
 i

USNet
Web Server

User’s Guide

Version 1.3
December 2004

 ii

Copyright and Trademark Information

Copyright 1997-2004 Lantronix, Inc. All rights reserved. No part of this publication may be reproduced,
translated into another language, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Lantronix,
Inc.

Lantronix®, U S Software®, USNet®, USFiles®, USLink®, SuperTask!®, MultiTask!™, NetPeer™,
TronTask!®, Soft-Scope®, and GOFAST® are trademarks of Lantronix, Inc. Other brands and names are
marked with an asterisk (*) and are the property of their respective owners.

Lantronix, Inc. makes no warranty of any kind with regard to this material, including but not limited to the
implied warranties of merchantability and fitness for a particular purpose. Lantronix, Inc. assumes no
responsibility for any errors that may appear in this document. Lantronix, Inc. makes no commitment to
update or to keep current the information contained in this document.

Lantronix, Inc.
15353 Barranca Parkway
Irvine, CA 92618
(949)453-3990
Fax (949) 453-3995

For Support Contact:
Micro Digital Associates, Inc.
2900 Bristol Street, #G204
Costa Mesa, CA 92626
(714) 437-7333
support@smxinfo.com
www.smxinfo.com

 iii

Documentation Conventions

Computer output and code examples: Courier, usually in a separate paragraph.

Function names and command names: Bold italic, usually followed by parentheses, as in main() function.

Variables: Courier 11 italic (mt_busy).

File names: Times bold (the file usrclk.asm), usually in lower case.

Key names: Initial capital, in angle brackets, as in press <Enter>.

Menu names and selections, dialog box names, screen titles, window titles: Times bold, as in File menu.

Notes: Indicate important information.

Cautions: Indicate potential damage to hardware or data.

Documentation History

Revision Number Date Notes

 1.0 (Original) December 1997

 1.1 May 1998

 1.2 August 1998

 1.3 December 2004 Merged and eliminated Advanced Customization manual.

 v

Contents

1. Introduction .. 1
User’s Guide Overview... 1
Web Server Terminology.. 2
Recommended Reading .. 3

Other U S Software Documents.. 3
On the Internet .. 3
Books .. 4

2. Getting Started ... 5
Web Server Overview... 5

Web Server Requirements .. 6
Building the Web Server... 7

Building for USNet ... 7
Building for UNIX.. 7
Building for Another TCP/IP Stack.. 8

Example Web Server .. 10
Building the Example Web Server for your Target .. 11
Connecting to the Example Web Server ... 11

3. Using the Web Server .. 13
User Server Functions... 13

Bwrite() ... 14
GetEntry() ... 15
HTTPserver() .. 16
HTTPservinit() .. 16
Neof().. 17

HTTP Server Request Structure.. 18
Modules and Handlers .. 20

Module Function Descriptions.. 21
MODchkaccess()... 21
MODchkauth().. 22
MODchkloc().. 23
MODchktype().. 23
MODgetuser() ... 24
MODlog() ... 25
MODtranslate() ... 25

Request Structure .. 26
Using Usbldpg .. 27

Server Configuration File ... 27
MIME Information.. 33
AddType Command.. 35
Page Configuration File .. 36
Variable Configuration File .. 38

 vi

CGI Function Programming Interface .. 39
System Support Routines.. 40
CGI Routines .. 45
CGI Environment Variables ... 52

USMETA Programming Interface.. 55
#echo ... 56
#exec ... 57
#include... 58
#memory ... 59
#system ... 59

Index... 61

Introduction

 1

1. Introduction

User’s Guide Overview
This guide describes U S Software’s USNet Web Server. The included files and the functions that these files
provide are detailed in the readme.txt file.

This is the organization of the guide:

Chapter Contents

1. Introduction Introduces the reader to the Web Server User’s Guide, Web Server terminology,
and recommended reading.

2. Getting Started Provides an overview of the Web Server, instructions for building the Web
Server, and information about the provided examples of the Web Server.

3. Using the Web Server Provides information on design paradigms, configuring the Web Server, and
building your web pages. Describes user server functions, CGI routines, and
HTML META commands.

Introduction

 2

Web Server Terminology
CGI Common Gateway Interface. CGI reads parameters from forms on the displayed web page

to the server, so the server can display different pages depending on the user’s actions.

DNS Domain Name System, a mechanism that allows the IP address of a system in a TCP/IP
network to be determined based on a name assigned to the system, or vice versa.

HTML META commands
Commands embedded in the HTML that return predefined system information to the user.

HTTP Hypertext Transfer Protocol, a simple application- level protocol used to access hypermedia
documents. The protocol is stateless and generic, which allows it to be used for many tasks.

ISMAP An HTML tag which returns position coordinates within the page image.

MIME Multipurpose Internet Mail Extensions, which defines how to encode and decode multipart
messages and non-ASCII character sets.

POP Post Office Protocol, a minor variation of SMTP that allows a client to retrieve mail from a
remote server mailbox.

SMTP Simple Mail Transfer Protocol, a protocol for transferring mail.

SVA Server Variable Access, a mechanism for accessing static global variables within an
embedded application via HTML.

TCP/IP Transmission Control Protocol/Internet Protocol, a software protocol for communication
between computers.

Introduction

 3

Recommended Reading

Other U S Software Documents
USNet User’s Manual

On the Internet
RFCs (request for comments) are documents that are available over the Internet via anonymous FTP. The
following references will provide more information on topics relevant to the Web Server:

 Topic RFC Numbers

 SMTP 821, 822, 1869, and 2045
 POP 1725
 MIME 2045 through 2049
 HTTP 2068
 DNS 1034, 1982, 2065, 1876, 1101

Here is an abbreviated example FTP session:

 % ftp ftp.rfc-editor.org
 .
 Name: anonymous
 Password: <your email address>
 .
 ftp> cd in-notes
 .
 ftp> get rfc1122.txt
 .
 ftp> quit

Introduction

 4

Books
Foundations of WWW Programming with HTML & CGI
IDG Books
ISBN 1-56884-703-3

CGI Programming in C and Perl
Thomas Boutell
Addison Wesly
ISBN 0-201-42219-0

CGI Developers Guide
Eugene Eric Kim
Sams Net
ISBN 1-57521-087-8

There are many books on web page design. This one is very good for low-level protocols, and has cross-
references to RFCs:

 Internet Protocols Handbook
Dave Roberts
Coriolis Group Books
ISBN 1-883577-88-8

Getting Started

 5

2. Getting Started

Web Server Overview
The USNet Web Server provides an HTML server framework with default modules, handlers, a server
configuration file, and the usbldpg utility to compile HTML. It also includes CGI system support routines and
the USMETA programming interface. The developer does not have to create their own Web Server API, and
the Web Server is customizable.

The USNet Web Server supports any MIME file type that can be manipulated or displayed by your web
browser. This includes audio and Java. The MIME types determine how the browser processes the
information.

All source code discussed in this chapter is supplied with the USNet Web Server unless stated otherwise.

The USNet Web Server has a modular design, and can be easily modified to suit your application. Because
existing web technology is page-oriented rather than object-oriented, full pages transfer from the server to the
client. This limits the speed that data can be updated on the browser.

These are the general steps for creating and inserting web pages into the embedded Web Server:

1. Design and prototype your website using a standard web design tool (see Recommended Reading in
Chapter 1).

2. Test your prototype HTML on any standard web server.

3. Move your prototype to the development system.

4. Change CGI programs to CGI functions (see CGI Function Programming Interface in Chapter 3).

5. Configure the Web Server to work with your network by modifying the configuration file (see Server
Configuration File in Chapter 3).

6. Process your web pages through the usbldpg utility to obtain a C file that is compiled into the embedded
format (see Using Usbldpg in Chapter 3).

7. Compile your application.

8. Test.

Though the USNet Web Server is designed to be user-customizable, it probably will not need customization. If
you do want to customize, design information and guidelines for modifications are included in this document.

Getting Started

 6

Web Server Requirements
System Requirements:

For a typical Web Server configuration, a minimum of 6K RAM (data and stack), and 30K ROM.
Since the Web Server is modular these sizes may vary depending on the application, processor,
and compiler.

NOTE: The Web Server uses the program stack to hold temporary data, so make sure there is at least a
5K stack in your application.

Tools required to build the Web Server:
USNet Web Server source, a compiler/linker for your target platform, and an editor.

Optional Tools:
 A test Web Server for page design.

 You can also use a web page design tool. Be sure that your tool produces only HTML without
propriety extensions. Microsoft FrontPage contains proprietary extensions and will not work
with the Web Server.

Getting Started

 7

Building the Web Server
Instructions are provided for building the Web Server with USNet, for UNIX, and with another TCP/IP stack.

Building for USNet
After you install USNet:

1. Install USNet on your development system (see Installing USNet in the USNet User’s Guide).

2. Use Opus make to build the sample USNet programs on your target, then test them. This is to verify that
your target hardware is working properly before you incorporate the Web Server.

3. Install USNet IAP into the IAPSRC directory in the USNet source directory tree. The install.bat file
provided on the distribution disk will copy the USNet IAP product files into the proper directories in the
USNet development directories.

4. Edit config.mak in the root directory of USNet to include the USIAP library. This is accomplished by
uncommenting the following line:

 #%set USIAP=usiap uscgi

 and commenting the line:

 %set USIAP=

 The makefile should now read:

 %set USIAP=usiap uscgi
 #set USIAP=

5. Build HTTEST from the root directory of USNet by typing:

 MAKE HTTEST

See also: Example Web Server, in this chapter, for more information on configuring the example Web Server for
your target environment.

Building for UNIX
When building the source code on a UNIX platform:

1. Be sure you have the following lines in the httpd.h file:

 #undef USNET
 #undef LIKE
 #define UNIX

 These literals are defined or undefined within the first 10 lines of the file.

2. To make the web page compiler, usbldpg, change to the usbldpg directory and type:

Getting Started

 8

 make –f makefile.unx

3. To precompile the web pages, change to the websrc directory and type:

 ..\usbldpg\usbldpg build.cfg ; cp htpgtbl.* ..

4. To build the Web Server library and the HTTEST sample program, change to the main directory and type:

 make –f makefile.unx

NOTE: One issue you may notice when building the source code on a UNIX platform is that DOS is
not case sensitive, and you may find some capitalized file names. The easiest way to fix this
is to ‘zip’ the files on your DOS/WIN95 system, and then ‘unzip’ thefiles on your UNIX host
using the –L option. The –L option will make file names lowercase.

See also: Example Web Server, in this chapter, for more information on configuring the example Web Server to your
target environment.

Building for Another TCP/IP Stack
Install the USNet Web Server using the batch file provided on the disk. Be sure to specify the –s flag to
indicate you will not be using USNet as your TCP/IP stack. The syntax is:

 install –s <destination_dir>

Building a Web Server with a TCP/IP stack other than USNet requires a TCP/IP stack that supports BSD
sockets. UNIX operating systems include a BSD socket library for TCP/IP.

To build the Web Server with another TCP/IP stack:

1. To accommodate your TCP/IP stack, you will need to make several modifications to httpd.h, found in the
directory where you installed the Web Server. Be sure you have the following lines in the file:

 #undef USNET
 #undef LIKE

 These literals are defined or undefined within the first 10 lines of the file.

2. You may want to define a literal that refers to your TCP/IP stack to enclose specific information about that
stack. For example:

 #define XYZNET /*Def for XYZ TCP/IP stack */
 #ifdef XYZNET
 /* Specify path to sockets header file */
 #include <c:\XYZNET\INC\socket.h>
 /* USNet uses Nprintf, printf in XYZNET */
 #define Nprintf printf
 #endif

Getting Started

 9

3. The file httpd.h will need to include the sockets header file for your TCP/IP stack. For example, USNet
has socket.h, while Linux uses sys/socket.h.

4. It is also possible that routine names will not exactly match those in your TCP/IP stack. Redefine function
names as needed in httpd.h. As an example, please refer to the example on the previous page and to
httpd.h to see what changes were made to build the Web Server under Linux.

5. The makefile, found in the directory where you installed the Web Server, will also require some
modifications. Modify the linker command line to link in your TCP/IP library and any other support
libraries required by your TCP/IP stack, compiler, and/or processor.

6. Once these changes have been made, build the sample Web Server by typing:

 make HTTEST

See also: Example Web Server, in this chapter, for more information on configuring the example Web Server to your
target environment.

Getting Started

 10

Example Web Server
HTTEST is provided as a sample Web Server. Some of the terms listed below might be new (for definitions,
see Web Server Terminology in Chapter 1). They will be discussed throughout the manual. The example is
placed here to show the powerful features available in the Web Server.

There are six examples in the sample USNet Web Server, HTTEST. Each example demonstrates a different
feature of the Web Server. These examples are links off of a starting page.

Example 0 transfers binary data to the browser in the form of GIF and JPEG pictures, and a JAVA applet.

Example 1 shows the CGI variables that are available.

Example 2 shows a CGI function that uses the ‘GET’ method. The data passed back to the server is on the
request line. This is used for transferring a small amount of data.

Example 3 shows a CGI function that uses the ‘POST’ method. The data is in the body of the HTTP request.
This is used for transferring a large amount of data.

Example 4 shows an ISMAP CGI function. Coordinates of an image are passed using the (argc, argv)
parameters of a CGI function.

Example 5 shows how META commands can retrieve server data. Examples 2 and 3 put values into variables,
and Example 5 reads those variables using META commands.

Example 6 shows all the different types of META commands.

Getting Started

 11

Building the Example Web Server for your Target
Edit the buildpg.cfg file, found in the websrc directory. The following lines might need to be modified to
match your target configuration:

Change BindAddress to be the IP address of your target
BindAddress 206.251.94.188

Change ServerAdmin to be the email address of someone who
administers the target
ServerAdmin admin@yourcompany.com

Change ServerName to the name associated with the IP
address of your target
ServerName Target.yourcompany.com

These configuration variables are not used by the Web Server or test programs, but are available for use in
your applications.

You may want to familiarize yourself with the other configuration files in the Web Server. More information
on these files is given in Chapter 3. New pages are added to the server by specifying the pages in the file
pages.cfg. If you want to access a variable via a META command, those variables are specified in the file
vartable.cfg.

Connecting to the Example Web Server
To connect to your Web Server from a browser such as Netscape Navigator or Internet Explorer, enter the
following in the open dialog box:

http://xxx.xxx.xxx.xxx

Where xxx.xxx.xxx.xxx is the IP address (BindAddress in buildpg.cfg) of the target system
running the Web Server.

Module Function Descriptions

 13

3. Using the Web Server

User Server Functions
These functions are described in this section:

Bwrite() Performs a buffered write to the network.

GetEntry() Finds and returns the ENTRY structure used to access the web page.

HTTPserver() Initalizes and runs the Web Server.

HTTPservinit() Initalizes the Web Server and allocates space for all the structures.

Neof() Tests for the EOF indicator for the network stream.

Module Function Descriptions

 14

Bwrite()
Performs a buffered write to the network.

int Bwrite(struct SERV_REC *recp,uchar *buf,ulong len)

recp a pointer to the request structure

buf a pointer to the output buffer

len the length of the buffer

Bwrite() writes out the buffer to the network. The output is buffered to minimize network traffic. To flush the
buffer, use NULL for buf, or len of zero.

Return Value
<0 Error

0 or >0 Success

Example
Rslt = Bwrite(reqp,buf,len); /* write buffer */
Rslt = Bwrite(reqp,NULL,0); /* flush buffer */

Module Function Descriptions

 15

GetEntry()
Finds and returns the ENTRY structure if the web page is found. The ENTRY structure is used to access the web
page.

ENTRY *GetEntry(REQUEST_REQ *reqp,char *file,char *path)

reqp a pointer to the request structure

file the name of the file, i.e., index.html

path the absolute path after translation

The GetEntry() function searches the directory specified by pathfor the page file.. If the directory or file
doesn’t exist, a NULL is returned.

This is the ENTRY structure:

 struct entry {
 char *name;
 char *path;
 short type;
 char *mime;
 char *encoding;
 char *lang;
 void *offset;
 ulong clen;
 ulong ulen;
 ulong groups;
 ulong hits;
 }
 typedef struct entry ENTRY;

Return Value
Pointer to ENTRY structure if found

NULL if not found

Example
ENTRY *ep = GetEntry(reqp, “index.html”,NULL);

Module Function Descriptions

 16

HTTPserver()
Initalizes and runs the Web Server.

int HTTPserver(void)

This function initializes the Web Server data structures and executes the main loop that processes incoming
requests for the Web Server.

Return Value
<0 Error

Example
main()
{
 int rslt;
 if(Ninit()<0)
 return -1;
 if(Portinit("*")<0)
 return -2;
 rslt = HTTPserver();
 Nterm();
}

HTTPservinit()
Initalizes the Web Server and allocates space for all the structures.

struct SERV_REC *HTTPservinit(struct SERV_REC *servp)

servp the server information for the Web Server

Use the HTTPservinit() function to initialize server information such as port or IP. The function is called only
once per server.

Return Value
struct SERV_REC Filled-out server information

Module Function Descriptions

 17

Neof()
Tests for the EOF indicator for the network stream.

int Neof(int stream)

stream the network file descriptor

Neof() tests the end-of-file indicator for the network stream pointed to by stream, returning non-zero if it is
set.

Return Value:
 0 More data available

!0 End of data

Module Function Descriptions

 18

HTTP Server Request Structure
The structure of the HTTP server is very modular, so modules can be added and removed at any time. This
allows for additions of new features and control of code size without extensive changes.

The request structure is the heart of the server. The request structure is passed through a sequence of functions
which process the request. By having a request filter through different modules, the processing of that request
can be tailored to each application. It also allows for user-written processing without affecting other parts of
the HTTP server, which reduces debugging.

The processing of the request structure occurs in the doreq() function. The doreq() function is called from
UserLoop().

int doreq (REQ_STRUCT *reqp)

reqp a pointer to the request structure

The pseudocode for doreq() is:

 request processing
 translate paths
 check the URL
 check the MIME type
 check access
 get user ID
 authorize the user
 handle the request
 log the request

See also: Request Structure, later in this document

Module Function Descriptions

 19

The following figure shows the process that each request to the embedded web server goes through.

Request Processing

Check the MIME Type

Translate Paths

Check Access

Check the URL

Get User ID

Authorize User

Handle the Request

Type of Requests

. . . additional Handlers
Log the Request

SVA (user-customized
requests)

CGI Function

Java Applets

HTML Pages & Forms

META Commands

ISMAP

Figure 3-1: Process for Request to the Embedded Web Server

Return Value
<0 Error

Example
See the previous section describing UserLoop().

Module Function Descriptions

 20

Modules and Handlers
The structure of the HTTP server is very modular, so modules can be added and removed at any time. This
allows for additions of new features and control of code size without extensive changes. New plug-in modules
and increased functionality will be added in the future.

All data is passed through the modules by the request structure. The Web Server provides a framework and
default modules for your use, and is designed so the user can customize it. To customize the modules, you
must modify or replace the existing modules, using the existing modules as templates.

Each module has a function and modifies only certain parts of the request structure. Only the MODtranslate()
and MODchkloc() functions are required; all others are optional. The module functions are described in
alphabetical order, but are used in this sequence:

MODtranslate() Parses and translates the URL.

MODchktype() Determines the type and encoding of the document.

MODchkloc() Checks for the existence of the file.

MODchkaccess() Checks access privileges of the document.

MODgetuser() Performs user authorization.

MODchkauth() Finds the user in a database or file, and does the final authorization.

MODlog() Logs errors and access.

Once the request has been processed by all the modules, the final display is the responsibility of the handler
function. Each type of page has an associated handler. Each handler processes the page and sends the output
to the browser. You can also add your own specialized handlers if needed for customization.

When the default web page type is set to 'text' (in buildpg.cfg), only the text handler is necessary. Additional
handlers enhance the Web Server by allowing it to handle different page types.

These typical handlers are included with the USNet Web Server:

HNDtext Handles the standard HTML pages and text.

HNDcgi Sets up the CGI environment and calls the function.

HNDasis Sends the file to the browser without any processing.

HNDmeta Handles server-side HTML parsing.

HNDussnmp Comes with the U S Software SNMP package.

Module Function Descriptions

 21

Module Function Descriptions

MODchkaccess()
Gets access privileges of the document.

int MODchkaccess(struct request_rec *rec)

rec pointer to the request_rec structure

This optional function checks the group flags or a directory file to determine the access permissions (security)
for this page. Access parameters and page permissions are defined in access and page configuration files
access.cfg and pages.cfg. This module sets the access group flag using the information specified in the access
configuration file. MODchkauth() must be written so that the correct username/password returns a flag to
match this access group flag.

The default MODchkaccess() module sets up two types of access checking:

None No checking done (anyone can access)

Group Checks a group flag associated with a user

The developer may implement other forms of access checking by modifying or replacing MODchkaccess().

See also: Request Structure, in this booklet.
Using Usbldpg and Page Configuration File, in the USNet Web Server User’s Guide.

Return Value
< 0 Error

Otherwise modifies the structure.

Example

This is a pseudocode example for the authentication procecure:

MODchkaccess()
/* Checks access restiction of a given web page */
Check request structure for page protection
if (not protected) return 0
if protected
 initialize access information in request structure
 /* specifically, set access group flag */
 return 0

Module Function Descriptions

 22

MODchkauth()
User-implemented routine to verify user authentication information.

int MODchkauth(struct request_rec *rec)

rec pointer to the request_rec structure

MODchkauth() is an optional routine that checks the authentication parameters obtained by MODgetuser()
against a user-defined lookup. The default routine supplied with IAP sets the group to match the one specified
in the access configuration file, if a preset username and password are entered. This routine must be modified
by the developer to implement a site-specific lookup mechanism.

MODchkauth() does two types of access checking:

None No checking done (anyone can access)

Group Checks that the individual is within the group

If the developer has set up alternate checking methods in MODchkaccess(), they must be implemented here.

See also: Request Structure, in this booklet.
Using Usbldpg and Page Configuration File, in the USNet Web Server User’s Guide.

Return Value
< 0 Error

Otherwise modifies the structure.

Example
MODchkauth()
/* Largely user-defined routine to authenticate user info */
if (no access restriction) return 0
match username/password to user-defined lookup
/* Default routine has a hard-coded username and password.
 When these are matched, a hard-coded group flag is
 returned. This group flag matches the one in the access
 configuration file, which was read into the request
 structure in MODchkaccess(). */
if (no match) return 401
if (match) return 0

Module Function Descriptions

 23

MODchkloc()
Checks for the existence of the file.

int MODchkloc(struct request_rec *rec)

rec pointer to the request_rec structure

This required module finds the document and sets up a pointer to an embedded structure. If the page is not
found, a result of 404 (not found) is returned to the requesting host. The developer may modify this module
to find pages in a file system instead of in an embedded structure.

See also: Request Structure, in this booklet

Return Value
< 0 Error

Otherwise modifies the structure.

Example
See the file modchklo.c in your source code.

MODchktype()
Determines the type and encoding of the document.

int MODchktype(struct request_rec *rec)

rec pointer to the request_rec structure

This optional function checks the embedded type flags or the extension to determine the correct handler. This
routine is appropriate when there is a file system in your embedded target.

See also: Request Structure, in this booklet

Return Value
< 0 Error

Otherwise modifies the structure.

Example
See the file modchkty.c in your source code.

Module Function Descriptions

 24

MODgetuser()
Performs user authorization.

int MODgetuser(struct request_rec *rec)

rec pointer to the request_rec structure

MODgetuser() is an optional routine that gets authentication information from an end user. The routine
extracts the username and password (commonly entered in a pop-up dialog from a browser) from the HTTP
headers. This information is stored in the request structure and subsequently processed by MODchkauth().
This routine decodes authentication information using either the basic or digest authentication schemes.
Support for any other authentication scheme must be added by the developer.

See also: Request Structure, in this booklet
RFC 2069 and chapter 11 of RFC 2068

Return Value
< 0 Error

Otherwise modifies the structure.

Example
MODgetuser()
/* Checks user authorization information */
if (no access restriction) return 0
if (no “Authorization” in HTTP header)
 add “WWW-Authenticate” to HTTP header
 return 401 (Unauthorized)
 /* A browser receiving “WWW-Authenticate” will commonly
 pop up a username/password dialog. Entered parameters
 are sent to server as new request with “Authorization”
 in HTTP header. */

if (“Authorization” in header)
 if (not basic or digest authentication) return 401
 decode username and password from HTTP headers
 store username and password in request structure
 return 0

Module Function Descriptions

 25

MODlog()
Logs errors and requests.

int MODlog(struct request_rec *rec)

rec pointer to the request_rec structure

MODlog() is an optional function that must be impelemented by the developer. This routine could log all
requests and errors to a buffer, to a monitor, or to a file if a file system is present.

See also: Request Structure, in this booklet

Return Value
< 0 Error

Otherwise modifies the structure.

Example
See the file httputil.c in your source code.

MODtranslate()
Parses and translates the URL.

int MODtranslate(struct request_rec *rec)

rec pointer to the request_rec structure

MODtranslate() is a required module that parses the URL and translates its contents to a form usable by the
Web Server. The path, file, and query information are parsed from the URL, and stored in the URI structure
within the request structure. This information is used in the handler modules to take the appropriate action,
such as displaying a page or executing a CGI function. This module supports HTML and CGI translation.

See also: Request Structure, in this booklet

Return Value
< 0 Error

Otherwise modifies the structure.

Example
See the file modtrans.c in your source code.

Request Structure

 26

Request Structure
The request structure is the heart of the server. As an HTTP request is filtered through the modules, the
request structure is filled in.

Since the structure is broken into stages, the user can customize each of the modules with little impact on the
rest of the code. This also allows for future enhancements to be added easily.

The request structure is defined in the include file, httpd.h. An example of the request_rec structure is
provided below:

struct request_rec {
 short rslt; /* result status */
 SERV_REC *servp; /* ptr to server rec */
 int reqfd; /* req sock descriptor */
 char *ptr; /* ptr for strng manip */
 int blen; /* buf len left to read*/
 int slen; /* sz of sockadd struct*/
 struct sockaddr saddr; /* sock addr structure */
 short close; /* keepalive flag */
 short protonum; /* protocol number */
 char *protover; /* protocol version */
 short type; /* type of HTTP req */
 char *method; /* request method */
 short hostport; /* listen port */
 char *reqline; /* request line */
 char *status; /* ptr to status line */
 char *scheme; /* GET, POST, (unused) */
 char *hostname; /* where from */
 URI uri; /* text info */
 short headcnt; /* num of HTTP headers*/
 struct headers *headers; /* HTTP headers */
 short rplycnt; /* num to HTTP reply */
 struct headers *rplyheads;/* reply headers */
 unsigned char *body; /* ptr to body of POST */
 short bodylen; /* how big? */
 struct entry *fileinfo; /* after page is found,
 ptr to the entry */
 char *mime; /* mime type */
 char *encoding;/* the encoding */
 char *lang; /* the language */
 char *accepth;
 char *connecth;
 char *from;

 struct cookie *cookie; /* cookie info */
 int (*handler)(struct request_rec *req);
 ACCESS *access; /* access structure */
 unsigned long ldat; /* undefined data */
 void *data1; /* now undefined ptr */
 void *data2; /* another undef ptr */
 char *buff; /* gen purpose buffer */
};

Using the Web Server

 27

Using Usbldpg
The usbldpg utility builds the web pages from your configuration files. To do this, it reads these files in this
order:

• The server configuration file, named buildpg.cfg

• The MIME types file, named mime.typ

• The page configuration file, named pages.cfg

• The variable configuration file, named vartable.cfg

Usbldpg then takes the pages and turns them into C code, generating:

htpgtbl.c headers and tables, plus the server configuration and pages in binary format

htpgtbl.dat an included C file that contains source data for the web pages

These files are then compiled into your application.

Server Configuration File
USWeb server’s configuration is similar to the NCSA and Apache* web servers. Usbldpg uses the
configuration file to build your web pages. There are five different areas of the server configuration, which
can be seen in the example file on the next page:

• Other configuration files

• Application system information

• Server information

• Directory and file system information

• MIME information

Using the Web Server

 28

This is an example of a typical buildpg.cfg file:

This configuration file is read by the usbldpg utility #

other configuration files
BuildDocRoot .\
PageConfig pages.cfg
VarConfig vartable.cfg
TypesConfig mime.typ

application system information
Processor 68EN302
HWdate 3 April 1951
HWversion Release 35.1
HWconfig WOM (Write Only Memory)
SWdate 11 Aug 1955
SWversion 1309.7.32
SWconfig swodniW ultra light
TotalMem 32
SysMem 25
FreeMem 7

server information
BindAddress 206.29.173.23
DefaultType text/html
Port 80
ServerAdmin admin@yourserver.company.com
ServerName yourserver.company.com

directory and file system information
Alias /pages/ /
Alias /other/ /
DirectoryIndex index.html
Readme ReadMe

mime information
AddEncoding x-zip zip
AddEncoding x-gzip gz
AddType application/x-us-snmp smp
AddType application/x-us-prog uso
AddType application/x-us-include usi

Using the Web Server

 29

Other Configuration Files

These variables provide information on where needed files are located. These files are described in detail later
in this chapter.

Table 3-1: Other Configuration Files

Value Description Example
PageConfig The name of the page configuration file.

See also: Page Configuration File, in
this chapter.

pages.cfg

VarConfig The name of the variable configuration
page. Each entry in the file has the
format of:
 Searchname,type,size,varname
An example is:
 VAR1,short,sizeof(short),variable1
See also: Variable Configuration File, in
this chapter.

vartable.cfg

TypesConfig The name of the file that contains the file
extension to MIME type mapping. See
also: MIME Information, in this chapter.

mime.typ

Using the Web Server

 30

Application System Information

Application system information contains values that define more about the embedded system. The values are
returned to the user when a META command is embedded into the HTML. These values can also be filled in
at initialization time by the application. The values must be a string or a number, as specified in the following
table, but they are not case-sensitive and can be in any format.

Table 3-2: Application System Information Variables

Value Description Example
BindAddress Binds the listen connection to this

address (eight 16-bit hex numbers).
0000:0000:0000:0000:
0000:0000:C0A8:0101
(same as 192.168.1.1)

Port The listen port. 80

ServerAdmin The server administrator’s e-mail
address.

admin@yourserver.
company.com

ServerName The host name of the HTTP server. yourserver.
company.com

access_log There are two different formats,
depending on the logging method:
• E-mail address -- the log is
 stored in RAM until it is mailed
 to this address.
• File name -- the log information
 is saved to a file.

admin@yourserver.
company.com

Using the Web Server

 31

Server Information

These variables set the server and network environment.

Table 3-3: Server Information Variables

Value Description Example
BuildDocRoot Defines the path used by Usbldpg to

preprocess the pages.
./pages

DocRoot On File System this would be the root
where the search would start.

C:/mypages

DefaultType If the system does not know what type
a file is when handling a message, it
will use this type.

text/html

Readme Default name in directory for more
information.

ReadMe

DirectoryIndex Default file when no file is specified. index.html

Alias Changes the URL path, for instance,
from /here/file to /there/file (the
physical path would be
C:/mypages/there/file).

/here/ /there/

ScriptAlias Remaps the URL to a physical
directory, and notifies the server that the
file being accessed is code.

/cgi-bin/ /

ErrorAlias If an error occurs, the output to the
browser is changed from the standard
error to this new page.

404
notfound.html

Using the Web Server

 32

Directory and File System Information

These variables provide information on where needed files are located.

Table 3-4: Directory and File System Information Variables

Value Type Description Example
Processor string Defines the processor type. 68EN302

HWdate string Defines the hardware build data. 3 April 1951

HWversion string Defines the hardware version. Release 35.1

HWconfig string Contains any special hardware
configuration information.

WOM (Write
Only Memory)

SWdate string Defines the software build date. 11 Aug 1955

SWversion string Defines the software version. 1309.7.32.8

SWconfig string Contains any special software
configuration information.

swodniW ultra
light

TotalMem number The total size of memory, in kilobytes. 32

SysMem number The amount of memory used by the
system. Because the application
defines what ‘system’ is, this could be
anything.

25

FreeMem number The amount of free memory, in
kilobytes.

7

Using the Web Server

 33

MIME Information
MIME file types are defined by suffix (extension), and the MIME type controls how the server or browser will
treat the defined files:

• If the file is server-specific, the MIME type tells the server how to handle it.

• If it is a browser file, the server adds the content type(s) to the header information for the browser’s use.

• The MIME information also defines how to decode the data, and the usbldpg program uses it for the
encoding scheme.

There are two ways of defining MIME types for the USNet Web Server: In the mime.typ file, or with the
AddType command. The mime.typ file included in the USNet Web Server distribution contains most of the
standard definitions. The AddType command adds definitions to the server configuration file, allowing you to
keep your mime.typ file general.

MIME Types File

This file lists the types of files the server is capable of sending. You can define multiple extensions for one file
type.

This is an example portion of a mime.typ file:

This is a comment. I love comments.

application/mac-binhex40 hqx
application/msword doc
application/octet-stream bin dms lha lzh exe class
application/pdf pdf
application/postscript ai eps ps
application/powerpoint ppt
application/rtf rtf
application/x-compress Z

Using the Web Server

 34

application/x-cpio cpio
application/x-csh csh
application/x-director dcr dir dxr
application/x-gtar gtar
application/x-gzip gz
application/x-httpd-cgi cgi
application/x-tar tar
application/x-tcl tcl
application/x-wais-source src
application/zip zip
audio/basic au snd
audio/mpeg mpga mp2
audio/x-aiff aif aiff aifc
audio/x-wav wav
image/gif gif
image/jpeg jpeg jpg jpe
image/tiff tiff tif
message/external-body
message/news
multipart/alternative
multipart/appledouble
multipart/digest
multipart/mixed
multipart/parallel
text/html html htm
text/plain txt
text/x-sgml sgml sgm
video/mpeg mpeg mpg mpe
video/quicktime qt mov
video/x-msvideo avi

Using the Web Server

 35

AddType Command
Adds an additional MIME type to the Web Server.

AddType application/type extension

type the type of file

extension the extension for the file type

AddType helps define the file type when parsing. The new type goes into the server configuration file (not the
mime.typ file) and functions like a command. Use AddType to add specialized MIME types to the Web
Server rather than to your mime.typ file, thus keeping your mime.typ file general.

Example
AddType application/x-us-meta usm

Using the Web Server

 36

Page Configuration File
The page configuration file defines what local pages should be included in embedded web sites. Each page is
defined by a line with a format of:

Buildname,webname,accessname,flags[,maxsize, mime]

Buildname the name of the source file on your development system or the name of the CGI routine
within the application program.

webname the URL name.

accessname a string used to associate authentication parameters with a web page. This variable is
used by Modchkaccess(). The authentication parameters associated with
accessname are specified in access.cfg.

flags define the processing this page needs -- the flags are defined by 0xFFTT, where FF are
bit flags and TT is a type number.

 The flags are defined as:
 0x01 RAM/ROM, if set move page to
 RAM and access it from RAM
 0x02 If bit is set, the URL is executable
 (i.e., CGI function)
 0x04 Undefined

 The type is:
 0,1 TEXT and HTML
 2 CGI Function
 3 ASIS, just send it out without
 parsing
 4 USMETA, a HTML file with META
 commands
 5 USSNMP, a UUUSMP file with
 META commands
 255 QUIT, exit the server

maxsize optional numeric variable used to reserve memory (a specified number of bytes) for the
web page.

mime rarely-used optional alpha variable that overrides the MIME definitions from the
mime.typ file and AddType.

Using the Web Server

 37

This is a example of a typical pages.cfg file:

format is
build file name or link name
page name
accessname: string to define access parameters
flags bits TYPE 0-7, ROM/RAM = 0x0100, DATA/LINK = 0x0200,

0,1 = TEXT
2 = CGI
3 = ASIS
4 = META
5 = USSNMP
255 = ABORT
[maxsize] optional (0-9)
[mime] optional (alpha)

pages
index.htm,index.html,0,0
linktest.htm,linktest.htm,0,0
imagepag.htm,imagepag.htm,0,0
example3.htm,example3.htm,0,0
example4.htm,example4.htm,0,0
example5.htm,example5.htm,0,0
example6.htm,example6.htm,0,0
mailit.htm,mailit.htm,0,0

#images
example5.gif,example5.gif,0,3
image.jpg,image.jpg,0,3
lava_l.gif,lava_l.gif,0,3

#cgi functions
query_cgi,cgi-bin/query,0,0x0202
post_query_cgi,cgi-bin/post-query,0,0x0202
prntenv_cgi,cgi-bin/prntenv,0,0x0202
mailit_cgi,cgi-bin/mailit,0,0x0202
rainbow.cls,RainbowText.class,0,0x0003

Using the Web Server

 38

Variable Configuration File
The variable configuration file defines the variables in the application that need to be accessed from the web
pages. The file translates text strings into variables for access, and creates a table. The web pages can access
the variables directly using META commands. You can use this to allow an end-user to access a variable
within the application.

The format is:

 search_name, type, sizeof(type), pointer to it

This is an example of a vartable.cfg file:

NAME,char*,sizeof(name_var),name_var
SEX,char*,sizeof(sex_var),sex_var
AGE,short,sizeof(short),age_var
BROWSER,char*,sizeof(browser_var),browser_var
COLOR,char*,sizeof(color_var),color_var

Example

<BODY>
The widget count is <!— USMETA VAR=”WIDGETCNT”—>

</BODY>

If WIDGETCNT is equal to 5, this would print:

The widget count is 5

Using the Web Server

 39

CGI Function Programming Interface
The heart of the interactive web is the Common Gateway Interface (CGI). The server needs to display
different pages depending on the user’s actions. CGI reads parameters from forms on the displayed web page
to the server. The data is in the format of:

 name1=value1, name2=value2

The USNet Web Server supplies all needed support routines to manipulate CGI data. The HTTP server uses
the standard CGI programming interface, but with a twist. The main difference is that the embedded HTTP
server uses subroutines instead of programs.

ISMAP is supported via argc and argv passed into the CGI function. A mouse click would be passed in
as argv[1] being x and argv[2] being y.

In UNIX the CGI programs are called like:

int main(int argc, char *argv[])

In the embedded world it would be:

 int subname(int argc,char *argv[],REQ_STRUCT *reqp)

This section includes descriptions of the CGI routines and the CGI system support routines.

Using the Web Server

 40

System Support Routines
These routines are support routines for the application engineer to use for CGI functions such as exchanging
information with the network. They are similar to standard CGI support routines, but tailored to the embedded
environment.

These routines are described in this section:

findvar() Searches the variable structure for a specified string.

getvar() Searches the request structure for a variable.

Ngetenv() Searches the environment structure for a specified string.

send_file() Writes a file to the network.

Using the Web Server

 41

findvar()

Searches the variable structure for a specified string.

VARENTRY *findvar(REQSTRUCT *reqp, char *name)

reqp a pointer to the request structure

name a pointer to the specified string

The findvar() function searches the variable structure for a string that matches the string pointed to by name.
It is typically used for changing the variable structure. This allows name to be reassigned to a different
pointer. This routine could be used to write a larger buffer for a pointer associated with the name.

See also: getvar()
Request Structure, in the HTTP Server Request Structure section.

Return Value
A pointer to the VARENTRY structure if found, NULL if not found.

Example
/* This program demonstrates the GET CGI routines */
/* the HTML is given a filename that is to be sent */

typedef struct {
 char name[128];
 char val[128];
} entry;

static entry entries[10];

int demo_cgi(int argc,char *argv[],REQUEST_REQ*reqp)

{
 char *str, fname;
 int *pmaxetn;
 ENTRY *ep;
 VARENTRY *vp;
 str = Ngetenv(reqp,“METHOD”); /* get the
 METHOD=XXXX */
 if(strccmp(str,”GET”) != 0) {
 /* compare str to “GET” case-insensitive */
 str = Ngetenv(reqp,“QUERY_STRING”);
 if (str == NULL) {
 PRINTF();
 return 0;
 }
 } else if (strccmp() == 0) {
 char buff[8192];
 (reqp,buff,8192);
 str = buff;
 } else {
 PRINTF(reqp,”BAD METHOD”); /* bad method */
 return 0;

Using the Web Server

 42

 }
 pmaxetn = (int*)getvar(reqp,”ENTRYSZ”);
 /* get a pointer to integer */
 for(x=0;cl[0] != ‘\0’;x++) {
 /* this section decodes the string
 into an array for easy use */
 getword(entries[x].val,cl,’&’);
 /* get the whole “name=value” string */
 plustospace(entries[x].val);
 /* change any ‘+’ to ‘ ‘ */
 unescape_url(entries[x].val);
 /* remove any nasties */
 getword(entries[x].name,entries[x].val,’=’);
 /* split the entry into “name” and value” */
 if(x==*pmaxetn) /* check if at max */
 break;
 }
 m=x;
 setvar(reqp,”THISENTRY”,entries,0);
 /* save the array to be used later */

 /* usually the entries are in the
 same order, but just in case */
 for(x=0;x<m;x++) { /* loop through array */
 if(strcmp(entries[x].name,”SENDFILE”) == 0){
 fname = entries[x].value;
 break;
 }
 }
 if(x==m) {
 PRINTF(reqp,”not found\n”);
 return 0;
 }
 ep = GetEntry(reqp,fname,0);
 send_file(reqp, ep);
 vp = findvar(reqp, “THATVAR”);

 if(vp == NULL) {
 PRINTF(reqp,”not found\n”);
 return 0;
 }
 PRINTF(reqp,”name >%s, data pointer >%x\n”,vp->name,

 vp->data);
 Bwrite(reqp,vp->data,vp->size);
 return 1;
}

Using the Web Server

 43

getvar()

Searches the request structure for a variable.

char * getvar(REQSTRUCT *reqp, char *name)

reqp a pointer to the request structure

name a pointer to the specified variable

The getvar() function searches the request structure for a variable that matches the variable pointed to by
name. This function is used to access application variables from the CGI routine. The variable accessed is
the same as if done from an HTML META command.

See also: findvar()
Request Structure, in the HTTP Server Request Server section

Return Value
Returns the pointer needed to access the variable specified by name, so the variable’s value can be changed

Example
This is included in the example for findvar().

Ngetenv()

Searches the environment structure for a specified string.

char* Ngetenv(REQSTRUCT*reqp, char* str)

reqp a pointer to the request structure

str a pointer to the specified string

The Ngetenv() function searches the environment structure for a string that matches the string pointed to by str.

See also: Request Structure, in the HTTP Server Request Structure section

Return Value
A pointer to the value in the environment, or NULL if there is no match.

Example
This is included in the example for findvar().

Using the Web Server

 44

send_file()

Writes a file to the network.

int send_file(REQSTRUCT *reqp, ENTRY *ep)

reqp a pointer to the request structure

ep pointer to the ENTRY structure, where ENTRY is a structure that contains a file or page
description

The send_file() function writes the file in the ENTRY *ep to the network. This is a way to send out a file
without processing it.

See also: GetEntry() description, in this chapter, for a definition of the ENTRY structure
Request Structure, in the HTTP Server Request Structure section

Return Value
< 0 Error

0 or > 0 Success

Example
This is included in the example for findvar().

Using the Web Server

 45

CGI Routines
These routines are described in this section:

escape_shell_cmd() Converts all ‘nasty control characters’ to ‘\x’.

getword() Parses a string.

Nmakeword() Parses a string and returns a pointer to the word that was matched.

plustospace() Converts all ‘+’ to spaces.

unescape_url() Searches for %xx and terminates the string.

x2c() Converts two hex values into an unsigned
8-bit value.

Using the Web Server

 46

escape_shell_cmd()

Converts all ‘nasty control characters’ to ‘\x’.

void escape_shell_cmd(char *cmd)

cmd the string to convert

The escape_shell_cmd() routine converts unwanted characters (which might blow up shells, be security holes,
etc.) in the specified string to ‘safe’ characters. The 'nasty control characters' which are processed are:

 & ; ` ' " | * ? ~~ < > ^ () [] { } $ \ 0x0A

Return Value
None

Example
char *buf = "grep foo > x";
escape_shell_cmd (buf);
 /* After execution of escape_shell_cmd(),
 buf is "grep foo \> x". */

Using the Web Server

 47

getword()

Parses a string.

void getword(char *word, char *line, char stop)

word a pointer to buffer space

line the beginning of the string

stop the ending character

Getword() parses the string pointed to by line until the stop char is matched or there is an end-of-string or
end-of-line. Getword() returns the contents of the buffer pointed to by word, and adjusts line to point to
the next character after the stop character.

See also: Nmakeword()

Return Value
The contents of the buffer (the line up to the stop character) pointed to by word.

Example
This example determines whether to do GET or POST, and shows a GET routine and a POST routine. It
includes getword(), plustospace(), and unescape_url().

#include httpd.h

extern int getcgi(int,char**,REQ_STRUCT*);
extern int postcgi(int,char**,REQ_STRUCT*);
#ifdef UNIX

int main(int argc,char *argv[])

#else

int cgiroutine(int argc,char *argv[], REQ_STRUCT *reqp)
#endif

{

 char *method = GETENV("REQUEST_METHOD");

 if(strcmp(method,"GET”) == 0){

 return getcgi(argc,argv,reqp);

 }

 if(strcmp(method,"POST") == 0) {

 return postcgi(argc,argv,reqp)

 }

 return -1; /* bad request */

}

int getcgi(int argc,char* argv[],REQ_STRUCT *reqp);
{

 char *query;

 int m,x;

 query = GETENV("QUERY_STRING");

 if(query == NULL) {

 PRINTF(reqp,"No query information to decode.\n");

 EXIT(1);

 }

Using the Web Server

 48

 for(x=0;query[0] != '\0';x++) {

 getword(entries[x].val,query,'&');

 /* get the whole name=value string */

 plustospace(entries[x].val); /* convert '+' to ' ' */

 unescape_url(entries[x].val);

 /* remove any nasty chars that might

 blow up the system */

 getword(entries[x].name,entries[x].val,'=');

 /* separate name from value */

 }

 m=x;

 PRINTF(reqp,"<H1>Query Results</H1>");

 PRINTF(reqp,"You submitted the following name/value

 pairs:<p>%c",10);

 PRINTF(reqp,"%c",10);

 for(x=0; x < m; x++)

 PRINTF(reqp," <code>%s = %s</code>%c",

 entries[x].name, entries[x].val,10);

 PRINTF(reqp,"%c",10);

 return 0;

}

int postcgi(int argc,char* argv[],REQ_STRUCT *reqp);
{

 char *body;

 int m,x,qlen;

 qlen = atoi(GETENV("CONTENT_LENGTH"));

 /* needed to buffer the input */

 body = getbody(reqp);

 for(x=0;!Neof(reqp);x++) { /* read until no more */

 entries[x].val = Nmakeword(reqp,'&',&cl);

 /* read input stream for full name=value */

 plustospace(entries[x].val); /* convert '+' to ' ' */

 unescape_url(entries[x].val);

 entries[x].name = getword(entries[x].val,'=');

 }

 m=x;

 PRINTF(reqp,"<H1>Query Results</H1>");

 PRINTF(reqp,"You submitted the following name/value pairs:

 <p>%c",10);

 PRINTF(reqp,"%c",10);

 for(x=0; x <= m; x++)

 PRINTF(reqp," <code>%s = %s</code>%c",

 entries[x].name,entries[x].val,10);

 PRINTF(reqp,"%c",10);

 query = GETENV("QUERY_STRING");

 if(query == NULL) {

 PRINTF(reqp,"No query information to decode.\n");

 EXIT(1);

 }

Using the Web Server

 49

 for(x=0;query[0] != '\0';x++) {

 getword(entries[x].val,query,'&'); /* get the whole

 name=value string */

 plustospace(entries[x].val); /* convert '+' to ' ' */

 unescape_url(entries[x].val); /* remove any nasty chars

 that might blow up the system */

 getword(entries[x].name,entries[x].val,'=');/* separate

 name from value */

 }

 m=x;

 PRINTF(reqp,"<H1>Query Results</H1>");

 PRINTF(reqp,"You submitted the following name/value

 pairs:<p>%c",10);

 PRINTF(reqp,"%c",10);

 for(x=0; x < m; x++)

 PRINTF(reqp," <code>%s = %s</code>%c",

 entries[x].name,entries[x].val,10);

 PRINTF(reqp,"%c",10);

 return 0;

}

Using the Web Server

 50

Nmakeword()

Parses a string.

char * Nmakeword(char *line, char *stop)

line the beginning of the string

stop the ending character

Nmakeword() is like getword() but it returns a pointer to the word that was matched.

It parses the string pointed to by line until the stop char is matched or there is an end-of-string or end-of-
line. Nmakeword() returns a pointer to the word, and line is adjusted to point to the next character after
the stop character.

See also: getword()

Return Value
A pointer to the word that was matched.

Example
See the file cgiutil.c in your source code for an example.

plustospace()

Converts all ‘+’ to spaces

void plustospace(char *str)

str the string to convert

Return Value
None

Example
This is included in the examples for getword().

Using the Web Server

 51

unescape_url()

Searches for %xx and terminates the string.

void unescape_url(char *url)

url the URL to convert

The unescape_url() routine converts hex numbers to characters.

Return Value
None

Example
This is included in the example for getword().

x2c()

Converts two hex values into an unsigned 8-bit value.

char x2c(char *what)

what the hexadecimal value to convert

The conversion is to characters or integers, depending on the hexadecimal number specified.

Return Value
The converted value.

Example
char *str=”AB”;
char num;
num = x2c(str); /* num = 0xab */

See the file cgiutil.c in your source code for another example.

Using the Web Server

 52

CGI Environment Variables
When programming CGI, all the data about the world around you is passed by environment variables. Each
environment variable has a different meaning.

Table 3-5: CGI Environment Variables

Variable Description
SERVER_SOFTWARE The name and version of the information server

software answering the request (and running the
gateway). Format: name/version

SERVER_NAME The server’s hostname, DNS alias, or IP address as it
would appear in self-referencing URLs.

GATEWAY_INTERFACE The revision of the CGI specification to which this
server complies. Format: CGI/revision

SERVER_PROTOCOL The name and revision of the information protocol
this request came in with.
Format: protocol/revision

SERVER_PORT The port number to which the request was sent.

REQUEST_METHOD The method with which the request was made. For
HTTP, this is “GET”, “HEAD”, “POST”, etc.

Table continued on next page.

Using the Web Server

 53

Table 3-5: CGI Environment Variables (section 2 of 3)

PATH_INFO The extra path information, as given by the client. In
other words, scripts can be accessed by their virtual
pathname, followed by extra information at the end of this
path. The extra information is sent as PATH_INFO. If this
information comes from a URL, the server should decode
the information before it is passed to the CGI script.

PATH_TRANSLATED The server provides a translated version of PATH_INFO,
which takes the path and does any virtual-to-physical
mapping to it.

SCRIPT_NAME A virtual path to the script being executed, used for self-
referencing URLs.

QUERY_STRING The information which follows the ? in the URL which
referenced this script. This is the query information, and
it should not be decoded in any way. This variable should
always be set when there is query information, regardless
of command line decoding.

REMOTE_ADDR The IP address of the remote host making the request.

AUTH_TYPE If the server supports user authentication, and the script is
protected, this is the protocol-specific authentication
method used to validate the user.

REMOTE_USER If the server supports user authentication, and the script is
protected, this is the username they have authenticated as.

Table continued on next page.

Using the Web Server

 54

Table 3-5: CGI Environment Variables (section 3 of 3)
REMOTE_IDENT If the HTTP server supports RFC 931 identification, then

this variable will be set to the remote user name retrieved
from the server. Usage of this variable should be limited
to logging only.

CONTENT_TYPE For queries that have attached information, such as HTTP
POST and PUT, this is the content type of the data.

CONTENT_LENGTH The length of the content as given by the client.

HTTP_ACCEPT The MIME types which the client will accept, as given by
HTTP headers. Other protocols may need to get this
information elsewhere. Commas as per the HTTP spec
should separate each item in this list.
Format: type/subtype, type/subtype

HTTP_USER_AGENT The browser the client is using to send the request.
General format: software/version library/version

DATE_GMT The current date and time in Greenwich mean time.

DATE_LOCAL The current date and time in the local time zone for the
server.

DOCUMENT_NAME The name of the file using this variable. Contains only
the file name, not the location.

DOCUMENT_URI The path to the file using this variable relative to the page
root directory. Contains the directory location and the file
name. For example: /parsed_docs/myfile.shtml

LAST_MODIFIED The last modification date of the file using this variable.

Using the Web Server

 55

USMETA Programming Interface
META commands are used to access predefined application system variables in the vartable.cfg file. They
allow HTML access of the variables, which can be viewed while the application is running. You must define
these variables and update them when necessary.

See also: Variable Configuration File, in this chapter

META commands are parsed by the server, and are stored as comments in the body of the HTML page. The
commands have this format:

 <!—#command arg=”value”—>

Each command accepts different arguments. For example, this command includes a separate file within the
page:

<!—#include virtual+”../includes/header.txt”—>

If the server cannot parse the command in the comment because of an error, it returns the unparsed comment to
the browser.

The power of META commands is the ability to not only have access to the variable, but to format the
variable.

For example, if you wanted to access an IP address, you can have it printed out in ether hex or decimal:

hex: <!—#ECHO FORMAT=”%x” VAR=”ipaddress”—>
dec: <!—#ECHO FORMAT=”%d” VAR=”ipaddress”—>

This is a command to print a string:

 <!—ECHO FORMAT=”this is it %s” VAR=”astring”—>

It would print out “this is a web page” if astring contains “web page”.

These HTML META tags are described in this section:

#echo Prints a statement to the browser screen.

#exec Runs a CGI function.

#include Inserts the contents of a file.

#memory Prints the memory size, in kilobytes.

#system Prints information about the system.

Using the Web Server

 56

#echo
Prints a statement to the browser screen.

The #echo command includes the value of one of the environment variables defined for CGI programs (see
CGI Environment Variables) or uses SVA (Server Variable Access) to include one of the variables defined in
the vartable.cfg file (see Variable Configuration File). By echoing a variable to the browser, the web page
can dynamically update the page.

The only argument is var, whose value is the name of the variable you want to output.

Example 1
 <!—#echo var==”HTTP_USER_AGENT”—>

Example 2
<HTML>

<HEAD>

<TITLE> Meta Commands Examples </TITLE>

</HEAD><BODY>

This is an example of meta commands.

<!--#include file=”header.txt”--> <!-- this would read the file
‘header.txt’ and send it out, then continue sending out this file-->

The number of widgets is <!-- #echo var=”WIDGCNT”-->
 <!-- would look like The number of widgets is 5 -->

Total Memory is <!-- #memory total-->
 <!-- Total Memory is 512K -->

</BODY>

</HTML>

Using the Web Server

 57

#exec
Runs a CGI function.

The valid arguments are:

cgi runs the CGI function you specify and includes its output in the page.

The #exec META tag is useful when a web page should contain dynamically generated information that is best
localized in a CGI function. For simple text insertions, #echo combined with server variables should be less
complicated to implement.

The CGI function is implemented as discussed in the “CGI Function Programming Interface” section earlier in
this document, and can process arguments. The server does not check to make sure your CGI program
produces an output.

Example
<!—#exec cgi=”cgi-bin/fill_in”—>

Using the Web Server

 58

#include
Inserts the contents of a file.

<!—#include file=”filename”—>
<!--#include virtual=”path”—>

The #include command accepts either of the following arguments:

file gives a relative reference to the file you want to include. The path is relative to the directory
containing the file that uses the #include command. You cannot use absolute paths with this
argument. To keep your non-public directories secure, a page cannot use relative paths that
traverse upward through the directory structure (that is, it cannot use paths that contain ../).

 filename the filename in the physical file structure on the server machine

virtual gives the path to a file relative to the page root directory for the server. The double dash after the
“!” is necessary.

 path the file path as seen from the outside by those accessing the server

The #include command inserts the contents of the file you specify at the location of the #include command.
The user must have read access to the file that gets included. If the file that is included has a file extension or
location that causes it to be parsed by the server, that file can in turn include other files.

Make sure files you include contain only tags that are appropriate in the context of the files that include them.
For example, don’t use the <HTML>, <HEAD>, or <BODY> tags (or their end tags) in a file that will be
included in another file that already contains these tags.

Examples
<!—#include file=”include.txt”—>
<!—-#include virtual=”/doc/cust/include.txt”—>

See also: The second example for the #echo command.

Using the Web Server

 59

#memory
Prints the memory size, in kilobytes.

The #memory command accepts these variables:

total returns the total amount of memory in the system.

system returns the amount of memory used by ‘the system’.
Because this is defined by the application, ‘the system’ is user-defined.

free returns the amount of free memory.

This command returns information from the server configuration file’s TotalMem, SysMem, or FreeMem
field, where the application has earlier set these global variables.

See also: Server Configuration File, in this chapter

Examples
 <!—#memory total—>

 <!—#memory system—>

 <!—#memory free—>

See also: The second example for the #echo command.

#system
Prints information about the system.

The variables are stored in:

processor returns the system processor string:
HWdate hardware date
HWversion hardware version
HWconfig hardware configuration
SWdate software date
SWversion software version
SWconfig software configuration

Example
<!-- #system HWdate=>

Index

 61

Index

#echo META command

description 56
example 56

#exec META command
description 57
example 57

#include META command
description 58
examples 58

#memory META command
description 59
examples 59

#system META command
description 59

A
access, restricting 21
AddType command

description 35
example 35

authentication of user 22, 24

B
browser

printing to 56
building

example Web Server for target 11
for UNIX 7
with another TCP/IP stack 8

buildpg.cfg file
editing 11
example 28

Bwrite() user server function 14

C
CGI

definition 2, 39
CGI environment variables 52
CGI function programming interface 39
CGI programs

running 57
CGI routines 45

escape_shell_cmd() 46
getword() 47
Nmakeword() 50
plustospace() 50
summary list 45
unescape_url() 51
x2c() 51

CGI support routines
calling 39
findvar() 41
general description 39
getvar() 43
Ngetenv() 43
send_file() 44
summary list 40

configuring 27
connecting from browser 11

D
data structures

request_rec 26
DNS

definition 2
documents

determining encoding of 23
determining type 23
finding 23

E
embedded web server

including pages 36
request process 19

encoding, determining type 23
ENTRY structure

definition 15
finding and returning 15

EOF for network stream 17
errors, logging 25
escape_shell_cmd() CGI routine

description 46
example Web Servers 10

Index

 62

F
files

writing to network 44
files, checking for 23
findvar() CGI support routine

description 41
example 42

G
GetEntry() user server function 15
getvar() CGI support routine

description 43
getword() CGI routine

description 47
example 47

H
handlers

included, summary list 20
HTML META commands

definition 2
HTTP server

modules 20
structure 18

HTTP, definition 2
HTTPserver() user server function 16

I
initializing 16
ISMAP 39

definition 2

L
logging errors and access 25

M
memory

printing size of 59
META commands

#echo 56
#exec 57
#include 58
#memory 59
#system 59
arguments accepted 55

format of 55
general description 55
summary list 55

MIME types
adding to server 35

MIME types file 33
example 33

MIME, definition 2
MODchkaccess() module/function 21
mouse click 39

N
Neof() user server function 17
network

buffered write to 14
writing files to 44

network stream
finding EOF 17

Ngetenv() CGI support routine
description 43
example 41

Nmakeword() CGI routine
description 50

P
page configuration file

description 36
example 37

pages.cfg file
example 37

parsing URLs 25
plustospace() CGI routine

description 50
example 47

POP, definition 2

R
request structure

description 18
example 26
loop 18
searching for variables 43

request to web server
process 19

request_rec structure 26
requirements 6

Index

 63

running 16

S
send_file() CGI support routine

description 44
example 42

server configuration
application system information 30
directory and file system variables 32
MIME types 33
other files 29
page configuration file 36
server information variables 31

server configuration file
contents 27
example 28

SMTP, definition 2
strings

parsing 47, 50
searching for 43
terminating 51

structures
allocating space for 16
ENTRY 15, 44
request 18

SVA
and #echo command 56
definition 2

system information
printing 59

T
TCP/IP, definition 2
terminology 2
translating URLs 25

U
unescape_url() CGI routine

description 51
example 47

UNIX

building web server for 7
URL

translating and parsing 25
usbldpg utility

files generated 27
files read 27
using 5

user authentication 22, 24
user server functions

Bwrite() 14
GetEntry() 15
HTTPserver() 16
Neof() 17
summary list 13

USMETA programming interface 55

V
variable configuration file

description 38
example 38

variable structure
searching for string 41

vartable.cfg file
example 38

W
web pages

inserting into web server 5
steps for creating 5

web server modules
description 20

web server modules/functions
MODchkaccess() 21
sequence of use 20
summary list 20

write, buffered 14

X
x2c() CGI routine

description 51

	1. Introduction
	User’s Guide Overview
	Web Server Terminology
	Recommended Reading
	Other U S Software Documents
	On the Internet
	Books

	2. Getting Started
	Web Server Overview
	Web Server Requirements

	Building the Web Server
	Building for USNet
	Building for UNIX
	Building for Another TCP/IP Stack

	Example Web Server
	Building the Example Web Server for your Target
	Connecting to the Example Web Server

	3. Using the Web Server
	User Server Functions
	Bwrite()
	GetEntry()
	HTTPserver()
	HTTPservinit()
	Neof()

	HTTP Server Request Structure
	Modules and Handlers

	Module Function Descriptions
	MODchkaccess()
	MODchkauth()
	MODchkloc()
	MODchktype()
	MODgetuser()
	MODlog()
	MODtranslate()

	Request Structure
	Using Usbldpg
	Server Configuration File
	Other Configuration Files
	Application System Information
	Server Information
	Directory and File System Information

	MIME Information
	MIME Types File

	AddType Command
	Page Configuration File
	Variable Configuration File
	Example

	CGI Function Programming Interface
	System Support Routines
	findvar()
	getvar()
	Ngetenv()
	send_file()

	CGI Routines
	escape_shell_cmd()
	getword()
	Nmakeword()
	plustospace()
	unescape_url()
	x2c()

	CGI Environment Variables

	USMETA Programming Interface
	#echo
	#exec
	#include
	#memory
	#system

	Index

