug statements are null macros
: Only output fatal error information

: Output additional warning information

: Output additional status information

: Output additional device change information

: Output additional data transfer information

o o A W N, O

: Output interrupt information

NNETS Macro

This is the number of physical network connections associated with a host. If a host has two serial
connections and an Ethernet connection, set NNETS to at least three.

NNETISRS Macro

This is the number of ISRs associated with network interfaces. For processors with built in Ethernet
controllers, a value appropriate for the on board controllers is defined. For systems with external
network interfaces, the value will depend on the particular drivers and the number of interfaces.

Selecting Protocols

38

Any network protocols that you do not need can be configured out of the build by defining the
protocol as 0 in the local configuration file nscfg.h. The following is an example of how this is done:

#define SNS PROTO UDP 0 /* User Datagram Protocol */

Several of smxNS's high level protocols are only supported with TCP and not UDP. Therefore the
following smxNS high level protocols will not run under a UDP-only build of smxNS:

ftp*.c File Transfer Protocol

Configuration

The following smxNS high level protocols do use UDP only and will therefore run:

dhcp*.c Dynamic Host Configuration Protocol
dns*.c Dynamic Name Service
tftp.c Trivial File Transfer Protocol

The stack can be configured to use IPv4, IPv6, or both (dual-stack) for the network layer. To
configure the network layer, set SNS_PROTO_IPV4, SNS_PROTO_IPV6 or both to 1.

Systems that have only a serial interface and use a protocol such as PPP or SLIP can undefine ARP
and Ethernet.

Selecting Drivers

Drivers for the network interfaces can be configured out of the build similar to the way that this is
done for network protocols. Certain drivers will not compile for certain architectures. In order to
allow one project file containing a number of possible drivers to be used across a family of
processors, a facility is included that allows individual drivers to be turned on or off. If a driver is not
selected, a stub file will be generated when compiling that driver.

The significant point here is to make sure that the driver for the network interface used in your system
is enabled. If it is not, you should receive a link error when you build the final project. Also, if an
unneeded driver is causing compiler errors when building the network library, the driver can easily be
disabled using this facility.

The list of drivers follows the list of protocols in the file nscfg.h. Here is an example showing the
selection of the CF5485 Fast Ethernet Controller, and not the CF5282 controller.

#define SNS DRV _CF5282 0 /* ColdFire FEC used on most ColdFires */
#define SNS DRV _CF5485 1 /* ColdFire FEC used on 5485/75 */

39

Dynamic Protocol Interface

5. Dynamic Protocol Interface

Overview

This chapter details the usage of sSmxNS’s Dynamic Protocol Interface. The Dynamic Protocol
Interface provides a simple and efficient interface to the smxNS stack. It is an alternative to the BSD
Sockets Interface (Chapter 6).

The Dynamic Protocol Interface contains some functions that are used to initialize or shut down the
network system. These functions are Ninit(), Portcreate(), Portconfig(), Portinit(), Nterm() and
Portterm(). Systems that implement their network applications using the BSD Sockets API will still
use these DPI functions for system start up.

The Dynamic Protocol Interface is recommended for

Applications with individual read and write sizes smaller than the MTU. Note, for example, that
an MTU of 1500 bytes typically allows a buffer of 1460 bytes to be written or read at the
application level.

Simple code

Developers looking to minimize the learning curve

The BSD Sockets API is recommended for

Developers already familiar with this API

Ports from existing applications or new development that should share common network code
across systems

Applications where it is desirable to be able to pass an arbitrarily sized buffer in the read and
write calls. With the BSD Sockets API, the underlying layers will take care of dividing up the
transfers if needed.

The following issues are covered in this chapter:

Blocking versus non-blocking operation

Include files

Initialization and termination

Connections

Open, read, write, and close functions

Macros for setting and obtaining control information on connections
Multicast API

Error Handling

Examples

41

Chapter 5

Blocking Versus Non-Blocking Operation

There are two modes of operation that affect how your application deals with network events in a non-
multitasking system: Blocking and non-blocking.

Blocking is the default mode. This mode will halt processing while waiting for a network event to
complete or timeout. An example of this would be a wait for a return from a TCP open. Blocking
mode would halt processing until the open returned a connection number or timed out. This behavior
is usually unsatisfactory for most embedded systems.

Non-blocking allows processing to continue while polling the status of the network event. Non-
blocking is desirable in a non-multitasking system because it makes efficient use of CPU time while
waiting for network events to complete.

In a multitasking system, blocking is the recommended mode of operation because blocking does not
actually block processing as it does in a non-multitasking system.

Non-blocking issues are addressed in the appropriate sections in this chapter. An example of non-
blocking is also given at the end of this chapter.

Include Files

All programs that call smxNS routines need to contain the following include statement:

#include “smxns.h”

Initialization and Termination

Ninit() performs general initialization, such as initialization of tables and buffers. It must be the first
network function called and can’t be called again unless the function Nterm() has been called first.
When smxNS is run under SMX, Ninit() is typically called as part of smx_modules_init(), so the
network application doesn’t call Ninit() directly.

Portinit() and Portterm() are used to initialize and shut down the system’s network interfaces.

Detailed descriptions of these functions follow.

Ninit

Performs general network initialization.
int Ninit (void) ;

Ninit() takes no parameters.

See also: Nterm, Portinit, Portterm

Return Value
0 Success.

All error conditions are < 0

42

Dynamic Protocol Interface

NE_CFGERR Configuration error. Check log for details.

Example
main ()

/* initialize all connections */

if (Ninit() < 0)
/* process error */

Nterm

Shuts down networking.
int Nterm(void) ;
Nterm() takes no parameters. Any open network interfaces will be shut down, so Portterm() does not
need to be called before Nterm(). Network support can be restarted by making a call to Ninit().

See also: Ninit, Portinit, Portterm

Return Value

0 Always returns 0.

Example
/* shut down all network connections */
Nterm() ;

Portcreate

Creates a network interface.

int Portcreate (const char *ifname) ;

ifname The name to be associated with the network interface that is created. The maximum
size of the interface name is set by the struct NET definition in support.h. The
current limit is 11 characters. If a longer string is specified, it will truncated to the
maximum length.

See also: Ninit(), Nterm(), Portconfig(), Portinit(), Portterm()
Return Value
>= 0 Interface created. Value is interface index.

All errors are < 0

NE_CFGERR Configuration error. No room for creating an interface. Room for
more interfaces can be made by increasing the value of NNETS.

43

Chapter 5

Example

Portcreate (“enet”) ;

Portconfig

Configures a network interface.

int Portconfig(const char *name, const char *key, const char *value) ;
name The name of the interface.

key A string that identifies the parameter to be configured. The string is not case
sensitive, and only the first four characters of the string are evaluated.
value A string containing the value to be configured.

Portconfig() configures a network interface. When a network interface is created, its properties are
initialized to 0. Portconfig() can be called repeatedly to assign values as needed.

Summary of parameters:

IP IP address, expressed as a dotted decimal

MASK Mask for IP address, dotted decimal

IPV6 IPv6 address for static configuration

LINK Link layer

DRIV Driver name

MAC MAC address

FBIP Fallback IP address, dotted decimal

FBMK Mask for fallback IP address, dotted decimal
FBCO Fallback count, switch to fallback IP after FBCO attempts
IP2 Alias IP, dotted decimal

MK2 Mask for alias IP, dotted decimal

NAT Enable Network Address Translation on interface
DIAL Enable serial dial out on interface

PEER IP address of peer in PPP link

PCP Priority Code Point for VLAN tag

VID VLAN ID for VLAN tag

44

Dynamic Protocol Interface

Details on parameters

IP: This is the primary IP address associated with the interface. If an address has already been
assigned to the interface, calling Portconfig() to set an IP address will also kick off address conflict
detection for the new address to qualify it for use.

Special values can be assigned as follows
0.0.0.0”- Use DHCP to obtain an IP address

“169.254.x.x” - Use a link local IP address. This address range is also known as the Auto-IP address
range. The initial setting for this address will be tested for an address collision. If there is no
collision, then that address will be adopted. If there is a collision, then another randomly generated
address in the link local address range of 169.254.1.0 to 169.254.254.255 will be tried until a free
address is found. Note that other address conflicts can lead to the system adopting the fallback IP
address, so if you want to just use a local IP address, you should set both IP and FBIP to this range.

Any other address — The address will be used, provided there are no other systems on the local
network using this address.

IPV6: This configuration option can be used to assign a static IPv6 address to the system. The string
that provides the address should be in hexadecimal with groups of four digits separated by colons.
Leading zeros may be omitted, and a double colon can be used to represent one or more groups of
zeros, for example “2001:db8:85a3::8a2e:370:7334”.

Link layer: Should be one of "Ethernet", "PPP" or "SLIP".

Driver name: The driver is identified based on a string in the NPTABLE structure for the driver.
Most wired Ethernet drivers can use "ETHCTRL".

Fallback IP: Fallback IP address to use if the primary IP address cannot be used. If the primary IP
address is set for DHCP, the fallback address is used if the attempt to obtain an address from a DHCP
server fails. If the primary IP address is a static address, the fallback address is used if a conflict is
detected when probing for a duplicate of the primary address. If the first attempt to establish the
fallback address is not successful, it will continue to be retried.

Fallback Count: Number of times to retry establishing the primary IP address before switching to the
fallback IP address.

Alias IP: If a non-zero Alias IP is specified, the network interface will accept traffic for this address as
well as the primary address.

NAT: Enable Network Address Translation on interface. The string that indicates the state should be
either “ENABLE” or “DISABLE”. There are more notes on NAT configuration in Chapter 7.

DIAL.: Enable serial dial out on interface. The string that indicates the state should be either
“ENABLE” or “DISABLE”. There are notes on using a modem with serial communication in
Chapter 8.

PEER: IPv4 address of peer in PPP link. The IP address should be supplied in dotted decimal format.
This setting is optional for a PPP link.

PCP: The Priority Code Point specifies the frame priority for a VLAN tagged frame. The priority
level range is 0 to 7.

VID: The VLAN ID is a 12-bit value. When a VLAN ID is defined, outgoing frames will include a
VLAN tag. The string containing the VID should be in hexadecimal and of the form “0x123”. If a
VLAN tag is defined for an interface, the tag will be included in all frames sent on the interface.

See also: Ninit(), Nterm(), Portcreate(), Portinit(), Portterm()

45

Chapter 5

Return Value

0 Value stored.

All errors are < 0

NE_PARAM Run-time parameter error. The named interface was not found, key not
found, or invalid value. See log for details.
NE_CFGERR Configuration error. See log for details.
Examples

46

The following code is typical for a static IP address. It sets an address of 10.1.1.20.

Portcreate (“enet”

)
Portconfig(“enet”, “IP”, “10.1.1.20");

Portconfig(“enet” “MAC”, “00:01:02:03:04:05");
Portconfig(“enet”, “LINK”, “Ethernet”);
Portconfig(“enet” “DRIVER”, “ETHCTRL”) ;

if (Portinit (“enet”, “”) < 0)

(
(
Portconfig(“enet”, “MASK”, “255.255.255.0");
(
(

DEBUG_MSG1 PARO (“smxNS Portinit for enet failed\n”);

}

Here’s a more involved example that starts with an address obtained via DHCP and then transitions to
a static IP address.

Note that it is possible to leave the interface active while changing the type of IP address that is used,
i.e. one doesn’t need to go through the Portterm(), Portinit() sequence again in order to change to a
new local IP address. All application level connections should be shut down before changing the
address though.

“MAC”, “00:01:02:03:04:05") ;
Portconfig(“enet”, “LINK”, “Ethernet”);
Portconfig(“enet” “DRIVER”, “ETHCTRL”) ;

if (Portinit (“enet”, “”) < 0)

Portcreate (“enet”) ;
Portconfig(“enet”,
('

DEBUG _MSG1l PARO (“smxNS Portinit for enet failed\n”);

while (Portstate(“enet”) != NETIF_ READY)
sb_0S WAIT MSEC MT(500) ;

/* System is now using address from DHCP server */
Portconfig(“enet”, “FBIP”, “10.1.1.100");
Portconfig(“enet”, “FBMK”, “255.255.255.0");
DHCPrelease (GetPortIndex (“enet”)) ;

while (Portstate(“enet”) != NETIF_ READY)
sb_0S WAIT MSEC MT(500) ;

/* System is now using address 10.1.1.100 */

The first time the interface is set up, no IP address is defined, so the default value 0.0.0.0 will be in
place and the DHCP client will be started to obtain an IP address. After the port is initialized, the
loop that calls Portstate() will continue looping until an address is established.

In order to transition to a static IP address, the new address and mask should be stored in the fallback
IP and fallback mask slots, and the DHCP leased address should be released. This way, the DHCP

Dynamic Protocol Interface

server is informed that the leased address is no longer in use, and the DHCP client state machine will
pick up the fallback address after the leased address is turned in.

If the call to DHCPrelease() were immediately followed by a call to Portinit() to set the IP address
directly there is a chance that the DHCP client state machine would restart before the static IP address
was in place.

Portinit

Initializes a network interface.

int Portinit (const char *ifname, const char *initstring);
1fname The name associated with the network interface to be initialized.

initstring A string that can contain additional initialization information. Device drivers may
obtain information from this string.

Portinit() initializes a network interface. The initialization routine will prepare the device driver to
transmit and receive network frames, and will install and enable the interrupt service routine for the
network device driver. Note that Ethernet interfaces with 10/100 PHY's may take around 6 seconds to
negotiate link parameters.

Although the call to Portinit() may immediately return successfully, there may be a delay before
frames can be sent or received. An attempt to establish an active connection will fail if the network
interface has not come up yet. The nsdemo.c file contains code that will wait until at least one
network interface is up. This code appears in the example below.

See also: Ninit(), Nterm(), Portterm()

Return Value
0 Initialization successful.

All errors are < 0

NE PARAM Parameter error. ifname not found, interface already initialized, error in
initialization string or hardware error.

NE_CFGERR Configuration error. Link or driver layer not defined, insufficient
resources configured.

NE_HWERR Hardware error. Hardware behavior was not as expected.

NE_NOBUFS Not enough memory resources to initialize.

Additional details on error conditions are available in the log.

Example
Portcreate (")
Portconfig(“enet”, “IP”, “10.1.1.20");

Portconfig(“enet”, “MAC”, "00:01:02:03:04:05") ;
Portconfig(“enet”, “LINK”, “Ethernet”);
Portconfig(“enet” “DRIVER”, “ETHCTRL") ;

if (Portinit (“enet”, “”) < 0)

(
(
Portconfig(“enet”, “MASK”, “255.255.255.0");
(
(

47

Chapter 5

DEBUG MSG1l PARO (“smxNS Portinit for enet failed\n”);

while (Portstate("*") != NETIF READY)
sb_0S_WAIT MSEC_MT (500) ;

Portstate

Checks the state of one or more network interfaces.

int Portstate (const char *name) ;

name If “*”, then all network interfaces are checked; otherwise, this should be a network
interface name specified in a call to Portcreate().

Checks the state of a network interface. This is useful for determining when an interface has reached
the NETIF_READY state so that one can be sure connections can be actively establilshed and
network traffic can be sent.

All interfaces can be checked at once, in which case the state of the network that is closest to or at
"NETIF_READY" is reported.

Return Value

NETIF UNITIALIZED Network interface not initialized.

NETIF_NOLINK No link established for interface (often cable disconnected)
NETIF_NEGOTIATING Interface is linked but IP address not yet established
NETIF_READY Interface is ready to transmit

All errors are <0

NE PARAM Parameter error. name not found

See also: Ninit(), Nterm(), Portinit()

Examples

while (Portstate("*") != NETIF READY)
sb_0S_WAIT MSEC MT (500) ;

Portterm

Shuts down one or more network interfaces.

48

int Portterm(const char *name) ;

name If “*” then all network interfaces for this host will be shut down; otherwise, this
should be a network interface name specified in a call to Portcreate().

Dynamic Protocol Interface

Shuts down the specified network interfaces. Note that all interfaces can be shut down at once, or
individually. The shut down routine will put the network controller into an idle state, and restore the
interrupt vector associated with the network device driver to its original state. Any network
connections associated with the interface are marked as fatal. The shutdown is reversible: Just make
another call to Portinit(). A call to Portterm() can be omitted prior to calling Nterm(), because
Nterm() automatically calls Portterm().

See also: Ninit(), Nterm(), Portinit()
Return Value

0 Always returns 0.
Examples

/* shut down all network connections */
Portterm(“*") ;

/* shut down a specific network connection */
Portterm(“serial”) ;

Connections

Connections behave very much like files: You can open and close a connection, you can read data
from it, and write data to it. The main difference is that a connection has a user at each end, and a file
has only one user. The data you read is the data the other user wrote, and vice versa.

smxNS offers the user two basic kinds of connections: TCP and UDP. There are two primary
differences:

e TCP performs error correction and flow control, and UDP does not. You can read TCP like a
local disk file: You want to check for errors, but they should not occur and if they do you quit.
Doing this with UDP would be difficult, and writing applications using UDP is quite cumbersome.
It is best to leave UDP for pre-written applications, such as TFTP.

» UDP is a packet protocol, and TCP is a byte-stream protocol. With TCP, you can’t predict with
certainty how many bytes a read will return, or how many reads you’ll need for a given amount of
data.

Port numbers are used to match the two ends of the connection. If your local port number is my
remote port and vice versa, then we have a connection.

Normally one end performs an active open and the other a passive open. The system performing a
passive open is typically running a server application. This system will wait until it receives an
indication from a client application performing an active open.

Open, Close, Read, and Write

These four routines (plus the startup and shutdown) are the only user-level network functions required
to write an application using smxNS. This might surprise you, especially if you have seen network
packages that go something like:

call TCPwrite
call Ipwrite
call DRIVERwrite

49

Chapter 5

50

smxNS uses a table-driven protocol stack structure. Each protocol level has only one public symbol:
The name of the protocol table. smxNS performs all necessary calls through these protocol tables.
The user only has to call a general high-level function that is the same for all protocol configurations.

The open function specifies which protocols, and in which order, are to be used. There are no
restrictions on the protocol stack as such, but of course not all combinations make sense.

Beginning with smxNS v2.90, the error codes returned from Nopen(), Nclose(), Nread() and Nwrite()
no longer include overlapping POSIX error codes, i.e. EBADF, ECONNABORTED, etc. Instead,
smxNS specific error codes are used as appear in the table below.

smxNS v2.8 and earlier smxNS v2.9 and later
EBADF NE_BADF
ECONNABORTED NE_CONNABORTED
EHOSTUNREACH NE_HOSTUNREACH
ENETUNREACH NE_NETUNREACH
EMSGSIZE NE_MSGSIZE
EWOULDBLOCK NE_WOULDBLOCK
ENOBUFS NE_NOBUFS
ETIMEDOUT NE_TIMEDOUT

smxNS creates definitions for the POSIX error codes if they are not present using negative values
using code like the following from support..h.

#ifndef EHOSTUNREACH
##define EHOSTUNREACH -10
#endif

If the error code is defined, then the existing definition is retained. In some build environments, these
error codes have positive value, which is not compatible with the convention that DPI functions return
a negative value on error. For this reason, the new error code definitions were introduced in SmxNS
version 2.90.

Network applications that use the DPI functions may need to be adjusted if they include error
handling that uses the old error codes. In order to update the code, one should substitute the new error
code name. Here is an example:

Change:

rc = Nread(s, buf, buflen);
if (rc == ETIMEDOUT)

{

To:

rc = Nread(s, buf, buflen);
if (rc == NE_TIMEDOUT)

{

Nopen

Dynamic Protocol Interface

Opens a connection.

int Nopen(const char *to, const char *protoc,

to

protoc

lp

rp

flags

int 1p, int rp, int flags);

String specifying the name of the remote system. This can take one of the following
forms:

“host” Remote host, shortest route.
“host%ifname” Remote host, using named
interface.
Wk o Any host, used for passive
open or broadcast.
“*%ifname” Any host, using named
interface.
“nl.n2.n3.n4”" IP address of remote system in IPv4 format.

“x:x:x:x:x:x:x:x” |IP address of remote system in IPv6 format, as
specified in RFC 4291, section 2.2. “Text Repre-
sentation of Addresses”. It is a series of eight 16-bit
address segments separated by colons. Leading zeros
may be omitted. Sequences of one or more groups
of zeros may be abbreviated as ::, but only once.

String specifying the transport and network layer protocols, separated by a slash.
Typical values would be “TCP/IP”, “UDP/IP” or “ICMP/IP". Ifa
listening connection specifies IP as the bottom half of the protocol, IPv4 and IPv6
clients are accepted. If IPv6 is specified, only IPv6 clients are accepted.

Local port number. For an active open, this is often an ephemeral port, and a
suitable random value can be obtained using the utility function Nportno(). For a
passive open, the well-known port number should be used.

Remote port number. For an active open, this should be the well-known port for the
service used in the connection. For a passive open, this value should be specified as
0, and any remote port will be accepted for the connection.

Normally 0, but for a non-blocking open, you can specify the flag S_ NOWA, and
the call will return without blocking. In order to determine if the connection is
established, use the macro SOCKET _ISOPEN(). Also, for UDP connections, you
can use the value S_ NOCON to cause the connection to behave in a connectionless
manner. When you specify S NOCON, the connection will accept all UDP
messages directed to the local port, regardless of the originating IP address or UDP
port. This information is stored so that a call to Nread() followed by a call to
Nwrite() will respond to the source of the message that was just read.

Nopen() is used for both active and passive opens. The behavior is determined by the parameters
supplied to the function. Several examples follow to further illustrate the use of the function. A

51

Chapter 5

passive open will wait indefinitely. An active open for TCP will return when the connection has been
made, but it times out in a couple of minutes if there is no answer.

See also: Nclose(), Nread(), Nwrite()

Return Value
conno A return value >= 0 is a connection number. This is the handle for
further communication on the connection.

All errors are < 0

NE_PARAM Run-time parameter error. Protocol not recognized.
NE_CFGERR Out of connection blocks.
NE_HOSTUNREACH No route to host.
NE_CONNABORTED Remote host sent RST when opening connection.
NE_NOBUFS No frame buffers available when opening connection.
NE_TIMEDOUT Time out trying to create connection

Examples

/* An active open from hostl that causes TCP to send out open requests
to port 1000. The local port number is dynamically and randomly

assigned with the function Nportno(). */
/* hostl */
int conno, myport; /* connection and port number */
myport = Nportno() ;
conno = Nopen (“host2”, “TCP/IP”, myport, 1000, 0);

if (conno < 0)
/* process error */

/* A passive open at host2 that waits for and accepts calls from anyone
who asks for port number 1000. This type of open would be done by a
server */

/* host2 */
int conno; /* connection number */
conno = Nopen (“*", “TCP/IP”, 1000, 0O, O0);
if (conno < 0)

/* process error */

/* A UDP open at hostl for hostA through port seriall would look like
this: */

/* hostl */
conno = Nopen (“hostA%seriall”, “UDP/IP”, 1000, 1010, 0);

/* The specification of “seriall” indicates a specific network interface
on hostl, and is not referring to hostA’s network interfaces. This form
of open may be needed if there are two connections between hostl and
hostA. In this manner, “seriall” serves to identify which local network
interface is being used. */

/* To send and receive ICMP messages, you can use the form: */

/* hostl */
conno = Nopen (“host2”, “ICMP/IP”, 1000, 1010, 0);

/* This is a special situation. */

52

Dynamic Protocol Interface

/* Perform a non-blocking OPEN and do some processing while polling for
the OPEN connection. */

conno = Nopen(“*”, “TCP/IP”, 1000, O, S_NOWA);
if (conno < 0)

/* handle error condition */
while (!SOCKET ISOPEN (conno))

/* perform other processing */

Nclose

Closes a connection.

int Nclose (int conno) ;

conno The connection number previously returned from a call to Nopen().

Nclose closes a connection, possibly waiting for a complete close handshake. In no case should the
application retry the close. In some cases (as with TCP), the connection block will actually be freed
after a minute or so, but this is automatic, and the application should not touch the connection after

the close.
See also: Nopen(), Nread(), Nwrite()
Return Value
0 Normal close.
-1 Error occurred in attempting to close the connections. Possible reasons

are an invalid connection number or a protocol problem.

Example
int error; /* error code */
int conno; /* connection number */
error = Nclose (conno) ; /* close the connection */
if (error < 0) /* process error */

53

Chapter 5

Nread

Reads a message from a connection.

int Nread (int conno, char *buff, int len);

conno Connection number.
buff Buffer to store message.
len Size of the buffer.

Reads a message from a connection into the specified buffer. For a blocking socket, the call will
block until information is available to be read, or until a timeout occurs. The timeout can be adjusted
using the SOCKET_RXTOUT() macro.

For TCP connections, Nread() may return up to the maximum amount of information that will fit in
one internal message buffer. This will be less than MAXBUF bytes. For UDP connections, the data
from the next UDP message will be returned.

See also: Nclose(), Nopen(), Nwrite()
Return Value
0 The remote system has closed the connection.
>0 Indicates the number of bytes read.
NE BADF The connection number is not valid.
NE WOULDBLOCK Non-blocking connection can’t proceed. Read would be retried.
NE TIMEDOUT Timeout. Read can be retried.
NE CONNABORTED Protocol problem. For example, the peer TCP sent a RST segment.

Normally the application should close the connection.

NE MSGSIZE The message is too long for the supplied buffer. The incoming TCP
segment or UDP message is dropped and no data is transferred to buff,
but the application can continue to use the connection.

Example
/* user defined input buffer size */

#define MAX BUFFER _SIZE 80

int error; /* error code */

int conno; /* connection Number */

char buff [MAX BUFFER SIZE]; /* data input buffer */

/* read data into “buff” from connection number “conno” */
error = Nread(conno, buff, sizeof (buff));

if

54

(error < 0)
/* process error */

The constant MAX BUFFER_SIZE could be replaced with the smxNS constant MTU defined in file
nscfg.h. A call to Nread() cannot return more than MTU bytes.

Dynamic Protocol Interface

Nwrite

Writes a message to a connection.

int Nwrite (int conno, const char *buff, int len);

conno Connection number.
buff Buffer containing message.
len Number of bytes to write.

Nwrite() writes a message to a connection from the specified buffer. The largest buffer passed to
Nwrite() should not exceed the value given by the SOCKET_MAXDAT() macro. For TCP
connections, this will reflect the maximum segment size that is indicated by the remote TCP when the
connection is established. For UDP connections, this value will reflect the MTU imposed by the link
layer. These values will generally be at least 256 bytes, so it is reasonable to write out small buffers
directly.

By default, when Nwrite() writes a TCP segment, the PSH flag will not be set. This flag is a hint to
the receiving TCP that a usable set of information has been sent and that it should be processed by the
receiving network application. The PSH flag can be set by using the SOCKET_PUSH() macro prior
to calling Nwrite(). If the receiving TCP is slow to process incoming information, it may help to set

this flag.

See also: Nclose(), Nopen(), Nread()
Return Value

>= 0 Indicates the number of bytes written. For TCP connections, this
indicates that the buffer has been written, but not necessarily that the
remote end has received the information. Ensuring delivery is handled
in the background.

NE BADF The connection number is not valid.

NE TIMEDOUT Timeout. With TCP in blocking mode, this probably means the other
end did not send acknowledgments as expected. It could also mean an
extremely heavy system load and that a timeout occurred before the
acknowledgment could be received. The connection should be closed.
In non-blocking mode, the write should be retried.

NE CONNABORTED Protocol problem. Normally the application should close the
connection.

NE MSGSIZE The message is too large for the internal buffer.

NE WINZERO The peer TCP window is not large enough to accept the data. This only
occurs in non-blocking mode. See the Non-Blocking Operations
Example section for workarounds.

Example

/* user defined output buffer size */

#define MAX_ BUFFER SIZE 80

int error; /* error code */

int conno; /* connection Number */
char buff [MAX BUFFER SIZE]; /* data output buffer */

55

Chapter 5

/* write data stored in “buff” to connection number “conno” */
error = Nwrite (conno, buff, sizeof (buff));
if (error < 0)

/* process error */

/* dynamically sized write buffer */

int error; /* error code */
int conno; /* connection Number */
int maxwrite; /* maximum write size */
char buff [MAXBUF] ; /* data buffer */

/* write data stored in “buff” to connection number “conno” */
conno = Nopen (“host”, “TCP/IP”, Nportno(), 1050, 0);
if (conno < 0)
/* process error */
maxwrite = SOCKET MAXDAT (conno) ;
error = Nwrite (conno, buff, maxwrite) ;
if (error < 0)
/* process error */

Dynamic Protocol Interface Macros

The following macros are useful for obtaining additional information or setting control information
for a connection, and are described in this section:

SOCKET_NOBLOCK sets the connection for non-blocking operation.
SOCKET_BLOCK sets the connection for blocking operation.
SOCKET_ISOPEN checks to see if a connection has entered the ESTABLISHED state.
SOCKET_HASDATA checks to see if a message is available on a connection.
SOCKET_CANSEND checks to see if a connection can accept data to be written.
SOCKET_TESTFIN checks to see if the remote end of the connection has closed.
SOCKET_ISFATAL checks for an unrecoverable error on the connection.
SOCKET_MAXDAT provide§ the maximum size of a buffer than can be written to a
connection.
SOCKET_RXTOUT sets the receive timeout for a connection.
SOCKET_REMADDR provides the IP address of the remote end of a connection.
SOCKET_LOCADDR provides the IP address of the local end of a connection.
SOCKET_REMPORT returns the remote port number for a connection
SOCKET_LOCPORT returns the local port number for a connection
SOCKET_PUSH sets the PSH flag on the next outgoing TCP segment.
SOCKET_FIN sets the FIN flag on the next outgoing TCP segment.
SOCKET_FAMILY returns the address family for a given connection.

SOCKET_HASMYADDRG6 checks if the IPv6 site local address has been allocated.
SOCKET_LOCSITEADDRS returns the IPv6 site local address.
SOCKET_REMADDRS6 returns the remote host’s IPv6 address.

56

Dynamic Protocol Interface

SOCKET_LOCLINKADDRES returns the IPv6 link local address.

SOCKET NOBLOCK

Sets the connection for non-blocking operation.

SOCKET NOBLOCK (conno)

conno The connection for which non-blocking operation should be set.

When non-blocking operation is set, calls to network functions that normally would need to wait for
network activity in order to be completed will return the negative value ENOULDBLOCK when such

a condition is encountered.

SOCKET BLOCK

Sets the connection for blocking operation.

SOCKET BLOCK (conno)

conno The connection for which blocking operation should be set.

When blocking operation is set, calls to network functions run to completion, or return a timeout error
if an associated time limit is exceeded. Blocking operation is the default behavior for network
functions, and this call will only be needed to return a non-blocking connection to blocking operation.

SOCKET_ISOPEN

Checks to see if a connection has entered the ESTABLISHED state.
SOCKET ISOPEN (conno)

conno The connection that should be checked for the ESTABLISHED state.

This macro will evaluate as 0 if the connection is not in the ESTABLISHED state, and 1 if the
connection is in the ESTABLISHED state. This macro is useful for connections that call Nopen()
with the S_ NOWA flag, so that after requesting a connection, the connection can be checked to see if

it has been established.

SOCKET_HASDATA

Checks to see if a message is available on a connection.

SOCKET HASDATA (conno)

conno The connection that should be checked for an available message.

This macro will evaluate as 0 if no information is available, or non-zero if data is available.

57

Chapter 5

SOCKET_CANSEND

Checks to see if a connection can accept data to be written.

SOCKET CANSEND (conno, len)
conno The connection that should be checked for room for writing.

len The amount of data to be written.

This macro will evaluate as 0 if the amount of data is more than can be written out immediately, or
non-zero if the data length specified can be written.

SOCKET_ISSENDING

Checks to see if all data that has been written by the application has been acknowledged by the peer TCP.

SOCKET ISSENDING (conno)

conno The connection that should be checked for acknowledgment from the remote end.

This macro will evaluate as non-zero if outgoing data has not yet been acknowledged by the peer
TCP. The macro will evaluate as 0 if all outgoing data has been acknowledged, or if there has been
an unrecoverable error on the connection.

If the application calls SOCKET _ISSENDING() immediately after calling Nwrite(), it will typically
return true. Outgoing data is typically acknowledged within a couple hundred milliseconds.

This macro may be useful for tracking status of a transfer or in creating recovery mechanisms for
lengthy transfers. Note that even though the peer TCP may have acknowledged receiving a TCP
segment, this does not guarantee that the application running on the peer system has successfully read
the information. Closing the connection and checking for success is a more reliable mechanism for
verifying a complete transfer.

SOCKET_TESTFIN

Checks to see if the remote end of the connection has closed.

SOCKET TESTFIN (conno)

conno The connection that should be checked for a close from the remote end.

This macro will evaluate as 0 if the remote end of the connection has not yet closed, or non-zero if the
remote system has closed.

SOCKET_ISFATAL

Checks for an unrecoverable error on a connection.

SOCKET ISFATAL (conno)

conno The connection that should be checked for errors.

58

Dynamic Protocol Interface

This macro will evaluate as 0 if there are no unrecoverable errors on the connection, or non-zero if an
unrecoverable error has occurred. As an example, an unrecoverable error occurs when a peer TCP
sends a RST segment to the local end of the connection. The socket should still be closed when this
condition is detected.

SOCKET_MAXDAT

Provides the maximum size of a buffer than can be written to a connection.
SOCKET MAXDAT (conno)
conno The connection for which the maximum buffer size should be determined

This macro will evaluate to the maximum number of bytes that can be accepted by the connection in a
call to Nwrite().

SOCKET_RXTOUT

Sets the receive timeout for a connection. The default timeout is set by TOUT_READ in net.h.

SOCKET_ RXTOUT (conno, tout)

conno The connection for which the timeout is to be adjusted.
tout The new timeout, in milliseconds. For an infinite timeout, use the value
SB_TMO_INF.

SOCKET_REMADDR

Provides the IP address of the remote end of a connection.

SOCKET REMADDR (conno)

conno The connection for which the remote IP address is to be returned.

The data type of the result is Tid.

SOCKET_LOCADDR

Provides the IP address of the local end of a connection.

SOCKET LOCADDR (conno)

conno The connection for which the local IP address is to be returned.

The data type of the result is Tid. This macro is useful for systems that have more than one network
interface. The IP address returned will be that of the interface that is used for the connection.

59

Chapter 5

SOCKET_REMPORT

Provides the TCP or UDP port number of the remote end of a connection.

SOCKET REMPORT (conno)

conno The connection for which the remote port is to be returned.

The data type of the result is unsigned short.

SOCKET_LOCPORT

Provides the TCP or UDP port number of the local end of a connection.

SOCKET LOCPORT (conno)

conno The connection for which the local port is to be returned.

The data type of the result is unsigned short.

SOCKET PUSH

Sets the PSH flag on the next outgoing TCP segment.

SOCKET PUSH (conno)

conno The connection for which the next outgoing segment should include the PSH flag.

The next TCP segment to be written following a call to this macro will have the PSH flag set in the
TCP header. This is useful for indicating to the TCP on the remote system that all internally buffered
segments up through this segment should be delivered to the application as soon as possible.

SOCKET FIN

Sets the FIN flag on the next outgoing TCP segment.

SOCKET FIN (conno)

conno The connection for which the next outgoing segment should include the FIN flag.

The next TCP segment to be written following a call to this macro will have the FIN flag set in the
TCP header. This is useful for shutting down a connection at the same time that the last segment is
sent. Following the write, call Nclose() to finish closing the connection. Nclose() will not send a
FIN segment in this case.

SOCKET_FAMILY

Returns the address family for a given connection.

SOCKET FAMILY (conno)

60

Dynamic Protocol Interface

conno The connection for which to return the address family.

For IPv6 connections, returns AF_INET6. For IPv4 connections, returns AF_INET.

SOCKET_HASMYADDRG6

Checks if the IPv6 site local address has been allocated.

SOCKET_ HASMYADDRG6 (conno)

conno The connection for which the site local address should be checked.

This macro evaluates as 1 when the IPv6 site local address has been allocated. The macro evaluates
as 0 when the address has not be allocated.

SOCKET_LOCSITEADDRG

Returns the IPv6 site local address.

SOCKET LOCSITEADDRG (conno)

conno The connection for which the IPv6 site local address should be returned.

This macro evaluates to data type 16id. The macro SOCKET_HASMYADDRG6(conno) can confirm if
the IPv6 site local address has been allocated.

SOCKET_REMADDRG

Returns the remote host’s IPv6 address.

SOCKET_REMADDRG (conno)

conno The connection for which the remote host’s IPv6 address should be returned.

This macro evaluates to data type 16id.

SOCKET_LOCLINKADDRG

Returns the IPv6 link local address.

SOCKET LOCLINKADDRG (conno)

conno The connection for which the IPv6 link local address should be returned.

This macro evaluates to data type 16id.

61

Chapter 5

Multicast API (DPI)

In order to receive information associated with a multicast host group, join the multicast group using
the ussHostGroupJoin() function described here, specifying the IP address for the group, and the
interface that will be used. Once the group has been joined, datagrams on the local network directed
to the group will be accepted by the system.

If there is no longer a need to continue receiving datagrams directed to a certain group, the system can
stop accepting datagrams directed to the group by using the ussHostGroupLeave() function.

ussHostGroupJoin

Joins a multicast host group.

int ussHostGroupJdoin(Iid iid, int netno) ;
iid IP address for multicast host group.

Netno Index for network interface.

The ussHostGroupJoin() function allows a system to receive multicast messages as part of a multicast
host group. The group is identified by the multicast IP address that is passed to the function.

The network interface is identified by an index. The first network interface for a system that occurs in
the netdata[] table is identified as O, the next is 1, and so on. For systems with just one network
interface, this value should be 0.

See also: ussHostGroupLeave

Return Value

0 Success.

NE PARAM Invalid group address or interface identifier.

ENOBUFS Insufficient resources to join another group.
Example

#define MCTESTIP "224.1.2.3"
rc = ussHostGroupJdoin (inet addr (MCTESTIP), 0);

ussHostGrouplLeave

Leaves a multicast host group.

int ussHostGroupLeave (Iid iid, int netno) ;
iid IP address for multicast host group.

Netno Index for network interface.

62

Dynamic Protocol Interface

The ussHostGroupLeave() function removes the system from a multicast host group that has
previously been joined.

The network interface is identified by an index. The first network interface for a system that occurs in
the netdata[] table is identified as O, the next is 1, and so on. For systems with just one network
interface, this value should be 0.

See also: ussHostGroupJoin

Return Value

0 Success.
NE PARAM Invalid group address or interface identifier.
EBADF Multicast group not found.

Example

#define MCTESTIP "224.1.2.3"
rc = ussHostGroupLeave (inet addr (MCTESTIP), O0);

Error Handling

When a DPI call returns ECONNABORTED, no further communication over the connection is
possible. If the connection was previously opened successfully, then the application must call
Nclose() on the connection. Otherwise memory and network data structures might still be assigned to
it.

Note that a connection can go from a good state to a failed state at any time. Consider the case where
the system at the remote end of a TCP connection unexpectedly goes offline shortly before a client
running on an smxNS system sends a query using Nwrite(). The call will likely return a positive
value equal to the number of bytes in the buffer being written. This may be confusing, but the
meaning of the return value is that smxNS has taken responsibility for delivery this number of bytes to
the remote system. It does not necessarily mean that these bytes have been delivered.

The TCP specification describes how a segment will be retransmitted if the remote system does not
send a timely acknowledgement. smxNS will perform this retransmission in the background. If these
attempts fail, the next time the application calls a function involving the connection, the function will
return ECONNABORTED.

The macro SOCKET _ISFATAL() can be used at any time to check for a failed connection.

Examples

The following text provides examples of:
» Broadcasting
* TCP File Transfer

* Non-Blocking Operations

63

Chapter 5

Broadcasting Examples

For broadcasting messages to all hosts on the network, use host name “*” in the active open, and
then, do an Nwrite(). For instance:

hostl:
conno = Nopen (“*/enet”, “UDP/IP”, 1010, 1000, O0);

stat = Nwrite(conno, buf, 1len);

In this case, “enet” is the network name, and “*” represents all hosts on that network. The
receiving hosts’ open() would generally be a passive open.

host2:
conno = Nopen (“*”, “UDP/IP”, 1000, 0, 0);

stat = Nread (conno, buf, len);

The receiving hosts must be listening on the same port number that the broadcasting host is sending to
(e.g., 1000 in this case).

Broadcasting should only be used for data links that support it in hardware, such as Ethernet. It
should not be done at the TCP level.

If the broadcasting host connects to several networks, the open call must specify the network name.
Broadcasting is done to one network only.

TCP File Transfer Example

This example might be used to write a file to a remote host. Flow control and error checking are
handled by TCP.

/* Client */

int maxwrite; /* maximum write size */
char buf [MAXDAT] ; /* data buffer */
conno = Nopen (“hostl”, “TCP/IP”, Nportno(), 1000, 0);
if (conno < 0)
/* process error */
maxwrite = SOCKET MAXDAT (conno) ;
for (;;)

len = fread(ifile, buf, maxwrite) ;
if (len <= 0)

break;
stat = Nwrite (conno, buf, maxwrite) ;
if (stat < 0)

/* process error */

stat = Nclose (conno) ;
if (stat < 0)
/* process error */

/* Server */

char buf [MAXDAT] ;

conno = Nopen (“*”, “TCP/IP”, 1000, 0, 0);
if (conno < 0) /* process error */

for (;;)

len = Nread(conno, buf, sizeof (buf));
if (len < 0) /* process error */

64

Dynamic Protocol Interface

if (len == 0) break;
stat = fwrite(ofile, buf, 1len);
if (stat < 0) /* process error */

stat = Nclose (conno) ;
if (stat < 0) /* process error */

Non-Blocking Operations Examples

The following example shows how to read using non-blocking operations. Non-blocking writes will
complicate an application quite a bit. A heavy use (perhaps even any use) of non-blocking mode is
not recommended.

conno = Nopen(“*”, “TCP/IP”, 1001, O, S_NOWA);
if (conno < 0) /* ERROR */
while (!SOCKET_ISOPEN(CODDO))

/* perform other work */

SOCKET NOBLOCK (conno) ;
for (;;)

SNS_YIELD() ;
len = Nread(conno, buf, sizeof (buf));
if (len < 0)

if (len != EWOULDBLOCK)
break; /* error */
else
/* perform other work */
else if (len == 0)
break; /* other end closed */
else

/* process message */

}

stat = Nclose (conno) ;
if (stat < 0) /* ERROR */

The return code from Nwrite() will be EWINZERO if you are in non-blocking mode and the TCP
window is not large enough to take your packet.

So, if you are using non-blocking /O and there is a possibility that the remote host's window may
close (this happens when the remote host does not read the received data), then you must use one of
the following workarounds:

1) Write less data. The remote window is stored in
connblo [conno] .window
Examine the window and resend using a packet size smaller than the remote window.

2) Enable the TCP window probe. To do this, you must revert to blocking mode and rewrite the data.
The write will block while performing the window probe.

len = Nwrite (conno, buff, sizeof (buff))

if (len == EWINZERO) {
SOCKET BLOCK (conno) ;
len = Nwrite (conno, buff, sizeof (buff));
/* check error, etc */

65

Chapter 5

3) Close the connection.

4) Use SOCKET_CANSEND() before you write to evaluate whether the connection can send data.
This will let you avoid getting into the situation for which you need to test for EWINZERO, but will
not solve the problem that there is no probe in non-blocking mode.

66

BSD Socket Interface

6. BSD Socket Interface

About BSD Sockets

The BSD 4.3 sockets are the closest thing there is to a standard user interface to TCP/IP. However,
they can only be approximated on a non-UNIX system, because many UNIX functions interact with
sockets. The UNIX dependencies come in these forms:

The UNIX sockets are really an intertask communication system, not a networking interface.
They can be used to map to the various UNIX file systems, and they can mix files and sockets and
even other things in one operation.

The use of functions fcntl(), select(), read(), write(), and close() for networking purposes will
easily cause conflicts. smxNS changes these names by appending “socket” to them.

The UNIX sockets have an interface to the UNIX signals, which again have an interface to just
about any UNIX function.

Some BSD socket features are implicitly not reentrant. These include function gethostbyname()
and all use of errno. This is of course more a multitasking question than a networking question.

The BSD use of TCP urgent data is in conflict with the TCP standard. The smxNS module tcp.c
contains a source-level variable to select either the standard or the BSD method. Best policy in all
cases is not to use the BSD out-of-bound data, or the TCP urgent data.

For somebody who already knows the BSD sockets interface, writing any new code using them makes
sense. (The Dynamic Protocol Interface needs quite a bit less space, but the difference in speed is not
significant.) To support these users, we have made the sSmxNS sockets as similar to 4.3 BSD sockets
as reasonably possible. These points may require special attention:

Symbolic error codes are not perfectly standardized across different UNIX systems. smxNS uses
the Solaris names.

The typical UNIX use of errnois not reentrant. If this becomes critical, use getsockopt() to get
the last error code.

The function gethostbyname() is not reentrant. Use gethostbyname_r() instead if this is critical.

You can’t mix files and sockets. For instance, you can’t use a selectsocket() to wait for either a
keyboard character or a network packet.

Avoid non-blocking mode if multitasking is used.

67

Chapter 6

Structures and Definitions

struct sockaddr ({
unsigned short sa family;
char sa_datal[14];

To get in the needed definitions, use:

#include “smxns.h”

Many of the BSD socket routines use a pointer to structure sockaddr, which specifies network
address information. The sockaddx structure is a generic structure that can be used with a number
of different communications protocols. smxNS only uses the Internet Protocol (IP), and therefore
only requires the use of the Internet structure sockaddr_in. Values are assigned to
sockaddr_in and passed into the socket routine via the sockaddxr parameter. This requires a
typecast to sockaddr *. The discussion of the connect() function provides an example. Here are
the structure definitions:

/* generic socket address */
/* address family */
/* up to 14 bytes of address */

In practice, this is used almost as a void pointer. The true Internet address structure is:

struct in addr ({

/* Internet address */

unsigned long S_addr;

struct sockaddr in ({

/* Internet socket address */

short sin family;
unsigned short sin port;
struct in addr sin addr;
char sin zero(8];

}i

BSD Socket Interface Functions

68

The smxNS BSD Socket Interface provides these function calls:

accept()
bind()
closesocket()
connect()
fcntlsocket()
getaddrinfo()
getpeername()
getsockname()
getsockopt()
ioctlsocket()
listen()
readsocket()
recv()
recvfrom()

recvmsg()

accepts a connection on a socket.

binds a name to a socket.

closes a socket.

initiates a connection on a socket.

controls socket flags.

returns the IP address that corresponds to a host name.
extracts the remote address information for a socket.
extracts the local address information for a socket.
gets options on sockets.

sets control parameters for a socket.

listens for connections.

receives a message from a socket ID.

receives a message.

receives a message from a connection.

establishes a connection and receives a message.

selectsocket()
send()
sendmsg()
sendto()
setsockopt()
shutdown()
socket()
writesocket()

BSD Socket Interface

waits for activity on a set of sockets.

sends a message on an established connection.
sends a message that can be split between buffers.
establishes a connection and sends a message.

sets options on sockets (described with getsockopt).
shuts down part of a connection.

creates a socket.

sends a message to a socket.

The typical calling sequences for a connection-oriented client and server are shown below.

Server Client

|socket() |

accept() |

A 4
«—]| connect()

+—|writesocket()

readsocket()

writesocket()

readsocket()
closesocket()

readsocket()
closesocket()

Figure 6-1: Functions Used in a Connection-Oriented System

69

Chapter 6

For a connectionless protocol, the typical functions used by the server and client are shown in the next
figure.

Server Client

|socket() |

recvfrom()

I|sendto() |
v

|sendt0() I recvfrom()

closesocket()

Figure 6-2: Functions Used in a Connectionless System

Most functions return a value of -1 in case of an error. The error code is stored in exrrno, and can
also be retrieved using the getsockopt() function, as in the following example:

int errcode, errlen;

i1 = connect (s, (struct sockaddr *)&socka, sizeof (socka));
if (i1 < 0)

il = errno;
if (getsockopt (s, SOL_SOCKET, SO_ERROR,
&errcode, &errlen) >= 0)
il = errcode;
DEBUG MSG2 PARI1 (“connect: error %d\n”, il);
/* additional error handling */

Here the value of errno is saved before calling getsockopt(), in case this call fails and causes

errno to be overwritten. The getsockopt() function should be used when possible in multitasking
systems because errno is not reentrant.

If a call to socket() returns -1, there is no socket number to refer to when trying to retrieve the error
code. In this case, the error code must be retrieved from errno.

The gethostbyname() functions return a pointer to a host data structure. If these functions fail, then a
null pointer is returned.

70

BSD Socket Interface

accept

Accepts a connection on a socket.

int accept(int s, struct sockaddr *name, int *namelen) ;

s Socket identifier.
name On return, this provides information about the remote end of the connection.
namelen On entry, this is a pointer to an integer containing the size of the name structure, and

on return this pointer points to the size of the returned structure. This size will not
change under smxNS.

The accept() call is used by a server application to perform a passive open for a socket. The socket
will remain in the LISTEN state until a client establishes a connection with the port offered by the
server. The return value from this function is an identifier for a newly created socket over which
communication with the remote client can occur. The original socket remains in the LISTEN state,
and can be used in a subsequent call to accept() to provide additional connections.

See also: socket, bind, listen

Return Value

-1 Error.
>=0 Socket identifier for the established connection.

Example
int sl1, s2;
int socksz;
struct sockaddr in socka;

socksz = sizeof (socka) ;
memset (&socka, 0, sizeof (socka)) ;
socka.sin family = AF_ INET;
s2 = accept(sl, (struct sockaddr *)&socka,
&socksz) ;
if (s2 < 0)
DEBUG MSG2 PARO (“Error in accept\n”);

71

Chapter 6

bind

Binds a name to a socket.

int bind(int s, struct sockaddr *name, int namelen) ;
s Socket identifier.

name Structure that identifies the remote end of the connection. The sin_family
member of the structure can be left as 0 to accept connections on any attached
network interface.

namelen Size of name.

A server application uses the bind() function to specify the local Internet address and port number for
a connection. The port number is the port that the server will be listening on. A call to bind() can
also optionally be called by a client application before calling connect().

See also: socket, listen, accept, closesocket

Return Value

-1 Error.

0 Success. The Internet address and port number have been associated with the local
end of the socket.

Example
int rc; /* return code */
int s; /* socket identifier */

72

struct sockaddr in socka; /* local port, etc */

memset (&socka, 0, sizeof (socka)) ;

socka.sin family = AF_INET;

socka.sin port = htons(1100) ;

rc = bind(s, (struct sockaddr *)&socka, sizeof (socka)) ;

if (rc < 0)
DEBUG MSG2 PARO (“Error in bind\n”);

In this example, 1100 is the local port number to be used. A client performing a connect() to this
server would also use port number 1100.

BSD Socket Interface

closesocket

Closes a socket.

int closesocket (int s);

s Socket identifier.

The closesocket() function is used to close a socket. This function is the same as the regular BSD
Sockets close() function, but it has been renamed to avoid conflicts with the close() function that
operates on file descriptors.

There is a special situation that may need to be addressed when using non-blocking sockets.
Although calling selectsocket() on the write descriptor prior to calling send() will normally take care
of most error conditions, there is one case where this may fail. If a lot of data is sent using send() and
then closesocket() is called immediately also in non-blocking mode, a portion of data may remain
unsent. The easiest solution is to add an additional call to selectsocket() prior to calling closesocket().
See the example section.

See also: socket

Return Value

-1 Error.

0 Close was successful.

Example
void wait for write(int sockfd)

fd set wset;
struct timeval tm;
do {
tm.tv_sec = 10;
tm.tv_usec = 0;
FD ZERO (&wset) ;
FD SET (sockfd, &wset) ;
} while (! selectsocket (sockfd + 1, 0, &wset, 0, &tm));

void write data(int sockfd, char *buff, int buffsz)

{

int len, totlen;
int noblock = 1;

ioctlsocket (sockfd, FIONBIO, &noblock) ;
do
wait for write(sockfd) ;
len = send(sockfd, buff[totlen], buffsz - totlen, 0);
if (len < 0) {
/* Handle the error condition */

}

totlen += len;
} while (totlen < buffsz);

/* This extra call to select avoids lost data */
wait for write(sockfd) ;

closesocket (sockfd) ;

73

Chapter 6

connect

Initiates a connection on a socket.

int connect (int s, struct sockaddr *name, int namelen) ;

s Socket identifier.
name Structure that identifies the remote end of the connection.
namelen Size of name.

The connect() function performs an active open, allowing a client application to establish a
connection with a remote server. The name structure is used to specify the Internet address and port
number for the remote end of the connection. The Internet address is usually retrieved using the
gethostbyname_r() function.

See also: closesocket

Return Value

-1 Error.
0 Success. A connection has been established with the remote server.
Example
int rc; /* return code */
struct sockaddr_ in socka; /* Internet address */
/* and port number */
struct hostent hostent; /* for retrieving IP */

74

/* address from host */
unsigned char buff [BUFFLEN + 1];

memset (&socka, 0, sizeof (socka)) ;

socka.sin family = AF_INET;

gethostbyname r (“hostl”, &hostent, buff,
sizeof (buff), &rc);

if (rc < 0)
DEBUG MSG2 PARO (“Error: gethostbyname r\n”) ;
memcpy ((char *)&socka.sin addr,
(char *)hostent.h addr 1list([0], Iid SZ);
socka.sin port = htons(1100) ;
rc = connect (s, (struct sockaddr *)&socka,
sizeof (socka)) ;

if (rc < 0)
DEBUG_MSG2 PARO (“Error connecting to remote server\n”);

Here you can see that &socka which is of type sockaddr_in * must be cast to a sockaddr
* since this is what is expected by connect(). This refers back to the previous discussion on
structures and definitions.

BSD Socket Interface

fcntlsocket

Controls socket flags.
int fcntlsocket (int s, int comd, int arg) ;
The networking commands are:
F_GETFL get flags
F_SETFL setflags
This should of course be fentl, but we append “socket” to this to avoid naming conflicts.

The fentlsocket() function allows a socket to be set to use non-blocking semantics, and also allows the
current setting to be retrieved.

Networking uses only one flag: FNDELAY (or O_NDELAY; both names seem to be in use) for non-
blocking 1/0.

See also:Non-blocking sockets in Chapter 5, Dynamic Protocol Interface.

Return Value

The return value is -1 for error, 0 for successful SETFL, the current value of the flags for successful
GETFL.

freeaddrinfo

Release the memory allocated for the given addrinfo structure.

void *freeaddrinfo (struct addrinfo *res)

res (Input) Pointer of the address structure to release

The linked list acquired with getaddrinfo() is released.

See also: getaddrinfo
Return Value

none

Example
struct addrinfo *ai;
freeaddrinfo(ai);

75

Chapter 6

gai_strerror

Convert an error code from getaddrinfo() into a character string.

const char gai strerror (int errcode) ;
errcode (Input) Error code.

Return Value
Pointer to the corresponding character string.

Example

int errcode;
char *errorstr;
errorstr = gai_strerror(errcode);

76

BSD Socket Interface

getaddrinfo

Obtain address information based on host and port information.

int getaddrinfo(const char *hostname, const char *servname, const
struct addrinfo #*hints, struct addrinfo **res);

hostname (Input) Host name or IP address

servhame (Input) Service name or port number string
hints (Input) Additional optional specifications for the type of address
res (Output) Address storage area

hostname specifies the acquired host name or IP address.

servname specifies the port number as a character string.

The type and the protocol of the desired socket are specified via the hints parameter.
The result of the request is provided in the res parameter.

The memory dynamically allocated uses one message buffer (MESS structure).

The following ai_flags options in the hints field are supported.

Al_PASSIVE

Al_NUMERICHOST

AlI_ADDRCONFIG

It is necessary to release the allocated memory with freeaddrinfo().

See also: freeaddrinfo()

Return Value

0 Success
=0 Check error associated with socket
EAI_ADDRFAMILY The requested address family for the given hostname is not available

EAI_FAMILY The requested address family is not available

EAI_SERVICE The requested service cannot be used by the requested socket type
EAI_NONAME The requested name is illegal

EAI_MEMORY Insufficient memory

EAI_FAIL The name server failed in responding to the request

77

Chapter 6

EAI_SYSTEM Other system error occurred

Example

78

struct addrinfo hints;
char portstr[10];
int port = 80;

char *hostname = “(Ipvé address)”;

struct addrinfo *ai;

memset (&hints, 0, sizeof (hints)) ;
hints.ai family = AF INET6;
hints.ai socktype = SOCK STREAM;

hints.ai protocol = 0;
hints.ai flags |= AI NUMERICSERV;
sprintf (portstr, “%u”, (int)port);

if (getaddrinfo (hostname, portstr,
return -1;

&hints,

&ai))

BSD Socket Interface

getpeername

Extracts the remote address information for a socket.

int getpeername (int s, struct sockaddr *name,
int *namelen) ;

s Socket identifier.
name Structure into which the remote address information should be stored.
namelen A pointer to the length of the name structure.

The getpeername() function retrieves the remote address information and stores it in the supplied
structure.

Return Value

-1 Error.

0 Remote address was retrieved.
Example

struct sockaddr in socka;

int rc; /* return value */

int s; /* socket identifier */

s = socket (PF_INET, SOCK DGRAM, O0);

rc = getpeername (s, (struct sockaddr *)&socka,
&socksize) ;

if (rc < 0)
DEBUG_MSG2 PARO (“Error in getpeername\n”) ;

79

Chapter 6

getsockname

Extracts the local address information for a socket.

int getsockname (int s, struct sockaddr *name,
int *namelen) ;

s Socket identifier.
name Structure into which the local address information should be stored.
namelen A pointer to the length of the name structure.

The getsockname() function retrieves the local address information and stores it in the supplied

structure.

Return Value

-1 Error.

0 Local address was retrieved.
Example

struct sockaddr in socka;

int rc; /* return value */

int s; /* socket identifier */

80

s = socket (PF_INET, SOCK DGRAM, O0);
rc = getsockname (s, (struct sockaddr *)&socka,
&socksize) ;

if (rc < 0)
DEBUG_MSG2 PARO (“Error in getsockname\n”) ;

BSD Socket Interface

getsockopt, setsockopt

Gets and sets options on sockets.

int getsockopt (int s, int level, int optname,
char *optval, int *optlen);

int setsockopt (int s, int level, int optname,
char *optval, int *optlen) ;

s Socket handle.

level See Table 6-1 below.

optname See Table 6-1 below.

optval Pointer to option value. Refer to the table below for the data type.
optlen Pointer to the size of the data stored in optval.

The functions in the following table manipulate socket options.

81

Chapter 6

Table 6-1: Routines that Manipulate Socket Options

level optname Type Description

IPPROTO_IP IP_ ADD_MEMBERSHIP struct ip_mreq Join multicast group
IP_DROP_MEMBERSHIP struct ip_mreq Leave multicast group
IP_ MULTICAST _IF struct in_addr Set multicast interface
IP_OPTIONS char Options in IP header
IP_TTL unsigned int TTL in IP header

IPPROTO_TCP TCP_MAXSEG unsigned int Get TCP maximum segment
TCP_NODELAY unsigned int Don’t delay send

SOL_SOCKET SO_BROADCAST unsigned int Permit broadcast
SO_DEBUG unsigned int Debug flag
SO_DONTROUTE unsigned int No routing
SO_ERROR unsigned int Get and clear error code
SO_KEEPALIVE unsigned int Keepalive probing
SO_LINGER struct linger Linger on close
SO_OOBINLINE unsigned int Leave URG data inline
SO_RCVBUF unsigned int Receive buffer size
SO_REUSEADDR unsigned int Local address reuse
SO_SNDBUF unsigned int Send buffer type
SO_TYPE unsigned int Get socket type

See also: fctlsocket, ioctlsocket

Return Value

-1

Example

rc = setsockopt (s,

Error.

Success. The optval pointer points to the option value for getsockopt(); the
option was set for setsockopt().

if (rc < 0)

DEBUG _MSG2 PARO (“Error in setsockopt\n”) ;

82

SOL_SOCKET, SO_KEEPALIVE,

0);

BSD Socket Interface

inet_ntop

Convert an address structure into a string.

char *inet ntop (int af, void *src, void *dst, int cnt);

af (Input) Address family.

src (Input) Pointer to the network address structure.
dst (Output) Area where the result is stored.

cnt (Input) Size of area where the result is stored.

The inet_ntop() function converts network address structure src of address family af into a character
string. This function copies the string into memory at location dst (length cnt bytes).

af specifies AF_INET or AF_INET®6.

If the value in af is not supported, errno is set to EAFNOSUPPORT. If the resulting string would
occupy more than cnt bytes, errno is set to ENOSPC.

Return Value

NULL Error.
Pointer to dst Success.

Example
example

83

Chapter 6

inet_pton

Convert a string into a network address structure.

int inet pton(int af, char *src, char *dst);

art (Input) Address family.
src (Input) Pointer to the address of the character string.
dst (Output) Area where the conversion result is stored.

The inet_pton() function converts the string pointed to by src of the af address family into a network
address structure, and stores it at address dst (of length cnt bytes).

af specifies AF_INET or AF_INET®6.

The function returns a negative value and sets errno to EAFNOSUPPORT if the value for af is not
supported. When src is not a valid address, the function returns 0.

Return Value

>0 Success

<0 The address family is not supported.

0 The address of the character string is illegal.
Example

example

84

ioctlsocket

BSD Socket Interface

Sets control parameters for a socket.

int ioctlsocket (int s, int request,

s Socket identifier.
request Request type. See table below.
arg Optional argument. See table below

char *arg) ;

The ioctlsocket() function behaves the same as the regular BSD Sockets ioctl() function, except that it
only accepts socket identifiers. The optional third argument is used as a pointer for the result. There
is some variation in how this function is defined in BSD sockets: The second argument may be
“unsigned long”, and of course the variable arguments are treated differently in non-ANSI C.

request argument type

description

FIONBIO int *

Sets non-blocking I/0 if arg
points to an int of non-zero value.
Sets blocking 1/0O otherwise.

FIONREAD int *

arg is assigned the number of
bytes that have not yet been read.

SIOCATMARK int*

argis assigned 1 if the socket
read is at the out-of-bound mark,
0 otherwise.

See also:getsockopt, setsockopt

Return Value

-1 Error.

0 Operation successful.

85

Chapter 6

listen

Listens for connections.

int listen(int s, int backlog) ;
s Socket identifier.

backlog Specifies the number of connections that will be held in a queue waiting to be
accepted. This value includes connections that are in the SYN_RCVD state and
connections that are in the ESTABLISHED state that have not yet been accepted by
the application. The value of backlog must be greater than 0 for a subsequent call to
accept() to succeed. If there are no connections available at the time a SYN
segment is received, the incoming segment will be dropped and the diagnostic
counter sns_TcpSynDrops will be incremented. NCONNS can be adjusted up if
sns_TcpSynDrops shows dropped SYNs.

The listen() function is part of the sequence of functions that are called to perform a passive open.
This call puts the socket into the LISTEN state.

See also: socket, bind, accept

Return Value

-1 Error.
0 Success.
Example
int rc; /* return code */
int s; /* socket identifier */
rc = listen(s, 5);

if (rc < 0)
DEBUG MSG2 PARO (“Error calling listen\n”);

86

BSD Socket Interface

readsocket

Receives a message from a socket ID.

int readsocket (int s, char *buf, int len);

s Socket identifier.
buf Buffer into which received data will be stored.
len Maximum number of bytes to be received.

The readsocket() function behaves the same as the regular BSD Sockets read() function, except that it
only accepts socket identifiers.

See also: recv, recvfrom, recvmsg

Return Value

-1 Error.
>0 Number of bytes received.
0 The remote side closed the connection.

87

Chapter 6

recv

Receives a message.

See also:

int recv(int s, char *buf, int len, int flags);

s
buf

len

flags

Socket identifier.
Buffer into which received data will be stored.

Maximum number of bytes to be received. For non-stream connections, excess
bytes will be discarded.

Allows for these options:
MSG_OOB returns urgent data.
MSG_PEEK returns information, allowing it to
be read again on a subsequent call.

The flag MSG_WATITALL is not supported.

Return Value

88

-1

>0

0

recvfrom, recvmsg

Error.
Number of bytes received.

The remote side closed the connection.

The following error codes could be returned in errno or through getsockopt() if recv() returns
indicating an error:

EWOULDBLOCK

ETIMEDOUT

EOPNOTSUPP

EBADF

Only returns if the socket is set up as non-blocking. If this is the case, then a call to
recv() can check for EWOULDBLOCK and try again later, effectively polling.

Would only be returned if previously the macro SOCKET_RXTOUT was used to
adjust the receive timeout of the socket. The application could call recv() again
later.

1. The call to recv() asked for out-of-band data (the flags
parameter had MSG _OOB set), and none was available.

2. The call to recv() didn't ask for out-of-band data, and
there is some that needs to be received.

Invalid socket handle. No need to close, since that call would return an error as
well.

BSD Socket Interface

ECONNABORTED
A definite fatal error. Usually results from a retransmission timeout or reception of
aRST segment. Time to close the socket.

Example
int rc; /* return code */
int sl1, s2; /* socket identifiers */

unsigned char buff [BUFFLEN]; /* read buffer */

s2 = accept(sl, (struct sockaddr *)&socka,
&socksize) ;

rc = recv(s2, buff, 2, 0);
if (rc < 0)
DEBUG_MSG2 PARO (“Error receiving data.\n”);
else if (rc == 2)
DEBUG MSG3 PARO (“Success: read 2 bytes\n”);
else
DEBUG_MSG2_ PARO (Error: did not retrieve 2 bytes\n”);

Notice in this example that recv() uses the second socket identifier, the one returned from the
accept(), not the original socket which is used as an argument to accept().

89

Chapter 6

recvfrom

Receives a message from a connection.

int recvfrom(int s, char *buf, int len, int flags,
struct sockaddr *from, int *fromlen) ;

s Socket identifier.

buf Buffer in which information will be stored.

len Number of bytes to receive. For non-stream connections, excess bytes will be
discarded.

flags Specifies optional behavior:

MSG_OOB returns urgent data.
MSG_PEEK returns information, allowing it to be
read again on a subsequent call.

from Indicates the remote host from which the information was received.

fromlen Size of the £ rom data structure.

The recvfrom() function allows a connection to be made and a message to be read from the
connection. The flag MSG_WATITALL is not supported.

See also: recv, recvmsg

Return Value

-1 Error.

>=0 Number of bytes received.

90

BSD Socket Interface

Example
The accept() or connect() call is not needed here since recvfrom() establishes the connection before
reading.
int s1, s2; /* socket identifiers */
int rc; /* return code */
int socksize;
unsigned char buff [BUFFLEN] ; /* read buffer */
struct sockaddr in socka; /* remote host address */

memset (&socka, 0, sizeof (socka)) ;

rc = recvfrom(s2, buff, 8, 0, (struct sockaddr *)&socka, &socksize);

91

Chapter 6

recvmsg

Receives a message.

int recvmsg(int s, msghdr *msg, int flags) ;
s Socket identifier.

msg Pointer to structure that describes how received data should be stored. This
structure is shown below.

flags Specifies optional behavior:
MSG_OOB returns urgent data.
MSG_PEEK returns information, allowing it to be
read again on a subsequent call.

The recvmsg() function is the most general of the recv functions. This function allows a connection
to be established and read with one call. The flag MSG_WAITALL is not supported.

Here is the definition of the msghdx structure:

struct msghdr { /* Message header for recvmsg */
char *msg name; /* optional address */
int msg _namelen; /* size of address */
struct iovec *msg iov; /* scatter/gather arra */
int msg iovlen; /* num of elems in msg iov */
char *msg accrights; /* access rights */

| int msg_accrightslen;

struct iovec { /* address and length */
char *iov_base; /* base */

} int iov_len; /* size */

smxNS ignores the access rights field in the msghdr structure.

See also: recv, recvfrom

Return Value

-1 Error.
>0 Number of bytes received.
0 The remote side closed the connection.

92

BSD Socket Interface

selectsocket

Waits for activity on a set of sockets.
int selectsocket (int nfds, fd set *readfds, fd set

*writefds, fd_set *exceptfds,
struct timeval *timeout) ;

nfds Number of sockets. Watch out for “off by one” errors. For example, if the highest
value of the descriptors that should be evaluated is n, nfds should be set to n+1.

readfds Socket identifiers for which selectsocket() should return if data becomes available
or the state of the socket changes.

writefds Socket identifiers for which selectsocket() should return if the socket can accept
more data or if there is an error.

exceptfds Socket identifiers for which selectsocket() should return if out-of-band data is
available.

timeout Specifies time after which selectsocket() will return if none of the specified
conditions occurs.

This is a general UNIX routine, but handles sockets as well as files. The £d_set structures specify
which sockets (range 0 to nfds-1) are considered.

These macros can be used to manipulate £d_set:

FD_ZERO (&fd_set) clears the socket list
FD_SET (s, &fd_set) adds socket s

FD CLR(s, &fd set) removes socket s

FD ISSET (s, &fd set) non-zero if s included

When selectsocket() returns, there are bits in the £d-set structures only for those sockets that
satisfied the condition.

Structure t imewval gives the timeout value:

struct timeval ({ /* Time-out format for select () */
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

I

ANULL pointer means an infinite timeout. If the structure contains the value 0, then the descriptors
will be checked once and the call to selectsocket() will return without delay. This is useful for
application-level polling.

smxNS uses the SIG_SEL signal to support the select operation. SIG_SEL is raised when traffic
comes into the stack or maintenance functions run that might change the state of a connection.

93

Chapter 6

Return Value

-1 Error. Note that this should not occur in the current implementation.
0 Timeout occurred.
>0 This number of sockets are ready for the requested operations.
Example
int s1, s2, s3; /* sockets */
int rc; /* return code */

fd set socket setl, socket set2;

FD ZERO (&socket setl) ;

FD ZERO (&socket set2);

FD SET(sl, &socket setl);

FD SET (s3, &socket setl);

FD SET(s2, &socket set2);

rc = selectsocket (3, &socket setl, &socket set2, 0, NULL);

if (rc < 0)

DEBUG_MSG2_ PARO (“Error, no sockets ready.\n”);
else

DEBUG MSG3 PAR1 (“%d sockets ready.\n”, rc);

if (FD_ISSET(sl, &socket setl))

DEBUG_MSG3_ PARO (“Socket 1 is ready to be read.\n”);
else if (FD_ISSET (s2, &socket set2))

DEBUG MSG3 PARO (“Socket 2 is ready to be written\n”);
else if (FD_ISSET (s3, &socket set3))

DEBUG MSG3 PARO (“Socket 3 is ready to be read.\n”);
else

DEBUG_MSG2_ PARO (“Error.\n”) ;

94

BSD Socket Interface

send

Sends a message on an established connection.

int send(int s, char *buf, int len, int flags);

s Socket identifier.

buf Pointer to data to be sent.
len Number of bytes to send.
flags Allows for these options:

MSG_OOB sends the data as urgent data
MSG_DONTROUTE ensures that the message is
not sent through a default router.

The send() function can be used with sockets for which the connection has previously been
established.

See also: sendto, sendmsg

Return Value

-1 Error.

>=0 Number of bytes sent.

If send() returns indicating an error, the following error codes could be returned in errno or through
getsockopt():

EBADF The socket descriptor is invalid, or another process is using the socket at the

moment.

ESHUTDOWN The application has already requested that the sending side of the socket be shut
down. No further data can be sent through this socket.

ECONNABORTED An error has occured on this socket. The socket should be closed.

EMSGSIZE A non-stream socket has been asked to send more information than can be written at
once through the socket.

ENOBUF'S The system is out of buffers for sending data. The call to send() can be retried later.

EWINZERO The receiving TCP window is not large enough to take accept the data. See the
examples section for a workaround.

Example
int s2; /* socket identifier */
int rc; /* return code */

unsigned char buff [BUFFLEN] ;

95

Chapter 6

96

rc = send(s2, buff, sizeof (buff), 0);
if (rc < 0)
DEBUG MSG2 PARO (“Error sending data\n”);

The errno from send() will be EWINZERO if you are in non-blocking mode and the TCP window is
not large enough to take your packet.

If you are using non-blocking I/O and there is a possibility that the remote host's window may close
(this happens when the remote host does not read the received data). Then you must use a
workaround.

You can do one of several options:
1) Write less data. The remote window is stored in connblo[conno].window
Examine the window and resend using a packet size smaller than the remote window.

2) Enable the TCP window probe. To do this, you must revert to blocking mode and rewrite the data.
The write will block while performing the window probe.

int noblock = 1; /* Set to non-blocking mode */
ioctlsocket (sockfd, FIONBIO, &noblock) ;

iéﬁ = send(sockfd, buff, sizeof (buff), 0);
if (len < 0)
int i1, errval, sz;

sz = sizeof (val) ;
il = getsockopt (sockfd, SOL_SOCKET, SO_ERROR, &errval, &sz);
if (errval == EWINZERO)

noblock = 0;
ioctlsocket (sockfd, FIONBIO, &noblock) ;
len = send(sockfd, buff, sizeof (buff), 0);
if (len > 0)
noblock = 1;
ioctlsocket (sockfd, FIONBIO, &noblock) ;
/* Continue normal execution */

}

else if (errval != EWOULDBLOCK) {
DEBUG_MSG2 PARI1 ("Error %d\n", errval);
closesocket (sockfd) ;
return -1;

}

3) Close the connection.

4) Call selectsocket() with a write set enabled to check. This will let you avoid getting into the
situation for which you need to test for EWINZERO, but will not solve the problem that there is no
probe in non-blocking mode.

BSD Socket Interface

sendmsg

Sends a message that can be split between buffers.

int sendmsg(int s, msghdr *msg, int flags) ;

s Socket identifier.

msg Pointer to structure that describes the data to be sent. This structure is shown
below.

flags Specifies optional behavior:

MSG_OOB sends the data as urgent data
MSG_DONTROUTE ensures that the message is
not sent through a default router.

The sendmsg() function is a send function that allows the data to be sent from an array of buffers.

Here is the definition of the msghdx structure:

struct msghdr { /* Message header for recvmsg */
char *msg name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg iov; /* scatter/gather arra */
int msg iovlen; /* num of elems in msg iov */
char *msg accrights; /* access rights */

} int msg_accrightslen;

struct iovec { /* address and length */
char *iov_base; /* base */

} int iov_len; /* size */

smxNS ignores the access rights field in the msghdr structure.

See also: send, sendto

Return Value

-1 Error.

>=0 Number of bytes sent

97

Chapter 6

sendto

Send a message.

int sendto(int s, char *buf, int len, int flags,
struct sockaddr *to, int tolen);

s Socket identifier.

buf Buffer from which information will be sent.
len Number of bytes to send.

flags Specifies optional behavior:

MSG_OOB sends the data as urgent data.
MSG_DONTROUTE ensures that the message is
not sent through a default router.

to Specifies the remote host to which the connection should be made.

tolen Size of the to data structure.

The sendto() function allows a connection to be made and a message to be written to the connection.

See also: send, sendmsg

Return Value

-1 Error.
>=0 Number of bytes sent.

Example

rc = sendto(s, “HIJKLMNO”, 8, O,
(struct sockaddr *)&socka, sizeof (socka)) ;

if (rc < 0)
DEBUG_MSG2_ PARO (“Error sending\n”) ;

98

BSD Socket Interface

shutdown

Shuts down part of a connection.

int shutdown (int s, int how) ;
s Socket identifier.

how Describes type of shutdown:
0 shuts down receive data path
1 shuts down send data path, TCP sends FIN
2 shuts down send and receive path

The shutdown() function is useful for fully specifying the limited closure of a connection. Normally
the closesocket() function is used to fully close a connection.

See also: closesocket
Return Value

-1 Error.

0 Shutdown successful.

99

Chapter 6

socket

Creates a socket.

int socket (int domain, int type, int protocol) ;

domain For smxNS, this should always be PF_INET.

type smxNS expects one of three constants for this parameter:
SOCK_STREAM stream socket (TCP/IP)
SOCK_DGRAM datagram socket (UDP/IP)
SOCK_RAW raw-protocol interface

protocol This can be specified as 0.

A call to socket() will create a socket of the specified type. A socket must be created before any other
socket calls are used.

See also:closesocket

Return Value

-1 Error.

>=0 The newly created socket can be accessed through this handle.

If socket() returns with an error indication, the value in errno or obtained through getsockopt() can
be interpreted as follows:

EPROTONOSUPPORT
The requested protocol is not available. Perhaps SOCK _STREAM was specified,
but TCP support is not configured for the underlying stack.

Example
int s; /* a socket */

s = socket (PF_INET, SOCK DGRAM, O0);
if (s < 0)
DEBUG MSG2 PARO (“Error opening socket\n”);

100

BSD Socket Interface

writesocket

Sends a message to a socket.

int writesocket (int s, char *buf, int len);

s Socket identifier.
buf Pointer to data to be sent.
len Number of bytes to send.

The writesocket() function behaves the same as the regular BSD Sockets write() function, except that
it only accepts socket identifiers.

See also: send, sendto, sendmsg

Return Value

-1 Error.

>=0 Number of bytes sent.

101

Chapter 6

Multicast API (BSD)

102

In order to receive information associated with a multicast host group, join the multicast group by
performing the following steps:

socket() Use INET protocol family with SOCK_DGRAM.
setsockopt() Use SO_REUSEADDR with a value of 1.
bind() Use a well known port (to receive multicasts on).

setsockopt() Fill out the mreq structure with an appropriate Multicast address and host interface.
If no host interface is given, the default will be used instead. This is defined by the
macro, IP_MC_DFLT_NETNO, and is declared in nscfg.h.

recvfrom() Receive Multicasts as they come in on the port that was bound.

Overview

Network Applications and Protocols

7. Network Applications
and Protocols

smxNS offers support for a number of networking applications, and also special features at the stack
level. Some are included and some are extra-cost options.

ARP
DHCP
DNS
FTP
HTTP
IGMP
IPV6
MDNS
NAT
PPP
PPPOE
SLIP
SNTP
TELNET
TFTP
Web Server

maps an IP address to a hardware address.

delivers host configuration parameters to a client host.
allows hosts to be specified by name rather than IP address.
is a file transfer programs implemented with TCP.
transfers web pages. A simple client is provided.

is the multicast protocol

directs datagrams to the destination host using 128-bit IPv6 addresses
allows network hosts to discover local services

is the network address translation.

connects two hosts over a serial link.

is a protocol typically used with DSL equipment.

a minimal protocol for connecting over a serial link.

allows hosts to synchronize time information.

is the usual TCP/IP method of remote terminal access.

is a simple file transfer program implemented with UDP.

serves web pages.

The discussions of PPP and the Web Server are lengthy and are presented in separate chapters which

follow this one.

103

Chapter 7

ARP

ARP (Address Resolution Protocol) is used to map an IP address to a hardware address. The ARP
client checks its ARP cache first for the IP address of the destination host, to get its hardware address.
If there is no entry in the cache, it sends a broadcast message to all the hosts on the network segment.
The host with the desired IP address responds with its hardware address, and the requestor adds it to
its ARP cache.

Proxy ARP

104

The Proxy ARP feature allows a system running smxNS to answer ARP requests on behalf of another
system. This is useful when smxNS acts as a transparent bridge, making it appear that systems that
are reachable through the system running smxNS are directly connected to an Ethernet network.

There are three steps to enable the Proxy ARP capability in SmxNS:

1.) Uncomment the following line in include\nscfg.h:

#define USS_ PROXYARP

this will enable the proxy ARP feature in arp.c and ip.c.

2.) Add the definitions of the Proxy ARP hosts with the PROXYARP flag in the flags field:

"netl86", "enetl", C, {206,251,94,253}, EAO0, PROXYARP, Ethernet,
AMDS61, "IRNO=4 PORT=0x200",

3.) You should have at least two interfaces for the local host defined in the netdata[] table. For
example, say the local host is named server:

"server", ‘"enetO", C, {206,251,94,224}, EA0, 0, Ethernet, NE2000,
"IRNO=10 PORT=0x0300",

"server", ‘'"enetl", C, {206,251,94,252}, EAO, 0, Ethernet, CS8900,
"IRNO=5 PORT=0x0320 BASE=0xC800",

Note that the port name, which is the second field in the definition, is different for the two interfaces
defined for the local host and that our proxy ARP host uses the port name of the second interface
definition. The order is important. smxNS will take the first subnet address match that it finds when it
decides where to send its messages.

We have added logic to ip.c to scan the table for the proxy ARP host and its matching interface
definition on the local host. So we need to have the "other" interface specified first in the table so that
smxNS will find that when it scans for the subnet address match.

To test this feature, you need two hosts connected to each other on a dedicated network with the host
doing the proxy ARP also connected to a second network. Use another host on the second network to
send a ping to the host that is on the dedicated network.

The host on the dedicated network should respond to the ping that should be indicated by a ping reply
message. After the ping has executed, the ARP cache (use arp -a) on the sending host should have a
new entry with the IP address of the host on the dedicated network and the ethernet address of the
proxy ARP host.

Network Applications and Protocols

DHCP

DHCP (Dynamic Host Control Protocol) is a method by which a DHCP server can deliver host
configuration parameters to a client host, typically when the client host boots. DHCP can be used
within a subnet, and also across subnets, provided that a DHCP server is available, and the appropriate
hosts have been set up to forward DHCP messages. DHCP is based on the BOOTP protocol, and
provides extensions such as the ability for a server to dynamically assign reusable network addresses.

In smxNS, DHCP is used to obtain an IP address for the host. The protocol will be used automatically
as part of NetTask() and Portterm() based on the setting of the #define SNS_ PROTO DHCPC
line in nscfg.h.

The call to obtain an IP address through DHCP is:
void DHCPget (int netno) ;
This function is called automatically from the NetTask() network background task.

The current state of the DHCP client is visible via the nets[0].DHCPstate variable. Normally it should
have the value DHCP_BOUND, meaning that the system is using the IP address acquired from the
DHCP server.

The call to release an assigned IP address is:
int DHCPrelease (int netno) ;
The DHCPrelease() return codes are:
0 Success
ETIMEDOUT Timeout
The smxNS DHCP Server follows RFC's 2131 and 2132 with the restrictions noted below.
e DHCPserv() starts the server.

e The server should never return.

DHCP Client Configuration

To use DHCP for address assignment with smxNS:

1) Set the primary IP address to 0.0.0.0 like:
Portconfig(“enet”, “IP”, “0.0.0.0”);

2) #define SNS_PROTO_DHCPC 1 in nscfg.h

3) To adjust the number of times the DHCP client retransmits the DHCPDISCOVER message when
trying to locate a DHCP server, adjust DHCPC_DISCOVER_MAX_RETRY in dhcp.h. Setting this
macro to OxFFFFFFFF will allow the call to DHCPget() to retry indefinitely waiting for a DHCP
server to become available.

4) To get a router from DHCP:
#define DHCP_CONFIG =1o0r 2

When DHCP_CONFIG is set to 1, the client will request only an IP address from the DHCP server.
When DHCP_CONFIG is set to 2, the client will request an IP address, a subnet mask, a router, and a
DNS server.

105

Chapter 7

106

% 3% % % |MPORTANT NOTE * * * *

For network environments where the system running smxNS and the DHCP server may be on
different subnets, the DHCP_CONFIG=2 setting should be the most reliable. This setting should
ensure that the DHCP server includes the router option in its response.

5) Additional configuration options:

If additional configuration options are desired, then edit dhcp.h and modify the discopts declaration.
The options with DHCP_CONFIG = 2 are as follows:

static const u8 discopts[] =
{99, 130, 83, 99, 53, 1, DHCPDISCOVER, 55, 3, 1, 3, 6};

Option 55 is a parameter request list, 3 is the number of parameters requested, 1 is the subnet mask
option, 3 is the router option, and 6 is the DNS server option in the example above. Valid option
codes are given in RFC 2132. To remove options, remove the appropriate one and change the number
of parameters accordingly. Do not change any options before or including option 55.

6) DHCP is automatically called from NetTask() if #define SNS_PROTO_DHCPC 1 is set in nscfg.h.
When initializing more than one interface using DHCP, they need to be initialized separately.
Example:

Portinit("ethl", “); /* initializes interface 1 */
Portinit("eth0", “); /* initialized interface 0 */

7) Fallback behavior:

If the initial attempt to obtain an IP address from the DHCP server fails (perhaps because there is no
DHCP server on the network), it is possible to have smxNS use an alternate method to obtain an IP
address. The alternate method is specified in the FallbackAddr field of the network data structure,
which is set with Portconfig() using the “FBIP” key.

If the value here is 0.0.0.0, then smxNS will continue attempting to use DHCP to obtain an IP address.
Since the network data structure is cleared to zero as part of initialization, this is the default value, so
by default smxNS will stick to DHCP.

If FallbackAddr is set to an address in the range 169.254.x.x, then smxNS will generate a link-local
address (also known as an AutolP address), which will be a random address in this same range.

Any other value for FallbackAddr will be considered a fixed IP address, and that address will be
adopted.

In order to set a link-local address or fixed IP address as the fallback address, set the value before
calling Portinit(), as in this example.

Portconfig(“enet”, “FBIP”, “192.168.1.5™);
Portinit(“enet”, “”);

8) Lease renewal:

smxNS will automatically track the time left on a DHCP lease to renew it. The lease time and the
renewal time are stored in the sSmxNS NET structure.

In order to suggest a lease time to the DHCP server, fill in a value for the SuggestedLease field in the
nets[] data structure before calling Portinit(). This value is in units of 1 second. For example

nets[0].SuggestedLease = 7200; /* 2 hour lease */
Portinit(“enet”, “”);

Network Applications and Protocols

DHCP Server Configuration

1) Server configuration file:

The name of the server configuration file is defined as CONF_FILE in dhcp.h. The default name is
"dhcp.con™ with no path. This file contains the configuration parameters that the server will give to
clients. Most entries are self-explanatory. The range entry is the range of IP addresses you wish to
give your clients. To configure with no router or domain name server, put 0 for the number of entries,
with no IP addresses to follow To configure no domain name or bootfile name enter none.

This file must have the following format with no lines omitted:

netname
subnet_mask X.X.X.x

range X.X.X.X X.X.X.X

router number_of_routers X.X.X.X [X.X.X.X ...]
domain_name_server number_of_dns X.X.X.X [X.X.X.X ...]
domain_name name

bootfile name or none if not needed

Here is a specific example:

enet

subnet_mask 255.255.255.0

range 192.168.1.150 192.168.1.159

router 2 192.168.1.1 192.168.1.3
domain_name_server 2 192.168.1.1 192.168.1.3
domain_name ussw.com

bootfile none

If the server configuration file does not exist when sns_ DHCPServerConfig() is called, a new one will
be created from the cfgstr string that is passed as a parameter to sns_ DHCPServerConfig(). Here is an
example cfgstr definition from nsdemo.c,

char cfgstr[] = {
"enet\r\n"
"subnet_mask 255.255.255.0\r\n"
"range 192.168.1.150 192.168.1.159\r\n"
"router 2 192.168.1.1 192.168.1.3\r\n"
"domain_name_server 2 192.168.1.1 192.168.1.3\r\n"
"domain_name ussw.com\r\n"
"bootfile none\r\n"

%

The DHCP server can service multiple interfaces. When configuring the DHCP server for multiple
interfaces, the configuration information blocks follow one after the other. Here is an example cfgstr
definition for two interfaces. (Also, the enet entry has been simplified.)

char cfgstr[] = {
"enet\r\n"
"subnet_mask 255.255.255.0\r\n"
"range 192.168.1.150 192.168.1.159\r\n"
"router 1 192.168.1.1\r\n"
"domain_name_server 1 192.168.1.1\r\n"
"domain_name none\r\n"
"bootfile none\r\n™
"wifinet\r\n"
"subnet_mask 255.255.255.0\r\n"

107

Chapter 7

"range 192.168.2.10 192.168.2.19\r\n"
"router 1 192.168.2.1\r\n"
"domain_name_server 1 192.168.2.1\r\n"
"domain_name none\r\n"

"bootfile none\r\n"

I3
2) Server lease file:
The name of the server lease file is defined as LEASE_FILE in dhcp.h. The default name is

"dhcp.lea” with no path. Create this as an empty file when running the server for the first time.
Otherwise, do not edit this file.

3) General configuration:
a) dhcp.h contains two configuration switches:

i) DHCP_PROBE : defining DHCP_PROBE enables an ICMP echo request probe of each potential
address before the server gives it out. This enables the server to detect addresses in use and mark them
as unavailable to give. #undef DHCP_PROBE disables it.

ii) DHCP_BROADCAST: The DHCP server will unicast all replies to the client's hardware address
and to yiaddr (the IP address it is trying to give the client). This behaviour corresponds to #undef
DHCP_BROADCAST in dhcp.h. If the TCP/IP stack on your client is unable to receive unicast
messages before the IP address is configured, then #define DHCP_BROADCAST and all messages
will be broadcast to all clients. Note that a smxNS client can receive unicast messages before the
client is configured if DHCP is enabled.

b) #define DHCP_SERVER "server_name" in dhcp.h
c) #define DHCP 2 in nscfg.h

d) The DHCP server must be configured with a static IP address. The server IP address must be in
the same subnet as the client address range set in the CONF_FILE.

e) The task stack size must be large, possibly as much as 5000 bytes.
4) Building the server:

The DHCP server code is not automatically included in the smxNS makefile because most embedded
systems will not have a filesystem, so will not be automatically able to use the DHCP server. To build
smxNS with the DHCP server, edit the smxNS makefile: Add dhcp.obj on the dependency and
library lines (like arp.obj etc).

Please read the information below under File Access for information on how the smxNS DHCP server
access a filesystem.

DHCP Server Operation Restrictions

108

The smxNS DHCP server is not a complete implementation of RFC 2131. It is subject to the
following limitations:

Options allowed for minimal implementation:

Option codes are from RFC 2132

Code Bytes Option

1 4 Subnet Mask

Network Applications and Protocols

3 4n Router

6 4n DNS Server

15 n Domain Name

50 4 Requested IP Address
51 4 IP Address Lease Time
53 1 DHCP Message Type
54 4 Server ldentifier

Client requests for options other than the ones above the line will be ignored.
Restrictions and Requirements:

1) smxNS's DHCP server will not interact with relay agents. The client must be on the same subnet as
the server.

2) smxNS's DHCP server will assume there are no other DHCP servers on the same subnet.
3) smxNS's DHCP server will not have support for limited lease times. All lease times will be infinite.

4) smxNS's DHCP server will deliver a boot file name, but will not provide a mechanism for
delivering the file.

5) The smxNS DHCP server only allows “dynamic allocation”. This means that addresses are always
assigned from a pool. The smxNS server does not support the ability to always associate a single
address with a particular client.

File Access:

The DHCP server uses persistent storage for:

1) Lease file - record of client bindings and

2) Configuration file - DHCP server configuration.

The lease file is accessed with the functions find_lease(), read_lease(), and write_lease(). The
configuration file is accessed with the function read_conf(). File access is done using the C <stdio.h>
functions. These file access functions should be changed to the appropriate methods for accessing
non-volatile storage on your system. The include file dhcp.h includes <stdio.h> if EOF is not already
defined. This include will also need to be changed if a different method of file access is used.

DHCP Testing

The smxNS DHCP client has been tested against the smxNS DHCP server and against the Internet
Software Consortium DHCP server (Www.isc.org).

The smxNS DHCP server has been tested against the smxNS client, and against Windows 95 and
Windows 98 DHCP clients.

The details of the testing procedure are given below.

smxNS DHCP server testing against smxNS clients:

109

Chapter 7

All addresses below are 192.168.1.xxx

The address range in dhcp.con is defined as 192.168.1.150 to 192.168.1.160 for this test (unless
specified otherwise).

Acquire is performed by configuring client to use DHCP and starting fttest on the client. Release is
performed by stopping the fttest client with the <ESC> key. For example, client B in test 2 performs:
fttest 192.168.1.151, starts and acquires an address, then is stopped with <ESC> and address is
released. Unless otherwise noted, all tests are performed on 80x86 platform, compiled with Borland
C compiler v4.5. (Tests also verified for Microsoft C compiler v8.00). Note: fttest was a standalone
USNet application which has been moved into nsdemo.c.

Test Client Action(s) (A = Acquire, R = Release address)

1 A A 151

2 B A 152 /R 152

3 B A 152 /R 152

4 C A 152 (simultaneous)
D A 153

** Reboot Clients C and D without releasing address

5 Cc A 152
D A 153
6 B A 154

** Reboot server and restart it

7 any A previous address

** Reboot server, delete lease file, and restart server. Also, reboot client B.

8 B A 154
** Reboot server, reboot all clients. Delete lease file. Edit DHCP configuration file to have range of
one address (151).

9 A A 151

10 B Fails in acquiring address

What does each test prove?

1 Basic ability to acquire address.

2 Tests release of address.

3 Re-acquire gives client same address.
4 a) Client can reclaim unused address

b) Simultaneous client requests work

5 Clients get same address back even if they didn't release it.

110

Network Applications and Protocols

DHCP_PROBE undefined:

6 Client binding of B has address now in use by client C.
7 Server remembers client bindings through persistent storage
8 DHCP_PROBE defined:

Address probe detects addresses in use even though there are not bindings for these
clients (since we deleted the lease file). Server gives an address not in use.

Server will attempt to give an address in use with the address probe disabled. Client will
send DHCPDECLINE because it also probes the offered address (and we haven’t
disabled this probe).

Server handles DHCPDECLINE, and offers next address until it gets to one which the
client accepts.

9 —

left.

10 Server prints warning message, doesn’t attempt to give address when there are no more

The smxNS DHCP server passed all the above tests for 4 server configurations:

DHCP_BROADCAST DHCP_PROBE
defined defined

defined undefined
undefined defined
undefined undefined

BIG endian vs. LITTLE endian test:

The smxNS DHCP client was run on the SH3 platform (which is BIG endian). The smxNS server is
run on 80x86 (LITTLE endian). This tests whether there are any byte ordering problems in how the

server handles messages.

smxNS DHCP Server testing against Windows 95 and Windows 98 clients

Test Client Action(s)

1 A A151/R 151
2 B A 151

3 A A 152

4 B R 151

Windows acquire/release performed with winipcfg, multiple acquire/release, and renew all work.

111

Chapter 7

DNS

DNS, or Domain Name System, is a protocol that allows a system to be located based on its host
name. This introduces a useful level of indirection when specifying the end of a connection that can
allow a system to continue to function even though changes may occur in the way the endpoints are
attached to the Internet.

When the DNS macro is set to 2 in nscfg.h, the DNS look up will be invoked automatically for calls
that accept a string to specify a host name. For example, Nopen() could use www.smxrtos.com rather
than a dotted decimal IP address as the first parameter in the function call that specifies the host at the
remote end of the connection.

In order for the DNS look up to succeed, at least one DNS server must be available to smxNS. If the
smxNS system uses DHCP, then this information can be retrieved automatically as part of that
process. Otherwise, the SetDNS() function can be used to manually specify DNS hosts. Up to
NDNSS (default 2, set in nscfg.h) DNS servers may be specified. The DNS server can be located on
another network, so long as a router is available.

The DNS resolver can also map from a local host name to an IP address using a legacy mDNS query.
In this case, a DNS server does not need to be defined. Details are in the DNSresolve() section below.

Here is the function that allows a DNS server to be specified.

SetDNS()

int SetDNS (char *ip, char *index)
The function arguments are:
ip IP address of the DNS server, as a string in dotted decimal format.

index The index for the DNS server entry. Any existing entry will be overwritten. Indices
0..NDNSS-1 are valid.

The call returns 0 for success, -1 for failure.

Applications can also call the DNS resolver directly using the DNSresolve() function (described next).

DNSresolve()

Resolves a domain name to an IP address.

int DNSresolve (const char *fullname, IPaddr *iidp) ;
fullname domain name

iidp pointer to the address of the returned IP address
DNSresolve() stores the IP address at this location if fullname is non-zero.

DNSresolve() can start with either a domain name or IP address. If there’s an @ in the name,
DNSresolve() tries to find a mail host (IP address). If the first letter in the name is between 0 and 9,
it’s a pointer to an IP address, and DNSresolve() tries to find the domain name.

DNSresolve() can also attempt to obtain an IP address from a local host by sending a legacy mDNS
query. In this case, the fullname parameter should end in ".local". For example, calling DNSresolve()
on "myhost.local™ will return the IP address of host "myhost™ if it is on the local network and running
an mDNS Responder.

112

http://www.smxrtos.com/

Network Applications and Protocols

Return Value

>=0 Successful lookup

-1 IP address could not be obtained from the DNS server(s)
ENOBUFS Not enough buffers available for query (defined in support.h)
Example

IPaddr ipa;
char *hostname;

hostname="localhost";
stat = DNSresolve(hostname,ipa);
if (stat<0)

ERROR();

FTP and TFTP

FTP and TFTP are file transfer protocols. FTP is implemented with TCP. TFTP is implemented with
UDP so it is smaller but less reliable. TFTP is less secure and less capable, so it is of limited use.

The two ends of a file transfer are called a client and a server. The server is the passive component,
which sits and waits for requests. To view the source code, refer to files XNS\netsrc\ftpc.c,
XNS\netsrc\ftps.c, XNS\netsrc\tftp.c, and APPADEMO\nsdemo.c.

The FTP server as shipped is configured for ANSI C support. In this mode, only the basic file transfer
functions are available. You can configure it for the DOS file system by setting the variable
EXTENDED Ctol

The FTP server supports the internal commands APPE, CDUP, CWD, DELE, EPRT, LIST, MKD,
MODE, NLST, PASS, PASV, PORT, PWD, RETR, RMD, RNFR, RNTO, STOR, STRU, TYPE,
USER, QUIT, XCUP, XCWD, XMKD, XPWD and XRMD.

See Chapter 2 for more information on the FTP server and client test programs in nsdemo.c.

Start Server

These calls will start the servers. If you are using a multitasker, you will want to start these as tasks.
int FTPserv ()
int TFTPserv ()

The server never returns. In other words, it sits in an infinite loop.

Send File

This call sends a file.

int FTPput (char *host, char *1file, char *rfile, char *userid, char
*pw, int mode)

int TFTPput (char *host, char *1file, char *rfile, int mode)

The send file arguments are:

113

Chapter 7

host Name of the server host. The form can be host or host /network.
l1file Name of the local file to be sent.

rfile Name of the file to be stored on the remote system.

userid Name of user account on the remote system. Not needed for TFTP.

pw Password for the user account on the remote system. Not needed for TFTP.
mode ASCTIT for atext file, IMAGE for a binary file.

The call returns 0 for success, -1 for failure. Note that the FTP protocol sends the user ID and
password information as cleartext.

FTP & TFTP Examples

FTPput (“XX”, “tl1”, “/usr/aa/tl”, “user”, “password”, IMAGE) ;
/* tl => host XX target file /usr/aa/tl */

TFTPput(“XX", “testl”, “testl”, ASCII);
/* testl => host XX */

Receive File

This call receives a file.

int FTPget (const char *host, const char *1file, const char *rfile,
const char *userid, const char *pw, int mode)

int TFTPget (char *host, char *1file, char *rfile, int mode)
The receive file arguments are:

host Name of the server host. The form can be host or host/network.
1file Name of the local file to be saved.

rfile Name of the file to be retrieved from the remote system.

userid Name of user account on the remote system. Not needed for TFTP.

pw Password for the user account on the remote system. Not needed for TFTP.
mode ASCIT for atext file, IMAGE for a binary file.

The call returns 0 for success, -1 for failure. Note that the FTP protocol sends the user ID and
password as cleartext.

FTPget Examples

FTPget (“XX”, “testl”, “testl”, “user”, “pw”, ASCII);
/* testl <= host XX */

FTPget (“XX", “\tmp\tl", “tl”, “user”, “pw”, IMAGE);
/* \tmp\tl <= host XX tl */

114

Network Applications and Protocols

HTTP Client

Support for retrieving a web page is available via the HTTPget() function in the http.c . The use of
this function is demonstrated in the nstels.c application. This function is not intended for use as a
general purpose browser, but rather as a mechanism for automated retrieval of information that is
available via a web page.

When running nstels, you can log in to the smxNS Telnet server and then retrieve a web page by
typing in the web server’s host name followed directly by the path to the page. Here is an example
session.

C:>telnet 192.168.2.2

smxNS skeleton Telnet server

smxNS Telnet Server

Www.smxrtos.com/

Calling HTTPget() for host www.smxrtos.com with path /
1016 004: HEAD

1028 005: TITLE

3000 006: /TABLE
3006 005: /BODY
3018 005: /[HTML
0400 000:

In this example, the default page from www.smxrtos.com is retrieved. The page contents are
delivered via the HTTPdisplay() callback function, which parses the information into chunks of one
HTML tag or word at a time. The callback function also includes flags and a length field, which are
the first two values that appear on each line. In the nstels.c demo, the output is directed to the Telnet
connection. An application that needed to extract a specific piece of information from a page could
simply scan the results for a keyword and throw the rest away.

In addition to web servers on the Internet, a local server on the LAN should be a practical way to

develop applications that use this function. The appendix contains a pointer to a simple web server
that may be used this way. Also note that many network devices such as consumer routers provide
web server based status and configuration, and these may be useful for a quick test of this function.

Retrieve a Web Page

This call starts the process to retrieve the contents of a web page.

int HTTPget (char *host, char *rsrc)

The arguments are:

host Name of the server host. The form can be host or host /network.
rsrc The path to the web page to be retrieved.

The call returns 0 for success, < 0 for failure.

115

http://www.smxrtos.com/

Chapter 7

Web Page Callback Function

This call returns the parsed web page to the application.
int HTTPdisplay (int flags, u8 *chunk, int len)
The arguments are:

flags Flags describing the returned HTML tag or parsed word.
0x0100 text
0x0200 precede with space
0x0400 follow with new line
0x10xx html control <somethings
0x20xx html control off </somethings>
0x40xx special character &something;

chunk The parsed HTML tag or word from the body text.
len The length of chunk. The last element from a page has lenth 0.
The application should return 0 for success.

Each time the function is called, either an HTML tag or a word from the body is delivered.

IGMP / Multicast

IGMP (Internet Group Management Protocol) allows sending messages to multiple hosts in a group.

smxNS must be configured to include multicast support code if the application needs to send or
receive multicast messages. This setting is made with the USS_IP_MC_LEVEL macro in nscfg.h, and
is described in Chapter 4, Configuration.

No special application level operations need to be performed when sending information to a multicast
group. When the IP address of the destination is a multicast host group, then the physical layer frame
will be built appropriately for delivery to the multicast group, and sent on the default multicast
interface. The index of the default multicast interface is specified via the constant
IP_MC_DFLT_NETNO which is defined in nscfg.h.

The host group addresses range from 224.0.0.0 to 239.255.255.255.

The smxNS multicast application program interface is based on the recommended interface described
in RFC 1112,

See the DPI or BSD chapter for documentation of the multicast API functions.

iperf

116

iperf is a program for measuring network performance. The smxNS version of iperf is based on iperf
version 3.0.3. A repository of iperf code is at http://downloads.es.net/pub/iperf/. The original iperf
files were adapted to work with smxNS and are located in the XNS/iperfsrc directory.

An iperf test is run by running two instances of the iperf program on two hosts that can communicate
over a network. To enable the iperf program in the smxNS build, add all .c files in the iperfsrc
directory to the smxNS library project, add an include path to XNS/iperfsrc to the App (Protosystem)
project

$PROJ_DIRS$\..\..\.A\XNS\iperfsrc\

Network Applications and Protocols

and set TEST_IPERF_SERVER to 1 in APP/DEMO/nsdemo.c.

The other host can be a Linux computer. In order to run that instance, you can follow these steps:
Download and extract the source code archive

Move to the top level directory of the archive, build and run iperf using these commands

$ cd iperf-3.0.10

$.Jconfigure

$ make (many warnings may be reported)

$cdsrc

$ Jiperf3 -v (this will show the version and confirm the executable is present)

To invoke iperf with smxNS running at 192.168.1.100, you can use
iperf3 -1 1460 -c 192.168.1.100 -V
iperf3 -1 1460 -R 192.168.1.100 -V

The first command is for smxNS to send bulk information and the second is for smxNS to receive
bulk information.

After the test runs for 10 seconds, a summary of the test results is displayed, for example

Test Complete. Summary Results:

[ID] Interval Transfer Bandwidth Retr
[4] 0.00-10.00 sec 12.5 MBytes 10.5 Mbits/sec 0 sender
[4] 0.00-10.00 sec 12.5 MBytes 10.5 Mbits/sec receiver

IPv6

IPV6 is a network layer that uses 128-bit addresses. An IPv6 node can assign an IP address
automatically and does not depend on a DHCP server.

The smxNS IPv6 implementation does not currently support ICMP redirect, SLIP or PPP.

When the network interface is initialized (by calling the Portinit() function), the network prefix
(fe80::/64) for the link local address and the interface ID are combined and the link local address is
automatically created. The Interface ID is created based on the MAC address of the Ethernet
interface.

RFC 2464 specifies a mechanism for generating a link local address based on the MAC address of an
Ethernet interface. For example, given a MAC address of 34:56:78:9A:BC:DE, the Interface ID is as
follows.

36:56:78:FF:FE:9A:BC:DE

The byte sequence FF:FE is inserved for the 4™ and 5" bytes. The first byte is exclusive ORed with
0x02.

The corresponding link local address becomes
FE80::3656:78FF:FE9A:BCDE

If a Router Advertisement is received from a router, an IPv6 address will be created based on the
Router Advertisement and the Interface ID.

117

Chapter 7

The IPv6 address is stored in the fourth member of the struct NETDATAG structure regardless of
whether the address is statically configured or automatically set up.

The IPv6 stack should check for a duplicate IPv6 address. This check should be performed for both
manually configured and autoconfigured addresses. The prospective address is a temporary address,
and cannot be used until the check is completed.

The Duplicate Address Detection logic is executed once a candidate address has been created. The
check typically takes one second.

The Duplicate Address Detection check is also performed on the link local address. Thus there is a
delay following the time the network interface is initialized (by calling the Portinit() function) before
the link local address can be used.

Configuration of Duplicate Address Detection is performed in the file XNS\include\ndé.h.
#define ND6_DAD_COUNT 1 /* DupAddrDetectTransmits */

Duplicate Address Detection is performed ND6_DAD_COUNT times every second. When
ND6_DAD_COUNT is set to 0, Duplicate Address Detection is disabled, and the IPv6 address can be
used immediately.

MDNS Responder

118

The mDNS (Multicast Domain Name Service) Responder allows local hosts on the network to
discover services running on the smxNS system. For example, if the SmxNS system is running a print
server, the mDNS Responder can advertise and answer queries from other systems to help them locate
this service on the network.

Example code for setting up and starting the mDNS Responder is provided in nsdemo.c. To enable
the MDNS Responder:

Set TEST_MDNS_RESP to 1 at the top of nsdemo.c.

Set SNS_PROTO_IGMP to 1 in XNS\include\nscfg.h.

Set USS_IP_MC_LEVEL to 2 in XNS\include\nscfg.h.

Include XNS\netsrc\igmp.c in the smxNS library.

The service or services that the mDNS Responder maintains are organized as a set of associated
records. The record types are defined as part of the DNS protocol, and this framework is extended in
the mDNS protocol.

e APTR (pointer) record associates a service with an instance name.

o A SRV(service) record associates an instance with a listening port and a network host name.
o A TXT (text) record associates an instance with a text string, which may be empty.

Here is an example of a data structure used to initialize the mDNS Responder:

GLOBALCONST RR_RECORD dns_rec[] =

{
{“superprint”, “_printer._tcp”, “paper=A4", 631, NULL, 0}

dLOBALCONST RESPONDER_CONTEXT mdns_rc =
{

dns_rec,

Network Applications and Protocols

1
¥

This structure provides the information used to construct the PTR, SRV and TXT records that are
used in responses to mDNS queries.

The fields are used as follows:

“superprint”: This is the instance name for the service. It is intended to be a user-friendly name, and
some implementations may provide a mechanism to allow the end user to configure this name. A
service instance name must be unique on the local network. If the provided name is not unique, the
mDNS Responder will modify the name by appending an index so that it becomes unique. This is
handled as part of the mDNS protocol.

“_printer._tcp”: This is the service name. There are well known service names such as _printer._tcp
and _ftp._tcp, and these are currently registered at the Internet Assigned Numbers Authority.

“paper=A4": This is the string used for the TXT record. In order to configure multiple key/value
pairs in a text string, use the separator 0x01 between pairs.

631: This is the port that the service listens on. This information is used in creating the SRV record.

NULL, 0: These are empty fields that can be used to define subtypes of the service. An example
appears below.

The RESPONDER_CONTEXT structure contains a pointer to the record initialization data and a
count of the number of services. Multiple services can be advertised by placing additional entries in
the RR_RECORD structure.

Service name subtypes are useful in some circumstances to allow mDNS queriers to find a subset of
instances that support a service. To define one or more subtypes that are associated with a service,
create a list of subtype strings, and include a pointer to this list in the corresponding RR_RECORD
definition. For example

GLOBALCONST char *subtypes[] = {*_coremote._sub”, “ dbupdate._sub™};
GLOBALCONST RR_RECORD dns_rec[] =

{
{“superprint”, “_http._tcp”, “”, 80, subtypes, 2}

Here the subtypes _coremote._sub._http._tcp and _dbupdate._sub._http._tcp are subtypes of the
service _http._tcp. The value (2) that follows the pointer to the list of subtypes is the humber of
strings in the list.

To advertise additional services you can simply add another resource record to the list. For example,
you might add an ftp service with the instance name “helper” which listens on port 23 and has no
subtypes:

GLOBALCONST RR_RECORD dns_rec[] =

{
{“superprint”, “_http._tcp”, “”, 80, subtypes, 2},
{“helper”, “_ftp._tcp”, “”, 23, NULL, 0}

I3

GLOBALCONST RESPONDER_CONTEXT mdns_rc =
{

dns_rec,
2

¥

119

ftp://ftp.tcp/

Chapter 7

120

In order to run the mDNS Responder, pass the initial configuration using the
sns_mDNSResponderlnit() function, and then repeatedly call the sns_mDNSResponderCheck()
function.

void mdns_task_main(uint dummy)
{
intil;
struct RESPONDER_STATE *mdns_state;
int name_established;
sb_OS_TASK_START_PREEMPTIBLE();
name_established = 0;
i1 = sns_mDNSResponderInit(&mdns_rc);
if (i1 >=0)
{
do
{
mdns_state = sns._ mDNSResponderCheck();
if ((mdns_state->state == MDNS_RESPONDING) && (name_established == 0))

DEBUG_MSG3_PAR1(“Instance name is %s\n”, sns_ mDNSGetInstance(0));
name_established = 1;

} while (mdns_state->error == 0);
sns_mDNSResponderShut();
}
sb_OS_TASK_FINISHED();
return;

}

The sns_ mDNSResponderCheck() function maintains the state machine and receives and responds to
mDNS traffic as needed. The function returns a structure that includes an error indication and the
state machine state. If an error occurs, the mDNS Responder should be shut down and restarted. The
state information is useful to determine when the instance names have been established. Once the
state reaches MDNS_RESPONDING, the names have been established. Under normal circumstances
the name will not change, but if there is another host on the local network configured to use the same
name for a service, then an index will be appended.

The sns_mDNSGetInstance() function can be used to obtain a pointer to an instance name. The value
passed to the function is a 0-based index using the same order as the list of services used to initialize
the MDNS Responder.

The sns_mDNSSetUniqueCallback() function can be used to specify a user-defined function to make
the instance name unique. This must be called following the call to sns_ mDNSResponderInit().

The sns_mDNSResponderShut() function sends goodbye messages to time out the advertised services
and closes the sockets associated with the mDNS Responder.

The mDNS Responder also maintains an address record (A record) that maps the sSmxNS host name to
the network interface IP address. The smsNS host name may also be modified by the mDNS
Responder. The name is established once the state reaches MDNS_RESPONDING.

The host name may be updated at runtime by calling the function SetHostname(char *) and passing a
pointer to a host name string. The current value of the host name string can be retrieved by calling
GetHostname(), which returns a pointer to the string. The host name string does not include the
domain name when used with these functions.

The mDNS Responder implementation is based on the current Internet-Drafts for Multicast DNS and
DNS-Based Service Discovery as of April 2013. The mDNS Responder was exercised using the Mac

Network Applications and Protocols

OS X command line dns-sd utility and the Linux command line avahi-browse utility. Sample
command lines follow

> dns-sd —B _printer._tcp

Browsing for printer.tcp
Timestamp A/R Flags if Domain Service Type Instance Name
11:47:27.564 Add 2 4 local. _printer._ tcp superprint

> avahi-browse —r —t _printer._tcp

+ ethO IPv4 superprint printer

= ethO IPv4 superprint printer local
hostname = [MDI-System.local]
address = [192.168.1.12]
port = [1234]
txt=1]

NAT

Note: NAT is available as an extra-cost option for smxNS.

smxNS currently has support for NAPT (Network Address Port Translation). This form of NAT
assumes that hosts on the internal LAN will initiate communications with hosts on the external WAN
through the smxNS NAT router. ICMP, UDP, TCP and other protocols may be used through a SmxNS
NAT router. Support for the FTP protocol ALG (Application Layer Gateway) is also included.

The following diagram represents an example NAT router’s network:

(206.251.94.210) (192.168.1.1)

(192.168.1.2)

This section describes how to build smxNS as a NAT router.

NAT Configuration

In file include\nscfg.h set RELAYING to 1 to enable smxNS to relay between interfaces:

Change:

121

Chapter 7

122

#define RELAYING 2
To:
#define RELAYING 1

Set the NAT flag to each interface that should behave as the router for a private network. The
following Portconfig() example shows one private (internal or LAN) interface and one public
(external or WAN) interface.

Portconfig(“eth0”, “IP”, “192.168.1.1");
Portconfig (“etho0”, “NAT”, “ENABLE”) ;
Portconfig(“ethl”, “IP”, “206.251.94.210");

In file NETSRC\nat.c, several table size definitions exist.
TUTABLESZ — TCP/UDP table size

This value represents the number of entries that may concurrently exist within the NAT TCP/UDP
table. All TCP and UDP communications routed through the NAT router must be entered in the TU
Table.

ICMPTABLESZ — ICMP table size

This value represents the number of entries that may concurrently exist within the NAT ICMP table.
Every ICMP message must have a corresponding entry in the ICMP Table.

UNTABLESZ — Unknown protocol table size

This value represents the number of entries that may concurrently exist within the NAT Unknown
protocol table. Entries in this table include all IP protocols other than TCP, UDP, and ICMP. Every
transaction taking place via the NAT router must have the protocol registered in the Unknown
Protocol Table.

These should be defined to appropriate values for the target networking environment. This is
determined by examining the requirements of the LAN hosts. For example, if there are 2 LAN hosts
and each host will open no more than 5 concurrent UDP/TCP communication channels with hosts on
the Internet, then a maximum of 10 (2x5) entries may need to be maintained. Therefore,
TUTABLESZ must be defined to 10 to avoid lost information. The default value in NETSRC\nat.c is
10.

ICMP messages often do not expect replies. This means that only the maximum number of
simultaneously routed ICMP messages must be accounted for. As a rule of thumb, this value can be
set to the number of hosts on the local network.

The unknown protocol table should include all other Internet communications not using TCP, UDP,
or ICMP.

Explanation of table entry replacement:

A modified LRU algorithm is used when the NAT table is full and a new entry is added. Entries that
are least used and have the least precedence are replaced first. The precedence is primarily determined
by the transport protocol in use. The precedence is ICMP, UDP, Unknown, TCP, and TCP-FTP-
control, in order of least to greatest precedence.

If a TCP or UDP channel is replaced in the NAT table, a new local port number will be generated and
will disrupt communications using an existing connection.

The cost of adding new entries is linear on a per-datagram basis. In other words, each datagram
passed through the NAT router is searched for linearly in the NAT table. As the number of NAT
entries increases, the amount of CPU time spent searching for those entries also increases.

Network Applications and Protocols

As with smxNS in general, the debugging trace level may be used to enable printf() debugging from
the NAT module. By default, if SNS_DEBUG_LEVEL is 3 or greater, the following NAT debugging
information will be generated:

Inbound/Outbound IP address mappings (IP.port => IP.port)
TCP/UDP port adjustments (TCP/UDP.port => TCP/UDP.port)
FTP translations (Sequence number, PORT command)

If SNS_DEBUG_LEVEL is 5 or greater, NAT will print out:
Table additions/removals

If NAT debugging is to be isolated from the rest of smxNS debugging, set SNS_DEBUG_LEVEL to
1 (or the appropriate value) and modify netsrc\nat.c as follows:

#include "smxns.h"
#undef SNS DEBUG LEVEL

#define SNS_DEBUG LEVEL 5

NC-SI

Note: NC-SI is available as an extra-cost option for smxNS.

NC-SI (Network Controller Sideband Interface) is a protocol that allows a host processor and Ethernet
controller acting as a BMC (Baseboard Management Controller) to control one or more NICs
(Network Interface Controllers). This design allows flexible out-of-band management of the NICs
and is applied in certain networking equipment.

The NC-SI feature in smxNS is implemented by replacing the usual direct interface between the
Ethernet controller and the PHY with one that uses the NC-SI protocol to allow an Ethernet controller
to communicate with one or more NICs. With NC-SI, operations such as checking PHY link status
are performed by calling a function that creates an Ethernet frame that is directed to a NIC, and then
listening for a response frame from the NIC.

The smxNS NC-SI implementation provides most of the commands described in the Network
Controller Sideband Interface Specification and allows AENs (Asynchronous Event Notifications) to
be received via a callback function.

The NC-SI feature is driven by the NC-SITask() function that is launched as part of smxNS start up.
The first steps of the task are to configure the attached NIC including setting the MAC address so that
it can send and receive Ethernet frames.

There are approximately 25 NC-SI functions that a network application can call to issue an NC-SI
command. All command functions include parameters to specify the NIC package and channel and
fill in an ncsi_status structure to provide details on how the command executed. The call to the
command function blocks while it is executing, and this includes exchanging messages with the NIC.
If the NIC responds to the command, the function will return 0.

Here is an example function prototype

int NCSIGetNCSIStatistics (uint pkg, uint ch, struct ncsi ncsi_stats
*ns, struct ncsi_status *s);

123

Chapter 7

This function returns statistics using the ncsi_ncsi_stats structure. Here is an example use of the
function.

struct ncsi ncsi_stats ns;

struct ncsi status resp;

int stat;

uint pkg = 0;

uint ch = 0;

stat = NCSIGetNCSIStatistics(pkg, ch, &ns, &resp);
DEBUG_MSG3 PARI1 ("Get NC-SI Statistics returns %d\n", stat);
if (stat == 0)

DEBUG_MSG3_ PAR2 (" Response 0x%04x Reason 0x%04x\n",
resp.response_code, resp.reason_code) ;

DEBUG MSG3 PAR1 ("NC-SI Commands Received %d\n",
ns.ncsi_commands_received) ;

DEBUG MSG3 PAR1 ("NC-SI Control Packets Dropped %d\n",
ns.ncsi control packets dropped) ;

DEBUG_MSG3_ PARI1 ("NC-SI Command Type Errors %d\n",
ns.ncsi command type errors) ;

DEBUG _MSG3 PAR1 ("NC-SI Command Checksum Errors %d\n",
ns.ncsi_command checksum errors) ;

DEBUG MSG3 PAR1 ("NC-SI Receive Packets %d\n",
ns.ncsi receive packets);

DEBUG_MSG3_ PARI1 ("NC-SI Transmit Packets %d\n",
ns.ncsi transmit packets) ;

DEBUG MSG3 PAR1 ("AENs Sent %d\n", ns.aens_sent) ;

}

Definitions for the NC-SI structures are in XNS/include/ncsi.h. You can review these structures to
see which fields can be used to pass inbound parameters or retrieve outbound parameters.

An application can access the information in AEN packets by registering a callback function that is
called when an AEN is received. Note that this callback function is executed in the context of
smxNS’s high priority NetTask(), so it should perform its function promptly. The AEN information is
delivered in an ncsi_aen_info structure and includes the channel 1D, AEN type and 4 bytes of data
specific to the AEN. Here’s an example of the use of an AEN callback.

/* From XNS/include/ncsi.h */
struct ncsi _aen info

int channel id;

int type;

int data;

/* Network application code */
void callback(struct ncsi aen info *p)

Nprintf ("AEN status type %d\n", p->type);

NCSIRegisterAENCallback (callback) ;

PPPoE

Note: PPPoE is available as an extra-cost option for smxNS.

PPPoE (Point-to-Point Protocol Over Ethernet) encapsulates PPP frames in Ethernet frames. This is
useful in certain applications, especially in DSL-related equipment that uses PPP features for access

124

Network Applications and Protocols

control and accounting. smxNS provides support for building both PPPoOE Hosts and PPPoE Access
Concentrators.

PPPoE Configuration

Here are the necessary steps to configure and build PPPoE with smxNS.

1. Test smxNS on the target without PPPOE integration. Run nsdemo with PPPOE disabled in the
smxNS library (nscfg.h).

Note that PPP must be configured even though there may not be a serial interface on the target.
2. Build the PPPoE version

If you purchased the PPPOE option, there should be a target defined that will build SmxNS with
PPPoE support.

3. Define the target interface

In configuring the PPPoE interface, change the link layer setting from Ethernet to PPPOE.
For example:

Previously, the configuration may have been:

Portconfig(“eth0”, “LINK”, “Ethernet”);

It should then be changed to the following:

Portconfig(“eth0”, “LINK”, “PPPOE") ;

If the IP address is defined by the Access Concentrator, define the IP address as 0.0.0.0.
Additionally, create an entry for the peer host so that PPP can store the remote IP address for later.

"ac", "pppoe", C, X, EAO, ROUTER, 0, 0, O,
"test", "pppoe", C, X, EAO, 0, PPPOE, PCI, O,

If smxNS is being run as an Access Concentrator, additional entries in the netdata[] table can be set up
so that they are distributed to PPPOE hosts. Here is an example configuration for this

"host", "tnet", CC, W, EAO, PROXYARP, 0, 0, O,

"test", "tnet", CC, X, EAO, 0, PPPOE, NE2000, "IRNO=10 PORT=0x300",
"test", "enet", CC, Y, EAO, 0, Ethernet, NE2000, "IRNO=5
PORT=0x320",

"gw", "enet", CC, Z, EAO, ROUTER, Ethernet, 0, O,

In addition, for use as an Access Concentrator, the following settings are suggested for nscfg.h.

#define RELAYING 1
#define USS_PROXYARP

3. Run nsdemo with PPPoE enabled in the smxNS library (nscfg.h).

4. Further configuration items specific to the operations of the PPPoE host are contained within
netsrc\pppoe.c. Edit the file configuration options as necessary. The default settings should be a
reasonable starting point.

The corresponding file for the Access Concentrator version is netsrc\pppoeac.c. The following notes
describe the configurable values at the top of the file.

#define PPPOE TIMER GRANULE 1000

125

Chapter 7

The PPP timeout function for PPPoE sessions will be called using a period defined by this constant.
The default value sets a frequency of once per second.

#define PPPOE ACNAME "AC-0000"

This string is delivered in the AC-Name tag when the Access Concentrator sends its PPPoE Active
Discovery Offer (PADO) packet. This Access Concentrator name may be useful to the PPPoE host in
deciding whether or not to set up a PPPoE with this Access Concentrator. In practice, this
information is commonly ignored.

#define MAX SERVICE NAME LEN 16

This defines the size of the buffer that stores the string associated with the Service-Name tag. The
Access Concentrator is set up to use a liberal policy on service names, accepting any name that is
suggested by the host. This policy is suggested in the Security Considerations section of RFC 2516.

Similar buffer length definitions exist for the Host-Unig, AC-Cookie and Relay-Session-Id tags.
#define PNETS 2

This defines the number of physical network interfaces. State information for PPP sessions is stored
in the network interface structure nets[]. Typically, each network interface is associated with a
physical network interface, which may be a serial interface for PPP, or an Ethernet interface for a
PPPOE host. A PPPoE Access Concentrator may support multiple PPPOE sessions over the same
Ethernet interface.

In order to support this, some interface structures are used as "virtual interfaces". Interfaces with an
index between 0 and PNETS - 1 correspond to physical interfaces. Indices between PNETS and
NNETS - 1 correspond to virtual interfaces, which are mainly used to store PPP session state.

Note that NNETS which is defined in nscfg.h needs to be larger than the number of physical
interfaces. The default value of 4 happens to provide a little room for this.

The Access Concentrator will provide up to NNETS — PNETS PPPoE sessions. Once this limit is
reached, the Access Concentrator will respond to incoming PPPOE Active Discovery Request (PADR)
packets with a PPPoE Active Discovery Session-confirmation (PADS) packet that contains an AC-
System-Error tag.

SLIP

SLIP is a link layer that connects two hosts over a serial connection. In order to configure an
interface to use SLIP, the SLIP protocol table should be specified using the “LINK” keyword when
calling Portconfig(). An example is provided in the Configuration chapter.

Using SLIP with Windows Computers

126

An smxNS system running SLIP may be connected to a larger network by using a Windows XP
computer as a gateway. In order to set up a SLIP connection on Windows XP, follow these steps.

1. Select Start, then right click on My Network Places and select Properties.
Select "Create a new connection”. Select "Next".
Select "Set up an advanced connection".

Select "Connect directly to another computer”.

a M w0 DN

Select "Guest".

© © N o

10.
11.
12.
13.
14,
15.
16.
17.
18.

19.

20.
21.
22.

Network Applications and Protocols

Enter a name for the connection, for example "SLIP".

Select the serial port for the connection.

Select “Finish™.

Windows displays a connection window. Select "Properties”.
Select "Configure..." from the "General tab.

Deselect all checkboxes.

Set speed to 115200 bps (this is the smxNS default, adjust as needed).
Select "OK" to close the modem configuration window.
Select the "Options™ tab in the SLIP properties window.
Deselect all except "Display progress”.

Select the "Networking" tab.

Select "SLIP: Unix Connection".

Under "This connection uses the following items:", select only "Internet Protocol (TCP/IP)"
and "QoS Packet Scheduler".

Again under "This connection uses the following items:", highlight "Internet Procotol
(TCP/IP)" and select "Properties".

Select "Use the following IP address:", and enter *192.168.2.1".
Select "Advanced”. Deselect all "Advanced TCP/IP Settings".

Select the "WINS" tab. Deselect "Enable LMHOSTS lookup” if it is selected. Select
"Disable NetBIOS over TCP/IP".

Please refer to the section on Null Modem Links in the PPP chapter for additional details on direct
serial links and networking through a Windows system.

SMTP

Note: SMTP is available as an extra-cost option for smxNS.

SMTP is the Simple Mail Transfer Protocol, used for sending email. The optional SmxNS email
client package allows an application to send an email message from a host connected to the internet.

int SMTPsend(struct outgoing email *request)

The argument is:

request Pointer to an outgoing_email structure. This structure is filled in to describe the email

that should be sent.

struct outgoing_email {
const char *mailserver;
uint port;
const char *to;
const char *cc;
const char *from;
const char *subject;

127

Chapter 7

128

const char *username;
const char *domain;
const char *password,;
const char *type;

uint flags;

time_t localtime;

uint status;

j3

mailserver is a pointer to the name of the mail server that should receive the email.
port is the UDP port for the SMTP transfer.

to, cc, from, and subject are the familiar values one sees in email headers.

The to and cc strings can contain commas to specify multiple addresses.

The from field can be left blank if the username and domain fields are filled in.

The username, domain and password fields are also used as part of the authentication exchange if the
server requests CRAM-MD5, NTLM, LOGIN or PLAIN authentication methods.

The type string is used to fill in a “Content-type:” email header if it is present.

The flags field can contain the SMTP_USE_SSL bitflag to direct the email client to set up an SSL
connection to the email server. It can also contain the SMTP_MUST_AUTHENTICATE flag to force
the SMTP transaction to be authenticated. If the server does not attempt to authenticate and this flag
is set, the call will fail and no information will be transferred.

The localtime field can be filled in with the local time in time_t format, or it can be left empty and
SMTPsend() will call sb_OS_STIME_GET() to retrieve time information.

The call returns 0 for success, < 0 for failure.

More detailed information on error returns can be obtained by examining the status field in the
outgoing email structure after the function call completes. The following values may be returned:
SMTPC_SUCCESS, SMTPC_GENERAL_ERROR, SMTPC_CONNECTION_ERROR,
SMTPC_AUTHENTICATION_ERROR, SMTPC_PARAMETER_ERROR,
SMTPC_RCPT_ERROR.

The body text of the email message comes from a callback function that the email sending application
needs to implement. The function prototype looks like this

int SMTPgetdata(char *buff, int buflen, struct part_info *i);

The first time SMTPgetdata() is called, buflen will be set to 0. This is a hint that the application
should fill in the the part_info structure as a response to this call. The following call will have a non-
zero value to indicate it is time to pass the content data. Here’s the part_info structure.

struct part_info {
int passthrough;
const char *encoding;
const char *type;
const char *filename;

j2

The part_info structure is cleared before SMTPgetdata() is called, so if no options are needed the
structure can be left alone. Here are some notes on the options.

Network Applications and Protocols

passthrough is a flag to indicate if the data returned in buff should be returned directly to the SMTP
server. If passthrough is left as 0, the outgoing buffer will be terminated with CRLF before passing
the information to the server, otherwise the data is transferred without modification.

encoding, type and filename are used to set up headers if needed. Example values are “base64”,
“application/octet-stream” and “example.bin” respectively.

For the initial call in a sequence (where buflen = 0), SMTPgetdata() should return 0 to indicate that a
text message is about to be returned, and 1 to indicate that a multipart message will be returned.

After the initial call, the SMTP sending function will provide a buffer to hold the outgoing content
and will indicate the amount of room in the buffer in buflen. The SMTPgetdata() implementation
should fill in buff and return the number of bytes transferred as the return value. When there is no
more data left to transfer, SMTPgetdata() returns O.

For multipart transfers, SMTPgetdata() will continue to be called after the first part is complete.
When all parts have been transferred, SMTPgetdata() should return —1.

SNTP

SNTP stands for Simple Network Time Protocol, and it is a simplified form of NTP, the Network
Time Protocol. An NTP server can service both NTP and SNTP clients. smxNS includes an SNTP
client function, so that time information can be retrieved from a time server.

NTP time servers are capable of delivering 64 bits of time information, or better, with a resolution on
the order of nanoseconds. For the simplified SNTP version, 64 bits of time information are used, and
this can be used to correct error in the local time source. The time returned is based on an epoch of
January 1, 1900, and this may need to be converted for use with the local time support. The NTP
server provides universal time (UTC), and will need to be adjusted for time zone and daylight savings
time if desired.

Get Time using SNTP

The routine will attempt to retrieve the time from the specified NTP server. The function accepts a
string for the host name, and this can be either be an IP address or a name that can be looked up via
DNS.

Three functions are supplied that work together to retrieve time information from an NTP server and
adjust the local time.

s64 sns_SntpGet (char *timeserver)

The sns_SntpGet() return codes are:
1=0 Adjustment for NTP time
0 Time request failed

The 1900 epoch for NTP timestamps may be different from the convention supported by the C library
or other system software. For example, a system might use an epoch of January 1, 1970. The sample
code in nsdemo.c translates to this epoch by adjusting based on a point in time that is common to both
systems. In this case, the calculation uses UTC on January 1, 1972, which is established to be
2,272,060,800 as an NTP timestamp.

void sns LocalNtpTimeAdjust (s64 adj)

129

Chapter 7

sns_LocalNtpTimeAdjust() adjusts an internally maintained time offset so that a local time reading
can be combined with the NTP server information to provide an adjusted time.

u64 sns_ LocalNtpTimeGet (void)

sns_LocalNtpTimeGet() reads the local time using the local time function and combines it with the
offset provided by the NTP server. The return value is an unsigned 64-bit value in NTP format. The
upper 32 bits represent whole seconds and the lower 32 bits hold fractional seconds. The epoch for
NTP is January 1, 1900.

Here is an example that combines these three functions to update and then retrieve the adjusted
current time in NTP format, adjusted to include only include the elapsed seconds information.

u32 ntptime;
sns_LocalNtpTimeAdjust (sns_SntpGet (SNTPSERVER)) ;
ntptime = sns LocalNtpTimeGet () >> 32;

The combination of sns_LocalNtpTimeAdjust() and sns_SntpGet() should be called periodically to
adjust for drift in the local time source. sns_LocalNtpTimeGet() can be called any time to get the
current reading of the time adjusted by the offset provided by the NTP server.

A public pool of time servers has been organized, and is available using the name “pool.ntp.org”.
More information on this project is available at http://www.pool.ntp.org. This should be a good
choice for the timeserver name, so long as DNS support is available.

The NTP messages are sent over UDP, and there is the chance that they will be lost. This function
does not contain retry logic, but this could be implemented at the application level. The tests we
conducted show the communication with servers to be reliable, despite the transport protocol.

Telnet

Telnet is the usual TCP/IP method of remote terminal access. The client part of Telnet acts as a
terminal emulator. The server part depends quite a bit on the circumstances, but is usually a
command processor with a remote login. The figure below shows this relationship.

Telnet Terminal
Server i
Telnet Driver
Client
Command Shell

Figure 7-1. TCP Remote Terminal Access

smxNS Telnet support is implemented as a server function that handles Telnet sessions. The function
takes a connected Telnet connection as an argument, and uses a callback function to submit the
command line supplied by the user and retrieve a response.

130

Point To Point Protocol

8. Point To Point Protocol (PPP)

Overview

The Point to Point Protocol (PPP) is a link layer protocol that connects two hosts over a serial
connection. This is commonly used in data acquisition and Internet connectivity. PPP is commonly
used to provide TCP/IP networking for end node systems that have at least one serial port, but no
Ethernet controller.

For dial-up purposes (that is, using a modem and telephone line), a dialer is included. It is also an
option to use a personal or vendor specific dialer in place of our mechanism, though we cannot
support this. smxNS dialing does require the use of a precompile-time interpreter, provided in DOS
executable format with source code. A compiler/linker for the development OS should not have
problems turning this into an executable file. It is written in ANSI C.

smxNS PPP is based on RFC 1661, and this is the most current specification of PPP at the time of this
writing. Related RFCs that were used in the PPP implementation include:

1332 IPCP

1334 PAP

1662 HDLC framing
1990 MP

1994 CHAP

2433 MS-CHAP

PPP in Theory

The Point to Point Protocol is not a server/client system. It is commonly used that way, but only
because it is convenient to do so. We will use the following conventions: the side who initiates
communications is the client and the side who is waiting to be contacted is the server. The host is the
side of reference (i.e. “this” side); the peer is the side opposite the reference (i.e. "that" side). So the
server can be peer or host and the client can be peer or host (or vice versa for either). The peer may
also be called a remote host.

There are two necessary phases within PPP: Link Control Protocol phase and Network Control
Protocol phase. These are referred to as LCP and NCP respectively. The LCP used by PPP is most
recently specified in RFC1661. The NCP phase is specified by the network layer protocols used. In
smxNS, the Internet Protocol (IP) is used in our network layer, so we use the Internet Protocol
Control Protocol (RFC1332). A third phase, commonly included at the end of the LCP phase and
before the NCP phase, is authentication. Generally, the Password Authentication Protocol (PAP from
RFC1334) or Challenge Handshake Authentication Protocol (CHAP from RFC1994 or MS-CHAP
from RFC2433) is used.

131

Chapter 8

LCP Phase

The LCP phase determines the requirements and capabilities of both sides of a PPP link before actual
communications begin. Let us refer to the client as the host and the server as the peer. Typically, the
client (host) sends a configure-request packet (“conf-req") to the server (peer) to initiate
communications. This packet contains a list of options that the host would prefer to use in the future.
The peer should respond with either a configure-acknowledge (“conf-ack™) or a configure-negative-
acknowledge ("conf-nak™) according to its satisfaction with the options within the conf-req. Also,
when a peer receives a conf-req, it will send a conf-req back with the options it would like to use, so
the process is mutual. If the host receives a conf-nak, then the peer was dissatisfied with the options
enabled and the host must reconfigure itself and send a new set of options corresponding to the
wishes/abilities of the peer in a new conf-req. If the options nak'd (negatively-acknowledged) are
necessary for correct functioning of the host, the host must terminate the link negotiations.

If the host received a conf-ack, the host must wait to receive the peer's conf-req. If the host gets the
conf-req and the options requested are acceptable, the host must send a conf-ack. At this point, the
LCP phase is Open and the next phase should be initiated. If a timeout occurs before the conf-req is
received, the host must re-send its conf-req and restart its half of the negotiations.

Authentication Phase (PAP/CHAP)

Authentication is used to decide what level of access the authenticatee should have to the
authenticator. This is usually a "all- or-nothing" sort of thing. Using the same pair from LCP as an
example, we continue on to authentication. Let us assume that the peer (server) requested PAP in its
conf-req. This would require the host (client) to now send an authentication-request ("auth-req™).
This packet includes a user ID and a password. smxNS does not encrypt these. If the peer finds the
user 1D and the password acceptable, the host should receive an authentication-acknowledge (“auth-
ack™) and authentication would be completed. If the peer finds the user ID and password
unacceptable, the host should receive an authentication-negative-acknowledge ("auth-nak™) and the
link should be terminated by the peer (this is not necessarily true, however).

Let us go back to the end of LCP and assume that the peer had requested CHAP in its conf-req instead
of PAP. The peer (server) would then send a challenge (some unique value to be hashed). The host
(client) would then tag on its password (secret) to the challenge and hash it with MD5. It would place
this hashed value in a response and send it back. The peer would hash what should be the same thing
on their side and compare it to the original. If they match, the peer would send a success packet and
authentication would be concluded; otherwise, it would send a failure packet and the link should
terminate (although it may continue on). There are two distinct advantages about CHAP over PAP.
Primarily, the raw password is never sent over the network (this does mean that both sides must
maintain a copy of the password). Secondarily, the authenticator authenticates the authenticatee (i.e.
sends the first packet) rather than forcing the authenticatee to authenticate itself to the authenticator.

MS-CHAP is different than CHAP. It makes use of the MD4 algorithm to hash the password.

Mutual authentication is appropriate, and often suggested as a means of increasing security, though
most "servers" will not allow this. smxNS will allow this, though some work may need to be done for
its role as an authenticator. smxNS has no pre-configured mechanism for storing a table of User IDs
and secrets (passwords) for potential peers, though the structure to access that table is in place.

NCP Phase

Once the LCP is finished (and authentication if necessary), the NCP phase(s) must start. \We use
IPCP, as mentioned earlier. The behavior is nearly identical to the LCP phase, but its purpose is not

132

Point To Point Protocol

to set up link layer communications but to set up network layer communications for the IP protocol,
including the IP address.

Optionally, smxNS allows a host to use Van Jacobson TCP/IP header compression. It is negotiated
during IPCP. Throughput should increase slightly when using this.

PPP in Practice

Usage

Set up the network interface to an appropriate state. Here are examples for use with PPP:

Portcreate(“ppp0™);

Portconfig(“ppp0”, “IP”, “0.0.0.0™);

Portconfig(“ppp0”, “LINK”, “PPP”);

Portconfig(“ppp0”, “DRIVER”, “NS16550");

Portinit(“ppp0”, “IRNO=3 PORT=0x2F8 CLOCK=115200 BAUD=9600");

"ppp0" — A smxNS host that connects to other hosts through a null modem. It has no IP
address assigned statically so it is assumed that the peer will provide one during IPCP.

Portcreate(“pppd0”);

Portconfig(“pppd0”, “IP”, “0.0.0.0™);

Portconfig(“pppd0”, “LINK”, “PPP”);

Portconfig(“pppd0”, “DRIVER”, “NS16550”);

Portconfig(“pppd0”, “DIAL”, “ENABLE”");

Portinit(“pppd0”, “IRNO=4 PORT=0x3F8 CLOCK=115200 BAUD=9600");

"pppd0" — A smxNS host that connects to other hosts through a modem. It has no static IP
address so it is assumed that the peer will assign one during IPCP. The only difference between
this interface configuration and "ppp0" is the “DIAL” attribute is turned on. The macro,
DIALD, needs to be configured to 1 in include\pppconf.h in order to use this entry.

Portcreate(“pppdl”);

Portconfig(“pppdl1”, “IP”, “206.251.94.242™);

Portconfig(“pppdl”, “LINK”, “PPP”);

Portconfig(“pppdl”, “DRIVER”, “NS16550”);

Portconfig(“pppdl”, “DIAL”, “ENABLE");

Portconfig(“pppdl”, “PEER”, “206.251.94.243");

Portinit(“pppdl”, “IRNO=3 PORT=0x2F8 CLOCK=115200 BAUD=9600");

"pppd1" — A smxNS host that connects to other hosts through a modem. This host has an IP
address. If a peer dials into it, this host will be able to assign the peer the IP address from
"PEER". The macro, DIALD, will need to be configured to 1 in include\pppconf.h in order to
use this entry.

Note that for PPP connections, the PPP peer will act as the default router unless another default router
is configured. If necessary, the host may have other interfaces to which subnetting still applies. If
anything is not in that subnet, the default router, specified by SetDefaultRouter(), will be used.

The BIN directory contains the file prefrmt.exe. This is in DOS executable format. The source code
for this file is in the BIN\PREFRMT directory under the name prefrmt.c. If the development machine
cannot execute DOS applications, prefrmt.c should be compiled for the appropriate OS. The source
code's only dependancy is having script.h and script2.h in the include path. If script2.h does not exist,

133

Chapter 8

make an empty file in the same directory as script.h called "script2.h" (it is normally generated during
the standard build process). Make sure the resulting executable file ends up in the BIN directory.

If scripted dialing will be used (DIALD == 1), the script files may require modifications to interact
more correctly with the modem being used.

dial-in.scr — This is used to allow a remote host to dial into smxNS. It uses manual answer mode
but may be changed to use auto answer.

dial-out.scr — This is used to dial out to a remote host over a line. At least the phone number will

have to be changed along with any special considerations for flow control or other modem or
line specific properties.

dial-dwn.scr — This is made to de-initialize a modem after a session has ended. This is not
absolutely necessary, but it makes it easier to bring the modem up the next time.

See the "Scripting" section later in this manual for assistance with the function of these files.
When first starting or if scripts or pppconf.h options are changed, consider turning PPP_DEBUG to 1.

This will make changes and their effects more readily apparent. It will also reveal areas that may
need adjustment.

Configuration

134

All PPP related macro values are defined in include\pppconf.h. They are quite extensive and some of
them interact with each other, so it is important to understand what they do when changing them. In

the state it is shipped in, PPP should be able to establish a link with most implementations using a null
modem.

PPP_DEBUG

smxNS PPP comes with a module called pppdebug.c which can parse and print out, with
Nprintf(), the frames that are sent and received by the link. This macro enables/disables this
capability. It is useful to set this macro to 1 while configuring the PPP link. Once the link is
behaving appropriately, this can be set to 0 and only warnings and errors will be printed out with
Nprintf(). SNS_DEBUG_LEVEL takes precedence over this value.

DIALD

This specifies whether PPP will use the dialer automatically. See later sections of this document
for further information.

DBUFFER

PPP starts negotiations when the application forces the link up explicitly or when the first

datagram is transmitted. This option tells PPP to buffer datagrams while the link comes up. By
default this is on.

DBUFFER_SZ

This tells PPP how many buffers to queue up while waiting for the link to become established.
The default value is NBUFFS/NNETS so that PPP doesn't starve the rest of SmxNS out of buffers
but has enough to effectively perform the function of dial-on-demand.

IDLE_TOUT
This value specifies the amount of vacant time in seconds (TimeMS()/1000) in the link before it is
closed manually. As delivered, it is disabled with a value of 0.

ECHO_TOUTMS

This value specifies the amount of time (in TimeMS() milliseconds) in an open link between echo-
request packets being sent. This can be used to check the link quality or to check if the peer has
disappeared (if the peer loses connectivity without warning).

Point To Point Protocol

ECHO_RETRIES
This value specifies the number of echo-request packets sent without a reply before the link is
deemed bad and is set to close. Setting ECHO_TOUTMS to a positive non-zero value enables
this.

PPP_USERID
Because the PPP authentication user ID may differ from the application level user ID, we provide
this value. It defaults to the application layer user ID. This value is set in Portinit() and can be
changed thereafter through the ioctl routine (see the PPP ioctl Routines section).

PPP_PASSWD
Because the PPP authentication password may differ from the application level password, we
provide this value. It defaults to the application layer password. This value is set in Portinit() and
can be changed thereafter through the ioctl routine (see the PPP ioctl Routines section).

AUTHENT
We support PAP, CHAP and MS-CHAP authentication. This macro specifies which of those we
will allow a peer to use on us. For client-oriented applications, this will usually be set to allow all
three. For server-oriented applications, most people turn this off to save code space. All three are
enabled by default.

USE_NT
Set this to one to use NT style challenge response. Set to zero for Lan Manager style challenge
response. It is best to leave this on unless the remote host is a Lan Manager or an old Windows
machine.

REQAUTH
This specifies which authentication will be requested by the smxNS host. For CHAP/MS-CHAP,
AUTH_ALG must also be set (see below). For PAP, it is what it is.

AUTH_ALG
For MS-CHAP, this value must be set to CHAPalg_MD4; for normal CHAP, the value must be set
to CHAPalg_MDS5.

TOUTMS
This is the elapsed time in milliseconds (TimeMS()) before time out. Our default is 2.5 seconds
(2500) though RFC 1661 sets the default at three seconds. It has been noted that race conditions
occur more frequently with smaller values, though every link is different. Links that come up
slowly may need a smaller timeout period. Links that do not come up at all may require a longer
timeout period.

TOUT_GROW
This specifies whether or not the restart timer should start small and grow to the maximum
timeout value (TOUTMS) as link quality is assessed to be poor. It is off by default. When on, this
may cause more retransmissions than necessary at the start of negotiations.

MAXCONF
This is the value in the restart counter for both LCP and IPCP. It should default to ten. The
configuration packet will be resent this many times without response before the link is set to close.

MAXTERM
This is the value in the restart counter for LCP when closing. It should default to three. The
terminate request packet will be resent this many times without acknowledgement before the link
is forced closed.

COMPRESSION
This can be set to request and support protocol field and address/control field compression and/or
VJ TCP/IP header compression. It is generally best to leave this at 3 to support both types as this
will increase your throughput slightly. 1f code size is favored, it is best to leave this at either 1 (for

135

Chapter 8

136

address/control/protocol field compression) or 0 (for no compression). VJ compression requires a
great deal of code, but the others do not.

MAXSLOTS
Maximum slots for TCP/IP (\VJ) header compression. See RFC 1144 for more information or
leave them at their default values. They basically correspond to the number of TCP connections

coexisting on the link.

PPP_MRU
Specifies whether or not the host will negotiate the MRU (Maximum Receive Unit) for smxNS.

This value is equivalent to (MAXBUF - MESSH_SZ - LHDRSZ) in smxNS. Unless you are
planning on reducing buffer size, this is not necessary.

MAGICNUM
Specifies whether or not the host will use Magic number with LCP. Unless you really want to
save on the amount of data sent, leave this on. It is standard for almost all PPP links.

ASYNC
RFC 1662 tells of HDLC framing and the character escaping mechanism. This option will request
that the peer use the RACCM value (see below) as its character map when sending to us. This
option is enabled by default.

RACCM
This is the Remote Asynchronous Control Character Mapping. This option is only negotiated if
ASYNC is enabled (see above). It is a 32-bit field where each bit corresponds to a character <
0x20. If the bit is set, PPP HDLC encoding must escape the character. Therefore, a value of
0x00000000 increases throughput the most but decreases reliability. A value of Oxffffffff escapes
all characters and decreases throughput. The default value is 0x00000000.

IPCP_DNS
RFC 1877 includes extensions for PPP that allow configuration of DNS addresses during IPCP.
This is not recommended except for dedicated devices with minimal application functionality and
is disabled by default.

There are two parts to this option. The active configuration and the passive configuration. When
the active portion is enabled (by setting bit O to 1), the host will send a configure-request with the
current DNSiid. Typically, this will not have been configured by the application and will be
0.0.0.0 for both primary and secondary addresses. When the passive portion is enabled, the host
will do nothing unless a configure-request is received for either the primary or secondary DNS in
which case the host will reply with a Nak of the address if it does not match the host's DNSiid as
configured by the application through SetDNS().

MP
The Multilink Protocol (RFC 1990) is enabled by a new Maximum Reconstructed Receive Unit.
The endpoint discriminator is negotiated along with the MRRU. This option is not tested and is
not considered a supported feature.

MPBUF
The number of buffers MP packets can occupy. Reasonably, no host should fragment any packet
into more pieces than the number of physical connections.

AUTH_ACK_REPLY
When the peer passes authentication, this string is sent. It does not matter what it is, though the

peer application may see it.

AUTH_NAK_REPLY
When the peer fails authentication, this string is sent. In MS-CHAP, a result code and retry flag is
sent instead. If SNS_DEBUG_LEVEL >=5 and PPP_DEBUG is on, the Message field of this
packet will appear as strange characters because of the MS-CHAP result code.

Point To Point Protocol

QUALITY
This allows the peer to use link quality report monitoring. Very few implementations support this
so you will want to leave this off. If you do wish to use this, contact Micro Digital PPP support.

Scripting

In order for PPP to function over a modem, there are three non-error cases that must be handled:

1. If PPP needs to actively establish a link to a remote host over a modem line, the modem needs
to dial out to the remote host prior to the initiation of PPP.

2. If PPP is waiting for a remote host to establish a link over a phone line, it must configure the
modem to wait for such an event and perform some actions when the event occurs.

3. If either the host or the peer terminates PPP, the modem should be configured to a default state
to wait for further action.

In order to facilitate this operation, there are several scripts used by smxNS dial-on-demand:

1. pppsrc\dial-out.scr — This is written to configure the modem to dial a phone number to a
remote host for active links. Once it is completed successfully, PPP is initiated. It checks the
condition of the modem, changes it to off-line mode if necessary and dials the phone number.
If the attempt to connect fails because of a modem error condition (e.g. no dialtone), the script
will try a few more times. If the modem is not responding, the script will attempt to bring the
modem to off-line mode (see dial-dwn.scr below). The phone number is defined as a global
variable that can be changed in your application. There is more information on variables in
scripts in the "Commands" section following number 3 below.

2. pppsrc\dial-dwn.scr — This is written to configure the modem to be in terminal mode after
being in on-line mode. It hangs up the line. In order to force a modem to off-line mode, most
require that the string "+++" be sent surrounded by a guard time of 1 or 2 seconds of silence.
The default script will successively increase the guard time from 1 to 5 seconds if the modem is
not responding. At that point the script will fail. If the modem returns to terminal mode, the
scri