

USNET
Internet Access

Package
User’s Guide

Version 1.1
July 2004

 ii

Copyright and Trademark Information

Copyright 1997-2004 Lantronix, Inc. All rights reserved. No part of this publication may be
reproduced, translated into another language, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of Lantronix, Inc.

Lantronix®, U S Software®, USNET®, USFiles®, USLink®, SuperTask!®, MultiTask!™,
NetPeer™, TronTask!®, Soft-Scope®, and GOFAST® are trademarks of Lantronix, Inc. Other
brands and names are marked with an asterisk (*) and are the property of their respective owners.

Lantronix, Inc. makes no warranty of any kind with regard to this material, including but not limited
to the implied warranties of merchantability and fitness for a particular purpose. Lantronix, Inc.
assumes no responsibility for any errors that may appear in this document. Lantronix, Inc. makes no
commitment to update or to keep current the information contained in this document.

Lantronix, Inc.
15353 Barranca Parkway
Irvine, CA 92618
(949)453-3990
Fax (949) 453-3995

For Support Contact:
Micro Digital Associates, Inc.
2900 Bristol Street, #G204
Costa Mesa, CA 92626
(714) 437-7333
support@smxinfo.com
www.smxinfo.com

 iii

Documentation Conventions

Computer output and code examples: Courier, usually in a separate paragraph.

Function names and command names: Bold italic, usually followed by parentheses, as in main()
function.

Variables: Courier 11 italic (mt_busy).

File names: Times bold (the file usrclk.asm), usually in lower case.

Key names: Initial capital, in angle brackets, as in press <Enter>.

Menu names and selections, dialog box names, screen titles, window titles: Times bold, as in File
menu.

Notes: Indicate important information.

Cautions: Indicate potential damage to hardware or data.

Documentation History

Revision Number Date

 1.0 (Original) August 1997

 1.1 April 1998

 v

Contents

1. IAP OVERVIEW 1
OVERVIEW.. 1
IAP TERMINOLOGY... 2
RECOMMENDED READING .. 3

Other U S Software Documents.. 3
On the Internet .. 3
Books .. 4

2. AUTOMATIC DIALING 5
DIALING OVERVIEW.. 5

Ndial()... 6
CONFIGURING THE DIALING... 7

3. DOMAIN NAME SYSTEM 9
DNS OVERVIEW... 9

DNSresolve() .. 10

4. E-MAIL 11
OVERVIEW: SMTP AND POP, WITH MIME SUPPORT.. 11
USING SMTP TO SEND MAIL.. 12

SMTPgetdata().. 13
SMTPsend().. 16

USING POP TO RECEIVE MAIL... 17
POPlog() ... 21
POPreceive()... 22

USING THE SMTP SERVER TO RECEIVE MAIL ... 23
SMTParrive().. 26
SMTPchkencod().. 27
SMTPextract() .. 28
SMTPgetHeaders() ... 30
SMTPlog() .. 32
SMTPserv()... 33

HEADER-ENCODING SUPPORT ROUTINES ... 34
decodetext() .. 35
frombase64()... 36
fromquoted() ... 37
tobase64() ... 38

TEST PROGRAM ... 39
INDEX.. 40

IAP Overview

 1

1. IAP Overview

Overview
The USNET Internet Access Package (IAP) provides modules for USNET to support dial-up
connections, Domain Name System (DNS), Hypertext Transfer Protocol (HTTP), and Internet mail.
This manual gives detailed information on the functions that are provided. The files that make up the
package and the functions that these files provide are detailed in the readme.txt file.

This manual describes the three products included in the USNET Internet Access Package:
Automatic dialing, Domain Name System, and e-mail. This is the organization of the manual:

Chapter Contents

1. Overview Introduces the reader to the Internet Access Package, IAP terminology,
and recommended reading.

2. Automatic Dialing Describes configuring and using the dialer.

3. Domain Name System Describes the Domain Name System.

4. E-Mail Describes sending and receiving messages using SMTP and POP
protocols, decoding data, and testing.

Any connections between the web server and e-mail (such as automatically e-mailing log files or
notices) are configured by the user.

Chapter 1

 2

IAP Terminology
CGI Common Gateway Interface. CGI reads parameters from forms on the displayed

web page to the server, so the server can display different pages depending on the
user’s actions.

DHCP Dynamic Host Configuration Protocol, a method for a client to request information
on its own configuration from a server.

DNS Domain Name System, a mechanism that allows the IP address of a system in a
TCP/IP network to be determined based on a name assigned to the system, or vice
versa.

HTML META commands
Commands embedded in the HTML that return predefined system information to
the user.

HTTP Hypertext Transfer Protocol, a simple application- level protocol used to access
hypermedia documents. The protocol is stateless and generic, which allows it to be
used for many tasks.

ISMAP An HTML tag which returns position coordinates within the page image.

MIME Multipurpose Internet Mail Extensions, which defines how to encode and decode
multipart messages and non-ASCII character sets.

POP Post Office Protocol, a minor variation of SMTP that allows a client to retrieve mail
from a remote server mailbox.

PPP Point-to-Point Protocol, a link between two computer ports.

SLIP Serial Line Interface Protocol, a link between two points (computer ports).

SMTP Simple Mail Transfer Protocol, a protocol for transferring mail.

SVA Server Variable Access, a mechanism for accessing static global variables within an
embedded application via HTML.

TCP/IP Transmission Control Protocol/Internet Protocol, a software protocol for
communication between computers.

IAP Overview

 3

Recommended Reading

Other U S Software Documents
USNET User’s Manual

USNET Web Server User’s Guide

Advanced Customization of the Embedded Web Server

On the Internet
RFCs (request for comments) are documents that are available over the Internet via anonymous FTP.
The following references will provide more information on topics relevant to IAP:

 Topic RFC Numbers

 SMTP 821, 822, 1869, and 2045
 POP 1725
 MIME 2045 through 2049
 HTTP 2068
 DNS 1034, 1982, 2065, 1876, 1101

Here is an abbreviated example FTP session:

 % ftp ds.internic.net
 .
 Name: anonymous
 Password: <your email address>
 .
 ftp> cd rfc
 .
 ftp> get rfc1122.txt
 .
 ftp> quit

Chapter 1

 4

Books
Foundations of WWW Programming with HTML & CGI
IDG Books
ISBN 1-56884-703-3

CGI Programming in C and Perl
Thomas Boutell
Addison Wesly
ISBN 0-201-42219-0

CGI Developers Guide
Eugene Eric Kim
Sams Net
ISBN 1-57521-087-8

There are many books on web page design. This one is very good for low-level protocols, and has
cross-references to RFCs:

Internet Protocols Handbook
Dave Roberts
Coriolis Group Books
ISBN 1-883577-88-8

Automatic Dialing

 5

2. Automatic Dialing

Dialing Overview
The dialing function provided by the IAP is useful for applications where a modem is used to
establish a point-to-point connection with another host. The base distribution of USNET is capable of
establishing a point-to-point connection between directly connected systems. When a modem is
involved in establishing the connection, support must be provided to issue commands to the modem,
and possibly to respond to queries from a terminal session before the PPP handshake can begin. The
Ndial() function in dial.c provides this support.

This support is especially useful in connecting a system using a PPP account available from many
Internet Service Providers.

Chapter 2

 6

Ndial()
Dials or hangs up the modem.

int Ndial(int netno, char *phonenumber);

netno Network index: 0, 1 and so on.

phonenumber The number to dial, in any format that is acceptable to the auto-dialer. A zero
argument means disconnect.

Ndial() can be used for PPP. Ndial() is normally not called by the USNET protocol stack, because
USNET does not know how to get the telephone number. There is however a way to force this for
testing purposes:

1. To use Ndial() in a PPP connection, set the flag field in netconf.c for the serial port to DIAL.
For instance:

“test”, “com2”, C, {192,9,202,1}, EA0, DIAL, PPP, I8250, 0,
“IRNO=3 PORT=0x2f8 CLOCK=115200 BAUD=38400”,

2. Define the telephone number, for instance in local.h:

#define TESTPHONE “5551212”

Other than for testing purposes, the dialing and the disconnect would be done by the application.

Return Value
 0 Success

-1 Error

Example
Here is an example of how the Ndial() function is used. The example is from PPP.C (included in the
core USNET product).

#define TESTPHONE “5551212” /* Phone number */
#ifdef TESTPHONE
/*
/* for testing purposes, call the dialing function */
*/
 if (netconf[netp->confix].flags & DIAL)
 {
 i1 = Ndial(netno, TESTPHONE);
 if (i1 < 0)
 return i1;
 }
#endif /* TESTPHONE */

The TESTPHONE macro is already defined, and the user must add this line to local.h:

#define TESTPHONE “5551212”

Automatic Dialing

 7

Configuring the Dialing
The dial.c file has three command tables at the top of the code. Table upcommand contains the
commands needed to establish a telephone connection. The table as shipped should work for Hayes-
compatible autodialers in North America. For other devices and other telephone networks, changes
may be needed. The table has three elements:

• Command sent to the autodialer, exactly as coded.

• Answer expected from the autodialer, without terminator. Ndial() accepts either 0x0A or 0x0D
as terminator, and ignores extra terminators.

• Flags:
 0x01 Skip on first try, meant for reset commands
 0x02 Long timeout, needed for the actual dialing
 0x04 Phone number included in sprintf() format
 0x08 Delay before and after
 0x40 Skip this entry = comment out
 0x80 Final entry in table

Table downcommand is used exactly like upcommand, but to disconnect.

Table logincommand is meant for servers that check user ID and password before actually
entering SLIP or PPP. This practice, while poorly standardized, is widely used in UNIX, and has also
spread to other systems. The table format is the same as for the two others, but the use is different:

• A character string that Ndial() will watch for. The string does not have to be an entire word;
actually, it may be better not to include the first letter of the word.

• Answer that Ndial() will send upon seeing the expected string.

• Flags:
 0x40 Skip this entry = comment out
 0x80 Final entry in table

Chapter 2

 8

This is the logincommand structure:

/*
/* use 4-8 characters of the question in this table */
*/
static struct COMMAND logincommand[]={
 {“ogin”, USERID, 0x00},
 {“assword”, PASSWD, 0x80},
};

The logincommand structure is defined in ndial.c and has two entries, ogin and assword
(the first letters are dropped). The application waits for the first string, then responds with the next
parameter. The last string is a flag.

This means that the server expects to be asked two questions, such as “please enter your login” and
“enter password”. The user ID and password are defined in local.h (macros USERID and PASSWD).
These questions will vary from server to server, and often include a greeting message. If you have no
idea what your server will ask, just run Ndial() with NTRACE set to 3, and this will show you what to
expect.

If you don’t need the logincommand table at all, comment out the entries using flag value 0x40.
Many servers will use the PPP authentication protocols, usually PAP, to validate the user.

Domain Name System

 9

3. Domain Name System

DNS Overview
The Domain Name System (DNS) is a mechanism that allows the IP address of a system in a TCP/IP
network to be determined based on a name assigned to the system. Referring to a system by a name
rather than an IP address allows for friendlier user interfaces, and also provides a layer of indirection
that can be used to keep a system’s name consistent, even though its IP address may need to be
changed.

The dns.c module provides a DNS resolver function that will accept the name of a host as a
parameter, and return the IP address that is associated with the name.

This function depends on the support of at least one DNS server, which will respond to queries from
the resolver to provide the name to IP address mapping. Up to two entries for DNS servers can be
entered in the netdata[] array in netconf.c. The servers are identified by the flag DNSVER in
the flags field of an entry, for example:

 “dns1”, “nnet”, C, {192,168,43,21}, EA0, DNSVER, 0, 0, 0, 0,

If USNET is compiled to include DHCP support, then DHCP can provide the IP addresses of DNS
servers without explicitly entering the servers in netdata[].

The DNS resolver can be invoked automatically as part of calls to Nopen() or gethostbyname() when
a name given as a parameter is not defined in netdata[]. To provide this feature, the constant
DNS should be set to the value 2 in local.h. For example:

/* ===

 DNS resolver, 1 = code included, 2 = called
 automatically. */

#define DNS 2

If DNS is defined as 1, then DNS-related code will be included in the USNET library functions, but
the DNS resolver function will not be called automatically to resolve unknown host names.

Applications can also call the DNS resolver directly using the DNSresolve() function (described
next).

Chapter 3

 10

DNSresolve()
Resolves a domain name to an IP address.

int DNSresolve(char *fullname, IPaddr *iidp);

fullname domain name

iidp pointer to the address of the returned IP address

DNSresolve() stores the IP address at this location if fullname is non-zero.

DNSresolve() can start with either a domain name or IP address. If there’s an @ in the name,
DNSresolve() tries to find a mail host (IP address). If the first letter in the name is between 0 and 9,
it’s a pointer to an IP address, and DNSresolve() tries to find the domain name.

Return Value
>= 0 Successful lookup

-1 IP address could not be obtained from the DNS server(s)

ENOBUFS Not enough buffers available for query (defined in support.h)

Example
IPaddr ipa;
char *hostname;

hostname="localhost";
stat = DNSresolve(hostname,ipa);
if (stat<0)
 ERROR();

E-Mail

 11

4. E-Mail

Overview: SMTP and POP, with MIME
Support

IAP uses two mail protocols: Simple Mail Transfer Protocol (SMTP) and Post Office Protocol (POP).
SMTP is an application protocol based on TCP. It is used for moving mail from one machine to another
machine, while POP allows a user to read their mail from a host machine. Both SMTP and POP can be
separated into the receiving side (server) and the sending side (client). IAP supports SMTP as a server
or a client, and POP as a client only.

See also: Recommended Reading in Chapter 1 for references for SMTP, POP, and MIME.

MIME (Multipurpose Internet Mail Extensions) defines how to encode and decode multipart messages
and non-ASCII character sets. USNET programs are mime-aware (can handle mime encoding).

The Internet Access Package supports encoding and decoding base64, and supports decoding quoted
extended ASCII.

The USNET support for SMTP, POP, and MIME consists of user-callable subroutines to send and
receive mail messages.

Chapter 4

 12

Using SMTP to Send Mail
To send a message with SMTP, the client connects to an SMTP server and then transfers the messages.

This is an example of the client SMTP flow of function calls:

SMTPsend() /* client calls IAP
 SMTPgetdata(NULL) /* IAP calls client to open file
 SMTPgetdata(data) /* IAP calls client to read data
 etc…
 /* SMTPsend() returns to client

Internally, sending a mail message using SMTP is done with the following sequence:

1. Open TCP port 25.

2. Send command MAIL FROM.

3. Send command RCPT TO.

4. Send command DATA.

5. Send the message.

6. Send a dot in its own line as terminator.

7. Send command QUIT.

8. Close connection.

The message itself is in the SMTP format.

The basic message consists of an envelope (to and from), headers, and text. The headers give
information such as the date, the subject, and so on. They are separated from the text body by an empty
line.

These functions for sending a message are described in this section:

SMTPgetdata() Provides mail contents (client-provided, IAP calls).

SMTPsend() Sends a message (in IAP, client calls).

E-Mail

 13

SMTPgetdata()
Provides mail contents.

int SMTPgetdata(char *buff, int buflen);

buff a pointer to the buffer where the data goes

buflen Values are:

 0 = a new message, or message part, is starting, and the
 user should open his data file. See also Return
 Value below.

 >0 = a request for up to buflen bytes of data into the
 buffer buff. If this is a text (ASCII) file, lines
 must end in CR-LF.

SMTPsend() calls this user routine to get data for the mail message.

For single-part messages, SMTPgetdata() will be called once with buflen=0 to trigger a file open,
and then many times with buflen>0 to obtain data. SMTPsend() will continue calling
SMTPgetdata() until data is exhausted, at which time SMTPgetdata() will close its file and return 0.

For multipart messages, SMTPgetdata() can indicate that the data should be encoded using the base64
representation by returning 1 when asked to open the file. It will return -1 if there are no further parts.

Return Value
With buflen of 0 (new message or part), SMTPgetdata() should return:
 0 Text part or single-part message
 1 Binary part
 -1 No more parts

If buflen is >0, SMTPgetdata() should return the number of bytes placed into the buffer.

Chapter 4

 14

Examples
/* The following example assumes single-part ASCII = non-MIME
/* We use file I/O here, but data from memory is also possible
*/

unsigned SMTPgetdata(char* BfrAdr, unsigned BfrLen)
{
static FILE* F = 0;
if(0==BfrLen){
 /* starting a new part, so open file */
 F = fopen(“myfile.txt”);
 return (F?0:-1);
}else{ /* reading more data */
 got = fgets(BfrAdr,BfrLen-1,F);
 /* get 1 line */
 if(got){ /* fix \n to be CR+LF */
 char* t = strlen(BfrAdr);
 if(t) -t;
 /* back up to the \n */
 t++ = ‘\x0D’; / CR */
 t++ = ‘\x0A’; / LF */
 got = t-BfrAdr; /* minimum 2 */
 return got;
 /* length of line with CR+LF */
 } /* endif */
} /* end of SMTPgetdata */

E-Mail

 15

/* Here is an example with MIME support
/* Again, we demonstrate with file I/O
*/

unsigned SMTPgetdata(char* BfrAdr, unsigned BfrLen)
{
static FILE* F = 0;
static isBinary = <you figure out which>;
if(0==BfrLen){ /* starting a new part, so open file */
 char* filespec[15]; /* PartNum is our index (we ++
 it), PartMax is ‘const’ */
 if(PartNum > PartMax) return -1;
 /* no more data - we’re done! */
 sprintf(filespec,”SendPart.%03u”,PartNum);
 F = fopen(filespec,(isBinary?”rb”:”r”));
 if(0==F) return -2;
 /* oh no, something’s really messed up! */
 return isBinary;
 /* tell SMTPsend if Base64 encoding is needed */

 }else{ /* reading more data */
 unsigned got;
 if(isBinary){
 /* just read bytes, SMTPsend will encode them */
 got = fread(BfrAdr,BfrLen,1,F); /* read raw data */
 }else{ /* isText (e.g. ASCII) */
 got = fgets(BfrAdr,BfrLen-1,F); /* get a line */
 if(got){ /* fix \n to be CR+LF */
 char* t = strlen(BfrAdr);
 if(t) --t; /* backup to the \n */
 t++ = ‘\x0D’; / CR */
 t++ = ‘\x0A’; / LF */
 got = t-BfrAdr; /* minimum 2 */
 } /* endif */
 } /* endif */
 if(0==got){ fclose(F); ++PartNum; } /* end of file */
 return got;
 } /* endif */
} /* end of SMTPgetdata */

Chapter 4

 16

SMTPsend()
Sends a message.

int SMTPsend(char *MIMEtype, Iid mailserver, char *to,
 char *subject);

type 0 = simple message, no MIME
“Multipart/Parallel” = MIME message. To be a
 multipart message, MIMEtype must start
 with “Multipart...” (not case-sensitive).

mailserver IP address of mail server

to full mailing address, for instance aaa@bbb.com

subject subject of message

Normally you would get the mailserver address with a call to DNSresolve(), for instance:

 DNSresolve(“aaa@bbb.com”, &mailserver);

This call is not inside SMTPsend(), so that the application can, when necessary, use other methods to
get the mail server address.

SMTPsend() will open the TCP connection and create the mail headers. Then it will ask the user to
provide the message text, by calling SMTPgetdata().

SMTPsend() uses the ANSI C timing functions gmtime() and localtime(). If these functions are not
supported by your development tools, these functions must be stubbed out.

Return Value
 0 Successful

-1 Own domain name not known. This is either given by a DHCP server, or
stored by the application into DNSdomain.

-2 Handshake problem

EHOSTUNREACH Mail server not reachable

Example
See the appsrc/smtest.c file for examples of SMTPsend().

E-Mail

 17

Using POP to Receive Mail
The Post Office Protocol (POP3) is a minor variation of SMTP, and allows a client to retrieve mail from
a remote server mailbox. This protocol is commonly used by computers, which are not connected to the
network at various times, to retrieve mail from a permanent SMTP host. The SMTP host holds
messages for the client until the client empties its mailbox. This allows the client to be disconnected for
a time without generating SMTP delivery errors.

A message received by POPreceive() will look exactly like a message received by SMTPserv() (see the
section on Using the SMTP Server to Receive Mail). POPreceive() handles the networking protocols,
and then passes the data to the user. The user calls the data-handling routines they need, and fills in the
variables to fit their data. The following chart illustrates this process. If necessary, the user can call
support routines (see Header-Encoding Support Routines, in this chapter) to decode the data.

Chapter 4

 18

Protocol-handling

 Routines and Actions

 Data-handling

Routines (user fills

 in variables) and Actions
POPreceive()

For each header segment
the user gets, calls

SMTPextract(-1,0,0)

Start of message.

SMTPgetHeaders(headcnt,
headers,partno)

MIME data still encoded,
repeated until end of message.

End of message.

SMTPextract(-2,0,0)

SMTPextract(0,buff,len)

For each header that was
returned, calls function
to decode header as

necessary.

SMTPckencod()

Figure 4-1: POP Flow Chart

E-Mail

 19

Internally, POP is used to request mail from a mail server, as follows:

1. Open TCP port 110.

2. Send command USER.

3. Send command PASS.

4. Send command RETR.

5. Take the message.

6. Delete the message at the server using DELE.

7. Repeat steps 4 thru 6 until all messages have been received.

8. Send command QUIT.

9. Close connection.

This is an example of the client POP flow of functions for receipt of three simple (e.g. single-part)
messages:

POPreceive()
 SMTPextract(-1)
 SMTPgetHeaders()
 SMTPextract(data)
 SMTPextract(data)
 etc
 SMTPextract(-2)
 SMTPextract(-1)
 SMTPgetHeaders()
 SMTPextract(data)
 etc
 SMTPextract(-2)
 SMTPextract(-1)
 SMTPgetHeaders()
 SMTPextract(data)
 etc
 SMTPextract(-2)
POPlog()

Chapter 4

 20

These functions are described in this section:

POPlog() Logs arriving messages.

POPreceive() Receives messages from a POP server.

E-Mail

 21

POPlog()
Logs arriving messages.

int POPlog(char *buff, int len);

buff a pointer to the buffer where the message is

len the length of the buffer, in bytes

POPlog() is called by the server to log the message that’s been transferred. All messages are logged
with this function, exactly as they arrive. Value len -1 means end of message.

Return Value

<0 Error

Otherwise, number of bytes written to log.

Example
int POPlog(char *buff, int len)
{
 int status;

 if (len < 0)
 return fflush(logfile);
 buff[len] = ‘\n’;
 status = fwrite(buff, len+1, 1, logfile);
 buff[len] = 0;
 return status;
}

Chapter 4

 22

POPreceive()
Retrieves messages from a POP server.

int POPreceive(char *POPserver, char *mailbox, char *password);

POPserver name of POP server

mailbox name of mailbox

password password

POPreceive() will open the TCP connection and ask for messages. It will ask the POP server to delete
any messages that were successfully retrieved.

POPreceive() calls the user functions SMTPextract() and POPlog().

Return Value
 0 Successful

-2 Handshake problem

EHOSTUNREACH Mail server not reachable, defined in support.h

Example
char *popserver, *user, *password
rslt =POPreceive(popserver, user, password)

E-Mail

 23

Using the SMTP Server to Receive Mail
To be a server, the system needs to be running and connected to the network at all times. The system
also needs a thread by itself to run. While the SMTP server is doing mail, it can’t perform other
functions.

IAP handles the networking protocols with SMTPserv(), and then passes the data to the user. The user
calls the data-handling routines they need, and fills in the variables to fit their data. The following chart
illustrates this process. If necessary, the user can call support routines (see Header-Encoding Support
Routines, in this chapter) to decode the data.

Chapter 4

 24

Protocol-handling
 Routines and Actions

 Data-handling
Routines (user fills
 in variables) and Actions

SMTPserv()

Starts the SMTP server.

For each mail message,
notifies the user, then calls

For each header segment
the user gets, calls

SMTParrive(from,to)

SMTPextract(-1,0,0)

Start of message.

SMTPgetHeaders(headcnt,
headers,partno)

MIME data still encoded,
repeated until end of message.

End of message.

SMTPextract(-2,0,0)

Figure 4-2: SMTP Server-side Flow Chart

E-Mail

 25

This is the flow of function calls for two mail messages (the first has one attachment):

SMTPserv()
 SMTParrive()
 SMTPextract(-1)
 SMTPgetHeaders()
 SMTPextract(data)
 SMTPextract(data)
 etc.
 SMTPextract(-2)
 SMTPextract(-1)
 SMTPgetHeaders()
 SMTPextract(data)
 etc.
 SMTPextract(-2)
 SMTParrive()
 SMTPextract(-1)
 SMTPgetHeaders()
 SMTPextract(data)
 etc.
 SMTPextract(-2)
SMTPlog()

These functions are described in this section:

SMTParrive() Announces the arrival of a message.

SMTPchkencod() Decodes headers.

SMTPextract() Extracts attachments to a mail message.

SMTPgetHeaders() Gets headers.

SMTPlog() Logs arriving messages.

SMTPserv() Starts the SMTP server.

SMTPgetHeaders() and SMTPchkencod() are included to allow the user to better customize the
operation of the mail reader. The user is responsible for dealing with both headers and data. This
improves flexibility for the user to customize their system.

Chapter 4

 26

SMTParrive()
Announces the arrival of a message.

SMTParrive(char *from, char *to);

from the sender of the message

to the intended recipient of the message

This call signifies that a message has arrived. You will be told who the message is from and to, so you
can determine whether to accept it.

Return Value
<0 Tells the IAP server to refuse to receive this message.

 0 Tells the IAP server to accept this message.

Example
/* The server calls this user routine for an arrived mail message.
*/
int SMTParrive(char *from, char *to)
{
 Nprintf(“Mail FROM %s TO %s\n”, from, to);
 return 0;
}

E-Mail

 27

SMTPchkencod()
Checks headers for encoding.

int SMTPchkencod(char *val,struct HeadValue *hvp)

val a string (the header)

hvp the returned structure, if there is encoding

Run each header through this routine to detect any special encoding. Special encoding means the
message contains data that’s a MIME type.

The user is responsible for allocating enough buffer space for their data. The buffer length is configured
at compile time, in the include files.

This is the HeadValue structure:

struct HeadValue {
 char *value;
 char encoding;
 char *charset;
 char *etext;
};

Return Value
0 No encoding

1 Yes, there is encoding

Example
There is an example in the file smtest.c.

Chapter 4

 28

SMTPextract()
Extracts attachments to a mail message.

SMTPextract(int flag, char *buff, int len);

flag The flag values are:
 -1 = new message starting
 -2 = message complete
 0 = len bytes of ASCII data with CR+LF at the end

buff a pointer to the buffer where the data is

len the length of the data, in bytes

This is a user-supplied routine that is given the data lines as they arrive. For a single-part message, the
sequence is:

 SMTPextract(-1,0,0) /* start of message */
 SMTPgetHeaders(...) /* here are the headers */
 SMTPextract(0,address,length) /* all the data lines */
 ... /* one at a time */
 SMTPextract(-2,0,0) /* end of message */
 ... /* start of next message */

For a multipart message, the sequence is:

 SMTPextract(-1,0,0) /* start of message */
 SMTPgetHeaders(...) /* here are the message headers */
 SMTPextract(-1,0,0) /* start of part */
 SMTPgetHeaders(...) /* here are the part headers */
 SMTPextract(0,address,length) /* all the data lines */
 ... /* one at a time */
 SMTPextract(-2,0,0) /* end of part */
 SMTPextract(-1,0,0) /* start of 2nd part */
 SMTPgetHeaders(...) /* here are the part headers */
 SMTPextract(0,address,length) /* all the data lines */
 ... /* one at a time */
 SMTPextract(-2,0,0) /* end of message */
 SMTPextract(-2,0,0) /* end of message */
 ... /* start of next message */

E-Mail

 29

SMTPextract() will read messages from the POP server one after another. If it sees a multipart MIME
header, it will handle the nested calls to step through the parts. Currently, it does not support parts
nested several levels deep.

Return Value

<0 Error

 0 or >0 Successful

Example
Here’s an example of SMTPextract(), taken from smtest.c. This writes the message parts into separate
files.

int SMTPextract(int flag, char *buff, int len)
{
char buf[32];
if (flag < 0){
 if (flag == -1){
 Nsprintf(buf, “mail.%03d”, usfileno++);
 if (usfileno >= 1000)
 usfileno = 0;
 ffp = fopen(buf, “wb”);
 }else
 fclose(ffp);
 return 0;
 }
 if (flag == 0)
 buff[len++] = ‘\r’, buff[len++] = ‘\n’;
 return fwrite(buff, len, 1, ffp);
}

Chapter 4

 30

SMTPgetHeaders()
Gets headers.

int SMTPgetHeaders(int cnt,struct SMTPHeaders *heads,
 int part)

cnt the number of headers

heads a structure containing the array of headers

part which part of the mail message

This routine will be called each time the headers have been read. Only one level of attachments is
allowed (i.e., the mail message can have attachments, but attachments cannot have attachments).

The user is responsible for allocating enough buffer space for their data.

This is the SMTPHeaders structure:

struct SMTPheaders {
 char *head;
 char *value;
};

Return Value
Always returns zero.

E-Mail

 31

Example
/* This is just an EXAMPLE routine that the user could modify to do
something with the mail headers.
 *
 * cnt is the number of headers
 * heads is a pointer to the headers
 * part is which part of a multi-attachment e-mail
 * 0= top headers
 */
int SMTPgetHeaders(int cnt,struct SMTPheaders *heads, int part)
{
int i, len;
char *head, *val, *ptr;
struct HeadValue hv;
for(i=0;i<cnt;i++){
 head = heads[i].head;
 val = heads[i].value;
 printf(“%s: %s\n”,head, val);
#ifdef NOT_USED
 len = SMTPchkencod(val,&hv);
 if(len){
 len = strlen(hv.etext);
 if(hv.encoding == ‘B’){
 len = frombase64(hv.etext,len);
 } else if (hv.encoding == ‘Q’){
 len = fromquoted(hv.etext,len);
 }
 }
 Nprintf(“%s %s %s %s”,hv.value,hv.charset,hv.etext);
#endif
 }
return 0;
}
/* DONE with SMTPgetHeaders()
 ————————————————————————*/

Chapter 4

 32

SMTPlog()
Logs arriving messages.

int SMTPlog(char *buff, int len);

buff a pointer to the buffer where the message is

len the length of the buffer, in bytes

SMTPlog() is called by the server to log the message that’s been transferred. All messages are logged
with this function, exactly as they arrive. Value len -1 means end of message.

Return Value

<0 Error

Otherwise, number of bytes written to log.

Example
/* This routine is called to log arriving mail messages,
 headers and content.
 Each call supplies one line, without end-of-line
 characters (CRLF).
 Value len = -1 means end of message.
*/

int SMTPlog(char *buff, int len)
{
int status;

if (len < 0)
 return fflush(logfile);
buff[len] = ‘\n’;
status = fwrite(buff, len+1, 1, logfile);
buff[len] = 0;
return status;
}

E-Mail

 33

SMTPserv()
Starts the SMTP server.

void SMTPserv(void);

This call starts the SMTP server, and never returns. The server does not use multitasking while
receiving a message, for the following reasons:

• SMTP is not interactive, so multitasking will make no difference unless the message is large.

• Function SMTPgetHeaders() needs a lot of memory for its arguments. This would in any case force
a limit on the number of server tasks.

SMTPserv() handles the following SMTP commands:

 HELO new client

 MAIL new mail from sender

 NOOP no operation

 QUIT terminates session

 RCPT names recipient

 RSET resets session

 SOML send-or-mail, treated as mail

SMTPserv() calls the three user functions SMTPlog(), SMTPextract(), and SMTParrive() for any
arrived mail message.

SMTPserv() gives all arrived messages to the user. It will not do any relaying or resending.

Chapter 4

 34

Header-Encoding Support Routines
These routines are described in this section:

decodetext() Decides whether to call frombase64() or fromquoted().

frombase64() Converts a base64 string to binary.

fromquoted() Converts quoted text to unquoted.

tobase64() Converts a binary buffer to base64.

E-Mail

 35

decodetext()
Decides whether to call frombase64() or fromquoted().

decodetext(char *buff, int len)

buff a pointer to the buffer where the message is

len the length of the buffer, in bytes

This is an upper-level routine. When you pass a header to it, it evaluates the header and performs the
correct decoding by calling either frombase64() or fromquoted().

The user is responsible for allocating enough buffer space for their data.

Return Value
The length of the new buffer.

Example
newlen = decodetext(buf,len);
if (len)
 printf(“%s\n”,buf);

Chapter 4

 36

frombase64()
Converts a base64 string to binary. The size shrinks to ¾.

int frombase64(char *buff, int len)

buff a pointer to the buffer where the message is

len the length of the buffer, in bytes

The user is responsible for allocating enough buffer space for their data, keeping in mind that
frombase64() shrinks the size of the data.

Return Value
The length of the new buffer.

Example
newlen = frombase64(tobuf, newlen);
printf(“%s\n”,tobuf);

E-Mail

 37

fromquoted()
Converts quoted text to unquoted.

fromquoted(char *buff, int len)

buff a pointer to the buffer where the message is

len the length of the buffer, in bytes

Control characters in the stream are within quotation marks. The
fromquoted() routine converts these to unquoted text.

The user is responsible for allocating enough buffer space for their data.

Return Value
The length of the new buffer.

Example
newlen = fromquoted(buf,len);
printf(“%s”,buf);

Chapter 4

 38

tobase64()
Converts a binary buffer buf of length len to base64 with a 3->4 expansion.

int tobase64(char *buff, int len, char *tobuf)

buff a pointer to the buffer where the message is

len the length of the buffer, in bytes

tobuf a pointer to the buffer to hold the decoded data

The user is responsible for allocating enough buffer space for their data, keeping in mind that tobase64()
increases the size of the data.

Return Value
The length of the new buffer.

Example
frombuf = “How now brown cow”;
fromlen = strlen(frombuf);
newlen = tobase64(frombuf,fromlen,tobuf);
printf(“%s\n”,tobuf);

E-Mail

 39

Test Program
Smtest is a DOS test program for the mail protocols. It will perform different functions, depending on
the command arguments. It can run as either the server or the client.

This command runs the SMTP server, to receive mail messages:

SMTEST

The messages will be logged into the file mail.log. Any extracted message parts will be written into
files mail.000, mail.001 and so on.

This command will send a mail message to the specified recipient:

SMTEST <recipient>

The message content comes from the files listed at the top of smtest.c. If the source variable
MULTIPART is set, all files will be sent, otherwise just the first. The mail server is determined using
with a call to DNSresolve(). Source variable DOMAIN gives the local domain name.

You can use the source-level parameter TESTSERVER to send the mail to smtest running as server.

This command calls up the POP server, and retrieves any messages queued for the specified mailbox:

SMTEST <POPserver> <mailbox> <password>

The messages are logged and extracted exactly as in the first test case.

Any successfully received message is deleted from the mailbox

Index

 40

Index
C
CGI

definition, 2
checking

password, 7
configuring

dialing, 7
converting

base64 to binary, 36
binary to base64, 38
quoted text to unquoted, 37

D
data structures

HeadValue, 27
logincommand, 8
SMTPHeaders, 30

decodetext() function
description, 35
example, 35

DHCP, 9, 16
definition, 2

dial.c file, 7
dialing

overview, 5
DNS

definition, 2
description, 9
overview, 9

dns.c module, 9
DNSresolve() function, 9

and SMTPsend(), 16
description, 10
example, 9, 10

domain name, getting, 10
downcommand table, 7

E
e-mail

connections with web server, 1
encoding

checking headers for, 27

F
frombase64() function

description, 36
example, 36

fromquoted() function
description, 37
example code, 37

functions
DNSresolve(), 9, 10
Ndial(), 6

G
getting headers, 30

H
header-encoding support routines

summary, 34
headers

checking for encoding, 27
getting, 30

HeadValue structure, 27
HTML META commands

definition, 2
HTTP

definition, 2

I
IAP

included products, 1
overview, 1
terminology, 2

IP address, getting, 10
ISMAP

definition, 2

L
logging arriving messages, 21, 32
logincommand structure, 8
logincommand table, 8

Index

 41

M
mail

announcing arrival of messages, 26
extracting attachments, 28
logging, 21, 32
reading, 13
sending with SMTP, 12, 16

mail attachments
allowed levels, 30
extracting, 28

mail functions
decodetext(), 35
frombase64(), 36
fromquoted(), 37
POPlog(), 21
POPreceive(), 22
SMTParrive(), 26
SMTPchkencod(), 27
SMTPextract(), 28
SMTPgetdata(), 13
SMTPgetHeaders(), 30
SMTPlog(), 32
SMTPsend(), 16
SMTPserv(), 33
tobase64(), 38

mail protocols
POP, 11
testing, 39

MIME
definition, 2, 11

modem
dialing, 6
hanging up, 6

N
Ndial() function

description, 6
example, 6

P
password, checking, 7
point-to-point connections, 5
POP

definition, 2, 17
steps to request mail, 19

POP functions
POPlog(), 21
POPreceive(), 22
summary, 20

POPlog() function
description, 21
example, 21

POPreceive() function
description, 22
example, 22

PPP, 7
and Ndial(), 6
authentication protocols, 8
definition, 2

S
SLIP, 7

definition, 2
smtest test program, 39
SMTP

definition, 2
flow of client function calls, 12
flow of server function calls, 25
using to send mail, 12

SMTP functions
SMTParrive(), 26
SMTPchkencod(), 27
SMTPextract(), 28
SMTPgetHeaders(), 30
SMTPlog(), 32
SMTPserv(), 33
summary list, 25

SMTP server
starting, 33

SMTParrive() function
description, 26
example, 26

SMTPchkencod() function
description, 27

SMTPextract() function
description, 28
example, 29

SMTPgetdata() function
description, 13

SMTPgetHeaders() function
description, 30

Index

 42

example, 31
SMTPHeaders structure, 30
SMTPlog() function

description, 32
example, 32

SMTPsend() function
description, 16

SMTPserv() function
description, 33

SVA
definition, 2

T
tables

downcommand, 7
logincommand, 8
upcommand, 7

TCP/IP, 9
definition, 2

test programs
smtest, 39

TESTPHONE macro, 6
tobase64() function

description, 38
example, 38

U
upcommand table, 7

W
web server

connections with e-mail, 1

	1. IAP Overview
	Overview
	IAP Terminology
	Recommended Reading
	Other U S Software Documents
	On the Internet
	Books

	2. Automatic Dialing
	Dialing Overview
	Ndial()

	Configuring the Dialing

	3. Domain Name System
	DNS Overview
	DNSresolve()

	4. E-Mail
	Overview: SMTP and POP, with MIME Support
	Using SMTP to Send Mail
	SMTPgetdata()
	SMTPsend()

	Using POP to Receive Mail
	POPlog()
	POPreceive()

	Using the SMTP Server to Receive Mail
	SMTParrive()
	SMTPchkencod()
	SMTPextract()
	SMTPgetHeaders()
	SMTPlog()
	SMTPserv()

	Header-Encoding Support Routines
	decodetext()
	frombase64()
	fromquoted()
	tobase64()

	Test Program

	Index

