USNET
Internet Access
Package
User’s Guide

Version 1.1
July 2004

]

A

U S SOFTWARE.

EEEEEEEEEEEEEEEEEE

Copyright and Trademark Information

Copyright 1997-2004 Lantronix, Inc. All rightsreserved. No part of this publication may be
reproduced, trandated into another language, stored in aretrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of Lantronix, Inc.

Lantronix®, U S Software®, USNET®, USFiles®, USLink®, SuperTask!®, MultiTask! ™,
NetPeer™, TronTask!®, Soft-Scope®, and GOFAST® are trademarks of Lantronix, Inc. Other
brands and names are marked with an asterisk (*) and are the property of their respective owners.

Lantronix, Inc. makes no warranty of any kind with regard to this material, including but not limited
to the implied warranties of merchantability and fitness for a particular purpose. Lantronix, Inc.
assumes no responsibility for any errors that may appear in this document. Lantronix, Inc. makes no
commitment to update or to keep current the information contained in this document.

Lantronix, Inc.

15353 Barranca Parkway
Irvine, CA 92618
(949)453-3990

Fax (949) 453-3995

For Support Contact:
Micro Digital Associates, Inc.
2900 Bristol Street, #G204
CostaMesa, CA 92626

(714) 437-7333
support@smxinfo.com
www.smxinfo.com

Documentation Conventions

Computer output and code examples: Cour i er , usualy in a separate paragraph.

Function names and command names. Bold italic, usually followed by parentheses, asin main()
function.

Variables: Courier 11 italic (mt _busy).
Filenames: Times bold (the file usrclk.asm), usually in lower case.
Key names: Initial capital, in angle brackets, asin press <Enter>.

Menu names and selections, dialog box names, screen titles, window titles: Timesbold, asin File
menu.

Notes: Indicate important information.

Cautions. Indicate potential damage to hardware or data.

Documentation History

Revision Number Date
1.0 (Original) August 1997
11 April 1998

Contents

1. IAPOVERVIEW 1
L@V =1 Y YOO 1

7 e I =1 Y T N0]I 0 L) 20O 2
RECOMMENDED READINGvviiittieiitieeettiesiteeeetessteesetessstessstasssssesstessssaessasassssesssbessssenssssnssns 3
Other U S SOftWare DOCUMENTS........oceieeiiieie e seie e etrie s sbee e s s sbae e s s sbe e e s s sabee e s s ssbeeesssabaeessnreis 3

(@I 1 SN L0101 0= 3
7070 (T 4

2. AUTOMATIC DIALING 5
DIALING OVERVIEW ...iittiiiiiittiee s eitteee s settee e s seateeessabbeeessaatesesaastesasssstessssstesssasstesssanstessssnssesesssens 5

AN = PSS 6
CONFIGURING THE DIALING ...ttt sttieetie st e e ses e stae s s te s s tee s ssaassatesssntessnbessbesssnbesssnenssnenas 7
3. DOMAIN NAME SYSTEM 9
BN S @AV =3 =V 1 =Y R 9

I NN S =S 0] Y=) ISP 10

4. E-MAIL 11
OVERVIEW: SMTP AND POP, WITH MIME SUPPORTuuiiiiitiie et s 11
USING SM TP TO SEND IMAIL wrtiiiiiieiieiiteie e eeteee e eitee e e sesteee s ssabeeessssbesessastesesssnbasessastesessassenessns 12
Y 0= o = - 13

Y IS 0 o) ST 16
USING POP TO RECEIVE IMAIL e oiuteiii ittt eteee e seatee e seatee e s saabe e e s sasteeessanbanessanbanessasbenessans 17
@ o) IS 21
POPTECEIVE() ... veeteeiesiesie e sie et te st s testeseeseese e eseeseesessestessetenseneeseeseeseesessessensensensenennens 22
USING THE SMTP SERVER TO RECEIVE MAIL ..uviiiiicieiee ettt esteee s sstee e s ssave e e s ssarene s 23

S Y I =T Y=) SR 26
SMTPCNKENCOU() ..ttt 27
SIMTPEXITBCE() -ttt st r e e e 28

Y o T (== L= £ RS 30

Y I oo) S 32

Y IS) TS 33
HEADER-ENCODING SUPPORT ROUTINESvviiiiiieieciiteee e citeee e ssareee e sesteeesssateeessssreeesssnrenessans 34
(01 o0 0 L= (S (SRS 35
L1072 5 7) SRS 36
L0010 801 [RS 37
10107215 <G USSR 38
TEST PROGRAM ...ttt ettt ettt ettt e et e e s te s e s ae e s st e s s eaeessateesabesssabessbesssseessabessanenesreesns 39
[N]SR 40

IAP Overview

1. IAP Overview

Overview

The USNET® Internet Access Package (IAP) provides modules for USNET to support dial-up
connections, Domain Name System (DNS), Hypertext Transfer Protocol (HTTP), and Internet mail.
This manual gives detailed information on the functions that are provided. The files that make up the
package and the functions that these files provide are detailed in the readme.txt file.

This manual describes the three products included in the USNET Internet Access Package:
Automatic dialing, Domain Name System, and e-mail. Thisis the organization of the manual:

Chapter Contents
1. Overview Introduces the reader to the Internet Access Package, | AP terminology,

and recommended reading.
2. Automatic Dialing Describes configuring and using the dialer.
3. Domain Name System Describes the Domain Name System.

4. E-Mail Describes sending and receiving messages using SMTP and POP
protocols, decoding data, and testing.

Any connections between the web server and e-mail (such as automatically e-mailing log files or
notices) are configured by the user.

Chapter 1

IAP Terminology

Cal

DHCP

DNS

Common Gateway Interface. CGI reads parameters from forms on the displayed
web page to the server, so the server can display different pages depending on the
user’s actions.

Dynamic Host Configuration Protocol, a method for a client to request information
on its own configuration from a server.

Domain Name System, a mechanism that allows the |P address of asystemin a
TCP/IP network to be determined based on a name assigned to the system, or vice
versa.

HTML META commands

HTTP

ISMAP
MIME

PPP
SLIP
SMTP
SVA

TCP/IP

Commands embedded in the HTML that return predefined system information to
the user.

Hypertext Transfer Protocol, a simple application- level protocol used to access
hypermedia documents. The protocol is stateless and generic, which allowsit to be
used for many tasks.

An HTML tag which returns position coordinates within the page image.

Multipurpose Internet Mail Extensions, which defines how to encode and decode
multipart messages and non-ASCI| character sets.

Post Office Protocol, aminor variation of SMTP that allows a client to retrieve mail
from a remote server mailbox.

Point-to-Point Protocol, alink between two computer ports.
Serial Line Interface Protocol, alink between two points (computer ports).
Simple Mail Transfer Protocol, a protocol for transferring mail.

Server Variable Access, a mechanism for accessing static global variables within an
embedded application viaHTML.

Transmission Control Protocol/Internet Protocol, a software protocol for
communication between computers.

IAP Overview

Recommended Reading

Other U S Software Documents

USNET User’s Manual
USNET Web Server User’s Guide
Advanced Customization of the Embedded Web Server

On the Internet

RFCs (request for comments) are documents that are available over the Internet via anonymous FTP.
The following references will provide more information on topics relevant to |AP;

Topic RFC Numbers

SMTP 821, 822, 1869, and 2045
POP 1725

MIME 2045 through 2049

HTTP 2068

DNS 1034, 1982, 2065, 1876, 1101

Here is an abbreviated example FTP session:

% ftp ds.internic.net

Name: anonynous
Password: <your emmil address>

ftp> cd rfc
ftp> get rfcll22.txt

ftp> quit

Chapter 1

Books

Foundations of WWWV Programming with HTML & CGI
IDG Books
ISBN 1-56884-703-3

CGI Programming in C and Perl
Thomas Boutell

Addison Wesly

ISBN 0-201-42219-0

CGI Developers Guide
Eugene Eric Kim
Sams Net

ISBN 1-57521-087-8

There are many books on web page design. Thisoneisvery good for low-level protocols, and has
cross-references to RFCs:

Internet Protocols Handbook
Dave Roberts

Coriolis Group Books

ISBN 1-883577-88-8

Automatic Dialing

2. Automatic Dialing

Dialing Overview

The dialing function provided by the IAP is useful for applications where amodem is used to
establish a point-to-point connection with another host. The base distribution of USNET is capable of
establishing a point-to-point connection between directly connected systems. When amodem is
involved in establishing the connection, support must be provided to issue commands to the modem,
and possibly to respond to queries from aterminal session before the PPP handshake can begin. The
Ndial() function in dial.c provides this support.

This support is especially useful in connecting a system using a PPP account available from many
Internet Service Providers.

Chapter 2

Ndial()

Dials or hangs up the modem.

int Ndial(int netno, char *phonenunber);
net no Network index: 0, 1 and so on.

phonenunber The number to dial, in any format that is acceptable to the auto-dialer. A zero
argument means disconnect.

Ndial() can be used for PPP. Ndial() isnormally not called by the USNET protocol stack, because
USNET does not know how to get the telephone number. There is however away to force this for
testing purposes:

1. Touse Ndial() in aPPP connection, set the flag field in netconf.c for the seria port to DI AL.
For instance:

“test”, “conk”, C, {192,9,202,1}, EAO, DI AL, PPP, 18250, O,
“I RNO=3 PORT=0x2f8 CLOCK=115200 BAUD=38400",

2. Define the telephone number, for instance in local.h:
#defi ne TESTPHONE “ 5551212
Other than for testing purposes, the dialing and the disconnect would be done by the application.

Return Value

0 Success
-1 Error
Example

Here is an example of how the Ndial() functionisused. The exampleisfrom PPP.C (included in the
core USNET product).

#def i ne TESTPHONE “5551212”" /* Phone nunber */
#i f def TESTPHONE

/*
/* for testing purposes, call the dialing function */
*/
if (netconf[netp->confix].flags & DI AL)
{
i1 = Ndial (netno, TESTPHONE);
if (il <0)
return il;

}
#endi f /* TESTPHONE */
The TESTPHONE macro is already defined, and the user must add this line to local.h:
#defi ne TESTPHONE “5551212"

Automatic Dialing

Configuring the Dialing

The dial.c file has three command tables at the top of the code. Table upconmrand contains the
commands needed to establish a telephone connection. The table as shipped should work for Hayes-

compatible autodialersin North America. For other devices and other telephone networks, changes
may be needed. The table has three elements:

e Command sent to the autodialer, exactly as coded.

Answer expected from the autodialer, without terminator. Ndial() accepts either OXOA or 0OXOD

as terminator, and ignores extra terminators.

 Flags
0x01
0x02
0x04
0x08
0x40
0x80

Skip on first try, meant for reset commands
Long timeout, needed for the actual dialing
Phone number included in sprintf() format
Delay before and after

Skip this entry = comment out

Final entry in table

Tabledowncomand is used exactly like upcontrand, but to disconnect.

Tablel ogi ncommand is meant for servers that check user ID and password before actually
entering SLIP or PPP. This practice, while poorly standardized, iswidely used in UNIX, and has also
spread to other systems. The table format is the same as for the two others, but the use is different:

A character string that Ndial () will watch for. The string does not have to be an entire word;

actualy, it may be better not to include the first letter of the word.

 Flags
0x40
0x80

Answer that Ndial() will send upon seeing the expected string.

Skip this entry = comment out
Final entry in table

Chapter 2

Thisisthel ogi nconmmand structure:

/*
/* use 4-8 characters of the question in this table */
*/
static struct COVMAND | ogi ncommand[] ={
{“ogin”, USERI D, 0x00},
{“assword”, PASSWD, 0x80},
b

Thel ogi ncomrand structure is defined in ndial.c and hastwo entries, ogi n and asswor d
(the first letters are dropped). The application waits for the first string, then responds with the next
parameter. Thelast stringisaflag.

This means that the server expects to be asked two questions, such as “please enter your login” and
“enter password”. The user ID and password are defined in local.h (macros USERID and PASSWD).
These questions will vary from server to server, and often include a greeting message. 1f you have no
ideawhat your server will ask, just run Ndial() with NTRACE set to 3, and this will show you what to
expect.

If you don't need the| ogi ncormand table at all, comment out the entries using flag value 0x40.
Many serverswill use the PPP authentication protocols, usually PAP, to validate the user.

Domain Name System

3. Domain Name System

DNS Overview

The Domain Name System (DNS) is a mechanism that allows the | P address of asystemin a TCP/IP
network to be determined based on a name assigned to the system. Referring to a system by aname
rather than an IP address allows for friendlier user interfaces, and also provides alayer of indirection
that can be used to keep a system’s name consistent, even though its I P address may need to be
changed.

The dns.c module provides a DNS resolver function that will accept the name of ahost asa
parameter, and return the | P address that is associated with the name.

This function depends on the support of at |east one DNS server, which will respond to queries from
the resolver to provide the name to |P address mapping. Up to two entries for DNS servers can be
entered inthe net dat a[] array in netconf.c. The servers areidentified by the flag DNSVERin
thef | ags field of an entry, for example:

“dns1”, “nnet”, C, {192,168, 43, 21}, EAO, DNSVER 0, 0, 0, O,

If USNET is compiled to include DHCP support, then DHCP can provide the | P addresses of DNS
servers without explicitly entering the serversinnet dat a[| .

The DNS resolver can be invoked automatically as part of callsto Nopen() or gethostbyname() when
aname given as a parameter is not defined innet dat a[] . To provide this feature, the constant
DNS should be set to the value 2 in local.h. For example:

DNS resolver, 1 = code included, 2 = called
automatically. */

#defi ne DNS 2

If DNSisdefined as 1, then DNS-related code will be included in the USNET library functions, but
the DNS resolver function will not be called automatically to resolve unknown host names.

Applications can aso call the DNS resolver directly using the DNSresolve() function (described
next).

Chapter 3

DNSresolve()

Resolves adomain name to an | P address.
i nt DNSresol ve(char *fullname, |Paddr *iidp);
ful | name domain name
iidp pointer to the address of the returned |P address
DNSresolve() stores the |P address at thislocation if f ul | nane isnon-zero.

DNSresolve() can start with either a domain name or IP address. If there’san @ in the name,
DNSresolve() triesto find amail host (1P address). If the first letter in the name is between 0 and 9,
it's a pointer to an IP address, and DNSresolve() triesto find the domain name.

Return Value

>=0 Successful lookup

-1 I P address could not be obtained from the DNS server(s)

ENOBUFS Not enough buffers available for query (defined in support.h)
Example

| Paddr i pa;

char *host nane;

host name="1 ocal host";
stat = DNSresol ve(host nane, i pa);
i f (stat<0)

ERROR() ;

10

E-Malil

4. E-Malil

Overview: SMTP and POP, with MIME
Support

AP uses two mail protocols. Simple Mail Transfer Protocol (SMTP) and Post Office Protocol (POP).
SMTP is an application protocol based on TCP. It isused for moving mail from one machine to another
machine, while POP allows a user to read their mail from a host machine. Both SMTP and POP can be
separated into the receiving side (server) and the sending side (client). 1AP supports SMTP as a server
or aclient, and POP as aclient only.

Seealso: Recommended Reading in Chapter 1 for references for SMTP, POP, and MIME.

MIME (Multipurpose Internet Mail Extensions) defines how to encode and decode multipart messages
and non-ASCI| character sets. USNET programs are mime-aware (can handle mime encoding).

The Internet Access Package supports encoding and decoding base64, and supports decoding quoted
extended ASCII.

The USNET support for SMTP, POP, and MIME consists of user-callable subroutines to send and
receive mail messages.

11

Chapter 4

Using SMTP to Send Mall

To send a message with SMTP, the client connectsto an SMTP server and then transfers the messages.
Thisis an example of the client SMTP flow of function calls:

SMIPsend() /* client calls |IAP
SMIPget data(NULL) /* 1 AP calls client to open file
SMIPget data(data) /* IAP calls client to read data
etc...
/* SMIPsend() returns to client

Internally, sending a mail message using SMTP is done with the following sequence:
Open TCP port 25.

Send command MAIL FROM.

Send command RCPT TO.

Send command DATA.

Send the message.

Send adot in its own line as terminator.

Send command QUIT.

© N o 00 ~ w N P

Close connection.
The message itself isin the SMTP format.

The basic message consists of an envelope (to and from), headers, and text. The headers give
information such as the date, the subject, and so on. They are separated from the text body by an empty
line,

These functions for sending a message are described in this section:
SMTPgetdata() Provides mail contents (client-provided, AP calls).
SMTPsend() Sends amessage (in I1AP, client calls).

12

E-Malil

SMTPgetdata()

Provides mail contents.
i nt SMIPgetdat a(char *buff, int buflen);
buf f apointer to the buffer where the data goes
bufl en Vauesare:

0= anew message, or message part, is starting, and the
user should open his datafile. See also Return
Value below.

>0= arequest for upto buf | en bytesof datainto the
buffer buf f . If thisisatext (ASCII) file, lines
must end in CR-LF.

SMTPsend() callsthis user routine to get data for the mail message.

For single-part messages, SMTPgetdata() will be called once with buf | en=0 to trigger afile open,
and then many times with buf | en>0 to obtain data. SMTPsend() will continue calling
SMTPgetdata() until data is exhausted, at which time SMTPgetdata() will closeitsfile and return O.

For multipart messages, SM TPgetdata() can indicate that the data should be encoded using the base64
representation by returning 1 when asked to open thefile. It will return -1 if there are no further parts.

Return Value
Wwith buf | en of 0 (new message or part), SMTPgetdata() should return:

0 Text part or single-part message
1 Binary part
-1 No more parts

If buf | en is >0, SMTPgetdata() should return the number of bytes placed into the buffer.

13

Chapter 4

Examples

/* The follow ng exanpl e assunmes single-part ASCII = non-M ME
/* W use file I/O here, but data frommenory is also possible
*/

unsi gned SMIPgetdata(char* BfrAdr, unsigned BfrlLen)
{
static FILE* F = 0;
if(0==BfrLen){
/* starting a new part, so open file */
F = fopen(“nmyfile.txt”);
return (F?0:-1);
}el se{ /* reading nore data */
got = fgets(BfrAdr,BfrLen-1,F);
/* get 1 line */

if(got){ /* fix \n to be CR+LF */
char* t = strlen(BfrAdr);
if(t) -t;
/* back up to the \n */
t++ = "\ x0D ; / CR */
t++ = “\x0A; /[LF */
got = t-BfrAdr; /* mnimm2 */
return got;

/* length of line with CR+LF */
} /* endif */
} /* end of SMIPgetdata */

14

E-Malil

/* Here is an exanmple with M ME support
/* Again, we denmonstrate with file I/0O
*/

unsi gned SMrPgetdata(char* BfrAdr, unsigned BfrlLen)
{
static FILE* F = 0;
static isBinary = <you figure out which>;
if(O==BfrLen){ /* starting a new part, so open file */
char* filespec[15]; /* PartNumis our index (we ++
it), PartMax is ‘const’ */
if(PartNum > PartMax) return -1
/* no nmore data - we're done! */
sprintf(filespec,”SendPart.%®3u”, Part Num ;
F = fopen(filespec, (isBinary?"rb”:"r"));
if(0O==F) return -2;
/* oh no, sonething’ s really nessed up! */
return i sBinary;
/* tell SMIPsend if Base64 encoding is needed */

}el se{ /* reading nore data */
unsi gned got;
if(isBinary){
/* just read bytes, SMIPsend will encode them */

got = fread(BfrAdr,BfrLen, 1, F); /* read raw data */
telse{ /* isText (e.g. ASCII) */

got = fgets(BfrAdr,BfrLen-1,F); /* get a line */

if(got){ /* fix \n to be CR+LF */
char* t = strlen(BfrAdr);
if(t) --t; /* backup to the \n */
t++ = “\x0D ; / CR */
t++ = “\x0A; /[LF */
got = t-BfrAdr; /* mnimm2 */

} /* endif */
} /* endif */
if(O==got){ fclose(F); ++PartNum } /* end of file */
return got;
} /* endif */
} /* end of SMIPgetdata */

15

Chapter 4

SMTPsend()

Sends a message.

i nt SMIPsend(char *M Metype, lid mailserver, char *to,
char *subject);

type 0 = simple message, no MIME
“Multipart/Parallel” = MIME message. Tobea
multipart message, M VEt ype must start
with “Multipart...” (not case-sensitive).

mai | server | P address of mail server
to full mailing address, for instance aaa@bb. com
subj ect subject of message

Normally you would get the mai | ser ver addresswith acall to DNSresolve(), for instance:
DNSr esol ve(“aaa@bb. con’, &mail server);

This call is not inside SMTPsend(), so that the application can, when necessary, use other methods to
get the mail server address.

SMTPsend() will open the TCP connection and create the mail headers. Then it will ask the user to
provide the message text, by calling SMTPgetdata().

SMTPsend() usesthe ANSI C timing functions gmtime() and localtime(). If these functions are not
supported by your development tools, these functions must be stubbed out.

Return Value

0 Successful
-1 Own domain name not known. Thisis either given by a DHCP server, or
stored by the application into DNSdomai n.
-2 Handshake problem
EHOSTUNREACH Mail server not reachable
Example

See the appsr c/smtest.c file for examples of SMTPsend().

16

E-Malil

Using POP to Receive Mail

The Post Office Protocol (POP3) isaminor variation of SMTP, and allows a client to retrieve mail from
aremote server mailbox. This protocol is commonly used by computers, which are not connected to the
network at various times, to retrieve mail from a permanent SMTP host. The SMTP host holds
messages for the client until the client emptiesits mailbox. This allows the client to be disconnected for
atime without generating SMTP delivery errors.

A message received by POPreceive() will look exactly like a message received by SMTPserv() (see the
section on Using the SVITP Server to Receive Mail). POPreceive() handles the networking protocols,
and then passes the datato the user. The user calls the data-handling routines they need, and fillsin the
variablesto fit their data. The following chart illustrates this process. If necessary, the user can call
support routines (see Header-Encoding Support Routines, in this chapter) to decode the data.

17

Chapter 4

Protocol-handling Data-handling
Routines and Actions Routines (user fills
in variables) and Actions

PCOPr ecei ve()

For each header segment

» [SMIPext ract (-1, 0, 0)
the user gets, calls

Start of message.

SMIPget Header s(headcnt ,
header s, part no)

For each header that was

returned, calls function
to decode header as

v

SMrPckencod()

necessary.

SMrPext ract (0, buff, | en)

MIME data still encoded,
repeated until end of message.

SMIPextract (-2, 0, 0)

End of message.

Figure 4-1: POP Flow Chart

18

Internally, POP is used to request mail from a mail server, asfollows:

© © N o o M w Ddh P

Open TCP port 110.

Send command USER.
Send command PASS.
Send command RETR.

Take the message.

Delete the message at the server using DELE.

Repeat steps 4 thru 6 until all messages have been received.

Send command QUIT.

Close connection.

E-Malil

Thisis an example of the client POP flow of functions for receipt of three smple (e.g. single-part)
messages.

POPr ecei ve()

SMTIPext ract (-1)

SMTIPget Header s()

SMTPext r act (dat a)
SMTPext r act (dat a)
etc

SMTPext ract (- 2)

SMTIPext ract (-1)

SMTIPget Header s()
SMTPext r act (dat a)
etc

SMTPext ract (- 2)

SMTIPextract (-1)

SMrPget Header s()

SMTPext r act (dat a)
etc

SMTPext ract (- 2)

POPI og()

19

Chapter 4

These functions are described in this section:
POPlog() Logs arriving messages.

POPreceive() Receives messages from a POP server.

20

E-Malil

POPlog()

Logs arriving messages.
i nt POPl og(char *buff, int len);
buf f apointer to the buffer where the message is
| en the length of the buffer, in bytes

POPIlog() is called by the server to log the message that’s been transferred. All messages are logged
with this function, exactly asthey arrive. Valuel en -1 means end of message.

Return Value

<0 Error

Otherwise, number of bytes written to log.

Example
i nt POPl og(char *buff, int I|en)
{
int status;
if (len < 0)

return fflush(logfile);

buff[len] = ‘\n’;

status = fwite(buff, len+l, 1, logfile);
buff[len] = 0;

return status;

21

Chapter 4

POPreceive()

Retrieves messages from a POP server.

i nt POPreceive(char *POPserver, char *mail box, char *password);

POPser ver name of POP server
mai | box name of mailbox
password password

POPreceive() will open the TCP connection and ask for messages. 1t will ask the POP server to delete
any messages that were successfully retrieved.

POPreceive() cals the user functions SMTPextract() and POPlog().

Return Value

0 Successful

-2 Handshake problem

EHOSTUNREACH Mail server not reachable, defined in support.h
Example

char *popserver, *user, *password
rslt =POPrecei ve(popserver, user, password)

22

E-Malil

Using the SMTP Server to Receive Mail

To be aserver, the system needs to be running and connected to the network at all times. The system
also needs athread by itself to run. While the SMTP server is doing mail, it can’t perform other
functions.

| AP handles the networking protocols with SMTPserv(), and then passes the data to the user. The user
calls the data-handling routines they need, and fillsin the variables to fit their data. The following chart
illustrates this process. If necessary, the user can call support routines (see Header-Encoding Support
Routines, in this chapter) to decode the data.

23

Chapter 4

Protocol-handling
Routines and Actions

SMrPser v()

Starts the SMTP server.

Data-handling
Routines (user fills
in variables) and Actions

SMrParrive(fromto)

For each mail message,
notifies the user, then calls

v

SMrPextract (-1, 0, 0)

Start of message.

For each header segment
the user gets, calls

SMIPget Header s(headcnt ,
header s, part no)

MIME data still encoded,

repeated until end of message.

SMIPextract (-2, 0, 0)

End of message.

Figure 4-2: SMTP Server-side Flow Chart

24

E-Malil

Thisisthe flow of function calls for two mail messages (the first has one attachment):

SMTIPserv()
SMrParrive()

SMTIPext ract (-1)

SMTIPget Header s()

SMTIPext r act (dat a)
SMTIPext r act (dat a)
etc.

SMTIPext ract (- 2)

SMTIPext ract (-1)

SMTIPget Header s()
SMTIPext ract (dat a)
etc.

SMTIPext ract (- 2)

SMrIParrive()

SMTIPext ract (-1)

SMTIPget Header s()

SMTIPext r act (dat a)
etc.

SMTIPext ract (- 2)

SMTPI og()
These functions are described in this section:
SMTParrive() Announces the arrival of a message.
SMTPchkencod() Decodes headers.
SMTPextract() Extracts attachments to a mail message.
SMTPgetH eaders() Gets headers.
SMTPlog() Logs arriving messages.
SMTPserv() Starts the SMTP server.

SMTPgetHeaders() and SMTPchkencod() are included to allow the user to better customize the
operation of the mail reader. The user isresponsible for dealing with both headers and data. This
improves flexibility for the user to customize their system.

25

Chapter 4

SMTParrive()

Announces the arrival of a message.

SMrParrive(char *from char *to);
from the sender of the message
to the intended recipient of the message

This cal signifies that a message has arrived. Y ou will be told who the message is from and to, so you
can determine whether to accept it.

Return Value
<0 Tellsthe IAP server to refuse to receive this message.

0 Tellsthe IAP server to accept this message.

Example
/* The server calls this user routine for an arrived mail nessage.
*/
int SMIParrive(char *from char *to)

{
Nprintf(“Mail FROM % TO %\n”, from to);
return O;

26

E-Malil

SMTPchkencod()

Checks headers for encoding.
i nt SMrPchkencod(char *val, struct HeadVal ue *hvp)
val astring (the header)
hvp the returned structure, if there is encoding

Run each header through this routine to detect any special encoding. Specia encoding means the
message contains data that’s a MIME type.

The user isresponsible for alocating enough buffer space for their data. The buffer length is configured
at compile time, in the include files.

Thisisthe HeadVal ue structure;

struct HeadVal ue {
char *val ue;
char encodi ng;
char *char set;
char *et ext;

i
Return Value
0 No encoding
1 Y es, there is encoding
Example

Thereisan examplein the file smtest.c.

27

Chapter 4

SMTPextract()

Extracts attachments to a mail message.

SMrPextract (int flag, char *buff, int |en);

flag Theflag values are:
- 1 = new message starting
- 2 = message complete
0 =1 en bytesof ASCII datawith CR+LF at the end

buf f apointer to the buffer where the datais
l en the length of the data, in bytes
Thisis auser-supplied routine that is given the data lines as they arrive. For a single-part message, the
sequenceis:
SMrPextract (-1, 0, 0) /* start of message */
SMrPget Headers(...) /* here are the headers */
SMTPext ract (0, addr ess, | engt h) /* all the data |ines */
/* one at a time */
SMrPextract(-2,0,0) /* end of message */

/* start of next message */

For a multipart message, the sequence is:

SMrPextract (-1, 0, 0) /* start of message */

SMrPget Headers(...) /* here are the nessage headers */
SMrPextract (-1, 0, 0) /* start of part */

SMrPget Headers(...) /* here are the part headers */
SMrPext r act (0, addr ess, | engt h) /* all the data |ines */

- /* one at a time */

SMrPextract (-2, 0, 0) /* end of part */

SMrPextract (-1, 0, 0) /* start of 2nd part */

SMrPget Headers(...) /* here are the part headers */
SMrPext ract (0, addr ess, | engt h) /* all the data |ines */

- /* one at a time */

SMrPextract (-2, 0, 0) /* end of message */

SMrPextract (-2, 0, 0) /* end of message */
/* start of next nessage */

28

E-Malil

SMTPextract() will read messages from the POP server one after another. If it seesamultipart MIME
header, it will handle the nested calls to step through the parts. Currently, it does not support parts
nested several levels deep.

Return Value

<0 Error
Oor>0 Successful
Example
Here's an example of SMTPextract(), taken from smtest.c. This writes the message parts into separate
files.

int SMIPextract(int flag, char *buff, int |en)

{
char buf[32];
if (flag < 0){
if (flag == -1){
Nsprintf(buf, “mail.%03d”, usfileno++);
if (usfileno >= 1000)
usfileno = 0;
ffp = fopen(buf, “wh”);
}el se
fclose(ffp);
return O;
}
if (flag == 0)
buff[len++] = *\r’, buff[len++] = ‘\n";
return fwite(buff, len, 1, ffp);
}

29

Chapter 4

SMTPgetHeaders()

Gets headers.

i nt SMIPget Headers(int cnt,struct SMIPHeaders *heads,
int part)

cnt the number of headers
heads astructure containing the array of headers
part which part of the mail message

This routine will be called each time the headers have been read. Only one level of attachmentsis
allowed (i.e., the mail message can have attachments, but attachments cannot have attachments).

The user isresponsible for allocating enough buffer space for their data.
Thisisthe SMTPHeader s structure:

struct SMrPheaders {
char *head;
char *val ue;

};

Return Value
Always returns zero.

30

E-Malil

Example

/* This is just an EXAMPLE routine that the user could nodify to do
something with the mail headers.

*

* cnt is the number of headers

* heads is a pointer to the headers

* part is which part of a multi-attachnent e-mail

* 0= top headers

*/
nt SMIPget Headers(int cnt,struct SMIPheaders *heads, int part)

{
int i, len;
char *head, *val, *ptr;
struct HeadVal ue hv;
for(i=0;i<cnt;i++){
head = heads[i]. head;
val = heads[i].val ue;
printf(“%: %\n”, head, val);
#i f def NOT_USED
| en = SMIPchkencod(val, &v);

if(len){
len = strlen(hv.etext);
i f(hv.encoding == ‘B){
I en = fronmbase64(hv. etext,|en);
} else if (hv.encoding == 'Q){

I en = fromguot ed(hv. etext, | en);
}
}
Nprintf(“% % % 9", hv.val ue, hv. charset, hv. etext);

#endi f
}

return O;

}

/* DONE wi th SMrPget Header s()
* /

31

Chapter 4

SMTPIog()

Logs arriving messages.

i nt SMIPl og(char *buff, int |en);
buf f apointer to the buffer where the message is
| en the length of the buffer, in bytes

SMTPIlog() is called by the server to log the message that’s been transferred. All messages are logged
with this function, exactly asthey arrive. Valuel en -1 means end of message.

Return Value

<0 Error

Otherwise, number of bytes written to log.

Example
/* This routine is called to log arriving mai|l nessages,

*/

headers and content.

Each call supplies one line, wthout end-of-Iline
characters (CRLF).

Value len = -1 nmeans end of nessage.

int SMIPl og(char *buff, int |en)
{

i nt status;

if (len < 0)
return fflush(logfile);
buff[len] = *\n’;
status = fwite(buff, len+l, 1, logfile);
buff[len] = 0;
return status;

}

32

E-Malil

SMTPserv()

Starts the SMTP server.

voi d SMrPserv(void);

This cal startsthe SMTP server, and never returns. The server does not use multitasking while
receiving a message, for the following reasons:

* SMTPisnot interactive, so multitasking will make no difference unless the message is large.

e Function SMTPgetHeaders() needs alot of memory for its arguments. Thiswould in any case force
alimit on the number of server tasks.

SMTPserv() handles the following SMTP commands:

HELO new client

MAIL new mail from sender
NOOP no operation

QUIT terminates session

RCPT names recipient

RSET resets session

SOML send-or-mail, treated as mail

SMTPserv() calls the three user functions SMTPlog(), SMTPextract(), and SMTParrive() for any
arrived mail message.

SMTPserv() givesal arrived messages to the user. It will not do any relaying or resending.

33

Chapter 4

Header-Encoding Support Routines

These routines are described in this section:

decodetext() Decides whether to call frombase64() or fromquoted().
frombase64() Converts a base64 string to binary.

fromquoted() Converts quoted text to unquoted.

tobase64() Converts a binary buffer to base64.

34

E-Malil

decodetext()

Decides whether to call frombase64() or fromquoted().
decodet ext (char *buff, int |en)
buf f apointer to the buffer where the message is
| en the length of the buffer, in bytes

Thisisan upper-level routine. When you pass a header to it, it evaluates the header and performs the
correct decoding by calling either frombase64() or fromquoted().

The user isresponsible for allocating enough buffer space for their data.

Return Value
The length of the new buffer.

Example

newl en = decodet ext (buf,|en);
if (len)
printf(“%\n”, buf);

35

Chapter 4

frombase64()

Converts a base64 string to binary. The size shrinksto %a.
int fronmbase64(char *buff, int |en)
buf f apointer to the buffer where the message is
| en the length of the buffer, in bytes

The user isresponsible for allocating enough buffer space for their data, keeping in mind that
frombase64() shrinks the size of the data.

Return Value
The length of the new buffer.

Example

new en = fronbase64(tobuf, new en);
printf(“%\n",tobuf);

36

fromquoted()

E-Malil

Converts quoted text to unquoted.

fromguot ed(char *buff, int | en)
buf f apointer to the buffer where the message is
| en the length of the buffer, in bytes

Control charactersin the stream are within quotation marks. The
fromquoted() routine converts these to unquoted text.

The user isresponsible for allocating enough buffer space for their data.

Return Value
The length of the new buffer.

Example

newl en = fromguot ed(buf, | en);
printf(“%”, buf);

37

Chapter 4

tobase64()

Converts a binary buffer buf of length | en to base64 with a 3->4 expansion.
i nt tobase64(char *buff, int |len, char *tobuf)
buf f apointer to the buffer where the message is
| en the length of the buffer, in bytes
t obuf apointer to the buffer to hold the decoded data

The user isresponsible for alocating enough buffer space for their data, keeping in mind that tobase64()
increases the size of the data.

Return Value
The length of the new buffer.

Example
frombuf = “How now brown cow’;
fromen = strlen(fronbuf);

new en = tobase64(fronbuf,fromen,tobuf);
printf(“%\n”,tobuf);

38

E-Malil

Test Program

Smtest isaDOS test program for the mail protocols. It will perform different functions, depending on
the command arguments. It can run as either the server or the client.

This command runs the SMTP server, to receive mail messages:

SMIEST

The messages will be logged into the file mail.log. Any extracted message parts will be written into
files mail.000, mail.001 and so on.

This command will send a mail message to the specified recipient:

SMTEST <r eci pi ent >

The message content comes from the files listed at the top of smtest.c. If the source variable
MULTI PART isset, al fileswill be sent, otherwise just the first. The mail server is determined using
with acall to DNSresolve(). Source variable DOMAI N gives the local domain name.

Y ou can use the source-level parameter TESTSERVER to send the mail to smtest running as server.
This command calls up the POP server, and retrieves any messages queued for the specified mailbox:

SMTEST <POPserver> <mai | box> <passwor d>

The messages are logged and extracted exactly asin the first test case.

Any successfully received message is deleted from the mailbox

39

Index

Index
© F
I .

Cc(;jefinition 2 frombase64() function
checking ' description, 36

password, 7 example, 36 '
configuring fromquoted() function

diding, 7 description, 37
converting example code, 37

base64 to binary, 36 functions

binary to base64, 38 DNSresolve(), 9, 10

quoted text to unquoted, 37 Ndial(), 6
D G
data structures getting headers, 30

HeadValue, 27

logincommand, 8 H

SMTPHeaders, 30 header-encoding support routines
decodetext() function summary, 34

description, 35 headers

example, 35 checking for encoding, 27
DHCP, 9, 16 getting, 30

definition, 2 HeadValue structure, 27
dial.cfile, 7 HTML META commands
dialing definition, 2

overview, 5 HTTP
DNS definition, 2

definition, 2

description, 9 I

overview, 9 IAP

dns.c module, 9
DNSresolve() function, 9
and SMTPsend(), 16

included products, 1
overview, 1
terminology, 2

description, 10 |P address, getting, 10

example, 9, 10 ISMAP
domain name, getting, 10 definition, 2
downcommand table, 7 '

L
E . .
_ logging arriving messages, 21, 32

emal _ logincommand structure, 8

connections with web server, 1 logincommand table, 8
encoding ’

checking headersfor, 27

40

M

mail
announcing arrival of messages, 26
extracting attachments, 28
logging, 21, 32
reading, 13
sending with SMTP, 12, 16

mail attachments
allowed levels, 30
extracting, 28

mail functions
decodetext(), 35
frombase64(), 36
fromquoted(), 37
POPog(), 21
POPreceive(), 22
SMTParrive(), 26
SMTPchkencod(), 27
SMTPextract(), 28
SMTPgetdata(), 13
SMTPgetHeaders(), 30
SMTPog(), 32
SMTPsend(), 16
SMTPserv(), 33
tobase64(), 38

mail protocols
POP, 11
testing, 39

MIME
definition, 2, 11

modem
diaing, 6
hanging up, 6

N

Ndial() function
description, 6
example, 6

P

password, checking, 7
point-to-point connections, 5
POP

definition, 2, 17

steps to request mail, 19

41

Index

POP functions
POPog(), 21
POPreceive(), 22
summary, 20

POPlog() function
description, 21
example, 21

POPreceive() function
description, 22
example, 22

PPP, 7
and Ndial(), 6
authentication protocols, 8
definition, 2

S

SLIP, 7
definition, 2
smtest test program, 39
SMTP
definition, 2
flow of client function calls, 12
flow of server function calls, 25
using to send mail, 12
SMTP functions
SMTParrive(), 26
SMTPchkencod(), 27
SMTPextract(), 28
SMTPgetHeaders(), 30
SMTPog(), 32
SMTPserv(), 33
summary list, 25
SMTP server
starting, 33
SMTParrive() function
description, 26
example, 26
SMTPchkencod() function
description, 27
SMTPextract() function
description, 28
example, 29
SMTPgetdata() function
description, 13
SMTPgetHeaders() function
description, 30

Index

example, 31 TCP/IP, 9
SMTPHeaders structure, 30 definition, 2
SMTPog() function test programs

description, 32 smtest, 39

example, 32 TESTPHONE macro, 6
SMTPsend() function tobase64() function

description, 16 description, 38
SMTPserv() function example, 38

description, 33
SVA U

definition, 2 upcommand table, 7
T W
tables web server

downcommand, 7 connections with e-mail, 1

logincommand, 8
upcommand, 7

42

	1. IAP Overview
	Overview
	IAP Terminology
	Recommended Reading
	Other U S Software Documents
	On the Internet
	Books

	2. Automatic Dialing
	Dialing Overview
	Ndial()

	Configuring the Dialing

	3. Domain Name System
	DNS Overview
	DNSresolve()

	4. E-Mail
	Overview: SMTP and POP, with MIME Support
	Using SMTP to Send Mail
	SMTPgetdata()
	SMTPsend()

	Using POP to Receive Mail
	POPlog()
	POPreceive()

	Using the SMTP Server to Receive Mail
	SMTParrive()
	SMTPchkencod()
	SMTPextract()
	SMTPgetHeaders()
	SMTPlog()
	SMTPserv()

	Header-Encoding Support Routines
	decodetext()
	frombase64()
	fromquoted()
	tobase64()

	Test Program

	Index

