

SMX® RTOS

Quick Start

Version 4.3
May 2015

by
David Moore

© Copyright 2004-2015

Micro Digital Associates, Inc.
2900 Bristol Street, #G204

Costa Mesa, CA 92626
(714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved.

Revisions

 date ver comments

 5/04 3.6 rewritten; merged x86 and 32-bit versions into single manual
 5/05 3.7 update to v3.7 and added information about new modules
 3/06 3.7 addition of new products, tools, and other updates
 9/06 3.7 update
 10/10 4.0 update to v4.0
 10/11 4.0 minor updates
 10/12 4.1 update to v4.1
 1/14 4.2 update to v4.2 and removal of x86 information
 5/15 4.3 update to v4.3

smx is a Registered Trademark of Micro Digital, Inc.
smx product names are Trademarks of Micro Digital, Inc.

Other product names are trademarks of their respective companies.

Contents

INSTALLATION..1

SMX ...1
Compiler and Tools..1

DOCUMENTATION ...2
Manuals ..2
BSP Notes ..2
Release Notes and Text Files...2
Conventions ...2

GLOBAL CONCEPTS ..3
smx vs. SMX..3
Directory Structure...3
Protosystem..4
Demos ..5
Version Numbers ...5
Build Information...5
IDE vs. Makefiles ..6
Module Defines..7
Optimization...7
Conditionals ...7
Naming Convention...7

GETTING STARTED..9
ARM — IAR ...10
ColdFire — CodeWarrior..12
ColdFire — Diab..14
PowerPC — CodeWarrior...16
PowerPC — Diab...18
PowerPC — MetaWare High C/C++..20

PROTOSYSTEM..22
Project File / Makefile ...22

CONFIGURATION ...23
Summary ..23
Application Configuration (acfg.h) ...23
smx Kernel Configuration (xcfg.h) ...26

SMX STARTUP AND SCHEDULER OPERATION ...29

SMX MODULES..31
Notes...31
Modules..32
Third Party Modules ..33

SUPPORT..35
Support Site..35
Bug Fixes ...35

APPLICATION DEVELOPMENT ...36
Main Steps..36
Guidelines ..36
app.c ...36
Simplification...37
Coding..37
Debugging..37
BSP API ...38

UTILITIES ..39

TIPS..40

Installation

SMX releases are posted on FTP, and the access information is emailed. Tools and some third-party
software are often shipped directly from the vendor. For MDI software, we create a release of
exactly the modules you ordered, for the processor and tools you are using. We configure header
files and demos, and we test it on a common evaluation or development board. This ensures you get
a quick start.

SMX
Installation is as simple as unzipping the file from FTP and adding \SMX\BIN to your path so our
utilities can be found.

Compiler and Tools
See the SMX Target Guide for any extra steps and tips about installing your compiler and tools.
Look for an Installation section at the beginning of the section for your compiler and tools.

1

Documentation

Manuals
Manuals are provided in PDF form at www.smxrtos.com/doc.

• SMX Quick Start — overview of SMX® Modular RTOS (this manual)
• SMX Target Guide — details about processors and tools

• smx kernel manuals

o smx User’s Guide — explains how to use smx and multitasking
o smx Reference Manual — kernel API and glossary of terms

• module manuals

o smxAware
o smxFS
o smxNS
o smxUSBH
o smxWiFi
o etc.

BSP Notes
These are PDF files that summarize important information about target boards. They show memory
layout, peripherals supported, important notes, and other details and tips about the board. One of
these is provided in the DOC directory for the BSP you ordered.

Release Notes and Text Files
ASCII .txt files in the DOC directory provide additional information about the modules (products)
you licensed that is not covered in the manuals. The smx release notes (e.g. smx43.txt) contain
important notes and changes from the previous version of smx.

Conventions
Since the SMX Target Guide is organized in a hierarchy several levels deep, we often use the
following convention to refer to sections in it: Section1/ Section2/ Section3/ …. Section 3 is a sub-
section of Section 2, which is a sub-section of Section 1. The space is put after each slash for
readability and word-wrapping. Do not confuse this with use of backslashes, which are used in paths
to files (e.g. DOC*.txt).

2

http://www.smxrtos.com/doc

Global Concepts

smx vs. SMX
smx means the smx multitasking kernel, what most people refer to as the RTOS. SMX includes smx
and all middleware such as smxFS, smxNS, and smxUSB. We generally consider the whole SMX to
be the RTOS, but it goes against common usage of the term.

Directory Structure

Main Directories

APP Protosystem directory. See Protosystem section below. Contains demos too.
BIN Utilities.
BSP Board and processor support code.
CFG Global configuration files; mainly preinclude files and similar files related to

specifying libraries to link and the target hardware to build for.
DOC Documentation, including BSP notes and release notes.
ESMX Example files that link with the Protosystem.
MISC Miscellaneous files, including configuration files for particular tools.
XBASE smxBase files. This is the foundation for all SMX modules. Contains general

definitions and OS porting layer used by middleware modules.
XSMX smx kernel directory. Stores the smx API header files, source files (except for

library-only releases), and kernel library.
Module Directories (may or may not be present in your release)

SA smxAware .dll and .exe. Copy to tool directory. See smxAware User’s Guide.
XFD Flash driver source files used by smxFS, smxFFS, and smxFLog.
XFFS2 smxFFS source files and library.
XFL smxFLog source files and library.
XFS smxFS source files and library.
XNS smxNS source files and library.
XSMXPP smx++ source files and library.
XUSBD smxUSBD device stack source files and library.
XUSBH smxUSBH host stack source files and library.
XUSBO smxUSBO On-The-Go add-on source files and library.
XWIFI smxWiFi source files and library.

“X” directories are library directories. Project files or makefiles are in each.

Subdirectories of Library and Protosystem Directories (XXX.YYY\ZZZ)

XXX.YYY is the build directory.

 XXX designates the compiler:
 CW CodeWarrior
 DC Diab C/C++
 GSG (GNU C/C++) Sourcery G++
 GCW (GNU C/C++) CrossWorks
 HC MetaWare High C/C++
 IAR IAR Embedded Workbench

3

 YYY designates the processor:
 AM ARM-M (e.g. Cortex-M)
 ARM ARM
 CF ColdFire
 PPC PowerPC

 The makefile or project file and other build files are stored here.

ZZZ is the output directory. This is where the object files, library, executable, map, etc are stored

after running a make. This directory is created automatically by the make. The name is usually
Debug, Release, or ROM.

smx files are organized into subdirectories that are a few levels deep. The depth is necessary to
support all of the different processor and compiler possibilities. Having a good tool to quickly move
between directories will make your work easier. We recommend FAR (www.rarlab.com), which is
a clone of Norton Commander that supports long file names. It’s not pretty, but very effective.
Benefits of SMX Directory Structure

• Files for each module (product) are separate. Header files for a module are kept with the
module’s source files. This makes it easy to see what files comprise each module; it is much
cleaner than mixing hundreds of unrelated files in one directory.

• Allows keeping Debug, Release, ROM, and other versions built simultaneously; not
necessary to “clean” between these different builds.

• Avoids mixing .obj files with source code files.

• Allows dual-build releases (two compilers and/or processors). This makes it easier to
migrate to another, if the need should arise.

Protosystem
The Protosystem is the foundation for your application. It also serves as a sample application that
runs demos for the different SMX modules. Demos are added by enabling macros in the appropriate
configuration file. For IDE builds, this is set in the “preinclude” files in the CFG directory. For
versions built with a makefile, they are set in demodefs.mki, which is included by the Protosystem
makefile. See the section for the compiler you are using in the SMX Target Guide for more
information about these. Similarly, SMX module libraries are enabled at the top of the Protosystem
makefile (pro.mak) or in the preinclude files.

The Protosystem is stored in the APP directory.

You should build and run the Protosystem, as shipped, before making changes to it. Run the
demos provided for the SMX modules you licensed. See the Getting Started section for your tools,
below, for directions to do this. Keep the APP directory pure; create copies of it (with new names)
for application development and experimentation.

More information about the Protosystem is given in the SMX Target Guide, such as a listing of the
core files and those that are processor-dependent. The former are in the Common Notes section; the
latter are in each of the processor sections.

4

Demos
Demo code is important because it serves as a confidence test you can immediately build and run to
verify operation of SMX modules. It also serves as example code that can teach you the basics of
using a module. All demos are stored in the APP\DEMOS directory. Only the appropriate demos are
included for the modules you licensed. All of this code can be discarded.

Demos plug into the Protosystem. They are enabled by uncommenting lines in one of the following
files:

 ARM (IAR): CFG\iararm.h
 ColdFire (CodeWarrior): CFG\cwcfdemo.h
 PowerPC (CodeWarrior): CFG\confppcw.h
 PowerPC (Diab, MetaWare): CFG\confppc.mki

(and adding or un-excluding the source files to the project for IDE builds). Some or all demos for
the SMX modules you ordered are enabled, as shipped. We suggest you build and run first without
changing the configuration. Some demos cannot be run together because of competition for the
screen or keyboard. Enabling one demo at a time may be a good idea to see what each does. It will
then be pretty clear which demos will run together. These limitations apply only to the demos; all
SMX modules work together.

Version Numbers
1. SMX_VERSION (in xdef.h) indicates the current version of the smx kernel. It can be used by

third party developers to condition their code to support different versions of smx. smx_Version
is an smx global variable that is initialized to this value. It is used by smxAware so it can
properly display control blocks and other structures that differ between smx versions.

2. xxx_VERSION constants in each SMX module (e.g. smxFS, smxNS, smxUSB) serve the same
purpose.

3. The version number in the comment at the top of each file indicates the version when that
particular file was last modified.

Build Information

Build Versions

Build target names are typically Debug, Release, and ROM, or similar. See Build Targets in the
section for the compiler you are using, in the SMX Target Guide.

For makefile builds, run mak.bat with no arguments for a help message that shows syntax and
indicates all possible options.

Debug No or low optimization, debug symbolics enabled, located for RAM.

Release Max or high optimization, no debug symbolics, located for RAM.

ROM Same as Release but located for ROM/Flash.

The Debug version of the application (Protosystem) links the Release version of SMX
libraries. This is because you are debugging the application code, not our libraries. Only if you

5

suspect a bug in our library should you change the project file or makefile to link the Debug version
of the library.

IDE vs. Makefiles
For most compilers, we provide either IDE project files or makefiles, but not both. In general, if the
compiler has a good IDE, we supply project files to build module libraries and the application. This
is true for CodeWarrior and IAR, for example.

Makefiles are good for handling options. In particular, it was possible for us to create the
Protosystem makefile in a way that makes it easy to select which SMX module libraries and demos
you wish to link. Project files do not offer this flexibility, so if you order additional SMX modules in
the future, it may be necessary for you to add them to your project. Briefly, this is done by adding
the library and one or more preprocessor defines. Adding demos is similar. Both are discussed
below.

Adding SMX Module Libraries

Adding a new SMX module to the project involves these steps:

1. Add the module define(s) (e.g. SMXFS, SMXUSBH). These are listed in the section

Module Defines, below.

2. Add the module library to the project, as you would add any source file or library. Libraries are

stored in “X” directories such as XFS and XUSBH. See the SMX Modules section of this manual
for details about each of the modules you are using. You should add the Release version of each
library unless you want to debug the library, itself.

3. Add an include path to the directory where the library’s main .h files are located (usually the root

of the directory or an include subdirectory).
Adding Module Demos

If a makefile is provided to build the Protosystem, we recommend you use that for building the
demos. In this case, there is not much reason to add demos to the project, since typically you would
run them only a few times, and it is not worth the effort. If only a project file is provided, these are
the steps to add a demo to it:

1. Add the demo define (e.g. SMXFS_DEMO, SMXUSBH_DEMO). These are the same as the
Module Define, but with “_DEMO” appended.

2. Add the demo file(s) to the project. These are stored in the APP\DEMO directory. See the SMX

Modules section of this manual for a list of demo modules (usually one) per module.

3. Add an include path to the DEMO directory and any other directories that hold header files

included by the demos.

4. Link the corresponding module library.

Other Notes

1. If there are multiple build targets in the project (e.g. Debug, Release, ROM), it is necessary to
change settings in each one.

6

Module Defines
In order to enable a module in the Protosystem, it is necessary to define the following symbols in
addition to linking its library. If you build the Protosystem (i.e. your application) with an IDE, you
need to add these to the project file for the modules you are using. (Makefiles already have these
defines; you just have to enable the ones you are using.)

Module Defines

smxAware SMXAWARE
smxFLog SMXFLOG
smxFFS SMXFFS2
smxFS SMXFS
smxNS SMXNS
smx++ SMXPP
smxSSLC SMXSSLC
smxSSLS SMXSSLS
smxUSBD SMXUSBD
smxUSBH SMXUSBH
smxUSBO SMXUSBO
smxWiFi SMXWIFI
PEG PEG
CPEG PEG CPEG

Demos are enabled by adding another define for each. These are the same as the module defines
above, but with a “_DEMO” suffix (e.g. SMXUSBD_DEMO).

Optimization
By default, project files and makefiles are set to optimize for speed rather than size (for build targets
that enable optimization). This is true for libraries and the Protosystem.

Conditionals
Although preprocessor conditionals can make code harder to read, they avoid the need for us to
maintain multiple versions of each file. Having to remember to make every fix and improvement to
multiple copies of the same file is error prone, no matter how careful the programmer is. Having one
file is safer. If the conditionals in a particular file are distracting while you are debugging it or
making modifications, we recommend that you delete the conditional sections that do not apply to
your release, such as sections for compilers and processors that you are not using. Some editors
allow hiding conditional sections. Refer to Common Notes/ Target Defines in the SMX Target
Guide for a list of the more important defines used in conditionals. If you are in doubt about one you
encounter, please ask us.

Naming Convention
In SMX code, identifiers have a 2 or 3-letter prefix indicating the module (product) they are part of,
such as smx_, sfs_, and sud_, so that each has its own namespace, to avoid conflicting with your
code or third-party libraries. sb_ is used for smxBase and BSP. The prefix is lower case for
functions, macros, and variables. It is capitalized for constants (#defines). The underscore is used to
make it convenient to search application code for all calls made to a particular module such as the
smx kernel and to visually separate the prefix from the name. Searching for smx without the
underscore would produce many extraneous matches. Type names are generally not prefixed, to

7

keep the names shorter and simpler. There are relatively few data types used in a program compared
to #defines, variables, and functions, so there is not as much of a namespace issue. Structure field
names are purposely kept short, which is fine since each structure is its own namespace.

8

Getting Started

The directions in the following sections will help you get started with your tools. However, keep in
mind that these tools are always changing; new versions are frequently released and the IDE can be
a bit different for each target processor. If you encounter difficulty with our directions, please call
us, and we will walk you through it.

The directions here are purposely terse. The other sections of this manual and the SMX Target
Guide fill in the details. See the section for your compiler in the SMX Target Guide for more
information.

Command Line Environment

In order to build libraries or applications from the command line, it is necessary to set up a
command line environment that defines the path and possibly other environment variables needed
by the compiler and tools. If you don’t know how to do this, see Command Line Environment in
Windows in the SMX Target Guide, in section Common Notes/ Misc Notes.

9

ARM — IAR

Tool Setup

See IAR Embedded Workbench ARM in the ARM section of the SMX Target Guide.

Building the Protosystem

 1 Start Embedded Workbench (the IDE). (We only support building from the IDE; we do not
provide makefiles to build from the command line.)

 2 File | Open | Workspace. Browse to the command level subdirectory: \SMX\APP\IAR.ARM
or IAR.AM. Go into the subdirectory for the board you are using and double-click on the
App_.eww file there.

 3 Edit \SMX\CFG\iararm.h to match your target (if not already set properly). This is a
“preinclude” file included by the IDE ahead of each file. Changing it marks all files to be
rebuilt.

 4 Press the Make button.

Running and Debugging the Protosystem

 1 Start Embedded Workbench and open the Protosystem workspace (.eww) file, if not already
open. Run a make (see above).

 2 Connect your JTAG unit to your target board and host. See ARM/ Tools/ JTAG Units in the
SMX Target Guide for more information.

 3 Connect a terminal or terminal emulator (115200-8-N-1) to the first COM port so you can
see demo output from app.c.

 4 Press the Debug button to download the app to the target. It should execute the startup code
and stop at main().

 5 Press the Go button. From there, you can step or run. If the board has LEDs, you should see
them count up (in binary if it is a row of LEDs).

 6 Press the Stop button to break execution.

 7 When running, you can press Esc at the terminal to exit the application. This runs aexit()
under the Idle task, at maximum priority. aexit() calls some exit functions, displays a
message to the terminal indicating whether it is a normal exit or the error that caused the
exit, then calls sb_Exit() which calls sb_Reboot(). These can be filled in with user code.

 8 We recommend putting a breakpoint in smx_EMHook() in main.c so that you will know
immediately if an smx error occurs. The call stack shows how you got there.

Enabling smxAware

See the smxAware User’s Guide for detailed setup information and instructions for use.

 1 Copy the smxAware .dll, .ewplugin, and .exe files from \SMX\SA to arm\plugins\rtos\smx
in the IAR EWARM directory. (You must create the smx subdirectory.)

10

 2 Start Embedded Workbench. (Or exit and re-start so the DLL will be loaded.) smxAware
should already be enabled in the project, but check it:

 In the project Options, select Debugger in the left pane and the Plugins tab in the right pane.
Put a checkmark next to smxAware in the list of plugins to load.

 3 Start a debug session as usual (see previous section). A new “smxAware” entry should be
added to the main menu.

Building Libraries for SMX Modules

 1 Go to the IAR.ARM directory in the directory for the module (e.g. XNS for smxNS) and
open the workspace (.eww) file there.

 2 Refer to the notes for each module in the SMX Modules section of this manual. Although
we have configured your release, there may be settings you will want to change prior to
building each library.

Building, Running, and Debugging SMX Module Demos

 1 Enable the demo(s) in CFG\iararm.h.

 2 Configure the demo(s). See the SMX Modules section of this manual.

 3 Follow the same instructions as for Running and Debugging the Protosystem, above.

 4 If you have difficulty, read the appropriate .txt file in C:\SMX\DOC for the module, if
there is one. Otherwise, please ask!

What To Do Now

 1 See the ARM section of the SMX Target Guide for more information about CPU and tool
issues. See the IAR subsection for more information about using this compiler with SMX.

 2 See the BSP notes PDF in the DOC directory for information about the board and
processor.

 3 Read the sections following these Getting Started sections, and begin application
development.

11

ColdFire — CodeWarrior

Tool Setup

See CodeWarrior in the ColdFire section of the SMX Target Guide.

Building the Protosystem

 1 Start the CodeWarrior IDE. (We only support building from the IDE; we do not provide
makefiles to build from the command line.)

 2 File | Open and browse to the command level subdirectory: \SMX\APP\CW.CF. Go into the
subdirectory for the board you are using and double-click on the App_.mcp file there.

 3 Edit \SMX\CFG\cwcfhdw.h and cwcfhdw.inc to match your target (if not already set
properly). This and other cwcf___.h/inc files there are “prefix” files included by the IDE
ahead of each file. For example, cwcflib.h specifies which SMX module libraries to link,
and cwcfdemo.h specifies which demos to link. Changing these files marks all files to be
rebuilt.

 4 Press the Make button.

Running and Debugging the Protosystem

 1 Start the CodeWarrior IDE and open the Protosystem project file, if not already open. Run a
make (see above).

 2 Connect the P&E wiggler to the board and connect the wiggler to your host’s USB port or
parallel port. See ColdFire/ Tools/ P&E Wiggler in the SMX Target Guide for more
information.

 3 Connect a terminal or terminal emulator (115200-8-N-1) to the first COM port so you can
see demo output from app.c.

 4 Press the Debug button (green arrow with the bug in it) to download the app to the target. It
should execute the startup code and stop at main().

 5 Press the Go button. From there, you can step or run. If the board has LEDs, you should see
them count up (in binary if it is a row of LEDs).

 6 Press the Stop button to break execution.

 7 When running, you can press Esc at the terminal to exit the application. This runs aexit()
under the Idle task, at maximum priority. aexit() calls some exit functions, displays a
message to the terminal indicating whether it is a normal exit or the error that caused the
exit, then calls sb_Exit() which calls sb_Reboot(). These can be filled in with user code.

 8 We recommend putting a breakpoint in smx_EMHook() in main.c so that you will know
immediately if an smx error occurs. The call stack shows how you got there.

12

Enabling smxAware

See the smxAware User’s Guide for detailed setup information and instructions for use.

 1 Copy the smxAware DLL from \SMX\SA to the CodeWarrior directory
bin\Plugins\Debugger\RTOS. You must create the RTOS subdirectory.

 2 Start the CodeWarrior IDE. (Or exit and re-start so the DLL will be loaded.)
 In the left pane of the settings panel, select CF Debugger Settings (E68K Target Settings in

older versions of CodeWarrior).
 Set Target OS to smxCwCf if you are using smxAware (or BareBoard if not).

Set the BDM/JTAG Configuration File line to point to the .cfg file in the same directory
as the project (.mcp) file, which we may have changed from the one Freescale provides.
Specify it like this (“{Project}” is literal):

 {Project}CF_M5282EVB_PnE.cfg
 For versions of CodeWarrior older than v4, the full path must be specified.
 3 Start a debug session as usual (see previous section). A new “smxAware” entry should be

added to the main menu.

Building Libraries for SMX Modules

 1 Go to the CW.CF directory in the directory for the module (e.g. XNS for smxNS) and open
the project file there.

 2 Refer to the notes for each module in the SMX Modules section of this manual. Although
we have configured your release, there may be settings you will want to change prior to
building each library.

Building, Running, and Debugging SMX Module Demos

 1 Enable the demo(s) in CFG\cwcfdemo.h.

 2 Configure the demo(s). See the SMX Modules section of this manual.

 3 Follow the same instructions as for Running and Debugging the Protosystem, above.

 4 If you have difficulty, read the appropriate .txt file in C:\SMX\DOC for the module, if
there is one. Otherwise, please ask!

What To Do Now

 1 See the ColdFire section of the SMX Target Guide for more information about CPU and
tool issues. See the CodeWarrior subsection for more information about using this compiler
with SMX.

 2 See the BSP notes PDF in the DOC directory for information about the board and
processor.

 3 Read the sections following these Getting Started sections, and begin application
development.

13

ColdFire — Diab

Note: We originally supported Diab, but have not kept our support current. We may update our
support for Diab in a future release of smxCF.

Building the Protosystem

 1 Change directory to C:\SMX\APP\DC.CF

 2 Type mak <Enter>

 3 Follow the directions to make the version you want. For example,
 mak r <Enter>
 makes the Release version. A subdirectory called Release is created, and you will find the

Protosystem executable, map, object files, and detailed log in it.
Running and Debugging the Protosystem under SingleStep

Note: These directions assume a BDM connection to the target board, such as found on the popular
Williams 5206eLite board.

 1 Start the SingleStep debugger.

 2 Load the workspace file with Tools | Load Workspace. SDS provides a few .wsp files in
their INIT directory, and more are available on their FTP site. We provide a few .wsp or
.cfg files if that have fixes from the originals, in the SMX\MISC\SSTEP\CF directory. If we
provide one for your board, use ours; otherwise, use theirs.

 3 Open the debug window. Select File | Debug. Then, click on File and type
\SMX\PROTCF6E\DC.CF\Release\app.elf. Press Ok. A progress bar should show that the
file is downloading. When done, the program counter will point to the start label, the first
instruction of the program. (Close the load dialog.)

 4 Click on Function Popup Dialog in the Debug Window (the black triangle at the bottom of
the Debug Window to the left of the line count) to show a list of all the functions in your
application. Select the ainit() function and click on Go Until to run to the ainit() routine.
Scroll down in the code window to smx_IdleTaskMain(). Put the cursor on the first
instruction inside the while loop and press F9 (equivalent to Breakpoint | Set). In a moment,
an icon will appear to the left of the line number.

 5 Click on the Go icon (green light). If your target board’s serial port is connected to terminal
or PC running a terminal emulator (115200-8-N-1) you should see some status information
displayed that is refreshed periodically. If you don’t see this, shut off power to the target
and try the other serial port if there is one.

 6 To Stop, click on the Stop icon (red light).

14

Building Libraries for SMX Modules

 1 Go to the DC.CF directory in the directory for the module (e.g. XNS for smxNS) and run
the makefile there.

 2 Refer to the notes for each module in the SMX Modules section of this manual. Although
we have configured your release, there may be settings you will want to change prior to
building each library.

Building, Running, and Debugging SMX Module Demos

 1 Enable the demo(s) at the top of the makefile.

 2 Configure the demo(s). See the SMX Modules section of this manual.

 3 Follow the same instructions as for Running and Debugging the Protosystem, above.

 4 If you have difficulty, read the appropriate .txt file in C:\SMX\DOC for the module, if
there is one. Otherwise, please ask!

What To Do Now

 1 See the ColdFire section of the SMX Target Guide for more information about CPU and
tool issues.

 2 See the BSP notes PDF in the DOC directory for information about the board and
processor.

 3 Read the sections following these Getting Started sections, and begin application
development.

15

PowerPC — CodeWarrior

Tool Setup

See CodeWarrior in the PowerPC section of the SMX Target Guide.

Building the Protosystem

 1 Start the CodeWarrior IDE. (CodeWarrior users do not have the option to build from the
command line with a make utility; the IDE must be used.)

 2 Go to the command level subdirectory : \SMX\APP\CW.PPC and double click on
CwProto.mcp.

 3 Edit \SMX\CFG\ConfPpCw.h to match your target. If you change any of the macros in
ConfPpCw.h, force CodeWarrior to rebuild all files by deleting the file
\SMX\APP\CW.PPC\CwProtoData\CwProto.tdt

Running and Debugging the Protosystem under CodeWarrior

It is also possible to debug with SingleStep, if you have it; refer to the SingleStep information in the
section for Diab, below.

 1 Start the CodeWarrior IDE by double clicking on \SMX\APP\CW.PPC\Proto.mcp

 2 Verify that the debug settings are correct:
Edit | Proto Settings | Debugger | EPPC Target settings:
 Set Target OS to Stub if you are using smxAware.
 Set Target OS to Bare Board if you are not using smxAware.
 Set the Use Initialization File check box.
 Set the Initialization file to the config file for your board
 (for example for RpxLite and RpxLF use
 SMX\MISC\CodeWarr\Ppc\RpxLite.cfg).

 Enable the debugger. Project | Enable Debugger
 3 Set a breakpoint in the function smx_EMHook() in main.c. This breakpoint will stop the

program on an smx error. The call stack shows how you got there.
 4 Open the file app.c and set a breakpoint in the while loop of function sleeper_task_main().

 5 Download the app to the target (click on the Go icon).

 6 Run to the sleeper_task_main() breakpoint.

 7 Expand the display variable to see the demo progress. (The display variable should be in
the variable pane of the program window.)

 8 Repeat steps 6 and 7 and check the demo progress.

16

Building Libraries for SMX Modules

 1 Go to the CW.PPC directory in the directory for the module (e.g. XNS for smxNS) and
open the project file there.

 2 Refer to the notes for each module in the SMX Modules section of this manual. Although
we have configured your release, there may be settings you will want to change prior to
building each library.

Building, Running, and Debugging SMX Module Demos

 1 Enable the demo(s) in CFG\ConfPpCw.h.

 2 Configure the demo(s). See the SMX Modules section of this manual.

 3 Follow the same instructions as for Running and Debugging the Protosystem, above.

 4 If you have difficulty, read the appropriate .txt file in C:\SMX\DOC for the module, if
there is one. Otherwise, please ask!

What To Do Now

 1 See the PowerPC section of the SMX Target Guide for more information about CPU and
tool issues. See the CodeWarrior subsection for more information about using this compiler
with SMX.

 2 Read the sections following these Getting Started sections, and begin application
development.

17

PowerPC — Diab

Tool Setup

See Diab in the PowerPC section of the SMX Target Guide.

Building the Protosystem

 1 Change directory to C:\SMX\APP\DC.PPC

 2 Type mak <Enter>

 3 Follow the directions to make the version you want. For example,
 mak d <Enter>
 makes the Debug version. A subdirectory called Debug is created, and you will find the

Protosystem executable, map, object files, and detailed log in it.
Running and Debugging the Protosystem under SingleStep

 1 Start the SingleStep simulator.

 2 Open the debug window. Select File | Debug. Then, click on File and type
“C:\SMX\APP\DC.PPC\Debug\app.x”. Then, click on Processor and select By Object
Type. Click on Ok to load the debug session.

 3 Select Run | Exception Simulation. Click on decrementer, fixed interval timer (FIT)
and periodic interval timer (PIT). Click on Ok to select these three interrupts required by
app.x. (Not doing this will give errors such as “<progname> - stopped by FIT timer
interrupt” when you run.)

 4 Click on Function Popup Dialog in the Debug Window (the black triangle at the bottom of
the Debug Window to the left of the line count) to show a list of all the functions in your
application. Select the smx_EMHook function and click on Break. This breakpoint will
stop the program on an smx error. The call stack shows how you got there. Select
sleeper_task_main and click on Show. The sleeper_task_main() function should be
displayed in the Debug window in C source code (if not then “set srcpath” was not set up
properly). In the Source window find the line in sleeper_task_main() that contains
ltoa(smx_SysStimeGet(), ...) and double click on the line number to set a breakpoint. In a
moment, an icon will appear to the left of the line number.

 5 Click on the breakpoint icon in the left margin to bring up the modifying Breakpoint
window. Select Resume Execution (under the Advanced option in older versions of
SingleStep). Click Ok.

 6 Right click anywhere in the Debug window to bring up a menu. Select Add To Watch,
type in “display”, and click Ok. Expand display to see all of the arrays.

 7 Click on the Go icon (green light).
After a while, you should see the display[]=“” entries change in the Watch window. Keep in
mind that SingleStep is emulating a PowerPC in software.
The program keeps running and the Watch Window is updated each time the breakpoint is

18

reached. This behavior of continuing after the breakpoint is the result of selecting Resume
Execution in step 5.

 8 To Stop, click on the Stop icon (red light).

Building Libraries for SMX Modules

 1 Go to the DC.PPC directory in the directory for the module (e.g. XNS for smxNS) and run
the makefile there.

 2 Refer to the notes for each module in the SMX Modules section of this manual. Although
we have configured your release, there may be settings you will want to change prior to
building each library.

Building, Running, and Debugging SMX Module Demos

 1 Enable the demo(s) in CFG\ConfPpc.mki.

 2 Configure the demo(s). See the SMX Modules section of this manual.

 3 Follow the same instructions as for Running and Debugging the Protosystem, above.

 4 If you have difficulty, read the appropriate .txt file in C:\SMX\DOC for the module, if
there is one. Otherwise, please ask!

What To Do Now

 1 See the PowerPC section of the SMX Target Guide for more information about CPU and
tool issues. See the Diab subsection for more information about using this compiler with
SMX.

 2 Read the sections following these Getting Started sections, and begin application
development.

19

PowerPC — MetaWare High C/C++

Tool Setup

See MetaWare in the PowerPC section of the SMX Target Guide.

Building the Protosystem

 1 Change directory to C:\SMX\APP\HC.PPC

 2 Type mak <Enter>

 3 Follow the directions to make the version you want. For example,
 mak d <Enter>
 makes the Debug version. A subdirectory called Debug is created, and you will find the

Protosystem executable, map, object files, and detailed log in it.
Running and Debugging the Protosystem under SingleStep

 1 Start the SingleStep simulator.

 2 Open the debug window. Select File | Debug. Then, click on File and type
“C:\SMX\APP\HC.PPC\Debug\app.x”. Then, click on Processor and select By Object
Type. Click on Ok to load the debug session.

 3 Select Run | Exception Simulation. Click on decrementer, fixed interval timer (FIT)
and periodic interval timer (PIT). Click on Ok to select these three interrupts required by
app.x. (Not doing this will give errors such as “<progname> - stopped by FIT timer
interrupt” when you run.)

 4 Click on Function Popup Dialog in the Debug Window (the black triangle at the bottom of
the Debug Window to the left of the line count) to show a list of all the functions in your
application. Select the smx_EMHook function and click on Break. This breakpoint will
stop the program on an smx error. The call stack shows how you got there. Select
sleeper_task_main and click on Show. The sleeper_task_main() function should be
displayed in the Debug window in C source code (if not then “set srcpath” was not set up
properly). In the Source window find the line in sleeper_task_main() that contains
ltoa(smx_SysStimeGet(), ...) and double click on the line number to set a breakpoint. In a
moment, an icon will appear to the left of the line number.

 5 Click on the breakpoint icon in the left margin to bring up the modifying Breakpoint
window. Select Resume Execution (under the Advanced option in older versions of
SingleStep). Click Ok.

 6 Right click anywhere in the Debug window to bring up a menu. Select Add To Watch,
type in “display”, and click Ok. Expand display to see all of the arrays.

 7 Click on the Go icon (green light).
After a while, you should see the display[]=“” entries change in the Watch window. Keep in
mind that SingleStep is emulating a PowerPC in software.
The program keeps running and the Watch Window is updated each time the breakpoint is

20

reached. This behavior of continuing after the breakpoint is the result of selecting Resume
Execution in step 5.

 8 To Stop, click on the Stop icon (red light).

Building Libraries for SMX Modules

 1 Go to the HC.PPC directory in the directory for the module (e.g. XNS for smxNS) and run
the makefile there.

 2 Refer to the notes for each module in the SMX Modules section of this manual. Although
we have configured your release, there may be settings you will want to change prior to
building each library.

Building, Running, and Debugging SMX Module Demos

 1 Enable the demo(s) in CFG\ConfPpc.mki.

 2 Configure the demo(s). See the SMX Modules section of this manual.

 3 Follow the same instructions as for Running and Debugging the Protosystem, above.

 4 If you have difficulty, read the appropriate .txt file in C:\SMX\DOC for the module, if
there is one. Otherwise, please ask!

What To Do Now

 1 See the PowerPC section of the SMX Target Guide for more information about CPU and
tool issues. See the MetaWare High C/C++ subsection for more information about using
this compiler with SMX.

 2 Read the sections following these Getting Started sections, and begin application
development.

21

Protosystem

The Protosystem is the foundation for your application. It builds several core files plus BSP files and
startup code and links the SMX module libraries. It is stored in the APP directory.

More information about the Protosystem is given in the SMX Target Guide, such as a listing of the
core files and those that are CPU-dependent. The former are in the Common Notes section; the latter
are in each of the CPU sections.

Project File / Makefile
We intend that you use the Protosystem project file or makefile for your application. You should
add your files to it and remove demo files.

Project files may have some files excluded from the build. IDEs commonly support this. It is easier
to re-enable such a file than to browse to it and add it to the project if necessary in the future. If you
prefer, you can delete files for options you did not license.

The makefile has many macros and conditionals to support the various SMX modules. It looks more
complicated than it is. If you are intimidated by it or just unsure about a few things you see, refer to
the Makefile Structure appendix of the SMX Target Guide for a detailed walk-through of a
representative makefile.

Because you probably ordered only a subset of all SMX modules, there is typically a bit you can
strip out. Until we find or develop a utility to do this automatically, the following tips are helpful:

1. Read Makefile Structure in the SMX Target Guide to learn their structure.

2. Delete the lines that include demodefs.mki and demorule.mki. These definitions are solely for
demos.

3. You may delete include directories and library paths for modules not licensed.

4. You may delete the conditional sections that set the library macros for modules not licensed.

5. In the Build Rules section, you may delete the macros for modules not licensed from the
dependency list for the final executable and the link line.

6. Common Switches (co and ao): You may remove include paths (/I) for all modules not
licensed.

22

Configuration

Each SMX module (e.g. smx kernel, smxFS, etc.) has its own local configuration. There is also
application configuration. This section summarizes where to find documentation about various
configuration settings, and it documents smx kernel and application configuration settings.

Summary
1. Application configuration is done in acfg.h in the Protosystem (APP). Settings are documented

below.

2. smx kernel configuration is done in xcfg.h (and assembly .inc) in XSMX. Settings are
documented below.

3. smxBase configuration is done in bcfg.h in XBASE. Settings are documented in the smxBase
User’s Guide.

4. BSP configuration is done in bsp.h and bsp.inc in the subdirectory for your BSP. Many or most
of the settings are probably already correct for your target, but check each to be sure. See the
comments there and the information at the start of the BSP API section in the smxBase User’s
Guide.

5. SMX modules (e.g. smxFS, smxUSBD, etc.) have their own configuration files. See the SMX
Modules section of this manual for the names of those.

6. Some places in the code are tagged for your attention. Search (grep) for “USER:” to find them.

Application Configuration (acfg.h)
Note that there are multiple versions of acfg.h (e.g. acfgmin.h and acfgmed.h for minimal and
medium settings, respectively). acfg.h simply selects which of these is used. To simplify, you should
rename the acfg*.h file you use to acfg.h and delete the one(s) you are not using. The documentation
refers to acfg.h, meaning the acfg*.h file you are using.

The values set here are mostly used to statically initialize the smx_cf structure in main.c. This
structure is referenced by smx kernel functions. It allows us to ship the smx library in pre-built form,
but with the ability to configure many of its settings. (Settings that are less-likely to change are put
in the smx kernel configuration file, xcfg.h (see below).) Most of these settings specify the number
of various control blocks to allocate and how big to make various memory areas, such as the heap
and stack pool. The smx error manager reports “OUT OF …” or “INSUFF …” if a setting is too
small.

smx Library Feature Control

PROFILE

Enables smx profiling. By default it is set to SMX_CFG_PROFILE (in xcfg.h), but this allows
overriding it in the application.

STACK_SCAN

Enables stack scanning. By default it is set to SMX_CFG_STACK_SCAN (in xcfg.h), but this
allows overriding it in the application.

23

Sizes and Quantities

ADAR_SIZE_ADD

Number of bytes to add to ADAR_SIZE in mem.c. The size of ADAR is calculated in mem.c so
it is sized automatically for the things that smx puts in it. This setting is used to add a little for
alignment padding of these, and it allows you to increase the size of ADAR for anything you
want to put in it, such as pools created by smx_BlockCreatePoolDAR() and
smx_MsgCreatePoolDAR().

SDAR_SIZE_ADD

Number of bytes to add to SDAR_SIZE in mem.c. The size of SDAR is calculated in mem.c so
it is sized automatically for the things that smx puts in it. This setting is used to add a little for
alignment padding of these, and it allows you to increase the size of SDAR for anything you
want to put in it. However, SDAR is intended only for smx objects, so you should put things in
ADAR, unless there is good reason to put some in SDAR.

EB_SIZE

Number of error records in the error buffer. Error information is stored cyclically, so this
determines how many errors it is possible to look back, when many have occurred.

EVB_SIZE

Size of the Event Buffer in words. The Event Buffer consists of variable-length records that
range from 3 to 10 words (12 to 40 bytes). The larger records are for storing up to 6 parameters
of SSRs or User events, which are uncommon. Increasing this value will give a longer trace in
the smxAware event timelines graph and event buffer display, but consumes significant RAM
and lengthens the time for upload via the debug connection.

HEAP_ADDRESS

Starting address of the heap. If 0, it is put in ADAR.

HEAP_SPACE

Size of the smx heap. It is calculated based on the heap usage of various SMX modules such as
smxFS, if present, plus additional space for your application heap requirement. Adjust that
number as needed.

HEAP_ TOPBIN_MIN
HEAP_TOPBIN_MAX

Thresholds (for number of bytes available in top bin) to control automatic chunk merge, to turn
ON and OFF respectively. See the Heap chapters in the smx User’s Guide for information about
configuring the heap settings

HT_SIZE

Number of handles in the handle table. The handle table used by smxAware and smxDLM to
associate names with handles so objects can be displayed by name or handles can be retrieved
by name.

24

LQ_SIZE

Size of the LSR queue. This is the number of LSRs that can be enqueued in the LSR queue at
one time. Each entry is a structure LQ_CELL (xtypes.h).

NUM_BLOCKS

Number of blocks of all sizes (BCBs). These are blocks associated with BCBs not raw blocks,
heap blocks, stacks, or messages.

NUM_MSGS

Number of messages of all sizes (MCBs).

NUM_MTXS

Number of mutexes (MUCBs).

NUM_QLEVELS

Number of queues and levels of multi-level queues (QCBs). Note that QCBs is a union of
ECBs, SCBs, and XCBs (events, semaphores, and message exchanges, respectively.

NUM_PIPES

Number of pipes (PXCBs).

NUM_POOLS

Number of block and message pools (PCBs).

NUM_STACKS

Number of stacks in the stack pool. Does not include permanent stacks allocated from the heap.
It is not necessary to allocate a stack per task. Instead, it is necessary only to allocate enough
stacks for the maximum number of tasks without permanent stacks that could become ready at
any time. See the One Shot Tasks chapter of the smx User’s Guide for a way to write tasks to
minimize this setting, by stopping rather than suspending on SSR calls, so that the stack can be
given to another task while the first task is waiting.

NUM_TASKS

Number of tasks (TCBs and timeouts). This setting should be tuned close to the number of
tasks, since the TCB is by far the largest control block, and smx_TimeoutLSR checks all
timeouts. Tuning this setting to the number of tasks needed will reduce RAM usage and increase
performance slightly.

NUM_TIMERS

Number of timer control blocks, TMCBs.

PP_OBJ_NUM

Number of smx++ objects that can be allocated from the GlobalPool using the new() operator.
Global objects (those defined at global scope or with the ::new operator) do not use blocks from
GlobalPool. Only applies to smx++ users.

25

PP_OBJ_SIZE

Maximum size of smx++ objects that can be allocated from the GlobalPool. Only applies to
smx++ users.

RTCB_SIZE

Number of run time counter samples in smx_rtcb.

RTC_FRAME

Determines rtc frame in ticks.

SA_PRINT_RING_SIZE

Size of the smxAware print ring (bytes). This holds messages printed with sa_Print() functions,
which are shown in the Print display in smxAware.

STACK_PAD_SIZE

Size of stack pads for all stacks. Must be a multiple of 4 bytes. Use during development and set
to 0 for release. Stacks grow toward the pad, so the system will continue to run, as unless the
stack overflows beyond the pad.

STACK_SIZE

Size of stacks in the stack pool.Must be a multiple of 4 bytes.

STACK_SIZE_IDLE

Size of idle task stack. It is used for init and exit too, which run in the context of the idle task.

TIMEOUT_PERIOD

How often TimeoutLSR runs, in ticks. By default it is set to 1, but it could be set higher to
reduce overhead. Note that it is now an LSR not a task, and it was rewritten, which were both
done to minimize overhead. Task timeouts in SSR calls are only precise to this number of ticks.

Other Settings

NULL_PTR_REF_CHECK

Enables code that runs in the idle task and at exit that checks to see if the word at address 0 has
changed since ainit() at startup, which would indicate a null pointer was dereferenced. Set to 1 if
you desire this extra checking, but only if your target has RAM at address 0. Note that RAM
may be mapped to address 0 for Debug and Release build targets but for the ROM target, flash
is mapped to 0, so in this case, a conditional should be used such as SMX_BT_ROM to set it to
0 or 1, as appropriate.

smx Kernel Configuration (xcfg.h)
Changing any of these settings requires rebuilding the smx library. Some of these settings enable
optional code. We recommend searching for these to see how they are used. Also note that we plan
to increase uses of some in the future.

26

SMX_CFG_DIAGS

If 1, extra diagnostic information is collected such as LSR queue high water mark. Setting to 0
removes this additional code and improves performance slightly. Typically this would be
enabled during development and disabled for release.

SMX_CFG_ERROR_MSGS

If 1, smx error messages are enabled (see xem.c). 0 saves const memory.

SMX_CFG_EVB

If 1, the Event Buffer is present; if 0 it is not. The Event Buffer is used by smxAware to display
its event timelines graph and textual event buffer.

SMX_CFG_HT

If 1, the Handle Table is present; if 0 it is not. The Handle Table associates handles with names
and is required by smxAware and smxDLM.

SMX_CFG_HT_SCAN_DUP

If 1, smx_HTAdd() checks if the name is already in the table and reports SMXE_HT_DUP if
so. This is disabled by default because it is common in SMX modules to give things the same
name (such as multiple USB class driver tasks since they are all created by a general function),
and to avoid this by suffixing them takes extra code and it not meaningful. Also if there are
many handles, doing this search will add significant overhead to all object creation. Enable this
temporarily when you want to check for duplicates.

SMX_CFG_LOCK_NEST_LIMIT

Maximum lock nesting. Set as desired. SMXE_EXCESS_LOCKS is reported if this limit is
exceeded.

SMX_CFG_PROFILE

If 1, profiling is enabled. Set to 0 when bringing up a new port or making time measurements.
See the smx User’s Guide for information about smx profiling.

SMX_CFG_SAFETY_CHECKS

If 1, additional safety checks are enabled. Setting to 0 removes this additional code and
improves performance slightly. Typically this would be enabled during development and
disabled for release.

SMX_CFG_STACK_SCAN

If 1, stack scanning and clearing code is present; if 0 it is not. Scanning is the best way to
determine stack usage to enable stack size tuning. This information is stored in the TCB and is
displayed in smxAware graphically and textually.

SMX_CFG_TIMESLICE

Set to timeslice period, in ticks, or 0 to disable timeslicing. Timeslicing is done only for the
lowest priority level of the ready queue. Note that this does not guarantee a task will be given
this many ticks every time; in the case where level 0 task suspends itself, the next task gets only

27

the remainder of the first task’s timeslice, since smx_KeepTimeLSR is not aware of this and
does not clear the counter. Use an smx timer to achieve periodic scheduling.

SMX_HEAP_*

See the Heap chapters in the smx User’s Guide for information about configuring the heap
settings.

PRIORITIES enum

These are the predefined task priority levels. Although numbers could be passed for priorities,
an enum allows using meaningful names. You can add new levels up to 127. These are used in
SMX libraries and the application, so that is why this is located in xcfg.h rather than acfg.h.

28

SMX Startup and Scheduler Operation

startup code -> main() -> smx_Go() -> smx_SchedRunTasks() -> ainit() -> tasks

 1 startup code is usually written in assembly language. Details of routines and files vary for
each board and compiler. See the section Protosystem / BSP Files in the section for your
CPU in the SMX Target Guide. This code calls main().

 2 main() calls smx_Go(). Generally, you should not change main(). Instead add code to
ainit(). Prior to calling smx_Go(), interrupts are masked. (The interrupt mask that was in
effect is later restored by ainit() (see below).)

 3 smx_Go() initializes smx. The smx_Idle task is created and started here. Finally smx_Go()
calls smx_SchedRunTasks(), in the scheduler.

 4 smx_SchedRunTasks() is the smx task scheduler. Since smx_Idle task was set to
maximum priority, it is the first to run. ainit() is its code, initially (in main.c).

 5 ainit() restores the interrupt mask that had been in effect in main() before they were
masked. Normally, the startup code should have had all interrupts already masked, so they
still remain masked, but if there had been a need to enable an interrupt or two prior to
main(), this would re-enable it. (As a general rule, interrupts should be unmasked
individually right after each ISR is hooked.) Then ainit() creates some tasks and calls
smx_modules_init(), which performs some additional initialization of SMX modules, such
as smxNS and smxUSBH. Then it calls appl_init(), which creates application tasks. These
tasks do not run yet, since smx_Idle is maximum priority and it does not suspend itself (see
note 4 below). The last step of ainit() is to call smx_TaskStartNew(), which sets smx_Idle’s
code to smx_IdleTaskMain() and to lowers its priority to 0.

 Important: ainit() and all routines it calls must not call SSRs that suspend, or other tasks
will start running before initialization is complete. See note 4 below.

 6 tasks Once smx_TaskStartNew() completes, the system is multitasking! The highest
priority task in the ready queue is started. (If there is more than one, the first task started is
the first to run.) From this point on, the highest priority task will run. Every interrupt and
every smx call designated as an SSR in the Reference Manual is an entry into the scheduler.
The scheduler first runs any LSRs. If the current task is locked, execution returns to it.
Otherwise, the scheduler looks to see if a higher priority task has become ready. If so, the
current task is immediately suspended and the higher priority task is resumed or started.

Notes:

 1. The smx scheduler (xsched.c) consists of:
a. LSR scheduler
b. Task scheduler
c. smx_SSR_ENTER() and smx_SSR_EXIT() routines (begin and end all system services

(SSRs))

 2. For efficiency, ISRs do not branch to the scheduler unless LSRs are waiting to run. (See the
check of smx_lqctr in smx_ISR_EXIT.) Also, nested ISRs do not enter the scheduler, and
instead return to the point of interrupt.

29

 3. Locking is accomplished by the smx_DO_CTTEST() macro, which is invoked by SSRs (see
xsmx.h). If the current task is locked, smx_sched is not set, so after the scheduler runs any
waiting LSRs, the task scheduler is not entered, and instead the scheduler returns to the current
task.

 4. ainit() actually runs in the multitasking environment, as the idle task. It completes before any

other tasks run, because it is set to the maximum priority level. However, this would not be true
if idle were to suspend or stop itself by calling an SSR with a timeout. Then some other task
could run before the system was fully initialized, thus causing an error. (Note that locking idle is
not a solution because that does not prevent it from suspending or stopping itself.) Note that
your application init in appl_init() is called by ainit(), so it also must not call SSRs that suspend
or stop.

 5. Setting smx_Idle task’s code to ainit() and then later switching it to smx_IdleMain()

demonstrates how a task’s main function can be changed at any time.

30

SMX Modules

This section gives an overview of the various modules of the SMX RTOS, such as the kernel, file
system, TCP/IP stack, USB stacks, and GUI. It summarizes the directory, demo, and configuration
information, and it gives a few key tips about some modules.

Notes
1. Build all module libraries first, before the Protosystem/application.

2. Documentation: In addition to the PDF manual(s) for each module, check the DOC directory
for a .txt file with supplemental information.

3. Libraries for each module are separate because modules are licensed individually. Libraries are

built from the directories listed below, using the project file or makefile there, in the same
manner as when building the Protosystem. For makefile builds, libraries are selected at the top
of pro.mak.

4. Demo files are stored in the APP\DEMO directory. All of these can be discarded. Demos are
provided only for the modules you licensed. Choose which demos to link. For IDE builds, select
demos in the “prefix” or “preinclude” file in the CFG directory. For makefile builds, this is
generally done in demodefs.mki (in the same directory as pro.mak). Each demo uses a different
region of the screen and some use the keyboard, so it may not be possible to run all demos
simultaneously. Some demos are described in more detail in the module (product) release notes,
but a few points are mentioned below.

5. Demo configuration is documented below and in the comments at the top of the demo files.
Check the comments in the demo files, in case there are new settings added since printing this
manual.

6. Debug Libraries: These are for debugging the module (product) library itself. For example, if
you made changes to smxFS files (in the XFS directory) and these caused some problem, you
would link the Debug version of that library in order to step through the changed files in it.
(Normally, you link the Release library, even if making the Debug version of your application.)
Build the Debug version of the library, add it to the app project, and exclude or remove the
Release library from it. Notice that the Protosystem makefile makes it easy to specify which
library to link by uncommenting the line for the debug library and commenting out the other.
For example:

fsl = $(smxroot)\xfs\mc.p3\release\fsr.lib (release library)
#fsl = $(smxroot)\xfs\mc.p3\debug\fsd.lib (debug library)

To select the debug library, uncomment the second line and comment out the first.

7. Not all of the modules listed below are available for every processor. Contact our sales
department for availability.

31

Modules

smx kernel

Directory: XSMX
Demo Files: app.c in Protosystem
Configuration: acfg.h in Protosystem (main cfg), xcfg.h

smx++ (C++ Kernel API)

Directory: XSMXPP
Demo Files: sppdemo.cpp, dprocess.cpp, dprocess.hpp
Configuration: —

smxFLog

Directory: XFL
Demo Files: fldemo.c
Configuration: flcfg.h

smxFFS

Directory: XFFS2
Demo File: ffs2test.c
Configuration: ffcfg.h

smxFS

Directory: XFS
Demo Files: fsdemo.c, fstest.c
Configuration: fcfg.h

If you are using the USB disk driver, also define SMXUSBH and link the smxUSBH library.
For releases using makefiles, do this by uncommenting the susb macro in pro.mak.

fsdemo creates a subdirectory and creates many files in it. It creates files of random sizes and
does random operations on them (choosing from a list), such as read, write, and truncate. It is
meant to be a fairly simple example to study. It also tests performance by writing a large test file
to the disk (e.g. 20 MB), and then reads it back and reports the average read and write speeds.

fstest is similar to fsdemo but tests more operations.

smxNS

Directory: XNS
Demo Files: nsdemo.c, nsmtest.c, nstels.c
Configuration: \XNS\include\nscfg.h.
 \XNS\netsrc\netconf.c.

See the smxNS User’s Manual for information about getting started and running demos.

32

smxSSL

Directory: XSEC
Demo Files: ssldemo.c
Configuration: \XSEC\include\seccfg.h.

smxUSBD

Directory: XUSBD
Demo File: usbddemo.c
Configuration: udcfg.h, udport.c,h

See the Demo Configuration section at the top of usbddemo.c to enable different demo features.

smxUSBH

Directory: XUSBH
Demo File: usbhdemo.c
Configuration: ucfg.h, uport.c,h

See the Demo Configuration section at the top of usbhdemo.c to enable different demo features.

smxUSBO

Directory: XUSBO
Demo File: usbodemo.c
Configuration: uocfg.h, uoport.c,h

smxWiFi

Directory: XWIFI
Demo File: wifidemo.c
Configuration: wfcfg.h, wfport.c,h

Third Party Modules
C/PEG

Summary: C GUI from Swell Software
Directory: XPEG (files for SMX port and library); \CPEG (main files)
Demo Files: APP\DEMO\CPEG*.* or APP\DEMO\pegapp.c, pegdbmp.c
Configuration: \CPEG\include\pconfig.h

The smxcpeg.c and smxcpeg.h files in XPEG contain the porting implementation for SMX. In
smxcpeg.h, set the mouse type, port, and IRQ. The SMX port of C/PEG is fully documented in the
SMX / C/PEG Integration Notes (PDF) in the \SMX\DOC directory. A few important points:
(1) PegMesgQueue is implemented differently in the SMX port (the bulk of pmessage.c is
conditioned out). (2) PegTask is implemented specifically for SMX. (3) The PEG library for SMX is
built from the makefile or project file provided in \SMX\XPEG not \PEG\build. The latter is for
standalone PEG releases. See the integration notes for more details such as these.

33

PEG+

Summary: C++ GUI from Swell Software
Directory: XPEG (files for SMX port and library); \PEG (main files)
Demo Files: APP\DEMO\PEG*.* or APP\DEMO\pegapp.cpp, pegapp.hpp, pegdbmp.cpp

and the files in \PEG\examples\pegdemo
Configuration: \PEG\include\pconfig.hpp

The smxpegmt.cpp and smxpegmt.hpp files in XPEG contain the porting implementation for
SMX. In smxpegmt.hpp, set the mouse type, port, and IRQ. The SMX port of PEG is fully
documented in the SMX / PEG Integration Notes (PDF) in the \SMX\DOC directory. A few
important points: (1) PegMesgQueue is implemented differently in the SMX port (the bulk of
pmessage.cpp is conditioned out). (2) PegTask is implemented specifically for SMX. (3) The PEG
library for SMX is built from the project file or makefile in \SMX\XPEG not \PEG\build. The latter
is for standalone PEG releases. See the integration notes for more details such as these.

34

Support

Support Site
Check www.smxrtos.com/support regularly for fixes, enhancements, and technical information. To
access it, you must supply a password. You will be notified whenever it changes, if you have given
us your email address and you are current on your maintenance and support contract. To get the
password, email support@smxrtos.com. Indicate the company you work for that licensed our
software.

Bug Fixes
As fixes are made, we post entries on the Product Fixes page of the support site. These are
categorized by product, and dates are marked next to each entry to make it easy to see which are
new since you last checked. Each entry is a link to more information about the fix and how to apply
it. Sometimes fixed source files are provided. Contact support@smxrtos.com if you need help
applying fixes. If many are needed, it might be better to request an update.

35

Application Development

Before you begin work on your application, please build and run the Protosystem, as shipped. The
project file or makefile is set to build and link some or all of the SMX modules you licensed. Please
follow the instructions in the Getting Started section of this manual, for your processor and tools.

Main Steps
1. Make a copy of the Protosystem directory, naming it for your application. (Keep the original,

pure Protosystem directory so you can do confidence tests or experimentation, in a copy of it.)

2. Replace app.c with one or more application files.

3. Configure.

4. Remove any unnecessary code and conditionals (optional).

Guidelines
1. To allow you to easily integrate future updates of smx we suggest that you minimize

modification to the Protosystem files. Of course, you may remove any irrelevant code from
them, but you should not add application code to them. Put your code into new files. You
should tag all changes you make to SMX files.

2. We recommend putting application initialization routines into each application file. These
should be called from appl_init() which, in turn, is called by ainit() in main.c. Each initialization
routine creates smx objects, starts tasks, etc. as needed by the code in its file. Similarly, there
should be exit routines in each application file, if the application exits. These should be called
from appl_exit(), which in turn, is called by aexit().

app.c
To start your application, create a new app.c like this:

 /* app.c */

 #include "smx.h"
 #include "main.h"

 void appl_init(void)
 {
 }

 void appl_exit(void)
 {
 }

These are the hooks for you to initialize and exit your application. Add code to appl_init() to create
your main smx task(s) and other objects. You do not need to create everything here. You can create
smx objects (tasks, semaphores, exchanges, etc.) from any task, at any time, so typically, you just
add code here to create the main objects, to get the system started.

Create any other files and include smx.h and main.h in them. That’s it!

36

Simplification
The Protosystem is purposely kept minimal, and demo code is separated into the DEMO directory
and app.c. There is not much code in the Protosystem files, so there is not a lot to strip out.
However, here are some things you can do:

• Demos should be disabled and not linked, of course.

• Replace app.c with your own (see the section app.c, above).

• Strip out conditionals for other compilers and modules (products) you aren’t using.
However, since you may want to update to a new version of SMX (which means moving
your app to the new Protosystem), you ought to minimize this.

Coding
Refer to the example code in ESMX, and copy useful sections into your code. Start by linking esmx
to the Protosystem and following the Debug Tour document there, to get familiar.

Debugging
The topic of debugging and diagnostics could easily fill a whole manual, and someday maybe it
will. Until then, these are a few helpful notes:

1. smx Errors are listed alphabetically in the Glossary section of the Reference Manual, at
SMXE_xxx. If an smx error occurs, look there for information about possible causes and things
to try. These are kernel errors, only.

2. The Protosystem opcon task recognizes a couple keys that change the terminal display:

 Ctrl-D changes the output mode to suppress ANSI Esc sequences for cursor positioning and
color, and it displays messages sequentially at the first column of the terminal. This allows
capturing a clean log from the terminal program. In TeraTerm, for example, use File | Log… to
set the output file name. Then terminal output will also be saved to the file. This is helpful to
send us for technical support.

 Ctrl-E clears the screen and displays the contents of the error buffer. Errors are displayed in red,
inline with other messages in the right half of the screen, normally, but this is a way to look at
the smx errors condensed. Note that the error buffer is cyclic and also may be bigger than the
number of lines on the terminal, so a * marks the most recent error.

3. If you suspect an smx error is occurring but cannot tell because you have no terminal or display
or it has been switched to graphics mode, you can put a breakpoint at smx_EMHook() in
main.c. While there you can inspect errnum to find out which error occurred and smx_ct to see
which task caused it (or LSR, if smx_clsr is set). The call stack shows how you got there.

4. Debugging a multitasking application is more challenging than debugging sequential code.
When you step over an instruction, it is possible that an interrupt will occur, causing a task
switch and then a return to the current task, without you being aware. It looks to you like the
debugger ran only the instruction you stepped over, when, in fact, a considerable amount of
other code may have run. It is easy to be misled into thinking that if something went wrong
during that step, such as an smx error being flagged or a watched variable being corrupted, that
the instruction you stepped over was the culprit. However, it could have been caused by an
entirely different task that ran during that instant. Keep this in mind. Debugging can be further

37

complicated if multiple tasks share the same code, since it may become necessary to determine
which task is currently running.

5. smxAware is a big help. This is a DLL and EXE that adds smx-awareness to the debuggers we
support. It allows viewing smx objects by name and setting task-aware breakpoints for some
debuggers. It shows stack usages, which is a big help for catching stack overflows. Some
versions include GAT (Graphical Analysis Tool), which allows you to view event timelines,
profiling, stack usage, and memory layout. smxAware Live is a remote monitoring version.

6. Stack Overflow can be a difficult bug to track because the symptoms usually arise long after
the corruption — often not until the task with the corrupted stack is resumed. smx helps greatly
by doing automatic stack scanning and stores the number of bytes used, in the TCB (in the
shwm field, meaning stack high-water mark). This information is displayed textually in the
Stack window in smxAware and graphically by smxAware GAT. Stack checking is configured
in acfg.h. Set STACK_SCAN to 1. Also, we recommend you enable stack padding (set
STACK_PAD_SIZE) so the system will continue running if a stack only overflows into its pad.

7. Stepping over the smx_TaskStartNew() call at the end of ainit() causes the Protosystem to free
run. This is because smx_TaskStartNew() assigns a new function to the task and restarts it using
that code, so execution never returns following the call. This is true when stepping over any call
to this function.

BSP API
The Board Support Package (BSP) API is a set of low-level functions that interface to the hardware,
for use by SMX and the application. Primarily the API contains routines for hooking, masking, and
configuring interrupts. The API is defined in XBASE\bbsp.h and implemented in bsp.c in each BSP.
There is one bsp.c file for each board/platform supported. We intend for you to add any additional
hardware initialization code to sb_PeripheralsInit(). See the BSP API section of the SMX Target
Guide for detailed information.

38

Utilities

These are utilities that are exceptionally useful for software development. We highly recommend
that you use them.

Diff

BeyondCompare (www.scootersoftware.com) is a very good utility for differencing source files. It
has 2 panes that show the directory tree and allows easily navigating and opening files for side-by-
side comparison, with differences highlighted. It is inexpensive and has a free evaluation period. It is
easy to see which files are different and to transfer changes from one to the other, incrementally or
all at once. A good use of this tool is to copy changes to your main-line code after experimenting.
Rather than experiment in your working directory, make a copy of it. When you have it working,
compare the two trees. You can review and transfer the changes to your main-line code individually.
This is great for catching temporary changes you should have reversed.

Grep

Grep is an invaluable tool for finding things in unfamiliar code. It allows searching for a text string
in all files in a directory (and even in nested subdirectories). This is especially helpful when trying to
find where a function or variable is defined. The one supplied with Borland C++ is simple and
works well. Dig up an old version of this compiler to get it, if you don’t already have a grep utility.
There are only 4 switches you need to know:

 -d+ search subdirectories too
 -i+ ignore case
 -l+ list file names only (don’t show matching lines from files)
 -w+ whole-word search

Put quotes around multi-word search strings.

Shell

For command line users, we recommend you use a shell utility such as FAR (www.rarlab.com)
rather than using the Windows command line for your build environment, since SMX has nested
subdirectories, and you will quickly tire of typing the cd command to get down to the build
directories. Shell utilities show what is in each directory much more cleanly than the dir command,
and they are very efficient for copying and moving files and whole directories. They are far superior
to Windows Explorer for this purpose, although they may not look as pretty. FAR is a clone of the
venerable Norton Commander. It supports long file names, networking, operating in compressed
files, and adds many other features. It offers a long free-trial period after which the licensing fee is
nominal. Try it.

Terminal Emulator

The Protosystem assumes a terminal is connected to display messages and to take user input.
(Assume 115200-8-N-1, unless told otherwise.) You can connect your target board’s serial port to a
spare serial port on your host system and run a terminal emulator. We recommend Tera Term Pro,
which is easy to use, small, and free.

39

Tips

1. smx terminology and error messages are documented in the Glossary section of the smx
Reference Manual.

2. Grep the code for “USER:” to find places that you may want to make changes. This is a
convenient way for us to tag things for your attention.

3. smx kernel error messages are recorded in the error buffer, and they are displayed on the
terminal. Error handling code is in xem.c. You can modify it to do what you want. Put a
breakpoint on smx_EMHook() in main.c, and if hit, look at the call stack in the debugger to see
how you got there. This application callback function is provided to make it easy to set a
breakpoint, since smx_EM() is in the smx library, which is usually compiled with optimization
and no debug symbolics. Also main.c is accessible from the application project, unlike xem.c.

40

Index

ainit(), 29, 30
APP directory, 4
app.c

minimal, 36
appl_init(), 29, 30
application development, 36
BeyondCompare utility, 39
BSP notes, 2
bug fixes, 35
build directory, 3
build targets, 5
build versions, 5
C/PEG, 33
code

conditionals, 7
CodeWarrior

ColdFire, 12
PowerPC, 16

coding, 37
command line, 39
command line environment, 9
conditional code, 7, 37
configuration, 23

application, 23
smx kernel, 26

conventions
documentation, 2

debugging, 37
defines

module, 7
DEMO directory, 31
demos, 4, 5, 31

configuration, 31
developing application, 36
Diab

ColdFire, 14
PowerPC, 18

diff utility, 39
directories

build, 3
library, 3
main, 3
module, 3
output, 4
Protosystem, 3

directory structure, 3
benefits, 4

DOC directory, 2
documentation, 2, 31

conventions, 2
dual-build, 4
enhancements, 35

event timelines, 38
executable directory, 4
FAR utility, 4, 39
fixes, 35
getting started, 9
grep utility, 39
IAR

ARM, 10
IDE vs. makefiles, 6
idle task, 30
initialization

application, 29
smx, 29

installation, 1
compiler and tools, 1
SMX, 1

libraries, 31
building

CodeWarrior ColdFire, 13
CodeWarrior PowerPC, 17
Diab ColdFire, 15
Diab PowerPC, 19
IAR ARM, 11
MetaWare PowerPC, 21

debug, 31
main(), 29
makefile, 4, 6

simplifying, 22
makefiles vs. IDE, 6
manuals, 2
map file directory, 4
memory usage, 38
MetaWare High C/C++

PowerPC, 20
module defines, 7
naming convention, 7
optimization, 7
output directory, 4
PEG+, 34
prefix file, 31
preinclude file, 31
profiling, 38
project file, 4, 6

adding demos, 6
adding SMX module libraries, 6
simplifying, 22

Protosystem, 4, 22
adding SMX modules, 7
building

CodeWarrior ColdFire, 12
CodeWarrior PowerPC, 16
Diab ColdFire, 14

41

Diab PowerPC, 18
IAR ARM, 10
MetaWare PowerPC, 20

running and debugging
CodeWarrior ColdFire, 12
CodeWarrior PowerPC, 16
IAR ARM, 10
SingleStep ColdFire, 14
SingleStep PowerPC, 18, 20

simplifying, 37
ready queue, 29
release notes, 2
RTOS modules, 31
scheduler, 29
searching code, 39
shell utility, 39
smx errors, 37, 40
SMX module defines, 7
SMX modules, 31
smx source code, 32
smx_EMHook(), 40
smx_Go(), 29
smx_Idle, 30
smx_IdleMain(), 30
smx_modules_init(), 29
smx_SchedRunTasks, 29
smx_TaskStartNew(), 29, 38
smx_Version, 5
SMX_VERSION, 5
smx++, 32
smxAware, 38

CodeWarrior ColdFire, 13
IAR ARM, 10

smxcpeg.c, 33
smxFFS, 32
smxFLog, 32
smxFS, 32
smxNS, 32, 33
smxpegmt.cpp, 34
smxUSBD, 33
smxUSBH, 33
smxUSBO, 33
smxWiFi, 33
stack high-water mark, 38
stack overflow, 38
stack usage, 38
startup, 29
support, 35
support site, 35
Tera Term Pro utility, 39
terminal emulator, 39
tips, 40
tips files, 2
updated files, 35
USB disk driver, 32
USER comments, 40
utilities, 39
version numbers, 5
website

manuals, 2
support, 35

xsched, 29

42

	Installation
	SMX
	Compiler and Tools

	Documentation
	Manuals
	BSP Notes
	Release Notes and Text Files
	Conventions

	Global Concepts
	smx vs. SMX
	Directory Structure
	Main Directories
	Module Directories (may or may not be present in your releas
	Subdirectories of Library and Protosystem Directories (XXX.YYY\ZZZ)
	Benefits of SMX Directory Structure

	Protosystem
	Demos
	Version Numbers
	Build Information
	Build Versions

	IDE vs. Makefiles
	Adding SMX Module Libraries
	Adding Module Demos
	Other Notes

	Module Defines
	Optimization
	Conditionals
	Naming Convention

	Getting Started
	Command Line Environment
	ARM — IAR
	Tool Setup
	Building the Protosystem
	Running and Debugging the Protosystem
	Enabling smxAware
	Building Libraries for SMX Modules
	Building, Running, and Debugging SMX Module Demos
	What To Do Now

	ColdFire — CodeWarrior
	Tool Setup
	Building the Protosystem
	Running and Debugging the Protosystem
	Enabling smxAware
	Building Libraries for SMX Modules
	Building, Running, and Debugging SMX Module Demos
	What To Do Now

	ColdFire — Diab
	Building the Protosystem
	Running and Debugging the Protosystem under SingleStep
	Building Libraries for SMX Modules
	Building, Running, and Debugging SMX Module Demos
	What To Do Now

	PowerPC — CodeWarrior
	Tool Setup
	Building the Protosystem
	Running and Debugging the Protosystem under CodeWarrior
	Building Libraries for SMX Modules
	Building, Running, and Debugging SMX Module Demos
	What To Do Now

	PowerPC — Diab
	Tool Setup
	Building the Protosystem
	Running and Debugging the Protosystem under SingleStep
	Building Libraries for SMX Modules
	Building, Running, and Debugging SMX Module Demos
	What To Do Now

	PowerPC — MetaWare High C/C++
	Tool Setup
	Building the Protosystem
	Running and Debugging the Protosystem under SingleStep
	Building Libraries for SMX Modules
	Building, Running, and Debugging SMX Module Demos
	What To Do Now

	Protosystem
	Project File / Makefile

	Configuration
	Summary
	Application Configuration (acfg.h)
	smx Library Feature Control
	Sizes and Quantities
	Other Settings

	smx Kernel Configuration (xcfg.h)

	SMX Startup and Scheduler Operation
	Notes:

	SMX Modules
	Notes
	Modules
	smx kernel
	smx++ (C++ Kernel API)
	smxFLog
	smxFFS
	smxFS
	smxNS
	smxSSL
	smxUSBD
	smxUSBH
	smxUSBO
	smxWiFi

	Third Party Modules
	C/PEG
	PEG+

	Support
	Support Site
	Bug Fixes

	Application Development
	Main Steps
	Guidelines
	app.c
	Simplification
	Coding
	Debugging
	BSP API

	Utilities
	Tips

