SNMP
User’s Guide

Version 2.58
July 2004

U S SOFTWARE.

EEEEEEEEEEEEEEEEEE

Copyright and Trademark Information

Copyright 1996-2004 Lantronix, Inc. All rightsreserved. No part of this publication
may be reproduced, trandlated into another language, stored in aretrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of Lantronix, Inc.

Lantronix®, U S Software®, USNET®, USFiles®, USLink®, SuperTask!®,
MultiTask! ™, NetPeer™, TronTask!®, Soft-Scope®, and GOFAST® are
trademarks of Lantronix, Inc. Other brands and names are marked with an asterisk
(*) and are the property of their respective owners.

Lantronix, Inc. makes no warranty of any kind with regard to this material, including
but not limited to the implied warranties of merchantability and fitness for a
particular purpose. Lantronix, Inc. assumes no responsibility for any errors that may
appear in this document. Lantronix, Inc. makes no commitment to update or to keep
current the information contained in this document.

Lantronix, Inc.

15353 Barranca Parkway
Irvine, CA 92618
(949)453-3990

Fax (949) 453-3995

For Support Contact:
Micro Digital Associates, Inc.
2900 Bristol Street, #G204
CostaMesa, CA 92626

(714) 437-7333
support@smxinfo.com
www.smxinfo.com

Documentation Conventions

Computer output and code examples: Couri er, usualy in a separate paragraph.

Function names and command names. Bold italic, usually followed by
parentheses, asin main() function.

Variables: Courier 11 italic (nt _busy).
Filenames: Timesbold (the file usrclk.asm), in lower case.
Key names: Initial capital, in angle brackets, asin press <Enter>.

Menu names and selections, dialog box names, screen titles, window titles:
Times bold, asin File menu.

Notes: Indicate important information.
Cautions. Indicate potential damage to hardware or data.

Documentation History

Revision Number Date
21 October 1996
2.5 August 1997
2.53 May 1998
2.57 July 2000

2.58 October 2001

Contents

[NTRODUCTION ..iititeiutieeeiteeesstee et e st se e e st e e s se e e s sne e e sane e s amseesneeesneeesaneeesaneeesnneeeanneas 1
Recommended REAAINGccooveiiiieiiee et enaenne s 1
SNMP OVEIVIBW ...ttt sttt sttt e ne e e e e nne e e 1
Design Of SNIMPIUSNET ..ot e 2

BUILDING AN APPLICATION ..eeutttiateteaieeeaseeesseesssseesasseesasseesnseesansessneessnesssnesssnseesanns 5
BUild-time ConfigUIalioN..........cciieiueieereee e s s e e naeeeesreeneeeneens 5

CONSLANES. ...ttt ettt st e et e s e et e e sae e e b e e sae e e beesaeeenbeesnneeneesnneenns 5
User-based Security Model Configurationcceeveveeieeseeiesieesesiee s eseeseeseens 9
View-based Access Control Configurationccoceeeeeeereenesieesesseesee e seeseens 11
Agent Use of Build-time CONSLaNES.........cccceeierieeiieie e 15
APPHCALON INEEITACE ..o 17
AGENT_CONTEXT SIrUCIUre............oooeeeeeeeeeeeeeeeeeeeeas 17
USSSNMPAQENTTASKoooeeeeeeeeeeeeee e 20
USSSNIMPAQENLINIT.........oooeeeeeeeeee e 21
USSSNMPAQENICNECK..........oooovovecs i 22
USSSNMPAQENESNULooooeeeeeeece e 23
USSSNM PAQGENITIAP ... 24

CUSTOMIZING THE AGENT ..eouiiieitestestesiesiesiee e et st sbe st st e st st bbb ssesneeneens 27

Configuring the AQent MIBoi e e 27
MIB SETUCIUIE ... nnn e e nee s 27
MIBVAR and MIBTAB SITUCIUIES.......oceeiceeieeesee e 28
(D= =0 LA o< (o] o 1 29
MIBVAR RECOId OPLIONSccueiiiieieeiesiee ettt 29
MIB.set() and MIB.get() FUNCLIONS.........ccccveieriieiecie e 31
MIB.INAEX() FUNCLION ..ottt et 33

AddiNG NEW MIBS......ooiieiciee ettt e e eeenneenns 35
MIB Translation OVEINVIEWcoeeiiiieiieesie et 35
Building the MIB Tranglalor..........ccccovieieiieiece e 36
Running the MIB Translator ..ot e 37
IMIIB FLES ..ttt st 39
Read/Writ€ NOLITICATON.cceeieiieiee e 39
Summary of Adding aUser-Defined MIB..........cccooieiiiieie e 42

Configuring the Transport Mappingccceeereereneeneeie e 48

IINDEX 1ttt sttt sttt a b bbbt e bbb bbbttt e bR e bbb n e 51

Introduction

Introduction

This manual describes the use of the Simple Network Management Protocol for
USNET®. SNMP/USNET provides support for integrating an SNMP agent into a
real-time embedded system application. It isdesigned for use with SNMP Version 3
managers; however, it will also respond to Version 1 and 2 requests.

The reader ought to have a conceptual knowledge of SNMP in order to understand
the terminology in this manual. There are several books available that explain more
completely the terminology and function of SNMP systems.

Recommended Reading

USNET User’s Manual

The Smple Book

An Introduction to Internet Management
Second Edition

Marshall T. Rose

ISBN 0-13-177254-6

SNMP, NMPv2, SNMPv3, and RMON 1 and 2
Practical Network Management

William Stallings

ISBN 0-201-48534-6

SNMP Overview

The Simple Network Management Protocol, SNMP, is used widely by industry to
manage networks. On anetwork, aclient in one host (a SNMP manager)
communicates with a server in another host (an SNMP agent). The manager requests
the agent to read or write information (objects) in a Management Information Base
(MIB).

Introduction

Network
MiﬂaMgF;r Application | |Tansport | Standard
PP layer MIB-I
Enterprise
Agent
MIB

Figure 1: SNMP Agent on a network

Design of SNMP/USNET

The SNMP/USNET design includes these features:
Independent of processor, operating system, and networking stack

The agent is processor-independent. Almost any ANSI C compiler will do.

The agent is not tied to a particular operating system. It can be executed asatask in
nearly any commercial or custom multitasking operating system, as a polling routine
in asingle-threaded application, or as the entire application.

The agent is not tied to a particular transport layer. Any networking stack or other
data communication layer can be used to transfer data to and from the agent. Sample
support for Linux*, Windows, and USNET, each using UDP/IP, is provided.

ROMable

Compact

User-configurable

Introduction

The codeisROMablein that al initialized datais type const , and there are no
attempts to change code or constants at runtime.

The agent requires less than 30K code bytes and 12K RAM bytes on atypical
compiler without optimization. If security isremoved, the agent requires less than
20K code bytes and 4K RAM bytes. Actual code requirements also vary somewhat
from processor to processor and compiler to compiler.

SNMP/USNET supports the same application interface and functionality across all
processors. In other words, standard C code developed for one processor can be
recompiled for another processor with minimal effort.

Custom MIBs can be created using the MIB compiler supplied with the
SNMP/USNET agent. The application can add these new MIBs or remove old or
unused MIBs with relative ease.

Building an Application

Building an Application

Build-time Configuration

The build-time configuration of the agent is performed in the snmpcfg and vacm.c
filesin the snmpsrc directory. Inthefile snmpcfg thereisaset of definitions used
to configure the agent. These symbolic constants may require modification before
compiling and linking the product. The View-based Access Control Model
definitions are declared in vacm.c.

Constants

ENTERPRISE Constant

The ENTERPRI SE value refersto the ENTERPRI SE | D assigned by ICANN
(formerly IANA). It isused to partly form the snnpEngi nel D for the agent.

ENTERPRI SE = 991

SNMP_IP Constant

The SNVP_I P valueisthe IP address of the host. It is most convenient to determine
thisat run timeif the host address may change or is unknown. However, the
snnpEngi nel D is partly determined from the IP address of the agent, and the User-
based Security Model (USM) requires that an intensive algorithm using the
snnpEngi nel D be performed on each password used. There is more information
about thisin the section on configuring the USM.

SNVP_I P = *“198. 107. 35. 105"

System Variable Constants

The MIB system group used by the agent provides atextual description of the agent
and isrequired by SNMP. These strings can be modified, adding appropriate values
for the particular agent application. These variables are shown in Table 1.

Building an Application

Table 1. System Variables

Variable Description

SYSCONTACT Thevalueisstoredin syst em sysCont act .
Replace this value with the company name and
phone number.

SYSLOCATI ON | Thevalueisstored insyst em sysLocat i on.
Replace this with the company name and address.

SYSDESCR Thevalueisstored in syst em sysDescr .
Replace this string with a description for the agent

Note that these values should not be greater than 64 bytes each without changing the
size of the arrays that hold them. SeesysCont act , sysLocati on, and sysDescr
in snmpsr c\v3\agent.c.

SYSCONTACT = “USSW (503) 844-6614, support @ssw. conf
SYSLOCATI ON = “USSW Hillsboro, OR USA’
SYSDESCR = “Enbedded control |l er running USNET”

ENABLEAUTHENTRAPSVAL Constant

The ENABLEAUTHENTRAPSVAL specifiesthe snnpEnabl eAut hent Tr apsVal
default value. Use 1 for enabled and 2 for disabled.

ENABLEAUTHENTRAPSVAL = 2

MAXOID Constant
MAXQO D defines the maximum length of an object identifier in the MIB. The object
identifier (OID) uniquely defines MIB variables. Be sure thisislarge enough to
accommodate all objects within any application MIB.

Building an Application

MAXOID Example

#define MAXO D 12 /* maxi mum | ength of object ID */
static const struct
{unsi gned char nlen, nane[MAXO D], key[16];}
party[]={
{11, {Ox2b,6,1,6,3,3,1,3,10,11,12}, {0} },
{11, {Ox2b,6,1,6,3,3,1,3,10,11,13}, {0} },
{11, {Ox2b,6,1,6,3,3,1,3,10, 11, 14},
{0x74, 0x68, 0x69, 0x73, 0x74, 0x68, 0x69,
0x73, 0x74, 0x68, 0x69, 0x73, 0x74, 0x68, 0x69, 0x33} 1},

b

The nane field in the above table stores SNMP object IDs, and MAXQO D specifies the
maximum size for thisvalue. Note that the OIDs start with the value 0x2b, whichis
the BER encoding for .1.3.

MAXO D = 15

MAXKEY Constant

MAXKEY defines the maximum number of keys allowed. Keysform the index used to
identify a MIB table entry. For example, thet cpConnTabl e hasfour keys:

t cpConnLocal Addr ess, t cpConnLocal Port,tcpConnRemAddr ess, and

t cpConnRenPor t . No other table in the MIB-I1 has more than four, so MAXKEY can
be set to 4.

MAXKEY = 4

MAXKLEN Constant

MAXKL EN defines the maximum length in bytes for an encoded index. Anindex is
the encoding of the keys used to define atable entry. These keys may be one or
more of nearly any fixed length data type such as| pAddr ess or | NTEGER. For
standard MIB-I1 objects, the largest possible index is potentially generated by the

t cpConnTabl e. Itskeysincludetwo | pAddr esses each up to 8 bytes encoded
and two 16-bit unsigned integers each up to 3 bytes encoded. The result is 22 bytes.

MAXKLEN = 22

Building an Application

MAXVAR Constant

MAXVAR specifies the maximum number of variables allowed in arequest. A request
is amessage sent by the manager to the agent for reading or setting values of one or
more variables. MAXVAR sets the maximum number of variables that may be
accessed in one request. Note that the number of total response variables for a
response to a bulk request is limited by the packet size, not this constant.

MAXVAR = 16

SNMP_MAXSIZE Constant

SNIVP_MAXSI ZE specifies the maximum transport size in bytes. Note that this value
represents the size of each of four SNMP message buffers used for the following
purposes. Receiving requests, sending replies, sending traps, and performing
security operations. RFC 2571 requires this value be at |east 484 bytes.

SNVP_MAXSI ZE = 1000

Building an Application

User-based Security Model Configuration

HHEHFHHFHHFHFHHFHHHFEHHFHHR

The current agent supports aut hPri v (i.e. authentication with privacy),
aut hNoPr i v (i.e. authentication without privacy), noAut hNoPri v (i.e. no
authentication and no privacy) for security levels.

SNMPv3 defines a method of security known as the User-based Security Model
(USM). Thedefinition in RFC 2574 encompasses both authentication and privacy.
Authentication means the verification of host identity, usually through a user name
and password. Privacy means the encryption of SNM P messages such that
unauthorized hosts cannot interpret the data. The current agent supports

aut hNoPr i v (i.e. authentication without privacy) and noAut hNoPri v (i.e. no
authentication and no privacy) for security levels. Future versions may add new
authentication and privacy protocols.

By default, the agent comes with two users defined. The first usesthe
noAut hNoPr i v security level. The second usesthe aut hNoPr i v security level.
These are configured in snmpsr c\v3\snmpcfg with the following definition:

#H##

The entries bel ow define systemusers. They use the
follow ng format:

“usnmser Securit yNane”
usnlser Aut hPr ot ocol *“aut h- pass-phrase” \
usnlser Pri vProtocol “priv-pass-phrase”

The possi bl e choices for usnlser Aut hProtocol are:

usmNoAut hPr ot ocol No aut henti cation
us MHVACVD5Aut hPr ot ocol HMAC MD5 aut henti cati on
us MHVACSHAAuUt hPr ot ocol HMAC SHA aut henti cati on

The possi bl e choices for usnlserPrivProtocol are:

usnNoPri vPr ot ocol No privacy
usnDESPr i vPr ot ocol DES CBC encryption

Building an Application

ul

U2

U3

= “initial’

usmNoAut hPr ot ocol “” \

usnmNoPri vPr ot oco

= “adm n”

usnmHVACVD5AuUt hPr ot ocol “secret password” \
usmNoPri vProtocol “nylittlesecret”

= "adm n-sha" \
usmHVACSHAAuUt hProt ocol "nylittl esecret™ \
usnDESPri vPr ot ocol "secretpassword"”

USM ENTRIES = Ul U2 U3

The ‘U1’ entry defines an unauthenticated user with the name“i ni ti al ” and no
password. The ‘U2’ entry defines an authenticated user with the name “adni n-
md5” and the password “secr et passwor d” using

HMAC-MD5 authentication. The'U3' entry defines an authenticated user with the
name "adni n- sha" and the password "nyl i tt| esecret " usng HMAC-SHA
authentication. Note that either entry U2 or U3 may also use DES CBC encryption
for privacy with the respective passphrases"nyl i tt| esecret " and

"secr et passphrase".

It would not be secure to transmit passwords over the network, so the authors of
SNMPv3 came up with a scheme to hide passwords. This method is called password
localization and is described in RFC 2574 in section A.2. It takes the password and
the snnpEngi nel D asinput and outputs a digest-specific key. A SNMP manager
uses the key with each SNMP request message to form an authentication digest using
HMAC-MD5 or HMAC-SHA, and transmits the message plus the new digest as an
authenticated SNMP message. The agent checks each digest value with the digest it
creates in the same fashion on each message. If the two match, the management
station and agent must have used the same localized password for the request to be
further processed. Otherwise, the request causes the agent to transmit a

usnBt at sW ongDi gest s report to the manager.

10

Building an Application

Application Note: The password localization algorithm is intensive enough that a
typical embedded processor of today probably cannot handle the
process in atimely manner at run time. Therefore, our SNMP
agent can optionally have its user passwords localized at build
time by the development machine. The problem with thisis that
the snnpEngi nel Disrequired to be unique for agiven
communications context. The SNMP/USNET agent assumes
the presence of an IP-oriented network and uses |P addresses as
the host identifier in the snnpEngi nel D. |P addresses are often
dynamically configured. Therefore, the agent may have
difficulty being both unigue and timely while supporting USM
authentication.

The snnpEngi nel D used by the agent concatenates the ENTERPRI SE value and the
transport layer 1P address. The ENTERPRI SE value must always be configured in
snmpcfg, but the IP address can be configured at run time or in snmpcfg.

View-based Access Control Configuration

SNMPv3 defines a method of access control known as the View-based Access
Control Model (VACM). Itisdefined in RFC 2575 as a means of restricting access
to particular subsets of variables based on the identity of the manager and
securitylLevel usedintherequest.

A view isagroup of MIB variables on the agent. The agent defines aview for each
user based on the user identity and securi t yLevel . A cont ext Nanme and a
securi t yName definethe user identity and thesecuri t yLevel islisted directly
in each request. Note that if no security isused (i.e. securitylLevel ==

noAut hNoPri v), thesecuri t yNanme can be undefined. Also, in order to provide
compatibility with version 1 and 2c management stations, the cont ext Nane in each
view entry may refer to either acont ext Nane or acommuni ty nanme. The
securitylLevel would then be assumed to be noAut hNoPri v.

11

Building an Application

The genera practice isthat informational variables be accessibleto all userswith all
security levels. Write access and read access to sensitive information are limited to
selective users implementing authentication and perhaps privacy. Generdly, if a
user uses greater security than is required by the access entry including a particular
variable, accessisalowed. The VACM module will search through each entry until
it findsavalid entry for the variable. Thisway multiple entries can be defined for a
singlesecuri t yName given different combinations of cont ext Nanmes and
securitylLevel s.

The configuration of the View-based Access Control Model (VACM) cannot be
performed in snmpcfg due to the complexity of the procedure. Instead, an array of
ACCESS structures is used to define all entriesin the VACM table.

These example entries are defined in the snmpsr c\vacm.c module:

t ypedef struct

{
ui nt 32 nmask;
const O D *oid;

} VIEW

t ypedef struct

{
const uint8 *group; /* Group for entry */
const uint8 *context; /* Context for entry */
const VI EW *readvi ew, /* Read view for entry */
const VIEW*witeview, /* Wite viewfor entry */
uintl6 | evel; /* Security level for entry */

} ACCESS;

/*

** Define all possible view sub-trees:

** Note that we only define 3. Theoretically, there coul d be

** adifferent sub-tree defined for every single dDin

** every MBon the host. This is of course |ess efficient

** than the nethod bel ow, though probably nore secure. This

** ought to be changed according to the desires of the MB

** i npl ement or .

*/

12

Building an Application

static const O D sys oid = {6, {Ox2b, 6, 1, 2, 1, 1}};

static const OD ngnt_oid = {4, {0x2b, 6, 1, 2}};

static const O D snnp_oid = {4, {0x2b, 6, 1, 6}};

/* ENTERPRI SE 991 when encoded is 0x87 Ox5f */

static const OD private oid = {7, {0x2b, 6, 1, 4, 1, 0x87, O0x5f}};

/*

** Define all possible view famlies:

** Note, these arrays always end in NULL so that they can be
** gsearched through without a |l ength value being specified.
*/

static const VIEWsys view] =

{
{oxffffffff, &sys_oid},
{0, 0}
i
static const VIEWm b2 view] =
{oxffffffff, &mgnt_oid},
{oxffffffff, &snnp_oid},
{0, 0}
I
static const VIEWadm n_view] =
{
{oxffffffff, &mgnt_oid},
{oxffffffff, &snnp_oid},
{oxffffffff, &private_oid},
{0, 0}
b

/* Define all possible access entries */
static const ACCESS vacmAccessTabl e[] =

13

Building an Application

/*

** no group,

** public context,

** no security,

** read m b2_view,

** no wite view

*/

{(const uint8 *)"”, (const uint8 *)”"public”, sys_view,

0, noAut hNoPri v},

/*
** jinitial group,
** public context,
** no security,
** read m b2_view,
** no wite view
*/
{(const uint8 *)"initial”, (const uint8 *)”"public”,
m b2_vi ew, noAut hNoPri v},
/*
** adm n group,
** public context,
** no security,
** read m b2_view,
** no wite view
*/
{(const uint8 *)"adm n”, (const uint8 *)”"public”,
m b2_vi ew, noAut hNoPri v},
/*
** adm n-nd5 group,
** adm n context,
** with auth security,
** read adm n_vi ew,
** wite m b2 view
*/
{(const uint8 *)”adm n-nd5”, (const uint8 *)”adm n”,
adm n_view, m b2 view, authNoPriv}

14

/*

Building an Application

** adm n-sha group,

** adm n context,

** with authPriv security,
** read adm n_view,

** write adm n_view

*/

{(const

b

uint8 *)"adm n-sha", (const uint8 *)"adm n",
adm n_vi ew, adm n_view, authPriv}

#defi ne ACNUM ((sint16) (sizeof (vacmAccessTabl e) /

si zeof (ACCESS)))

Agent Use of Build-time Constants

The constants from the previous section tranglate into snompconf.h and usmauto.c
during build-time. Hereisthe snmpconf.h output from the above definitions:

/* This

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

file is autogenerated */

ENTERPRI SE 991

SYSCONTACT "USSW (503) 844-6614, support @ssw. cont
SYSLOCATI ON "USSW Hi | | sboro, OR USA"
SYSDESCR " Embedded control |l er runni ng USNET"
ENABLEAUTHENTRAPSVAL 2

MAXO D 15

MAXKEY 4

MAXKLEN 22

MAXVAR 16

SNVP_MAXSI ZE 1000

USM_MD5

USM _DES

USM_SHA

15

Building an Application

Here is the usmauto.c output from the above definitions:

/* This file is autogenerated */

/* User security entries (securityName, auth-type, priv-type) */
static const USER usmnJserTabl e[] =

{
{(const uint8 *)"initial”, usmNoAuthProtocol
usnmNoPri vProt ocol },
{(const uint8 *)"adm n-nd5", usnmHMACNMD5AuUt hPr ot ocol
usnDESPr i vPr ot ocol },
{(const uint8 *)"adm n-sha”, usnmHMACSHAAut hPr ot ocol
usnDESPr i vPr ot ocol },
b
static const uint8 *authPass[] =
{
(const uint8 *)"",
(const uint8 *)"secretpassword”,
(const uint8 *)"nylittlesecret”,
b

static uint8 authKeys[sizeof (usmJserTable) /
si zeof (USER)] [20] ;

static const uint8 *privPass[] =

{
(const uint8 *)"",
(const uint8 *)"nylittlesecret”,
(const uint8 *)"secretpassword”,
b

static uint8 privKeys[sizeof (usmlserTable) / sizeof (USER)][20];

16

Building an Application

Application Interface

The application file defines the run-time environment in which the agent executes.
The AGENT_CONTEXT structure is used to pass the configuration information from
the application to the agent.

AGENT_CONTEXT Structure

t ypedef struct

{
const M B **m bs; /* Array of pointers to host MBs */

ui nt 16 nunmi bs; /* Nunber of host MBs */
const TRAP_HOST **thosts; /* Trap hosts */
ui nt 16 nunt host s; /* Number of trap hosts */

uintl6 trapv, trapt; /* Trap version and startup type */
const TRANSPORT_MAPPI NG *tm /* Transport mapping */
} AGENT_CONTEXT;

Themi bs field isthelist of MIBs that managers may have accessto. Noteit isvita
that the MIBs be listed in lexicographical order. If not, the agent will think certain
variables do not exist withinthe MIB. The nunmi bs field specifies the number of
MIBs available.

Thet host s field specifies the hosts to which agent traps will be sent. The
TRAP_HOST definitionissimply ‘t ypedef ui nt 8 * TRAP_HOST; ' and each host
should be acceptabl e to the transport layer. In other words, the transport layer needs
to be able to open a connection to the entity specified by the trap host field. The
nunt host s field specifies the number of trap hosts available.

Thet r apv field specifies the trap version to use during agent operations. The
t rapt field specifies the trap used by the agent during startup. Use
—1 for none. Otherwise use one of these defined types from snmpv3.h:

CCOLDSTART

WARMSTART

L1 NKDOWN

L1 NKUP

AUTHENTI CATI ONFAI LURE

17

Building an Application

EGPNEI GHBORLOSS
ENTERPRI SESPECI FI C

Thet mfield specifies the transport mapping to be used by the agent. The
TRANSPORT _MAPPI NG data structure is defined later.

Example
Thisis an example of a SNMP agent application taken from agv3.c.

A global structure is declared for the agent task to initialize from. In this example,
the structure has been set up to request a SNMPv1 (0) COLDSTART trap be sent
when the agent is started. The USNET DPI transport mapping is used for sending
and receiving SNMP packets.

#i ncl ude “snnpv3. h”

extern const MBmb_if, mib at, mib ip, mb_icnp, mb_tcp, mb_udp;
extern const MB mb_sys, mb_snnp, mb_engine;
extern const MB mb_usm

/* The following MBs must be in | exicographical order */
static const MB *nmibs[] =

{
&M b_sys, /* system group */
&b _if, /* interfaces group */
&M b_at, /* address translation group */
&nmib_ip, /* 1P group */
&M b_icnp, /* 1CWP group */
&M b_tcp, /* TCP group */
&M b_udp, /* UDP group */
&M b_snnp, /* SNWP group */
&M b_engi ne, /* SNWMPv3 engi ne group */
&M b_usm /* USM group */
b

static const TRAP_HOST prinmary = “192.168. 1. 30";
static const TRAP_HOST secondary = “192.168.1.31";

18

Building an Application

static const TRAP_HOST *thosts[] =

{
&primary,
&secondary
b

extern const TRANSPORT_MAPPI NG TM DPI ;

/* This structure is defined as external in SNVWPAgent Task() */
const AGENT_CONTEXT snnp_ac =

{
m bs, (sizeof(mbs) / sizeof(MB *)),
t hosts, (sizeof(thosts) / sizeof(TRAP_HOST)), 0, COLDSTART,
&TM DPI

b

19

Building an Application

ussSNMPAgentTask

Executes the agent as atask.

voi d ussSNWPAgent Task(voi d);

This function calls ussSNMPAgentl nit() with the address of the global constant
AGENT_CONTEXT, snnp_ac, defined by the calling application. It then continuously
calls ussSNMPAgentCheck(). If the return value of ussSNMPAgentCheck()
indicates an error condition, a call is made to the ussSNMPAgentShut() function and
this function returns.

Example

Thisis an example of a SNMP agent application taken from agv3.c.

Before running the agent, the system must initialize. In this case, USNET must be
initialized with the Ninit() and Portinit() calls because the
USNET DPI transport mapping is being used.

ussSNMPAgentTask() is called to start the agent. If all goeswell, the
agent task will remain in aloop waiting for and responding to SNM P manager
requests.

#i ncl ude “net.h”

#i nclude “l ocal . h”
#i ncl ude “support.h”
#i ncl ude “snnpv3. h”

/* This structure is defined as external in SNWPAgent Task() */
const AGENT_CONTEXT snnp_ac =

{

b

m bs, (sizeof(mbs) / sizeof(MB *)),
thosts, (sizeof(thosts) / sizeof (TRAP_HOST)), 0, QCLDSTART,
&TM DPI

voi d mai n(voi d)

{

Ninit();
Portinit(“*");
ussSNWVPAgent Task() ;
Ntern();

20

Building an Application

ussSNMPAgentinit

Initializes the agent.
sint16 ussSNMPAgent | nit (const AGENT_CONTEXT *acp);

This function initializes the agent with the run-time environment defined by the
value of the AGENT_CONTEXT parameter. The run-time environment that the agent
uses is defined by the MIBs visible to the agent, the Trap hosts, and a transport

mapping.

Return Value

>=0 No error
<0 Anerror
Example

#i ncl ude “snnpv3. h”
extern const AGENT_CONTEXT snnp_ac;

il = ussSNWMPAgent I nit(&snnp_ac);
if (il <0)
{
#i f NTRACE
Npri ntf(“ SNMPAgent Task: Initialization failed %\ n", i1);
#endi f
return;

}

21

Building an Application

ussSNMPAgentCheck

Checks the status of the agent for pending requests, and responds as necessary.
sint 16 ussSNMPAgent Check(voi d);

This function checks the transport for incoming messages, and generates responses
as necessary.

Return Value

>=0 No error
<0 An error
Example

#i ncl ude “snnpv3. h”
/* Control |oop for reading requests and

form ng/sending replies */
whi | e (ussSNMPAgent Check() >= 0)

22

Building an Application

ussSNMPAgentShut

Terminates the agent.
sint 16 ussSNMPAgent Shut (voi d) ;

This function performs any clean-up necessary to terminate all the layers of the
Agent.

Return Value

>=0 No error
<0 An error
Example

#i ncl ude “snnpv3. h”

ussSNMPAgent Shut () ;

23

Building an Application

ussSNMPAgentTrap

Sends atrap to all configured trap hosts as defined in the AGENT _CONTEXT.

sint 16 ussSNMPAgent Trap(ui nt8 type, uint8 spec,
const ui nt8 *cont ext Nane,
const uint8 *vbs, uintl6 |en);

type the trap type

spec trap-specific code

cont ext Name context or community name

vbs pointer to avariable bindings for trap
len the buffer length

The ussSNMPAgentTrap() function may be used from an agent application to send a
trap to amanager. Trap types specified as 0 through 6 are shown in Table 2.

24

Building an Application

Table 2: SNMP Trap Types

Value | Trap Type Description

0. cold start The agent network protocol has
reinitialized, indicating that its
configuration may have been
altered.

1 warm start The agent network protocol has
reinitialized; however, its
configuration has not been altered.

2. link down A communication link has failed.
Thefailing link isidentified via
the first variable within the
variable bindings field of the PDU
(protocol data unit). The PDU is,
essentially, the data protocol used
by SNMP. The variable bindings
fieldisalist of MIB variables sent
to the manager packaged within a
PDU.

3. link up A communication link has come
up. The affected link isidentified
asthe first element within the
variable bindings field.

4, Aut henti cati onFai | ure | Theagent could not resolve the
authentication for an SNMP
message received from the
manager.

5. EgpNei ghbor Loss An EGP peer neighbor is down.

6. EnterpriseSpecific A nongeneric trap has occurred.
Thisis specific to a particular
enterprise. Usethisfor
application-specific traps.

25

Building an Application

Return Value

The number of traps sent. This should be compared to the number of trap hosts
configured in the AGENT _CONTEXT.

Example

To send atrap from an application, simply call ussSNMPAgentTrap() and passin
the trap type, the trap-specific code, the context/community name, a pointer to a
buffer of variable datafor the manager to process, and the length of the variable data.
If the buffer is not needed O may be used. For example, to send a“warm start” trap
with no variable data, use:

int rc; /*return code */
rc = ussSNWVPAgent Tr ap(WARMSTART, 0, “public”, 0, 0);
if (rc <= 0)

<process error >

If atrap must pass variable data to the manager, declare a buffer, assign the variable
binding datato it and passit to ussSNMPAgentTrap().

#def i ne VARBUFFERSI| ZE <sone constant val ue>

int rc; /* return code */
unsi gned char var buf f er [VARBUFFERSI ZE] ;

varbuffer = <load the data into the buffer>;

rc = ussSNVPAgent Tr ap(WARM _START, 0, “public”, varbuffer,
VARBUFFERSI ZE) ;
if (rc 1=0)
<process error>;

Thisfunction call isflexible in that the variable data may be passed in any format;
however, it is constrained to what the manager can understand. Generally, this
would bein the form of an SNMP variable bind list.

26

Customizing the Agent

Customizing the Agent

Configuring the Agent MIB

Standard MIBs are supplied with SNMP/USNET based on Internet standards defined
by RFCs (request for comments, on the Internet) 1156 and 1213. These RFCs have
since been clarified in severa updated RFCs modularized from the originals.

MIB Structure

Each MIB module must be molded into the MIB structure used by the agent.

t ypedef struct

{
const M BVAR *mvp; /* MB variables */
sint16 (*nunvars)(void); /* Nunmber of variables */
const M BTAB *mt p; /* MB tables */
sint16 (*nuntabs)(void); /* Nunber of tables */
void (*get)(sintl6 varix, sintl6 tabix, uint8 **vvptr);
sint1l6 (*set)(sintl6 varix, sintl6 tabix);
sint16 (*index)(sintl6 varix, sintl6 index);
void (*init)(uintl6 type); /* Initialize the MB */
} MB;

27

Customizing the Agent

MIBVAR and MIBTAB Structures

The M BVAR and M BTAB structures are the primary data structures, which define MIB
data. Each MIB contains variablesnmi bvar and mi bt ab, which are simply arrays of
these structures. M BVAR and M BTAB are defined in snmpv3.h asfollows:

t ypedef struct

{
uint8 nlen, name[MAXO D] ;
} ODb
t ypedef struct
{
O D oid; /* Base O D of table */
ui nt 8 ni x; /* Nunber of indices for table */
ui nt 16 i x[MAXKEY] ; /* Index values (offsets) */
uint16 | en; /* Length of table */
} M BTAB;
t ypedef struct
{
a D oid; /* ldentifier nane, length */
ui nt 8 opt; /* Options */
ui nt 8 type; /* Type of variable */
sint16 |en; /* Length of pointer field */
void *ptr; /* Pointer to variable data */
} M BVAR

M BVAR contains the definitions and values of all MIB variables. M BTAB contains
indicesinto the M BVAR for accessing MIB table (SEQUENCE OF) entries. Most of
these fields are used internally by the SNMP agent; however, some are useful to
know. OID isused to uniquely define each record in the M BVAR and M BTAB.

Also, for agiven MIB table variable, the OID is the key value, which links M BVAR
and M BTAB entries. The purpose of the M BVAR issimply to store all MIB data; that
is, scalar values and values within aMIB table. In the case of aMIB table, the

m bt ab. i x[i] valuesare used asindices to the appropriate records in the
MIBVAR. Anexampleof itsuseisprovided inthe‘M B. i ndex()’ section.

28

Customizing the Agent

Default Operation

When the SNMP agent receives a GetRequest PDU (protocol data unit), the entries
inthe M BVAR array are reviewed to find an entry that matches the requested OID.
Theptr fieldinthe matching entry isthen used to locate the memory location that
contains the value that should be returned. For scalar variables, thislocation is read
directly. For variablesin tables, an offset is added to the pointer that corresponds to
the index portion of the OID in the GetRequest PDU.

When the SNMP agent receives a SetRequest PDU, the corresponding entry is
located as above, and the memory location based on the pt r field is overwritten
with the value provided in the SetRequest PDU.

MIBVAR Record Options

Some of the variablesin M BVAR may not be well suited to the default operation of
the SNMP agent. To support these needs, the opt field of the M BVAR record
allowsfor flags that will indicate that special processing is required.

| MVED Thevariablevaueisstored directly inthel en field, rather than being
pointed to by thept r field. The variable should be an 8-bit value. The
valuefor ptr canbeO.

| MVED2 Thevariablevalueisstored directly inthet ype and| en fields, rather
than being pointed to by the pt r field. The variable should be a 16-bit
value. Thevaluefor ptr canbeO.

SCALAR Thevariableisin atable, but should be looked up without adding an
index to pt r. Thisallows avariableto be part of atable, but not
accessed in the same manner as other variables in the table. If the value
for avariable is known to be the same for every index in the table, then
this technique can be used to reduce the size of the memory image that
represents the contents of the table. This flag need not be specified for
normal scalar variables.

W The variable may be modified.
SX The variableisthefirst item of aMIB table.

29

Customizing the Agent

CAR A read notification function may be called before returning the value of
the variable.

CAW A write notification function may be called after writing anew value to
the variable.

CHO CE A 'CHO CE ASN.1 syntax element isrequired in the OID of this object.
Notethat it is only used to force the at Tabl e to behave correctly and, if
defined, code size will increase for al MIBs.

30

Customizing the Agent

MIB.set() and MIB.get() Functions

These functions are written as part of each MIB and provide the actions to perform for
read or write notification.

static sint16 set(sintl16 varix, sint16 tabi x);
void get(sintl6 varix, sintl16 tabix, uint8 **vvptr);

The first argument, var i x, is an integer which acts as an index into the MIB
identifying the variable to be accessed. If that MIB variableisaMIB table, the

t abi x parameter may be used as a O-based index into the table. If vari x isascalar
value or not atable entry, then no index isrequired and -1 is passed in for t abi x.
The**vvpt r ispassed to the get() function in case the MIB needs to replace the
value pointer with a new address for the agent to operate upon.

The value returned by set() should be O if the function executes normally. In the case
of an error situation, the value returned from these functions will be used as an error
code in the response that the SNM P agent sends to the SNM P request.

The get() and set() functions are called indirectly from the function

ussSNM PAgentCheck() in agent.c through the MIB structure in which the get()
function pointer resides. The declaration below shows how the MIB structureis
defined.

Example
#i ncl ude “snnpv3. h”

static void get(sintl6 varix, sintl6 tabix, uint8 **vvptr)
{

const M BVAR *nmvp = &mi bvar[vari x];

uint8 *bytevp = *vvptr

/*

** |f varix is 3, the variable is a 32-bit val ue

** that nmust be updated before being read by the agent.
** \WW set it here to a value that is determ ned by using
** a value in a table indexed by an array of index

** val ues.
*/
if (varix == 3) /* Fourth variable in MB */
{
*(uint32 *)*vvptr = Barray[Aarray[tabix].nindex].val ue3z;
}
/*

** |f varix is 12, the first index is not stored in the
** table. The second and all subsequent indices are in
** the table, however. W can sinply point the val ue
** pointer to a new | ocation.

*/

31

Customizing the Agent

if (varix == 12) /* Thirteenth variable in MB */

{
if (tabix == 0)
*vvptr = &val ue;
el se
*vvptr = &t abl e[tabix].val ue
}
}
static sintl6 set(sintl6 varix, sintl6 tabix)
{
M BVAR *nvp = &m bvar[vari x];
uint8 *bytevp = mvp->ptr;
if (varix == 3)
if (*(uint32 *)bytevp == 0x1234567)
{
*(uint32 *)bytevp = 0;
return badVal ue;
}
}
return O;
}
const MB mb_exanple =
{
m bvar,
m bvar si ze,
m bt ab,
m bt absi ze,
get,
set,
i ndex,
init
1

The globally-accessible function pointer m b_exanpl e. get isassigned the get()
function which islocal to the current MIB module. The mib_example.get() function
isonly called if CARisin the option field for the variable and the get() function
pointer isvalid (that is, not 0). Upon entry into the get() function, the variable

vari x isan index into the M BVAR array for the current variable to beread. The

t abi x isassigned —1 if no tableis being accessed. Otherwise, t abi x isazero-
based index into the table to which the variable belongs.

32

Customizing the Agent

MIB.index() Function

Determines size of tablesin aMIB.
sint16 index(sint16 varix, sint16 index);

If tables exist in aMIB, the SNMP agent needs a mechanism to determine the size of
the tables that have been added. The index() function indicates when the end of the
table has been reached and aso can be used to specify when atable entry should be
skipped. Good examples of MIB index() functions can be found in mib_if.index,
mib_tcp.index, mib_udp.index, etc.

The index() function is required to implement atable.

When the SNMP agent receives a get request or a get-next request that involves a

MIB table and the index() function is defined, the agent will call the index() function
while iterating through the table to determine if an entry should be included in the
search for the variable. The MIB index() function is defined similarly to the MIB
get() and set() functions.

Return Value:

1 Accept the record
0 Skip over the record
-1 End of table
Example

/* Index the IP MB s tables */
static sint16 mibindex_ip(sintl6 varix, sintl6 tabix)
{

uint8 *cp;

ui nt 16 usli;

sintl6 i1;

cp = (uint8 *)m bvar _i p[varix].oid.name + 5;

usl = *cp++ << 8;
usl += *cp;

33

Customizing the Agent

switch (usl)

{
case 0x0416: /[* IP net to nedia table */
i f (tabix >= NCONFI GS)
goto | ab7;
i f (netconf[tabix].ncstat == 0)
br eak;
for (il =0; il < Ed_SZ; il++)
i f (netconf[tabix].Eaddr.c[i1])
got o | ab5;
br eak;
case 0x0414: /* | P address table */
if (tabix >= confsiz)
goto | ab7;
if (netconf[tabix].flags & LOCALHOST)
got o | ab5;
br eak;
case 0x0415: /* 1P routing table */
i f (tabix >= NCONFI GS)
goto | ab7;
i f (netconf[tabix].ncstat == 0)
br eak;
if (!'(netconf[tabix].flags & LOCALHOST))
got o | ab5;
br eak;
defaul t: /* any other */
got o | ab5;
}
return O;
| ab5:
return 1,
l ab7:
return -1,

}

In this example, a section of the Object ID is used to identify the variable for which
the index function is being called. The value of i ndex could also be used for this
purpose, but using a section of the OID allows a subtree of the MIB to easily be
identified. At the beginning of the function, cp is set up to point to the interesting
section of the OID, and then the next two bytes of the OID are stored in us1.

Customizing the Agent

Thisisjust one example of how an index() routine could be coded. Processing of
accept, ski p, or end of t abl e isdetermined by checking values of USNET data
structures in the above case. Thei ndex may be used as an index into some of these
structures. The M BTAB values are ssmply used as flags to indicate which variableis
to be processed. The actual value of the variable requires accessing of the USNET
data structures. Refer to the USNET documentation and source code for
explanations of values such as NCONFI GS, and net conf [t abi x] .

Adding New MIBs

A particular application may require new MIBsin addition to those supplied as part
of the MIB-II. If thisisthe case, use the ASN.1 (Abstract Syntax Notation) syntax to
add the definitions of variablesto aMIB file. Refer to atext on SNMP or the
appropriate RFCs for definitions of thissyntax. Then use MIBTOC to translate the
ASN.1 definitionsinto C code understandable to the SNMP agent.

MIB Translation Overview

To use anew MIB with the SNMP/USNET agent, afile describing the MIB
variables must be compiled into C source code. The program MIBTOC, performs
thistrandation. It reads a description of the MIB variablesin ASN.1 format, and

produces two ANSI C-compatiblefiles. Inthefollowing diagram, “MIB” represents
the name of the MIB file.

35

Customizing the Agent

MIBTOC

Figure 2: MIB Translation

The application can compile and link the MIB with the agent so the agent can access
the MIB database.

Building the MIB Translator

The trandator is provided as source code, which ought to be compiled before use. It
islocated in the snmpsrc\\tools directory. To build it by hand, simply pass the
source file as an argument to a compiler/linker. For instance, if using the Borland
compiler, run:

bcc snnpsrc\tool s\mibtoc.c
Or, if building from a UNIX environment, run:
cc snnpsrc/tool s/ mbtoc.c

MIBTOC is ANSI-compatible and can be compiled by most commercially available
compilers. Sincethe MIBTOC application uses a significant amount of stack space,
the compiler or linker may need to be configured with an option to increase the stack
s;IJa?e. The compiler isincluded in executable format for DOS and Windows
platforms.

36

Customizing the Agent

Running the MIB Translator

MIBTOC takes one or two arguments. The first argument is the name of the MIB
file to be processed, and the optional second argument provides the base name for
the output file. The syntax is:

M BTOC mibfile [outfile]

If an output file name is not specified, the name for the output files will be derived
from the base file name of theinput file. For example, this command will generate
the output files toaster.c and toaster .h:

M BTOC toaster.mb

If the second parameter is provided, then the output file names are based on the
second parameter. Given this command line, the translator will generate the output
filestest.c and test.h:

M BTOC toaster.mb test

Watch the output of MIBTOC to be sure that no errors occurred in preparing the
output files. A normal run will look like:

C.\usnet\snmpsrc>m btoc rfc2571.txt

USNET MB to C Translator 1.10
Copyright (c¢) US Software 1994, 1999, 2000.
Root: ccitt
Root: iso
Root: joint-iso-ccitt

Type ‘No Access': org { iso 3}

Type ‘No Access’: dod { org 6 }

Type ‘No Access’: internet { dod 1}

Type ‘No Access’: mgnmt { internet 2}

Type ‘No Access’: experinental { internet 3}
Type ‘No Access’': private { internet 4 }
Type ‘No Access’: security { internet 5}
Type ‘No Access’: snmpV2 { internet 6 }
Type ‘No Access’: snnmpDomains { snmpV2 1 }
Type ‘No Access’: snnmpProxys { snmpV2 2 }
Type ‘No Access’: snnpMdules { snmpV2 3 }
Type ‘No Access': mb-2 { mgnm 1 }

Type ‘No Access’: transmission { mb-2 10 }

37

Customizing the Agent

Type ‘No Access’: enterprises { private 1}

Type ‘No Access’: snnpFramewor kM B { snnmpModul es 10 }

TC. SnnpEngi nel D (Cctet String)

TC. SnnpSecurityhMdel (Integer)

TC. SnnpMessageProcessi nghodel (I nteger)

TC. SnnpSecuritylLevel (Integer)

TC. SnnpAdminString (CctetString)

Type ‘No Access’: snnpFramewor kAdm n { snmpFrameworkM B 1 }
Type ‘ No Access' : snpFranevor kKMIBD) ect s { snnpFraneverkMIB 2 }

Type ‘ No Access' : snphr anevor kMIBGnf or nance { snnphranever kMIB 3 }

Type ‘No Access’: snmpEngi ne { snnmpFramewor kM BCbj ects 1 }
Type ‘CctetString : snnpEnginel D { snnmpEngine 1 }

Type ‘Integer’: snnpEngi neBoots { snmpEngine 2 }

Type ‘Integer’: snnpEngi neTime { snnpEngine 3 }

Type ‘Integer’: snnpEngi neMaxMessageSi ze { snnpEngine 4 }
Type ‘No Access’: snmpAut hProtocols { snnpFraneworkAdmin 1 }
Type ‘No Access’: snmpPrivProtocols { snnpFraneworkAdmn 2 }
Type ‘No Access’: snnpFranmewor kM BConpl i ances {

snimpFr amewor kM BConf or mance 1 }

Type ‘No Access’: snnpFramewor kM BG oups { snnpFranmewor kM BConf or mance 2
}

Type ‘No Access’: snnpEngi neGoup { snnpFramewor kM BG oups 1 }
2554 |ines processed K

If thereis aproblem in processing thefile, the last line will not read “. . .
processed OK” but rather will describe an error in processing the file. For
example, if the definition for MAXOID in mibtoc.c istoo small, then this message
will be displayed:

L388 nyTabl el ndex MAXO D too snal |

Thisindicates that in processing line 388 of the MIB file, it was discovered

that there was not enough room to build the needed Object ID array. To

correct this, the value for MAXOI D should be increased in mibtoc.c, and MIBTOC
should be rebuilt. Also MAXOID should be increased to the

same value in snmpconf.h, because it will be used again when building the SNMP

agent.

38

Customizing the Agent

MIB Files

MIBTOC generates two files as output. Using the example of an ASN.1 input file
named toaster.mib, the output files would be toaster.c and toaster.h. The SNMP
agent uses the output files as follows:

toaster.h Defines external variable and symbol definitions to which the
application and MIB module may wish to refer as“ext ern”.

toaster.c Allocates MIB variable and table values statically and provides the
global ‘M B i b_t oast er’ structure declaration to provide global
access to the MIB from the application.

Read/Write Notification

Each variable in aMIB may have read or write notification associated with it. This
means that prior to a get operation or after a set operation, the agent will signal the
MIB that its data is being operated upon.

For get-, getNext- or getBulk-requests, the option field in the MIB variableis
checked for read notification (CAR— Call Application Read). If thisis set for the
variable, the get() function for the MIB will be called with the index of the variable
and a pointer to a pointer to the value of the variable. Thisis so that the MIB can
update the value of the variable or dynamically redirect it to a new memory location.

For set-requests, the option field in the MIB variable is checked for write notification
(CAW- Call Application Write). If thisis set for the variable, the MIB set() function
will be called with the index of the variable. Specia processing can be performed
due to important changes in the value of the MIB variable.

To indicate to the agent that read or write notification is required on a given variable,
add the CAR and/or CAWoptions to the opt field of the variable record within the
MIB source file using the bitwise OR operator (i.e. ‘[').

39

Customizing the Agent

Example

{8,{0x2b,6,1,2,1,1,6,0}, W| CAR| CAW String,
si zeof (sysl ocat), syslocat}, /* sysLocation */

This example shows aM BVAR record (see the next section) which adds read and
write notification to the MIB variable sysLocat i on. Before modification, the
option field was simply W indicating a variable that allows write access. The option
field may be zero for no options or a combination of others. The possibilities are
defined in snmpv3.h and are shown in Table 3 below.

#define INMED OxOL1 /* Inmedi ate val ue in myp-> en */
#Hdefine INMER2 Ox02 /* Inmed ate val ue in mp->type +len */
#Hoefine BAEEL Ox03 /* Base O in data space, base 1in MB*/
#Hoefine SOLAR OxO4 /* Table nat indexed (no offset) */

#Hoefi ne W Ox80 /* Wite d | oned */

#define X Ox40 /* Sequertid tadeindex inferred */
#Hdefi ne N\ORIER Ox20 /* Ntwork byte ordering for basic type */
Hoefine R Ox10/* Gl application after read */
Hoefine GW Ox08 /* G| application before wite */

40

Customizing the Agent

Table 3: MIBVAR Record Options Field

Options | Description
Field

| MVED | Thevariablevalueisstored directly inthel en field (see
below), rather than using the pt r field to store the address
of the value.

| MVED2 | Similar to | MVED except the variable value is stored
directly in thetype and | en fields (see below).

BASE1 The variable index value is represented by SNMP starting
at abasevalue of ‘1’ even though the agent must deal
with the actual datawith abase‘0'.

SCALAR | A scalar value. In other words, the valueis not in atable
even though its ASN.1 definition defines it as part of a

table.

W A variable that allows write access, i.e., the value may be
modified.

SX Indicates the first item of aMIB table, i.e., a SEQUENCE
CF.

CAR Use Read notification.

CAW Use Write notification.

41

Customizing the Agent

Summary of Adding a User-Defined MIB

1. Create the standard “out of the box” version of the SNMP agent, and confirm that
the standard MIB-I1 variables are accessible from an SNM P manager.

2. Buildthe MIBTOC compiler, if it is not already built for the devel opment
platform.

3. Create the enterprise-specific MIB. This example presents the wt2000 remotely
accessible weather station MIB, which uses the MIB called weather.mib. The
MIB will be associated with a product of the fictional company “WeatherTek
International” that makes devices that record weather conditions. These
conditions can be retrieved from their instruments through an SNM P manager.

The first information to be included in the user-defined MIB will establish the path
in the MIB hierarchy to the enterprise-specific MIB. If the enterprise code for
WeatherTek International were 123, and the variables were those collected by the
wt2000 model, then the following information might appear first in weather.mib:

— M B DESCRI PTI ON
WEATHER-M B DEFINI TIONS ::= BEG N

weat hert ek OBJECT IDENTIFIER ::= { enterprises 123 }
wt 2000 OBJECT IDENTIFIER ::= { weathertek 3 }

In this example, the weather station contains components that monitor conditions at a
number of atitudes. Some of the variablesin weather.mib concern the weather
station as awhole, and some concern the conditions at each altitude. Let us say that
astring is set up to hold the unit location, and the latitude and longitude of the
installation are also stored.

42

Customizing the Agent

Thisinformation might appear in weather.mib as follows:

— The wt 2000 Group
| ocati on OBJECT-TYPE
SYNTAX Di splayString
ACCESS read-write
STATUS nmandat ory
DESCRI PTI ON “The geographi cal nanme for the device |ocation.”
o= { w2000 1}
latitude OBJECT-TYPE
SYNTAX | NTEGER
ACCESS read-wite
STATUS nmandat ory
DESCRI PTI ON “The | atitude at which the device is installed.”
o= { w2000 2}
| ongi t ude OBJECT- TYPE
SYNTAX | NTEGER
ACCESS read-wite
STATUS nmandat ory
DESCRI PTI ON “The | ongi tude at which the device is installed.”
c:={ w2000 3}

43

Customizing the Agent

Now atable can be introduced to hold the information that is collected for a number
of atitudes. For thistable, the atitude will act as an index, and temperature,
humidity, wind speed and wind direction will be monitored. Hereishow it might
appear in weather.mib:

weat her Tabl e OBJECT- TYPE

SYNTAX SEQUENCE OF weat herEntry

ACCESS not - accessi bl e

STATUS nmandat ory

DESCRI PTION “This table contains a tally of weather conditions”

o= { w2000 4 }

weat her Entry OBJECT- TYPE

SYNTAX Weat herEntry

ACCESS not - accessi bl e

STATUS nmandat ory

DESCRI PTI ON “Each row represents conditions at a given altitude.”

| NDEX { altitude }

;.= { weatherTable 1 }

Weat herEntry ::= SEQUENCE {

al titude | NTEGER,

tenperature | NTEGER,

hum dity | NTEGER,

Wi ndSpeed | NTEGER,

wi ndDi rection | NTEGER { NORTH (1),
NORTHEAST (2),
EAST (3),
SQUTHEAST (4),
SQUTH (5),
SQUTHWEST (6),
VEST (7)),

NORTHWEST (8)}}
al titude OBJECT- TYPE

SYNTAX | NTEGER
ACCESS read-only
STATUS nmandat ory

DESCRI PTION “Altitude in neters, used as an index.”
::={ weatherEntry 1 }

Customizing the Agent

The definitionsfor t enper at ur e, huni di t y, wi ndSpeed, andwi ndDi r ecti on
would appear similar to the definition for al ti t ude.

Process the MIB with MIBTOC to create source code. Make sure that the compiler
reports no errors. Using the mibtoc.exe file in the snmpsr c\tools\windows
directory:

cd snnpsrc
t ool s\ wi ndows\ m btoc weather.mb

Edit snmpsrc\makefile to specify the files generated by MIBTOC. Sointhis
example, add theline ‘FI LES += weat her’ inthe midst of the other.

cd snnpsrc

edit makefile
FILES += m b_usn
FI LES += weat her # <<< New >>>
FI LES += snnp

make

If there are any tables in the user-defined MIB, an index() function will have to be
created in snmpsr c\weather.c and added to the MIB mib_weather declaration.

cd snnpsrc
edit weather.c
const M B m b_weather =

{
m bvar ,
m bvarsi ze,
m bt ab,
m bt absi ze,
0, /* get */
0, [* set */
i ndex, [* <<< New >>> */
0 [* init */
}

45

Customizing the Agent

Declare the program variables that are introduced in the user defined MIB. Inthis
example, external declarations for the variables will be written into weather.h, but
the variables will not be declared in any module. The names of the variables are
based on the names appearing in the MIB definition, and can be found in weather.h,
which is excerpted here:

extern char *location;

extern int l|atitude;

extern int |ongitude;

extern struct weat her Tabl e weat her Tabl e[];

These variables must be declared somewhere in the application, and for this example
the declarations are made in amodified version of weather .c:

#define WIABSZ 3 /* nunber of entries in weather table */
char *l ocati on;

int |atitude;

int |ongitude;

struct weat her Tabl e weat her Tabl e[WABSZ] ;

Note that the size of the table is not apparent from the information in the MIB
definition and may be variable. In this example, a constant has been defined to
specify the size. WIABSZ represents the largest possible table size. Thisinformation
should be used by the index() function.

Initialize the variables in the user-defined MIB. Any default values or fixed values
can be set up before the SNMP agent is started. Also, any index fields in tables must
be initialized before the agent is started.

Here is an example from the modified weather .c:

const char defaultlocation[] = “Portland, O egon”;
#defi ne DEFAULTLATI TUDE 46
#defi ne DEFAULTLONG TUDE 123

static void init(uintl6 type)
{
nenset (weat her Tabl e, 0, sizeof (weatherTable));
| ocation = defaul tlocation;
| atitude = DEFAULTLATI TUDE;
| ongi tude = DEFAULTLONG TUDE;

for (il =0; il < WABSZ; il++) {
weat her Tabl e[i1].altitude =il * 1000 + 1000;
weat her Tabl e[i 1] . wi ndDi rection = 1;

In this example, default valuesfor | ocat i on, | ati t ude, | ongi t ude and the
wi ndDi recti on fidddinweat her Tabl e areinitialized. Theal ti t ude index
field in the tableisinitialized with the values 1000, 2000 and 3000.

If the value of a variable should be updated before being read, then the get() function
should be implemented.

46

Customizing the Agent

Likewise, if special action should be taken once a variable is written, then the set()
function should be implemented, and if the number of rowsin atable is variable then

the index() function should be implemented.

Theweat her MIB structure will have to be updated to reflect any required get, set,
index or init functions:

const MB m b_weat her =

{

m bvar,

m bvar si ze,

m bt ab,

m bt absi ze,

get, [* <<< New >>> */
set, [* <<< New >>> */
i ndex, /* <<< New >>> */
init/* <<< New >>> */

47

Customizing the Agent

Configuring the Transport Mapping

A Transport Mapping is a defined method of data transfer between SNMP hosts.
RFC 1906 defines the use of SNMP over UDP/IP on Internet-based networks as well
as many others. From this, amodule was defined called TRANSPORT _MAPPI NG.
Hereis the structure definition that the SNMP/USNET agent uses:

t ypedef struct
{
/* Initialize underlying transport framework */
sint1l6 (*init)(uint8 *ip, uint32 *maxsize, uint8 *nane);

/* Open passively to receive SNVWP nessages */
sint16 (*passive_open)(void);
sint16 (*passive read)(uint8 *buff, uintl6 |en);
sint1l6 (*passive wite)(const uint8 *buff, uintl6 |en);
sint16 (*passive_close)(void);

/* Open actively to send SNMP nessages */

sint16 (*active_open)(const uint8 *rhost);

sint1l6 (*active wite)(const uint8 *buff, uintl6 |len);
sint1l6 (*active_read)(uint8 *buff, uintl6 len);

sint1l6 (*active_close)(void);

/* The host’'s systemtine */
uint32 (*tinme)(void);
} TRANSPORT_MAPPI NG

The application is expected to perform basic initialization of the network or other
media. Once that is completed, the agent may perform the following operations:

init() Initialize the transport specific features required by the agent.
Included are the IP address, maximum message size, and host
name. If any of these is defined and does not conflict with the
transport layer, they can remain the same.

passive open() Tell thetransport that the agent is ready to receive data.

48

Customizing the Agent

passive read() Get available data from the transport.
passive write() Transmit potential responses to passive_read() operations.
passive close() Tell thetransport that the agent will no longer receive data.

active open() Tell the transport to create a data channel to a particular host for
sending traps. Notethat ther host field is one of the trap hosts
defined by the application.

active write() Transmit a message to the host to which an active_open() was
performed.

active read() Receive data on the trap channel. Thiswill not occur with
SNMPv1 and v2c. However, SNMPv3 has the provision that an
agent may have to authenticate itself to a management station.
Version 3 trap packets are not supported at this time.

active closg() Close the data channel for writing traps.
time() Get the system time in tenths of a second.

Each of the above operations returns a signed 16-bit value, except time() which
returns the current time as a 32-bit value. For passive_open(), passive closg(),
active_open(), and active_close() the return value should be >= 0 unless an error
occurs. For passive read(), passive_write(), active read(), and active_write()
functions the return value should represent the number of bytes transmitted or
received. Note that the agent cannot internally handle an error value when
performing passive_open(). Essentialy, the agent is useless without its passive
functions,

When the ussSNMPAgentTrap() function is called by the application or by the
agent, the agent will actually iterate through each active xxx() function for each trap
host.

For example implementations, see the following:

Snmpsrc\tm_bsd.c USNET BSD socket interface (USNET,
UNIX, and Windows)

Snmpsrc\tm_dpi.c USNET DPI interface

49

Index

Index
data structures
A MIBTAB ... 28
e T 35 MIBVAR. ..osovrssvrnssinnsienssien 28
agent design of SNMP/USNETccccceeueee. 2
(o U1 (0]0011741 oo [27
AEFMON oo 1 E
design of ...c.oveeeceeeeeeee e 2 end of table....ccuveeeeiee e 35
(01010 11 oo [18, 20
agent MIB F
CONFIQUIING ..o 27 .
AGENT_CONTEXT siructure el ofS .
........ 17 MIBL.SEL() .revvereeerereeeeeersesenssessesnnns 31
ANENHCBEION..ocsvvvsesnssssssnssson 911 SNMPAGENE()....-vveveroeeeeereeen 31
B ussSNMPAgentCheck......... 22
bulk request.........ccoevvevereceee e, 8 ussSNMPA gentl L SR 21
ussSNMPAgentShut 23
= ussSNMPAgentTask........... 20
CAget() function........ccceeceevvcceevieennene 31 ussSNM PA gentTrap ____________ 24
example codeccovvererienennnnns 31
CAindex() function H
example codeccovevevenieneennnns 33
CAR MIBVAR Option '''''''''''''''''' 30, 40 NOSES ..o 17
CAW MIBVAR option................. 30, 40 |
CHOICE MIBVAR option................. 30
code requirements.........cccceeeveevinecireenne 3 Internet standard MIBs.............cc........ 27
COUR SIZE...c.uiieeeeee e 3 INErOAUCLION......eeeeeeieieee e 1
COMPIES ..ot 2
configuration, build-time...................... 5 K
CONSLANLS. ..o 5,15 KEY ottt 7
ENABLEAUTHENTRAPSVAL 6 maximum lengthcc.cceeeneneneee. 7
ENTERPRISE.........ccooeieiiieeciene 5
MAXKEY ..o 7 L
MAXOID ..o 6 .
MAXVAR ..oocceereeesseeessreeseseese 8 LUK s 2
SNMP_IP ..o, 5 M
summary list.....cococvecevieeieecesees 17
manager, definitionccccceevveeenene 1
D MAXKEY () constant..........cccceevvreennene 7
data MAXKLEN() constant..........ccceeeveveeeennns 7
T TLE [r s RO 3 MAXOID() CONSAN ..ooovsservssrsssnssass 6
MAXVAR() constant..........cccceeeerevennennns 8

transfer to and from agent.................. 2

Index

MIB
application-specific variables.......... 35
CUSEOM ... 3
data.......ccooeveriree 28
definitioN.......ccooveieeeee 1
standard..........coceverenineneneee 27
supplied. ... 27
tranglation........cocovevevenenenenee 35
user-defined, example..................... 42
MIB fil€S...coiiiiiieeeee e, 39
MIB Structure..........cccoeeeveeiieeciieene 27
MIB table......ccoererieeeecee, 28
ENA Of . 35
MIB trand ator
bulldingcccooveeiin 36
OVEIVIBW ..o 35
(01010 1 oo [37
MIB.index() function..........c.ccceveuennee. 33
MIB.set() function..........ccccceeceerereenne. 31
MIBTAB StrUCIUE.......eveeeveee e 28
MIBTOC
and adding variables.............cc........ 35
and MIB trandationccccceenuees 35
ATGUMENTES......coiiiiieiieee e 37
building MIB trandator................... 36
output fileScccevvevreeereeee 38, 39
running MIB trandator 37
MIBVAR StTUCIUT€......eveeeveee e 28
read/write notification...........ccceeeneee. 40
record OptionS.........cccveveeveereeseennnn 29
MUIItaSKING.......ceverieieeeeee e 2
N
networking stackccooeeeeveeienennnne 2
Ninit() function.........c.cceeeeveeieenecnenne. 20
o
object identifier (OID)cccvenee. 6, 28
operating Systemcccceveevvneenienenee 2
(0] 0]10] 0TSSR 40
P
password localization algorithm.......... 11
PESSWOIAS.......coeerieeiieie e 1
processor-independent agent................. 2
PrOCESSONS. ...coouvieeiieeeiee e 3

52

R
RAM L. 3
read Notificationcccevvveereniinnenns 31
recommended reading............cccceveeenene 1
RUNTASK() USNET macro.............. 20
S
S o U] 111 R 9
SEQUENCE OFoveveeeeeeeveeeeeeeneenen, 28
SKIP et 35
snmp.hfile..eeeee e, 28, 40
snmpconf.hfile ..., 15
standard MIBccccocvvivininincnenens 27
structures
AGENT_CONTEXT......... 17
MIB ..o 27
SYSCONTACT variable.........cccceeneee. 5
SYSDESCR variable.......cccccvcvreenene 5
SYSLOCATION variable..........cc...... 5
SYSLEM GroUP ...ocoeieieeeireee e 5
T
transport layerccoceveeceieenenen 2
TrAPS. e 17
SENAING ..o 42
sending data..........ccceeveeeeveeneenennnen. 26
EYPES .o 24, 26
U
users, predefined.........cccooevevienenennene 9
usmauto.c file......ccovvvininirennne, 15, 16
USNET ... 35
ussSNM PA gentCheck()
function........cococooevvvceerere 22
ussSNM PA gentlnit() function
... 21
ussSNM PA gentShut()
function..........c..cooeeevvveveerrrnnnne, 23
ussSNM PA gentTask()
function..........c..ccooeervvvcveerernnnne, 20

ussSNM PAgentTrap()
fUNCLION.......ooeeceee, 24
\Y
variable bindings........cccocevvneneeenne. 26
variables
Maximum NUMDEYcccvvvveeeeeeeereane 8

53

WAL <., 40
Versionl, Il

designed for.......ccooeeveneenenieneeiee 1
W
writablevariable........cccooeeeeeeeeeeeeeeen, 40
write notification......ceeveveeeeeeeeeeenn. 31

	Introduction
	Recommended Reading
	SNMP Overview
	Design of SNMP/USNET

	Building an Application
	Build-time Configuration
	Constants
	ENTERPRISE Constant
	SNMP_IP Constant
	System Variable Constants
	ENABLEAUTHENTRAPSVAL Constant
	MAXOID Constant
	MAXOID Example

	MAXKEY Constant
	MAXKLEN Constant
	MAXVAR Constant

	SNMP_MAXSIZE Constant

	User-based Security Model Configuration
	View-based Access Control Configuration

	Agent Use of Build-time Constants
	Application Interface
	AGENT_CONTEXT Structure
	ussSNMPAgentTask
	ussSNMPAgentInit
	ussSNMPAgentCheck
	ussSNMPAgentShut
	ussSNMPAgentTrap

	Customizing the Agent
	Configuring the Agent MIB
	MIB Structure
	MIBVAR and MIBTAB Structures
	Default Operation
	MIBVAR Record Options
	MIB.set() and MIB.get() Functions
	MIB.index() Function

	Adding New MIBs
	MIB Translation Overview
	Building the MIB Translator
	Running the MIB Translator
	MIB Files
	Read/Write Notification
	Example

	Summary of Adding a User-Defined MIB

	Configuring the Transport Mapping

	Index

