

SNMP
User’s Guide

Version 2.58
July 2004

 ii

Copyright and Trademark Information

Copyright 1996-2004 Lantronix, Inc. All rights reserved. No part of this publication
may be reproduced, translated into another language, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of Lantronix, Inc.

Lantronix®, U S Software®, USNET®, USFiles®, USLink®, SuperTask!®,
MultiTask!™, NetPeer™, TronTask!®, Soft-Scope®, and GOFAST® are
trademarks of Lantronix, Inc. Other brands and names are marked with an asterisk
(*) and are the property of their respective owners.

Lantronix, Inc. makes no warranty of any kind with regard to this material, including
but not limited to the implied warranties of merchantability and fitness for a
particular purpose. Lantronix, Inc. assumes no responsibility for any errors that may
appear in this document. Lantronix, Inc. makes no commitment to update or to keep
current the information contained in this document.

Lantronix, Inc.
15353 Barranca Parkway
Irvine, CA 92618
(949)453-3990
Fax (949) 453-3995

For Support Contact:
Micro Digital Associates, Inc.
2900 Bristol Street, #G204
Costa Mesa, CA 92626
(714) 437-7333
support@smxinfo.com
www.smxinfo.com

 iii

Documentation Conventions

Computer output and code examples: Courier, usually in a separate paragraph.

Function names and command names: Bold italic, usually followed by
parentheses, as in main() function.

Variables: Courier 11 italic (mt_busy).
File names: Times bold (the file usrclk.asm), in lower case.

Key names: Initial capital, in angle brackets, as in press <Enter>.

Menu names and selections, dialog box names, screen titles, window titles:
Times bold, as in File menu.

Notes: Indicate important information.

Cautions: Indicate potential damage to hardware or data.

Documentation History

Revision Number Date

 2.1 October l996
 2.5 August 1997
 2.53 May 1998
 2.57 July 2000
 2.58 October 2001

 v

Contents

INTRODUCTION... 1
Recommended Reading .. 1
SNMP Overview... 1
Design of SNMP/USNET... 2

BUILDING AN APPLICATION... 5
Build-time Configuration.. 5

Constants... 5
User-based Security Model Configuration ... 9
View-based Access Control Configuration .. 11

Agent Use of Build-time Constants .. 15
Application Interface .. 17

AGENT_CONTEXT Structure .. 17
ussSNMPAgentTask.. 20
ussSNMPAgentInit... 21
ussSNMPAgentCheck... 22
ussSNMPAgentShut .. 23
ussSNMPAgentTrap .. 24

CUSTOMIZING THE AGENT .. 27
Configuring the Agent MIB.. 27

MIB Structure ... 27
MIBVAR and MIBTAB Structures .. 28
Default Operation.. 29
MIBVAR Record Options .. 29
MIB.set() and MIB.get() Functions .. 31
MIB.index() Function ... 33

Adding New MIBs.. 35
MIB Translation Overview... 35
Building the MIB Translator... 36
Running the MIB Translator... 37
MIB Files .. 39
Read/Write Notification.. 39
Summary of Adding a User-Defined MIB.. 42

Configuring the Transport Mapping ... 48

INDEX.. 51

Introduction

 1

Introduction
This manual describes the use of the Simple Network Management Protocol for
USNET. SNMP/USNET provides support for integrating an SNMP agent into a
real-time embedded system application. It is designed for use with SNMP Version 3
managers; however, it will also respond to Version 1 and 2 requests.

The reader ought to have a conceptual knowledge of SNMP in order to understand
the terminology in this manual. There are several books available that explain more
completely the terminology and function of SNMP systems.

Recommended Reading

USNET User’s Manual

The Simple Book
An Introduction to Internet Management
Second Edition
Marshall T. Rose
ISBN 0-13-177254-6

SNMP, SNMPv2, SNMPv3, and RMON 1 and 2
Practical Network Management
William Stallings
ISBN 0-201-48534-6

SNMP Overview

The Simple Network Management Protocol, SNMP, is used widely by industry to
manage networks. On a network, a client in one host (a SNMP manager)
communicates with a server in another host (an SNMP agent). The manager requests
the agent to read or write information (objects) in a Management Information Base
(MIB).

Introduction

 2

Figure 1: SNMP Agent on a network

Design of SNMP/USNET

The SNMP/USNET design includes these features:

• Independent of processor, operating system, and networking stack

• ROMable

• Compact

• User-configurable

The agent is processor-independent. Almost any ANSI C compiler will do.

The agent is not tied to a particular operating system. It can be executed as a task in
nearly any commercial or custom multitasking operating system, as a polling routine
in a single-threaded application, or as the entire application.

The agent is not tied to a particular transport layer. Any networking stack or other
data communication layer can be used to transfer data to and from the agent. Sample
support for Linux*, Windows, and USNET, each using UDP/IP, is provided.

SNMP
Manager Application

Agent

Transport
layer

Standard
MIB-II

Enterprise
MIB

Network

Introduction

 3

The code is ROMable in that all initialized data is type const, and there are no
attempts to change code or constants at runtime.

The agent requires less than 30K code bytes and 12K RAM bytes on a typical
compiler without optimization. If security is removed, the agent requires less than
20K code bytes and 4K RAM bytes. Actual code requirements also vary somewhat
from processor to processor and compiler to compiler.

SNMP/USNET supports the same application interface and functionality across all
processors. In other words, standard C code developed for one processor can be
recompiled for another processor with minimal effort.

Custom MIBs can be created using the MIB compiler supplied with the
SNMP/USNET agent. The application can add these new MIBs or remove old or
unused MIBs with relative ease.

Building an Application

 5

Building an Application

Build-time Configuration

The build-time configuration of the agent is performed in the snmpcfg and vacm.c
files in the snmpsrc directory. In the file snmpcfg there is a set of definitions used
to configure the agent. These symbolic constants may require modification before
compiling and linking the product. The View-based Access Control Model
definitions are declared in vacm.c.

Constants

ENTERPRISE Constant
The ENTERPRISE value refers to the ENTERPRISE ID assigned by ICANN
(formerly IANA). It is used to partly form the snmpEngineID for the agent.

ENTERPRISE = 991

SNMP_IP Constant
The SNMP_IP value is the IP address of the host. It is most convenient to determine
this at run time if the host address may change or is unknown. However, the
snmpEngineID is partly determined from the IP address of the agent, and the User-
based Security Model (USM) requires that an intensive algorithm using the
snmpEngineID be performed on each password used. There is more information
about this in the section on configuring the USM.

SNMP_IP = “198.107.35.105”

System Variable Constants
The MIB system group used by the agent provides a textual description of the agent
and is required by SNMP. These strings can be modified, adding appropriate values
for the particular agent application. These variables are shown in Table 1.

Building an Application

 6

Table 1: System Variables

Variable Description
SYSCONTACT The value is stored in system.sysContact.

Replace this value with the company name and
phone number.

SYSLOCATION The value is stored in system.sysLocation.
Replace this with the company name and address.

SYSDESCR The value is stored in system.sysDescr.
Replace this string with a description for the agent

Note that these values should not be greater than 64 bytes each without changing the
size of the arrays that hold them. See sysContact, sysLocation, and sysDescr
in snmpsrc\v3\agent.c.

SYSCONTACT = “USSW (503) 844-6614, support@ussw.com”

SYSLOCATION = “USSW Hillsboro, OR USA”

SYSDESCR = “Embedded controller running USNET”

ENABLEAUTHENTRAPSVAL Constant
The ENABLEAUTHENTRAPSVAL specifies the snmpEnableAuthentTrapsVal
default value. Use 1 for enabled and 2 for disabled.

ENABLEAUTHENTRAPSVAL = 2

MAXOID Constant
MAXOID defines the maximum length of an object identifier in the MIB. The object
identifier (OID) uniquely defines MIB variables. Be sure this is large enough to
accommodate all objects within any application MIB.

Building an Application

 7

MAXOID Example
#define MAXOID 12 /* maximum length of object ID */
static const struct
 {unsigned char nlen, name[MAXOID], key[16];}
 party[]={
 {11, {0x2b,6,1,6,3,3,1,3,10,11,12}, {0} },
 {11, {0x2b,6,1,6,3,3,1,3,10,11,13}, {0} },
 {11, {0x2b,6,1,6,3,3,1,3,10,11,14},
 {0x74,0x68,0x69,0x73,0x74,0x68,0x69,
 0x73,0x74,0x68,0x69,0x73,0x74,0x68,0x69,0x33} },
};

The name field in the above table stores SNMP object IDs, and MAXOID specifies the
maximum size for this value. Note that the OIDs start with the value 0x2b, which is
the BER encoding for .1.3.

MAXOID = 15

MAXKEY Constant
MAXKEY defines the maximum number of keys allowed. Keys form the index used to
identify a MIB table entry. For example, the tcpConnTable has four keys:
tcpConnLocalAddress, tcpConnLocalPort, tcpConnRemAddress, and
tcpConnRemPort. No other table in the MIB-II has more than four, so MAXKEY can
be set to 4.

MAXKEY = 4

MAXKLEN Constant
MAXKLEN defines the maximum length in bytes for an encoded index. An index is
the encoding of the keys used to define a table entry. These keys may be one or
more of nearly any fixed length data type such as IpAddress or INTEGER. For
standard MIB-II objects, the largest possible index is potentially generated by the
tcpConnTable. Its keys include two IpAddresses each up to 8 bytes encoded
and two 16-bit unsigned integers each up to 3 bytes encoded. The result is 22 bytes.

MAXKLEN = 22

Building an Application

 8

MAXVAR Constant
MAXVAR specifies the maximum number of variables allowed in a request. A request
is a message sent by the manager to the agent for reading or setting values of one or
more variables. MAXVAR sets the maximum number of variables that may be
accessed in one request. Note that the number of total response variables for a
response to a bulk request is limited by the packet size, not this constant.

MAXVAR = 16

SNMP_MAXSIZE Constant
SNMP_MAXSIZE specifies the maximum transport size in bytes. Note that this value
represents the size of each of four SNMP message buffers used for the following
purposes: Receiving requests, sending replies, sending traps, and performing
security operations. RFC 2571 requires this value be at least 484 bytes.

SNMP_MAXSIZE = 1000

Building an Application

 9

User-based Security Model Configuration

The current agent supports authPriv (i.e. authentication with privacy),
authNoPriv (i.e. authentication without privacy), noAuthNoPriv (i.e. no
authentication and no privacy) for security levels.

SNMPv3 defines a method of security known as the User-based Security Model
(USM). The definition in RFC 2574 encompasses both authentication and privacy.
Authentication means the verification of host identity, usually through a user name
and password. Privacy means the encryption of SNMP messages such that
unauthorized hosts cannot interpret the data. The current agent supports
authNoPriv (i.e. authentication without privacy) and noAuthNoPriv (i.e. no
authentication and no privacy) for security levels. Future versions may add new
authentication and privacy protocols.

By default, the agent comes with two users defined. The first uses the
noAuthNoPriv security level. The second uses the authNoPriv security level.
These are configured in snmpsrc\v3\snmpcfg with the following definition:

The entries below define system users. They use the
following format:

“usmUserSecurityName”
usmUserAuthProtocol “auth-pass-phrase” \
usmUserPrivProtocol “priv-pass-phrase”

The possible choices for usmUserAuthProtocol are:
usmNoAuthProtocol No authentication
usmHMACMD5AuthProtocol HMAC MD5 authentication
usmHMACSHAAuthProtocol HMAC SHA authentication

The possible choices for usmUserPrivProtocol are:
usmNoPrivProtocol No privacy
usmDESPrivProtocol DES CBC encryption

Building an Application

 10

U1 = “initial”
 usmNoAuthProtocol “” \
 usmNoPrivProtocol “”
U2 = “admin”
 usmHMACMD5AuthProtocol “secretpassword” \
 usmNoPrivProtocol “mylittlesecret”

U3 = "admin-sha" \
 usmHMACSHAAuthProtocol "mylittlesecret" \
 usmDESPrivProtocol "secretpassword"
USM_ENTRIES = U1 U2 U3

The ‘U1’ entry defines an unauthenticated user with the name “initial” and no
password. The ‘U2’ entry defines an authenticated user with the name “admin-
md5” and the password “secretpassword” using
HMAC-MD5 authentication. The 'U3' entry defines an authenticated user with the
name "admin-sha" and the password "mylittlesecret" using HMAC-SHA
authentication. Note that either entry U2 or U3 may also use DES CBC encryption
for privacy with the respective passphrases "mylittlesecret" and
"secretpassphrase".

It would not be secure to transmit passwords over the network, so the authors of
SNMPv3 came up with a scheme to hide passwords. This method is called password
localization and is described in RFC 2574 in section A.2. It takes the password and
the snmpEngineID as input and outputs a digest-specific key. A SNMP manager
uses the key with each SNMP request message to form an authentication digest using
HMAC-MD5 or HMAC-SHA, and transmits the message plus the new digest as an
authenticated SNMP message. The agent checks each digest value with the digest it
creates in the same fashion on each message. If the two match, the management
station and agent must have used the same localized password for the request to be
further processed. Otherwise, the request causes the agent to transmit a
usmStatsWrongDigests report to the manager.

Building an Application

 11

Application Note: The password localization algorithm is intensive enough that a
typical embedded processor of today probably cannot handle the
process in a timely manner at run time. Therefore, our SNMP
agent can optionally have its user passwords localized at build
time by the development machine. The problem with this is that
the snmpEngineID is required to be unique for a given
communications context. The SNMP/USNET agent assumes
the presence of an IP-oriented network and uses IP addresses as
the host identifier in the snmpEngineID. IP addresses are often
dynamically configured. Therefore, the agent may have
difficulty being both unique and timely while supporting USM
authentication.

The snmpEngineID used by the agent concatenates the ENTERPRISE value and the
transport layer IP address. The ENTERPRISE value must always be configured in
snmpcfg, but the IP address can be configured at run time or in snmpcfg.

View-based Access Control Configuration

SNMPv3 defines a method of access control known as the View-based Access
Control Model (VACM). It is defined in RFC 2575 as a means of restricting access
to particular subsets of variables based on the identity of the manager and
securityLevel used in the request.

A view is a group of MIB variables on the agent. The agent defines a view for each
user based on the user identity and securityLevel. A contextName and a
securityName define the user identity and the securityLevel is listed directly
in each request. Note that if no security is used (i.e. securityLevel ==
noAuthNoPriv), the securityName can be undefined. Also, in order to provide
compatibility with version 1 and 2c management stations, the contextName in each
view entry may refer to either a contextName or a community name. The
securityLevel would then be assumed to be noAuthNoPriv.

Building an Application

 12

The general practice is that informational variables be accessible to all users with all
security levels. Write access and read access to sensitive information are limited to
selective users implementing authentication and perhaps privacy. Generally, if a
user uses greater security than is required by the access entry including a particular
variable, access is allowed. The VACM module will search through each entry until
it finds a valid entry for the variable. This way multiple entries can be defined for a
single securityName given different combinations of contextNames and
securityLevels.

The configuration of the View-based Access Control Model (VACM) cannot be
performed in snmpcfg due to the complexity of the procedure. Instead, an array of
ACCESS structures is used to define all entries in the VACM table.

These example entries are defined in the snmpsrc\vacm.c module:

typedef struct
{
 uint32 mask;
 const OID *oid;
} VIEW;

typedef struct
{
 const uint8 *group; /* Group for entry */
 const uint8 *context; /* Context for entry */
 const VIEW *readview; /* Read view for entry */
 const VIEW *writeview; /* Write view for entry */
 uint16 level; /* Security level for entry */
} ACCESS;

/*

** Define all possible view sub-trees:

** Note that we only define 3. Theoretically, there could be

** a different sub-tree defined for every single OID in

** every MIB on the host. This is of course less efficient

** than the method below, though probably more secure. This

** ought to be changed according to the desires of the MIB

** implementor.

*/

Building an Application

 13

static const OID sys_oid = {6, {0x2b, 6, 1, 2, 1, 1}};
static const OID mgmt_oid = {4, {0x2b, 6, 1, 2}};
static const OID snmp_oid = {4, {0x2b, 6, 1, 6}};
/* ENTERPRISE 991 when encoded is 0x87 0x5f */
static const OID private_oid = {7, {0x2b, 6, 1, 4, 1, 0x87, 0x5f}};

/*
** Define all possible view families:
** Note, these arrays always end in NULL so that they can be
** searched through without a length value being specified.
*/
static const VIEW sys_view[] =
{
 {0xffffffff, &sys_oid},
 {0, 0}
};

static const VIEW mib2_view[] =
{
 {0xffffffff, &mgmt_oid},
 {0xffffffff, &snmp_oid},
 {0, 0}
};

static const VIEW admin_view[] =
{
 {0xffffffff, &mgmt_oid},
 {0xffffffff, &snmp_oid},
 {0xffffffff, &private_oid},
 {0, 0}
};

/* Define all possible access entries */
static const ACCESS vacmAccessTable[] =

Building an Application

 14

{
 /*
 ** no group,
 ** public context,
 ** no security,
 ** read mib2_view,
 ** no write view
 */
 {(const uint8 *)””, (const uint8 *)”public”, sys_view,
 0, noAuthNoPriv},

 /*
 ** initial group,
 ** public context,
 ** no security,
 ** read mib2_view,
 ** no write view
 */
 {(const uint8 *)”initial”, (const uint8 *)”public”,
 mib2_view, noAuthNoPriv},

 /*
 ** admin group,
 ** public context,
 ** no security,
 ** read mib2_view,
 ** no write view
 */
 {(const uint8 *)”admin”, (const uint8 *)”public”,
 mib2_view, noAuthNoPriv},

 /*
 ** admin-md5 group,
 ** admin context,
 ** with auth security,
 ** read admin_view,
 ** write mib2_view
 */
 {(const uint8 *)”admin-md5”, (const uint8 *)”admin”,
 admin_view, mib2_view, authNoPriv}
};

Building an Application

 15

/*
 ** admin-sha group,
 ** admin context,
 ** with authPriv security,
 ** read admin_view,
 ** write admin_view
 */
 {(const uint8 *)"admin-sha", (const uint8 *)"admin",
 admin_view, admin_view, authPriv}
 };

#define ACNUM ((sint16)(sizeof(vacmAccessTable) /
 sizeof(ACCESS)))

Agent Use of Build-time Constants

The constants from the previous section translate into snmpconf.h and usmauto.c
during build-time. Here is the snmpconf.h output from the above definitions:

/* This file is autogenerated */
#define ENTERPRISE 991
#define SYSCONTACT "USSW (503) 844-6614, support@ussw.com"
#define SYSLOCATION "USSW Hillsboro, OR USA"
#define SYSDESCR "Embedded controller running USNET"
#define ENABLEAUTHENTRAPSVAL 2
#define MAXOID 15
#define MAXKEY 4
#define MAXKLEN 22
#define MAXVAR 16
#define SNMP_MAXSIZE 1000
#define USM_MD5
#define USM_DES
#define USM_SHA

Building an Application

 16

Here is the usmauto.c output from the above definitions:

/* This file is autogenerated */

/* User security entries (securityName, auth-type, priv-type) */
static const USER usmUserTable[] =
{
 {(const uint8 *)”initial”, usmNoAuthProtocol,
 usmNoPrivProtocol},
 {(const uint8 *)"admin-md5", usmHMACMD5AuthProtocol,
 usmDESPrivProtocol},
 {(const uint8 *)”admin-sha”, usmHMACSHAAuthProtocol,
 usmDESPrivProtocol},
};

static const uint8 *authPass[] =
{
 (const uint8 *)””,
 (const uint8 *)”secretpassword”,
 (const uint8 *)”mylittlesecret”,
};
static uint8 authKeys[sizeof(usmUserTable) /
 sizeof(USER)][20];

static const uint8 *privPass[] =
{
 (const uint8 *)””,
 (const uint8 *)”mylittlesecret”,
 (const uint8 *)”secretpassword”,
};
static uint8 privKeys[sizeof(usmUserTable) / sizeof(USER)][20];

Building an Application

 17

Application Interface

The application file defines the run-time environment in which the agent executes.
The AGENT_CONTEXT structure is used to pass the configuration information from
the application to the agent.

AGENT_CONTEXT Structure
typedef struct
{
 const MIB **mibs; /* Array of pointers to host MIBs */
 uint16 nummibs; /* Number of host MIBs */
 const TRAP_HOST **thosts; /* Trap hosts */
 uint16 numthosts; /* Number of trap hosts */
 uint16 trapv, trapt; /* Trap version and startup type */
 const TRANSPORT_MAPPING *tm; /* Transport mapping */
} AGENT_CONTEXT;

The mibs field is the list of MIBs that managers may have access to. Note it is vital
that the MIBs be listed in lexicographical order. If not, the agent will think certain
variables do not exist within the MIB. The nummibs field specifies the number of
MIBs available.

The thosts field specifies the hosts to which agent traps will be sent. The
TRAP_HOST definition is simply ‘typedef uint8 *TRAP_HOST;’ and each host
should be acceptable to the transport layer. In other words, the transport layer needs
to be able to open a connection to the entity specified by the trap host field. The
numthosts field specifies the number of trap hosts available.

The trapv field specifies the trap version to use during agent operations. The
trapt field specifies the trap used by the agent during startup. Use
–1 for none. Otherwise use one of these defined types from snmpv3.h:

COLDSTART
WARMSTART
LINKDOWN
LINKUP
AUTHENTICATIONFAILURE

Building an Application

 18

EGPNEIGHBORLOSS
ENTERPRISESPECIFIC

The tm field specifies the transport mapping to be used by the agent. The
TRANSPORT_MAPPING data structure is defined later.

Example
This is an example of a SNMP agent application taken from agv3.c.

A global structure is declared for the agent task to initialize from. In this example,
the structure has been set up to request a SNMPv1 (0) COLDSTART trap be sent
when the agent is started. The USNET DPI transport mapping is used for sending
and receiving SNMP packets.

#include “snmpv3.h”

extern const MIB mib_if, mib_at, mib_ip, mib_icmp, mib_tcp, mib_udp;
extern const MIB mib_sys, mib_snmp, mib_engine;
extern const MIB mib_usm;

/* The following MIBs must be in lexicographical order */
static const MIB *mibs[] =
{
 &mib_sys, /* system group */
 &mib_if, /* interfaces group */
 &mib_at, /* address translation group */
 &mib_ip, /* IP group */
 &mib_icmp, /* ICMP group */
 &mib_tcp, /* TCP group */
 &mib_udp, /* UDP group */
 &mib_snmp, /* SNMP group */
 &mib_engine, /* SNMPv3 engine group */
 &mib_usm /* USM group */
};

static const TRAP_HOST primary = “192.168.1.30”;
static const TRAP_HOST secondary = “192.168.1.31”;

Building an Application

 19

static const TRAP_HOST *thosts[] =
{
 &primary,
 &secondary
};

extern const TRANSPORT_MAPPING TM_DPI;

/* This structure is defined as external in SNMPAgentTask() */
const AGENT_CONTEXT snmp_ac =
{
 mibs, (sizeof(mibs) / sizeof(MIB *)),
 thosts, (sizeof(thosts) / sizeof(TRAP_HOST)), 0, COLDSTART,
 &TM_DPI
};
. . .

Building an Application

 20

ussSNMPAgentTask
Executes the agent as a task.

void ussSNMPAgentTask(void);

This function calls ussSNMPAgentInit() with the address of the global constant
AGENT_CONTEXT, snmp_ac, defined by the calling application. It then continuously
calls ussSNMPAgentCheck(). If the return value of ussSNMPAgentCheck()
indicates an error condition, a call is made to the ussSNMPAgentShut() function and
this function returns.

Example
This is an example of a SNMP agent application taken from agv3.c.

Before running the agent, the system must initialize. In this case, USNET must be
initialized with the Ninit() and Portinit() calls because the
USNET DPI transport mapping is being used.

ussSNMPAgentTask() is called to start the agent. If all goes well, the
agent task will remain in a loop waiting for and responding to SNMP manager
requests.

#include “net.h”
#include “local.h”
#include “support.h”
#include “snmpv3.h”
. . .

/* This structure is defined as external in SNMPAgentTask() */
const AGENT_CONTEXT snmp_ac =
{
 mibs, (sizeof(mibs) / sizeof(MIB *)),
 thosts, (sizeof(thosts) / sizeof(TRAP_HOST)), 0, COLDSTART,
 &TM_DPI
};

void main(void)
{
 Ninit();
 Portinit(“*”);
 ussSNMPAgentTask();
 Nterm();
}

Building an Application

 21

ussSNMPAgentInit
Initializes the agent.

sint16 ussSNMPAgentInit(const AGENT_CONTEXT *acp);

This function initializes the agent with the run-time environment defined by the
value of the AGENT_CONTEXT parameter. The run-time environment that the agent
uses is defined by the MIBs visible to the agent, the Trap hosts, and a transport
mapping.

Return Value
>= 0 No error

< 0 An error

Example
#include “snmpv3.h”
. . .
extern const AGENT_CONTEXT snmp_ac;
. . .
i1 = ussSNMPAgentInit(&snmp_ac);
if (i1 < 0)
{
#if NTRACE
 Nprintf(“SNMPAgentTask: Initialization failed %d\n”, i1);
#endif
 return;
}

Building an Application

 22

ussSNMPAgentCheck
Checks the status of the agent for pending requests, and responds as necessary.

sint16 ussSNMPAgentCheck(void);

This function checks the transport for incoming messages, and generates responses
as necessary.

Return Value
>= 0 No error

< 0 An error

Example
#include “snmpv3.h”
. . .
/* Control loop for reading requests and
 forming/sending replies */
while (ussSNMPAgentCheck() >= 0)
 ;

Building an Application

 23

ussSNMPAgentShut
Terminates the agent.

sint16 ussSNMPAgentShut(void);

This function performs any clean-up necessary to terminate all the layers of the
Agent.

Return Value
>= 0 No error

< 0 An error

Example
#include “snmpv3.h”
. . .
ussSNMPAgentShut();

Building an Application

 24

ussSNMPAgentTrap
Sends a trap to all configured trap hosts as defined in the AGENT_CONTEXT.

sint16 ussSNMPAgentTrap(uint8 type, uint8 spec,
 const uint8 *contextName,
 const uint8 *vbs, uint16 len);

type the trap type

spec trap-specific code

contextName context or community name

vbs pointer to a variable bindings for trap

len the buffer length

The ussSNMPAgentTrap() function may be used from an agent application to send a
trap to a manager. Trap types specified as 0 through 6 are shown in Table 2.

Building an Application

 25

Table 2: SNMP Trap Types

Value Trap Type Description
0. cold start The agent network protocol has

reinitialized, indicating that its
configuration may have been
altered.

1. warm start The agent network protocol has
reinitialized; however, its
configuration has not been altered.

2. link down A communication link has failed.
The failing link is identified via
the first variable within the
variable bindings field of the PDU
(protocol data unit). The PDU is,
essentially, the data protocol used
by SNMP. The variable bindings
field is a list of MIB variables sent
to the manager packaged within a
PDU.

3. link up A communication link has come
up. The affected link is identified
as the first element within the
variable bindings field.

4. AuthenticationFailure The agent could not resolve the
authentication for an SNMP
message received from the
manager.

5. EgpNeighborLoss An EGP peer neighbor is down.
6. EnterpriseSpecific A nongeneric trap has occurred.

This is specific to a particular
enterprise. Use this for
application-specific traps.

Building an Application

 26

Return Value
The number of traps sent. This should be compared to the number of trap hosts
configured in the AGENT_CONTEXT.

Example
To send a trap from an application, simply call ussSNMPAgentTrap() and pass in
the trap type, the trap-specific code, the context/community name, a pointer to a
buffer of variable data for the manager to process, and the length of the variable data.
If the buffer is not needed 0 may be used. For example, to send a “warm start” trap
with no variable data, use:

int rc; /*return code */
rc = ussSNMPAgentTrap(WARMSTART,0, “public”, 0, 0);
if (rc <= 0)
 <process error >

If a trap must pass variable data to the manager, declare a buffer, assign the variable
binding data to it and pass it to ussSNMPAgentTrap().

#define VARBUFFERSIZE <some constant value>
....
int rc; /* return code */
unsigned char varbuffer[VARBUFFERSIZE];
....
varbuffer = <load the data into the buffer>;
....
rc = ussSNMPAgentTrap(WARM_START, 0, “public”, varbuffer,
 VARBUFFERSIZE);
if (rc != 0)
 <process error>;

This function call is flexible in that the variable data may be passed in any format;
however, it is constrained to what the manager can understand. Generally, this
would be in the form of an SNMP variable bind list.

Customizing the Agent

 27

Customizing the Agent

Configuring the Agent MIB

Standard MIBs are supplied with SNMP/USNET based on Internet standards defined
by RFCs (request for comments, on the Internet) 1156 and 1213. These RFCs have
since been clarified in several updated RFCs modularized from the originals.

MIB Structure

Each MIB module must be molded into the MIB structure used by the agent.

typedef struct
{
 const MIBVAR *mvp; /* MIB variables */
 sint16 (*numvars)(void); /* Number of variables */
 const MIBTAB *mtp; /* MIB tables */
 sint16 (*numtabs)(void); /* Number of tables */
 void (*get)(sint16 varix, sint16 tabix, uint8 **vvptr);
 sint16 (*set)(sint16 varix, sint16 tabix);
 sint16 (*index)(sint16 varix, sint16 index);
 void (*init)(uint16 type); /* Initialize the MIB */
} MIB;

Customizing the Agent

 28

MIBVAR and MIBTAB Structures

The MIBVAR and MIBTAB structures are the primary data structures, which define MIB
data. Each MIB contains variables mibvar and mibtab, which are simply arrays of
these structures. MIBVAR and MIBTAB are defined in snmpv3.h as follows:

typedef struct
{
 uint8 nlen, name[MAXOID];
} OID;

typedef struct
{
 OID oid; /* Base OID of table */
 uint8 nix; /* Number of indices for table */
 uint16 ix[MAXKEY]; /* Index values (offsets) */
 uint16 len; /* Length of table */
} MIBTAB;

typedef struct
{
 OID oid; /* Identifier name, length */
 uint8 opt; /* Options */
 uint8 type; /* Type of variable */
 sint16 len; /* Length of pointer field */
 void *ptr; /* Pointer to variable data */
} MIBVAR;

MIBVAR contains the definitions and values of all MIB variables. MIBTAB contains
indices into the MIBVAR for accessing MIB table (SEQUENCE OF) entries. Most of
these fields are used internally by the SNMP agent; however, some are useful to
know. OID is used to uniquely define each record in the MIBVAR and MIBTAB.
Also, for a given MIB table variable, the OID is the key value, which links MIBVAR
and MIBTAB entries. The purpose of the MIBVAR is simply to store all MIB data; that
is, scalar values and values within a MIB table. In the case of a MIB table, the
mibtab.ix[i] values are used as indices to the appropriate records in the
MIBVAR. An example of its use is provided in the ‘MIB.index()’ section.

Customizing the Agent

 29

Default Operation

When the SNMP agent receives a GetRequest PDU (protocol data unit), the entries
in the MIBVAR array are reviewed to find an entry that matches the requested OID.
The ptr field in the matching entry is then used to locate the memory location that
contains the value that should be returned. For scalar variables, this location is read
directly. For variables in tables, an offset is added to the pointer that corresponds to
the index portion of the OID in the GetRequest PDU.

When the SNMP agent receives a SetRequest PDU, the corresponding entry is
located as above, and the memory location based on the ptr field is overwritten
with the value provided in the SetRequest PDU.

MIBVAR Record Options

Some of the variables in MIBVAR may not be well suited to the default operation of
the SNMP agent. To support these needs, the opt field of the MIBVAR record
allows for flags that will indicate that special processing is required.

IMMED The variable value is stored directly in the len field, rather than being
pointed to by the ptr field. The variable should be an 8-bit value. The
value for ptr can be 0.

IMMED2 The variable value is stored directly in the type and len fields, rather
than being pointed to by the ptr field. The variable should be a 16-bit
value. The value for ptr can be 0.

SCALAR The variable is in a table, but should be looked up without adding an
index to ptr. This allows a variable to be part of a table, but not
accessed in the same manner as other variables in the table. If the value
for a variable is known to be the same for every index in the table, then
this technique can be used to reduce the size of the memory image that
represents the contents of the table. This flag need not be specified for
normal scalar variables.

W The variable may be modified.

SX The variable is the first item of a MIB table.

Customizing the Agent

 30

CAR A read notification function may be called before returning the value of
the variable.

CAW A write notification function may be called after writing a new value to
the variable.

CHOICE A 'CHOICE' ASN.1 syntax element is required in the OID of this object.
Note that it is only used to force the atTable to behave correctly and, if
defined, code size will increase for all MIBs.

Customizing the Agent

 31

MIB.set() and MIB.get() Functions

These functions are written as part of each MIB and provide the actions to perform for
read or write notification.

static sint16 set(sint16 varix, sint16 tabix);
void get(sint16 varix, sint16 tabix, uint8 **vvptr);

The first argument, varix, is an integer which acts as an index into the MIB
identifying the variable to be accessed. If that MIB variable is a MIB table, the
tabix parameter may be used as a 0-based index into the table. If varix is a scalar
value or not a table entry, then no index is required and -1 is passed in for tabix.
The **vvptr is passed to the get() function in case the MIB needs to replace the
value pointer with a new address for the agent to operate upon.

The value returned by set() should be 0 if the function executes normally. In the case
of an error situation, the value returned from these functions will be used as an error
code in the response that the SNMP agent sends to the SNMP request.

The get() and set() functions are called indirectly from the function
ussSNMPAgentCheck() in agent.c through the MIB structure in which the get()
function pointer resides. The declaration below shows how the MIB structure is
defined.

Example
#include “snmpv3.h”
. . .
static void get(sint16 varix, sint16 tabix, uint8 **vvptr)
{
 const MIBVAR *mvp = &mibvar[varix];
 uint8 *bytevp = *vvptr;

 /*
 ** If varix is 3, the variable is a 32-bit value
 ** that must be updated before being read by the agent.
 ** We set it here to a value that is determined by using
 ** a value in a table indexed by an array of index
 ** values.
 */

 if (varix == 3) /* Fourth variable in MIB */
 {
 *(uint32 *)*vvptr = Barray[Aarray[tabix].nindex].value32;
 }

 /*
 ** If varix is 12, the first index is not stored in the
 ** table. The second and all subsequent indices are in
 ** the table, however. We can simply point the value
 ** pointer to a new location.
 */

Customizing the Agent

 32

 if (varix == 12) /* Thirteenth variable in MIB */
 {
 if (tabix == 0)
 *vvptr = &value;
 else
 *vvptr = &table[tabix].value;
 }
}

static sint16 set(sint16 varix, sint16 tabix)
{
 MIBVAR *mvp = &mibvar[varix];
 uint8 *bytevp = mvp->ptr;

 if (varix == 3)
 {
 if (*(uint32 *)bytevp == 0x1234567)
 {
 *(uint32 *)bytevp = 0;
 return badValue;
 }
 }

 return 0;
}
. . .

const MIB mib_example =
{
 mibvar,
 mibvarsize,
 mibtab,
 mibtabsize,
 get,
 set,
 index,
 init
};

The globally-accessible function pointer mib_example.get is assigned the get()
function which is local to the current MIB module. The mib_example.get() function
is only called if CAR is in the option field for the variable and the get() function
pointer is valid (that is, not 0). Upon entry into the get() function, the variable
varix is an index into the MIBVAR array for the current variable to be read. The
tabix is assigned –1 if no table is being accessed. Otherwise, tabix is a zero-
based index into the table to which the variable belongs.

Customizing the Agent

 33

MIB.index() Function

Determines size of tables in a MIB.

 sint16 index(sint16 varix, sint16 index);

If tables exist in a MIB, the SNMP agent needs a mechanism to determine the size of
the tables that have been added. The index() function indicates when the end of the
table has been reached and also can be used to specify when a table entry should be
skipped. Good examples of MIB index() functions can be found in mib_if.index,
mib_tcp.index, mib_udp.index, etc.

The index() function is required to implement a table.

When the SNMP agent receives a get request or a get-next request that involves a
MIB table and the index() function is defined, the agent will call the index() function
while iterating through the table to determine if an entry should be included in the
search for the variable. The MIB index() function is defined similarly to the MIB
get() and set() functions.

Return Value:
 1 Accept the record

 0 Skip over the record

-1 End of table

Example
/* Index the IP MIB’s tables */
static sint16 mibindex_ip(sint16 varix, sint16 tabix)
{
 uint8 *cp;
 uint16 us1;
 sint16 i1;

 cp = (uint8 *)mibvar_ip[varix].oid.name + 5;
 us1 = *cp++ << 8;
 us1 += *cp;

Customizing the Agent

 34

 switch (us1)
 {
 case 0x0416: /* IP net to media table */
 if (tabix >= NCONFIGS)
 goto lab7;
 if (netconf[tabix].ncstat == 0)
 break;
 for (i1 = 0; i1 < Eid_SZ; i1++)
 if (netconf[tabix].Eaddr.c[i1])
 goto lab5;
 break;
 case 0x0414: /* IP address table */
 if (tabix >= confsiz)
 goto lab7;
 if (netconf[tabix].flags & LOCALHOST)
 goto lab5;
 break;
 case 0x0415: /* IP routing table */
 if (tabix >= NCONFIGS)
 goto lab7;
 if (netconf[tabix].ncstat == 0)
 break;
 if (!(netconf[tabix].flags & LOCALHOST))
 goto lab5;
 break;
 default: /* any other */
 goto lab5;
 }
 return 0;
lab5:
 return 1;
lab7:
 return -1;
}

In this example, a section of the Object ID is used to identify the variable for which
the index function is being called. The value of index could also be used for this
purpose, but using a section of the OID allows a subtree of the MIB to easily be
identified. At the beginning of the function, cp is set up to point to the interesting
section of the OID, and then the next two bytes of the OID are stored in us1.

Customizing the Agent

 35

This is just one example of how an index() routine could be coded. Processing of
accept, skip, or end of table is determined by checking values of USNET data
structures in the above case. The index may be used as an index into some of these
structures. The MIBTAB values are simply used as flags to indicate which variable is
to be processed. The actual value of the variable requires accessing of the USNET
data structures. Refer to the USNET documentation and source code for
explanations of values such as NCONFIGS, and netconf[tabix].

Adding New MIBs

A particular application may require new MIBs in addition to those supplied as part
of the MIB-II. If this is the case, use the ASN.1 (Abstract Syntax Notation) syntax to
add the definitions of variables to a MIB file. Refer to a text on SNMP or the
appropriate RFCs for definitions of this syntax. Then use MIBTOC to translate the
ASN.1 definitions into C code understandable to the SNMP agent.

MIB Translation Overview

To use a new MIB with the SNMP/USNET agent, a file describing the MIB
variables must be compiled into C source code. The program MIBTOC, performs
this translation. It reads a description of the MIB variables in ASN.1 format, and
produces two ANSI C-compatible files. In the following diagram, “MIB” represents
the name of the MIB file.

Customizing the Agent

 36

Figure 2: MIB Translation

The application can compile and link the MIB with the agent so the agent can access
the MIB database.

Building the MIB Translator

The translator is provided as source code, which ought to be compiled before use. It
is located in the snmpsrc\\tools directory. To build it by hand, simply pass the
source file as an argument to a compiler/linker. For instance, if using the Borland
compiler, run:

bcc snmpsrc\tools\mibtoc.c

Or, if building from a UNIX environment, run:
cc snmpsrc/tools/mibtoc.c

MIBTOC is ANSI-compatible and can be compiled by most commercially available
compilers. Since the MIBTOC application uses a significant amount of stack space,
the compiler or linker may need to be configured with an option to increase the stack
space. The compiler is included in executable format for DOS and Windows
platforms.

MIB file MIBTOC

MIB.H

MIB.C

Customizing the Agent

 37

Running the MIB Translator

MIBTOC takes one or two arguments: The first argument is the name of the MIB
file to be processed, and the optional second argument provides the base name for
the output file. The syntax is:

 MIBTOC mibfile [outfile]

If an output file name is not specified, the name for the output files will be derived
from the base file name of the input file. For example, this command will generate
the output files toaster.c and toaster.h:

MIBTOC toaster.mib

If the second parameter is provided, then the output file names are based on the
second parameter. Given this command line, the translator will generate the output
files test.c and test.h:

MIBTOC toaster.mib test

Watch the output of MIBTOC to be sure that no errors occurred in preparing the
output files. A normal run will look like:

 C:\usnet\snmpsrc>mibtoc rfc2571.txt

USNET MIB to C Translator 1.10
 Copyright (c) U S Software 1994, 1999, 2000.
Root: ccitt
Root: iso
Root: joint-iso-ccitt
Type ‘No Access’: org { iso 3 }
Type ‘No Access’: dod { org 6 }
Type ‘No Access’: internet { dod 1 }
Type ‘No Access’: mgmt { internet 2 }
Type ‘No Access’: experimental { internet 3 }
Type ‘No Access’: private { internet 4 }
Type ‘No Access’: security { internet 5 }
Type ‘No Access’: snmpV2 { internet 6 }
Type ‘No Access’: snmpDomains { snmpV2 1 }
Type ‘No Access’: snmpProxys { snmpV2 2 }
Type ‘No Access’: snmpModules { snmpV2 3 }
Type ‘No Access’: mib-2 { mgmt 1 }
Type ‘No Access’: transmission { mib-2 10 }

Customizing the Agent

 38

Type ‘No Access’: enterprises { private 1 }
Type ‘No Access’: snmpFrameworkMIB { snmpModules 10 }
TC: SnmpEngineID (OctetString)
TC: SnmpSecurityModel (Integer)
TC: SnmpMessageProcessingModel (Integer)
TC: SnmpSecurityLevel (Integer)
TC: SnmpAdminString (OctetString)
Type ‘No Access’: snmpFrameworkAdmin { snmpFrameworkMIB 1 }
Type ‘No Access’: snmpFrameworkMIBObjects { snmpFrameworkMIB 2 }
Type ‘No Access’: snmpFrameworkMIBConformance { snmpFrameworkMIB 3 }
Type ‘No Access’: snmpEngine { snmpFrameworkMIBObjects 1 }
Type ‘OctetString’: snmpEngineID { snmpEngine 1 }
Type ‘Integer’: snmpEngineBoots { snmpEngine 2 }
Type ‘Integer’: snmpEngineTime { snmpEngine 3 }
Type ‘Integer’: snmpEngineMaxMessageSize { snmpEngine 4 }
Type ‘No Access’: snmpAuthProtocols { snmpFrameworkAdmin 1 }
Type ‘No Access’: snmpPrivProtocols { snmpFrameworkAdmin 2 }
Type ‘No Access’: snmpFrameworkMIBCompliances {
snmpFrameworkMIBConformance 1 }
Type ‘No Access’: snmpFrameworkMIBGroups { snmpFrameworkMIBConformance 2
}
Type ‘No Access’: snmpEngineGroup { snmpFrameworkMIBGroups 1 }
2554 lines processed OK

If there is a problem in processing the file, the last line will not read “...
processed OK” but rather will describe an error in processing the file. For
example, if the definition for MAXOID in mibtoc.c is too small, then this message
will be displayed:

L388 myTableIndex MAXOID too small

This indicates that in processing line 388 of the MIB file, it was discovered
that there was not enough room to build the needed Object ID array. To
correct this, the value for MAXOID should be increased in mibtoc.c, and MIBTOC
should be rebuilt. Also MAXOID should be increased to the
same value in snmpconf.h, because it will be used again when building the SNMP
agent.

Customizing the Agent

 39

MIB Files

MIBTOC generates two files as output. Using the example of an ASN.1 input file
named toaster.mib, the output files would be toaster.c and toaster.h. The SNMP
agent uses the output files as follows:

toaster.h Defines external variable and symbol definitions to which the
application and MIB module may wish to refer as “extern”.

toaster.c Allocates MIB variable and table values statically and provides the
global ‘MIB mib_toaster’ structure declaration to provide global
access to the MIB from the application.

Read/Write Notification

Each variable in a MIB may have read or write notification associated with it. This
means that prior to a get operation or after a set operation, the agent will signal the
MIB that its data is being operated upon.

For get-, getNext- or getBulk-requests, the option field in the MIB variable is
checked for read notification (CAR – Call Application Read). If this is set for the
variable, the get() function for the MIB will be called with the index of the variable
and a pointer to a pointer to the value of the variable. This is so that the MIB can
update the value of the variable or dynamically redirect it to a new memory location.

For set-requests, the option field in the MIB variable is checked for write notification
(CAW – Call Application Write). If this is set for the variable, the MIB set() function
will be called with the index of the variable. Special processing can be performed
due to important changes in the value of the MIB variable.

To indicate to the agent that read or write notification is required on a given variable,
add the CAR and/or CAW options to the opt field of the variable record within the
MIB source file using the bitwise OR operator (i.e. ‘|’).

Customizing the Agent

 40

Example
{8,{0x2b,6,1,2,1,1,6,0}, W | CAR | CAW, String,
 sizeof(syslocat), syslocat}, /* sysLocation */

This example shows a MIBVAR record (see the next section) which adds read and
write notification to the MIB variable sysLocation. Before modification, the
option field was simply W, indicating a variable that allows write access. The option
field may be zero for no options or a combination of others. The possibilities are
defined in snmpv3.h and are shown in Table 3 below.

#define IMMED 0x01 /* Immediate value in mvp->len */
#define IMMED2 0x02 /* Immediate value in mvp->type + len */
#define BASE1 0x03 /* Base 0 in data space, base 1 in MIB */
#define SCALAR 0x04 /* Table not indexed (no offset) */
#define W 0x80 /* Write allowed */
#define SX 0x40 /* Sequential table index inferred */
#define NWORDER 0x20 /* Network byte ordering for basic type */
#define CAR 0x10 /* Call application after read */
#define CAW 0x08 /* Call application before write */

Customizing the Agent

 41

Table 3: MIBVAR Record Options Field

Options
Field

Description

IMMED The variable value is stored directly in the len field (see
below), rather than using the ptr field to store the address
of the value.

IMMED2 Similar to IMMED except the variable value is stored
directly in the type and len fields (see below).

BASE1 The variable index value is represented by SNMP starting
at a base value of ‘1’ even though the agent must deal
with the actual data with a base ‘0’.

SCALAR A scalar value. In other words, the value is not in a table
even though its ASN.1 definition defines it as part of a
table.

W A variable that allows write access, i.e., the value may be
modified.

SX Indicates the first item of a MIB table, i.e., a SEQUENCE
OF.

CAR Use Read notification.
CAW Use Write notification.

Customizing the Agent

 42

Summary of Adding a User-Defined MIB

1. Create the standard “out of the box” version of the SNMP agent, and confirm that
the standard MIB-II variables are accessible from an SNMP manager.

2. Build the MIBTOC compiler, if it is not already built for the development
platform.

3. Create the enterprise-specific MIB. This example presents the wt2000 remotely
accessible weather station MIB, which uses the MIB called weather.mib. The
MIB will be associated with a product of the fictional company “WeatherTek
International” that makes devices that record weather conditions. These
conditions can be retrieved from their instruments through an SNMP manager.

The first information to be included in the user-defined MIB will establish the path
in the MIB hierarchy to the enterprise-specific MIB. If the enterprise code for
WeatherTek International were 123, and the variables were those collected by the
wt2000 model, then the following information might appear first in weather.mib:

— MIB DESCRIPTION
WEATHER-MIB DEFINITIONS ::= BEGIN
—
weathertek OBJECT IDENTIFIER ::= { enterprises 123 }
wt2000 OBJECT IDENTIFIER ::= { weathertek 3 }

In this example, the weather station contains components that monitor conditions at a
number of altitudes. Some of the variables in weather.mib concern the weather
station as a whole, and some concern the conditions at each altitude. Let us say that
a string is set up to hold the unit location, and the latitude and longitude of the
installation are also stored.

Customizing the Agent

 43

This information might appear in weather.mib as follows:

—
— The wt2000 Group
—
location OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION “The geographical name for the device location.”
 ::= { wt2000 1 }
latitude OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION “The latitude at which the device is installed.”
 ::= { wt2000 2 }
longitude OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION “The longitude at which the device is installed.”
 ::= { wt2000 3 }

Customizing the Agent

 44

Now a table can be introduced to hold the information that is collected for a number
of altitudes. For this table, the altitude will act as an index, and temperature,
humidity, wind speed and wind direction will be monitored. Here is how it might
appear in weather.mib:

weatherTable OBJECT-TYPE
 SYNTAX SEQUENCE OF weatherEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION “This table contains a tally of weather conditions”
 ::= { wt2000 4 }
weatherEntry OBJECT-TYPE
 SYNTAX WeatherEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION “Each row represents conditions at a given altitude.”
 INDEX { altitude }
 ::= { weatherTable 1 }
WeatherEntry ::= SEQUENCE {
 altitude INTEGER,
 temperature INTEGER,
 humidity INTEGER,
 windSpeed INTEGER,
 windDirection INTEGER { NORTH (1),
 NORTHEAST (2),
 EAST (3),
 SOUTHEAST (4),
 SOUTH (5),
 SOUTHWEST (6),
 WEST (7),
 NORTHWEST (8)}}
altitude OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION “Altitude in meters, used as an index.”
 ::= { weatherEntry 1 }

Customizing the Agent

 45

The definitions for temperature, humidity, windSpeed, and windDirection
would appear similar to the definition for altitude.

Process the MIB with MIBTOC to create source code. Make sure that the compiler
reports no errors. Using the mibtoc.exe file in the snmpsrc\tools\windows
directory:

cd snmpsrc
tools\windows\mibtoc weather.mib

Edit snmpsrc\makefile to specify the files generated by MIBTOC. So in this
example, add the line ‘FILES += weather’ in the midst of the other.

cd snmpsrc
edit makefile
 FILES += mib_usn
 FILES += weather # <<< New >>>
 FILES += snmp
make

If there are any tables in the user-defined MIB, an index() function will have to be
created in snmpsrc\weather.c and added to the MIB mib_weather declaration.

cd snmpsrc
edit weather.c
 const MIB mib_weather =
 {
 mibvar,
 mibvarsize,
 mibtab,
 mibtabsize,
 0, /* get */
 0, /* set */
 index, /* <<< New >>> */
 0 /* init */
 };

Customizing the Agent

 46

Declare the program variables that are introduced in the user defined MIB. In this
example, external declarations for the variables will be written into weather.h, but
the variables will not be declared in any module. The names of the variables are
based on the names appearing in the MIB definition, and can be found in weather.h,
which is excerpted here:

extern char *location;

extern int latitude;

extern int longitude;

extern struct weatherTable weatherTable[];

These variables must be declared somewhere in the application, and for this example
the declarations are made in a modified version of weather.c:

#define WTABSZ 3 /* number of entries in weather table */

char *location;

int latitude;

int longitude;

struct weatherTable weatherTable[WTABSZ];

Note that the size of the table is not apparent from the information in the MIB
definition and may be variable. In this example, a constant has been defined to
specify the size. WTABSZ represents the largest possible table size. This information
should be used by the index() function.

Initialize the variables in the user-defined MIB. Any default values or fixed values
can be set up before the SNMP agent is started. Also, any index fields in tables must
be initialized before the agent is started.

Here is an example from the modified weather.c:

const char defaultlocation[] = “Portland, Oregon”;

#define DEFAULTLATITUDE 46

#define DEFAULTLONGITUDE 123

static void init(uint16 type)

{

 memset(weatherTable, 0, sizeof(weatherTable));

 location = defaultlocation;

 latitude = DEFAULTLATITUDE;

 longitude = DEFAULTLONGITUDE;

 for (i1 = 0; i1 < WTABSZ; i1++) {

 weatherTable[i1].altitude = i1 * 1000 + 1000;

 weatherTable[i1].windDirection = 1;

 }

}

In this example, default values for location, latitude, longitude and the
windDirection field in weatherTable are initialized. The altitude index
field in the table is initialized with the values 1000, 2000 and 3000.

If the value of a variable should be updated before being read, then the get() function
should be implemented.

Customizing the Agent

 47

Likewise, if special action should be taken once a variable is written, then the set()
function should be implemented, and if the number of rows in a table is variable then
the index() function should be implemented.

The weather MIB structure will have to be updated to reflect any required get, set,
index or init functions:

const MIB mib_weather =
{
 mibvar,
 mibvarsize,
 mibtab,
 mibtabsize,
 get, /* <<< New >>> */
 set, /* <<< New >>> */
 index, /* <<< New >>> */
 init /* <<< New >>> */
};

Customizing the Agent

 48

Configuring the Transport Mapping

A Transport Mapping is a defined method of data transfer between SNMP hosts.
RFC 1906 defines the use of SNMP over UDP/IP on Internet-based networks as well
as many others. From this, a module was defined called TRANSPORT_MAPPING.
Here is the structure definition that the SNMP/USNET agent uses:

typedef struct
{
 /* Initialize underlying transport framework */
 sint16 (*init)(uint8 *ip, uint32 *maxsize, uint8 *name);

 /* Open passively to receive SNMP messages */
 sint16 (*passive_open)(void);
 sint16 (*passive_read)(uint8 *buff, uint16 len);
 sint16 (*passive_write)(const uint8 *buff, uint16 len);
 sint16 (*passive_close)(void);

 /* Open actively to send SNMP messages */
 sint16 (*active_open)(const uint8 *rhost);
 sint16 (*active_write)(const uint8 *buff, uint16 len);
 sint16 (*active_read)(uint8 *buff, uint16 len);
 sint16 (*active_close)(void);

 /* The host’s system time */
 uint32 (*time)(void);
} TRANSPORT_MAPPING;

The application is expected to perform basic initialization of the network or other
media. Once that is completed, the agent may perform the following operations:

init() Initialize the transport specific features required by the agent.
Included are the IP address, maximum message size, and host
name. If any of these is defined and does not conflict with the
transport layer, they can remain the same.

passive_open() Tell the transport that the agent is ready to receive data.

Customizing the Agent

 49

passive_read() Get available data from the transport.

passive_write() Transmit potential responses to passive_read() operations.

passive_close() Tell the transport that the agent will no longer receive data.

active_open() Tell the transport to create a data channel to a particular host for
sending traps. Note that the rhost field is one of the trap hosts
defined by the application.

active_write() Transmit a message to the host to which an active_open() was
performed.

active_read() Receive data on the trap channel. This will not occur with
SNMPv1 and v2c. However, SNMPv3 has the provision that an
agent may have to authenticate itself to a management station.
Version 3 trap packets are not supported at this time.

active_close() Close the data channel for writing traps.

time() Get the system time in tenths of a second.

Each of the above operations returns a signed 16-bit value, except time() which
returns the current time as a 32-bit value. For passive_open(), passive_close(),
active_open(), and active_close() the return value should be >= 0 unless an error
occurs. For passive_read(), passive_write(), active_read(), and active_write()
functions the return value should represent the number of bytes transmitted or
received. Note that the agent cannot internally handle an error value when
performing passive_open(). Essentially, the agent is useless without its passive
functions.

When the ussSNMPAgentTrap() function is called by the application or by the
agent, the agent will actually iterate through each active_xxx() function for each trap
host.

For example implementations, see the following:

 Snmpsrc\tm_bsd.c USNET BSD socket interface (USNET,
 UNIX, and Windows)

 Snmpsrc\tm_dpi.c USNET DPI interface

Index

 51

Index

A
accept record... 35
agent

customizing..................................... 27
definition ... 1
design of.. 2
running 18, 20

agent MIB
configuring...................................... 27

AGENT_CONTEXT structure
... 17

authentication.................................. 9, 11

B
bulk request ... 8

C
CAget() function 31

example code 31
CAindex() function

example code 33
CAR MIBVAR option 30, 40
CAW MIBVAR option 30, 40
CHOICE MIBVAR option 30
code requirements 3
code size.. 3
compiler .. 2
configuration, build-time 5
constants.. 5, 15

ENABLEAUTHENTRAPSVAL...... 6
ENTERPRISE................................... 5
MAXKEY... 7
MAXOID .. 6
MAXVAR... 8
SNMP_IP .. 5
summary list.................................... 17

D
data

initialized... 3
transfer to and from agent 2

data structures
MIBTAB... 28
MIBVAR... 28

design of SNMP/USNET...................... 2

E
end of table ... 35

F

functions
MIB.index() 33
MIB.set()... 31
SNMPagent().................................. 31
ussSNMPAgentCheck......... 22
ussSNMPAgentInit............... 21
ussSNMPAgentShut 23
ussSNMPAgentTask............ 20
ussSNMPAgentTrap 24

H
hosts .. 17

I
Internet standard MIBs 27
introduction ... 1

K
key... 7

maximum length 7

L
Linux ... 2

M
manager, definition 1
MAXKEY() constant 7
MAXKLEN() constant............................. 7
MAXOID() constant 6
MAXVAR() constant............................... 8

Index

 52

MIB
application-specific variables.......... 35
custom... 3
data.. 28
definition ... 1
standard ... 27
supplied ... 27
translation.. 35
user-defined, example 42

MIB files ... 39
MIB structure 27
MIB table .. 28

end of ... 35
MIB translator

building ... 36
overview.. 35
running .. 37

MIB.index() function 33
MIB.set() function............................... 31
MIBTAB structure................................. 28
MIBTOC

and adding variables 35
and MIB translation 35
arguments.. 37
building MIB translator................... 36
output files 38, 39
running MIB translator 37

MIBVAR structure 28
read/write notification........................ 40
record options.................................. 29

multitasking... 2

N
networking stack 2
Ninit() function.................................... 20

O
object identifier (OID) 6, 28
operating system 2
options... 40

P
password localization algorithm 11
passwords.. 10
processor-independent agent................. 2
processors.. 3

R
RAM ... 3
read notification 31
recommended reading........................... 1
RUNTASK() USNET macro 20

S
security.. 9
SEQUENCE OF.................................... 28
skip .. 35
snmp.h file..................................... 28, 40
snmpconf.h file 15
standard MIB 27
structures

AGENT_CONTEXT........... 17
MIB... 27

SYSCONTACT variable 5
SYSDESCR variable 5
SYSLOCATION variable..................... 5
system group ... 5

T
transport layer 2
traps... 17

sending .. 42
sending data 26
types .. 24, 26

U
users, predefined 9
usmauto.c file................................ 15, 16
USNET.. 35
ussSNMPAgentCheck()

function....................................... 22
ussSNMPAgentInit() function

... 21
ussSNMPAgentShut()

function....................................... 23
ussSNMPAgentTask()

function....................................... 20

Index

 53

ussSNMPAgentTrap()
function....................................... 24

V
variable bindings................................. 26
variables

maximum number 8

writable ... 40
Version I, II

designed for....................................... 1

W
writable variable.................................. 40
write notification................................. 31

	Introduction
	Recommended Reading
	SNMP Overview
	Design of SNMP/USNET

	Building an Application
	Build-time Configuration
	Constants
	ENTERPRISE Constant
	SNMP_IP Constant
	System Variable Constants
	ENABLEAUTHENTRAPSVAL Constant
	MAXOID Constant
	MAXOID Example

	MAXKEY Constant
	MAXKLEN Constant
	MAXVAR Constant

	SNMP_MAXSIZE Constant

	User-based Security Model Configuration
	View-based Access Control Configuration

	Agent Use of Build-time Constants
	Application Interface
	AGENT_CONTEXT Structure
	ussSNMPAgentTask
	ussSNMPAgentInit
	ussSNMPAgentCheck
	ussSNMPAgentShut
	ussSNMPAgentTrap

	Customizing the Agent
	Configuring the Agent MIB
	MIB Structure
	MIBVAR and MIBTAB Structures
	Default Operation
	MIBVAR Record Options
	MIB.set() and MIB.get() Functions
	MIB.index() Function

	Adding New MIBs
	MIB Translation Overview
	Building the MIB Translator
	Running the MIB Translator
	MIB Files
	Read/Write Notification
	Example

	Summary of Adding a User-Defined MIB

	Configuring the Transport Mapping

	Index

