[Ms] Micro Digital

smxAware™ User’s Guide

Version 4.4.0
March 6, 2018

by Marty Cochran and David Moore

a8 oo [UTox o] o IO OO UR TR 1
YU o oTo] gu=To [B T=] o T8 [0 [0 <] SO SO UV URUR P 1
101 =1L F= U o) o OO OTU RV RURUR 2
Changes 10 the APPIICALION........oiiiii bbbt b et b ettt nb et 2
CodeWarrior fOr COIAFITE DIFBCHIONS.coi ittt et bttt b et esbesb e b e b b e sbe bt e b e e e e e 3
CodeWarrior fOr POWEIPC DiIFECLIONSccceviiieieiesieiete sttt sttt sttt sttt st st b et st e s be st et stesbe e etesbeneees 4
TAR EWARM DITECHIONS ..ottt sttt sttt st b et sb ettt b e et b ettt e bttt s b et et e et st ebeabeneebeabeneeren 4
SINGIESTEP DIFECLIONS ...ttt ettt btk b etk b etk bbbtk b et b e e b et b e b et bt e bt et e b et et b st 5
USING SIMXAWALEcvveeiieitectesteeteettestetestestestesseatee s estessebesteabeateeseesse e e sesbesaeaEesReassessensesbesbeabeeReeseessenteseesaestesaseneeseenrs 7
SIMXAWAIE DHAIOG BOX ...ttt ettt bbbt bt bt h e e et e e b e eb e e b e bt e b e e s e enbenbeebenbesbe st e aneaneennens 7
T B TET o] Y SRSTSOSRSRSN 10
SMX Middleware MOAUIE DISPIAYScvirieieiiriiieeeeieeiee sttt se e e sr et sreste s e ese e e ese e srenreaneeneeneenes 18
T LAY AT To o OSSPSR 23
Modal VS NON-IMOTAL DIAIOGYeeuveteiteitieieeie ettt bttt b e bbb e bt b e e e e bese e st e sbeebeebe e e eneennns 23
Suspended Task INFOIMALIONcciiiiiciece ettt e s e se e e et e be e e besbesbesteaneeneeeenrs 24
TaSK-SPECITIC BrEAKPOINTSc.veviiiiiieiteieeieie e e st ste st e et te st te e e esae e et e te st e s besnees e e e enteneeseenreaneeneenennees 26
CONFIGUIALION ...ttt bbb bbb bbb bbb bbb bbb b et et bt et nb et 27
smxAware GAT (Graphical ANAIYSIS TOOIS)......ciiiiiiiiieiiie ettt b et sresre e e eneesrenes 28
LU0 LSS 28
EVENT TIMEIINES ...ttt bt b et s b e s bbbt bt s e bt s e e bt nb et et e n e s et e e ans 30
(0] 1TSS RSP PRPRTRTO 36
SEACK USBGE ...ttt itttk h bbb bbb bR bR bR b bbb bbbt b bbbt 38
g o] ST 1 (=] SO USROS 39
EVENE BUTTEE (TEXE) ..etiitieieit ettt ettt et b e e te e he e st e e et e be st e s besbe et e e e e st e ste st e sbeeaeeneeneeneeneens 40
Y (=T 0o A O KT o [TSP P TP PUPTPPTPPROTPS 41
MEMOTY IMAP OVEIVIEW........ctiiiiiiteitetiet ettt sttt sttt b ettt b bbb bbbt b bt bt nb e bt e b s b e bt eb e s e e bt eb e ne et e eb et et e abe e ebeabeneere s 42
LO7a] 01 10TV =L o] ISR PSRRI 48
Downloading the EVENE BUFFEIcviiice ettt ettt se et te st e beeneene e e eneeneens 49
F A o] o] FTor= U o g = €] o U= LA o] o SRS 49
SIMIXAWVATE LIV ...ttt ettt st bbbt b e st e e eh e b e E e eb €S E £ Rt 2R e e e e m b e e E e e b e S E e e R e e b e e Rt e n b e ne e b e e b e ebe et e eneeneeneeneas 51
LA 1L = o] o OSSR 52

USING SIMXAWVAIE LEIVE ...ttt stttk b bbb e e e b et e bt e b e e bt e b e e R e e m b e b se e st e nbeebenbeebeebeeneennennens 52

D= To] 01 ot URTOR PSRN 53

TEXE DISPIAY EITON MESSAQES. ... veveteeeteiterieteste sttt sttt sttt b ettt b ettt b ettt s btk s bt ekt b e st et b et et e b et ebe s bt et bt 53

GAT ETTON IMIBSSAGES ... vvettetietieteete ettt teesbe e bt e et eaeeebe e bt e bt ea b e eb b e sb e e eE e e ebe 4 e e £ Re e eR et ehe e b e ambeam b e eb b e ebeenbeenbeenbeeaneanneanns 54

[T o[o (ol oo o113 [SOSRSSN 54

I a1 U] o <SPPSR 54

LI TSSO ST P TP PP SOOI 54

THOUBIESNOOTING ...t bbb bbb bt bbb s bbbttt b bbbt n s 55
© Copyright 1996-2018

Micro Digital Associates, Inc.
2900 Biristol Street, #G204
Costa Mesa, CA 92626
(714) 437-7333
support@smxrtos.com
WWW.SmXxrtos.com

All rights reserved.

smxAware is a Trademark of Micro Digital, Inc.
smx is a Registered Trademark of Micro Digital, Inc.

Introduction

smxAware is a DLL that adds functionality to several popular embedded debuggers, to give them
smx-awareness. While stopped at a breakpoint, you can:

e Display information about kernel specific objects such as ready queue, tasks,
semaphores, messages, events, heaps, stacks etc. with the smxAware dialog box,
accessible from the main menu.

e Display graphs of Event Timelines, Profiling, Stack Usage, Memory Usage, and
Memory Map Overview using the Graphical Analysis Tool (GAT) feature.
(CodeWarrior and 1AR only).

e Display print statements generated by the application.

o Set task-specific breakpoints. The breakpoint will be triggered only if it is hit while
the specified task is running (IAR and SingleStep only).

e Display information about suspended tasks: point where it will resume, call stack,
and registers. A window allows selecting which task to view. (CodeWarrior only)

smxAware Live is a remote monitoring version that is also documented in this manual.

Supported Debuggers

Debugger CPU Min Ver
CodeWarrior® Professional CF 4.1
CodeWarrior® Professional PPC 5.0
IAR EWARM/C-SPY® ARM 4.30A
SingleStep® PPC 7.01

Keep in mind that tools change. The smxAware files you have should work well with the tools
your release was built with. If you upgrade to newer tools and you have problems, ask for an
update of smxAware. The Min Ver column above indicates the first version of the tools for
which we supported smxAware; the current smxAware may not support such an old tool version.

Installation

Changes to the Application

First enable smxAware initialization in your application by enabling the define of
SMXAWARE, as instructed below, so smxaware_init() is called. This initialization routine does
two things:

1. Determines which version of smx is being used. This is important because there are
differences in internal data structures such as the smx_cf structure and control blocks.

2. Initializes the print window feature. See the section Print Window below.

Until smx initialization is done, smxAware will display a message in all views indicating it has
not yet been initialized. To enable smxAware initialization:

1. Those using CodeWarrior: Uncomment #define SMXAWARE in:
CFG\cwcf.h (ColdFire)
CFG\ConfPpCw.h (PowerPC)

Those using IAR: Uncomment #define SMXAWARE in:
CFG\iararm.h (ARM)

Those using Diab or MetaWare for PowerPC: Uncomment “saware =" in
CFG\ConfPpc.mki

Others: Uncomment the line “saware =" in your PRO.MAK.

2. Ensure smxaware.c (in the APP directory) is being compiled and linked into your
application.

Also, it is necessary to compile the smx library with debug symbolics enabled for xglob.c. This
should already be done in pre-built libraries and in the project file or make file we supply, but
check this if you have trouble. Newer versions of smxAware display a warning that smxVersion
can’t be read, if debug symbolics are not enabled for xglob.c.

Pass names in smx_XxxxCreate calls in your application to assign names to smx objects, such as
tasks, semaphores, and exchanges. This allows smxAware to print the name of these objects in
the corresponding displays. smxAware creates a table to correlate names and handles. If
smxAware is unable to find a handle in the table, it simply prints the handle value (hex) in place
of the name.

To name ISRs, LSRs, messages, and others that cannot be named in a Create call, create a
pseudohandle. See the section Pseudohandles later in this manual. Also note that handles should
be defined as global variables.

Next follow the directions in the appropriate section for your debugger, below.

CodeWarrior for ColdFire Directions

CodeWarrior Professional Edition is required to use smxAware (or any add-on DLL).

1. Put CFrtos_smxCwcCf.dll in this dir:
Freescale\CodeWarrior for ColdFire VV7.1\Bin\Plugins\Debugger\RTOS\
(if the RTOS directory does not exist then create it).

2. In project settings, select (in left pane): Debugger | CF Debugger Settings. In the
right pane, select Target OS = smxCwCf.
If smxCwCf is not listed in the Target OS list, enable plugin diagnostics and see what
iswrong: Edit | Preferences | General | Plugin Settings | Plugin Diagnostics Level:
All Info. Note that the “CFrtos” prefix in the DLL name is required; do not change or
delete it.

3. Press the Debug button to download the app. “smxAware” should appear to the right
of Data on the main menu if it is working.

4. Run at least until after the call to smxaware_init() in smx_Go() before
attempting to use smxAware.

Notes:

1. Run to Cursor (starting with CWCF v7): This now uses a task-specific breakpoint,
which can cause unexpected behavior. You may be best to stop using Run to Cursor,
or only use it to run to another point in the same function.

a. A task-specific breakpoint is one that only stops when hit in the context of the
specified task. The debugger temporarily stops execution when it is hit, checks
the task ID, and then continues execution if it is not the desired task ID.

b. The task ID is set to the ID of the thread window that you do Run to Cursor in. If
done from the Symbolics window, the ID is set to 0, which never matches. Since
CodeWarrior keeps opening new thread windows each time you stop in a new
task, it is a very easy mistake to scroll down to another task’s code and run to
cursor.

c. These breakpoints are listed in the Special section of the Breakpoints window.
You can disable them by right clicking on one and selecting Disable Breakpoint.
You can delete one by setting a normal breakpoint on the same line (by clicking
in the left margin of the code window as usual, twice to appear and again to
delete).

d. If the code is repeatedly hit, the debugger will keep pausing and continuing, and
the stop button will enable and disable frequently, so that it won’t work. In this
case, you can stop execution by disabling the breakpoint in the Breakpoints
window.

e. Before starting a debug session, you can disable smxAware to avoid this problem.
(In project options, select CF Debugger Settings in the left pane and select
BareBoard for Target OS in the right pane.)

CodeWarrior for PowerPC Directions
CodeWarrior Professional Edition is required to use smxAware (or any add-on DLL).

1. Put EPPCrtos_Stub.dll in this dir:
Metrowerks\CodeWarrior5\Bin\Plugins\Debugger\RTOS\
(if the RTOS directory does not exist then create it).

2. Set Edit | Proto Settings | Debugger | EPPC Target Settings | Target OS = Stub

3. Press the Debug button to download the app. “smxAware” should appear to the right
of Data on the main menu if it is working.

4. Run at least until after the call to smxaware_init() in smx_Go() before
attempting to use smxAware.

IAR EWARM Directions

There are big and little-endian versions of the DLL. The big-endian version is suffixed “BE”; the
little-endian version is not suffixed. Some ARMSs are one or the other, and some support both.
Also, there are DLLs for different versions of EWARM. You must use the proper version of the
DLL for your target and 1AR version. (Newer versions of EWARM come with smxAware
installed, but the version in your release may be newer, or you may download a newer version
from our support site, so you may need to replace these files in EWARM.)

1. Copy the smxAware files from SMX\SA to this EWARM directory:
arm\plugins\rtos\SMX\ (Create the SMX subdirectory if it doesn’t exist).
Specifically, copy:

smxAwareGAT .exe and one .dll and .ewplugin file, as indicated below. (It is ok to
copy both the big and little-endian files, but you must only copy the files for one
version of EWARM.)

EWARM v8
smxAwarelarArm8.dll, smxAwarelarArm8.ewplugin (little-endian) or
smxAwarelarArm8BE.dll, smxAwarelarArm8BE.ewplugin (big-endian)

EWARM v7
smxAwarelarArm7.dll, smxAwarelarArm7.ewplugin (little-endian) or
smxAwarelarArm7BE.dll, smxAwarelarArm7BE.ewplugin (big-endian)

and similar for previous versions. For v4 there is no numeric suffix.

2. Exit and restart EWARM if you are already in it, and then open the app project.

3. In project settings, select (in left pane): Debugger. In the right pane, select the
Plugins tab. Select smxAware (little endian) or smxAwareBE (big endian) from the

list.

4. Press the Debug button to download the app. “smxAware” should appear in the main
menu if it is working.

5. Run at least until after the call to smxaware_init() in smx_Go() before
attempting to use smxAware.

SingleStep Directions

Installation
1. Copy smxsstep.dll to directory \sds70\cmd

Enabling smxAware (SingleStep)
To enable this interface, select the SingleStep icon and open the Properties sheet. Open the

Shortcut tab and specify the -k option as part of the command line in the Target field. For
example:
C:\sds70\cmd\simppc.exe -k smx
(assuming SingleStep is on drive C:) and change Start In field to
C:\sds70\cmd
Verify proper installation by launching SingleStep. If menu item: Data | Kernel Objects brings

up smx Kernel Objects window then installation was successful. If the Kernel Objects item is
grayed out then SingleStep couldn’t find smxsstep.dil.

Running smxAware (SingleStep)
1. Build the Debug version of the app.

2. Start SingleStep.

3. Open the debug window. Select File | Debug. Then, click on File and type in
"C:\Smx\App\Diab.ppc\lv4\app.x™. Then, click on Processor and select By Object

Type.

. Then, click on Options and select Execute Until Main. Click on OK to load the debug
session.

Select Run | ExceptionSimulation. Click on decrementer, fixed interval timer (FIT)
and periodic interval timer (PIT). Click on OK to select these three interrupts required
by app.x.

Run at least until after the call to smxaware_init() in smx_Go() before
attempting to use smxAware.

Display the smxAware window: Select Data | KernelObjects. This dialog box
displays most smx objects.

Using smxAware

smxAware Dialog Box

The smxAware dialog box lets you browse text displays of smx objects. It opens when selected
from the main menu of the debugger/IDE. (The sections above describe how to start it from each
debugger.) Use it while stopped at a breakpoint.

Copy to Clipboard: The CodeWarrior and IAR versions of smxAware have a copy to clipboard
feature. Pressing “c” will copy all of the text in the current smxAware window to the clipboard.
CodeWarrior copies the selected pane, so if you want to copy the right pane, click on it first.
(“Ctrl-c” can also be used for IAR.)

For IAR EWARM, the smxAware window is initially docked but can also be undocked. It is a
single hierarchical tree. Here it is shown with Tasks expanded.

o I

{-Ready Queus

[H-LSR Qusus

- Tasks
i Task Ta=kID Pri cbht flg Timeout State

S

i --Smx_NulltaSk goooooao oo a0 0Oe INF Stopped

{ [(emx_Idle) 000000z oo B0 47 ®x RUN ==

| [-PegTask oDoooo118 03 g0 17 INF Wait
-=mxUSEH-OHCT 00000164 05 g0 07 INF Wait
-=mxUSEH-Hub 000001b0 03 g0 07 12 Wait
t-Het Task 0O000lfe 04 g0 07 10 Wait
H-LED taslk DoooD248 04 B0 13 INF Wait

i [H-opoon oDoooD2594 06 B0 13 INF Wait

! [-5FS 1st Test Task 0000032 01 g0 17 INF Wait

| [-PegTouchTask 0DooooD378 01 g0 17 INF Wait

i -webserver 0000034 03 g0 07 39 TWait

! B-Telnet server ooooo41o 03 g0 07 82 TWait

--Stacks

[H-Heap

[H-Semaphores
H-Hutexes
[H-Exchanges
[H-Hessages
[H-Blocks
[H-Event Qusues
[H-Event Flags
- Timers
H-Pipes
H-Print
[H-User

H-Conf Valuss
[-Handle Table
[H-Diagnostics
[H-smzFS
[H-smzHS

[H- smzUSED

[=m=USEH

With a task expanded:

H"smeSBH—Hub gooooibo
[H-NetTask 0o0oolfc
1o oooor g
- Tazk Hame
-~ Jueued In noooobeD smx_TicksEQ
- Forward Link noooobeD smx_TicksEQ
- Backward Link oooonz294 opocon
- chtype an
- state Wait
- flagz (=== below) gooooola
- Priority 04
- Hormal Priority 04
- Error Humber 00 Ho Error
- HReturn Value a
- Suzpend Valus £
- Run Time Counter oo0o00e 35
- Regizter Save Area g0244ean
- Stack Pointer 80245148
- this Pointer aooooooo
- Main Function 802bebac
- Hooled Entry aooooonn
- Hoolked E=xit gooooonoo
- Stack Top Pointer anz244ifa
- Stack Bottom Fointer B02451f0
- Stack Size nopoolfs
- Stack HWH oooooo4n {walid)
- Oyned Mutex none

- flags=:
- Ewent Queus True
Start Locked Fal=se
Stack Check True
Ferm Stack Fal=se
Hooked Entry~Exit False
Hutex Wait Fal=se
Stack Owverflow Fal=se
Stack HWM Valid True

H- opoon 0oooo294 06 INF Wait

Other displays are similar.

For CodeWarrior, the dialog has 2 panes. The left pane lists the smx object types and the right
pane shows the list of the object type selected in the left pane. The dialog is non-modal, meaning

it can remain open as you step through the code. This allows you to watch things change.
(However, there is a problem with some versions of the IDE, so we automatically close the

window each time you step or run.) When the smxAware window is open, additional thread
windows open when execution stops in a new task. See the Suspended Task Information section,
below, which discusses the additional information CodeWarrior displays about suspended tasks.

g [m [

- Tasks - Task TaskID Pri cht flg Timer
- LER= - idle 00268eb0 oo-o0 8o 00 a
- Exchanges= - timeout 00268efc 04-04 8c 03 0
- Hessages - =nxStackTask O0zZesf48 ao-00 8z 03 0
- Semaphores [H-exit= 00268£94 0d-04 a0 02 0
- Hutexes [#- opzon 002e8fen 04-04 98 03 0
- Event [H- m=g_send 0028902z 03-03 88 03 0
-.Ewvent Table [m=g_receive 00269078 oz-02 ad 03 0
- Timers [presmpter_tasl 0026904 03,03 a8 03 1]
- Pipes=s - master_task aozeslio n2-02 a8 03 b7
- Bucket= [H-=tart_hi_lo 0026915z g2-02 88 03 53
- Print [+ =lesper_task 002e91a8 03-03 88 03 g3
- Taer H-event_tbl_waitl 002e91f4 nz2-02 848 03 0
- Heap [event_tbl wait?2 002e9240 02,02 a8 03 1]
- Stacks [#-event_tbl_wait3 0026928c n2-02 a8 03 0
- Handle Table [H-event_thl_==t_flag noz2e92da 03-03 ag 03 0
- Ready Ousues [H- timer_task 00269324 g2-02 88 03 53
- Diagnostics - pipe_put_task 00269370 nz2-02 af 03 0
[H pipe_get_task 00269 3bc 01-01 88 03 a
#- LED_task oo0z2e9408 03-03 af 03 1]
#-display_task 00269454 03-03 af 03 1]
#-profile_task 002694a0 04-04 98 02 1]
FH-=lavel 0026%4ec 0z2-02 98 02]
H-slavel 00289538 gz-02 98 02 a
- slave? 00269584 nz-02 98 02 1]
#-=laved 00269540 nz-02 98 02 1]
#-=slaved 0026%961c nz-02 98 02 1]
#- lo_tashk 00269668 01-01 gz 02 1]
*-hi_task 002696b4 03,03 o 02 a

State
#% ETIH 3¢
WaitInt
Ready
Stopped
WaitInf
WaitInt
WaitInf
WaitInt
Slesp
Sleep
Sleep
WaitInt
WaitInt
WaitInt
WaitInt
Sleep
WaitInt
WaitInt
WaitInt
WaitInt
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped
Stopped

For other debuggers, the dialog has radio buttons at the top to select the smx object types and
information for the selected object type is displayed in the white area below. Double-click on a
line for details of that item. The dialog is modal meaning it must be dismissed before you can
continue stepping through the code or otherwise using the debugger. The Add to Watch button
adds the selected smx object to the debugger’s watch window (if supported for the debugger).

x
Shiow
* Tasks " Exchanges " Semaphores ¢ Fipes " Ewents © Timers
|
" LSRs " Messages " Mutexes " Buckets " Ewent Tablezs € Print
" Ready " Stacks " Heap " Handle Table ¢ User " Diagnostics Help |
Task TaskID Pri cbt flg Timer State
idle 1128 a4/ a4 cc 88 B *xx RUH == Ton Level |
timeout 1158 a4/ 04 ch 82 8 Ready P
smxStackTask 1198 a8/08 ch 82 8 Ready
exitx 11c8 a4/ 04 88 82 8 Stopped AddtoWatchl

Kernel Displays

Below is a summary of the information displayed for each smx object type.

Note that the order of these can be changed by editing smxaware.ini. Change the values in the
[TOP_LEVEL_ITEM_SORT] section, to put them in the desired order. -1 hides the item from
the display. If smxaware.ini is deleted, they will revert to the default order.

Ready Queue

Shows the tasks in each level of the ready queue, in order. Left-most is the first to be serviced.
() around the task name indicates ct. (Normally this will be the left-most task at the highest

occupied level, but if it is locked and bumped with smx_TaskBump(), it could appear at the end
of the level, yet still be ct.)

10

LSR Queue

#
Address
Par

Tasks
Task
TaskID
Pri

cht

flg
Timeout

State

SusplLoc

Number of the LSR. 0 is next to run.
LSR function address. Correlate to .map file.
Parameter passed to LSR.

Task name obtained from the handle table, or handle if not found. () around the
task name indicates the current task.

Task handle.

Priority 0 to 127. 0 is the lowest priority. If two values are displayed, the first
number is the current priority, and the second is the normal priority. See Own Pri
field of Mutex display, below.

Control block type (cbtype).

Task flags.

of ticks (decimal) until the task will timeout.

blank means task is not waiting or stopped (i.e. no timeout).

INF means infinite timeout.

Negative number means the timeout has happened but Timeout LSR() has not yet
moved the task to the ready queue.

Task state (Run, Ready, Sleep, Stopped, Wait (suspended), or WaitInf (suspended
with infinite timeout)).

Address where task was suspended. See section Using smxAware/ Suspended
Task Information for details.

Double clicking on a task will display more task-specific information.

Task Name
Queued In

Forward Link
Backward Link
cbtype

state

flags

Priority

Normal Priority
Error Number
Return Value
Suspend Value

exret
Run Time Counter

Register Save Area
Stack Pointer

Task name obtained from the handle table.

The queue it is in, if any. For the ready queue, it shows the ready
queue level it is in (e.g. rq[3]).

Control block handle

Control block handle

Control block type

Task state

Task flags

Current priority of task (0 to 127 and >= Normal Priority)
Normal priority of task (0 to 127)

smx error number of last error caused by task. 00 No Error if none.
Used by smx calls that cause the task to wait

Used by some smx calls to save a value when they suspend, such
as the differential count for tasks in an event queue.

Low byte of exception return value, which indicates type of stack
frame for FPU register autosave (ARM-M).

Counter for task profiling

Pointer to part of stack where registers are saved (task context)
Stores stack pointer when task suspended

11

this Pointer this pointer, for C++ tasks

Main Function Address of task’s main function (entry point)
Hooked Entry Address of hooked entry routine
Hooked Exit Address of hooked exit routine

Stack Top Pointer Address of top of stack (end it grows to, not including pad)
Stack Bottom Pointer Address of bottom of stack (end it starts from)

Stack Size Usable bytes of stack (not including pad)

Stack HWM Stack high water mark. Indicates stack usage, in bytes. Directly
compares to stack size.

Owned Mutex Mutex name or handle. One line for each.

Suspended Location Address where task was suspended. See section Using smxAware/
Suspended Task Information for details.

flags breakdown:

Event Queue True/False Task in event queue

Start Locked True/False Task starts locked

Stack Check True/False Stack checking enabled for task

Perm Stack True/False Task has permanently bound stack (not stack pool
stack)

Hooked Entry/Exit True/False =~ Routines hooked to save additional task state
In Priority Queue True/False Task is in a priority queue

Mutex Wait True/False Task is waiting to get a mutex.
AND/OR EG True/False Task is waiting on AND/OR of flags in Event Group
AND EG True/False Task is waiting on AND of flags in Event Group

Stack Overflow True/False Stack overflow detected, if true
Stack HWM Valid True/False Indicates Stack HWM (above) is valid; the stack has
been scanned since the last time the task ran.

MPU regions are shown for the task for Cortex-M targets if MPU-Plus is present, and the
task has set an MPA.

MPU (Cortex-M Targets if MPU-Plus is Present)
Details of the MPU are shown including:

Flags Flags indicating whether MPU is on, background region is enabled, etc.
Caution Warnings about overlaps
MPUIn] Information about each slot, including start and end address, size, attributes,

RBAR, and RASR.

Stacks (Task)

Task

Owner. Task name obtained from the handle table, or handle if not found.

StkTopAddr Starting address of the memory block and top of stack. (Stack grows toward this

Used

end.)
Amount of stack used (based on Stack HWM field in TCB). A “?” next to the
value indicates that the value is questionable because the task has run since the

12

Size
%
Type

last time its stack was scanned (task’s SHWM_VALID flag is 0), so it may have
used more stack.

Size of memory block excluding padding.

Percent used (used/size * 100). “?” has the same meaning as for the Used column.
Bound, Shared, or None. Bound is a heap stack permanently allocated to the task;
Shared is a stack from the stack pool that is released if the task stops (not if it
suspends); None means the task currently does not have a stack (it stopped and
released its shared stack).

Double clicking on a stack entry does nothing.

The bottom of the window summarizes:
1. how many shared stacks are used out of the total number that exist.
2. how big of a pad is allocated at the logical top of each stack, if any.
3. how stack usage (HWM) is determined (i.e. by stack scanning or checking sp at task
switches).

Shows entries for all stacks in use. It is done by listing all tasks, since this allows showing stack
usage and HWM for tasks that currently don’t have a stack. This information is independent of
the particular stack assigned to the task; it reflects usage over the lifetime of the task.

The first line is the System Stack. This is used for ISRs, LSRs, scheduler, and error manager.

Heap

The heap window shows the following main items:

Summary
Allocated
Bin nn

Various statistics of heap usage and settings.
List of allocated chunks (see below).
List of bins. Summary line shows number of chunks and total space for all.

The Allocated and Bin items show these fields when expanded:

Type
BlockAddr
Size
ChunkAddr
CSize

bl

fl

free bl

free fl
Alloc Time
Owner
Fences
S/U/*

Type of chunk: free, inuse, debug, start, end

Block starting address. Address returned to the user where data will start.
Block size of data part, excluding CCB and fences, if any.

Chunk starting address.

Chunk size.

Backward link to previous chunk.

Forward link to next chunk.

Backward link to previous free chunk in bin. (Only for free chunks.)
Forward link to next free chunk in bin. (Only for free chunks.)

etime when chunk was allocated. (Only for debug chunks, i.e. CDCB.)
Task that allocated the chunk. (Only for debug chunks, i.e. CDCB.)
Ok or Broken (all fences should == SMX_HEAP_FENCE_FILL.)

Bin is sorted, unsorted, or being sorted. Applies only to upper bins.

13

Semaphores

Name Semaphore name obtained from the handle table, or handle if not found.
Handle Semaphore handle.

count Signal counter.

limit The signal counter must reach this value before the top task(s) waiting at the

semaphore will be resumed, for semaphore types that use a limit. See the
Semaphores chapter of the smx User’s Guide.
mode Type of semaphore, e.g. binary resource.

Double clicking on a semaphore will display the forward and backward links fields listed above.

Mutexes

Name Mutex name obtained from the handle table, or handle if not found.

Owner Task Owner task’s name obtained from the handle table, or handle if not found.

Own Pri Owner task’s priority. If two values are displayed, the first number is the current
priority, and the second is the normal priority. The current priority is >= normal
priority. Normal priority is the original priority of the task before promotion due
to ceiling or priority inheritance.

nest Nesting count.

pi Priority inheritance enabled (if != 0).

ceil Ceiling priority.

mtxp Name or handle of next mutex in list of mutexes owned by a task. (The head of

the list is pointed to by the task’s TCB.mtxp.) If NULL, this mutex is either not
owned or is the last mutex in the list.

Double clicking on a mutex will display all tasks waiting to get it, in priority order.

Exchanges

Name Exchange name obtained from the handle table, or handle if not found.
Handle Exchange handle.

tq 1: one or more tasks is queued, 0: no tasks are queued.

mq 1: one or more messages are queued, 0: no messages are queued.
Status Number of Messages Enqueued or Tasks Waiting.

Double clicking on an exchange will display the queue with any tasks or messages queued.

Messages

Name Name or handle of message. It is rare that messages are named so usually this will
be the handle.

Owner Message owner or “free” for a free message and “unused” for an unused MCB. (A

free message is one with an allocated buffer but that is not owned.) Usually this
will be a task handle. It can also be a pipe handle or LSR address if an LSR
received it. When the message is in an exchange, this field stores the handle of the

14

exchange it is in, if any. However, in that case, the exchange name or handle is
displayed in the Exchange field instead.

Pri Message priority.

Exchange The exchange name or handle that the message is in, if any.
Block Pointer to the message buffer.

Pool Pool the block is from.

Double clicking on a message will display other MCB fields not shown in the summary (1-line)

display:
Forward Link Control block handle
Backward Link Control block handle
Size Message size (decimal, exact)
Reply Index Index of the handle of the object to reply to among QCBs
(typically an exchange handle)
Blocks
Name Name or handle of block. It is rare that blocks are named so usually this will be
the handle.
Owner Block owner or “free” for a free block. (A free block is one with an allocated
buffer but that is not owned.) Usually this will be a task handle, but it can be an
LSR address if an LSR got it.
Pool The name or handle of the block pool the block is in.
Block Pointer Pointer to the data area of the block.
Size Block size (decimal).

Event Queues

Name Event name obtained from the handle table, or handle if not found.
Handle Event handle.

Double clicking on an event will display the tasks queued along with priority and count. The
counts are converted from differential count to absolute number of counts until each is resumed.

Event Groups

Name Event group name obtained from the handle table, or handle if not found.
Handle Event group handle.
flags Hex image of flags set with smx_EventFlagsSet().

Double clicking on an event group will display the tasks queued at each slot and the following
information:

Flags Flags currently set
TestMask Test mask
ClearMask Clear mask

AND, OR, or AND/OR Indicates which type of condition the task is waiting for.

15

Timers

Name
OwnerTask

type
state
count left

Isr
opt

Timer name obtained from the handle table, or handle if not found.

Name or handle of the task that owns the timer (the one that called
smx_TimerStart()).

Type of timer: cyclic or one-shot

Pulse state LO/HI.

The counts are converted from differential to absolute number of ticks remaining
until the timer expires and LSR is invoked.

Hex address of the LSR to be called when the timer counts down to zero

LSR parameter option. Indicates what will be passed to the LSR: par, pulse state
(LO/HI), etime at timeout, or number of timeouts since start.

Double clicking a timer will display more timer-specific information.

Name Timer name obtained from the handle table, or handle if not found.
Forward Link Next timer in timer queue (smx_tq) or NULL if none.
Timeouts Number of timeouts since last start.
Diff Count Difference count from preceding timer.
Next Delay When it will timeout again (etime).
Period Period (ticks) for a cyclic timer.
Width Pulse width.
Parameter Parameter to LSR.
Owner Task that started it.
Pipes
Name Pipe name obtained from the handle table, or handle if not found.
Handle Pipe handle.

Double clicking on a pipe will display more pipe specific information.

Name Pipe name obtained from the handle table, or handle if not found.
Handle Pipe handle.
Forward Link Control block handle of waiting task. (Start of queue.)

Backward Link Control block handle of waiting task. (End of queue.)

Width Pipe element width.

Flags Flags

Buffer Start Address of the buffer.

Buffer End Address of the end of the buffer.
Read Pointer Buffer read pointer.

Write Pointer Buffer write pointer.

Print

See Print Window section below.

16

User

This button activates a window that can be used to display custom user application objects that
may be helpful in a debugging session. The user or Micro Digital can write Microsoft Visual
C++ code to display any user application object, structure, variable, buffer, or memory value.
Contact Micro Digital for more information.

Conf Values

Shows the configuration values for the smx kernel. These are stored in the smx_cf structure and
set in acfg.h in the application.

Handle Table

Name Object name.

Handle Object handle.

Type Type of handle (Task, Semaphore, Ready Queue, ...).

Displays all entries of the handle table and all objects named when created (which need not be
added to the handle table starting with v4.2). Double clicking on a handle table entry does
nothing.

Diagnostics

Indicates the version of smx and the processor/memory model. Displays coarse profiling
information (percent idle, work, and smx overhead). Also displays a list of smx kernel errors, if
any. The column Reported/Caused By indicates who encountered or caused the error. This can
be a task name or strings to indicate LSR, ISR, or general smx error. Some errors are clearly
caused by the indicated task/LSR/ISR, such as SMXE_INV_PARM or SMXE_STK_OVFL, but
others are not. For example SMXE_RQ_ERROR is a general system error, and we have no idea
who caused it. Some errors such as SMXE_OUT_OF _and SMXE_INSUFF _ are encountered by
a task but not necessarily caused by the task. It is not the task’s fault that not enough control
blocks or heap space was configured, for example. However, it is possible that the task is trying
to allocate more of something than it should, so showing the task name may be a helpful clue.

smxFS
sSMXxNS
smxUSBD
smxUSBH

See SMX Middleware Module Displays below.

17

SMX Middleware Module Displays

This feature is currently available only for CodeWarrior and IAR ARM (little endian) versions of
smxAware.

The middleware sections display detailed information about each installed middleware product.
They only appear in the list in the window if the corresponding modules are present in your
application and you have the minimum version of each indicated below. This is because changes
were made to some data structures in each product, such as field ordering and size.

If smxAware is unable to read some global variables it needs, it will display a message
indicating this. For CodeWarrior it is necessary to compile the files that define these variables
with debug symbolics enabled. In the project window, check that there is a dot in the bug column
for the following files (in the corresponding library project):

smxFS: fapi

smxNS: net.c, netconf.c, support.c, tcp.c
smxUSBD: uddcd.c, udfunc.c

smxUSBH: udriver.c

If not, click in the bug column on the line for each file. (Clicking on a folder such as the top-
level source folder adds the dot to everything in the folder.) If you have trouble, try building and
linking the Debug version of the library instead. Contact Micro Digital for assistance if this
doesn’t solve it.

For IAR it is unnecessary to enable debug symbolics.

Below is a sample of each display.

SmMxFS
Minimum Version: SFS_VERSION >= 0x202 in \XFS\fport.h

Disk 0
DevicelD 00000000
Status Device Mounted
FAT Type FAT32
Sector Size 200
Cluster Size 200
Total Sectors 3cdal
Reserved Sectors 46
First Data Sector 7f0
Free Clusters 1da6b
Cache Sizes

Open File O sfstest.bin

18

Handle
DevicelD
File Size

File Pointer
File Status
Update Status

Attributes
Buffer Pointer
Path Cluster
Entry Cluster
Offset

First Cluster
FP Cluster

Open File 1 Testl.bin

Open File 2 Test2.bin

Disk 1

smxNS

Minimum Version: SNS_VERSION >= 0x0260 in \XNS\include\smxns.h

Net Status
Buffer Status
ARP Status
Route Status

20069610
00000000
1ec000
1ec000
READWRITE

File Updated
File Cache Empty
Cache Updated

20069640
2

b

e

15

f75

These each expand to display a table. They are the same as the diagnostics SmxNS reports via
Telnet, and they are documented in the smxNS User’s Guide in Appendix B: Debugging
Techniques.

smxUSBD
Minimum Version: SUD_VERSION >= 0x0231 in \XUSBD\udport.h

Device Controller Name ATI1
Registered Function driver Serial
Device Status Configured
Device Address 2
Device Descriptor
bLength 12
bDescriptorType 1

19

bcdUSB
bDeviceClass
bDeviceSubClass
bDeviceProtocol
bMaxPacketSize0
idVendor
idProduct
bcdDevice
iManufacturer
iProduct
bNumConfigurations
Total Configuration Number
Active Configuration Descriptor
bLength
bDescriptorType
wTotalLength
bNumlnterfaces
bConfiguration Value
iConfiguration
bmAttributes
bMaxPower
Alternative for interface 0 is 0
Interface Descriptor
bLength
bDescriptorType
binterfaceNumber
bAlternateSetting
binterfaceClass
binterfaceSubClass
binterfaceProtocol
ilnterface
Endpoint Descriptor
bLength
bDescriptorType
bEndpointAddress
bmAttributes
wMaxPacketSize
binterval
Endpoint Descriptor

GO, NDNNOO MO

N O1

Bulk

20

smxUSBH
Minimum Version: SU_VERSION >= 0x0224 in \XUSBH\uport.h

Host Statistics
Host name OHCI
Registered class drivers

Device Name hub
Device Name usb-storage
Device Name usb-mouse
Device Name usb-keyboard
Plugged Device: hub
Address 1
Device Descriptor:
bLength 12
bDescriptorType 1
bcdUSB 110
bDeviceClass 9
bDeviceSubClass 0
bDeviceProtocol 0
bMaxPacketSize0 8
idVendor 0
idProduct 0
bcdDevice 0
iManufacturer 0
iProduct 2
iSerialNumber 1
bNumConfigurations 1

Active Configuration Descriptor
bLength
bDescriptorType
wTotalLength
bNumlnterfaces
bConfigurationValue
iConfiguration
bmAttributes
bMaxPower
Interface Descriptor O
Alternate setting
bLength
bDescriptorType
bAlternateSetting
binterfaceClass
binterfaceSubClass
binterfaceProtocol
Endpoint Descriptor for Endpoint 0

oOPrrOFRPFPEDNO

OO0 VWO ©Oo

21

bLength
bDescriptorType
bEndpointAddress
bmAttributes
wMaxPacketSize
binterval
Plugged Device: usb-storage
Address
Device Descriptor:
bLength
bDescriptorType
bcdUSB
bDeviceClass
bDeviceSubClass
bDeviceProtocol
bMaxPacketSize0
idVendor
idProduct
bcdDevice
iManufacturer
iProduct
iSerialNumber
bNumConfigurations

Active Configuration Descriptor

bLength
bDescriptorType
wTotalLength
bNumInterfaces
bConfigurationValue
iConfiguration
bmAttributes
bMaxPower
Interface Descriptor 0
Alternate setting
bLength
bDescriptorType
bAlternateSetting
binterfaceClass
binterfaceSubClass
binterfaceProtocol

110

40
eal
6828
110

= W

WOOFR,rEFENDNO

N O

o 00O M~ OwOo

50

Endpoint Descriptor for Endpoint 0

bLength
bDescriptorType
bEndpointAddress
bmAttributes
wMaxPacketSize

-
5
81
2
40

22

binterval 0
Endpoint Descriptor for Endpoint 1

Print Window

The print feature is like using printf() to send info strings to the smxAware print window. The
user calls sa_Print() or sa_PrintVals() with a null-terminated string. During execution, the strings
are written to the print buffer in the order in which they are encountered. Examples:

sa_Print("looping™); [* display a string */
sa_PrintVals("i = %d j = %d", i, j); /* display 2 values */
sa_PrintVals("i = %d", i, 0); [* display 1 value */

Caution: These functions are not safe from ISRs, since they call SSRs (semaphore).

Note: You may want to use C library functions to prepare the string for sa_Print(). However note
that sprintf() requires an enormous amount of stack, so we do not recommend using it. For
example, the PowerPC version allocates roughly 1700 bytes for local variables! Also note that
you should protect any non-reentrant C library functions you use with the in_clib semaphore.

To use the print window:

1. Add calls to sa_Print() from points of interest in your app, such as the examples
above.

2. Build the Debug version of your app.

3. Run your app in the debugger. Open the smxAware window and select the Print
display to view the contents.

Modal vs Non-Modal Dialog

The smxAware dialog for some debuggers is modal meaning it has to be closed before you can
continue to use the debugger to step through the code, inspect variables, etc.

The dialog for CodeWarrior and IAR is non-modal, meaning you can continue to step through
the code and use the debugger while the smxAware dialog is open. This is convenient to allow
you to watch as smx objects change, but it can slow down responsiveness of the debugger. The
delay is most noticeable when you are stepping through your code, since data is transferred after
each step. (Note that there are problems with some versions of CodeWarrior when stepping with
the smxAware window open. If your version has a problem, open the Options dialog and check
“Close window on each run”. This will automatically close it when you step or run.)

The lag depends on how much data is read from the target via the BDM/JTAG connection and
the speed of that connection. The Task window causes the most delay since the TCB is the

23

biggest control block and every field of every TCB is read from the target after each step or run.
If you are viewing semaphores or exchanges, much less information is transferred so stepping is
faster, assuming you don’t have a lot of these in use. Closing the smxAware window when you
don’t need to watch it will make stepping through the code faster. The Diagnostic and User
windows transfer very little. In the Options dialog, you can check “Close window on each run”
to make it automatically close each time you step or run, and then you only have to open it when
you want to see it.

The same lag occurs when the CodeWarrior Process list is open (see next section). The debugger
does not tell the DLL when this window is closed, so the DLL will continue to read information
from the target after each step or run. Workaround: After closing the Process list, re-open and
close the smxAware window. This will set smxAwareOpen to false, in the DLL, disabling
smxAware until you open either window again.

Suspended Task Information

Some debuggers have the ability to display suspended task information, such as to show the
location it was suspended in the code window, with call stack and even registers. However, this
is tool-specific and can be difficult to implement, so in v4.4.0, we added a feature to smx to
show where tasks were suspended. It can be easily retrofitted into existing v4.2, v4.3, and v4.4
releases. Currently it has been implemented only for ARM and ARM-M.

The susploc field was added to the TCB to store the location a task was suspended. It is the
address of the next instruction that will execute when that task is resumed. You can enter that
address into the debugger’s disassembly window to see the location, and you can set a
breakpoint there to run to that point and then continue debugging from there (and view call
stack, variables, registers, etc.).

smxAware displays this address in the SuspLoc column of the text Tasks display and in the
Suspended Location field of an expanded Task. SMX_CFG_SAVE_SUSPLOC must be 1 in
xcfg.h and the CPU architecture .inc file, e.g. xarm_iar.inc, and sa_susploc must be TRUE in
smxaware.c.

Note that the value in TCB.susploc should be ignored for stopped tasks (because they will restart
from the beginning) and for ct (since it is currently running). smxAware displays a — for these
cases.

* | B Tasks -
Task TaskID Hode Pri Flag Timeout State Susploc
- smx_Nulltask Ox20000400 S no oonoonog INF Stopped - L
+-idle O0=x20000450 - oo oooooono? Ready 00206f9a 3
+- LED_task O0x200004a0 S n4 ooooonz2i INF Wait 0020c417
+- opcon O=z200004£0 - ne ooooonzi INF Wait 0020=335
+- leddeno_task 0x20000540 - 03 ooooonzs INF Wait 0020bcE 9

= +- s 0x20000590 S 01 ooooonos Ready 00211845

;zi J:f--t2a 0=x200005=0 - nz oooooonos Ready oo02i1880

= 4- t2b 0=x20000630 S nz oooooonos Ready 00211864

E +- (t2e) O=x20000680 - nz oooooonos *x RUH *x = e

24

CodeWarrior

Note: This feature may or may not work for your version of smx, smxAware, and CodeWarrior,
due to changes in CodeWarrior. It requires smxAware to know the stack layout for a suspended
task. Due to changes in code generation for each new release of CodeWarrior the stack structure
would change so this feature would break.

While the smxAware window or Process list is open, CodeWarrior opens a new Thread window
each time execution stops in a new task, and the task name is shown in the title bar. Thread
windows can also be opened from the Process list (View | System | [connection type]): Click
once on “smx Process” in the left pane to get a list of tasks in the right pane, then double-click
on the task in the right pane to open its thread window. Note that the Process list is limited to
displaying only 2 states for the task, Running and Suspended. Unfortunately, it supports only 2
states, so this can be misleading because smx distinguishes between suspended and stopped
states. For more specific task state information look at the State column in the Task display in
the smxAware window.

Note: If you are connected to the target with something other than just the P&E parallel wiggler
(e.g. the USB MultiLink, Lightning card, Abatron, etc.), you need to change the IDE
preferences so the Process list works properly: Edit | Preferences, select Remote
Connections in the left pane, select the interface you are using (e.g. Lightning), press
Change, and then check the box “Show in process list”.

The main use of the Thread window for a suspended task is to look through the call stack to see
where the task has been and where it will execute next — the sequence it ran through before it
was suspended.

The Thread windows are blank for stopped tasks. For other tasks (suspended, running), they
show:

1. call stack
2. local variables
3. code

The call stack pane shows the sequence of nested calls that led to the last execution point.
Clicking on each item (routine) in the call stack will change the view in the code pane to show
the last point that executed in each routine. Lines that look like this:

“VECTOR_TABLE <0x00000000>" are functions from libraries that were compiled with
debug symbolics off, so the function name is unknown. In the case of a task suspended on an
SSR (smx call), the lowest entry will be for smx_SSREXit() and the one above it is the SSR that
the task called that caused the task to suspend. If you were to build the smx library with debug
symbolics on, you would see these names there.

The local variables pane shows any local variables for the routine in which that the task was

suspended. It will be empty if the code pane shows disassembly, since debug symbolics are not
available. The Location column indicates the address or register that stores each variable. Do not

25

trust the values shown for variables stored in reqgisters since the register value could have
changed (several times) between the particular function in the call stack and the point where it is
saved in the scheduler.

The code pane initially shows where the task will resume. This is the instruction following the
last one to run before the task was suspended. If it shows address 0, that means the task stopped
or was not yet started. Stopped tasks have no task state; only suspended tasks do. Most often,
tasks are suspended as a result of an smx call. Since the smx library is provided in pre-built form
without debug symbolics, the code window will show disassembly. If you have smx source code
and rebuild the smx library with debug symbolics on, you will see source code in the code
window. When a task is suspended due to an interrupt, the code window will show source code if
the point of interruption is in a module compiled with debug symbolics enabled.

Registers window:

1. Each time a new Thread window is opened, a node is added to the Registers window for that
task. Expanding the node shows its registers.

2. Ox77777777 indicates a register whose value is unknown. For better performance, smx saves
the minimum number of registers on a task switch. More are saved for suspend on interrupt
than suspend on call. For those not saved, we simply display OX77777777.

Task-Specific Breakpoints

Task-specific breakpoints are breakpoints that only occur if the specified task is the active or
running task. They are often used to break in a common routine that is called by multiple tasks.

CodeWarrior
CodeWarrior does not yet support task-specific breakpoints.

IAR
Only available for IAR v6.10 and higher.

To set a task-specific breakpoint:

1. Run until the tasks are created.

2. Set a breakpoint.

3. Right click the line with the breakpoint, and select “Edit Breakpoint™. Click the Task
button, and select a task from the drop-down list. Click the “Break only if selected task is
active” checkbox.

The drop-down list only shows tasks that have been created at the time. If the task is not named
(in the handle table) then the task handle will be displayed in the drop-down list. If the code at
the breakpoint is only ever executed by one specific task, there is no need to make the breakpoint
task-specific.

26

Stepping (using the green task-specific stepping toolbar): If more than one task can execute the
same code, there is a need for both task-specific breakpoints and task-specific stepping.

For example, consider some utility function, called by several different tasks. Stepping through
such a function to verify its correctness can be quite confusing without task-specific stepping.
Standard stepping usually works as follows (slightly simplified): When you invoke a step
command, the debugger computes one or more locations where that step will end, sets
corresponding temporary breakpoints, and simply starts execution. When execution hits one of
the breakpoints, they are all removed, and the step is finished. During that brief (or not so brief)
execution, basically anything can happen in an application with multiple tasks. In particular, a
task switch may occur, and another task may hit one of the breakpoints before the original task
does. It may appear that you have performed a normal step, but now you are watching another
task. The other task could have called the function with another argument or be in another
iteration of a loop, so the values of local variables could be totally different. Hence, there is a
need for task-specific stepping. The step commands on the green stepping toolbar behave just
like the normal stepping commands, but they will make sure that the step does not finish until the
original task reaches the step destination (unless a different breakpoint is executed first).

Note: The task does not have to be named or in the handle table to use the task-specific stepping
toolbar features.

Note: In the standard debugger menu, there are no Instruction Step Over and Instruction Step
commands. This is because the standard Step Over and Step Into commands are context
sensitive, stepping by statement and function call when a source window is active, and stepping
by instruction when the Disassembly window is active. The RTOS stepping commands are
unfortunately not context sensitive; you must choose which kind of step to perform.

SingleStep

The task-specific breakpoint will be triggered only if it is hit while the specified task is running.
To use this option:

Run the application long enough to start the tasks.

Set a breakpoint.

Right click on the breakpoint marker to bring up the Modifying Breakpoint dialog box.
Select the task icon (the icon with a circle, triangle and square).

Select one or more tasks (expand the task list if necessary).

agrOdDE

Configuration

smxAware.ini stores smxAware state and configuration settings. It is automatically created with
default values if it does not exist. It stores some values about your previous session, such as
whether you had certain buttons enabled, window size, etc. Currently, the only configuration
options are for Graphical Analysis Tool, so it is documented in the Configuration section of the
GAT section.

27

smxAware GAT (Graphical Analysis Tools)

smxAware with GAT includes graphical displays that are very useful. To access them select
smxAware | Graph from the menu. There are 3 graphical displays here plus an error buffer
display. These are selected by the buttons “Event”, “Profile”, “Stack”, and “Error”. These are
discussed below, in turn. Also, you can display the Event Buffer in text form with smxAware |
Event Buffer from the menu and memory usage with smxAware | Memory Usage.

This feature is currently implemented only for CodeWarrior and 1AR.

If these displays don’t work, check that EVB_SIZE is non-zero in APP\acfg.h and that
SMX_CFG_EVB is set to 1 in xsmx\xcfg.h.

For IAR, GAT runs as a standalone executable that is launched automatically by the IDE, rather
than as a window within the IDE. It is launched when you select smxAware | Graph or Event
Buffer from the menu. If the GAT window does not open, see the Troubleshooting section at the
end of this manual.

The standalone smxAwareGAT .exe can also be run from Windows to look at past traces off-
line. The Event Trace Buffer that is downloaded from the target is saved in the directory
indicated in Saved Traces below, or where the smxAware.ini file there specifies in its dataPath
setting. (In the past, they were stored in the same directory as the smxAware DLL, but this is not
allowed by Windows Vista/7 User Access Control.) The file name of each saved trace indicates
the date and time it was saved. If the GAT window does not open, see the Troubleshooting
section at the end of this manual.

Guides

Color Key
blue tasks (light blue is used for tasks with no events during the sample period)
green LSRs
red ISRs

scheduler
SSR calls in blue and green bars; ISR invokes in red bars
red dots errors detected

28

Toolbar

The toolbar was changed to be 2 lines. View-specific buttons were moved/added to the second

line.

Event Timelines

SurtAIphaI SortTime

Open| < | || Task | LSR [ISR |Event Profile| Stack | | Detail| + | | ®

| | & | aM |

Open
<>
Task, LSR, ISR
Event
Profile
Stack
Error
Detalil
+
Options
?

SortAlpha/Time

Open saved trace files.

Scan through saved trace files.

See “Event Timelines/ Filters” below.

Event Timelines display. See “Event Timelines” below.
Profile display. See “Profile” below.

Stack Usage display. See “Stack Usage” below.

Error display. See “Error Buffer” below.

Details window. See “Event Timelines/ Details Button” below.
Crosshairs

Configuration settings. See “Options Dialog” below.
Help

Re-orders lines. See “Event Timelines/ Sort Buttons” below.

-/+ Zoom. See “Event Timelines/ Zoom” below.
Profile
Open| < | |[Task [LSR [1SR _Event |Profile Stack | | Detail| + | 2 |
All Frames | Next Frame > | Percent Time | Table |
All Frames Shows the average for all frames.
Prev Frame Moves to the previous frame.
Next Frame Moves to the next frame.
Percent Shows profile information as a percent of total time.
Time Shows actual run time.
Table Shows data in tabular form.
Stack
Open| < | || Task | LSR [ISR Event |Profile| Stack | | + | | 2 |

SurtAIpha| SortSize | Percent Bytes

SortAlpha/Size
Percent
Bytes

Re-orders lines in alphabetically or by stack size.
Shows stack usage as a percentage of each stack’s size.
Shows the number of bytes used.

29

Event Timelines

This is the premier feature of GAT. This display lets you visualize system operation with bars
that indicate when tasks, LSRs, and ISRs ran, and it indicates events that occurred in them, such
as smx calls. This gives you a good view of system execution over a short sample period. As the
system runs, smx logs entries in its Event Buffer, and smxAware displays this information with
graphical bars. Unlike other similar tools, the display is clean and un-cluttered, making it look
deceptively simple. This section discusses the capabilities of this display, some of which might
not be immediately evident.

When the window is first opened it is zoomed all the way out, showing the entire trace. See
“Zoom” below for discussion of zooming in and out.

Setup

To use this feature, the smx Event Buffer must be enabled by setting EVB_SIZE to a non-zero
value in acfg.h and by setting SMX_CFG_EVB to 1 in xcfg.h. Ensure you have enough heap
space to accommodate EVB_SIZE words.

Also, the sb_ticktmr_ variables in the BSP must be set appropriately, to tell smxAware the
characteristics of the timer used for event record timestamps. smxAware uses this information to
convert the timestamp into a meaningful time (fractional seconds). See the Event Timestamps
section below. For more information about the Event Buffer, see the smx User’s Guide.

30

Event Timelines

E smxAware Graphical Analysis Tool gm
Open| < [Task [1SR [1SR [Event Profile| Stack | | Detail| + | | 2 |
|| Sortaipha [SortTime | | & | an |
Hanes Time 4 _ 0608 S5 Drag Me to ZOON -
4.10 4 30 450
Syzten Stack

snx_Idle A I I NN I I NN N TN 1N
snxz_TickISE | | [| | | |
smx_KeepTinsISR | EEERREERERRE
=nz_ TimeoutLSE | | | | | | | | ‘
PegTask |

lsr_timerl | | | | | | | |
HetTashk | | | | |
opeon | | | \ | | |
snxlSBE-Hub \ | | I
FegqTouchTask | | | ‘ | | ‘ | |
smx_ProfilelSR | :
presmpter_task |

event_flags_=et_fl | | | | ‘
event flags wait3 |

n=g_=zend_taslk | ‘

lsr_timer? |

pipe_put_task | | |
pipe_get_task | | |
nademo_task |
nsg_receive_task |
event_flags_waitl |

event_flags_wait?2 |

LED task |

=lesper task |
=tart_hi_lo_tashk |

hi_task |

timer_task |

lo_task |

SFS lst Test Task I
EMAC ISR I
HULL
=nxUSBH-OHCT
naster_task

m

FRTTIN » -

C\Users\David Moore\AppData\Roaming\SMX\Data_Jan21_23-17-02.smx

Notes about this sample:

1. The window shows the whole trace initially. It can be zoomed in very finely. If you are
reading this before you have smxAware, we recommend you try the standalone demo on our
web site (http://www.smxrtos.com/demo) so you can see how much it can be zoomed in.
Also see the next graphic below.

2. Notice the regularity of the smx_Tick ISR and the smx_KeepTimeLSR. If you zoomed in,
you would see that smx_KeepTime runs right after smx_TickISR.

3. ltisalso interesting that although there are many tasks in the demo doing various things, the
system is mostly idle. This gives a clear picture of how little time it takes for smx operations
such as sending and receiving messages.

The next sample shows the same trace zoomed fairly finely, to show about 400 usec of the trace,

near the end of the trace (see scale). When zoomed, it is possible to see the system call events
(white bars) within the colored bars.

31

http://www.smxrtos.com/demo

EEe—— e

Open| < > |[Task [L5R [1SR [Event Profile| Stack | | Detil| + | | 2 |
SortAlpha| SeriTime MG | & | & | @&l |

Hame Time 4_.5901 S5 Drag Me to ZOOM
4.59000 4.59010 4.59020 4.59030

Sy=tem Stack
PegTask |~ ==

snx_Idle |
=nx_TickISE
snx_KeepTinsLSE
lzr_timerl
smnx_TimeoutLSRE
HetTask

opoon

=mzUSBEH-Hub
PegTouchTask
=mx_FrofilelSR
presnpter_task
event_flags =et_f1
svent_flags waitld
n=g_send_ task
l=r_timexr2
pipe_put_task
pipe_get_task
n=deno_task
nEg_receive taslk
event_flags waitl
event_flags wait?
LED task
=leeper_task
start_hi_lo task
hi_task
timer_task
lo_task

SFS lst Test Task
EMAC ISR

HULL

=nzUSEH-OHCT

naster_taslk
<« |l LA <

C\Users\David Moore\AppData\Roaming\SMX\Data_Jan21_23-17-02.smx

Saved Traces

The Open button allows you to open past traces. In older versions of smxAware, they were
stored in the same directory as the smxAware DLL (under your compiler directory). Now, due to
security restrictions in newer versions of Windows, they are stored in
C:\Users\<username>\AppData\Roaming\SMX in Windows 7 or C:\Documents and
Settings\<username>\Application Data\SMX in Windows XP. (AppData and Application Data
are hidden directories.) The date and time are encoded in the file name of each. To increase the
number of saved traces, increase the setting maxFilesToSave in smxAware.ini. If you want to
permanently keep the trace simply rename it to a descriptive name. Note that saved traces can be
opened offline by running smxAwareGAT .exe.

Filters

The Task, ISR, and LSR buttons control which bars are enabled in the display. The buttons are
toggles that are visibly in or out. This does not affect what events are logged in the Event Buffer.
To control that, see the section Options Dialog below.

32

Reference Line

Right-click anywhere in the client area of the timelines display to set a vertical reference line. To
clear it, right-click in the header or in the left pane. As you move the mouse, the time delta is
displayed in the header area. This is useful for measuring time between events.

Zoom

In addition to the 4 zoom buttons, the view can be zoomed by dragging the mouse in the gray
header above the timelines display right or left with the left button pressed.

If a reference line is set, the line stays fixed, so you can zoom in to a specific area.

The behavior of the Zoom buttons is as you would expect, except for Zoom in Max. Pressing this
button zooms in to show the 4 most recent events (those at the right edge of the window) or, if a
reference line is set, it zooms in to the 4 events nearest it. You may be able to zoom in a little
more since it zooms until the 4 events fill the screen, but this may not be maximum zoom.

Panning / Scrolling

In addition to the horizontal scroll bar, the view can be panned by dragging the client area left or
right with the left mouse button pressed.

Event Lines in Bars

Some events, such as SSR calls and LSR invokes appear as white lines inside the blue, green,
and red bars. You may need to zoom in a bit to see them. For example, this task line shows many
events:

==~~~ P b b b b e e b p— e b e b P] f—

The vertical tick at the left of each event indicates the entry event and the tick at the right
indicates the exit event. For example, they indicate the entry and exit of an SSR (smx call). The
bar connecting them shows the duration of the SSR call. ISR invoke events appear as a single
tick mark.

Error Dots

Errors appear as red dots on the bars that caused them. The dots always appear the same size
regardless of zoom level so that they are noticeable. Moving the mouse over a dot with the
Details window open shows information about the error. Zooming in will show where the error
occurred relative to other events on the bar. Here is an example that shows what the dot looks
like when zoomed out.

33

When zoomed in, you can see where the error occurred relative to other events:

Details Button

With the Details button pressed, mouse-over the tick marks at the ends of the white event lines to
see details of the event in the small window that pops up. For an SSR, the left tick shows the
parameters passed and the right tick shows the return value. Example:

Time 1.3196755 Time 1.3196833
Hame FegTa=k Hame PegTa=zlk
=nx_EventQususeCount { =nE_EventQueusCount ()
=nx_TicksEQD, return FALSE:
2.
IHF):
Left Tick (Start of Event) Right Tick (End of Event)

This is what is displayed when the mouse is moved over the left and right edges of an SSR bar. It
shows the parameters and return value of the call.

The ends of the colored bars are also events (the start and end of a task, LSR, or ISR). Mouse-
over them for details. You can also mouse-over error dots to get details about error events.

The Details button and its associated window allow you to get detailed information about events
without cluttering the display with a lot of icons.

Note: The Name field shows the name of the task/LSR/ISR bar. In the case of an error dot for
the smx STK_OVFL error, if it is reported by smx_ldleTask, the dot appears in the task line for
smx_IdleTask, so that is the name that is shown in this window, not the name of the task whose
stack overflowed. For this error, please press the Error button to see the error list, which shows
the name of the task whose stack overflowed. Also note that if an error is reported in an LSR or
ISR that is not tagged with smx_EVB_LOG_LSR() and smx_EVB_LOG_LSR_RET() (or ISR)
macros, there will be no timeline for it, so the dot will be drawn in the timeline of the task that
was running when it was reported.

Re-Ordering Event Lines

You can drag and drop lines in the left pane up or down to change the ordering. The event bars
move along with the text lines. This is useful to better visualize sequences of events. Also, when
you switch to the Profile and Stack Usage displays, the same ordering is used.

34

Sort Buttons

These re-order the lines so that the lines are sorted alphabetically or by time. For time, the
topmost line is the one with the first event, the second line has the next event, etc. If the
reference line is set (by right-clicking the mouse), it is the events after the reference line that
determine the sorting. Otherwise, it is relative to the left edge of the window.

Overlaps

It is correct that ISRs and LSRs overlap task bars, since they run in the context of the current
task. Also, there is a period between the ISR event and LSR event when the LSR scheduler runs
that shows up as a gap between the ISR and LSR events. We mark this region orange in the blue
task bar as a reminder that the LSR scheduler ran during this time.

Duration of an Event

Set the reference line at the left edge of the event (right-click the mouse) and move the pointer to
the right. The header shows the Delta time between the reference line and mouse pointer.

Guidelines

To enable horizontal and vertical guidelines, open the Options dialog and check the Guidelines
checkboxes.

35

Profile

This display shows profiling information gathered by smx. It allows stepping through the profile
frames. The first graph shown is the average of all frames. See the profiling sections of the
Diagnostics chapter of the smx User’s Guide for information about smx profiling.

-] smxAware Graphical Analysis Too L= E)
Open| < Task | LSR | ISR _Event [Profile Stack | | Detail| + | | 2 |
' All Frames | Next Frame > | Percent Time | Table |
| Hame Profile TimeFrame: All 1.00 to 4.00 Seconds ‘
ISR total J12% |
ISR total 35% |
snx_Tdl= 36 . 60> |
P=gTask 18|
=nxTSBEH-0OHCI LS00
=mxlSEH-Hub 02x |
HetTask .04 |
LED task 00% |
opCon 02x |

0o% |
1z
03% |
02 |
02% |
00% |
0o |
0oz |
0% |
0o |
0oz |
02% |

nedeno task

SFS 1=t Test Task
nsg_send_task
nsg_receive task
presmnpter_task
naster_task
start_hi_lo_task
=leeper_task
event_flags waitl
event_flags_wait2
event_flags_waitld
event_flags set_f1

R R N R N N N N N NN N N N N N - -]

timer_task 00% |
pipe_put_task 13% |
pips get_task Ll2x |
PegTouchTask L02% |
=lavel .00%
slavel 00
=lavel .oox
=lavel .00%
slaved 0oz
lo_task a0
hi_task .00z
<] »

C\Users\David Moore\AppData\Roaming\SMX\Data_Jan21_23-17-02.smx

Notice the All Frames button is pressed which shows the average of all samples. Using the Next
Frame / Prev Frame buttons, you can step through each sample.

Overhead is shown on the first line (not pictured here), which indicates the time for scheduling
and other system overhead and profiling overhead. It is calculated as the remaining time, as
explained in the smx User’s Guide. It may differ from the value shown for Ovh on the terminal
display, because the latter is smoothed by the code in smx_ProfileDisplay().

36

Clicking the Table button shows the data in tabular form:

mxAware Graphical Analysis Too

Open| < > |[Task [ISR [ISR Event |Profile Stack | | Detail| + | 2 |
All Frames | Next Frame > | Percent Time Table

Hame Profile TimeFrame: All 1.00 to 4. 00 Seconds

LSR total Jl2x 12% L12%
ISE total L ¥4 355 L36%
=nz_Idle J16e% 74 .89%
PegTask .1ex 18% Jlax
=nzUSBH-OHCI o0 00 .00
=nzUSBH-Hub .02% 02 .02%
HetTask nzx 05 05%
LED_task .00% 00 .00z
opcon 02k 02% 01%
nedeno_taslk .00z o0 .0o0%
SFS 1st Test Task 11% 11 10%
neg_send task L03% 03% L03%
nsg_receive task L02x 02% .02
presnpter_task L02x 02% L01%
naster_task 00 00 C01%
start_hi_lo taslk L00% 01 ik
=leeper_task .00 o0 ks
event_flags waitl L01% o0 L01%
event_flags wait? .00z o0z .01%
event_flags wait3 01 01 [ilik4
event_flags s=t_f1 .02z n2% L02%
timer_taslk a0 00 [ilik4
pipe_put_task L13x% 13% L13x
pipe_get_task Jl2x 12% l2%
PegTouchTask L02x 02% L03%
=lavel itk 00 Rl
slavel o0 00 .00
=lavel itk 00 Rl
slavel o0 00 .00
=laved .00% 00 .00z
lo_task 00z 00 0oz
hi_task .00% 00 .00z

« [m] N I
C\Users\David Moore\AppData\Roaming\SMX\Data_Jan21_23-17-02.smx

All three samples are shown. The number of profile samples is configured in smx.

37

Stack Usage

This display shows stack usages for all tasks as a percent of each stack’s size, so you can see
how big to make your stacks and whether overflow has occurred in any of them. In a
multitasking system, stacks account for a large portion of the system’s RAM requirement, so it is
very helpful to have this display to be able to tune stack sizes. Also, stack overflow is a common
and difficult problem to detect without a tool such as this. Note that if stacks are put into SRAM
to boost performance, fine-tuning stack sizes is even more important.

[ﬁ;mxﬁmam Graphical Ana E'ST 0 E
Open | < Task | LSR | ISR Event |Profile[Stack Error | |+ B 2 |
SortAlpha| SonSize Percent Bytes

Hames Stack Usage 114.1% s=shared stack dim bars indicate guestionable HWMs
T=ed Size 0% 103 20% 30% 403 50% 603 703 20% 303
Sy=ten Stack 176,512
FPeqgTaszk 3424-16384
pipe_get_task 64,504
=nx_Idle 288,600
=nx_TickISRE
=nx_KeepTineLlSR
s=nx_TimneoutLSE
opcon 72-504
PegTouchTask §28-8192
EMAC ISR
HetTask 13281296
l=r_timerl
preenpter_task 136504
event_flags =et_f1 64,504
=nxUSEH-Huh 104800
n=g_receive_task 64504
n=g_s=end_task 88504
event_flags waitl 72-504
event_flags wait2 72-504
LED task 64-504
=leeper_task 76504
pipe _put_task 96504
start_hi_lo_task 128-504
hi_task 6504
tiner tasl 128504
lo tas=k 6504
n=demo_task 360-2696
SFS 1=t Test Task 224-24958
event_flags_waitd 72,504
s=nx_ProfileLlSRE
=nxUSEH-OHCI 487896
mnaster_task 128-504
slavel 48504
slavel 48504
slave 48-504
4| (3 48-504

C\Users\David Moore\AppData\Roaming\SMX\Data Jan24 23-11-34.smx

@]

oW

L B T I /T VR I I

2]

L I

e Blue bars indicate stacks that are ok.

e Orange bars indicate stacks that are close to overflow.

e Red bars indicate that overflow has occurred.

e Dim blue bars (not shown) mean that stack usage may not be accurate (actual usage may
be higher) because the stack has not been scanned since the last time the task ran. These
usually appear briefly, if at all, because after smxAware draws the graph, it scans those
stacks via the debug connection. Most stack scanning is done by the idle task.

38

e The numbers at the left of each bar indicate the number of bytes used vs. the stack size.
Note that the red bars only go to about 110% regardless of how severe the overflow is, so
consult these numbers to see the actual usage.

e An “s” next to a bar indicates a shared stack (one from the stack pool). Note that all
shared stacks have the same size (e.g. 504 bytes, in the diagram above). Keep in mind
that stack usage is independent of whether there is currently a stack assigned to the task
or not. It reflects the maximum amount of stack used by the task throughout its existence.
A task whose stack is marked “s” may not currently have a stack assigned to it (because
it is stopped, not suspended). If a task is deleted and re-created, the usage cannot be
retained because the TCB is freed and reallocated each time.

We recommend you enable stack scanning in your application, since that is the most reliable
method of determining stack usage (SMX_CFG_STACK_SCAN in xcfg.h and STACK_SCAN
in acfg.h). The alternative is to rely on smx periodically checking the value of the stack pointer,
but this will likely miss times when the stack pointer is at an extreme. If scanning is off, all bars
will be dim, since determining stack usage this way is unreliable. Whether the bar is dim or not
depends on the state of the stk_hwmv flag in the TCB. This flag is set after the stack is scanned.
It is cleared when the task is started or resumed, since it may use more stack as it runs. Stack
scanning is done by smx_StackStack() (XSMX\xsched.c) which is called by the idle task. If
many of the bars are initially dim, the system is heavily loaded and the idle task is not running
very often.

Also enable stack padding (STACK_PAD_SIZE in acfg.h) so the system will continue to run
after overflow (if it overflows only into the pad), and you can determine the amount of stack
needed for each task after letting the system run a while. Note that stack sizes next to the bars do
not include the pad size.

This display uses the shwm and ssz fields of the TCB. shwm is the “high-water mark,” an
indication of the number of bytes of stack that have been used. ssz is the size of the stack (the
usable area, not including any padding at the top, the Register Save Area (RSA), or loss due to
alignment).

The System Stack usage is also shown. This stack is used by ISRs, LSRs, the scheduler, and
error handling.

Error Buffer

For convenience, the Error button was added to allow you to inspect the error buffer from the
Graphical Analysis Tool, so you don’t have to switch back to the smxAware text window to look
at it. The error buffer shows all errors in textual form, in the order in which they occurred. The
Error button is disabled if no errors have occurred. The Reported/Caused By column indicates
who encountered or caused the error. See the section about the smxAware Diagnostic window
earlier in this manual for more discussion.

39

Event Buffer (text)

This shows the information contained in the smx Event Buffer, in textual form. Each line
represents one event in the buffer. This is an alternate way to view the data shown by the Event
Timelines bar graph. This window has the ability to filter which events are displayed and save to
a file or copy to the clipboard. It allows searching for any string and stepping next or previous.

Open| Save| Copy|[Task[LSR [ISR [SSR [Emor [Invok [User [AN %

Find: | Mext | Prev [Match case [v Calor

145.6395390 SeR return=00000001
145.639A4458 _ SSR smx_TasklockClear()
145.68396474 _ S5R smx_TasklockClear() return=TELE
145.6493819 smx_TickISRE ISR enter
145.6493842 smxz_Invoke Invk 802c03f3 pl=0xz00000000
145.64938589 smx_ TickIZR ISR exit
145.6493969 smx_FeepTimelIR L3R enter
145.6494008 8S0Z2«08f8 S5R smx_EventQueueZignal () pl=smx_TicksEQ
145.6494065 BS02=08f8 S5R smiE_EventJusuelignal () return=TRUE
145.6494103 smx_Invoke Invk 802c5hic pl=0x0000000Z2
6494154 smx_ Invoke Invk 8024378 pl=0x00000000
L R494206 smx_Invoke Invk GB02cibbe pl=0xz00000000
.6494245 smx_ KeepTimel3R LER exit
L. h494314 lsr_timerl L3R enter
.6494390 lsr_timerl exit
6494494 gmx TimeoutLZSRE enter
.h494515 smx_TimeoutLIE exit
.6494621 PegTask {resume
.6494724 PegTask smE_SemTest() pl=PegPresentationlem p2=INF
. 6494757 PegTask smx_Jemlest() return=TELE
. 64948357 PegTask smx_SemSignal () pl=PegPresentaticonem
.b494892 PegTask smz_SemI3ignal () return=TRUE
.6494932 PegTask smx_EventQueueCount () pl=smx TicksEQ pZ=2 p3=INF
.6495066 PegTask smi_FEventQueueCount () return=FALSE
. 6495203 smx_Idle {resume>
6496799 omx_Idle smx_TasklockClear()
490826 smx_Idle smxz_TaskLockClear ()
L6497507 smx_Idle smx_TasklockClear()
L R497535 smx_Idle smx_TasklockClear()
.B5935829 smx_TickIZR enter
L6593852 smx_Inwvoke g02c08f3 pl=0x00000000
.h593898 smz_TickIZRE exit
.6593979 smx HeepTimel3R enter
LRE94021 BOZc0AfS smiE_FEventQueuelignal () pl=smx_TicksEQ
.6594100 802c08f8 smx_EventQueuelignal () return=TRUE
LRE94139 smx_Invokes 802z 0hhe pl=0xz00000000
.6594178 smx_KeepTimel3IR exit
6594239 smx TimeoutLSRE enter
LARE94261 smx_TimeoutL3SE exit
.B5943688 msg_receive_task {resume >
6594483 msg_receive task smxE_MsgReceive () pl=mail¥chygd p2=INF
.6594513 msg_receive_task smx_MsgReceive () return=msyg
.6594604 msg_receive task smxE_MsgSend () pl=msg pZ=mailXchgB p3=NHILL
.6594681 msg_receive task smxE_MsgSend () return=TRIE
.65945820 msg_send_task Task <resume>
LB595170 msg_send task S5R smiE_EventQueueCount () pl=smx TicksEQ pZ=10 p3=INF
.6595245 msg_send task o5R smx_EventlueueCount ()] return=FALIE
.6595384 msg_receive task Task <{resume>
L6595479 msg receive task S5R smx EventOueueCount @’ mnl=smx TicksEQ nZ=25 w3=IHF

C\Users\David Moore\AppData\Roaming\SMX\Data_lan24_20-51-27.smx

return=TRUE

return=TREIE

Buttons
Open Open saved trace file.
Save Save text to a file. Saves filtered lines only (i.e. what appears in the window). To
save all lines, ensure all filters are depressed (press the All button).
Copy Copies to clipboard. Same note as Save.

40

Task, etc. Filter the display to show only selected types of events. Toggle.

All Toggles all filters on/off.
Next Finds the next occurrence of the string entered on the Find line.
Prev Finds the previous occurrence of the string entered on the Find line.

You can search for any text displayed. For example, to quickly get to events at a certain time,
you could search for the first digits of the time. For example, searching for 4.66 in the trace
shown will find the first matching entry. Also, for convenience, the view moves as you type.

Memory Usage

This shows a summary of memory usage by main system objects.

Hame Hemory Uszage
Teed Size 02 10k 205 30%

Memnory
SDAR 8569952
ADAR 2364K-2368E
Heap 367E-2306K
Stack Pool 520
LSR Queus 0100

(371120)

—
[ia}
—

Control Blocks
BCE 330
HCE I0-57
HUCE 1.4
PCE 346
PICE 1.8
QCE 7ES117
TCE 32-50
THCE 25

e By default the heap and stack pool are allocated from ADAR, so ADAR usage reflects
the memory occupied by these.

e Stack Pool, LSR Queue, and Control Block sizes are indicated in number of units; others
are in bytes.

e Thin red lines indicate high water marks. They indicate the maximum usage at any time
during execution since startup.

41

Memory Map Overview
This feature requires SMX v4.1 or later and is currently only supported for IAR EWARM.

This shows an overview of the memory layout of the system, with the ability to zoom in for
increasing detail, much like Google Earth. Areas are colored and labeled, and double-clicking
one will open a hex dump of the data there. Finally, you can visualize the memory layout of your
system! Seeing the proximity of one object or region to another may give clues about the cause
of a problem, especially a suspected overflow.

Introduction

The Memory Map Overview window has 2 horizontal memory bands. The top band is static and
displays only the memory in the target that can be discovered by smxAware. It will typically
have one or more gaps between memory areas.

T Memoary Map Cverview .) EE
Open | < | | Detail| @ | & | an | \ |

Memory Map Overview

CurrentAddress 0x100013f4

=

oW
E 5
| —— RN
[
=

Mmoo

ADAR

i]| | e |

comaoooa

! %_

oroscoos
omMoscooa

4‘
=

cwuNnooooa
omuoooo e
[SIRTRISTSTSToNY BEH

BTacooo—~
cowoooo— =
[N
arnkoooos F—
comoocoo—
oTmocoo—
osmocoo—
oomocoo
ommocoo—
cooacooa
SISV TSTS,
oTMEaooos oo
MMEacoo—

C:\Users\David Moore\AppData\Roaming\SMi\Data_MNov08_12-57-25.smx

The top memory band has a Magnifier Rectangle that the user can drag, stretch, and shrink to
display an area in the lower band.

Both bands have smx areas colored and the lower band has details appropriate for the zoom
level.

42

Both bands are sliced horizontally into three bars:

e The top bar is for DARs.

e The middle bar is for the Heap, Stack Pool, and Control Block Pools.
e The bottom bar is for Stacks, Control Blocks, and all other memory types.

The idea of the bars is to show containment. For example the top bar shows ADAR, and the
middle bar shows heap and stack pool because they are contained within ADAR. Similarly, the
bottom bar shows stacks which are contained in the heap and stack pool. The map above was
zoomed to show these details in the middle of the bottom band:

rEﬂMmmwaOwwmw Egﬂiitigj
Open| < | | Detnil| & | & | an | \ |
Memory Map Overview N
CurrentAddress 0x10000f24
1 12 2
0 08 8
0 00 0
0 00 1
0 13 F
1 E A 5
1 17 4
4 | 7C F
| ADAR
e s] | samroa |

wTmoooo~
camooooa
onToooos

Ch\Users\David Moore\AppData\Roaming\SMX\Data_Nov08_12-57-25.smx

SDAR

Timer Queue SCB in_clib

cwmoooo~

[=F ", [=1=[=F=F"1

SCB in_sa_print

ommoocoos

SCB ns_sem_00

oomoooo

SCB ns_sem_01

Momoocooa

.

Notice the event and semaphore control blocks and other objects are named.

43

In the following display, the heap has been expanded to show even the CCBs which precede
each block.

i] Memary Map Overview ‘E‘_ﬂlﬂ:
open| < | > |pewil| & | & | an | B | 7 |
Memory Map Overview]
CurrentAddress 0x2800dcc0
1 i 2
0 08 8
0 00 0
i 00 1
i 13 F
i EA 5
1 7 4
4 7C I ¥
SDAR ‘ | ADAR
.|-<..|He...| Heap | Heapl Heap free _

OQomdooohs

'
ADAR

Heap Block smy_Nulltask Heap Block smx_Nulltask

|

[=t--Tolm =Tt] _i

Handle Table

[=Jiclw wl=T=1.:TX] —g

QumOoonr
[=l=Telwl=T=1--1X)
[whealw lw[=T=T.-],\]

[C\Users\David Mo DVE\-Ap p‘lﬂa‘ta‘\ﬁa amin g‘\‘S‘M)‘({I‘J‘a‘t‘a_N 0v08_12-57-25.5mx

Double-clicking any colored region opens a data window to show its contents. See Data Window
below.

Magnifier Rectangle Navigation

Grab anywhere inside the Magnifier Rectangle and slide it to the desired location. If the
Magnifier Rectangle is too narrow to grab inside, you can also grab above or below it. Watch for
the cursor to change to a hand when you are in the proper location to drag.

Zoom by grabbing the left or right side of the Magnifier Rectangle. Watch for the cursor to
change to a two-headed arrow.

Notice in the screenshots above, the Magnifier Rectangle in the top bar has shrunk to a narrow
line due to the high level of zoom.

44

Lower Band Navigation

Pan: Grab and drag left or right anywhere inside the lower band to scroll horizontally.
Zoom: Grab and drag a little above or below the lower band to zoom. Or spin the mouse wheel
or use the + - buttons on the toolbar.

Set a reference line by right clicking anywhere in the upper or lower bands. The reference line
will cause the zoom function to center around it, like in the Event Timelines display. Remove the
reference line by right clicking outside the upper or lower bands.

Toolbar Buttons

Open| < | | Detail| & | & | an | | |

Open Open one of the data files that is automatically uploaded from the target and
saved on the host PC each time the target is stopped by the debugger and
smxAware is opened. The left side of the status line at the bottom left of the
window has the path to the current data file.

< Open the previous (by date) data file that was automatically saved.
> Open the next (by date) data file that was automatically saved.
Detail Open the detail window. This window displays details of the region that is under

the cursor, such as name, start/end addresses, and size.

- Zoom out a little with each click.

+ Zoom in a little with each click.

All Top band displays all used and unused RAM. See section All Button below for
more information.

Options Change display options.

? Help.

Data Window

Double-clicking any colored region in the upper or lower band opens a Data Window that shows
a memory dump of the bytes in that region. Buttons allow selecting 8, 16, 32, and 64-bit display,
as well as changing endianness. The dump shows the exact range of bytes occupied by the region
(e.g. a single TCB, task stack, heap block, etc.). It can be extended with Up/Down buttons, and
the original region is delimited by lines to make its boundaries clear. The following shows a
small heap block. Notice the title bar indicates the name of the block, which is the same as what
is shown in the colored bar that was clicked. (Data is simulated in this capture.)

45

La N
Heap Block smx_Mulltask L&J

2800DC80 03020100 87808584 BBBASO9BE BFEBEBDEC |................
2B00DC90 93929190 97969594 9BOA9998 9F9ESDOC |.......... ...
2B00DCAD ASAZATAD A7ADASA4 ABAAADAE AFAEADAC |.........iveunn.
2800DCB0 B3B2B1B0 B/BOB5B4 BBBABY9BS BFBEBDBC |................
2B00DCCO C3C2C1CO0 C7CHC5CY CBCACOCE CFCECDCC |- ivevnininnanes
2800DCD0 D3D201D0 D7DGEDSD4 DBDADIDE DFDEDDDC |.....vvvenvann.n
2B00DCEQ E3EZ2E1EQ EVEGESE4 EBEAESEE EFEEEDEC |....c.vivinia...
| |2800DCFO F3F2FLFO F/FGF3F4 FBFAFOF8 FFFEFDFC |................
28000000 03020100 07060504 0B0AO908 OFOEODOC |.....vvvevvann.n
2800DD10 13121110 17161514 1141918 1F1EIDIC |.......o.ionn.n.

g 15 & 353 84 [BigEndan Copy ‘ Close | Up Down|

b

Double-clicking another region opens a second window so you can compare two regions. Two
windows are the maximum that can be opened, and attempting to open more will toggle between
them. When you double click to open a region, only that region will be displayed, up to a
maximum of 5000 bytes.

To view data before or after the selected region, click the Up or Down button to read from the
target 1000 more bytes above or below the start or end of the range displayed. Each button press
adds 1000 more bytes. Start and end region delimiters (lines) are placed in the data to show the
boundaries of the original object that was double-clicked, as a visual reference.

All Button

When not enabled (default), the top band only includes stacks, heaps, and smx objects. When
enabled, the top band displays all used and unused RAM. All is only useful to compare the
amount of space stacks and heaps use vs. the total amount of target memory. smxAware can’t get
an accurate accounting of the target’s memory without help from the target. In
smx\app\smxaware.c you will find variables such as sa_ RAM_S and sa_RAM _E that contain
starting and ending addresses, typically set from symbols defined in the linker command file.
smxAware will read these values and use them to display different memory areas. In the linker
command file for IAR, it may be necessary to make minor changes:

For the old-style .icf file that defines symbols with __ ICFEDIT__ in the name, it is necessary to
add the exported keyword if not already there, as shown:

define exported symbol __ ICFEDIT_region_RAM _start = 0x10000000;

46

For the new-style .icf file, it may be necessary to add symbols like this:

define exported symbol RAM_S = start(RAM);
define exported symbol RAM_E = end(RAM);
define exported symbol SRAM_S = start(SRAM);
define exported symbol SRAM_E = end(SRAM);

where RAM and SRAM are regions defined above in the file.

Note that the RAM symbols defined in smxaware.c are the superset of all RAM symbols that
appear in our .icf files. They are all treated the same by smxAware, and the only reason they
were named this way rather than RAMO to RAM9 (or whatever) is to make it easier to match
them up with the names in the .icf files.

The All button is a minor feature that does not provide much additional information, so you may
prefer to just comment out these lines in smxaware.c.

Cortex-M MPU Support

For Cortex-M targets, if MPU-Plus is present, an MPU button is enabled that allows showing
MPU regions in the top bar of each band. Different colors indicate regions that are accessible to
the current task, system regions, and overlapping regions:

[FEE Memory tap Overvient — e e e .‘ I =
Open | < ‘ ‘ Delail| =} ‘ @ ‘ MPU | ? |
Memory Map Overview I

CurrentTask esmx (MPU)

coocoonoo
R LRI BTN T=T=Y
clocococonm
coossooR
coooooon

Mmoot

TR ISP=T=TY

-t Y| voecrur [
||

muoomnoo
Rl ENIRTRTSY
PRI
oROMODoN
omowooo
omoaooon
BOMAEOOSN
ommmooon
cofmoool
AOOOOOOR
Ta~gooon

. Accessible Background System . Overlap D Unmapped

C:\Users\David MooreAppData\Roaming\SMX\Data_Aug03_15-50-19.smx

47

Configuration

Options Dialog

The Options dialog is accessed by pushing the Options button in the GAT toolbar. The settings
are stored in smxAware.ini which is created in the same directory the traces are saved in (see
smxAware GAT/ Event Timelines/ Saved Traces). See the section smxAware.ini, below, for
information about other settings in this file.

Font Size

This controls the size of the font and thickness of the bars in the client area of the displays.
Setting it to a lower number will allow more lines to fit on the screen. Default is 12.

Enable Event Capture

These checkboxes allow you to control what classes of events are logged: Task, SSR, LSR,
ISR, Error, and User events. For example, un-checking “Log ISR Events” will prevent ISR
events from being added to the Event Buffer the next time you run. This will allow capturing
a longer trace before the Event Buffer fills up. If ISR events are excluded, for example, even
if the ISR button is pushed on the graphical display, no ISRs will appear because there are no
entries for them in the buffer.

Note: To avoid logging particular ISRs and LSRs, comment out the smx_EVB_LOG macros
in them. It is currently not possible to control which specific tasks to log. SSRs can be
selectively enabled by group — see the smx Users Guide for details.

Each checkbox corresponds to a flag in the smx global smx_evben. This global can be
changed in the code, by setting it to the desired SMX_EVB_EN _ flags (see xevb.h). The
checkboxes will reflect the value of smx_evben, so if a checkbox changes from how you last
set it, the code must have changed smx_evben.

Window Action

This controls what happens with open smxAware windows each time you step or run your
application in the debugger.

Update after each run: The smxAware windows remain open and are updated after each
step. This can slow down stepping depending upon how much data smxAware has to
retrieve for whatever is currently being displayed. Also, some versions of CodeWarrior
ColdFire have a problem that causes smxAware to hang if this option is enabled. If you
have this problem, select the next option.

Close window on each run: The smxAware windows automatically close each time you
step or run. The user can manually open the GAT window any time the target is stopped.

48

Guidelines

These checkboxes allow you to enable light gray guidelines in the Event Timelines display,
to make it easier to see how things line up. This is an alternative to using the Crosshairs tool.

Horizontal Guidelines: Lines are added between each row to line up horizontal events.

Vertical Guidelines: Vertical lines will be placed at each event to line up vertical events.

smxAware.ini

This file stores smxAware state and configuration settings. It is automatically created with
default values if it does not exist, in C:\Users\<username>\AppData\Roaming\SMX in
Windows 7 or C:\Documents and Settings\<username>\Application Data\SMX in Windows XP.
It stores some values about your previous session, such as whether you had certain buttons
enabled and window size, and it stores values set in the Options dialog. It also has a few
additional values that can only be configured by editing this file manually:

maxFilesToSave: Number of past event traces to keep.

dataPath: Location to save trace files. Defaults to the location of the smxAware.ini.

Downloading the Event Buffer

Whenever the Graph or Event Buffer items are chosen from the menu after running or stepping
through the application, the full Event Buffer must be read from the target via the debug
connection. This can take awhile on a system with a slow connection. Typically, evaluation
boards come with a low-cost, slower connection device. Example times for a 1500-entry buffer:

ARM JTAGjet USB 2.0 (CW) 4 sec
ARM JTAGjet USB 2.0 (IAR) 0.5 sec
ColdFire P&E Wiggler: 22 sec
ColdFire P&E Lightning card: 3sec
PowerPC Macraigor Raven: 2 sec

Application Preparation

smx events are automatically logged in the Event Buffer. However, it is necessary for you to add
macros to your ISRs and LSRs to log them. Also, you can add user macros to your tasks to put
timestamps and store data (e.g. variable values) in the Event Buffer. It is also necessary to set a
few global variables to indicate to smxAware the nature of the clock used for timestamps in
event records. The following sections explain what you need to do in your application.

Pseudohandles

All of the smx_EVB_LOG macros require that you pass a handle to identify what is being
recorded. ISRs and LSRs do not have handles, so pseudohandles must be created to identify

49

them. This is true for user events too. Also, the pseudohandles should be added to the smx
Handle Table so smxAware can print the name. For example:

VOID_PTRisrl_handle; /* defined at global scope */

void appl_init(void)

isrl_handle = smx_SysPseudoHandleCreate();
smx_HT_ADD(isrl_handle, "isr1l");

}

Pseudohandles are pre-defined for smx_TickISR, smx_KeepTimeLSR, and
smx_LSR_INVOKE() events (in xglob.c and xht.c).

Event Macros for Use in the Application

Most of the macros in xevb.h are used internally (in the scheduler and elsewhere). Some are
provided for use in your application code. This section documents the macros for your use.
These macros each add an event to the Event Buffer, and it appears as a white mark within the
bar of the Task, LSR, or ISR whose handle is passed.

smx_EVB_LOG_ISR() and smx_EVB_LOG_ISR_RETY()
Add these to ISRs that you want to log in the Event Buffer. Put smx_EVB_LOG_ISR at the
beginning of the ISR, right after smx_ISR_ENTER(), and put smx_EVB_LOG_ISR_RET at
the end, right before smx_ISR_EXIT(). Assembly language macros are not provided, but
shell functions are available in xesr.c that can be called from assembly ISRs. If better
performance is required, create assembly versions via the compiler, then optimize them, and
convert them to assembly macros.

smx_EVB_LOG_LSR() and smx_EVB_LOG_LSR_RET()
Add these to LSRs that you want to log in the Event Buffer. Put smx_EVB_LOG_LSR at the
beginning of the LSR, and put smx_EVB_LOG_LSR_RET at the end.

Example (assumes isrl_handle defined as in “Pseudohandles” section above):

void isr1(void)

{
smx_ISR_ENTER();
smx_EVB_LOG_ISR(isrl_handle)
/I ISR code
smx_EVB_LOG_ISR_RET(isrl_handle)
smx_ISR_EXIT();

}

Assembly language macros are not provided, but shell functions are available in xesr.c that
can be called from assembly LSRs. If better performance is required, create assembly
versions via the compiler, then optimize them, and convert them to assembly macros.

50

smx_EVBLogInvoke() (smx_EVB_LOG_INVOKE)
smx_EVB_LOG_INVOKE() is not a user macro since it is automatically used in
smx_LSR_INVOKE() macro and smx_LSRInvoke() SSR. However, if you write an
assembly ISR that invokes an LSR, and you want to log the invoke event, call
smx_EVBLoglInvoke() (xevb.c).

smx_EVB_LOG_USERN()
This macro can be used anywhere in your code to add a user record to the Event Buffer. It
stores the timestamp and up to n 32-bit values that you pass as parameters.

sa_Print() (callssmx_EVB_LOG_USER_PRINT)
sa_Print() is a function that prints a string to the print ring buffer and also calls the macro
smx_EVB_LOG_USER_PRINT() to log this event in the Event Buffer. The macro is only
for use by this function; don’t use it in your code. See section “Using smxAware/ Print
Window” earlier in this manual for examples of using this function.

Event Timestamps

sb_PtimeGet() is called by each smx_EVB_LOG macro to get the timestamp for each event. It
returns the counter of the timer used to generate the smx tick. See the documentation for this
function and the sb_ticktmr_ variables in the BSP API section of the smxBase User’s Guide for
more information.

Using the tick timer ensures there is at least one event for every rollover of the timer. This is
required for smxAware to display timelines correctly. The smx_EVB macros used by the tick
ISR and/or smx_KeepTimeLSR() ensure there is at least one event per rollover.

smxAware Live

smxAware Live is a version of smxAware for remote monitoring of the application, without a
debugger. It allows viewing the GAT displays, such as timelines and event buffer. It
communicates with the target via TCP/IP, using sSmxNS. It is designed to be minimally intrusive.
When the Capture button is pressed, the application stops adding new records to the Event
Buffer while a low priority task sends the data to smxAware Live. Then event logging resumes
automatically.

Additional target monitoring features will be added in future releases. Note that smxAware GAT
is included with smx, but smxAware Live is an extra cost option.

o1

Installation

No installation is needed. The smxAware Live executable can be run from the SMX\SA
directory, or you may copy it to another directory. Note that there are big endian (BE) and little
endian (LE) versions. Use the one that matches your target. If you run the wrong one, an error
dialog will display telling you to run the other.

Enable the define SMXAWARE_LIVE in the prefix file in the SMX\CFG directory (e.g.
iararm.h) and recompile your application. This enables sections of code in smxaware.c that are
needed by smxAware Live.

Using smxAware Live
When you run smxAware Live, its control panel displays:

1011100

Fort

4000z

Connect

Mot Connected

Enter the IP address of your target and click Connect. The message below the input box will
change to Connected if it succeeds, and the Capture button will un-dim. Clicking Capture will
cause it to read the event buffer from the target and then immediately open the event timelines
window. The Graph and Event Buffer buttons open the event timelines and text event windows,
respectively. These look the same as smxAware GAT. Each time Capture is clicked, the
windows are updated.

If you get a “Bad address” error when you try to connect, check that SMXAWARE_LIVE is
defined in the master preinclude file (in SMX\CFG, e.g. iararm.h), that this conditional appears
in smxaware.c, and that you rebuilt your application.

If you have other connection problems, click the More button to open a lower pane that shows
diagnostic information. The window can be widened by dragging the corner.

52

The control panel has a vertical format so it uses minimal space on typical monitors, which have
a wide aspect ratio. Note that it can be moved anywhere on the screen by dragging the title bar.
On Windows 7 and later, most of the title bar is covered with buttons; grab it under the
Min/Max/Close buttons.

Diagnostics

Text Display Error Messages

The following are the errors you may see in the text display, with more explanation about each.
Only the first part of the error message is shown.

Apparently your processor is Big/Little Endian but you are using the Little/Big...
You are probably using the wrong endian version of the smxAware DLL. For example, some
ARM processors are little endian, some are big endian, and some allow choosing. Two
versions of the smxAware DLL are provided. You must use the one that matches the
endianness of your target. This is tested if sa_ready has an invalid value. In that case, the
bytes are reversed, and if the value is then valid, this message is displayed.

Could not read sa_ready from target.
Check the link map to ensure it is listed and wasn’t deadstripped by the linker. Assuming it is
there, something else is wrong. Maybe there is something wrong with the debugger or the
connection. If you have this problem we may have to add more diagnostics to the DLL (or
debug it with your app on your hardware) to help determine why it is failing.

sa_ready has an invalid value.
This global has only a few possible values. If it does not have one of those values, then it
probably was corrupted. This may indicate a memory corruption in your application due to a
bad pointer, for example. In any case, if it does not have a valid value, smxAware won’t
work. This global is initialized in smxaware_init() in APP\smxaware.c. The code there makes
it clear what values it can have.

smxAware has not been initialized.
This error usually occurs because the target has not run long enough to initialize smxAware.
The function smxaware_init() must be called by the application before the smx objects are
visible in smxAware. This function is called in smx_Go(), which is called by main(), so run
past that point before opening the smxAware window. In older versions of smxAware, this
message could also be caused by inability to read certain important smx globals from the
application (often because they were deadstripped by the linker). Other error messages in this
section were added to report those problems, so this message is less likely to be seen, if you
have run past smxaware_init().

53

smx_Version (and probably other smx globals) could not be read from the target because
the debugger could not locate them.
Be sure the smx library is compiled with debug symbolics enabled for xglob.c. Also verify
smx_Version appears in the link map, to ensure it wasn’t deadstripped.

GAT Error Messages

When running the standalone smxAwareGAT .exe, if any of the events in the event buffer data
file (data_*.smx) are corrupt then GAT will touch up the bad data point so the graph can be
displayed. The following error message will appear below the window title bar.

InternalError=0x10: Timestamp of an event <= previous event.
InternalError=0x20: Timestamp of an event >= next event.
InternalError=0x40: Someone wrote into an area of the event buffer that should be zero.

Diagnostic Logging

Additional diagnostic information can be enabled by setting “diagnostics = n” in the [CONFIGS]
section of smxaware.ini, where n is one of the following:

1 Log information about stack scanning.
2 Log information about communication via debug connection, such as transfer times.

Data is written to LogFile.txt in the same directory as smxaware.ini. The data is intended for use
by MDI support personnel and is not documented here.

Limitations

Tips

1. If your smx application doesn’t execute properly, put a breakpoint in function
smx_EMBreak() in main.c (or smx_EM() in xesr.c). If smx runs out of resources or has
another error, it will call this function.

2. If stepping is slow when the smxAware (non-modal) dialog is open, either close it or change

it to a different view that shows less data, such as the Diagnostics window. Or open the
Options dialog and check “Close window on each run” to close it automatically.

54

Troubleshooting

Note: Starting with the May 2013 release, smxAware links the static version of the C RTL, so
the notes below about DLL load problems (e.g. MFC42.DLL) no longer apply. The notes are
preserved temporarily for those using an older version.

Note: The version of smxAware in your release is likely to be newer than the one included in
the IAR EWARM release, so first try replacing that. The latest version is available from the
Enhancements section of our support site (www.smxrtos.com/support).

Problem:

Cause:

Solution:

Problem:

Cause:

Solution:

smxAware does not load (not in IDE menu) or window does not open.

If you upgraded to a new version of the compiler suite and installed it to a new
directory, you must copy the smxAware DLL to the new directory.

Copy the smxAware DLL and any related files to the new directory and restart the
IDE. The installation directions at the beginning of this manual specify the directory
to copy it to. If this doesn’t fix it, maybe the tools changed so that you need an
updated DLL from Micro Digital.

smxAware DLL does not load (not in IDE menu) or GAT EXE does not run.

Possibly we sent a Debug version of either, which requires MFC42.DLL and/or
MSVCRT.DLL, but these are old or missing from your system. These are the
Microsoft Foundation Classes DLL and C Run-Time Library DLL, respectively. It
could also be that we sent you the Debug version of the DLL instead of the Release
version, by mistake. The Debug version needs Debug versions of these libraries
(MFC42D.DLL and MSVCRTD.DLL). These are not provided with Windows.

Request the smxAware Release version DLL from us, or copy these DLLs from
Visual C++ v6 (or later) or another source to your Windows SYSTEM32 directory.
They should be dated 6/17/98 or later. If you have these DLLs, the problem may be
that you need the Debug DLLs as explained above. If you have Microsoft’s dumpbin
utility, you can run this command to see what DLLs it needs:

dumpbin /dependents <dliname>.dll

This utility is provided with Visual C++, as are the D versions of the libraries. If you
don’t have it, ask us to check this for you.

55

Problem:

Cause:

Solution:

Problem:

Cause:

Solution:

Problem:

Cause:

Solution:

Problem:

Cause:

Solution:

smxAware window displays message that it can’t read smx_Version or another
specified global variable.

smxAware can’t determine the address of the variable. This is most likely caused by
not compiling xglob.c (in the smx library) or certain files in other SMX libraries (see
section SMX Middleware Module Displays) with debug symbolics on. If you do not
have smx source code, contact Micro Digital to rebuild the smx library for you.

Ensure the smx library project file or makefile is set to compile xglob.c with debug
symbolics.

GAT window does not open and instead a file open dialog appears. Occurs on
Windows Vista and newer versions of Windows.

This is likely caused by User Access Control (UAC) of Windows Vista and newer
versions of Windows. It should only be an issue for older smxAware DLLSs, since
v4.1.0 was changed to save the .smx files under the Documents and Settings or Users
directory, as newer versions of Windows require. Older versions of smxAware stored
the trace files in the EWARM Plugins dir, under Program Files, but only
Administrators are permitted to write files there. If you are using smxAware pre-
v4.1.0 and running on Windows Vista or 7, change EWARM to run as Administrator.
Also, it is probably necessary to take ownership of the plugins directory the DLL is
in.

Right click on the EWARM icon or entry in the Start menu, and select Run as...,
select Administrator. In Windows Explorer, right click on the plugins directory where
the DLL resides and select Take Ownership.

Error: Internal error kc_getval : ovl = ??

SingleStep can’t find one of the required symbols in the symbol table.

Make sure you are building and running the Debug version of the application.

SMXE_INV_QCB errors caused by sa_Print() calls.

Semaphores used by smxAware tracing were not initialized. If
SMXE_OUT_OF_QCBS is reported, then maybe the semaphores couldn’t be created.
Otherwise, maybe smxaware_init() hasn’t been called.

If SMXE_OUT_OF_QCBS was reported, increase NUM_QLEVELS in APP\acfg.h.
Ensure smxaware_init() is being called from smx_Go().

56

	Introduction
	Supported Debuggers
	Installation
	Changes to the Application
	CodeWarrior for ColdFire Directions
	CodeWarrior for PowerPC Directions
	IAR EWARM Directions
	SingleStep Directions
	Installation
	Enabling smxAware (SingleStep)
	Running smxAware (SingleStep)

	Using smxAware
	smxAware Dialog Box
	Kernel Displays
	Ready Queue
	LSR Queue
	Tasks
	MPU (Cortex�M Targets if MPU-Plus is Present)
	Stacks (Task)
	Heap
	Semaphores
	Mutexes
	Exchanges
	Messages
	Blocks
	Event Queues
	Event Groups
	Timers
	Pipes
	Print
	User
	Conf Values
	Handle Table
	Diagnostics
	smxFS�smxNS�smxUSBD�smxUSBH

	SMX Middleware Module Displays
	smxFS
	smxNS
	smxUSBD
	smxUSBH

	Print Window
	Modal vs Non-Modal Dialog
	Suspended Task Information
	CodeWarrior

	Task-Specific Breakpoints
	CodeWarrior
	IAR
	SingleStep

	Configuration

	smxAware GAT (Graphical Analysis Tools)
	Guides
	Color Key
	Toolbar
	Event Timelines
	Profile
	Stack

	Event Timelines
	Setup
	Event Timelines
	Saved Traces
	Filters
	Reference Line
	Zoom
	Panning / Scrolling
	Event Lines in Bars
	Error Dots
	Details Button
	Re-Ordering Event Lines
	Sort Buttons
	Overlaps
	Duration of an Event
	Guidelines

	Profile
	Stack Usage
	Error Buffer
	Event Buffer (text)
	Memory Usage
	Memory Map Overview
	Introduction
	Magnifier Rectangle Navigation
	Lower Band Navigation
	Toolbar Buttons
	Data Window
	All Button
	Cortex�M MPU Support

	Configuration
	Options Dialog
	Font Size
	Enable Event Capture
	Window Action
	Guidelines

	smxAware.ini

	Downloading the Event Buffer
	Application Preparation
	Pseudohandles
	Event Macros for Use in the Application
	Event Timestamps

	smxAware Live
	Installation
	Using smxAware Live

	Diagnostics
	Text Display Error Messages
	GAT Error Messages
	Diagnostic Logging

	Limitations
	Tips
	Troubleshooting

