USFiles®

Processor -I ndependent
DOS/WIin95 File System

User’s M anual

Revision 3.02
October 2001

Copyright and Trademark Information

Copyright 1996-2001 United States Software Corporation. All rights
reserved. No part of this publication may be reproduced, trandated into
another language, stored in aretrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of United States Software
Corporation.

U S Software®, USNET®, USFiles®, USLink®, SuperTask!®,
MultiTask!™, NetPeer™, TronTask!®, Soft-Scope®, and GOFAST® are
trademarks of United States Software Corporation. Other brands and
names are marked with an asterisk (*) and are the property of their
respective owners.

United States Software Corporation makes no warranty of any kind with
regard to this material, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose.
United States Software Corporation assumes no responsibility for any
errors that may appear in this document. United States Software
Corporation makes no commitment to update or to keep current the
information contained in this document.

United States Softwar e Cor por ation
7175 NW Evergreen Parkway, Suite 100
Hillsboro, OR 97124
(503) 844-6614
Fax (503) 844-6480

Ema:ls:rpport@ussw-cmj

mailto:support@ussw.com

Documentation Conventions

Computer output and code examples. Courier, usualy in a separate
paragraph.

Function names and command names. Bold italic, usually followed by
parentheses, asin main() function.

Variables. Courier 11 italic (mt_busy).
Filenames. Timesbold (thefile usrclk.asm), in lower case.
Key names. Initial capital, in angle brackets, asin press <Enter>.

Menu names and selections, dialog box names, screen titles, window
titles: Timesbold, asin File menu.

NOTE: Indicates important information.
CAUTION: Indicates potential damage to hardware or data.
WARNING: Indicates potential injury to users.

Revision History

Revision Date

Previous issue June 1997
Reorganized and reformatted December 1997
3.00 Added new features February 2000
3.01 Updated for new directory structure September 2000

3.02 New configuration options October 2001

NOTES

Contents

. USEILES INTERNALS. . oiiiiiiiiiiiiiiiiiieiiiiieieiiisiiiiieieieseisieseisess 1-7
ction 1-9
i ers 1-10

DIIVEIS. .ot e e e s eaeeeesnreseseess 1-10]

Code HIerarChy ... 1-11]

[Bream 1/O.......coviciiiicc s 1-12

__ETream 170 FUNCHON SUMMATY ..o 1-12)

TTOT REPOITING -..ovvovvovvowseoresroneosesmoesnmsneseesneoneeee 1-14

11€ ATTOCALION.ceviiiiiiiiie et a e 1-15

EDEVICE TADIC... s T-17

rFiTEF o) 1-20

112 VIgnager Funcliion Summary |- /()

ile Manager Function Descriptions 1-21

Textand Binary FIles 1-24
Additional File Manager Functions

[Adding New File Managers.............oooeeeeeeeverscenn 1-26

[N o N e — 1-29
[Priver FUNCEION SUMMATY ..oveveveeeeveveeeeeeeeen e 1-30

river FUNCtion DEeSCrIPLioNS..........cvvceereeeveeseeeneene 1-31]

M DISK DFIVEN ...t eeeenvreeee e e e 1-35

OS BIOUS DIIVET ..o roooeeeviseeveessernssssnssssnssssenssssnnens 1-35)

ad DISK Driver [-30

1skette Driver 1-3/

|_adding New Device Drivers 1-37,

| How 1t Ties Together 1-41]
ANEXaMDIE. . 1-41

Function Call Hierarchy ... 1-43

| DIreCtOry ACCESS.ouieieeiseieieieseesessirseseesessessesestssessersssesssssesses 1-46
[[Global Variablesc.ccuoueeeeeeeieiieeeeeeeeeeeeeee e, 1-47|
[B. CONFIGURING USFILES.........ccoveveteieteeteeeeeeeeeeeeeee 2-1|

USFiles User's Manual

11

ONFIQUIatioN OVEIVIEW ..o 2-2

| Eonflgurlng DEVICES ... 2-2)

[TConfiguring DriVeS and DIIVEXS.............coocooworreesresrresrrsreesneeens 2-6
[[Configuring Stireams and BUITEXS ..., 2-

arfer Contiguration GUIGETINESoooeeeveeeeeeennenens 2-3

[VEAT 29

hecking Confiqauraiion Parameiers 2-Y

atecting Respurces 2-10)

Setting Timeouts for Device Drivers 2-12

Files Used for Confiquration. ..o 2-13

USHIIES TIPS, e, 2-14

[B. LIBRARY REFERENCE 3-1

verview of LUSFiles Functions 3:-4

unction Names 3-5

| Usingerrno 3-6

Atomictypedef NamMeS. ..o 3-1]

User Interface Library FUNCHONS .oveensnssssninssiiisnieniiisiincnan 3-8

FUNCLION SUMMANY ... 3-8

FuNCtion DESCIiPtionS.........cc.eeecveeecieeeciieeceeeeveeenee. 3-12

1-2

[Mult Task' .. 4-8
[JOIA0K SIZ€.wweoorreeeeosmeeeesreeeessereeeeseareeeeeereeeessereeeees 4-8

[Dynamic Task Coading with fruntsk ... 4-9]

[TTTONT AR cooorrorereeeereeeeeeeeeeeereeseseeeeeeeeeeeeeeeeeeeeeeeeeereeeerrerrereeeren T
B R LS R T ow— 713

Sack Size 13

| HitacH [TRON 12
[Test Environment 4-15

USFiles User's Manual

sing Library Header Files...........ccccooovvvevciane. 4-15

_ﬁghe dependSA FITe e 4-16

ONTIQUIAITION FITESovvoovvoovesvseveeeeeeesereseeeseeeeeeees 4-17|

(R = o= 4-17

ANTOUS IMAKETITES......ivuiireerieeeeeiresiresnrensreneseneesneesnnes 4-16

[RX8 0 N0 RX 850 Pro 2-19

e Environment -7

oard Revisions 4-20

Configuration Files 4-20

NErface .o, 4-21

[5. PORTING GUIDE tiooiiiioiiiieieeeeeeeeeeeeeeevevenn, 5-1
[Porting USHIIes Sfand-alone Made. -2

11ng Up Maketileg h.Y

diting Header Files R-AI

rting Drivers 5-4

[Memory AONMeNnt oo 5-6

[Porting USFilesto aNew RTOS ..., 5-7
ntegrating an RTOS with USFiles............ccueeeeunenn...... 5-7|

POIrting DIIVENS.......ccuveeeieeeeeeeeeeeeeeeee e 5-10

[b. S%IPPQRTED RTOSES.. oo -1

[MultiTasd e 67
[JOIA0K SIZ€.wweoormreesormeeeesreeeessereeeeseereeeeeereeeeseeeeeees 6-/
[Dynamic Task Coading with fruntsk ... 6-3|
[TTTOMT AR cooorroreeeeeeeeeeeeeeeeeeerressseeeeeeeeeeeeeeeeeeeeeeeeeerereererererereeen 511
B R LS H T oee— 512
Sk Size 17

| HitacH [TRON Gl
Test Environment 6-14

USFiles User's Manual

1-3

sing Library Header Files.............ooooooiiii 6—1&]
hedepends.hFile...........ccccovevvvivccncceciccecece e 6-15
_ﬁgonfiguration FITES oovvoovooovoovcooreerreseeeeeeseeeseeeeereneeen 6-16
(R = o= o-10
ANMTOUS IMAKETITES......iviereeeeeeiereireairesireereneeeneesneeannes o-1/
[RX8 0 aN0 RX 950 Pro 019
| e Fnvironment N-14
oard Revisions 6-19
Confiquration Files 6-19
NErface oo 6-20
[[7. PORTING GUIDE toooiiiiieiiiiieiieieieeieieeeeeeeeneverenn, 7-1
[JPorting USHIIes Sfand-alone Made. -2
11ng Up Maketiles /-2
diting Header Files 7-4|
rting Drivers 7-4
[Memory AONMeNt s oo 7-6
[Porting USFilesto aNew RTOS ..., /-7
ntegrating an RTOS with USFiles............ccucveeuneen...... 7-7)
POrtiNg DIIVENS.......ccuveeeieeeeeeeeeeeeeeeee e 7-10
[A. HANDLING DISK CHANGES oo A-%
#_ A
Continuing with the New DisK. ..o A-2
Putting Back the Old DisK ..o A-4
Other SITUBLIONS. ... iiee e esseeeesersereeesreeeas A-6
[B. 386 PROTECTED MODE ..\oiiiiiiiiiiiiiiiiiiiiieiiiiiisiinnins B-1|
|_Supported Compilers B-1
emory Allocation B-
ibraries B-3
RN c-1l
| Pvervievv ... C-1]

1-4

USFiles User's Manual

OW VAT WOTKS.......ccviiiiiiiiie i C-1

ESITCHONS ON VAT v C-5

[TUSING VAT ...ttt C-7
[LASE SENSITIVITY ...eeeeeeee e e e e e e e e e e C-9

YNaMIC Memory USE.. .. e e e neeeneens C-10
[FTeSUSEaTor COMMOUIMG VEAT e C-11
L b USELL ESEFOR COMPACTEL ASH D-1]
nstalling CompactHashcccceeveeiiiiciciice, D-1]

EXEFITES. oo, D-1
[OVErVIEeW OF COMPACTFTESNvvvoovveeeveeoreeoeee oo D-2
ONTTQUIBETON 1..vvouvovoeseossssssssnsssnsensssnnsnssssnsnssnsnsnnsnienees D-2

[eSing D-3

at Supported -4

LE USEIL ESEOR CD-ROM E-1l
nstalling USHlestor CD-ROMcccccccviienvciieenienn, E-1

SOUICE FIIES.....eeee s E-1

T EXE FITES o oreeioisssssssssnssssenssssnnssssnsssssnsssssnssasenssisnernnes E-T
ver\lmi\m CD-ROM ==
LICD-ROM Driver -2
D-ROM File Manager E-2
ultisession CD-ROMs E-2|

| Basics of the ISO 9660 File SYStOM. E-3
Volume DesCriptors ... E-3

Path Table .o e e E-4

Directory Records.........ooiiiii E-

Navigating the File System.........cccvvvciiiiiicccne, E-5
meslm%ematlon .. E-5
onfiguring TESTOr CD-ROM .o, ==e)

[TncTuding CD-ROM SUPPOIT..—..o oo =)
Bvices E9

ifers E-10

emory E-11

USFiles User's Manual

1-5

ixed-case File NamesS........cccecevcveecicciieeccciee e, E-11

-Eill% Used to Configure USHlesfor CD-ROM.......... E-17

BT == E-13

A AAITIONAl FUNCIIONS . .. e ese e sssessnessnennnsnenennnanes E-15

AJAITIONA €7TN0 VAIUES......o oo E-23

—[Global Varanies E25

D-BONM Driver Funciions E26

|_Function Call Hierarchy E-29

ecommended Reading E-30

LE. FAT32FILESYSTEM coioiioiiioeoei E-1

VETVIEW .o sosssssssssssnssssssssossssssssssssnsnsisniinins F-1

N [on and Contiguraiion =1

et Programs | =

| Madified Structures, E-3

B1OS Parameter Black (BPR) E-3

| Partition Table. ..o E-5

|_File Allocation Table (FAT) ..ooovvennininiininiiiniiineinenes F-5

DIrectory ENtrieS......c.uveeveeieeiieeieeeeeeeeeeee e F-5

The ROOt DITECIONYccccvveeeeeeeeeeeeeeee e F-7

[INEW SHUCIUES......c.cveeeeeeeeeeeeeee e F-8

Ile System Information SECtorcccvveveeevveeervennnne F-8

IMITAIIONS ON USHITES-32......cceeeeeeeeeeeeeeeevieeeeeeeeees F9

ERROR CODES ... ooooooosooosoorseoreeomeseoreeemeeeoreeeeeseereeeeeecereecees G-1

[OSFlesErrorCodes oo G1

H. NI = ——— H-1|
1-6 USFiles User's Manual

1. USFiles Internals

Chapter Contents

(L. USELL ESINTERNAI S 1-1

L Introduction 1-9
ile Managers 1-1

|_Drivers, 1-10l

Ezode HierarchV ..o 1-11

[BUeam O ... 1-12

| Btream 1/0 Function Summaryc........ 1-12

IrOr REPOITING .o 1-14

EiIeAIIocation .. 1-15‘

[TheDeviceTable..........c.ccocvvvviricicrninnns 1-17

B Sl L e T-20

[File Manager Function Summary 1-20

[fe Manager Funclion Descripriions 21

[eXf and Binary Files 1-/4]

dditional File Manager Functions 1-24

U NS 1-25

Adding New File Managers ..o, 1-26|

| DEVICEDIIVEIS ..cooeeeeeeereereeeererreennes 1-29

Driver Function SUMmMaryeeeveevveeenee.. 1-30

Driver Function Descriptions......................... 1-31]

RAM DISK DIIVES.....ovveiiiceiee et 1-35

OS BIOS DIIVES ...t eerreeeee e 1-35

T HadDIK DIVEr ..o T-36

TSKEIIE DIITVET .uvoovoossssssssensssnssnssnssnsinneens 1-37

Adaing New Device Drivers 1-37

| |—|nw I 1ies Iogether 1-41]

n Example 1-41

unction Call Hierarchy 1-43

USFiles User's Manual

1-7

1-8

Directory Access

" Global Variables

USFiles User's Manual

Introduction

This Chapter will explain abit about how USFiles handles things internally.
Aswe have mentioned before, three layers of functions implement the
USFiles stream I/O features. Thetop layer isthe stream1/O layer. The
middle layer is the file manager, and the lower layer isthe device driver.
The standard C-level functions like mt_fgetc() call the file manager routines
associated with the stream, which in turn call the driver routines. The driver
also has interrupt service routines associated with it for interrupt-driven
devices.

The system is configured for a fixed number of devices as specified in
userio.h, and a maximum number of open streams (i.e. ports or files) as
defined by the NUMSTREAMS parameter, which is described in Chapter 4,
Configuring USFiles. Each stream has a structure of type FI LE (an aias of
MTFI LE) associated with it, which contains all of the control information
for the stream. These FI LE structures are dynamically allocated by
mt_fopen() viaacall to alloc_mem(). The FI LE type structure is defined in
mtio.h, and it contains all the information about the stream, including
pointers to other structures needed for control of the stream. If you develop
adriver for anew type of device, it might be necessary to add some new
structures to some of the union typesin thisfile.

The file manager, device driver, and ISR (Interrupt Service Routine) all
access the FI LE structure for the stream they are currently operating on.
We will refer to the FI LE structure for astream asiits file descriptor.

Thefile descriptor for each stream contains pointers to the file manager,
device driver, and device data structure associated with that stream. The
file manager is a structure of type FI LEMAN (defined in mtio.h). This
structure consists of function pointers to the routines that constitute the file
manager. Thedriver isasimilar structure of type DRI VER, which contains
function pointers to the functions that constitute the device driver, and the
data structureis of type DEVI CE.

If your system has several ports with the same characteristics (same type
UART chip, diskette, etc.) they would most likely be using the same driver
and file manager. The BIOS-based driver supplied in biosdrv.c combines
diskette and hard disk control into one driver. The high bit of the unit
number selects hard disk versus diskette operation. If you develop new

USFiles User's Manual 1-9

driversfor hard disk and diskette drives, it is more likely that these

functions will be in separate driversif you are controlling the hardware
directly. Not al file managers require the presence of the device driver.
The pipe file manager thisis provided with MultiTask! is an example of

this.

File Managers

pcfm

sfm

PC File System Manager (in this package).
Serial File Manager (in MultiTask! product).

pi pef m Pipe File Manager (in MultiTask! product).

cdfm CD-ROM File System Manager (in USFiles for CD-ROM).
Drivers

bi osdrv USFiles diskette/hard disk driver for 80 x 86 PC-style system
viaBIOS calls (in this package).

randrv USFiles RAM disk driver (in this package).

flopdrv USFiles PC diskette driver accessing controller directly (in
this package, developed for 80x86 real mode).

| bahddrv USFilesATA (IDE) LBA mode hard disk driver accessing
ATA interface directly on aPC. Also works with non-LBA
drives (in this package, developed for 80x86 real mode).

cdromdrv ATAPI CD-ROM driver (in USFilesfor CD-ROM).

pcmciadrv Driver used to initialize PCMCIA controller for use with
CompactFlash Cards (in USFiles for CompactFlash).

driverO MultiTask! seria driver (in MultiTask! product).

other User-supplied drivers for interfacing with either pcf m or

1-10

sf m or other file managers.

USFiles User's Manual

Code Hierarchy

Figure 3-1 below illustrates the code hierarchy. Only the files with nam
in bold are part of USFiles. The PC file manager is divided among the f
files pcfmapi.c, pcfmbuf.c, pcfmclus.c, and pcfmdir.c.

Figure 3-1: Code Hierarchy for USFiles

USFiles User's Manual

Stream 1/0
(streamio.c) and File AP
1/0 (filéio.c) (main level)
v v v v File
Serial PipeFile PC File Other Managers
File Manager Manager File
Manager (pipefm.c) (pcfm?.c) Manager
(sfm.c)
+I ,,,,,,,,,,,, +I +I ¢
Serial BIOS RAM disk Other
Driver Driver Driver Driver
(driverQ.c) (biosdrv.c) (ramdrv.c)
v
Other
Driver
Drivers

€es
our

1-11

Stream 1/O

The stream 1/O routines are primarily found in the files streamio.c and
fileio.c. Applicationswill typicaly directly interface with only the stream
I/O layer. There are afew functions provided as utilities to the user at the
file manager level that will bypass stream I/O. These will be discussed in
the File Manager section of this chapter.

Stream 1/O Function Summary

The stream 1/0O functions that USFiles provides are:

mt_fopen mt_fread mt_fwrite mt_fgetc
mt_fgets mt_fputc mt_fputs mt_printf
mt_fprintf mt_sprintf mt_vsprintf mt_sscanf
mt_fgetpos mt_fsetpos mt_fseek mt_ftell
mt_fflush mt_fclose mt_mkdir mt_remove
mt_rewind ~ mt_rmdir mt_feof mt_ferror
mt_clearerr mt_rename

The full syntax of these functions can be found in the Library Reference
chapter, but they can be divided into several groups.

Functions for File Control
mt_fopen Opensafile

mt_fclose Closesafile

mt_renameRenames a file or directory

mt_remove Removes afile

mt_mkdir Createsa directory

mt_rmdir Removes a directory
mt_rewind Setsfile pointer to beginning

1-12 USFiles User's Manual

mt_fseek
mt_fsetpos
mt_ftell

Positionsfile pointer to desired location
Positionsfile pointer to desired location

Reports position of file pointer

mt_fgetposReports position of file pointer

Functions for Writing

mt_fwrite
mt_fputc
mt_fputs
mt_printf
mt_fprintf
mt_sprintf
mt_vsprintf
mt_fflush

Writesto afile

Writes asingle character to afile
Writesastring to afile

Writes formatted output to st dout
Writes formatted output to afile
Writes formatted output to a string
Writes formatted output to a string
Flushesfile's output buffer

Functions for Reading

mt_fread
mt_fgetc
mt_fgets

mt_sscanf

Readsfrom afile
Reads a single character from afile

Reads a string from a file

Converts a string according to specified format

Functions for Error Reporting

mt_feof
mt_ferror

mt_clearerr

USFiles User's Manual

Tests for end of file
Returnsfile error condition

Clearsfileerror condition

1-13

Error Reporting

1-14

Error reporting deserves some specia attention, since errors may arisein
various places. For the ANSI stream I/O functions that we provide, we
follow the ANSI specification. These functions often return an integer
value. If that valueis zero, it means that the function executed successfully.
If it isnon-zero (usually ECF), then an error has occurred. There are
exceptions to this, so please check Chapter 5, Library Reference, for
particular functions. To determine the details of an error, the variable
errnoisused. The possiblevaluesthat er r no can have can be foundin
Appendix G, Error Codes.

NOTE: Be aware that no function ever clearser r no. Onceitis set,
you must be sure to clear it after you handle any error
recovery.

The mt_fopen() function does not return an integer, but rather afile pointer.
If the pointer returned is NULL, then thissignals an error. The following
code snippet gives an example of how an error encountered by mt_fopen()
could be tested.

fp=m fopen(“C\\nyfile.txt”,"w');
if(tfp){
i f(errno == ENOPATH)
/* Device probably not in device tab[] */
el se
/* Sonme default error handling */

}

errno = 0O; /* Clear errno */

This example isreentrant if the RTOS implementation of err no is
multitasking safe, which is the case for MultiTask! and TronTask!. For
other RTOSes, you will have to study the RTOS or tool chain
implementation of er r no.

USFiles User's Manual

Another (lessreliable) method of error checking is provided by the
mt_ferror() function, which checks the error code for a specific open file
pointer. Although thisisan ANSI C function, it is not specified under what
conditions the file pointer error code should be set. USFiles setsthiserror
code when adriver error is encountered. Often (but not necessarily aways)
when adriver error isreported, er r no is set to the same value.

Please check Chapter 5, Library Reference to determine how each function
reports an error individually. Not all functions return EOF for an error and
zero for success. For example, if mt_fread() returns a value of zero, an
error has occurred. We feel that a careful use of er r no works best to
determine error conditions.

File Allocation

USFiles maintains a static array of file pointers. The number of elementsin
this array is determined by the NUMSTREAMS parameter, which is discussed
in Chapter 4, Configuring USFiles. When afile is opened, memory for the
file structure is dynamically allocated at the stream 1/O level. Thisfile
structure is represented in Figure 3-2, and the compl ete structure definition
can be found in mtio.h.

USFiles User's Manual 1-15

Device Number (index into device table)

File Number

Error Code

Pointer to Driver Jump Table

Pointer to File Manager Jump Table

Pointer to Device Data Structure

File System Parameters (stream-specific data)

Other Items

Figure 3-2: Elements of the MTFILE Structure

The device number identifies which device table entry is associated with the
file. The file number indicates which entry in the open streams table the file
occupies. The error code is used to indicate driver errors that occurred
while operating on the file, and the pointers provide access to the functions
that are used to handle the file operations, which are coordinated using the
file system parameters.

1-16 USFiles User's Manual

The Device Table

To enable the stream 1/O functions to communicate with a particular device,
we need to configure the device table devi ce_t ab[] indevtab.c (foundin
the siosrc directory). The devicetableisan array of device structures. The

format for the device structure is defined in mtio.h and is outlined in Figure

3-3.

Device Name

Device Type (serid, PC file, etc.)

Capabilities (read, write, etc.)

Unit Number

Partition Number

Pointer to Device Driver Jump Table

Pointer to Device File Manager Jump Table

File Pointer*

Flags

Number of Open Paths

* Not used by USFiles

Figure 3-3: Elements in the devi ce_s Structure

USFiles User's Manual 1-17

1-18

Thisisasample entry in adevice table for the first partition on a hard drive:

&pcpar nC, /* devi ce-dependent data */
“C, /[* nane */

FM_PCFM /* device type = PC device */
Oxf, /* bits: text wite read */
0x80, [* unit# */

0, /* partition */

(DRI'VER *) & badrv_s, /* pointer to driver */
&pcfm /* pointer to file manager */
NULL, /* pointer to FILE */

0, /* flags */

0, /* # open paths (RAM */

At this point, the important items to note are that the driver is| badr v_s,
the file manager ispcf m and the device nameis“ C’. Many of the device
table entry fields are not used by USFiles.

When acall to mt_fopen() is made by the application, the entire path name
to the file must be specified. Thisincludesthe drive name. If we wanted to
open afile on the hard drive described above, we would need to specify the
nameasc: \file.txt. Themt fopen() function recognizes that the
portion of the file name in front of the colon is the device name. It then
searches the device table until it finds the device with that name. Onceitis
found, the device table entry indicates which file manager and driver will be
used to accessthefile. In thisexample, the file manager isfor a PC file
system, and the driver isalogical block addressing hard drive driver.
Stream 1/O functions will not call driver functions directly. They only dedl
with the file manager.

NOTE: USFiles accepts either *\' or ‘/* characters as name separators
interchangeably.

WARNING:Thefile devtab.c uses a new device structure. If you are
copying any older device structures into devtab.c, be careful
to reorder the fields. See mtio.h for the specifics.

The default device configuration for USFilesissimply aRAM

disk (R:). To useanother type of device you will have to add
it to the devicetable. Thefile siosrc\devtab.c has samples for

USFiles User's Manual

various kinds of devices. You will have to uncomment
structure and variable definitions to support new devices.
Look for file managers, device drivers, and device parameter
structuresin devtab.c.

USFiles User's Manual 1-19

File Managers

Once stream 1/O has found the device table entry that belongs to adevice, it
isableto cal the file manager functions.

File Manager Function Summary

1-20

The pcf mfile manager provided is capable of controlling all types of DOS-
compatible disk drives, including diskette drives, hard drives, and RAM- or
ROM -based drives. FAT32 partitions are supported through an add-on to
USFiles. The sf mfile manager included with MultiTask! can control all
types of seria ports. Each of these requires the addition of the appropriate
low-level driver routines to interface to the actual hardware.

These are the defined file manager functions for any file manager. They are
most often used in this order:

open()
read()
readin()
write()
writeln()
seek()
makdir()
_delete()

fmioctl()

close()

Opensafile

Reads bytes from afile
Reads a string from afile
Writes bytesto afile
Writesa string to afile
Positions the file pointer
Creates a directory
Removes afile

Other 1/0O control functions

Closes afile

USFiles User's Manual

The specific routines that constitute the pcf mfile manager are:

pcfm_open()
pcfm_read()
pcfm_readin()
pcfm_write()
pcfm_writeln()
pcfm_seek()
pcfm_makdir()
pcfm_delete()
pcfm_fmioctl()
pcfm_close()

File Manager Function Descriptions

File Manager close() function

int close(MIFILE *fp)

The file manager close() function ends access to the stream, making its
position in the open streams table available. This function returns zero if
successful, or ECF if an error is detected.

File Manager delete() function

int _delete(MIFILE *fp)

The file manager delete() function removes the file described by f p from
thefile system. Thefile sstorageisfreed and its directory entry deleted. A
zeroisreturned if no errors are detected.

File Manager fmioctl() function

int fmoctl (MFILE *fp, int function, void *arg,
size t size);

The file manager fmioctl () function performs any other miscellaneous
operations on the device. Thefunction |O_FLUSH isdefined for all device

USFiles User's Manual 1-21

typesto flush al output buffers associated with the device. Other
operations are implementation-dependent.

The parameter ar g is used to pass the argument(s) for the request. This may
be a pointer to asimple variable, or a pointer to a structure if several
variables need to be passed in. Values can be passed in, out, or in both
directions.

The parameter sizeisuseful if ar g pointsto avariable-size buffer. The
length of the buffer could be indicated by building a structure that includes
sizeinformation. However, including size as a separate argument allows an
arbitrary starting point and length to be passed without requiring the buffer
to be modified or copied. Thesi ze parameter may also be useful for
passing small integers with minimal overhead.

File Manager makdir() function

i nt makdi r (MTFI LE *f p)

The file manager makdir() function turns the newly create path described
by f p into adirectory. A zeroisreturned if no errors are detected.

File Manager open() function

MIFI LE * open(MIFILE *fp, char *fil enanme)

The open() function of afile manager is passed the file descriptor pointer
fp andthefil ename. The open() function fillsin the file descriptor
structure for the stream, where necessary, with initial values, and may call a
driver init routineto initialize the device. The open() function returns a
pointer to the file descriptor structure if it is successful; otherwise it returns
aNULL pointer.

File Manager read() function

size t read(MIFILE *fp, byte *buf, size t bytes)

1-22 USFiles User's Manual

The file manager read() routine reads the number of bytes specified by
byt es, from the stream specified by f p into the buffer pointed to by buf .

File Manager readln() function

size_ t readl n(MIFILE *fp, byte *buf, size_ t bytes)

The file manager readin() (read line) routine reads at most the number of
bytes specified by byt es, from the stream specified by f p into the buffer
pointed to by buf . The read will terminate early if the EOL_CHARis read.
In all other respects this call is the same as the read() function.

File Manager seek() function

int seek(MIFILE *fp, uint32 position)

The file manager seek() function takes action to assure that the next read or
write to the file will be at absolute posi t i on bytes from the beginning of
thefile. A non-zero error codeisreturned if an error is detected.

File Manager write() function

size_t wite(MIFILE *fp, byte *buf, size_t bytes)

The file manager write() function writes the number of bytes specified by
byt es taken from the memory buffer pointed to by buf , and writes these to
the stream specified by f p. The actual number of bytes written is returned
by thisfunction. Thiswill be zero if an error occurs.

File Manager writeln() function

size_t witeln(MFILE *fp, byte *buf, size_t bytes)

The file manager writeln() function isidentical to the write() function
except that the write will terminate before byt es have been transmitted if
an EOL_CHAR s encountered in the output stream. (Thewriteln()
terminates after the transmission of the EOL_CHAR))

USFiles User's Manual 1-23

Text and Binary Files

Whether or not “text” mode stream 1/O differs from “binary” mode depends
upon the specific file manager or driver being used by the stream. Text
mode is implemented for PCFM devices (disks). If thefileis opened in text
mode (which is the default), carriage return characters are removed upon
read, transforming carriage return-linefeed pairs into only linefeeds (“\ n”).
On writes, each “\ n” iswrittenas“\ r\ n”.

Additional File Manager Functions

In addition to the functions provided via the file manager structure, pcfm.c
contains afew other functions that may be safely accessed from an
application. These additional functions are:

free byte cnt() Returnsnumber of unallocated bytes on drive
free clust_cnt() Returnsnumber of unallocated clusterson drive
pcfm_chmod() Changes attributes of file (specified by path)
pcfm_chmodfp() Changes attributes of file (specified by pointer)
pcfm_chtime() Changestime and date of file (specified by path)
pcfm_chtimefp() Changestime and date of file (specified by pointer)
pcfm_chvlabel() Changes an existing volume label

See also: Chapter 5, Library Reference, describes how to use these
functions.

1-24 USFiles User's Manual

Buffers

The PC file manager maintains an array of physical record (generally
referred to as sector) buffers. The number of buffers used is determined by
the value of NUMBUFFERS, which is user configurable. Thefileinwhich
you will find NUMBUFFERS depends on the RTOS being used.

See also: Chapter 4, Configuring USFiles, for more information on buffers.
The buffer is defined in mtio.h as:

typedef struct pcfm buffer_s{
DEVI CE *devp;

ui nt 32 | sect;

ui nt 32 serial _no;
byte *user buf ;
uint16 nsects;
uint16 age;

i nt error_status;
byte fl ags;

byte filenum

byte devnum

byte paddi ng;

byte buf [512];

} PCFM BUFFER:

Buffers are used to hold physical record contents in an attempt to limit the
number of times that the driver has to read or write to the device. Since the
buffers are maintained in memory, reading from or writing to them is much
faster than accessing a disk.

By using the age parameter USFiles makes an attempt to keep track of
buffers that are accessed regularly. When abuffer isallocated to a
particular sector, we increase that buffer’sage by acertain value. When
we search through the buffer array and opt not to use a given buffer, we
decrease that buffer’sage. In this manner, buffers that are accessed
frequently have higher ages than buffers that are rarely used.

This becomes important when we reach a situation where al buffers are
being used, and we need a buffer to perform some operation. If the sector
we are looking for is not already buffered, then we have to take one of the

USFiles User's Manual 1-25

other buffers. We look for the oldest (least accessed, lowest age value)
buffer that can be used. If thisbuffer is“dirty” (its sector contents have
been modified but not yet saved to disk), then we save the sector and use it
for the new sector. If the buffer is not dirty, then we simply use the buffer.

If you are doing binary (not text) reads and writes of data segments that
gpan at least afull sector, then buffers may be bypassed. Thiscan result in
faster data transfer times.

Adding New File Managers

1-26

USFilesis delivered with a DOS file system manager, and a CD-ROM SO
9660 file system manager can be provided aswell. A serial file manager
comes with MultiTask!, so several file managers are available to you. If
you need to develop your own file manager, it can be done. It will involve
asignificant time investment, though.

The file mtio.h has most of the definitions necessary for adding anew file
manager. The basic file manager structureis:

struct filenman_s{
int (*open)(MIFILE *, char *); /* character open routine */

size t (*read) (MIFILE *, byte *, size t); /* read from
stream */

size_t (*readl n)(MIFILE *, byte *, size_t); /* read |line
routine */

size_t (*wite)(MIFILE *, byte *, size_t); /* wite to
stream */

size t (*writeln)(MIFILE *, byte *, size t); /* wite |line
to stream */

int (*close)(MIFILE *); /* close stream*/
int (*seek) (MIFILE *, uint32); /* reposition file */
int (*makdir)(MIFILE *); /* create a directory */

int (*_delete)(MTIFILE *); /* delete a file */

USFiles User's Manual

int (*fmoctl)(MFILE *,int,void*, size t); /*
m scel | aneous control */

s

Thisfile manager structure should be suitable for any file system, since it
only depends on the MTFILE structure, which is common to all of USFiles.

The source file for the particular file manager defines the specific file
manager structure. For example, the PC file manager is defined at the end
of pcfmapi.c as:

FI LEMAN const pcfm = {
pcf m open,
pcf m read,
pcf m readl n,
pcfmwite,
pcfmwriteln,
pcf m cl ose,
pcf m seek,
pcf m makdi r,
pcf m del et e,
pcf m fm octl

}s

The device table needs to know about the file managersin use, so devtab.c
includestheline:

extern FILEMAN const pcfm

When developing a new file manager, the PC file manager serves as a good
starting point (see pcfmapi.c).

File System Parameters

File system parameters are defined in mtio.h in the form XXX_FSP. For
example, PCFM_FSP provides PC file system parameters, Pl PE_FSP
provides useful parameters for a pipe file system, and CDFM_FSP provides
the parametersfor a CD file system.

These are joined together in aunion like:

t ypedef union fm_parm u{
struct sfmfsp s;

USFiles User's Manual 1-27

struct pcfmfsp p;

struct pipe_fsp pi;

struct cdfmfsp cd;
} FM_FSP_U;

Any new file system will likely have its own set of useful parameters. This
new structure should be defined as NEWFM_FSP (for example), and an entry
should be added to the FM_FSP_U union.

The parameter items are accessed through calls like this, which is from
count_seq clusters() in pcfm.c:

| ast = fp->fsp.p.cur_clust;

ldentifying a File System

To be ableto easily identify the file system associated with a particul ar
device, we use macros defined in mtio.h. The onesthat are defined for
distribution with USFiles are:

#defi ne FM_SFM 0
#defi ne FM PCFM 1
#defi ne FM_PI PE 2
#defi ne FM_CDFM 3

If you define anew file manager, thislist should be updated.

1-28 USFiles User's Manual

Device Drivers

Each DOS device driver is defined to USFiles by specifying eight routines:
Driver initialize

Cylinder, Head, Sector read

CHS write

Format

Logical block read

Logical block write

Time stamp

Disk change

PN AWNE

The time stamp routine records the date/time code at the address specified.
The value should be encoded in MS-DOS directory entry format. Seethe
biosdrv_timestamp() function the mak_ftime() and mak_fdate() macros for
details. Thisroutine can be replaced with adummy with no ill effect other
than the directory entries on files will not show the actual date/time of
access. The dummy routine may return nothing, or zeroes, or anything else
you desire.

The CHSread isonly called by PCFM to get the first logical sector from a
diskette that contains the DOS BPB, which describes the disk format
(number of tracks and sectors, etc.). Thelogical block read and write
routines perform the bulk of the work, although on disks using CHS format,
the logical block routines calculate the appropriate cylinder, head, and
sector, and call the CHS routines.

Y ou can get away with only writing one read and one write routine. If you
are doing diskette or old hard drive access (identifying a sector by cylinder,
head, and sector), then you only need to develop a CHS read and a CHS
write routine, which accept a drive number, cylinder, head, sector number,
number of sectors, and a buffer pointer for the data.

Thelogical block read and write routines compute the cylinder, head, and
sector number from the logical block number and call the CHS read/write
routines. Thelogical read and write routines in biosdrv.c can be used for
this purpose if you devel op substitutes for the biosdrv_raw_read() and
biosdrv_raw_write() routinesin that file.

USFiles User's Manual 1-29

The logical block read and write routines are appropriate for accessing hard
drivesthat use logical block addressing (LBA). Inthis case, the CHS read
and write routines are simply dummy routines. A driver (called
Ibahddrv.c) that supportslogical block addressing is provided with the
80x86 real mode release of USFiles.

See also: Chapter 7, Porting Guide, for assistance if you need to integrate
your driver with an RTOS.

Driver Function Summary

The file manager makes the calls to the device driver functions. The device
driver functions for an sf mdevice are described in the MultiTask! manual.
The functions comprising a pcf m(disk) driver are described below.

A pcf mdevice driver consists of these functions, which are typically used

in this order:
init() Initialize device
format() Physically formats sector

raw_read() Read sector specified by cylinder, head, and sector
raw_write() Write sector specified by cylinder, head, and sector
read() Read sector specified as alogical sector number
write() Write sector specified as a logical sector number
timestamp() Reports time and date

diskchange() Reportsif a disk has been changed

For a specific instance of adriver, these routines will be given the above-
mentioned names with a unique prefix prepended to them to designate the
driver (e.g., pcfdrv_raw_read()).

The exact function performed by these routines depends upon what the file
manager calling them expects. The division of responsibilities between the
file manager and the device driver may be altered if a new file manager is
developed. The expectations of the pcf mfile manager are as follows.

1-30 USFiles User's Manual

Driver Function Descriptions

Driver diskchange() function

i nt di skchange(DEVI CE *devp);

The diskchange() function returns a non-zero error code if a media change
or other error has been detected since the last read or write operation to the
drive. Sensing the disk change status line for diskette drivesis useful for
this operation. For non-removable media, thisis a dummy routine that
always returns 0.

The purpose of returning an error code is to be able to distinguish between a
disk change (EDSKCHG) and having no disk present (ENORESP). Other
errors may be returned if required by your driver.

See dso: Appendix A, Handling Disk Changes
Driver format() function

int format(DEVICE *devp, int cylinder, int head,
int nsects, void *buffer);

The format() function should physically format the track specified by

cyl i nder and head, on the drive specified by devp- >uni t _no. The
buf f er containsformat information for nsect s if applicable. The
format() function returns zero if successful or non-zero on an error. If the
format function will not be used, format() can be a dummy function that
does nothing.

USFiles User's Manual 1-31

Driver init() function

int init(DEVICE *devp);

Theinitialize function is called once for each drive controlled by the driver.
It should do any initialization required by the device, such as hardware
reset, initialize interrupt vectors, etc. Zeroisreturned if successful, and a
non-zero error code if not. If more than one drive is called, init() should
keep astatic flag to tell it that it has already been called so it can avoid
repeating operations that should be done only once. The flopdrv_init()
function hooks controller-interrupt vectors on the first call, and for each
timeitiscalled (it will be called only once for each drive) it starts a motor
control task.

Driver raw_read() function

int raw_read(DEVI CE *devp, int cylinder, int head,
int sector, int, nsects, void *buffer);

The file descriptor and all associated structures will beinitialized with all
available information before the driver raw_read() function iscalled. This
function should:

1. Seek the specified drive to theindicated cylinder. Thedriveis specified
by devp->unit_no..

2. Attempt to read nsect s consecutive sectors starting with sect or,
under the specified head into the buf f er indicated.

3. Retry several timesif an error is encountered, and then return a non-zero
error code if the error persists. If theread is successful, return a zero
value with the data in the buffer.

1-32 USFiles User's Manual

Driver raw_write() function

int raw wite(DEVICE *devp, int cylinder, int head,
int sector, int, nsects, void *buffer);

The file descriptor and all associated structures will beinitialized with all
available information before the driver raw_write() functioniscalled. This
function should:

1. Seek the specified drive to the indicated cylinder. The drive number is
contained in devp- >uni t _no.

2. Attempt to write nsect s consecutive sectors starting with sect or,
under the specified head into the buf f er indicated.

3. Retry severa timesif an error is encountered, and then return a non-zero
error code if the error persists. If theread is successful, return a zero
value with the data in the buffer.

Driver read() function

int read(uint32 |ogical_sect, PCFM BUFFER *buf p);

The driver read() function reads the indicated logical sector into the buffer
a buf p- >buf , from the drive indicated by the buf p structure. Any other
information required by the driver about the device can be found through
the buf p structure. Parametersin buf p may indicate that a consecutive
number of sectors are to be read, in which case this action should be taken.
The supplied driver in biosdrv.c should be used as a guide for coding a new
driver.

This read routine may accomplish its function by converting the logical
sector number into a physical cylinder, head, and sector number, and then
calling the raw_read() routine, or by directly accessing the disk drive. If
the read is successful the driver read() function returns avalue of zero;
otherwise it returns a non-zero error code.

If buf p- >usr buf isnot NULL, then the read() function will read
buf p- >nsect s sectorsto the user’ s buffer at buf p- >user buf , instead of
transferring a single sector to buf p- >buf .

USFiles User's Manual 1-33

Driver timestamp() function

void timestanmp(uintl1l6 *tine);

The timestamp() routine gets the time and date if available from the system,
and encodes the time as a 16-bit value which it writesto location *t i ne.

The date is encoded as a 16-bit value that iswrittentot i ne[1]. See
biosdrv.c for an explanation of the time and date encoding format. This
routine can be replaced by a dummy function with no ill effect other than
the date and time recorded in the directory entries for the file system will
not be correct.

Driver write() function

int wite(uint32 |ogical_sect, PCFM BUFFER *buf p);

The driver write() function writes the indicated logical sector into the buffer
a buf p- >buf , from the drive indicated by f p- >devi ce- >uni t _no. Any
other information required by the driver about the device can be found
through the buf p structure. Parametersin buf p may indicate that a
consecutive number of sectors are to be written, in which case this action
should be taken. The supplied driver in biosdrv.c should be used as a guide
for coding anew driver.

This write routine may accomplish its function by converting the logical
sector number into a physical cylinder, head, and sector number, and then
calling araw_write() routine, or by accessing the disk drive directly. If the
writeis successful it returns a value of zero; otherwise it returns a non-zero
error code.

If buf p- >usr buf isnot NULL, then the write() function will write
buf p- >nsect s sectors from the user’ s buffer at buf p- >user buf to disk,
instead of transferring a single sector from buf p- >buf .

1-34 USFiles User's Manual

RAM Disk Driver

USFilesis supplied with a configurable RAM disk device driver, which
should be used ininitial teststo verify that USFilesis functioning in your
target environment. The RAM disk driver is contained in the fileramdrv.c.

The RAM disk driver can support any number of logical RAM drives. The
number of drives supported is defined by the parameter NUVRANDRI VES in
the driver sourcefile. Thisdriver source duplicates the same timestamp
routines used in biosdrv.c. If you are using both drivers, you really only
need one set of the timestamp routines. Y ou can leave one copy out and
change the DRI VER structure for one of the devicesin userio.h to use the
timestamp routine of the other driver.

Each RAM drive must be initialized by a call to ramdrive_init() before you
can open any file on that drive.

DOS BIOS Driver

USFilesis supplied with a DOS device driver called biosdrv.c, which may
be used in x86 target systems supplied with PC-compatible BIOS. This
driver supports diskette and hard disk devices.

The BIOS callsin biosdrv.c present an oversimplification of what a
diskette read or write sector will actually do. You will usually need to step
the head to track zero on initialization and record the track that each driveis
currently on. Then when presented with a request for a sector on a new
track, issue a seek command to step to the new track, and then the read
command.

The raw driver routines should retry several times on soft errors and return a
non-zero error code on failure. These routines should return zero when
successful. The actual error codes can be user-defined, but need to be
coordinated between the raw driver routines and the
biosdrv_error_handler() routine (in biosdrv.c) or its replacement.

The biosdrv_error_handler() routine can be modified to take whatever
action you want for critical errors. One critical error it must respond tois
the diskette being changed. The BIOS routines return an error code of
0x06 if adisk changeis signaled by the diskette drive. Thisvalueis

USFiles User's Manual 1-35

currently hard-coded into biosdrv_error_handler() and also
pcfm_get_bpb() in pcfm.c. This error needs to be passed back by the raw
read/write routines to assure proper operation of the file system.

Hard Disk Driver

The hard disk driver delivered with the 80x86 real mode and 1386 protected
mode versions of USFiles (Ibahddrv.c) provides direct accessto an IDE
hard drive. The drive can either operate in logical block addressing (LBA)
mode, or in cylinder, head, sector (CHS) mode. Each drive’s unit number
in the device table determines how it is accessed.

See also: Configuring USFiles chapter for more details.

This driver assumes that PC hardware isin use, which includes the Intel
8259 Programmable Interrupt Controller (PIC) and the Intel 82062 Disk
Controller. Thedriver initialization installs an interrupt service routine
(ISR) in the expected DOS vector for IRQ 14. When operating in stand-
alone mode, an ISR is aso installed into the DOS timer interrupt vector to
alow drive commands to timeout.

The hard disk driver does not implement raw_read() or raw_write()
routines. It strictly usesread() and write().

1-36 USFiles User's Manual

Diskette Driver

The diskette driver is also provided with 80x86 real mode and 1386
protected mode, and it has similar assumptions to the hard disk driver. It
assumes the presence of the Intel 8259 PIC, 8272 Floppy Disk Controller,
and 8237 Programmable DMA Controller. The diskette drive ISR is
installed in the DOS vector used by the diskette drive controller.

The notes concerning the BIOS driver error handler also apply to the
diskette driver. There are two routines that are used to check for a disk
change. Oneisused only within the driver itself
(internal_pcfdrv_diskchange()), and does not call the error handler. The
other is pcfdrv_diskchange() and can be called by file manager functions
(like pcfm_open()). Thisroutinewill call the error handler.

Adding New Device Drivers

The driver structures are also defined in mtio.h. The PC file system driver
IS.
struct driver_p { /* for PC Disk File System*/
int (*init)(DEVICE *);
int (*raw_read)(DEVICE *, int, int, int, int, void *);
int (*rawwite)(DEVICE *, int, int, int, int, void *);
int (*format)(DEVICE *, int, int, int, void *);
int (*read)(uint32, struct pcfmbuffer_s *);
int (*wite)(uint32, struct pcfmbuffer_s *);
void (*timestanp)(uintl6 *);
i nt (*di skchange) (DEVI CE *);

USFiles User's Manual 1-37

For comparison, the serial driver structureis:

struct driver_s { /* For Serial devices */
int (*init)(MFILE *);
byte (*read) (MIFILE *);
void (*wite)(MIFILE *, byte);
int (*ioctl)(MIFILE *, int, va_ list);
void (*term (MIFILE *);

1

If you are adding a new driver to USFiles to work with the PC file manager,
then we recommend that you define it as an instance of thedri ver _p
driver. Thereisno need to create an entirely new driver structure.

If you need adriver to work with afile manager that you are adding to
USFiles, then you may find that a new driver structure is necessary. When
developing USFiles for CD-ROM, we found this to be the case.

See also: Thefile mtio.h or Appendix E, USFiles for CD-ROM, to seethe

CD-ROM driver structure.

Any new driver types added to the system need to be included in the driver
union in mtio.h:

uni on driver_u{

s

1-38

struct driver_s S; /* sfmserial driver */
struct driver_p p; /* pcfmdisk driver */
struct driver_cd cd; /* cdf m CD- ROM driver */

The source file for the particular driver defines the specific driver structure.
For example, the RAM disk driver is defined at the end of ramdrv.c as:

struct driver_p ramdrv_s = {
ramdrv_init,
ramdrv_raw read,
ramdrv_raw wite,
ramdrv_f or mat,
randrv_read,
ramdrv_wite,
ramdrv_ti mest anp,
ramdr v_di skchange

USFiles User's Manual

The device table needs to know about the driversin use, so devtab.c
includestheline

extern struct driver_p randrv_s;

Driver Errors

All the driver functions except the timestamp() routine return an integer
value to report errors. When adriver error occurs, some file manager
functions will set er r no to that driver error and signal an error to the
application level. If thelist of error codesin mtio.h (duplicated in
Appendix G, Error Codes) does not contain a code that adequately
describes the situation, you may extend the list.

Device Parameters

Since you can have several types of a particular device (e.g. two diskette
drives), we need a mechanism to keep track of the data associated with each
one separately. To do this we use a device parameter union (DEVPARM).
Each device in the device table specifies the variable used to keep track of
device parameters. When USFilesis delivered, the device table has two
diskette drives (A: and B:). Each hasits own device parameter variable.
These are global variables defined in userio.h as:

PCFM_PARM pcparmA = {1}; /* set notor_event for drive A */
PCFM PARM pcparmB = {2}; /* set notor_event for drive B */

Other fields in the device parameter structure will be filled when adeviceis
initialized.

USFiles User's Manual 1-39

Depending on the device type, the parameters used to characterize it will
differ. Examples of these are PCFM_PARMand CDFM_PARMin mtio.h.
Since the driver structure hasto support all these different parameter
combinations, we use a union of pointers to device parameter structures:

t ypedef uni on devpar m u{

PCFM_PARM *pcd; /* PC disk I/O paranmeters */
SFM_PARM *pcs; /* Serial port parameters */
Pl PE_PARM *pi p; /* Pipe paranmeters */
CDFM_PARM *cdparm /* CD-ROM drive paraneters */
EXAMPLE _PARM *other; /* Add others here */

} DEVPARM

If you add a new device type, you will have to add a new device parameter
type to the union.

1-40 USFiles User's Manual

How It Ties Together

Remember that al of thisreally is brought together in the device table. The
device table entry specifies which file manager, driver, and device
parameter variable to use. It isthrough the device table that we are able to
navigate the USFiles three-layer structure.

An Example

As an example of how things are used, let us see what happens when we
open afileusing mt_fopen(). The function mt_fopen() isin streamio.c.
After entering that routine, we determine what capabilitiesthefileisto
have, decide which device to access (e.g. A:), and set up some parameters
for thefile pointer. A pointer (devp) is set up to the device table entry for
the device in question, and using the pointer, USFiles calls the appropriate
file manager open function via:

status = devp->fil eman->open(fp, fnane);

The file manager is specified in the device table entry. For a diskette
device, the file manager is pcf m so the above function call will take usto
pcfm_open(). In pcfm_open() we accessthe driver init() call. Thisisdone
with:
devp = fp->device;
i f(devp->driver->p.init(devp)){

/* do stuff */
}

Thedriver that is called in the above example is a so specified in the device
table. If we wereusing a CD-ROM device instead of a diskette drive, the
file manager open would resolve to cdfm_open(), and within that call, the
init() command could be accessed by:
devp = fp->device;
i f(devp->driver->cd.init(devp)){

/* do stuff */
}

The differenceisresolved by thedr i ver _u union, which was described
above. Of course, we would have to make sure that the driver shown in the

USFiles User's Manual 1-41

1-42

devicetableistruly aCD-ROM driver. If anew file manager iswritten
with anew driver type, then its function calls would be accessed through:

f p- >devi ce->dri ver->newdri ver. functi on(parans);

It isimportant to realize that a file manager is associated with only one type
of device driver. The PC file manager maps to PC device drivers, and the
CD file manager is related to the CD-ROM driver, so this connection is
hard-coded into the file managers through the p.function() or cd.funtion()
lines described above. It seems conceivable that two different file managers
could use the same type of driver, but it is difficult to imagine how this
would occur. It isnot possible for a particular file manager to use different
driver types, though.

USFiles User's Manual

Function Call Hierarchy

Figure 3-4 shows how the file structure ties the various USFiles internal
components together. Table 3-1 shows how the stream 1/O, PC file
manager, and driver functions all relate. When stream 1/0 opens afile, it
finds the appropriate device table entry, and the file manager and driver
pointers are copied from the device table into the file structure. Stream /O
functions then call the file manager, which calls the driver viathe pointer in
the file structure.

Device Table

File Structure

Device Table
I ndex
—»| Devicefor
Device Pointer [File
Driver [®—— Driver Pointer K—— DG [PElilES
File Manager
- /' FileManager K—— Pointer
e D R—— Pointer
Manager
Stream |/O /

Figure 3-4: Schematic Linking the USFiles Internals Together

USFiles User's Manual 1-43

Table 3-1: Function Hierarchy

Stream I/O File Manager Driver

mt_clearerr()

mt_fclose() pcfm_close() timestamp(), write()

mt_feof()

mt_ferror()

mt_fflush() pcfm_fmioctl () write()

mt_fgetc() pcfm_read() read()

mt_fgetpos()

mt_fgets() pcfm_readin() read()

mt_fopen() pcfm_open() init(), diskchange(), read()
mt_fprintf() pcfm_write() write()

mt_fputc() pcfm_write() write()

mt_fputs() pcfm_writeln() write()

mt_fread() pcfm_read() read()

mt_fseek() pcfm_seek() read(), write() (indirectly called)
mt_fsetpos() pcfm_seek() read(), write()(indirectly called)
mt_ftell()

mt_fwrite() pcfm_write() write()

mt_mkdir() pcfm_makdir() timestamp(), write()

Table continued on next page.

USFiles User's Manual

Table 3-1 (continued):

Function Hierarchy

Stream I/O File Manager Driver

mt_printf() pcfm_write() write()

mt_readdir() pcfm_fmioctl(),

mt_remove() pcfm_open(), init(), read(), write()
pcfm_delete()

mt_rename() pcfm_open(), init(), read(), write()
pcfm_delete()

mt_rewind() pcfm_seek() read(), write() (indirectly called)

mt_rmdir() pcfm_open(), init(), read(), write()
pcfm_fmioctl()

mt_sprintf()

mt_sscanf()

mt_vsprintf()

USFiles User's Manual

1-45

Directory Access

The fopen() function can be used to access directories as ordinary files
(read-only). Thiswill alow you to use fseek(), rewind(), and fread() to

access adirectory. When using long file names, knowing how far to seek
and read is not obvious.

USFiles comes with a function, mt_readdir (), to read directory entries from
adirectory. Hereisasample use:

MIFI LE *fp;
MI_DI RENT entry;
fp = m _fopen(pathnane,”d");
if(!'fp)
iprintf(“Error opening directory”);
while (I'mt_feof (fp)) {
if(!nt_readdir(fp, &entry))
iprintf(“ 9%\n",entry.name);
else if(errno = 0)
iprintf(“m_readdir error”);
}
nt_clearerr(fp);
nt _fclose(fp);

The “pat hnanme” above will be the directory to open. For example, “a: ”
would open the root directory, and “a: \ SUBDI R” would open a
subdirectory named SUBDIR on drive A:.

See also: Please see the entry for mt_readdir() in Chapter 5, Library
Reference, for amore detailed description of this function.

1-46 USFiles User's Manual

Global Variables

USFiles makes use of afew global variables that may be useful when
debugging an application.

DEVI CE devi ce_tab[]
Devicetable

MIFI LE *mt st r eans[NUMSTREAMS]
Open streams table

VMEVHEAD _DEF mrem r oot pt r [NUMCOLORS]
Heap array (only for stand-alone USFiles for 386
protected mode)

DI R_SEARCH BLK wor kbl k
Used to search for a PC-type file (protected by
LOCK_FILESYSTEMY())

PCFM BUFFER pcf m buf [NUVBUFFERS]
PC file manager sector buffers

byt e pcfm agescal e
Signals when buffer age parameter wraps

USFiles User's Manual 1-47

1-48 USFiles User's Manual

2. Configuring USFiles

Chapter Contents

(P. CONFIGURING USFII ES 2-1
L Lauration Querviea 2-2
Confiquring Devices 2-2

%onfi uring Streamsand BUffers ... 2-7
Buffer Confiquration GUIdelineSccoeevviiveiinnnes 2-8

A T it e i e e e i e s i e s eiaera e 2-9

hecking Configuration Parameters...............coovveevenennennnne. 2-9
%Erotecti NG RESOUMCES. ..eooorrrersreeessereeeserreessreeesseeeesssereeseeeees 2-10
ting TimeoutsTor Device Drivers..........cocoororereceeeceeeenes 2-12]
1lesUsed TOr CONTIQUIALION........ccoeerreeresreesreeeesseesseseesseesenns 2-13
SHIES TIPS, 2-14

USFiles User's Manual 2-1

Configuration Overview

There are avariety of items that can be configured for USFiles, ranging
from what devices are available to how many buffers are used. This chapter
will describe theindividual configuration parameters and details, and then
provide a summary of these parameters arranged by file.

Configuring Devices

2-2

Possibly the most important configuration issue is setting up the device.
The device tableis an array defined in devtab.c. A devicetable entry
consists of initialized data structures that define the device characteristics
and map the appropriate file manager and driver routines to the device.

The default USFiles device that resides in the device tableisa RAM disk.
Thisdeviceisfunctional on any board. To add device table entries to match
your hardware, you must:

1. Declarethefile manager. For USFiles devicesthisis already done with
the line:

extern FILEMAN const pcfm

NOTE: Thepcf mstructureisdefined in pcfmapi.c.

1. Declarethedriver. The USFiles RAM disk does this with:

extern struct driver_p const randrv_s;

NOTE: Therandrv_s structure isdefined in ramdrv.c.

1. Definethe variable for storing device dependent data. The USFiles
RAM disk uses:

PCFM_PARM pcpar nR;

1. Placean entry for thedevicein devi ce_t ab[] . The RAM disk entry
is:

USFiles User's Manual

&pcpar R, /* device dependent data */

R, [* nanme */

FM_PCFM /* device type = PC device */
OxF, /[* bits: text wite read */
0, [* unit# */

0, /* partition */

(DRI VER *) & andrv_s, /* pointer to driver */
&pcfm /* pointer to file manager */
NULL, /* pointer to FILE */

0, /* flags */

0 /* # open paths (RAM */

For USFiles devices the file manager is always of type FI LEMVAN, the driver
isawaysof typedri ver _p, and the device parameter variable is always of
type PCFM_PARM When using USFiles for CD-ROM, the driver and device
parameter type change. Please see Appendix E, USFiles for CD-ROM, for
more details.

You will very likely need to add or delete structure initializers from this
table. Depending on the file manager and driver, not every element in the
devi ce_s structure will necessarily be used for a particular device.
However, there must be initialized data present for each element as a place
holder.

See dso: For the definition of the device structure, see mtio.h (st r uct
devi ce_s) or Chapter 3, USFiles Internals.

In the above sample device table entry, the drive will be identified as“R:”.
The device name does not need to be a single character; thereisno size
l[imit on the device name. The name given in thistableisrequired to be all
upper case characters. The pathname given to fopen() is case insensitive.

USFiles User's Manual 2-3

The capabilities field of the device table entry (fourth item in devi ce_s)
can be any combination of:

CAP_READ Read is permitted

CAP_WRI TE Write is permitted

CAP_UPDATE Read and Write (== CAP_READ | CAP_WRI TE)
CAP_TEXT Text modeis permitted

Y ou will need to set up the device table to represent your hardware.

NOTE: Only the lower three bits of thecapabi I i ti es field are
significant to USFiles. Any valuesin the upper 5 bits are
ignored. Thismeansthat capabilities = 0x7 isthesame
ascapabilities = OxF.

Unit Numbers

2-4

When specifying adiskette or hard drive in the device table, the unit
number assigned will affect how it isaccessed. The particular bitsin the
unit number are presented in Table 4-1.

Table 4-1: Bits in the Unit Number

Bit 7 6 5 4 3 2 1 0
Use drive | unused mode | device number
type

The explanation of each field is:

drivetype 0 = diskette drive; 1 = hard drive

mode 0 = CHS mode; 1 = LBA mode (hard drives only)
device number Actual unit number

The PC file manager uses the drive type bit to determine how to read the
device BPB. The mode bit isused in Ibahddrv.c to decide whether a

USFiles User's Manual

logical sector number should be converted to cylinder, head, and sector.
For hard drives, LBA modeis preferred, since it allows access to larger
devices.

Diskette drives can have numbers ranging from 0 to 3. Hard drives using
CHS may be numbered from 80h to 83h, and those using LBA can range
from 84h to87h. A master driveis specified by bit 0 being clear, and the
dave drive is specified by bit 0 being set. Therefore on the primary IDE
cable, master drives are 80h or 84h, and dave drivesare81h or 85h,
depending on the access mode.

Configuring Partition Numbers

Hard drive partitions are assigned consecutively. Thefirst partition on a
driveis partition O, the second is partition 1, and so on.

NOTE: When DOS determines drive letters, al primary DOS
partitions are assigned lettersfirst, and then the logical drives
in extended partitions are handled. For example, if you have
two drives, each with aprimary partition and alogical drive,
then the first disk will have drives C: and E:. The second disk
will have drives D: and F:. Inthe USFiles device table, you
may associate drive letters with whatever partition you desire.

USFiles User's Manual 2-5

Configuring Drives and Drivers

Thefile siosrc\sioconf.h has definitions used to control the behavior of test
programsin certain situations. When using a RAM disk, the application
needsto ‘format’ the device before it can be accessed. By setting RIOto 1
in sioconf.h, the test programs know to execute the RAM disk format
command.

Likewise, if you are using the i8086 BIOS driver (biosdrv.c) to access the
hard disk or diskette drives, you should uncomment the line:

#defi ne USEBI OS

When USEBI GS is not defined, the test programs will attempt to restore the
interrupt service routines that DOS was originally using. The BIOS driver
does not change these routines. So when the BIOS driver is used, we do not
want to restore them.

#define RIO 1 enables test programs to format the RAM disk
#def i ne USEBI CS will not attempt to restore DOS interrupt service
routines

2-6 USFiles User's Manual

Configuring Streams and Buffers

USFiles allows the user to specify the maximum number of open streams
(files) and the number and types of sector buffers used internally. Each
sector buffer requires 512 bytes for the sector contents, plus additional
space for internal use. The file siosr c\sioconf.h contains the specification
for the number of streams and buffers allowed.

NUMSTREAMS

NUMBUFFERS

NUMFATBUFS

NUMDI RBUFS

NUM NFBUFS

specifies the maximum number of paths that can
be open at the same time. NUMSTREAMS must be
at least 1, and is limited to a maximum of 254, due
to theinternal use of abyte to track the index.

specifies the number of general purpose file
buffers allocated by USFiles. Each buffer
consumes approximately 530 bytes of RAM. At
least 2 buffers are required for operation. More
buffers give better performance.

specifies the number of buffersto hold FAT
sectors only

specifies the number of buffersto hold directory
sectors only

specifies the number of buffersto hold FAT32 file
system information sectors only

See also: The section on USFiles Tips for more
discussion of configuring buffers.

See dso: The section on USFiles Tips for more discussion of configuring

buffers.

When using DOS 8.3 file names only, USFiles requires approximately 30
KB of ROM and 6 KB of RAM. The RAM sizeincludes 10 file buffers,
which is user-configurable.

The total number of bufferswill be the sum of the four buffer numbers
specified in siosr c\sioconf.h.

USFiles User's Manual

2-7

Buffer Configuration Guidelines

2-8

NUMBUFFERS is used for data sectors, so increase thisfor largefiles. If
there are many files or subdirectoriesin asingle directory, increase

NUMDI RBUFS. If you are using very large files (many clusters per file),
increase NUMFATBUFS. Use only one file system information sector buffer
for each FAT32 partition.

NUMBUFFERS cannot be zero. All the others can be set to zero, and they are
zero asthe default. Any sectors that do not have a specific buffer pool
assigned (e.g. a FAT sector when NUMFATBUFS is 0) will be placed in the
genera buffer pool (NUMBUFFERS). If you are only using the general buffer
pool, then NUMBUFFERS must be at least 2. If either NUVMDI RBUFS or
NUMFATBUFS is non-zero, then NUMBUFFERS must be at least 1.

To aid in tuning the buffer numbers, there is a symbol in siosr c\sioconf.h
caled USF_BUF_DEBUG. If thisisset to 1, then the get_buffer() function
will track buffer usage. The statistics can be displayed by calling
buf_dump(). Pleaserefer to siosrc\usfbdump.c for the buf_dump()
function call. Below are the statistics that are tracked for buffers.

cals: The number of times get_buffer() was caled for this type of
buffer

pushes. The number of times get_buffer() had to write out a dirty buffer
to make room for anew buffer of the given type

reads: The number of times get_buffer() had to call the driver read
function for this buffer type

unused: The number of buffers of thistype that were allocated but not
used

total: The total number of buffers of thistype alocated

In general, if the number of pushesis large increase that buffer pool. If
there are unused buffers for a given pool, then decrease its size.

USFiles User's Manual

VFAT

For information on using and configuring VFAT, please refer to Appendix
C, VFAT.

Checking Configuration Parameters

The user can aso enable careful input parameter checking. To turn on
parameter checking, set USS_SI O PCHK in siosrc\sioconf.h to 1. This
would most likely only be used during development and not for production
code. Toremove the extra code that checks the input to functions, set
USS Sl O PCHK to 0.

NOTE: When passing in addresses from which USFiles will read (e.g.
USFiles reads data from the buffer passed to mt_fwrite() and
writes that data to afile), we do not test for aNULL address.
Reading from the NULL address will generally not cause
catastrophic failures. When passing in an address to which
USFiles will write (e.g. mt_fread()), turning on parameter
checking will test that the addressis not NULL. Thiswill
prevent USFiles from writing data to an obviousy incorrect
region of memory.

USFiles User's Manual 2-9

Protecting Resources

In integrating USFiles with an RTOS, there are two levels of resource
protection used. Thefirst level is protecting the stream 1/O layer, and the
second is protecting directory-level accessin the file system. The method
of resource protection varies between the supported RTOSes. Typicaly a
resource or semaphoreisused. The RTOS header file has the definitions
for LOCK_and UNLOCK_STREAMIO(), and LOCK _ and
UNLOCK_FILESYSTEM(). If this protection isimplemented as a
resource, then definitions are made for the symbols STREAM_RESOURCE
and PCFM_RESOURCE. The resource definitions (if any) can be found in the
filertos.h in the appropriate siosr c\<rtos> subdirectory.

NOTE:

The LOCK_FILESYSTEM() cal may become nested, so a

protection mechanism that allows resource nesting is required.

Table 4-2: Symbols for Locking Stream I/O and File System

RTOS STREAM_RESOURCE | PCFM_RESOURCE
Default Value Default Value

Multi Task! N/A 1

TronTask! 1 2

Hitachi ITRON | 2 1

RX850 N/A N/A

RX850 Pro N/A N/A

NOTE: The RX850 and RX850 Pro RTOSes do not take static

resource ID definitions. They will be dynamically configured,

hence there are no default values.

2-10

USFiles User's Manual

STREAM RESOURCE specifies the resource number used to lock stream
I/O access while the current task is accessing it.

PCFM_RESOURCE specifies the resource number used to lock the file
system while the current task is accessing it.

Y ou do not need to use the default values for these ID numbers, but these
symbols must be defined to valid resource ID numbers.

USFiles User's Manual 2-11

Setting Timeouts for Device Drivers

If you are using one of our direct-access device drivers on PC-type
hardware without an RTOS, then there is one more parameter that you
should be aware of. The depends.h file defines the clock frequency as
CLOCKHZ. If you are testing USFiles on a DOS PC in stand-alone mode,
then you should set CLOCKHZ to 18. If you leave thisvalue at its default
setting (182), then the timeout periods for Ibahddrv.c and flopdrv.c will be
exceptionally long. Leaving the default setting will not cause an error, but
you may wait for along time for atimeout to occur. Thisis because the
direct access device drivers use the DOS ticker interrupt, which has a
frequency of 18.2 Hz. If CLOCKHZ does not match this, then our timeout
period will not be what we expect, since we convert from milliseconds to
clock ticks based on the value of CLOCKHZ.

NOTE: If aboard support package (BSP) is being used with USFiles,
then the depends.h file will not be present. The clock speed
will be specified in config.mak as USS_CLOCKS PER_SEC.
See siosr c\<cpu>\cpunotes.txt to determine whether your
version of USFilesisusing a BSP.

2-12 USFiles User's Manual

Files Used for Configuration

compiler.mak
config.mak
devtab.c
depends.h
rtos.h

sioconf.h

sio.mak

Specifies target board (see commentsin file for details).
Located in config\<cpu>\<compiler > directory.

Specifies product installation directory, products to build,
CPU, compiler and RTOS used, and possibly
USScCLOCKS PER _SEC.

Contains the device table.

May specify CLOCKHZ if no BSPisused. Locatedin
siosr c\<cpu>\<compiler > directory, if present.

May specify STREAM RESOURCE and PCFM_RESOURCE.
Located in siosr c\<rtos> directory.

Specifies NUMSTREAMS, NUMBUFFERS, NUMFATBUFS,
NUMDI RBUFS, and NUM NFBUFS. For debugging use,
USF_BUF_DEBUG and USS_SI O PCHK areset. Also
used to specify Rl Oand USEBI OS. Located in siosrc
directory.

Specifies VFAT and FAKEUNI CODE (See Appendix C,
VFAT, for more details). Located in config directory.

Thefile siosrc\<cpu>\cpunotes.txt might contain more information on
configuration for a particular processor.

USFiles User's Manual

2-13

USFiles Tips

This section provides afew suggestions that should improve the
performance of USFiles. If you would like to discuss any of these items,
please contact us.

Use Short File Names

If possible use short file names. Building up long file name entries can be a
time-consuming process.

Use Unique Long File Names

If long file names are necessary, try to make file namesin a given directory
uniquein thefirst six characters. Thiswould mean using the names

file01 for_testing.tmp, file02_for_testing.tmp, etc. instead of
testing_file01.tmp, testing_file02.tmp, etc. USFileswill more quickly be
able to assign aunique 8.3 name to thefile.

Do Not Place Too Many Files in a Directory

Do not keep too many filesin agiven directory. When searching for afile
name, USFiles will have to read each entry in the directory until it finds the
desired name. Each entry is 32 bytes, so adirectory with 1000 files uses 63
sectors (for 8.3 names). If you use long file names, that number could
easily double (see the first item above).

Tune Buffer Usage

Performance can be improved by using the use-specific buffers that have
been introduced in USFiles 3.07. Some guidelines for use are:

NUVBUFFERS (Number of Devices) x (Number of sectors per cluster)
NUVFATBUFS Number of files

NUMDI RBUFS ~ Number of files

NUM NFBUFS Number of FAT32 devices

These should be used as starting points. Set USF_BUF_DEBUG In
siosr c\sioconf.h to help fine tune these numbers. See the section

2-14 USFiles User's Manual

"Configuring Streams and Buffers' for a description of the buffer tracking
statistics. In general, the more buffers the better, but this can lead to large
RAM requirements.

Increase Cluster Size

Using alarger cluster size will limit the number of times USFiles has to
accessthe FAT. If you aretypically dealing with large files alarger cluster
size can provide a significant performance improvement. When dealing
with smaller files, you may end up wasting more disk space than you want.
There are utilities like Partition Magic* that will allow you to choose the
disk cluster size.

USFiles User's Manual 2-15

2-16 USFiles User's Manual

3. Library Reference

Chapter Contents

[Overview of USFiles FUNCLIONS.............c.cooeeveeveeereeveeerrerseennn. 3-4
RO N 1 — 3-5
USING EITN0 ..., 3-6
AtoMIC typeder NamMES..........cccveeerieeeeeeree e 3/
ser Interface Library FUNCtions...........ccoooeeeeeceecece e, 3-8
FUNCTION SUMMATY ... 39

[Te Control Funciions CEsf

Wrifing Funcilons eae)|

eading Functions 3-9

rror Reporting Functions 3-9

rror Recovery FUNCHONS . uueeiiceiiieeiiireeiinneenes 3-10

File Time FUNCLIONS ... 3-10

File Attribute FUNCHIONSoccvviiiiiieceee, 3-10
Miscellaneous FUNCHONS..........coovevevecvereeeennn 3-11

UNCHON DESCITPIHONSovovoooooooomoesnsoeosnesnisnsseonns 317
BRAI2UNT ...\ 3-12|

TE8 DYIE CMlvvoooooooooosoooooonsooonns 3-13

(NS v S 3-14

N ON 3 15)

NeBiaEndTo 16

i 3-17

DET_MIN e, 3-23

DELT MONEN ... 3-24

PEITSEC ..o 3-29

USFiles User's Manual

3-1

3-2

B SIZE.iiiciec e 3-26
S L= 3-27
T VAN ... 3-29
nvalidate SIreams...........cccccieeeeeeeeeeeeee 3-30
IMAK_ TABLE......cceeernnieeeeeeerrer e 3-ol]
- 332
T_Clearer 37
t fclose 3-33
t feof 3-35
Mt feror 3-36
mt_fflush ..o, 3-37
Nt FOELC . 3-38
Nt TOEIPOS. ... 3-40
INE FOEES. . 3-41
ML TOPEN oo 3-43
T L 3-49
L0 OV (S 349
[Tpl IS -0l
Pt _fread 357
t fseek 3-54
mt_fsefpos 3-26|
Mt ftell i 3-58
Mt FWHTE...ooi 3-59
Nt MKAIN e, 3-61
ML PNt 3-63
Nt readdir........ccveeeiieceeeceee e 3-64
NE TEMOVE ..., 3-60|
A LI 3-63
L TOWING oo 3-70
[Tmair 71
_Sprinit 73
t sscanf 374
E VSOOI O 3-76
%@n ... 377
cfm chmod.........cccoeiiiiiiiicie e, 3-79

USFiles User's Manual

USFiles User's Manual

CfM ChMOOTP ..o 3-81
CfmM _Chtime..........ccooevveeciececee e 3-82
BCTM CAUMETD ..o 3-84
PCTM_CNVIADE! ... S-00
DCTM_INVAIJaIE DUTTENS ... 3-87

g 3-88
IBioENd3? SEeie)
utl itFnd16 3-89
putl itEnd32 300
fotal bvte ent...ieiii 3-91
fotal_clust ent...eeeeeeeeiiiiiiiiiiiiiiiiiiiiie 3-92
fotal Kb cnt...oveeee 3-93
UNI2CHar ... 3-94

3-3

Overview of USFiles Functions

At the user program level, all 1/0 devices (streams) are accessed through the
familiar ANSI C functions: fopen, fread, fwrite, fgetc, fgets, fputc, fputs,
printf, fprintf, sprintf, vsprintf, sscanf, fflush, and fclose. Disk (pcf m)
devices also accept the functions fgetpos, fsetpos, fseek, ftell, mkdir, and
remove. These latter callswill do nothing on a serial (sf m) device other
than return an error code. All of these functions are supplied in source form
and conform to the ANSI specifications with these exceptions: All devices
are unbuffered in the ANSI sense of the word. Interrupt-driven serial
devices are actually buffered with separate input and output buffers for each
device. Thisbuffering ison thelevel of the interrupt service routinein the
driver and not on the higher level buffering as dealt with by the ANSI
setvbuf function. (Thisfunction istherefore not supplied.) Disk devices
are buffered by at least afull sector at atime when any accessis made. The
paths defined as st di n and st dout are not automatically opened when
your application is started; they must be explicitly opened before they can
be used.

Thefirst fopen() function initializes the required device. If initialization
takes some time, then you may notice that the first attempt to open afile on
a device takes considerably longer than subsequent calls.

The direct access disk drivers (Ibahddrv.c and flopdrv.c) that we provide
areinterrupt driven. For these devices, the task that sends the command
then enters a wait state until the device signals that the command is
completed. If an RTOS is being used with USFiles, then other tasks may
run while the drive is executing the command. If USFilesisin stand-alone
mode, then everything is put on hold until the drive is finished.

3-4 USFiles User's Manual

Function Names

The 1/O functions (fopen(), fread(), etc.) are contained in the source files
streamio.c and fileio.c. Each of these functions are defined in the source
with aprefix of “mt_", i.e.; fopen() is defined as mt_fopen(), etc. The
header file ussio.h contains #def i nes to equate the names such as
mt_fopen() to fopen(). Thesedef i nes can be switched off, which would
make the names without the mt_ prefix disappear. If you do thisit will
alow you to use I/0O functions from another source (such asthe library that
came with your compiler), simultaneously with USFiles. In this case,
fopen() would refer to the compiler library version of the function and
mt_fopen() to the USFiles version of the function. In the remainder of this
document we will refer to our functions as fopen(), fread(), etc.,
interchangeably with the names with the mt_ prefix. Keep in mind however
that if you switch off the #def i nes inussio.h you will be referring to them
asmt_fopen(), mt_fread(), etc. exclusively. With the#def i nes switched
off, the file descriptor type for USFiles becomes MIFI LE rather than FI LE.

Y ou can switch off the #def i nes by including your compiler library

<st di 0. h> header file before you include the file ussio.h. Providing
stdio.h defines ECF, the mt__ defines will be omitted. The pathsto st di n,
st dout, and st derr are NOT automatically opened; they must be opened
explicitly with acall to fopen() before they are used. If you are using your
C compiler library 1/0 in conjunction with the USFiles I/O functions, you
must not use mt_printf(), or usethe st di n, st dout , and st der r macros
with the mt_ functions, since the values defined in stdio.h will not be
compatible with the USFiles values.

To use any of the stream 1/O functions in your code, you must compile and
link streamio.c and fileio.c along with the appropriate file manager and
driver source filesto your program. If additional devices are defined, they
must be added as entriesin thedevi ce_t ab definition in devtab.c. All of
the printf() functions are contained in the files fprintf.c and sprintf.c, and
sscanf() isinthefile sscanf.c. These files must be compiled and linked to
your code to use these functions. If you are using VFAT to record long file
names, then you may need to include sprintf.c.

The makefile provided will compile all necessary modules and build a
library containing them if you make any of the test program targets. You

USFiles User's Manual 3-5

need then only link this library with your application code to make the
USFiles functions available to your code.

The fprintf() and scanf() functions will be generated as integer-only
versions (not supporting floats and doubles) unless the label PF_FLOATS is
defined when you compile these modules (fprintf.c and sscanf.c).

Using errno

Many of the I/O functions may set the variableer r no to anon-zero value.
When using an RTOS, we have to be careful how er r no is defined.
Chapter 6, Supported RTOSes, discusses how er r no isimplemented.
USFiles operating in stand-alone mode defines er r no by including the
compiler library’s errno.h file.

In either case, once an error code is written into er r no by one of the
functions returning an error, it is never cleared unless you clear it in the
application. You will need to do this unless you are aborting your program
on any error.

The error codes placed into er r no by the USFiles functions are defined in
mtio.h, and they are listed in Appendix G, Error Codes. Some of these
may conflict with values defined in your compiler library header errno.h if
you try to include both of these filesin your application.

The library entries for functions that can set er r no list the possible er r no
values. Sinceer r no can be set at either the stream 1/0 or file manager
level, we distinguish between the two. If you are using afile manager other
than the PC file manager, then the possible er r no values will differ.
Because we are continually developing USFiles, do not regard these as
comprehensive lists.

3-6 USFiles User's Manual

Atomic typedef Names

In addition to the ANSI C type definitions, USFiles specifies additional
types (see depends.h).

Name Description

byte unsigned char (8 bits)
int16 signed 16-bit integer
int32 signed 32-bit integer
uint unsigned integer
uintl6 unsigned 16-bit integer
uint32 unsigned 32-bit integer

(Thefinal five names are specified in the draft for ANSI C-99)

USFiles User's Manual

3-7

User Interface Library Functions

The functions are summarized by type, and then described individually in

detail.

Function Summary

File Control Functions

3-8

mt_fopen

mt_fclose

Opensafile

Closes afile

mt_renameRenames a file

mt_remove
mt_mkdir
mt_readdir
mt_rmdir
mt_rewind
mt_fseek
mt_fsetpos
mt_ftell
mt_fgetpos

Removesafile

Createsa directory

Reads a directory entry

Removes a directory

Setsfile pointer to start of file

Positions file pointer to desired location
Positions file pointer to desired location
Reports position of file pointer

Reports position of file pointer

USFiles User's Manual

Writing Functions

mt_fwrite
mt_fputc
mt_fputs
mt_printf
mt_fprintf
mt_sprintf
mt_vsprintf
mt_fflush

Writesto afile

Writes asingle character to afile
Writes astring to afile

Writes formatted output to st dout
Writes formatted output to afile
Writes formatted output to a string
Writes formatted output to a string
Flushesfile's output buffer

Reading Functions

mt_fread
mt_fgetc
mt_fgets
mt_sscanf

Readsfrom afile

Reads a single character from afile
Reads a string from a file

Converts a string according to specified format

Error Reporting Functions

mt_feof
mt_ferror
mt_clearerr

USFiles User's Manual

Testsfor end of file
Returnsfile error condition
Clearsfile error condition

3-9

Error Recovery Functions
invalidate _streams Invalidates all open streamsfor a given device

otherFilesOpen

Checksto seeif there are open fileson a device

pcfm_invalidate buffers Invalidates all buffersfor a given device

File Time Functions

getf _date
getf _day
getf _hour
getf_ min
getf_month
getf _sec
getf_time
getf year
mak_fdate
mak_ftime
pcfm_chtime

Returnsfile modification date

Returns file modification day

Returnsfile modification hour

Returnsfile modification minute

Returnsfile modification month

Returnsfile modification seconds

Returnsfile modification time

Returns file modification year

Converts year, month, day to file date format
Converts hours, minutes, seconds to file time format
Changestime and date of file (specified by path)

pcfm_chtimefp Changestime and date of file (specified by path)

File Attribute Functions

3-10

getf _attrib
getf_size

pcfm_chmod

Returnsfile attribute byte
Returnsfile size

Changes attributes of file (specified by path)

pcfm_chmodfp Changes attributes of file (specified by pointer)

USFiles User's Manual

Miscellaneous Functions
char2uni Converts ASCI | and Shift-JISto Unicode

free byte cnt Returns number of unallocated bytes on drive
free clust cnt Returns number of unallocated clusters on drive
free kb_cnt Returns number of unallocated kilobytes on drive
getBigeEnd16 Reads 16-hit integer recorded in Big-Endian mode
getBigEnd32 Reads 32-bit integer recorded in Big-Endian mode
getLitEnd16 Reads 16-bit integer recorded in Little-Endian mode
getLitEnd32 Reads 32-bit integer recorded in Little-Endian mode
pcfm_chvlabel Changes an existing volume label

putBigend16 Records 16-bit integer in Big-Endian mode
putBigEnd32 Records 32-bit integer in Big-Endian mode
putLitEnd16 Records 16-bit integer in Little-Endian mode
putLitEnd32 Records 32-hit integer in Little-Endian mode
total_byte cnt Returnstotal number of byteson drive

total_clust cnt Returnstotal number of clusterson drive
total_kb_cnt Returnstotal number of kilobytes on drive

uni2char Converts Unicode to ASCI | and Shift-JIS

USFiles User's Manual 3-11

Function Descriptions

char2uni

Converts ASCII and Shift-JIS to Unicode.
uint16 char2uni (uintl6 c);
c Character to convert

Thevariablec iseither an 8-bit ASCII character or a Shift-JIS two-byte
character. It will return the appropriate Unicode character for the character.

If ¢ isacharacter that we do not recognize, then the return valueis
OxFFFD.

NOTE: If you do not need to convert Kanji characters into Unicode,
then be sure that the symbol FAKEUNI CODE is defined as 1
(see Configuring USFiles). Thiswill remove the Shift-JIS to
Unicode conversion table and simplify the conversion process.

See als0: uni2char

Return Value
Unicode character corresponding to ¢

OXFFFD if character cis not supported

3-12 USFiles User's Manual

Example

/* MACRO. Returns true if c is first byte of double byte Shift-

JI'S char */

#define is_dbc(c) ((((byte)c >= 0x81) && ((byte)c <= 0x9f)) || \
(((byte)c >= 0xe0) && ((byte)c <= 0xfc)))

char filename[10];
char *fptr, nanmec;
ui nt 16 uni char;

/* Get characters in fil enane */

fptr = fil enane;
nanec = *fptr;
i f(namec >= * *){
fptr++; /* Next byte */
i f(is_dbc(nanec))
uni char = char2uni ((ui nt16) ((((ui nt 16) nanec) << 8)
| (byte) (*fptr)));
el se
uni char = char 2uni ((unsi gned char) nanec);

}
free_byte_cnt

Returns the number of unallocated bytes available on the drive.
uint32 free_byte_cnt (MIFILE *stream;
stream pointer to the stream file descriptor

The number of bytes available to be allocated on the disk drive associated
with st r eam isreturned. If an error occurs, O is returned.

NOTE: If using the FAT32 addition to USFiles, be careful with this
function. Since the number of FAT32 clusters can be a 32-bit
number, converting that to the number of bytes might
overflow a 32-bit unsigned integer.

USFiles User's Manual 3-13

See also: free_clust_cnt, free kb _cnt, total_byte cnt, total_clust_cnt,
total kb cnt

Return Value
Number of bytes available on disk.

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
ELOCKED timeout while waiting for file system access

Example
FILE *fp;
ui nt 32 freebytes;
/* open for read/wite */
fp =m_fopen(“A\filel”, “r+b”);
freebytes = free_byte_cnt(fp);

free_clust_cnt

Returns the number of unallocated clusters available on the drive.
uint32 free_clust_cnt (MIFILE *stream;
stream pointer to the stream file descriptor

The number of clusters available to be alocated on the disk drive associated
with st r eamisreturned. If an error occurs, O is returned.

See d so: free_byte cnt, free kb _cnt, total_byte cnt, total_clust_cnt,
total kb cnt

3-14 USFiles User's Manual

Return Value
Number of clusters available on disk.

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
ELOCKED timeout while waiting for file system access

Example
FI LE *fp;
ui nt 32 clusters;

/* open for read/wite */
fp = m_fopen(“A\filel”, “r+b”);
clusters = free_clust_cnt(fp);

free_kb_cnt

Returns the number of unallocated kilobytes available on the drive.
uint 32 free_kb_cnt (MIFI LE *stream;
stream pointer to the stream file descriptor

This function returns the number of kilobytes available to be allocated on
the disk drive associated with st r eam |f an error occurs, O is returned.

See also: free_byte cnt, free clust_cnt, total_byte cnt, total_clust_cnt,
total kb cnt

Return Value
Number of bytes available on disk.

USFiles User's Manual 3-15

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
ELOCKED timeout while waiting for file system access

Example
FILE *fp;
ui nt 32 freekb;
/* open for read/wite */
fp = m_fopen(“A\filel”, “r+b”);
freekb = free_kb_cnt (fp);

getBigEnd16

Reads 16-bit integer recorded in Big-Endian mode.
uint 16 get Bi gend16(byte **pos);
pos address of pointer indicating start of Big-Endian integer

The routine getBigEnd16() is primarily an internal routine, but it may prove
useful in some applications. The pointer will be incremented to the next
byte following the 16-bit integer.

See dso: getBigEnd32, getLitEnd16, getLitEnd32, putBigEnd16,
putBigEnd32, putLitEnd16, putLitEnd32

Return Value
Unsigned 16-bit integer

3-16 USFiles User's Manual

Example

byte buffer[512], *bp;
ui nt 16 numnber;

/* Point to beginning of 16-bit Bi g- Endi an i nteger */
bp = &buffer[10];

nunber = get Bi gEnd16(&bp) ;

/* bp will now be at &buffer[12] */

getBigEnd32

Reads 32-bit integer recorded in Big-Endian mode.
ui nt 32 get Bi gend32(byte **pos);
pos address of pointer indicating start of Big-Endian integer

The routine getBigEnd32() is primarily an internal routine, but it may prove
useful in some applications. The pointer will be incremented to the next
byte following the 32-bit integer.

See dso: getBigEnd16, getLitEnd16, getLitEnd32, putBigEnd16,
putBigend32, putLitEnd16, putLitEnd32

Return Value
Unsigned 32-bit integer

Example

byte buffer[512], *bp;
ui nt 32 nunber;

/* Point to beginning of 32-bit Big-Endian integer */
bp = &buffer[10];

nunber = get Bi gEnd32(&bp) ;

/* bp will now be at &buffer[14] */

USFiles User's Manual 3-17

getLitEnd16

Reads 16-bit integer recorded in Little-Endian mode.
uint16 getLitEndl6(byte **pos);
pos address of pointer indicating start of Little-Endian integer

The routine getLitEnd16() is primarily an internal routine, but it may prove
useful in some applications. The pointer will be incremented to the next
byte following the 16-bit integer.

See dso: getBigEnd16, getBigEnd32, getLitEnd32, putBigend16,
putBigEnd32, putLitEnd16, putLitEnd32

Return Value
Unsigned 16-bit integer

Example

byte buffer[512], *bp;
ui nt 16 nunber;

/* Point to start of 16-bit Little-Endian integer */
bp = &buffer[10];

nunber = getLitEnd16(&bp);

/* bp will now be at &buffer[12] */

getLitEnd32

Reads 32-bit integer recorded in Little-Endian mode.
ui nt 32 getLitEnd32(byte **pos);
pos address of pointer indicating start of Little-Endian integer

The routine getLitEnd32() is primarily an internal routine, but it may prove
useful in some applications. The pointer will be incremented to the next
byte following the 32-bit integer.

3-18 USFiles User's Manual

See also: getBigend16, getBigEnd32, getLitEnd16, putBigEnd16,
putBigEnd32, putLitEnd16, putLitEnd32

Return Value
Unsigned 32-bit integer

Example

byte buffer[512], *bp;
ui nt 32 nunber;

/* Point to start of 32-bit Little-Endian integer */
bp = &buffer[10];

nunber = getLitEnd32(&bp);

/* bp will now be at &buffer[14] */

getf_attrib

Returns attribute byte of file.
byte getf_attri b(MIFILE *stream;
stream pointer to the stream file descriptor object
The getf_attrib() function accesses the attribute byte of an open file's

directory entry. The significant bitsin the attribute byte for the FAT file

system are:

0 Read Only (FA_RDONLY)
1 Hidden File (FA_HI DDEN)
2 System File (FA_SYSTEM
3Volume Label (FA_LABEL)
4 Directory (FA_ D R

5 Archive (FA_ARCH)

USFiles User's Manual

3-19

See also: pcfm_chmod, pcfm_chmodfp

Return Value
Attribute byte

Oxf failure
errno Value
Stream 1/O
EBADFP bad file pointer

PC File Manager
None

Example
MTFI LE *f p;
byte att;
att = getf _attrib(fp);
if(att & FA RDONLY)
/* File is read only */

getf date

Returns file modification date.
uint16 getf_date(MIFILE *stream;
stream pointer to the stream file descriptor object

The getf_date() function accesses the modification date of an open file's
directory entry. The date format for the FAT file system combines the year,
month, and day in one 16-bit entry. To retrieve each part of the date
separately, use the functions getf _year, getf_month, and getf _day.

See also: mak_fdate, getf_year, getf_month, getf_day

3-20 USFiles User's Manual

Return Value
File modification date

0 failure
errno Value
Stream /O
EBADFP bad file pointer

PC File Manager
None

Example
MTFI LE *fp;
ui nt 16 date;
date = getf_date(fp);
if((date & Ox1f) == 10)
/* 1If the nodification day is the 10th */

getf day

Returns day file was modified.
byte getf_day(MIFILE *stream;
stream pointer to the stream file descriptor object

The getf_day() function returns the day of the month on which the file was
last modified. The day will range from 1 to 31

See dso: mak_fdate, getf year, getf_month, getf date

Return Value
File modification day (1..31)

0 failure

USFiles User's Manual 3-21

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
None

Example
MIFI LE *fp;
byt e day;
day = getf _day(fp);
if(day == 27)
/* 1If the nodification day is the 27th */

getf _hour

Returns hour file was modified.
byte getf_hour (MIFI LE *stream;
stream pointer to the stream file descriptor object

The getf _hour() function returns the hour of the day in which the file was
last modified. The hour will range from 0 to 23

See d so: mak_ftime, getf_min, getf_sec, getf_time

Return Value
File modification hour (0..23)

3-22 USFiles User's Manual

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
None

Example
MTFI LE *fp;
byte hour;

hour = getf_hour (fp);
if(hour == 1)
/* |f the nmodification hour is 1 */

getf_min

Returns minute file was modified.
byte getf_m n(MIFILE *stream;
stream pointer to the stream file descriptor object

The getf_min() function returns the minute in the hour in which the file was
last modified. The minute will range from O to 59.

See also: mak_ftime, getf_hour, getf_sec, getf time

Return Value
File modification minute (0..59)

USFiles User's Manual 3-23

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
None

Example
MIFI LE *fp;
byte ni nute;

mnute = getf_min(fp);
if(mnute == 30)
/* |If the nmodification minute is 30 */

getf_month

Returns month file was modified.
byte getf_nont h(MIFI LE *st rean);
stream pointer to the stream file descriptor object

The getf_month() function returns the month in which the file was last
modified. The month will range from 1 to 12.

See also: mak_fdate, getf_year, getf_day, getf date

Return Value
File modification month (1..12)

0 failure

3-24 USFiles User's Manual

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
None

Example
MTFI LE *fp;
byt e nont h;
nmonth = getf_nont h(fp);
if(month == 6)
/* |If the nmodification nmonth is June */

getf _sec

Returns seconds at which file was modified.
byte getf_sec(MIFILE *stream;
stream pointer to the stream file descriptor object
The getf_sec() function returns the number of secondsin the minutein
\év;i ch the file waslast modified. The seconds value will range from 0 to

NOTE: For afile recorded in the FAT file system, the seconds valueis
stored in 2-second increments.

See dso: mak_ftime, getf _hour, getf_min, getf_time

Return Value
File modification seconds (0..58)

USFiles User's Manual 3-25

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
None

Example
MIFI LE *fp;
byte secs;

secs = getf_secs(fp);
if(secs == 22)
/* If nodified at second 22 of the mnute */

getf_size

Returnsfile size.
ui nt 32 getf_size(MIFILE *strean);
stream pointer to the stream file descriptor object

The getf_size() function returns the size of an open file. If thefilesize
cannot be determined, then afile size of zero will be reported.

Return Value
Filesize

errno Value

Stream 1/O
EBADFP bad file pointer

3-26 USFiles User's Manual

PC File Manager
None

Example

MTFI LE *f p;
uint32 size, nax_size;

max_size = free_byte cnt(fp);
size = getf_size(fp);
if(size > max_size)

/* Cannot store file copy */

getf_time

Returns time at which file was modified.
uint16 getf _time(MIFILE *stream;
stream pointer to the stream file descriptor object

The getf_time() function returns the file' s last modification time. For the
FAT file system, the 16-bit value has a combination of hour, minute, and
seconds at which the file was modified. To get each field separately, use
the functions getf _hour(), getf_min(), getf_sec().

CAUTION: Thisfunction cannot be used by USFiles for
CD-ROM.

See also: mak_ftime, getf_hour, getf_min, getf_sec

Return Value
File modification time

0 failure
errno Value
Stream 1/O
EBADFP bad file pointer

USFiles User's Manual 3-27

PC File Manager
None

3-28 USFiles User's Manual

Example
MTFI LE *f p;
uint16 time;
time = getf_tine(fp);
if((tinme & Ox1f) == 15)
/* 1f nodified during the 15th 2-second interval */

getf _year

Returns year when file was last modified.
uint16 getf_year (MIFILE *stream;
stream pointer to the stream file descriptor object
The getf_year() function returns the year in which the file was last

modified. For the FAT file system the year ranges from 1980 to 2107.

See adso: mak_fdate, getf_month, getf _day, getf date

Return Value
File modification year (1980..2107, for FAT file)

0 failure

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
None

USFiles User's Manual

3-29

Example
MIFI LE *fp;
uint year;

year = getf_year(fp);
i f(year == 1997)
/* 1If nmodified during 1997 */

invalidate _streams

Invalidates all streams open on adevice.
int invalidate_streans(DEVICE *devp);
devp pointer to device

Theinvalidate _streams() function is provided for error recovery purposes.
This function will close all streams for the device specified.

See also: otherFilesOpen, pcfm_invalidate buffers

Return Value

0 successful completion

ECF error occurred, check er r no
errno Value

Stream 1/O

EMEMERR memory release error
EBADARG devp isSNULL (only if USS_SI O PCHK isset to 1)

PC File Manager
None

3-30 USFiles User's Manual

Example
DEVI CE *devp;

/* Di sk has changed */
pcf minval i dat e_buffers(devp);
i f(otherFilesOpen(devp))
i nval i dat e_streans(devp);
el se
/* No open files, so ignore error */

mak_fdate

Converts the year, month, and day to DOS date format.
uint16 mak_fdate(uint year, byte nonth, byte day);
year year in which file was modified (1980 — 2107)
month month in which file was modified (1 — 12)
day day in which file was modified (1 — 31)

The DOS date format is produced based on the year, month, and day
provided. Thisfunction isimplemented asamacro in mtio.h.

CAUTION: Thisfunction cannot be used by USFiles for
CD-ROM.

Return Value
File modification date in DOS for mat

Example
uint 16 dos_date;

/* Convert June 27, 1997 to DCS date */
dos_date = mak_fdate(1997, 06, 27);

USFiles User's Manual 3-31

mak_ftime

Converts the hour, minute, and second to DOS time format.

uint 16 mak_ftime(byte hour, byte m nute,
byte second);

hour hour in which file was modified (0 —23)
minute minutein which file was modified (0 — 59)
second second in which file was modified (0 — 59)

The DOS time format is produced based on the hour, minute, and second
provided. Thisfunction isimplemented as amacro in mtio.h.

CAUTION: Thisfunction cannot be used by USFiles for
CD-ROM.

Return Value
File modification date in DOS for mat

Example
uintl6 dos_tine;

/* Convert 11:12:30 amto DOS tinme */
dos time = mak _ftime(11, 12, 30);

mt_clearerr

Clears the end-of-file and error indicators.
void clearerr(MIFI LE *strean);
stream pointer to the stream file descriptor
The end-of-file and error indicators associated with st r eamare cleared.

3-32 USFiles User's Manual

See also: rewind, feof, ferror

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
None

Example

FI LE *fp;
/* open for read/wite */
fp = m_fopen(DEVICE O, “r+b”);
nt_clearerr(fp);

mt_fclose

Closes an open path to a stream.
int m_fclose(MIFILE *stream;
stream pointer to the stream file descriptor object

The mt_fclose() function returns zero if the st r eamwas successfully
closed, or ECF if any errors were detected. For mt_fclose() to successfully
complete, the stream must be open and accessible by the task making the
mt_fclose call. The stream output buffer will be flushed before the device
isclosed. The device interrupts are disabled when the device is closed, and
any tasks waiting for the device 1/0 to complete will be reactivated.

Return Value
0 file successfully closed

ECF error (file not open, or not in possession of task making the call)

USFiles User's Manual 3-33

errno Value
Stream 1/O
EBADFP bad file pointer
EMEMERR memory release error

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EWRTPRT attempted write to write-protected disk

driver error

3-34 USFiles User's Manual

Example
MTFI LE *fp;

fp = m_fopen(*COML", “r+b”);
/* open for read/wite */
{ /* processing */ }
if(m_fclose(fp)){
i f(errno == EMEMERR)
/* Handle this error */
el se
/* Handl e other errors */

}

NOTE: If USFilesis operating with MultiTask! and the task in
possession of an open stream or streams dies, or iskilled (by
klltsk()), al streamsin the possession of that task are closed.

mt_feof

Tests for end-of-file condition.
int m_feof (MIFILE *stream;
stream pointer to the stream file descriptor object

The mt_feof() function returns non-zero if the st r eamis at end-of-file.
Oncethe ECF flagis set it will only be cleared by callsto rewind(),
clearerr(), or successful callsto fseek() or fsetpos(), which isin accordance
with the ANSI C 99 specification. Of course, closing the stream makes the
ECF flag invalid as well.

NOTE: This function isimplemented as amacro in ussio.h.

Return Value
0 fileisnot at end

10 fileis positioned at end

USFiles User's Manual 3-35

errno Value

Stream 1/O
EBADFP fpisnot valid (only if USS_SI O PCHKissetto 1)

Example
MIFI LE *f p;
int i;
/* open for read/wite */
fp = m_fopen(“a:filel”, “r+b”);
while('mt_feof (fp)){
i = m _fgetc(fp);
/* etc. */

mt_ferror

Returns the file error indicator.
int nt_ferror(MIFILE *strean);
stream pointer to the stream file descriptor object

The mt_ferror() function returns non-zero if the error indicator is set for the
stream. The error indicator will be cleared by arewind(), or clearerr()
function, or by closing the stream. Thisfunction isimplemented as a macro
inussio.h.

NOTE: ANSI C does not specify under what conditions the error
indicator for the stream is set. In the current implementation,
only the driver level ever setsthe error indicator. Y ou should
generally rely on the return status of each function to
determine errors, and the value of er r no. Note also that
er rno isnot cleared by any ANSI C function. Onceit is set
non-zero, it isup to you to clear it.

Return Value
0 No error for file

3-36 USFiles User's Manual

>0 Error occurred on file, see Appendix G, Error Codes
ECF File pointer not valid (only if USS_SI O PCHK is 1)

errno Value

Stream 1/O
EBADFP fpisnot valid (only if USS_SI O PCHKissetto 1)

Example
MTFI LE *fp;
int i;
/* open for read/wite */
fp = m_fopen(DEVICE_ O, “r+b");
while(!'mt_feof (fp)){
i = m _fgetc(fp);
if(m_ferror(fp))
report _error(“File error occurred”);
/* etc. */

mt_fflush

Flushes the output buffer of a stream.
int nt_fflush(MIFILE *strean;
stream pointer to the stream file descriptor object

The mt_fflush() function will cause the calling task to wait until any
remaining datain the stream output buffer has been transmitted to the port
or file. If the specified * st r eam == NULL then all open streams are
flushed.

A cal to mt_fflush() will update the specified file's directory entry as well
asflush datato disk. Thisalowsafileon disk to be consistent after every
mt_fflush() call. Thisbehavior isdifferent from DOS, which does not
update the directory entry until thefileis closed.

USFiles User's Manual 3-37

Return Value

0 file successfully flushed
ECF error (file not open, or not accessible from the task making the
cal)
errno Value
Stream 1/O

EBADFP bad file pointer
EUNINIT file not initialized

PC File Manager

None
Example
MIFI LE *fp;
if(nt_fflush(fp)){
if(errno == EUNINIT)
/* Handle this error */
el se
/* Handl e other errors */
}
mt_fgetc

Gets a character from a stream.
int m_fgetc(MIFILE *stream;
stream pointer to the stream file descriptor

The mt_fgetc() function obtains the next character, as an unsigned char
convertedto ani nt , from the input stream pointed to by st r eam

3-38 USFiles User's Manual

Return Value
character the next character from the stream

ECF error (stream not opened or not in possession of calling task)
errno Value
Stream 1/O

EBADFP bad file pointer
EACCESS file not opened for read

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EBADFAT bad FAT sector encountered
EATEOF at end of file

driver error

USFiles User's Manual 3-39

Example

MIFI LE *f p; /* open stream pointer */
i nt C;

c = nm_fgetc(fp); /* get character */
if(¢ == ECF){
i f(errno == EACCESS)
/* Handle this error */
el se
/* Handl e other errors */

}
mt_fgetpos

Gets a stream’ s current position.
int m_fgetpos(MIFILE *stream fpos_t *position);
stream pointer to I/O stream
position position returned by function

The mt_fgetpos() function fills posi t i on with avalue representing the
current position of thefile pointer for st r eam Thisisusually the byte
number from the beginning of thefile. Inthe case of afileopenint ext
mode this may not be the same as the actual number of bytes you have read
from thefile. Theposi ti on returned by mt_fgetpos() should be used as
an argument to mt_fsetpos() to reposition afile to aformer location.

NOTE: On an error condition, er r no isaso set to the return value.

See also: mt_fsetpos

Return Value

0 success
EBADFP invalid file pointer
EUNSUP device does not support function

3-40 USFiles User's Manual

EBADARG positionisNULL (only if USS_SI O PCHK is 1)

errno Value

Stream 1/O
EBADFP bad file pointer

EBADARG positionisNULL (only if USS _SIO PCHK is1)

PC File Manager
None

Example

MTFI LE *f p; /* open stream pointer */
fpos_t position;

int i;

doubl e x;

status = nt_fgetpos(fp, &osition);

mt_fgets

Gets a string from a stream.
char *m _fgets (char *s, int n, MIFILE *stream;
s pointer to character array of at least sizen

n maximum number of characters to read plus one (for the null
string terminator)

stream pointer to the stream file descriptor

The mt_fgets() function reads at most one less than the number of
characters specified by n from the stream pointed to by st r eaminto the
array pointed to by s. No additional characters are read after the new-line
character (which isretained). A null character iswritten immediately after
the last character read into the array.

USFiles User's Manual 3-41

NOTE: The new-line character is defined in userio.h asEQL_CHAR
and is not necessarily the same as “\ n” produced by your C
compiler. The default value of EOL_CHARisthe ASCII
carriage return for sf mand pipe devices, and “\ n” for pcf m
devices.

See also: mt_fputs

Return Value

s operation successful

NULL error: Stream not open, or Not in our Possession
errno Value

Stream /O

EBADFP bad file pointer
EACCESS filenot opened for read
EBADARG s iISNULL or cnt <1 (only if USS_SI O PCHK is 1)

PC File Manager

ELOCKED timeout while waiting for file system access
ENOBUF no buffers available

EBADFAT bad FAT encountered

EATEOF at end of file

driver error

Example

MIFI LE *f p; /* open stream pointer */
char buf[80];

if(m_fgets(buf, 80, fp)){
/* we have string */

3-42 USFiles User's Manual

}el se{
i f(errno == EACCESS)
/* Handle this error */
el se
/* Handl e other errors */

}
mt_fopen

Opens a path to a stream.

MIFI LE *nt _f open(const char *nane, const char *nopde);
nane pathnameto devi ce: [fil €]
node type of access permitted

The mt_fopen() function opens a path to name and returns a pointer to the
MTFILE structure controlling the stream. The device component part of
name must appear in the device table (device_tab). The additional name
components if any must conform to the rules for the type of device opened.
If the operation fails, anull pointer is returned.

When using short (8.3) file names, USFiles will truncate any long names to
become 8.3 names. If there are more than 8 characters preceding the
extension, the name will be truncated to 8, unless the 8th byte isthe first
byte of atwo-byte character. In this case, the name will be truncated to use
thefirst 7 bytesonly. The same rule holds for extensions that exceed 3
characters. If afile name has multiple occurrences of .', the last one found
marks the extension. For example, the file name "long.tmp.txt.dat" is
recorded as "long.dat".

NOTE: Although * and ? are characters not allowed in file names,
USFiles will not reject them. They are recognized as wild
card characters, but USFiles does not support matching file
names with them. Please avoid using these unless you
implement wild card pattern matching.

The mode string specifies the type of access requested as follows:

r open text mode for reading

USFiles User's Manual 3-43

uv\,l
ur bn
“V\b”

1] ab”

a+bll
“dll

create text mode for writing

append (open/create for write at ECF)

open binary mode for reading

create or truncate for binary write

append binary (open/create for write at EOF)
open for update (read and write)

truncate or create for update

append (update at ECF)

open binary mode for update

truncate or create for binary update

append; open/create for binary update at EOF
open directory (USFiles only)

CAUTION: USFiles has an incompletely implemented append mode.

See dso:

When opening afilein append mode, USFiles will set the
initial position to the end of thefile. Thisisthe extent of
supporting append mode. USFiles does not force thefile
position to EOF before any write, asis required by the ANSI
specification.

mt_fclose

Return Value

3-44

MIFI LE *

NULL

the file descriptor pointer to be used as a“handle” argument
for al subsequent 1/0 calls for the device.

unable to open the device, possibly because the device
name was invalid, or the device is already in the possession
of another task. The value of the global er r no may contain
additional error status. See mtio.h for the error codes
returnedinerrno.

USFiles User's Manual

errno Value
Stream 1/O
EBADARG
ENOPATH
ECAPERR
ENMFILE
EBADARG

bad value in mode

device not found (see PC File Manager errno codes)
device does not support open for mode specified

no entries available in open streams array

nameis NULL, empty, or filled with blanks

PC File Manager

ELOCKED
ENOBUF
ECTLFAIL
EWRGFMT
ENOMEM
EBADPART
EDSKCHG
EBADNAM
ENOPATH
ENOENT
ENOTDIR
EACCESS
ERDONLY
EBIGPATH

timeout while waiting for file system access

no buffers available

device controller failed

sector size not 512 bytes

no memory for file structure alocation

sector does not contain partition table

disk has changed

file name too long or has bad characters

part of directory path not found (see Stream |/O errno codes)
file not found in directory

path contains a file name (instead of a directory)
trying to access afile as adirectory or vice versa
opening read only file for write

path length exceeds VFAT restrictions

USFiles User's Manual 3-45

ERDFULL root directory isfull

EISOPEN attempted to open afile multiple times, when not all opens
are for reading only

EDSKFUL diskisfull

driver error

Example
MIFI LE *fp;

fp =m_fopen(“A\\tenmp.txt”, “r+b");
/* open for r/w binary node */
if('fp){

i f(errno == ECAPERR)

/* Handle this error */
el se

/* Handl e other errors */

}
NOTE: USFiles accepts either *\' or ‘/* characters as name separators
interchangeably.
mt_fprintf

Writes formatted output to a stream.

int m_fprintf(MFILE *stream const char *format, ...);
stream the output stream file descriptor pointer
format format specification string

arguments to be formatted for output

The mt_fprintf() function writes output to the stream pointed to by st r eam
under control of the string pointed to by f or mat that specifies how
subsequent arguments are converted for output. If there are insufficient
arguments for the format, the behavior is undefined. If theformat is

3-46 USFiles User's Manual

exhausted while arguments remain, the excess arguments are ignored. The
fprintf function returns when the end of the f or mat string is encountered.

The format shall be a multi-byte character sequence composed of zero or
more directives. A directive is one or more white-space characters,
ordinary characters (not %) which are copied unchanged to the output
stream, or a conversion specification. A conversion specification is
introduced by the character %, and has this format:

% flags][w dth] [precision][nod]type

flags -
+
space
#
width n
On
*
preci si on
.0
.n
nod h
I
L
type ¢
d
e
f
g

5 —

USFiles User's Manual

Left-justify result

Always prefix with + or -

Prefix with ablank if non-negative
Alternate form conversion

Prints at least n characters, pad with spaces

Prints at least n characters, pad with zeros

The next argument, which must betypei nt ;
it is consumed from the ar gs list and used
as the width specifier.

(default) =1ford,i,o,u,x, X
=6fore, E, f

No decimal point for e, E, f

n decimal places or characters are printed

Shorti nt fortypes. d,i,o,u,x
Longi nt fortypes: d,i, o, u, x
doublefor types: e, f, g
Sameas|

I nt converted to unsigned char printed

Signed decimal i nt

Signed exponential

Signed floating point

Samease or f based on value and
precision

Signed decimal i nt

Argument isapointer toi nt intowhichis
written the number of char s writtento

3-47

stream sofar

0 Octal unsignedi nt
p Pointer
s String
u Decimal unsigned i nt
X Hexadecimal unsignedi nt (a. . f)
X Hexadecimal unsignedi nt (A. . F)
Return Value
+n the number of characters written
ECF output error (stream not open or not accessible)

3-48 USFiles User's Manual

errno Value

Stream 1/O
EBADFP bad file pointer

EACCESS file not opened for write

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EBADFAT bad FAT encountered
EDSKFUL diskisfull

driver error
Example
MTFI LE *f p; /* open stream pointer */
int count,i,j;
doubl e x,vy;
count = mt _fprintf(fp,”i = %, (%94X hex),
x=%e\r\n”,i,i,x);
i f(count == EOF){

i f(errno == EACCESS)

/* Handle this error */
el se

/* Handl e other errors */

}
mt_fputc

Writes a character to a stream.

int m _fputc(int ¢, MIFILE *stream;

USFiles User's Manual 3-49

c the character to be output
stream pointer to the stream file descriptor object

The mt_fputc() function writes the character specified by ¢ (converted to an
unsigned char) to the output stream pointed to by st r eam The mt_fputc()
function returns the character written unless an error occurs, in which case it
returns EOF.

See also: mt_fgetc

Return Value
character the character written to the stream

ECF error (stream not opened or not in possession of calling task)
errno Value
Stream 1/0O

EBADFP bad file pointer
EACCESS filenot opened for write

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EBADFAT bad FAT encountered
EDSKFUL diskisfull

driver error

Example

MIFI LE *f p; /* open stream pointer */
i nt C;

if(m_fputc(c,fp) == EOF){
i f(errno == EACCESS)

3-50 USFiles User's Manual

/* Handle this error */
el se
/* Handl e other errors */

}
mt_fputs

Writes a string to a stream.
int m_fputs(const char *s, MIFILE *stream;
s pointer to the string to write
stream pointer to the stream file descriptor

The mt_fputs() function writes the string pointed to by s to the stream
pointed to by st r eam The terminating null of s isnot written. The
number of characters written is returned unless awrite error occurs, in
which case ECF isreturned. (Note that the ANSI C standard specifies only
that a non-negative value is returned in the normal case.)

See d so: mt_fgets

Return Value
count the number of characters written

ECF error (stream not opened for write or not in possession of calling
task)
errno Value
Stream 1/O

EBADFP bad file pointer
EACCESS file not opened for write

USFiles User's Manual 3-51

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EBADFAT bad FAT encountered
EDSKFUL diskisfull

driver error

Example
MTFI LE *f p; /* open stream pointer */

if(m _fputs(“Hello there”,fp) == ECF)){
i f(errno == EACCESS)
/* Handle this error */
el se
/* Handl e other errors */

}
mt_fread

Reads bytes from a stream.

size_t nt_fread(void *ptr, size_t size, size_t nnenb,
MIFI LE *strean);

ptr pointer to the buffer to receive data
si ze the sizein bytes of each element
nmenb the number of e ements

stream the stream object pointer

The mt_fread() function attempts to read nnenb elements of si ze bytes
into the array pointed to by pt r, from st r eam The actual number of
elementsread isreturned. Note that the number of elements returned will
be equal to nnenb unless the ECF is reached or some error occurs.

3-52 USFiles User's Manual

One method of reading blocks of dataisto call mt_fread(buf f er,

bl ocksi ze, nunbl ocks, f p), but werecommend calling
mt_fread(buffer, 1, bl ocksize*nunbl ocks, fp). Inthefirst case,
the return value will be the number of blocks read. If some part of ablock
isread, but not the entire block, then there is no way to know how many
additional bytes were read, and therefore, the file position is unknown. The
second method described reports how many bytes are read.

NOTE: It is not recommended that mt_fread() be used for files opened
in text mode. It will not cause difficulties, but it may return
unexpected values.

See also: mt_fwrite

Return Value

+n the number of elements actually read

0 no bytesread, typically indicating an error
errno Value

Stream 1/O

EBADFP bad file pointer

EACCESS file not opened for read

EBADARG ptr iISNULL or nmenb * si ze exceeds Ul NT_MAX (only if
USS_SI O PCHK is1)

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EBADFAT bad FAT encountered
EATEOF at end of file

USFiles User's Manual 3-53

driver error

Example

MIFI LE *f p; /* open stream pointer */
char buf[80];

if(nt_fread(buf, 1, 80, fp) '=80)){
i f(errno == EACCESS)
/* Handle this error */
el se
/* Handl e other errors */

}
mt_fseek

Repositions afile pointer.
int m_fseek(MIFILE *stream |ong offset, int |location);
stream pointer to I/O stream

of f set number of bytesto offset from| ocat i on
to determine new file pointer position

l ocation fileposition from which to add of f set
SEEK_SET (0) - Beginning of file
SEEK_CUR (1) - Current file pointer position
SEEK_END (2) - End of file

The mt_fseek() function repositions the file pointer for st r eamby of f set
bytesfrom| ocat i on. If the stream istext mode, offset should be O or the
value returned by mt_ftell(). Thevaluein| ocati on should be SEEK _SET
for beginning of file, SEEK_CUR for current file pointer position, or
SEEK_END for end of file. A successful seek will clear the ECF flag, in
accordance with the ANSI C 99 specification.

NOTE: USFiles supports seeking past EOF in afile that is opened for
write access. Thisisonly allowed if SEEK_END is specified as
thel ocati on.

3-54 USFiles User's Manual

See d so: mt_ftell

Return Value
0 file pointer successfully repositioned

errno see errno values below

USFiles User's Manual 3-55

errno Value

Stream 1/O
EBADFP bad file pointer

EBADARG bad value of location
EBADPOS illegal offset

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EBADFAT bad FAT encountered
EDSKFUL diskisfull

driver error
Example
MTFI LE *f p; /* open stream pointer */
i nt status;
/* Note: second arg belowis 30"ell” */

status = nt _fseek(fp, 301, SEEK_SET);

mt_fsetpos

Sets a stream’ s current position (byte offset from beginning of file).
long int m_fsetpos(MFILE *stream const fpos_t *pos);
stream pointer to I/O stream
pos new position to set

3-56 USFiles User's Manual

The mt_fsetpos() function sets the file pointer associated with st r eamto
the new position pos. The new position is the value obtained by a previous
call to mt_fgetpos() on that stream. The reason for the existence of fgetpos
and fsetpos (in addition to fseek) isthat if you want to position to afilein
text mode, you cannot necessarily find a position by counting the characters
you have written out, since text mode translation may change that number.
In this case you can only use fgetpos to find a current position and then
return there later with fsetpos.

See d so: mt_fgetpos

Return Value

0 success

errno see errno values below
errno Value

Stream 1/O

EBADFP bad file pointer

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EBADFAT bad FAT encountered
EDSKFUL diskisfull

driver error

Example

MIFI LE *f p; /* open stream pointer */
fpos_t offset;
int i;

USFiles User's Manual 3-57

status = m _fsetpos(fp, &offset);

mt_ftell

Gets current file position.
long int m _ftell (MIFILE *strean)
stream pointer to I/O stream

The mt_ftell() function returns the value of the file pointer for st r eam
The file pointer contains a value that specifies the current position of the file
as the byte offset from the beginning of the file.

See dso: mt_fseek

Return Value

offset value of file pointer on success
byte offset from beginning of file

-1 er r no set positive on failure
errno Value
Stream I/O

EBADFP bad file pointer
EUNSUP function unsupported for thisfile

PC File Manager
None

3-58 USFiles User's Manual

Example

MIFI LE *f p; /* open stream pointer */
| ong of fset;

int i;

doubl e x;

offset = m _ftell (fp);
if(offset == -1L){
i f(errno == EUNSUP)
/* Handle this error */
el se
/* Handl e other errors */

}
status = nt_fseek(fp, of fset, SEEK SET);

mt_fwrite

Writes to a stream.

size t m _fwite(void *ptr, size t size, size_ t nnmenb,
MIFI LE *strean);

ptr pointer to the datato write

si ze the size of each dataitem

nmenb the number of dataitems

stream pointer to the stream file descriptor

The mt_fwrite() function writes, from the array pointed to by pt r, up to
nmenb elements of si ze bytes each, to st r eam The number of elements
actually written is returned, which will be less than nnenb only if an error
occurred. If the stream is not open or not accessible to the calling task, EOF
will be returned.

See d so: mt_fread

Return Value
count the number of items written

USFiles User's Manual 3-59

ECF error (stream not opened for write or otherwise not accessible by
the calling task)

errno Value

Stream 1/O
EBADFP bad file pointer

EACCESS filenot opened for write

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EBADFAT bad FAT encountered
EDSKFUL diskisfull

driver error

Example

MIFI LE *f p; /* open stream pointer */
int count;
i nt data[10];

count = m _fwite(data, sizeof(int), 10, fp);
if(count < 10) {
i f(errno == EACCESS)
/* Handle this error */
el se
/* Handl e other errors */

3-60 USFiles User's Manual

mt_mkdir

Creates anew directory.

int m_nkdir(const char *path)
pat h the compl ete pathname of the directory to create

The mt_mkdir() function creates a new directory from the given pathname
pat h.

Return Value
0 successful

EOF error, and global variable er r no set to anon-zero error code
(er r no codes are defined in mtio.h)

errno Value
Stream 1/O
EEXIST directory already exists
ECAPERR device cannot be written to
ENOPATH part of directory path not found
ENMFILE no available entriesin open streams array

EMEMERR memory release error

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
ECTLFAIL devicecontroller failed
EWRGFMT sector size not 512 bytes

USFiles User's Manual 3-61

ENOMEM no memory for file structure allocation

EBADPART sector does not contain partition table

EDSKCHG disk has changed

EBADNAM file nametoo long or has bad characters

ENOPATH part of directory path not found (see Stream 1/0 errno codes)
ENOTDIR path contains afile name (instead of a directory)
EBIGPATH path length exceeds VFAT restrictions

ERDFULL root directory isfull

EDSKFUL diskisfull

EWRTPRT trying to write to awrite-protected disk

driver error

Example
int status

status = nt_nkdir(“a:\\thisdir/thatdir/newdir”);
if(status){
i f(errno == EEXI ST)
/* Handle this error */
el se
/* Handl e other errors */

}

NOTE: USFiles accepts either ‘\' or */’ characters as name separators
interchangeably.

3-62 USFiles User's Manual

mt_printf

Writes formatted output to st dout stream.

int m_printf(const char *format, ...);
format format specification string
arguments to be formatted for output

The mt_printf() function writes output to the st dout stream, under control
of the string pointed to by f or mat that specifies how subsequent arguments
are converted for output. The mt_printf function behaves exactly like an
mt_fprintf call with st dout specified asthe stream, and indeed it is
implemented asthis. See mt_fprintf for further information on the f or mat
specification. The definition of st dout isinthefile ussio.h and may be
modified by the user to be any device. Notethat st dout isnot
automatically opened.

Return Value

+n the number of characters written

ECF output error (stream not open or not the owner)
errno Value

Stream 1/O

EBADFP bad file pointer
EACCESS filenot opened for write

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EBADFAT bad FAT encountered

USFiles User's Manual 3-63

EDSKFUL diskisfull

driver error
Example
FILE *fp; /* open stream pointer */
int count;
int i,j;
doubl e x,vy;
count = m _printf(“i = %, (%4X hex),
x=9e\r\n",i,i,x);
i f(count == EOF){

i f(errno == EBADFP)

/* Handle this error */
el se

/* Handl e other errors */

}
mt_readdir

Reads a directory entry.
int m_readdir(MFILE *stream MI_DI RENT *dirp);
stream Pointer to I/O stream (open directory)
dirp Pointer to directory entry structure

The mt_readdir() function reads the next directory entry in the opened
directory, and stores the data in the structure pointed to by di r p. When the
end of the directory is reached the end-of-file indicator will be set. The
MT_DI RENT structure is defined in ussio.h as:

typedef struct nt_dirent{

ui nt 32 si ze; /* File size */

uint1l6 vyear; /* File nod year */

byt e nont h, /* File nod nmonth */
day, /* File nod day */
hour, /* File nod hour */

3-64 USFiles User's Manual

m nut e, /* File nbod minute */

second, /* File nmod second */
dir_flag; /* =1 if directory */
#i f VFAT
byte nanme[_MAX FI LENAME+1]; /* VFAT file nanme */
#el se
byte nane[13] ; /* 8.3 file nanme */
#endi f
} MI_DI RENT;

Return Value

0 successful

EOF entry not read; errno or end of directory reached
errno Value

Stream 1/O

EBADFP bad file pointer
ENOTDIR file specified is not adirectory

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EBADFAT bad FAT encountered
EATEOF positioned at end of file
driver error

NOTE: In a multitasking system, be careful not to modify a directory
while you are reading its entries. This might result in an
incorrect listing.

USFiles User's Manual 3-65

Example

MI_DI RENT entry;
i nt status;
iprintf(“\nListing Root Directory on A:\n");
fp =m_fopen(“A","d");
while (Imt_feof (fp)) {
if(!'m _readdir(fp, &entry))
iprintf(“ 9%\n",entry. nane);
else if(errno = 0)
iprintf(“m _readdir errno = %", errno);
}
nt_clearerr(fp); /* Clear EOF indicator */
nt _fcl ose(fp);

mt_remove

Deletes afile.
int m_renove(const char *pathnane);
pat hname the complete pathname to thefile

The mt_remove() function deletes afile specified by pat hnane. A
compl ete pathname including the device name must be specified.

Return Value

0 successful
EOF error, with the global variable er r no set to the specific error
code
errno Value
Stream 1/O

ECAPERR device cannot be written to
ENOPATH device not found

3-66 USFiles User's Manual

ENMFILE no available entriesin open streams array

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

ECTLFAIL devicecontroller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation
EBADPART sector does not contain partition table
EDSKCHG disk has changed

EBADNAM file nametoo long or has bad characters
ENOPATH part of directory path not found (see Stream 1/0 errno codes)
ENOTDIR path contains afile name (instead of a directory)
EBIGPATH path length exceeds VFAT restrictions
ERDFULL root directory isfull

EWRTPRT trying to write to awrite-protected disk

driver error

Example

if(m_remove(“a:\\subdir\\thisfile.txt”))
printf(“errno = %\ n”, errno);

NOTE: USFiles accepts either ‘\' or */’ characters as name separators
interchangeably.

USFiles User's Manual 3-67

mt_rename

Renames (or moves) afile or subdirectory.

int m_renane(const char *ol dnane, const char *newnan®e);
ol dnanme pathnameto an existing file
newnane new pathnameto givefile

The mt_rename() function changes the name of the file ol dnane to
newnane. A complete pathname must be given for both, which must be on
the same device (drive). Subdirectories can be renamed. The newnane
does not need to be in the same directory asol dnane. The effect in this
case isthat of moving thefile to the new directory (and possibly renaming it
in the process). Attempting to rename a directory to be its own subdirectory
isnot allowed and generates an EACCESS error.

Return Value

0 successful
EOF error, with the global variable er r no set to the specific error
code.
errno Value
Stream 1/O

3-68

ECAPERR device cannot be written to

ENOPATH part of directory path not found

ENMFILE no available entriesin open streams array
EEXIST file (or directory) with newname already exists
EWRGDEV trying to renamefile to a different device

USFiles User's Manual

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

ECTLFAIL devicecontroller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation

EBADPART sector does not contain partition table

EDSKCHG disk has changed

EBADNAM file nametoo long or has bad characters

ENOPATH part of directory path not found (see Stream 1/0 errno codes)
ENOENT file not found in directory

ENOTDIR path contains afile name (instead of adirectory)
ERDONLY opening read only file for write

EBIGPATH path length exceeds VFAT restrictions

ERDFULL root directory isfull

EDSKFUL diskisfull

EACCESS attempting to rename adirectory to its own subdirectory
EWRTPRT trying to rename file on write-protected disk

driver error

USFiles User's Manual 3-69

Example

if(m_rename(“a:\\filel.txt”,"a:\\file2.txt"))
printf(“errno = %\ n”, errno);

NOTE: USFiles accepts either *\' or ‘/* characters as name separators
interchangeably.

mt_rewind

Repositions file pointer to start of file.
void m _rew nd(MIFI LE *stream;
stream pointer to I/O stream

The mt_rewind() function will position the file pointer to the start of the
file, and clear any end-of-file and error indicators associated with the
stream.

See d so: mt_fsetpos, mt_fseek

Return Value
None

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available
EBADFAT bad FAT encountered driver error

3-70 USFiles User's Manual

Example

MTFI LE *f p;
if(m _feof (fp))
nt_rew nd(fp);

mt_rmdir

Removes (deletes) a subdirectory.
int m_rndir(const char *pathnane);
pat hname the complete pathname of the directory to delete

The mt_rmdir() function removes the directory specified by pat hnane
from the file system. The directory must be empty or an error is returned.
An attempt to remove the root directory returns an error.

See d so: mt_mkdir()

Return Value

0 successful

EOF error, and global variable er r no set to anon-zero error code
errno Value

Stream 1/O

ENOPATH device not found

ENMFILE no available entriesin open streams array
EACCESS pathnameisafile, not adirectory

ENOTMT directory is not empty

EWRTPRT trying to remove directory on write-protected disk

USFiles User's Manual 3-71

PC File Manager

ELOCKED
ENOBUF
ECTLFAIL
EWRGFMT
ENOMEM
EBADPART
EDSKCHG
EBADNAM
ENOPATH
ENOTDIR
EBIGPATH
ERDFULL
EWRTPRT

driver error

Example

3-72

int status

status =

timeout while waiting for file system access

no buffers available

device controller failed

sector size not 512 bytes

no memory for file structure allocation

sector does not contain partition table

disk has changed

file name too long or has bad characters

part of directory path not found (see Stream 1/O errno codes)
path contains afile name (instead of a directory)
path length exceeds VFAT restrictions

root directory is full

trying to write to awrite-protected disk

nt_rodir(“a:\\thisdir/thatdir/newdir”);

if(status){
i f(errno == ENOTMI)

/* Handle this error */

el se

/* Handl e other errors */

USFiles User's Manual

NOTE: USFiles accepts either ‘\’ or ‘/* characters as name separators
interchangeably.

mt_sprintf

Writes formatted output to a string.
int m_sprintf(char *s, const char *format, ...);
s pointer to string to receive output
format format specification string
arguments to be formatted for output

The mt_sprintf() function writes output to the string pointed to by s, under
control of the string pointed to by f or mat that specifies how subsequent
arguments are converted for output. The mt_sprintf() function behaves
exactly like an mt_fprintf call except that the output is written to the string
s rather than a stream.

See dso: mt_fprintf for further information on thef or mat specification.

Return Value

+n the number characters written

ECF output error (stream not open or not accessible)
errno Value

Stream 1/O

EBADARG s iISNULL (only if USS_SI O PCHKis 1)

USFiles User's Manual 3-73

Example
MIFI LE *f p; /* open stream pointer */
i nt count;
int i,j;
doubl e x,vy;
char *line[100];

count = mt _sprintf(line,
"io= %, (994X hex),x=%\r\n",i,i,x);

mt_sscanf

Converts a string, using the specified format.

int nmt_sscanf(const char *s, const char *format,

s pointer to string containing input characters
format format specification string
pointers to objects to receive input items

The sscanf() function reads input from the string pointed to by s, under
control of the string pointed to by f or mat that specifies the admissible
input sequences and how they are to be converted for assignment, using
subsequent arguments as pointers to the objects to receive the converted
input. If there are insufficient arguments for the f or mat , the behavior is
undefined. If thef or mat is exhausted while arguments remain, the excess
arguments are ignored.

Thef or mat shall be a multibyte character sequence composed of zero or
more directives. A directive is one or more white-space characters, an
ordinary character (neither a % nor a white-space), or a conversion
specification. A conversion specification isintroduced by the character %
and has this format:

% flags] [w dth][nod]type
flags * Suppresses assignment of next field

3-74 USFiles User's Manual

width n M aximum number of characters that will be read

nod h Shorti nt fortypes: d,i, o, u, x
I Longi nt fortypes: d,i, o, u, x
doublefor types: e, f, g
Sameas|

—

Single character

Signed decimal i nt

Signed exponential

Signed floating point

Samease orf based on vaue and precision
Signed decimal, octal, or hex i nt

(eg. 123, 0123, 0x123)

[abc] Matchescharactersin set or ...

[~ab] Matches characters NOT in set

type

-Q "0 Qo

n I nt to receive count of char s consumed so far
p Pointer
s String

Return Value

+n the number of input items assigned {0. . n}
ECF failure

Example
MIFI LE *f p; /* open stream pointer */

char buf[80];
int count, arg[4];

nt _fgets(buf, 80, fp); /* read string */
count = mt_sscanf(buf,”% %l % %", &r g[0] ,
&arg[1], &arg[2],&arg[3]);

USFiles User's Manual

3-75

mt_vsprintf

Writes formatted output to a string.

#i ncl ude <stdarg. h>

int m_vsprintf(char *s, const char *fornmat,
va_list arg);

s pointer to string to receive output
format format specification string
arg list of arguments to be formatted for output

The mt_vsprintf() function is equivalent to mt_sprintf, with the variable
argument list replaced by ar g, which shall have been initialized by the
va_start macro (and possibly subsequent va_arg calls). The mt_vsprintf()
function returns the number of characters written in the array, not counting
the terminating null character.

Return Value

+n the number characters written

ECF output error (stream not open or not accessible)
errno Value

Stream 1/O

EBADARG s iSNULL (only if USS_SI O PCHK is 1)

3-76 USFiles User's Manual

Example

MIFI LE *f p; /* open stream pointer */
i nt count;

int i;

doubl e x;

void *args[3];

args[0] = &

args[1l] = &

args[2] = &x;

count = nmt_vsprintf(line,”i = %, (%94X hex),

x=%\r\n", &rgs[0]);

otherFilesOpen

Teststo seeiif files are open on the specified device.
i nt otherFil esOpen(DEVI CE *devp);
devp pointer to device

The otherFilesOpen() function is provided for error recovery purposes. If a
disk change error is sensed, then we can call otherFilesOpen() to seeif files
on the device are open.

The mt_fopen() function sets a pointer in the device structure when afileis
opened. Thispointer isonly used by stream devices and not by disk
devices. Once pcfm_open() successfully opensthefile, it clearsthis
pointer. Thisisdone to handle the case when adisk change is sensed
during afile open.

Imagine the situation where you close all open files, change the disk, and
then open afileon anew disk. Thedrive will have sensed that a disk has
changed. If we simply scan to seeif there are any files open on the disk,
then we will find the file we are trying to open! By using the pointer
mentioned above, we know that it is safe to continue with the file open.
Thisiswhy the function name refersto “other” files. An examination of the
code is useful for understanding this.

See dso: pcfm_invalidate buffers, invalidate streams

USFiles User's Manual 3-77

Return Value
0 no files open

1 files open on device

3-78 USFiles User's Manual

Example
DEVI CE *devp;

/* Di sk has changed */
pcf minval i dat e _buffers(devp);
i f(otherFilesOpen(devp))
i nval i dat e_streans(devp);
el se
/* No open files, so ignore error */

pcfm_chmod

Changes file attributes (uses path).
i nt pcfmchnod(const char *pathnane, int attribute);
pat hnane the pathname to thefile
attribute new file attribute value

The pcfm_chmod() function will changetheat t ri but e associated with
the file specified by pat hnane. The attributes must be one or more of the
following:

FA_ NORMAL Normal file (no attributes)

FA RDONLY Read-only file

FA_H DDEN Hidden file (does not affect accessibility)
FA_SYSTEM System file

FA_ ARCH Archive bit (file changed since bit cleared)

See dso: pcfm_chmodfp

Return Value
+n newattribute

ECF failure

USFiles User's Manual 3-79

errno Value

Stream 1/O
None

PC File Manager
ENMFILE no entries available in open streams array

EACCESS illega attribute change

EBADARG requested attributeisillega

ELOCKED timeout while waiting for file system access
ENOBUF no buffers available

ECTLFAIL device controller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation
EBADPART sector does not contain partition table
EDSKCHG disk has changed

EBADNAM file nametoo long or has bad characters
ENOPATH part of directory path or device not found
ENOENT file not found in directory

ENOTDIR path contains afile name (instead of adirectory)
EACCESS trying to access adirectory

EBIGPATH path length exceeds VFAT restrictions
EWRTPRT trying to modify file on write-protected disk

driver error

3-80 USFiles User's Manual

Example
int att;
/* Set file attributes to “systenf and “read-only” */
att = pcfmchnod(“a:\\nyfile.bin", FA SYSTEM FA RDONLY);
if(att == EOF)

fatal (“Chnod error, a:\\nyfile.bin\n");

NOTE: USFiles accepts either ‘\ or ‘/* characters as name separators
interchangeably.

pcfm_chmodfp

Changes file attributes (uses pointer).

i nt pcfmchnodf p(MIFILE *fp, int function, int
attribute);

fp file descriptor pointer to open file
function 0 = return current, 1 = set new attribute
attri bute new fileattribute vaue

The pcfm_chmodfp() function will either return, or change the attributes of
the open file specified by f p. If f uncti on =0, then the current file
attributes are returned. If f unct i on =1, then the file attributes are set to
attribute. TheFA DI R attribute cannot be changed by this function.
The new attributes will have no effect until thefileis closed and reopened
(e.g., if thefileis currently open for write, and is made read-only by this
function, writesto the file are still permitted until the fileis closed and
reopened).

FA_ NORMAL Normal file (no attributes)

FA RDONLY Read-only file

FA_H DDEN Hidden file (does not affect accessibility)
FA_SYSTEM System file

FA_ARCH Archive bit (file changed since bit cleared)
FA DIR Fileisasubdirectory

See dso: pcfm_chmod

USFiles User's Manual 3-81

Return Value

+n current attribute of the file
ECF failure
errno Value
Stream /O
None

PC File Manager
EBADFP bad file pointer

EACCESS illegal attribute change

EBADARG requested attributeisillegal, or functionisnot O or 1 (only if
USS SIO_PCHK is1)

Example

MTFI LE *f p;
fp = m_fopen(“A\\MFILE BIN', “r+b");
att = pcfm.chrodf p(fp, FA _SYSTEM FA _RDONLY);
if(att == EOF)
fatal (“Chnodfp error, a:\\nyfile.bin\n”);

pcfm_chtime

Changes file date and time (uses path).

int pcfmchtime (const char *pathnane, uintl6 ftinme,
uint16 fdate);

pat hname full pathnameto thefile
ftim the new filetimeto set
f dat e the new file date to set

3-82 USFiles User's Manual

The pcfm_chtime() function changes the file's modification date and time
fieldsin itsdirectory entry to the new values given. Thefti me andf dat e
values are in the binary encoded format that is stored in the directory (as
returned by the driver timestamp function). Y ou can use the macros
mak_fdate and mak_ftime, which are defined in mtio.h, to convert year,
month, day into the f dat e format, and hour, minute, second into thef t i ne
format.

See d so: pcfm_chtimefp

Return Value

0 OK

ECF file not found or not accessible
errno Value

Stream I/O

None

PC File Manager
ENMFILE no entries available in open streams array

ELOCKED timeout while waiting for file system access
ENOBUF no buffers available

ECTLFAIL device controller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation
EBADPART sector does not contain partition table
EDSKCHG disk has changed

EBADNAM file nametoo long or has bad characters

USFiles User's Manual 3-83

ENOPATH part of directory path or device not found
ENOENT file not found in directory

ENOTDIR path contains afile name (instead of a directory)
EBIGPATH path length exceeds VFAT restrictions
EWRTPRT trying to change time on write-protected disk

driver error

Example

pcfmchtime(“a:\\nyfile.bin”, mak _ftinme(12, 30, 00),
mak fdate(1997,1,1));

NOTE: USFiles accepts either *\' or ‘/* characters as name separators
interchangeably.

pcfm_chtimefp

Changes file date and time (uses pointer).

int pcfmchti mef p(MIFILE *fp, uintl1l6 ftime, uintl6
fdate);

fp file descriptor pointer to open file
ftime thenew filetimeto set
fdate thenew filedateto set

The pcfm_chtimefp() function changes the file's modification date and time
fieldsinitsdirectory entry to the new values given. Thefti me andf dat e
values are in the binary encoded format that is stored in the directory (as
returned by the driver timestamp function). Y ou can use the macros
mak_fdate and mak_ftime, which are defined in mtio.h, to convert year,
month, day into the f dat e format, and hour, minute, second into thef t i me
format.

See dso: pcfm_chtime

3-84 USFiles User's Manual

Return Value
0 OK

EBADFP bad file pointer
ELOCKED timeout waiting for access to file system

Example
MTFI LE *f p;
fp =m_fopen(“A\\MYFILE. BIN', “r+b");
pcf m chti mef p(fp, mak_ftime(12, 30, 00),
mak fdate(1997,1,1));

pcfm_chvlabel

Changes an existing volume label.

i nt pcfmchvl abel (const char *drivenane,
char *ol dl abel, const char *new abel);

dri vename name of driveto ater label on (e.g. “A:”)
ol dl abel pointer to where to return old label
new abel the new label string to set

The pcfm_chviabel () function returns the existing volume label of the
specified drivein ol dl abel . If novolume label currently exists,
ol dl abel will be set to an empty string. If newl abel doesnot equal
NULL, then the newl abel stringis made the current volume label.

Return Value

0 OK
errno see errno values below

USFiles User's Manual

3-85

errno Value

Stream 1/O
None

PC File Manager
ENMFILE no entries available in open streams array

ELOCKED timeout while waiting for file system access
ENOBUF no buffers available

ECTLFAIL device controller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation
EBADPART sector does not contain partition table
EDSKCHG disk has changed

EBADNAM file nametoo long or has bad characters
ENOPATH device not found

ERDFULL root directory isfull

EDSKFUL diskisfull

EWRTPRT trying to modify write-protected disk

driver error

Example

char ol da[12], ol db[12];
i f(pcfmchvl abel (“A:", ol da, NULL))
/* get drive a: |abel */
error_stop(1l);
i f(pcfmchvl abel (“b: ", ol db, ” New Vol une”))

3-86 USFiles User's Manual

/* set drive b: |abel */
error_stop(2);

pcfm_invalidate buffers

Invalidates all buffers on a device.
int pcfm.invalidate_buffers(DEVICE *devp);
devp pointer to device

The pcfm_invalidate buffers() function is provided for error recovery
purposes. We can use this function to mark all buffersfor the device as
unused. If there are dirty buffers found for the device, then 1 is returned.
These buffers are still invalidated. We simply report that some datawill be
lost. If no dirty buffers are found for the device, then O is returned.

See also: otherFilesOpen, invalidate _streams

Return Value

0 no dirty buffersfor device

1 dirty buffersfound for device

ECF devp iSNULL (only if USS_SI O PCHK is 1)
errno Value

Stream 1/O

None

PC File Manager
EBADARG devpisNULL (onlyif USS SIO PCHK is1)

USFiles User's Manual 3-87

Example
DEVI CE *devp;

/* Di sk has changed */
pcf minval i dat e_buffers(devp);
i f(otherFilesOpen(devp))
i nval i dat e_streans(devp);
el se
/* No open files, so ignore error */

putBigEnd16

Records 16-bit integer in Big-Endian mode.
voi d put Bi génd16(ui nt 16 val ue, byte **pos);
value number to store

pos address of pointer indicating where to store Big-Endian integer

The routine putBigend16() is primarily an internal routine, but it may
prove useful in some applications. The pointer will be incremented to the
next byte following the 16-bit integer.

See dso: getBigEnd16, getBigEnd32, getLitEnd16, getLitEnd32,
putBigend32, putLitEnd16, putLitEnd32

Return Value
None

Example
byte buffer[512], *bp;
ui nt 16 number;

/* Point to beginning of 16-bit Big-Endian integer */
bp = &buffer[10];
nunber = OXFACE;

3-88 USFiles User's Manual

put Bi gEnd16(nurmber, &bp);
/* bp will now be at &buffer[12] */

putBigEnd32

Records 32-bit integer in Big-Endian mode.
voi d put Bi gend32(ui nt 32 val ue, byte **pos);
value number to store
pos address of pointer indicating where to store Big-Endian integer

The routine putBigend32() is primarily an internal routine, but it may
prove useful in some applications. The pointer will be incremented to the
next byte following the 32-bit integer.

See also: getBigend16, getBigEnd32, getLitEnd16, getLitEnd32,
putBigEnd16, putLitEnd16, putLitEnd32

Return Value
None

Example

byte buffer[512], *bp;
ui nt 32 nunber;

/* Point to beginning of 32-bit Big-Endian integer */
bp = &buffer[10];

number = O0x12FACE32;

put Bi gEnd32(nunber, &bp);

/* bp will now be at &buffer[14] */

putLitEnd16

Records 16-bit integer in Little-Endian mode.

voi d putLitEndl6(uintl6 val ue, byte **pos);

USFiles User's Manual 3-89

vaue number to store

pos address of pointer indicating where to store Little-Endian
integer
The routine putLitEnd16() is primarily an internal routine, but it may prove

useful in some applications. The pointer will be incremented to the next
byte following the 16-bit integer.

See also: getBigend16, getBigEnd32, getLitEnd16, getLitEnd32,
putBigEnd16, putBigEnd32, putLitEnd32

Return Value
None

Example

byte buffer[512], *bp;
ui nt 16 nunber;

/* Point to start of 16-bit Little-Endian integer */
bp = &buffer[10];

nunmber = OxFACE;

put Li t End16(nunmber, &bp);

/* bp will now be at &buffer[12] */

putLitEnd32

Records 32-bit integer in Little-Endian mode.

voi d putLitEnd32(uint32 value, byte **pos);

value number to store
pos address of pointer indicating where to store Little-Endian
integer

The routine putLitEnd32() is primarily an internal routine, but it may prove
useful in some applications. The pointer will be incremented to the next
byte following the 32-bit integer.

3-90 USFiles User's Manual

See also: getBigend16, getBigEnd32, getLitEnd16, getLitEnd32,
putBigend16, putBigEnd32, putLitEnd16

Return Value
None

Example

byte buffer[512], *bp;
ui nt 32 nunber;

/* Point to start of 32-bit Little-Endian integer */
bp = &buffer[10];

nunber = 0x12FACE32;

put Li t End32(nunmber, &bp);

/* bp will now be at &buffer[14] */

total byte cnt

Returns the number of bytes on the drive.
uint 32 total _byte_cnt (MIFILE *stream;
stream pointer to the stream file descriptor

The number of bytes on the disk drive associated with stream isreturned. |If

an error occurs, 0 is returned.

NOTE: If using FAT32 support, the total byte count may exceed the
limits of a 32-bit unsigned integer.
See also: total_clust_cnt, total_kb_cnt, free_byte cnt, free_clust_cnt,
free kb _cnt

Return Value
Number of bytes on disk.

USFiles User's Manual

3-91

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
None

Example

FILE *fp;

ui nt 32 total byt es;
/* open for read/wite */
fp =m_fopen(“A\filel”, “r+b”);
total bytes = total byte cnt(fp);

total clust_cnt

Returns the number of clusters on the drive.
uint 32 total _clust_cnt(MIFILE *strean);
stream pointer to the stream file descriptor

The number of clusters on the disk drive associated with stream is returned.
If an error occurs, O isreturned.

See dso: total_byte cnt, total_kb_cnt, free byte cnt, free clust_cnt,
free kb_cnt

Return Value
Number of clusters on disk.

3-92 USFiles User's Manual

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
None

Example
FI LE *fp;
ui nt 32 total clusts;
/* open for read/wite */
fp =m_fopen(“A\filel”, “r+b”);
totalclusts = total _clust_cnt(fp);

total kb _cnt

Returns the number of kilobytes on the drive.
uint 32 total _kb_cnt (MIFI LE *stream;
stream pointer to the stream file descriptor

The number of kilobytes on the disk drive associated with stream is
returned. If an error occurs, O is returned.

See dso: total byte cnt, total_clust_cnt, free byte cnt, free clust_cnt,

free kb_cnt

Return Value
Number of kilobytes on disk.

USFiles User's Manual

3-93

errno Value

Stream 1/O
EBADFP bad file pointer

PC File Manager
None

Example

FILE *fp;

ui nt 32 total kb;
/* open for read/wite */
fp =m_fopen(“A\filel”, “r+b”);
total kb = total _kb_cnt(fp);

uni2char

Converts a Unicode character to ASCII or Shift-JIS.

3-94

voi d uni 2char (char **ascii Pos, uint16 uni Char);
asci i Pos address of pointer where ASCII character will be stored
uni Char Unicode character to convert

A Unicode character may be converted to either a single-byte (ASCI|I) or
double-byte (Shift-JIS) character. The uni2char() function will move the
asci i Pos pointer to indicate where the next character should be recorded.
It will be incremented by either one or two bytes.

This function is not included with the default settings of USFiles. No
USFiles functions make use of this utility, but it is provided for application
use. Toincludethe uni2char() function, please see the commentsin
usfutil.c.

USFiles supports alimited set of Unicode characters. Thefileuni2jis.c
provides details of which characters are allowed. |f an unsupported

USFiles User's Manual

Unicode character is passed into uni2char(), then we set **asci i Pos
equal to the ASCII replacement character (0x1A).

See dso: char2uni

Return Value
none

USFiles User's Manual 3-95

Example

uint16 uni String[20];
char saveString[20], *pAscii;
int i;
pAscii = saveString;
for(i=0; i<20; i++)
if(uniString[i]){
uni 2char (&pAscii, uniString[i]);
/* pAscii will point to next available
** position */
}el se{
pAscii = 0; / NULL Terminate */
br eak;

3-96 USFiles User's Manual

USFiles User's Manual 3-97

4. Supported RTOSes

Chapter Contents

[Using Stream 1/O from Multiple Tasks...........ccouecvreeeveererennnnes 4-3
Multitasking With €10 ..o 4-4
SUPPOIET RTOSES.oooovoovesseserssressesseseeeseeseerseeeseeseeseeseeen 4-5|
Btand-alone Mode...........coovoveveieeiiie 4-7

[fableb-1. Stana-alone Mode Calls.................. 4-
T T s e 2-8
p?iﬁlp o-Z. IVIUITI I asSKT Viode CallS 4-0
Stack Size -3
ynamic Task | oading with fruntsk 4-9
runtsk 4-10

I -

Table 6-3: TronTask! Mode Calls................... 4-12

NItTATZINGUSFIES ...

IHAChI TTRON........coiiiiiiiiiieece e
Table 6-4. Hitachi ITRON Mode Cdls........... 4-14
ESE ENVITONMENT ... e e eeeeeneeenenenneens 4-15
SENVINE A CE Sl LS 715
Z-15)
Sdion 216
[Che depends.h File 4-16
nfiguration Files i 4-17
nterface . 4-17]
arious Makefiles. ..., 4-18

USFiles User's Manual

4-1

4-2

RX850 and RX850 P10oooooooooooooeorooooosseeeeoseeeeeseeees e A-19
Table 6-5. RX850 and RX850 Pro Mode Calls4-19

[Test ENVIrONMENt.........covevvvireiieieceeee 4-20
O REVISIONS ..o rvrceeveeeeneereeeeeeereneeaeenennenannenenenens 4-20
CONTIQUIBITON FITES oo eeeeeeeeeeeeeeeeneennneeesennnnneneees 4-20

[TIETTACE oo 421

USFiles User's Manual

Using Stream I/O from Multiple Tasks

USFiles will allow multiple tasks to use the file system simultaneously
when used with an RTOS. Thereisno record locking on individual files,
however, so any file opened for modification (write, rename, or delete)
cannot be opened by another task. An attempt to do so will result in the
second open returning a NULL file pointer and setting er r no to EI SOPEN.
There will be no conflict between any accesses to separate files, or multiple
read-only accesses to the samefileif that file is not opened for modification
by any task.

The LOCK_FILESYSTEM() macro used to acquire the PCFM_RESOURCE
when using USFiles with an RTOS locks the file system for the duration of
each read or write operation. Thiswill insure the operation is complete
before another task gets control of the file system. Y ou should therefore be
able to have two or more tasks appending records to the end of the same
file, aslong as they are using the same file handle (i.e., one task should
open the file only, and the other task make use of the same FI LE *).

After awrite operation, the data may not be immediately transferred to disk,
but may remain in an internal buffer until either the buffer is needed, or the
stream is flushed with fflush(), or closed by fclose().

USFiles User's Manual 4-3

Multitasking with errno

4-4

Customers must pay specia attention to er r no, especially with ulTRON
RTOSes, which generaly do not implement protections for er r no. Many
libraries (floating point, TCP/IP, file system, etc.) could theoretically use
errno. If you areusing severd librariesthat utilize er r no, then you must
implement a system-wide task-safe er r no.

For USFiles only, an example is provided below to implement a task-safe
er r no on RTOSes that do not already protect it. This example assumes a
ulTRON RTOS.

In rtossup.c:

I D ny_task_id(void)({
I D nyid;
get _tid(&nyid);
return nyid,;

}

Inrtos.h:
int errno_array[NUMIASKS];
#define errno errno_array[my_task_ id()]

Thiswill set up an array that storeser r no for each task.

USFiles User's Manual

Supported RTOSes

At present USFiles has been integrated with the following RTOSes:
* None (does not require an RTOYS)
e MultiTask!
* TronTask! (both versions 2.x and 3.x)
» Hitachi SH-7, SH-77, and HI7750
+ RX850
 RX850Pro
e PPSM and PPSM GT

When integrating USFiles with an RTOS, these items must be considered:
* Protecting stream 1/0O
* Protecting the file system
e Dynamic memory allocation
» Definingerrno

The following sections will describe how each of the supported RTOSes
handles these issues as well as discussing other items of interest concerning
the RTOS. Thetablesin each section map a USFiles call to an RTOS call
(or to an intermediate function that uses an RTOS call) and list the files that
arerelated to thisintegration. Please examine the files, because some of the
calls may change. All USFiles RTOS-specific information has been placed
in thefilesrtos.h and rtossup.c, which are found in the siosr c\<rtos>
subdirectory.

The file system has four cases where it requests memory allocation:

» A single 512-byte block is requested when reading the BPB sector. Thisis
returned immediately after accessing the datain that sector.

USFiles User's Manual 4-5

* Eachtimemt_fopen iscalled afile handle structure (MTFILE) is alocated.
Thiswill be released when the file is closed.

» Beforethefile handle allocation is done, mt_fopen will request alocation of
space to copy the filename argument passed to the open call. Thisisused to
parse the device name from the device table, and will be released as soon as
this process is finished.

* When using the mt_readdir function with long file names (VFAT), USFiles
dynamically allocates space to temporarily hold the Unicode name before it
is converted to ASCII. Thisrequires 260 bytes, which are released before
the function return.

4-6 USFiles User's Manual

Stand-alone Mode

Table 6-1: Stand-alone Mode Calls

USFiles Call RTOS Call

Protecting Stream 1/0O

N/A

Protecting the File System

N/A

Dynamic Memory Allocation
alloc_mem() call oc()
dealloc_mem() freg()

errno
USFiles in stand-alone mode uses the compiler library’s errno.h file.

USFiles User's Manual

4-7

MultiTask!

Table 6-2: MultiTask! Mode Calls

USFiles Call RTOS Call
Protecting Stream 1/0

LOCK_ STREAMIO() nt busy++

UNLOCK_ STREAMIO() MTqproc()

Protecting the File System

LOCK_ FILESYSTEM() getres (PCFM_RESOURCE,
PCFM T MECUT)

UNLOCK_ FILESYSTEM() reres (PCFM_RESOURCE)

Dynamic Memory Allocation

alloc_mem() regmem()

dealloc _mem() relmem()

errno

MultiTask! defineser r no for each task. Please refer to the Multi Task!
documentation and source code for details.

Stack Size

The file depends.h specifies a minimum stack size required for the
MultiTask! test programsto run. USFilesrequires alarger stack size, soin
the test programs, we define macros XTRA STACK and XTRA_MEMto
account for this difference.

4-8 USFiles User's Manual

If the MultiTask! test programs and usftest in stand-alone mode all run
successfully, but usftest fails when running with MultiTask!, then you may
want to try increasing the stack size.

NOTE: When using a board support package (BSP), the default stack
size will be specified in a BSP header file. Please see
siosrc\<cpu>\cpunotes.txt to determine whether aBSP is
being used.

Dynamic Task Loading with fruntsk

With USFiles for the 80x86 platform we have added the capability to
dynamically load and start a MultiTask! task or several tasks from a
separately compiled *.exefile. Thisrequiresatask that is already running
to initiate the load and startup of the task in the *.exe file by making a call
to fruntsk().

We will call the currently running portion of your application the “static
part” and the part you will be loading from the file the “overlay” (although
it is not overwriting any code).

The static part must be compiled as huge model, and must contain al of the
MultiTask! operating system as well as USFiles or equivalent file access
library and the new modules:

fruntsk.c
dyload.c
dytable.asm

The overlay is compiled as either | ar ge or huge model (Microsoft C), or
huge model (Borland C) with the label MT_OVERLAY defined (usually by
adding - DMI_OVERLAY to the CFLAGS variable in the makefile). The
overlay module is then linked with dyentry.asm instead of the usual startup
module (i.e., dyent ry replaces the compiler C startup routine which calls
mai n).

The mode restrictions are necessary in order to relocate the code in the
overlay file and be able to dynamically link it to the system servicesin the
static part. Dyent ry and dyt abl e set up ajump table in the overlay with a
jump to each MultiTask! system function in the static part. The commonly

USFiles User's Manual 4-9

needed MultiTask! global variables are redefined for the overlay as
functions returning pointersto the variable. Thisisall transparent to the
overlay, and all coding in the overlay task isidentical on the user level to
coding for the static part.

If you need to add access for the overlay to an additional function or
variable which resides in the static part, you can do so by adding atable
entry to the file dyconf.asm and recompiling both the static and overlay
parts.

Each item requiring a dynamic link appearsin the dyconf.asm fileasaline
with the item name preceded by either the funclnk macro for functions or
the datalnk macro for dataitems. Each dataitem also requires a#def i ne
and ext er n declaration in the C overlay file. Anexample of thisis shown
in the dyconf.asm file. The MultiTask! dataitems already defined in this
file havetheir #def i ne and ext er n declarations already in placein
mtdata.h where they are conditionally included when MI_OVERLAY is
defined.

The makefile contains atarget program, dytest.c, which builds a static part
that loads in the cor etest program as an overlay and runsit. Refer to thisas
an example of using the dynamic load capability.

NOTE: Dynamic task loading is now considered unsupported, and the
source files can be found in the siosr c\unsupp directory.

fruntsk

Loads and runs atask from afile.

int fruntsk(uint priority, char *fnane, uint stksiz,

)G
priority task priority to be assigned to the loaded task
*f name the compl ete pathname to code being loaded
st ksi z the size of stack to assign to the loaded task
up to 4 arguments to be passed to task

Thefruntsk() function is similar to runtsk except the task isfirst loaded
from afile whose pathnameis given by f nane. Thefilemust be a

4-10 USFiles User's Manual

rel ocatabl e type as used by dyload.c. (For 80x86 thiswill be a*.exefile.)
Memory is allocated by a call to regmem() to hold the code in the module
loaded. The codeislocated and loaded into memory, and the stack space
st ksi z bytesis allocated with acall to regmem(). The main() function of
the loaded fileis started as the first (and possibly only) task in thefile. If
there was more than one task contained in the file, each of these needs to be
started by the first task (main()) in that file. Be aware that all code memory
is attached to the first task of that file and will be deallocated when that task
dies. Because of this you must ensure that it will be the last task to die of
the group loaded in that module.

NOTE: The fruntsk function is part of USFiles and is currently only
supported on the 80x86 real mode platform.

Return Value

+n TASK | D (slot number) of loaded task
E | CERR Error reading file (more information may be contained in
errno)

E NOSLOT All task slotsin configuration (NUMTSK) are in use
E_NORAM insufficient memory (regmem)

Example
TASK I D sl ot;

slot = fruntsk(100, “a:\\bin\\ovltask.exe”, 1000);
if(slot <0)
{ error }

USFiles User's Manual 4-11

TronTask!

Table 6-3: TronTask! Mode Calls

USFiles Call RTOS Call
Protecting Stream 1/0
LOCK_ STREAMIO() ussStreamForbid()

UNLOCK_ STREAMI () ussStreamPermit()
Protecting the File System

LOCK_ FILESYSTEM() ussFileForbid()

UNLOCK_ FILESYSTEM() | ussFilePermit()

Dynamic Memory Allocation

alloc_mem() alloc_mem()

dealloc_mem() relmem()

Since tasks cannot ‘own’ aresource governed by TronTask!’ s semaphores,
we had to implement our own routines to interface with the resources to
allow nested LOCK _ calls. These are found in thefile rtossup.c.

The alloc_mem() function in rtossup.c calls the kernel regmem() function.

errno

TronTask! defineser r no for each task. Please refer to the TronTask!
documentation and source code for details.

4-12 USFiles User's Manual

Initializing USFiles

To gain access to stream 1/0O and the file system, the semaphores protecting
these must be created (for TronTask! 3.x only) and signaled. This should be
done at the start of your application by calling the function ussSI Ol nit(),
which isfound in thefilertossup.c. Thisroutinewill create the
semaphores, if necessary, and signal them so that access can be granted to
tasks. For an example of initializing USFiles with TronTask!, please see
usftest.c.

Stack Size

The file depends.h specifies a minimum stack size required for the
TronTask! test programsto run. USFilesrequires alarger stack size, soin
the test programs, we define macros XTRA STACK and XTRA _MEMto
account for this difference.

If the TronTask! test programs and usftest in stand-alone mode all run
successfully, but usftest fails when running with TronTask!, then you might
want to try increasing the stack size.

NOTE: When using a board support package (BSP), the default stack
size will be specified in a BSP header file. Please see
siosrc\<cpu>\cpunotes.txt to determine whether aBSP is
being used.

USFiles User's Manual 4-13

Hitachi ITRON

Table 6-4: Hitachi ITRON Mode Calls

USFiles Call RTOS Call

Pr otecting Stream 1/0
LOCK_ STREAMIO() wai_sem(STREAM RESOURCE)
UNLOCK_STREAMIO() sg_sem(STREAM RESOURCE)

Protecting the File System

LOCK_FILESYSTEM() usfitron_getrey))

UNLOCK_FILESYSTEM() | usfitron_relres()

Dynamic Memory Allocation

alloc_mem() alloc_mem()

dealloc_mem() dealloc_mem()

Since tasks cannot ‘own’ aresource governed by Hitachi ITRON’s
semaphores, we had to implement our own routines to interface with the
resources to allow nested LOCK_FILESYSTEM() calls. These are found
in thefilertossup.c.

The alloc_mem() and dealloc_mem() callsare also in rtossup.c. We make
use of the RTOS get_blk() and rel_blk() calls, but we also tried to do some
optimization. Please see thertossup.c file for details.

errno
We include the compiler library’serrno.h filein rtos.h.

4-14 USFiles User's Manual

Test Environment

Refer to the config\sh\hitachi\compiler.mak file for instructions on
configuring USFiles for a particular SH processor. Depending on your
RTOS, you might have to modify another makefile in config\sh\hitachi to
specify the path to the RTOS directory. The appropriate makefileis:

SH7 sh7dos.mak
SH77 sh77dos.mak
HI7750 hi7750.mak

Thetest is downloaded to RAM in the board viathe serial port, and then
run. The test sends text out the serial port from the board to aterminal
attached to this port. The debug monitor is assumed to haveinitialized the
serial port for the test. All test output goes through the function putch() in
the file getput?.c, which can be found in the siosr c\sh directory. To direct
the text displayed by the program to another location, you can replace this
function. Note that there are multiple versions of thisfile specified by
replacing ? with the TARGET number selected by setting compiler.mak

appropriately.

Using Library Header Files

stdlib.h

Compiling the file system requires that three lines be added to the compiler
header file stdlib.h in order to compensate for nested inclusion of thisfile.

Near the top of stdlib.h (before any statements that are not comments) add
these two lines:

#i fndef stdlib_h
#define stdlib_h

After thelast line of the file add:
#endi f

USFiles User's Manual 4-15

These will prevent any problem if the fileisincluded more than once,
which isthe case with the file system code. Thisisdifficult to avoid
because of the way the header files are used for other systems.

Check the contents of stdarg.h to seeif similar lines already exist (the exact
name defined is not important, but the structureis). Thisiscommon
practice for most C compilers, and may already be present in later releases
of the Hitachi compiler.

stdio.h

Using the Hitachi compiler library stdio.h with USFiles may produce a
linker error, due to the name of the USFiles module sprintf.c. This
problem can be remedied by following these steps:

1. Rename sprintf.c to usprintf.c.
2. Edit siosrc\makefile to change sprintf to usprintf.
3. Rebuild thelibrary and application.

The USFiles modules and test programs do not use stdio.h, so thisfix is
only necessary if your application needs stdio.h.

The depends.h File

Y ou should make changes only to the following statements, when
appropriate.

#defi ne MASK | NTS() set i mask(0xf)
Thisline defines a macro used to mask interruptsin the system. Normally
this sets the interrupt mask value to the highest possible setting to disable all

interrupts. This may be set to some other level for some circumstances if
you understand the usage.

#defi ne UNMASK | NTS() set i mask(0)

This macro returns interrupt mask setting to zero. For the case of using
USFiles without an RTOS, there is only one place where these macros are
used, for avery brief time, in streamio.c.

4-16 USFiles User's Manual

Configuration Files

When using SH7 or SH77, customized configuration files are provided in
the siosr c\<rtos> subdirectories. Other configuration files needed for these
RTOSes are the default files. Their location isidentified by the MTPTH
symbol in sh7dos.mak or sh77dos.mak (see siosr c\<rtos>\makefile). The
customized configuration files are:

suptbl7.c Variation of hisuptbl.c for SH1 or SH2
suptbl77.c Variation of hisuptbl.c for SH3
tstsup2.c SH2 version of above

tstsup3.c SH3 version of above

When using HI7750, we do not provide any customized configuration files.
The user must configure the RTOS files according to the instructions found
in siosr c\sh\cpunotes.txt.

Interface

Thefilertossup.c provides the functions to interface the file system to
Hitachi ITRON.

The only ITRON functions used by the file system are:

get_tid
get_blk
rel_blk
sig_sem
wai_sem

USFiles User's Manual 4-17

In addition to these, the test program usftest.c uses the following functions,
and depends upon the timer interrupt handler callingi rot _rdq(2):

clr_flg
set flg
wai_flg
sta tsk
dp_tsk
wai_tsk
wup_tsk

The event flag used by SH7 and SH77 in usftest isdefined in usftest.c as
XEVT, which has avalue of 10. HI7750 dynamically assigns the event flag
ID number.

Various Makefiles

compiler.mak Used to select the board

makefile.sh2 Specific information for DV E-7604 board
makefile.sh3 Specific information for DV E-7708 board
makefilesh4 Specific information for Hitachi SH4 Solution Engine
sh7dos.mak Specific rulesfor SH7 RTOS

sh77dosmak Specific rulesfor SH77 RTOS

hi7750.mak Specific rulesfor HI7750 RTOS

4-18 USFiles User's Manual

RX850 and RX850 Pro

Table 6-5: RX850 and RX850 Pro Mode Calls

USFiles Call RTOS Call

Pr otecting Stream 1/0
LOCK_ STREAMIO() wai_sem(STREAM RESOURCE)
UNLOCK_STREAMIO() sg_sem(STREAM RESOURCE)

Protecting the File System

LOCK_FILESYSTEM() usfitron_getres()

UNLOCK_FILESYSTEM() usfitron_rdres))

Dynamic Memory Allocation

alloc_mem() alloc_mem()

dealloc_mem() dealloc_mem()

Since tasks cannot ‘own’ aresource governed by RX850' s semaphores, we
had to implement our own routines to interface with the resources to allow
nested LOCK_FILESYSTEM() calls. These arefound in thefilertossup.c.

The alloc_mem() and dealloc_mem() callsare aso in rtossup.c. We make
use of the RTOS get_blf() and rel_blif() (get_blk() and rel_blk() for RX850
Pro) calls, but we aso tried to do some optimization. Please seethe
rtossup.c file for details.

errno
We include the compiler library’serrno.h filein rtos.h

USFiles User's Manual 4-19

Test Environment

The provided makefiles are configured to compile USFiles with the Green
Hills compiler located in the directory specified by PTHIn
config\v8xx\green\compiler.mak. In addition, the directory containing
support for the RTOS isindicated by NUCLEUS_TOP in the same
compiler.mak.

We have tested our software using the Kyoto Micro Computer Partner-ET
Extended Target Debugger ROM emulator. Y ou should be able to ssimply
start the Partner software, load the compiled test, and run. Output is
directed to the JRS232C port on the

RTE-V850E/MS1-PC board. If you connect thisto a monitor, the test
output will be displayed.

If you are using adifferent board, then you will have to modify the putchr()
routine in getput1.850, which isfound in siosr c\v8xx

Board Revisions

We have tested our software with two different revisions of the
RTE-V850E/MS1-PC board. The only difference that you need to be aware
of isthe clock speed. Thefile siosrc\v8xx\serial.c provides the serial driver
for the evaluation boards. If you are using rev. 3.0 of the evaluation board,
then be sure that BRGCO = 65 to indicate a40MHz clock. If using rev. 3.1
of the evaluation board, then BRGCO should be 54, indicating a 33 MHz
clock. Oneway to check for the proper clock speed is that output will
appear garbled if the wrong clock speed is specified.

Configuration Files

Thefollowing files are used to configure usftest to run as atask with
RX850 (Pro). These are modified versions of severa of the original RX850
sample configuration files.

sit850.cf RX850 configuration file in siosr c\r x850 directory
sit850p.cf RX850 Pro configuration file in siosr c\rx850pr o directory

4-20 USFiles User's Manual

Thesefiles define all the RTOS items that are required (tasks, semaphores,
memory pools, etc.). When the STREAM RESOURCE and PCFM_RESOURCE
semaphores are defined, they are initialized to 1, meaning that they are
available to be accessed immediately. Please see the RX850 (Pro)
documentation to see how to properly configure your particular application.

Interface

Thefilertossup.c provides the functions to interface the file system to
RX850 and RX850 Pro.

The only ITRON functions used by the file system are:

get_tid

get_blk (RX850 Pro)
rel_blk (RX850 Pro)
get blf (RX850)
rel_blf (RX850)
sig_sem

wai_sem

In addition to these, the test program usftest.c uses the following functions:

The event flag used by usftest is XEVT, the value of which is determined by
the configuration file.

For RX850, memory allocation is done with fixed-size blocks from pool
USFI LES MEMPOOL. The block size is 608 bytes (defined in sit850.cf) and
USFI LES MEMPOOL isdefined in siosr c\rx850\rtos.h.

For RX850 Pro, memory allocation is done with variable-size blocks from
pool USFI LES_MEMPQOQOL, which is defined in siosr c\rx850pr o\rtos.h.

USFiles User's Manual 4-21

5. Porting Guide

Chapter Contents

[Porting USFiles Stand-alone Mode...............ccooeeeeervevenennn... 5-2
Eetting UPp MEKEFIIES ..o 5-2

diting Header Files..........ccccccovevvevieciiciiececeec 5-4

POrting DIIVENS........ccovoieeiiie o-4

M DISKDIIVEr.......cooeeeieecceeeee e, 5-4

BIOSDIVE o 54

-

et Driver 05

Memory Alignment 5-6

Porti ng iigg:liig g H% RTOS 5-7
ntegrating FileS ..o 5-7

Building Your Application.......ccccooeeieiiiieinnnns 5-9

POrting DIIVENS.......c.coueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 5-10
DiSKEtte DIVEr ... 5-10)

USFiles User's Manual 5-1

Porting USFiles Stand-alone Mode

Thereislittlein USFiles that is processor dependent, so porting mostly
involves identifying the correct libraries. USFiles makes use of several
string functions like strcmp() and memory routines like memcpy() or
memset(). The easiest way to determine what library from your tool chain
isrequired isto compile and link the usftest program and see which
symbols remain unresolved.

We are assuming that you have been able to run asimple “Hello, World”
program on your hardware before you start to port USFiles.

Setting Up Makefiles

5-2

To develop makefiles for anew processor and/or compiler, we recommend
using existing makefiles as a starting point. If you are porting to anew
CPU, you will have to add CPU and CPU\compiler subdirectoriesto the
config and siosr ¢ directories. Copy the existing makefile and
compiler.mak filesinto these directories and edit them.

Y ou will aso haveto add your new CPU and compiler names to the
appropriate listsin config.mak. Make sure that the names in config.mak
match the directory names that you have created.

NOTE: If aboard support package (BSP) has been provided for your
CPU, then porting is most easily done in the BSP model.
Please see BSP documentation for porting instructions.

As an example, consider porting to a CPU called NewCpu, and a compiler
caled NewComp. These are the steps for porting:

1. Createthese directories:

siosr c\NewCpu
siosr c\NewCpu\NewComp
config\NewCpu
config\NewCpu\NewComp

USFiles User's Manual

2. Copy the makefiles:
a. Copy siosrc\i8086\makefile to siosr c\NewCpu\makefile

b. Copy siosrc\i8086\bor land\makefile to
siosr c\NewCpu\NewComp\makefile

c. Copy config\i8086\borland\compiler.mak to
siosr c\NewCpu\NewComp\compiler.mak

3. Edit the makefiles:

a. Thesiosrc\NewCpu\makefile should contain USFiles device
drivers and may contain character I/0O. Character I/0 may be found
in the bspsr ¢ directory.

b. The siosrc\NewCpu\NewComp\makefile will most likely not build
anything.

c. The config\NewCpu\NewComp\compiler.mak file hasthe
necessary flags for tool chains, the paths to the tool chains, the rules
for building, and the target-specific information

d. Inthe config.mak file, add and select these lines:
CPU = NewCpu
COWPI LER = NewConp

Of course, you will need to modify the code to support drivers and character
output on anew board. Interrupts are only dealt with by the drivers
themselves for USFiles. The RAM disk driver does not need any interrupts,
but the i8086 hard disk and diskette drivers utilize interrupts. Please pay
attention to interrupts when porting.

NOTE: When using a BSP, the BSP will handle the interrupt level.

When building a USFiles library or application in stand-alone mode, the
filesindicated in siosr c\makefile, siosr c\NewCpu\makefile,

siosr c\NewCpu\NewComp\makefile, and siosr c\none\makefile will be
compiled and added to the library according to the rules found in
config\NewCpu\NewComp\compiler.mak. Thelibrary isthen placed in
the lib directory and the application (in appsrc) is compiled and linked with
thelibrary.

USFiles User's Manual 5-3

Editing Header Files

Copy the existing header files depends.h and usstypes.h to the
siosr c\NewCpu\NewComp directory, and edit these files as needed.

NOTE: If aBSP is being used, then these files are unnecessary. The
BSP header files replace these.

Porting Drivers

The drivers provided with USFiles, with the exception of the RAM disk
driver, have been specifically developed for operation on PC hardware.
Please regard these as samples only. Unless you are using PC hardware,
they will require modification to work with your hardware. If you choose
to use one of our drivers as a sample, we recommend avoiding the diskette
driver (flopdrv.c). It has some peculiarities that will be discussed later.
The BIOS driver (biosdrv.c) or the hard disk driver (Ibahddrv.c) are
clearer.

RAM Disk Driver

The RAM disk driver (ramdrv.c) should operate on any hardware with at
least 256 KB of memory available. The size of the RAM disk can be
configured in ramdef.c.

BIOS Driver

The BIOS driver (biosdrv.c) requires a BIOS to operate. It uses functions
provided by the Microsoft and Borland tools to access the BIOS. This
driver is representative of the structure required in a USFiles driver, but its
utility islimited.

5-4 USFiles User's Manual

Hard Disk Driver

The hard disk driver (Ibahddrv.c) provides direct accessto an IDE hard
drive. Thedrive can either operatein logical block addressing (LBA)
mode, or in cylinder, head, sector (CHS) mode. Each drive's unit number
in the device table determines how it is accessed. See Chapter 4,
Configuring USFiles, for more details.

The driver initialization installs an interrupt service routine (ISR) in the
expected DOS vector for IRQ 14. When operating in stand-alone mode, an
ISR isalso installed into the DOS timer interrupt vector to alow drive
commands to timeout. These ISRswill require attention when porting to
new hardware. In stand-alone mode, you may not wish to use interrupts.

Y ou could simply let the driver enter a spin loop until the drive operation
completes.

Y ou will aso need to modify the hard drive communication port definitions
near the top of thefile. Thefile diskio.asm hasthe get_sector() and
put_sector() routines called by the driver. There are samples of how these
functions can be replicated in C code, but you may wish to provide
assembly routines to improve speed.

Finally, you might wish to redefine the macro ptr_norm(). Thisisused to
normalize the 80x86 real mode buffer pointer. Other CPUs should not need
this, so it can be redefined to do nothing.

Diskette Driver

The diskette driver does the same sort of initialization as the hard disk
driver. Itinstalsan ISR in the DOS interrupt vector for a floppy disk drive
controller, and it will install the timer ISR in stand-alone mode, if it is not
aready installed.

The diskette driver has four ports defined, which will require modification
to match your hardware. It also uses DMA. If your hardware does not have
DMA, then thisdriver will require significant modification.

USFiles User's Manual 5-5

Memory Alignment

When developing or porting drivers, be aware of the memory alignment
requirements of your CPU. This may become an issue when we directly
transfer datafrom adisk to the user’ s buffer (bypassing internal USFiles
buffers). Imagine the following situation:

1. Weopen afileand read 511 bytes from it.
2. Wethen call mt_fread() to read 2000 bytes into an application buffer.

3. Theread routine realizes that we have to read one byte from an interna
buffer. It doesthat and then increments the pointer to the application
buffer by one.

4. Theread routine then triesto directly transfer 1536 bytes from the disk
to the application buffer. The application buffer is now positioned on
an odd byte, so accessing the buffer this way may fail.

A solution to this problem is to have a 512-byte buffer in the driver that can
be used to temporarily hold sectors. The read and write routines will have
to test whether buf p- >user buf hasthe proper aignment. If it does not,
transfer to the temporary buffer, and then to the application buffer (for
read).

Another solution is to make sure that reads and writes are always done to
maintain the proper alignment (e.g. aminimum of two bytes at atime).

5-6 USFiles User's Manual

Porting USFiles to a New RTOS

Chapter 6, Supported RTOSes, describes the issues that must be considered
when integrating USFiles with an RTOS. These will be discussed in a bit
more detail here. If you are porting USFiles to a processor and/or compiler
for which we do not provide makefiles, you should first port USFilesto this
environment in stand-alone mode, which is discussed in the previous
section. Thiswill insure that USFilesis operating properly for your
development environment, and then the RTOS integration can be
performed.

Integrating an RTOS with USFiles

When integrating USFiles with an RTOS, you must consider these items:
* Protecting stream 1/0O
» Protecting the file system
» Dynamic memory allocation
» Definingerrno

Integrating Files

We have attempted to keep the filesinvolved in RTOS integration to a
minimum. For supported RTOSes, these files are rtos.h and rtossup.c.
They are located in the appropriate siosr c\<rtos> directory. Y ou will need
to create a subdirectory in siosr ¢ for your new RTOS and create rtos.h and
rtossup.c filesthere. Make sure that you update the RTOS list in
config.mak to include your new RTOS.

RTOS Header File

A good starting point for your RTOS header file is copying rtos.h from
siosrc\none and editing that. Thisrtos.h file includes the definitions
required by USFiles, and you can substitute the appropriate functions for
your RTOS.

USFiles User's Manual 5-7

In this RTOS header file, you will need to define these macros:

LOCK_STREAMIO()
UNLOCK_STREAMIO()
LOCK_FILESY STEM()
UNLOCK_FILESY STEM()

These are typically implemented as resources (e.g. LOCK_STREAMIO()
requests aresource and UNLOCK_STREAMIO() releases aresource). You
will then have to define the ID numbers for the resources that protect the
stream 1/0O and file system. This can be done directly in the header support
file.

NOTE: Calsto LOCK_FILESYSTEM() may be nested. The
implementation must allow a single task to call
LOCK_FILESYSTEM() twice consecutively without an
UNLOCK_FILESYSTEMY() call in between. The counting
semaphores of LITRON do not allow this, so we must wrap
the semaphore calls with our own code. If your RTOS has
similar behavior, please see thertos.h and rtossup.cfilesin
siosrc\tt3 for an example of how to handle this.

Here you will also need to define how er r no isimplemented. For our
MultiTask! and TronTask! RTOSes, each task can have an error code
associated with it, so we use amacro to map er r no to the task error code.
With other supported RTOSes, we include the compiler library’ serrno.h
file. Besurethat theerr no issafe for amultitasking environment before
using this.

RTOS Support File

5-8

The RTOS support file (rtossup.c) will contain the functions for dynamic
memory allocation. Again, agood starting point is the rtossup.c filein the
siosrc\none directory. Copy thisto your new RTOS directory and edit as
needed.

USFiles calls the functions alloc_mem() and dealloc_mem() to acquire and
release heap memory. These functions should be defined in the RTOS
support file. Since USFiles often allocates a PCFM_BUFFER structure, you
may find it useful to set aside a block of memory with thissize. When a

USFiles User's Manual

function requests ablock that is si zeof (PCFM_BUFFER) , you can return
the address of this dedicated space. Thisis safe, because al the calls that
would request this block are protected, so only one task at atime will access
it. Hereisan example that implements this technique:

/* defined as long to get address alignnment */
ui nt 32 usf bl ock[(si zeof (PCFM BUFFER) + 3) / 4];

int dealloc_nmem(void *rel adr)
{ /* rel ease nenory */

if (reladr !'= usfblock) {
/* Do RTCS nenory free */

} else {
/* ignore rel ease of PCFM BUFFER bl ock */
return O;
}
}
void *alloc_men(int reqgsize)
{
if (regsize == sizeof (PCFM BUFFER)) ({
/* return pointer to 512 byte bl ock */
return (usfbl ock);
}
el se
/* Do RTOS nenory allocation */
/* Return pointer to nenory */
}

NOTE: The memory returned by acall to alloc_mem() must be
initialized to zero for USFiles to function properly.

Building Your Application

When you build an application with USFiles and a new RTOS, you will
obviously need to specify the RTOS library so that your application and
USFiles can link with it. Y ou can either do thisin the
config\<cpu>\<compiler>\compiler.mak file or by adding the RTOS
library to the USER_LI BS list in config.mak.

USFiles User's Manual 5-9

Porting Drivers

If you have not already read the discussion on porting drivers for USFilesin
stand-alone mode, you should do so now. Most of the issues discussed
there are still applicable when using an RTOS. This section will only deal
with issues specific to an RTOS.

Generally there are two items that must be handled when integrating a
USFiles driver with an RTOS:

* Putting atask to sleep
» Waking up the task from an interrupt service routine
The Ibahddrv driver isagood exampleto use. It typically:
» SavestheID of thetask that is running (so it can be woken up)
* Sendsthe proper command to the drive
» Waitswith atimeout specified (here other tasks can operate)

When the interrupt is received from the drive, the ISR then wakes up the
task so it can continue operation. Thisisusualy al that must be handled
when integrating our drivers with anew RTOS. Unfortunately, the diskette
driver is an exception to this.

Diskette Driver

The complication with the diskette driver is that we need to keep track of
the motor operation. We dedicate atask to turning the motor off when
necessary. Thisisdonein the pcfdrv_init() function. The devicetable
entry for diskette drives has afield to specify the ID number of an event that
indicates when the drive motor should be turned off. Be careful that you do
not reuse this event ID number.

5-10 USFiles User's Manual

The motor_off_task() is started as avery high priority task. It only checks
to seeif the motor should be turned off. If so, it executes the Motor Off()
function. When the motor_on() function is called we determine at what
time the motor should be shut off by adding the present system time to the
timeout period passed into motor_on(). Signaling the motor_off_task()
must be implemented so that if there is a second call to motor_on() before
the current motor off time is reached, the old time isignored, and the new
timeis recognized.

USFiles User's Manual 5-11

5-12 USFiles User's Manual

6. Supported RTOSes

Chapter Contents

[(p. SUPPORTED RTQSES 6-1
_LI% Stream 1/Q from Multiple Tasks, 6-2
ultitasking with errno 6-3
|_Dynamic Task Loading with fruntskcc..cc........... 6-8

[L 6-11
NTAIZING USHITES ..o eseeenenannens 6-12]

P o LS T2 o-12

[HTaCh TTRON . oo 6-13
(e Environment 012
[Snglibrany Heager Files h-141

The depends.h File 6-15
CONfiQUIation Files o 6-16
LInterface i 6-16|
VariousS MakKefileS. ..o 6-17

[RX850 anNd RX850 PrOc.cveieiieeisccsetsesccreneeseseeesanaeas 6-18
[TTest ENVIrONMENt ... 6-19

Board ReVISIONS..........coooeeveeecee et 6-19
CONTIQUIation FITEScccvvveiiieieeeceeee e 6-19
TINETAce 6-20

USFiles User's Manual 6-1

Using Stream I/O from Multiple Tasks

USFiles will allow multiple tasks to use the file system simultaneously
when used with an RTOS. Thereisno record locking on individual files,
however, so any file opened for modification (write, rename, or delete)
cannot be opened by another task. An attempt to do so will result in the
second open returning a NULL file pointer and setting er r no to EI SOPEN.
There will be no conflict between any accesses to separate files, or multiple
read-only accesses to the samefileif that file is not opened for modification
by any task.

The LOCK_FILESYSTEM() macro used to acquire the PCFM_RESOURCE
when using USFiles with an RTOS locks the file system for the duration of
each read or write operation. Thiswill insure the operation is complete
before another task gets control of the file system. Y ou should therefore be
able to have two or more tasks appending records to the end of the same
file, aslong asthey are using the same file handle (i.e., one task should
open the file only, and the other task make use of the same FI LE *).

After awrite operation, the data may not be immediately transferred to disk,
but may remain in an internal buffer until either the buffer is needed, or the
stream is flushed with fflush(), or closed by fclose().

6-2 USFiles User's Manual

Multitasking with errno

Customers must pay specia attention to er r no, especially with ulTRON
RTOSes, which generaly do not implement protections for er r no. Many
libraries (floating point, TCP/IP, file system, etc.) could theoretically use
errno. If you areusing severd librariesthat utilize er r no, then you must
implement a system-wide task-safe er r no.

For USFiles only, an example is provided below to implement a task-safe
er r no on RTOSes that do not already protect it. This example assumes a
ulTRON RTOS.

In rtossup.c:

I D ny_task_id(void)({
I D nyid;
get _tid(&nyid);
return nyid,;

}

Inrtos.h:
int errno_array[NUMIASKS];
#define errno errno_array[my_task_ id()]

Thiswill set up an array that storeser r no for each task.

USFiles User's Manual 6-3

Supported RTOSes

At present USFiles has been integrated with the following RTOSes:
* None (does not require an RTOYS)
e MultiTask!
e TronTask! (both versions 2.x and 3.x)
» Hitachi SH-7, SH-77, and HI7750
+ RX850
e RX850Pro
* PPSM and PPSM GT

When integrating USFiles with an RTOS, these items must be considered:
* Protecting stream 1/0O
» Protecting the file system
e Dynamic memory allocation
» Definingerrno

The following sections will describe how each of the supported RTOSes
handles these issues as well as discussing other items of interest concerning
the RTOS. Thetablesin each section map a USFiles call to an RTOS call
(or to an intermediate function that uses an RTOS call) and list the files that
arerelated to thisintegration. Please examine the files, because some of the
calls may change. All USFiles RTOS-specific information has been placed
in thefilesrtos.h and rtossup.c, which are found in the siosr c\<rtos>
subdirectory.

The file system has four cases where it requests memory allocation:

* A single 512-byte block is requested when reading the BPB sector. Thisis
returned immediately after accessing the datain that sector.

6-4 USFiles User's Manual

Each time mt_fopen is called afile handle structure (MTFILE) is allocated.
Thiswill be released when the file is closed.

Before the file handle allocation is done, mt_fopen will request alocation of
space to copy the filename argument passed to the open call. Thisisused to
parse the device name from the device table, and will be released as soon as
this processis finished.

When using the mt_readdir function with long file names (VFAT), USFiles
dynamically allocates space to temporarily hold the Unicode name before it
isconverted to ASCII. Thisrequires 260 bytes, which are released before
the function return.

USFiles User's Manual 6-5

Stand-alone Mode

Table 6-1: Stand-alone Mode Calls

USFilesCall RTOS Call

Protecting Stream 1/0

N/A

Protecting the File System

N/A

Dynamic Memory Allocation
alloc_mem() call oc()
dealloc_mem() free()

errno
USFiles in stand-alone mode uses the compiler library’s errno.h file.

6-6 USFiles User's Manual

MultiTask!

Table 6-2: MultiTask! Mode Calls

USFiles Call RTOS Call
Protecting Stream 1/0

LOCK_ STREAMIO() nt busy++

UNLOCK_ STREAMIO() MTqproc()

Protecting the File System

LOCK_ FILESYSTEM() getres (PCFM_RESOURCE,
PCFM T MECUT)

UNLOCK_ FILESYSTEM() reres (PCFM_RESOURCE)

Dynamic Memory Allocation

alloc_mem() regmem()

dealloc _mem() relmem()

errno

MultiTask! defineser r no for each task. Please refer to the Multi Task!
documentation and source code for details.

Stack Size

The file depends.h specifies a minimum stack size required for the
MultiTask! test programsto run. USFilesrequires alarger stack size, soin
the test programs, we define macros XTRA STACK and XTRA_MEMto
account for this difference.

USFiles User's Manual 6-7

If the MultiTask! test programs and usftest in stand-alone mode all run
successfully, but usftest fails when running with MultiTask!, then you may
want to try increasing the stack size.

NOTE: When using a board support package (BSP), the default stack
size will be specified in a BSP header file. Please see
siosrc\<cpu>\cpunotes.txt to determine whether aBSP is
being used.

Dynamic Task Loading with fruntsk

6-8

With USFiles for the 80x86 platform we have added the capability to
dynamically load and start aMultiTask! task or several tasks from a
separately compiled *.exefile. Thisrequiresatask that is already running
to initiate the load and startup of the task in the *.exe file by making a call
to fruntsk().

We will call the currently running portion of your application the “ static
part” and the part you will be loading from the file the “overlay” (although
it is not overwriting any code).

The static part must be compiled as huge model, and must contain al of the
MultiTask! operating system as well as USFiles or equivalent file access
library and the new modules:

fruntsk.c
dyload.c
dytable.asm

The overlay is compiled as either | ar ge or huge model (Microsoft C), or
huge model (Borland C) with the label MT_OVERLAY defined (usually by
adding - DMI_OVERLAY to the CFLAGS variable in the makefile). The
overlay module is then linked with dyentry.asm instead of the usual startup
module (i.e., dyent r y replaces the compiler C startup routine which calls
mai n).

The model restrictions are necessary in order to relocate the code in the
overlay file and be able to dynamically link it to the system servicesin the
static part. Dyent ry and dyt abl e set up ajump table in the overlay with a
jump to each MultiTask! system function in the static part. The commonly

USFiles User's Manual

needed MultiTask! global variables are redefined for the overlay as
functions returning pointersto the variable. Thisisall transparent to the
overlay, and all coding in the overlay task isidentical on the user level to
coding for the static part.

If you need to add access for the overlay to an additional function or
variable which resides in the static part, you can do so by adding atable
entry to the file dyconf.asm and recompiling both the static and overlay
parts.

Each item requiring adynamic link appearsin the dyconf.asm fileasaline
with the item name preceded by either the funclnk macro for functions or
the datalnk macro for dataitems. Each dataitem also requires a#def i ne
and ext er n declaration in the C overlay file. Anexample of thisis shown
in the dyconf.asm file. The MultiTask! dataitems already defined in this
file havetheir #def i ne and ext er n declarations already in placein
mtdata.h where they are conditionally included when MI_OVERLAY is
defined.

The makefile contains atarget program, dytest.c, which builds a static part
that loads in the cor etest program as an overlay and runsit. Refer to thisas
an example of using the dynamic load capability.

NOTE: Dynamic task loading is now considered unsupported, and the
source files can be found in the siosr c\unsupp directory.

fruntsk

Loads and runs atask from afile.

int fruntsk(uint priority, char *fnane, uint stksiz,

L)
priority task priority to be assigned to the loaded task
*f name the compl ete pathname to code being loaded
st ksi z the size of stack to assign to the loaded task
up to 4 arguments to be passed to task

Thefruntsk() function is similar to runtsk except the task isfirst loaded
from afile whose pathnameis given by f nane. Thefile must be a

USFiles User's Manual 6-9

rel ocatabl e type as used by dyload.c. (For 80x86 thiswill be a*.exefile.)
Memory is allocated by a call to regmem() to hold the code in the module
loaded. The codeislocated and loaded into memory, and the stack space
st ksi z bytesisallocated with acall to regmem(). The main() function of
the loaded fileis started as the first (and possibly only) task in thefile. If
there was more than one task contained in the file, each of these needs to be
started by the first task (main()) in that file. Be aware that all code memory
is attached to the first task of that file and will be deallocated when that task
dies. Because of this you must ensure that it will be the last task to die of
the group loaded in that module.

NOTE: The fruntsk function is part of USFiles and is currently only
supported on the 80x86 real mode platform.

Return Value

+n TASK | D (dlot number) of loaded task
E | CERR Error reading file (more information may be contained in
errno)

E NOSLOT All task dlotsin configuration (NUMTSK) are in use
E_NORAM insufficient memory (regmem)

Example
TASK I D sl ot;

slot = fruntsk(100, “a:\\bin\\ovltask.exe”, 1000);
if(slot <0)
{ error }

6-10 USFiles User's Manual

TronTask!

Table 6-3: TronTask! Mode Calls

USFiles Call RTOS Call
Protecting Stream 1/0
LOCK_ STREAMIO() ussStreamForbid()

UNLOCK_ STREAMI () ussStreamPermit()
Protecting the File System

LOCK_ FILESYSTEM() ussFileForbid()
UNLOCK_ FILESYSTEM() | ussFilePermit()

Dynamic Memory Allocation

alloc_mem() alloc_mem()

dealloc_mem() relmem()

Since tasks cannot ‘own’ aresource governed by TronTask!’ s semaphores,
we had to implement our own routines to interface with the resources to
allow nested LOCK _ calls. These are found in thefile rtossup.c.

The alloc_mem() function in rtossup.c calls the kernel regmem() function.

errno

TronTask! defineser r no for each task. Please refer to the TronTask!
documentation and source code for details.

USFiles User's Manual 6-11

Initializing USFiles

To gain access to stream 1/0O and the file system, the semaphores protecting
these must be created (for TronTask! 3.x only) and signaled. This should be
done at the start of your application by calling the function ussSI Ol nit(),
which isfound inthefilertossup.c. Thisroutinewill create the
semaphores, if necessary, and signal them so that access can be granted to
tasks. For an example of initializing USFiles with TronTask!, please see
usftest.c.

Stack Size

The file depends.h specifies a minimum stack size required for the
TronTask! test programsto run. USFilesrequires alarger stack size, soin
the test programs, we define macros XTRA STACK and XTRA _MEMto
account for this difference.

If the TronTask! test programs and usftest in stand-alone mode all run
successfully, but usftest fails when running with TronTask!, then you might
want to try increasing the stack size.

NOTE: When using a board support package (BSP), the default stack
size will be specified in a BSP header file. Please see
siosrc\<cpu>\cpunotes.txt to determine whether aBSP is
being used.

6-12 USFiles User's Manual

Hitachi ITRON

Table 6-4: Hitachi ITRON Mode Calls

USFiles Call RTOS Call

Protecting Stream 1/0O
LOCK_ STREAMIO() wai_sem(STREAM RESOURCE)
UNLOCK_STREAMIO() sg_sem(STREAM RESOURCE)

Protecting the File System

LOCK_FILESYSTEM() usfitron_getres()

UNLOCK_FILESYSTEM() usfitron_rdres))

Dynamic Memory Allocation

alloc_mem() alloc_mem()

dealloc_mem() dealloc_mem()

Since tasks cannot ‘own’ aresource governed by Hitachi ITRON’s
semaphores, we had to implement our own routines to interface with the
resources to allow nested LOCK_FILESYSTEM() calls. These are found
in thefilertossup.c.

The alloc_mem() and dealloc_mem() callsare also in rtossup.c. We make
use of the RTOS get_blk() and rel_blk() calls, but we also tried to do some
optimization. Please see thertossup.c file for details.

errno
We include the compiler library’serrno.h filein rtos.h.

USFiles User's Manual 6-13

Test Environment

Refer to the config\sh\hitachi\compiler.mak file for instructions on
configuring USFiles for a particular SH processor. Depending on your
RTOS, you might have to modify another makefile in config\sh\hitachi to
specify the path to the RTOS directory. The appropriate makefileis:

SH7 sh7dos.mak
SH77 sh77dos.mak
HI7750 hi7750.mak

Thetest is downloaded to RAM in the board viathe seria port, and then
run. The test sendstext out the serial port from the board to aterminal
attached to this port. The debug monitor is assumed to haveinitialized the
serial port for thetest. All test output goes through the function putch() in
the file getput?.c, which can be found in the siosr c\sh directory. To direct
the text displayed by the program to another location, you can replace this
function. Note that there are multiple versions of thisfile specified by
replacing ? with the TARGET number selected by setting compiler.mak

appropriately.

Using Library Header Files

stdlib.h

Compiling the file system requires that three lines be added to the compiler
header file stdlib.h in order to compensate for nested inclusion of thisfile.

Near the top of stdlib.h (before any statements that are not comments) add
these two lines:

#i fndef stdlib_h
#define stdlib_h

After thelast line of the file add:
#endi f

6-14 USFiles User's Manual

These will prevent any problem if the fileisincluded more than once,
which isthe case with the file system code. Thisisdifficult to avoid
because of the way the header files are used for other systems.

Check the contents of stdarg.h to seeif similar lines already exist (the exact
name defined is not important, but the structureis). Thisiscommon
practice for most C compilers, and may already be present in later releases
of the Hitachi compiler.

stdio.h

Using the Hitachi compiler library stdio.h with USFiles may produce a
linker error, due to the name of the USFiles module sprintf.c. This
problem can be remedied by following these steps.

4. Rename sprintf.c to usprintf.c.
5. Edit siosrc\makefile to change sprintf to usprintf.
6. Rebuild the library and application.

The USFiles modules and test programs do not use stdio.h, so thisfix is
only necessary if your application needs stdio.h.

The depends.h File

Y ou should make changes only to the following statements, when
appropriate.

#defi ne MASK | NTS() set i mask(0xf)
Thisline defines a macro used to mask interruptsin the system. Normally
this sets the interrupt mask value to the highest possible setting to disable all

interrupts. This may be set to some other level for some circumstances if
you understand the usage.

#defi ne UNVASK | NTS() set i mask(0)

This macro returns interrupt mask setting to zero. For the case of using
USFiles without an RTOS, there is only one place where these macros are
used, for avery brief time, in streamio.c.

USFiles User's Manual 6-15

Configuration Files

When using SH7 or SH77, customized configuration files are provided in
the siosr c\<rtos> subdirectories. Other configuration files needed for these
RTOSes are the default files. Their location isidentified by the MTPTH
symbol in sh7dos.mak or sh77dos.mak (see siosr c\<rtos>\makefile). The
customized configuration files are:

suptbl7.c Variation of hisuptbl.c for SH1 or SH2
suptbl77.c Variation of hisuptbl.c for SH3
tstsup2.c SH2 version of above

tstsup3.c SH3 version of above

When using HI7750, we do not provide any customized configuration files.
The user must configure the RTOS files according to the instructions found
in siosr c\sh\cpunotes.txt.

Interface

Thefilertossup.c provides the functions to interface the file system to
Hitachi ITRON.

The only ITRON functions used by the file system are:

get_tid
get_blk
rel_blk
sig_sem
wai_sem

6-16 USFiles User's Manual

In addition to these, the test program usftest.c uses the following functions,
and depends upon the timer interrupt handler callingi rot _rdq(2):

clr_flg
set flg
wai_flg
sta tsk
dp_tsk
wai_tsk
wup_tsk

The event flag used by SH7 and SH77 in usftest isdefined in usftest.c as
XEVT, which has avalue of 10. HI7750 dynamically assigns the event flag

ID number.

Various Makefiles

compiler.mak
makefile.sh2
makefile.sh3
makefile.sh4
sh7dos.mak
sh77dos.mak
hi7750.mak

USFiles User's Manual

Used to select the board

Specific information for DV E-7604 board

Specific information for DV E-7708 board

Specific information for Hitachi SH4 Solution Engine
Specific rulesfor SH7 RTOS

Specific rulesfor SH77 RTOS

Specific rulesfor HI7750 RTOS

6-17

RX850 and RX850 Pro

Table 6-5: RX850 and RX850 Pro Mode Calls

USFiles Call RTOS Call

Pr otecting Stream 1/0
LOCK_ STREAMIO() wai_sem(STREAM RESOURCE)
UNLOCK_STREAMIO() sg_sem(STREAM RESOURCE)

Protecting the File System

LOCK_FILESYSTEM() usfitron_getres))

UNLOCK_FILESYSTEM() | usfitron_relres()

Dynamic Memory Allocation

alloc_mem() alloc_mem()

dealloc_mem() dealloc_mem()

Since tasks cannot ‘own’ aresource governed by RX850' s semaphores, we
had to implement our own routines to interface with the resources to allow
nested LOCK_FILESYSTEM() calls. These arefound in thefilertossup.c.

The alloc_mem() and dealloc_mem() callsare aso in rtossup.c. We make
use of the RTOS get_blf() and rel_blif() (get_blk() and rel_blk() for RX850
Pro) calls, but we aso tried to do some optimization. Please seethe
rtossup.c filefor details.

errno
We include the compiler library’serrno.h filein rtos.h

6-18 USFiles User's Manual

Test Environment

The provided makefiles are configured to compile USFiles with the Green
Hills compiler located in the directory specified by PTHIn
config\v8xx\green\compiler.mak. In addition, the directory containing
support for the RTOS isindicated by NUCLEUS_TOP in the same
compiler.mak.

We have tested our software using the Kyoto Micro Computer Partner-ET
Extended Target Debugger ROM emulator. Y ou should be able to simply
start the Partner software, load the compiled test, and run. Output is
directed to the JRS232C port on the

RTE-V850E/MS1-PC board. If you connect thisto a monitor, the test
output will be displayed.

If you are using adifferent board, then you will have to modify the putchr()
routine in getput1.850, which isfound in siosr c\v8xx

Board Revisions

We have tested our software with two different revisions of the
RTE-V850E/MS1-PC board. The only difference that you need to be aware
of isthe clock speed. Thefile siosrc\v8xx\serial.c provides the serial driver
for the evaluation boards. If you are using rev. 3.0 of the evaluation board,
then be sure that BRGCO = 65 to indicate a40MHz clock. If using rev. 3.1
of the evaluation board, then BRGCO should be 54, indicating a 33 MHz
clock. Oneway to check for the proper clock speed is that output will
appear garbled if the wrong clock speed is specified.

Configuration Files

Thefollowing files are used to configure usftest to run as atask with
RX850 (Pro). These are modified versions of severa of the original RX850
sample configuration files.

sit850.cf RX850 configuration file in siosr c\rx850 directory
Sit850p.cf RX850 Pro configuration file in siosr c\rx850pr o directory

USFiles User's Manual 6-19

Thesefiles define all the RTOS items that are required (tasks, semaphores,
memory pools, etc.). When the STREAM RESOURCE and PCFM_RESOURCE
semaphores are defined, they are initialized to 1, meaning that they are
available to be accessed immediately. Please see the RX850 (Pro)
documentation to see how to properly configure your particular application.

Interface

Thefilertossup.c provides the functions to interface the file system to
RX850 and RX850 Pro.

The only ITRON functions used by the file system are:

get_tid

get blk (RX850 Pro)
rel_blk (RX850 Pro)
get blf (RX850)
rel_blf (RX850)
sig_sem

wai_sem

In addition to these, the test program usftest.c uses the following functions:

The event flag used by usftest is XEVT, the value of which is determined by
the configuration file.

For RX850, memory allocation is done with fixed-size blocks from pool
USFI LES_ MEMPOOL. The block size is 608 bytes (defined in sit850.cf) and
USFI LES MEMPOOL is defined in siosr c\rx850\rtos.h.

For RX850 Pro, memory allocation is done with variable-size blocks from
pool USFI LES_MEMPQOQOL, which is defined in siosr c\rx850pr o\rtos.h.

6-20 USFiles User's Manual

USFiles User's Manual 6-21

7. Porting Guide

Chapter Contents

(7. PORTING GUIDE 7-1
rti ng IUSFEiles Stand-alone Mode. 7-2

Setting Up Makefiles /-2

| Fditing Header Files 7-4

POrtiNO DIIVENS. . 7-4)

MeEMOry AlTONMENT ... 7-6)

| Porting USFilesto aNew RTOScccocieiiiieciercsiesesenceans 7-7
ntegrating an RTOS with USFIles..........cccocvvvvennnene 7-7)

_I50rti NG DIIVETS ..o 7-10)

USFiles User's Manual 7-1

Porting USFiles Stand-alone Mode

Thereislittlein USFiles that is processor dependent, so porting mostly
involves identifying the correct libraries. USFiles makes use of several
string functions like strcmp() and memory routines like memcpy() or
memset(). The easiest way to determine what library from your tool chain
isrequired isto compile and link the usftest program and see which
symbols remain unresolved.

We are assuming that you have been able to run asimple “Hello, World”
program on your hardware before you start to port USFiles.

Setting Up Makefiles

7-2

To develop makefiles for anew processor and/or compiler, we recommend
using existing makefiles as a starting point. If you are porting to anew
CPU, you will have to add CPU and CPU\compiler subdirectoriesto the
config and siosr ¢ directories. Copy the existing makefile and
compiler.mak filesinto these directories and edit them.

Y ou will aso haveto add your new CPU and compiler names to the
appropriate listsin config.mak. Make sure that the names in config.mak
match the directory names that you have created.

NOTE: If aboard support package (BSP) has been provided for your
CPU, then porting is most easily done in the BSP model.
Please see BSP documentation for porting instructions.

As an example, consider porting to a CPU called NewCpu, and a compiler
caled NewComp. These are the steps for porting:

4. Create these directories:

siosr c\NewCpu
siosr c\NewCpu\NewComp
config\NewCpu
config\NewCpu\NewComp

USFiles User's Manual

5. Copy the makefiles:
d. Copy siosrc\i8086\makefile to siosr c\NewCpu\makefile

e. Copy siosrc\i8086\borland\makefile to
siosr c\NewCpu\NewComp\makefile

f. Copy config\i8086\borland\compiler.mak to
siosr c\NewCpu\NewComp\compiler.mak

6. Edit the makefiles:

e. Thesiosrc\NewCpu\makefile should contain USFiles device
drivers and may contain character I/0O. Character I/0 may be found
in the bspsr ¢ directory.

f. The siosr c\NewCpu\NewComp\makefile will most likely not build
anything.

g. The config\NewCpu\NewComp\compiler.mak file hasthe
necessary flags for tool chains, the paths to the tool chains, the rules
for building, and the target-specific information

h. Inthe config.mak file, add and select these lines:
CPU = NewCpu
COWPI LER = NewConp

Of course, you will need to modify the code to support drivers and character
output on anew board. Interrupts are only dealt with by the drivers
themselves for USFiles. The RAM disk driver does not need any interrupts,
but the i8086 hard disk and diskette drivers utilize interrupts. Please pay
attention to interrupts when porting.

NOTE: When using a BSP, the BSP will handle the interrupt level.

When building a USFiles library or application in stand-alone mode, the
filesindicated in siosr c\makefile, siosr c\NewCpu\makefile,

siosr c\NewCpu\NewComp\makefile, and siosr c\none\makefile will be
compiled and added to the library according to the rules found in
config\NewCpu\NewComp\compiler.mak. Thelibrary isthen placed in
the lib directory and the application (in appsrc) is compiled and linked with
thelibrary.

USFiles User's Manual 7-3

Editing Header Files

Copy the existing header files depends.h and usstypes.h to the
siosr c\NewCpu\NewComp directory, and edit these files as needed.

NOTE: If aBSP is being used, then these files are unnecessary. The
BSP header files replace these.

Porting Drivers

The drivers provided with USFiles, with the exception of the RAM disk
driver, have been specifically developed for operation on PC hardware.
Please regard these as samples only. Unless you are using PC hardware,
they will require modification to work with your hardware. If you choose
to use one of our drivers as a sample, we recommend avoiding the diskette
driver (flopdrv.c). It has some peculiarities that will be discussed later.
The BIOS driver (biosdrv.c) or the hard disk driver (Ibahddrv.c) are
clearer.

RAM Disk Driver

The RAM disk driver (ramdrv.c) should operate on any hardware with at
least 256 KB of memory available. The size of the RAM disk can be
configured in ramdef.c.

BIOS Driver

The BIOS driver (biosdrv.c) requires a BIOS to operate. It uses functions
provided by the Microsoft and Borland tools to access the BIOS. This
driver is representative of the structure required in a USFiles driver, but its
utility islimited.

7-4 USFiles User's Manual

Hard Disk Driver

The hard disk driver (Ibahddrv.c) provides direct accessto an IDE hard
drive. Thedrive can either operatein logical block addressing (LBA)
mode, or in cylinder, head, sector (CHS) mode. Each drive's unit number
in the device table determines how it is accessed. See Chapter 4,
Configuring USFiles, for more details.

The driver initialization installs an interrupt service routine (ISR) in the
expected DOS vector for IRQ 14. When operating in stand-alone mode, an
ISR isalso installed into the DOS timer interrupt vector to alow drive
commands to timeout. These ISRswill require attention when porting to
new hardware. In stand-alone mode, you may not wish to use interrupts.

Y ou could simply let the driver enter a spin loop until the drive operation
completes.

Y ou will aso need to modify the hard drive communication port definitions
near the top of thefile. Thefile diskio.asm hasthe get_sector() and
put_sector() routines called by the driver. There are samples of how these
functions can be replicated in C code, but you may wish to provide
assembly routines to improve speed.

Finally, you might wish to redefine the macro ptr_norm(). Thisisused to
normalize the 80x86 real mode buffer pointer. Other CPUs should not need
this, so it can be redefined to do nothing.

Diskette Driver

The diskette driver does the same sort of initialization as the hard disk
driver. Itinstalsan ISR in the DOS interrupt vector for a floppy disk drive
controller, and it will install the timer ISR in stand-alone mode, if it is not
aready installed.

The diskette driver has four ports defined, which will require modification
to match your hardware. It also uses DMA. If your hardware does not have
DMA, then thisdriver will require significant modification.

USFiles User's Manual 7-5

Memory Alignment

When developing or porting drivers, be aware of the memory alignment
requirements of your CPU. This may become an issue when we directly
transfer datafrom adisk to the user’ s buffer (bypassing internal USFiles
buffers). Imagine the following situation:

5. Weopen afileand read 511 bytes from it.
6. Wethen call mt_fread() to read 2000 bytes into an application buffer.

7. Theread routine realizes that we have to read one byte from an internal
buffer. It doesthat and then increments the pointer to the application
buffer by one.

8. Theread routine then triesto directly transfer 1536 bytes from the disk
to the application buffer. The application buffer is now positioned on
an odd byte, so accessing the buffer this way may fail.

A solution to this problem is to have a 512-byte buffer in the driver that can
be used to temporarily hold sectors. The read and write routines will have
to test whether buf p- >user buf hasthe proper aignment. If it does not,
transfer to the temporary buffer, and then to the application buffer (for
read).

Another solution is to make sure that reads and writes are always done to
maintain the proper alignment (e.g. aminimum of two bytes at atime).

7-6 USFiles User's Manual

Porting USFiles to a New RTOS

Chapter 6, Supported RTOSes, describes the issues that must be considered
when integrating USFiles with an RTOS. These will be discussed in a bit
more detail here. If you are porting USFiles to a processor and/or compiler
for which we do not provide makefiles, you should first port USFilesto this
environment in stand-alone mode, which is discussed in the previous
section. Thiswill insure that USFiles is operating properly for your
development environment, and then the RTOS integration can be
performed.

Integrating an RTOS with USFiles

When integrating USFiles with an RTOS, you must consider these items:
* Protecting stream 1/0O
» Protecting the file system
» Dynamic memory allocation
» Definingerrno

Integrating Files

We have attempted to keep the filesinvolved in RTOS integration to a
minimum. For supported RTOSes, these files are rtos.h and rtossup.c.
They are located in the appropriate siosr c\<rtos> directory. Y ou will need
to create a subdirectory in siosr ¢ for your new RTOS and create rtos.h and
rtossup.c filesthere. Make sure that you update the RTOS list in
config.mak to include your new RTOS.

RTOS Header File

A good starting point for your RTOS header file is copying rtos.h from
siosrc\none and editing that. Thisrtos.h file includes the definitions
required by USFiles, and you can substitute the appropriate functions for
your RTOS.

USFiles User's Manual 7-7

In this RTOS header file, you will need to define these macros:

LOCK_STREAMIO()
UNLOCK_STREAMIO()
LOCK_FILESY STEM()
UNLOCK_FILESY STEM()

These are typically implemented as resources (e.g. LOCK_STREAMIO()
requests aresource and UNLOCK_STREAMIO() releases aresource). You
will then have to define the ID numbers for the resources that protect the
stream 1/0O and file system. This can be done directly in the header support
file.

NOTE: Calsto LOCK_FILESYSTEM() may be nested. The
implementation must allow a single task to call
LOCK_FILESYSTEM() twice consecutively without an
UNLOCK_FILESYSTEMY() call in between. The counting
semaphores of LITRON do not allow this, so we must wrap
the semaphore calls with our own code. If your RTOS has
similar behavior, please see thertos.h and rtossup.cfilesin
siosrc\tt3 for an example of how to handle this.

Here you will also need to define how er r no isimplemented. For our
MultiTask! and TronTask! RTOSes, each task can have an error code
associated with it, so we use amacro to map er r no to the task error code.
With other supported RTOSes, we include the compiler library’ serrno.h
file. Besurethat theerr no issafe for amultitasking environment before
using this.

RTOS Support File

7-8

The RTOS support file (rtossup.c) will contain the functions for dynamic
memory allocation. Again, agood starting point is the rtossup.c filein the
siosrc\none directory. Copy thisto your new RTOS directory and edit as
needed.

USFiles calls the functions alloc_mem() and dealloc_mem() to acquire and
release heap memory. These functions should be defined in the RTOS
support file. Since USFiles often allocates a PCFM_BUFFER structure, you
may find it useful to set aside a block of memory with thissize. When a

USFiles User's Manual

function requests ablock that is si zeof (PCFM_BUFFER) , you can return
the address of this dedicated space. Thisis safe, because al the calls that
would request this block are protected, so only one task at atime will access
it. Hereisan example that implements this technique:

/* defined as long to get address alignnment */
ui nt 32 usf bl ock[(si zeof (PCFM BUFFER) + 3) / 4];

int dealloc_nmem(void *rel adr)
{ /* rel ease nenory */

if (reladr !'= usfblock) {
/* Do RTCS nenory free */

} else {
/* ignore rel ease of PCFM BUFFER bl ock */
return O;
}
}
void *alloc_men(int reqgsize)
{
if (regsize == sizeof (PCFM BUFFER)) ({
/* return pointer to 512 byte bl ock */
return (usfbl ock);
}
el se
/* Do RTOS nenory allocation */
/* Return pointer to nenory */
}

NOTE: The memory returned by acall to alloc_mem() must be
initialized to zero for USFiles to function properly.

Building Your Application

When you build an application with USFiles and a new RTOS, you will
obviously need to specify the RTOS library so that your application and
USFiles can link with it. Y ou can either do thisin the
config\<cpu>\<compiler>\compiler.mak file or by adding the RTOS
library to the USER_LI BS list in config.mak.

USFiles User's Manual 7-9

Porting Drivers

If you have not already read the discussion on porting drivers for USFilesin
stand-alone mode, you should do so now. Most of the issues discussed
there are still applicable when using an RTOS. This section will only deal
with issues specific to an RTOS.

Generally there are two items that must be handled when integrating a
USFiles driver with an RTOS:

* Putting atask to sleep
» Waking up the task from an interrupt service routine
The Ibahddrv driver isagood exampleto use. It typically:
» SavestheID of thetask that is running (so it can be woken up)
* Sendsthe proper command to the drive
» Waitswith atimeout specified (here other tasks can operate)

When the interrupt is received from the drive, the ISR then wakes up the
task so it can continue operation. Thisisusualy al that must be handled
when integrating our drivers with anew RTOS. Unfortunately, the diskette
driver is an exception to this.

Diskette Driver

The complication with the diskette driver is that we need to keep track of
the motor operation. We dedicate atask to turning the motor off when
necessary. Thisisdonein the pcfdrv_init() function. The devicetable
entry for diskette drives has afield to specify the ID number of an event that
indicates when the drive motor should be turned off. Be careful that you do
not reuse this event ID number.

7-10 USFiles User's Manual

The motor_off_task() is started asavery high priority task. It only checks
to seeif the motor should be turned off. If so, it executes the Motor Off()
function. When the motor_on() function is called we determine at what
time the motor should be shut off by adding the present system time to the
timeout period passed into motor_on(). Signaling the motor_off_task()
must be implemented so that if there is a second call to motor_on() before
the current motor off time is reached, the old time isignored, and the new
timeis recognized.

USFiles User's Manual 7-11

7-12 USFiles User's Manual

A. Handling Disk Changes

Overview

Handling a disk change is the responsibility of the application designer. We
are not able to anticipate all the situations under which an application can
experience adisk change. Therefore, USFiles does not automatically
provide for al possible methods of handing a disk change, which islargely
the work of the driver. In the case of the PC driversthat we provide
(flopdrv.c and biosdrv.c), the error_handler() routine deals with the disk
change recovery.

The diskette drive disk change is checked in three places. During araw
read, during araw write, and during afile open. The sector read and write
routines call the raw read and write routines, so these will also pass through
the disk change test. The sector reads and writes will then call the error
handler if an error is encountered. The raw reads and writes do not, which
iswhy USFiles amost exclusively uses the logical sector reads and writes
from pcfm. When pcfm_open() is called, it also checks for a disk change
and will branch to the error handler if oneissensed. All disk change errors
should pass through the error handler.

USFiles User's Manual A-1

Continuing with the New Disk

A-2

One method of handling a disk change error isto simply continue with the
new disk that wasinserted. Thisisthe default method used in the USFiles
drivers. The precise method that we have implemented in these drivers will
not corrupt any diskettes. The worst that might happen is that data meant to
be stored on the original disk islost.

In pcfdrv_error_handler(), case 0x06 is the disk change condition. The
codethereis:

status = EDSKCHG / our error code */
/* read sector 0 */
t npstat us = pcf m get bpb(buf p- >devp);
i f(tnpstatus)({
buf p->error_status = tnpstatus;

br eak; /* no retrys */
}
/*
** some recovery action is possible here
*/
/*

** |nvalidate buffers regardl ess of whether files are
** open. This is necessary to clear out FAT buffers.
*/
pcf m.i nval i dat e_buf f er s(buf p- >devp) ;
/*
** |f there are any open files for the device,
** jnvalidate the streams for this device with
** no attenpt at error recovery.
*/
i f(otherFilesOpen(bufp->devp))
i nval i dat e_streans(buf p- >devp);

el se

status = 0; / No open files, ignore error */
retstatus = O; /* Default is do not retry */
br eak;

USFiles User's Manual

Thefirst thing wetry to do is read the BPB of the new disk. If that
produces an error, then we simply give up and report an error. Once the
BPB is successfully read, then we can test to see if the disk truly changed
by comparing the old disk serial number found in

buf p- >seri al _no tothenew onefoundin

buf p- >devp- >devpar m pcd- >seri al _no. Wedo not do this by
default. If the serial numbers match, then we do not really have an error.

If the disk has truly changed (or if we do not bother checking), then we
need to invalidate all buffersfor the device, which will clear out FAT
buffers aswell. Then we check to seeif files are open on the device. If
there are, then we must also invalidate those streams.

The otherFilesOpen() routine only returns 1 if files other than the one being
opened are found for the device. Thisalows handling the following
Situation seamlessly:

* Openfile
» Closefile
* Changedisk

* Opennew file

If we only checked for any open files, then we would receive a disk change
error on the second file open.

USFiles User's Manual A-3

Putting Back the Old Disk

The other common method for handling a disk change isto expect the
original disk to be inserted again. One complicating factor with this method
isthat putting the original disk back in will signal another disk change.
Thiswill have to be accounted for in your error handling. One method isto
call the driver diskchange() function to make sure that a disk has changed,
and then make sure that it’sthe original (e.g. by checking serial numbers).

Y ou do not want to call adiskchange() function that will call the
error_handler() again. Thiswill result in nested error_handler() calls that
may produce odd results.

A possible way to achieve this recovery method with flopdrv is:

stat us = EDSKCHG / our error code */
/* read sector 0 */
t npst at us = pcf m get _bpb(buf p->devp);
i f(tnpstatus)({
buf p->error _status = tnpstatus;

br eak; /* no retrys */
}
/*
** some recovery action is possible here
*/

iprintf(“Please insert original disk and press any key to
continue\n”);
getchr();
/* 1f disk has changed again */
i f(internal _pcfdrv_di skchange()){
t npst at us = pcf m get _bpb(buf p- >devp);
i f(tnpstatus)({
buf p->error_status = tnpstatus;
br eak; /* no retrys */

A-4 USFiles User's Manual

i f(bufp->serial_no ==
buf p- >devp- >devpar m pcd- >serial _no){

status = 0; / No error necessary */
retstatus = O; /* Do not retry */
br eak; /[* Get out */
}
}
/*

** | f we get here, either the disk was not changed again,
** or the disk that was put in was not the original
** | nvalidate buffers regardl ess of whether files are
** open. This is necessary to clear out FAT buffers.
*/
pcf m i nval i dat e_buf f er s(buf p- >devp) ;
/*
** |f there are any open files for the device,
** jnvalidate the streanms for this device with
** no attenpt at error recovery.
*/
i f(otherFil esOpen(bufp->devp))
i nval i dat e_streans(buf p- >devp) ;

el se

status = 0; / No open files, ignore error */
retstatus = 0; /* Default is do not retry */
br eak;

USFiles User's Manual

Other Situations

We want to emphasi ze that there are likely other methods to handle a
changed disk. The two methods that we outlined above should prove useful

in devising your own recovery scheme. If you need assistance with this
matter, please contact U S Software

A-6 USFiles User's Manual

B. 386 Protected Mode

Supported Compilers

The USFiles 386 protected mode port may be built with the Microsoft,
Borland, and CAD-UL tools. When using Borland or Microsoft be sure that
the file siosr c\i386\runtime.c is added to the library. See

siosr c\i386\makefile. For CAD-UL, thisfile should NOT be placed in the
library.

Memory Allocation

USFiles operates in 386 Protected Mode with MultiTask! and TronTask! for
the Microsoft, Borland, Watcom, MetaWare, and CAD-UL tools. Dueto
deficienciesin the libraries provided by Microsoft and Borland, these tool
chains do not support USFiles in stand-alone mode.

The MetaWare and Watcom tool chains require some additions to allow
USFiles to operate in stand-alone mode. Typically USFiles stand-alone
mode maps alloc_mem() to the library calloc() routine and dealloc_mem()
to free(), but the calloc() provided by these libraries is not embeddable.

To enable support of 386 Protected Mode, USFiles uses the MultiTask!
memory allocation routines regmem() and relmem(). This requires some
initialization before it can be used. The test program usftest.c hasthis
included, and the steps are:

1. Defineaglobal array that will be used for memory allocation:
uint32 free_nenory[(MEMORY_SIZE +7)/4];

2. Initialize the memory array in the main() function:
MImem nit (& ree_nenory[1], MEMORY_SI ZE);

In this example, MEMORY_SI ZE is the amount of memory that can be
dynamically allocated.

USFiles User's Manual B-1

NOTE: The CAD-UL support also uses the MultiTask! regmem() and
relmem() functions for consistency.

MTmeminit

Adds memory blocks to dynamic memory pool.
int Mimem nit(void *nenory_ptr, nmemsize_ t size);
menory _ptr address of memory to add to pool
si ze number of bytesto add

The system will add si ze contiguous bytes of memory starting at
menory_ptr to the pool of free memory managed by regmem() and
relmem(). MTmeminit() can accept multiple blocks of memory, but they
must be provided in either ascending or descending order. On certain tool
chains, you may be ableto have the linker and/or startup code pass the
actual available memory into your code. Otherwise, use an array of type
| ong.

Return Value

SUCCESS memory added to dynamic pool
E_RELMVEM corrupt memory block header
(should never happen)
Example

long free_nmen{2048]; /* allocate aligned menory */
MImenmi nit (free_mem sizeof (free_nmenj);

/* absol ute nmenory desi gnated */
MImeni nit ((MImem t) 0xc000, 0x4000);

B-2 USFiles User's Manual

Libraries

The Watcom compiler requires use of the library
$(PTH)\lib386\dos\clib3s.lib, and MetaWare uses $(PTH)\flat\hc386.lib.
Here PTH s the path to the compiler directory and is specified in the
makefile.

USFiles User's Manual B-3

USFiles User's Manual

C. VFAT

Overview

Long file names can be supported with an extension to the standard FAT

file system called VFAT. Thisappendix explains VFAT and how itis
implemented by USFiles.

How VFAT Works

VFAT was introduced to allow for longer file names recorded in Unicode.

It makes use of the 32-byte directory entry structures, but several entries are
strung together to make a VFAT directory entry. The short file name entry
also has some fields that are not used by standard FAT12/16 entries. The

extended directory entry is shown in Table C-1, with the new fields shown
in boldface.

USFiles User's Manual C-1

C-2

Table C-1: VFAT Short File Name Directory Entry

Relative Byte Field Description Comments

Position

(hex [decimal])

00- 07 [0-7] File name Base of short file name

08- 0A [8-10] File extension Extension of short file
name

0B [11] File attribute See Table 2-5

0C [12] Reserved

0D [13] Creation timein 4- VFAT only

millisecond units
OE-11 [14-17] Timeand datecreated | VFAT only
12-13 [18-19] Date of last access VFAT only
14-15 [20-21] Reserved

16-19 [22-25] Time and date created
1A- 1B [26- 27] First cluster for file
1C 1F [28-31] | Filesize

A directory entry is marked as part of the long file name by setting the
attribute byteto OFh (i.e., read only, hidden, system, and label all set). The
directory entries containing the long file name are stored in reverse order;
the end of the file name will be encountered first, the beginning is near the
end, and the DOS 8.3 version of the file nameislast. Table C-2 shows how
adirectory entry isused as part of along file name.

USFiles User's Manual

Table C-2: VFAT Long File Name Directory Entry

Relative Byte Field Description Comments

Position

(hex [decimal])

0 [00] ID Entry number for given file.
ID > 40h indicates end of
long file name

01- 0A [1-10] First 5 charactersof | Unicode uses two bytes per

name character.

0B [11] File attribute OFh

0C [12] Reserved 00h

0D [13] Alias Checksum Checksum of DOS 8.3 name

OE-19 [14- 25] Next 6 characters of

name

1A- 1B [26-27] | Reserved 00h

1C 1F [28-31] Last 2 characters of
name

It is probably easiest to see how VFAT works by studying an example. Let
us consider afile named “Thisisareally long file name.temporary”, and
see how it would be handled by USFiles.

First, the DOS 8.3 version of the file nameis created. Any characters that
are alowed by VFAT but not by DOS are replaced by an underscore (*).
The exception isthe space. If aspaceisencountered, itisjust ignored. If
illegal characters are found, or if the name islonger than DOS allows, then
the file name will have a ~# attached to it. The # will be anumber to make
the 8.3 file name unique. Our sample long file name will be converted to
the DOS 8.3 filename“THISIS-1.TEM”. DOSfile namesonly use

capital letters.

USFiles User's Manual

C-3

USFiles converts the ASCII long file name characters to Unicode. Every
character is converted, including the *.” separating the file name from the
extension. Each directory entry can hold 13 characters of the long file
name, and we cal culate how many slots are needed to hold the long file
name. Our example has 41 characters, so it requires four slots. We need to
find five consecutive available slots in the directory where the file will be
stored (four for the long file name plus one for the DOS 8.3 file name).
Once we have done this, we can store the directory entry. Table C-3 shows
arepresentation of how these entries would appear in the directory. Be
aware that for the long file name entries, the characters indicated will be
stored in Unicode, not in ASCII.

Table C-3: Storage of Long File Names

Directory Slot Characters | Comments

Entry Number | 1D Stored

N 44h “ry” Slot 4, but end of file name,

so ID =44h

N=1 03h ‘name
“tempora’

N=2 02h “Ily long file”

N=3 01lh “thisisarea’

N=4 N/A “THISIS~1” DOS 8.3 does not use slot ID
“TEM” and does not store ‘.’

Since files with long names require several directory entries, one must be
careful with the root directory. It hasalimited number of entries available,
and the number of files (if long file names are used) will be less than this.

USFiles User's Manual

Restrictions on VFAT

Allowed VFAT Characters
VFAT dlows these characters in addition to the DOS characters;

* atoz(lower case)
« [1;,=+<Space>

VFAT records long file names in Unicode, and it does make a distinction
between lower and upper case letters. In addition to the long file name,
VFAT createsaDOS 8.3 name. For the DOS 8.3 name any lower case
letters are converted to upper case, any spaces are removed, and any of the
characters allowed by VFAT but not by DOS are replaced by an underscore
()

VFAT file names may also contain Shift-JIS characters, but USFiles may
only support converting alimited set of these into Unicode. Thefile
jis2uni.c can be examined to determine which specific characters are
supported.

File Name Lengths

The longest file name that VFAT allows contains 256 characters. This
includesthe‘.’, the extension, and the NULL character at the end.

Path Lengths

When VFAT isused, alimit of 260 characters isimposed on the total path
length. Thisincludesthe NULL character. Therefore, if you use the
maximum 256 characters for afilename, that leaves you with three
charactersto specify a directory name, and one for the separator character

(V).

USFiles User's Manual C-5

Number of Directory Entries

USFiles places alimit on the number of directory entriesthat a directory
can hold when VFAT isbeing used. To keep track of available sots, we
use a 16-bit unsigned integer to count slots, and therefore we are limited to

16 = 65536 dots for any directory except the root directory. The number of
entries availableto a FAT 12/16 root directory is determined when the disk
is formatted.

Recall that long file name entries generally occupy several directory entries.
If al file names occupy two slots (one for the DOS 8.3 name and one for
the long file name), then that leaves us with 32768 files. Thefirst two slots
are reserved as adliases for the current directory and its parent, so that limits
usto 32766 files in any directory (other than the root directory). Please be
aware of thislimitation.

C-6 USFiles User's Manual

Using VFAT

To enable VFAT, the symbol VFAT in config\sio.mak must be set to 1.
The following tables show the character set configuration options for

USFiles.
Access

Import

means the fileis created with USFiles, and read by USFiles.
means thefileis created by Windows95 or WindowsNT (or

DOS for short file names), and may be properly found and
opened by USFiles.

Export

Windows95, WindowsNT or DOS.

In al cases where long file name access is not permitted, USFiles can still
access the 8.3 name that corresponds to the long name, and access thefile
thisway. The symbols VFAT and FAKEUNI CODE are both found in

config\sio.mak.

meansthefileis created by USFiles, and read by either

When FAKEUNI CODE = 0, code size requirement isincreased by
approximately 14K for the necessary Unicode trand ation tables.

Table C-4: Access Configuration Options

Configuration VFAT | VFAT =1 VFAT = 1
Option =0 FAKEUNI CODE = 0 | FAKEUNI CODE = 1
AccessASCII 8.3 | Yes Yes Yes
(short name) files

Access Kanji Yes Yes Yes
(Shift-JIS) 8.3

short name files

Access ASCI| No Yes Yes

long name files

Access Kanji No Yes Yes
(Shift-JIS) long

name files

USFiles User's Manual

C-7

C-8

Table C-5: Import Configuration Options

Configuration VFAT | VFAT =1 VFAT = 1
Option =0 FAKEUNI CODE = 0 | FAKEUNI CCDE = 1
Import ASCII 8.3 | Yes Yes Yes
(short name) files
Import Kanji Yes Yes Yes
(Shift-JIS) 8.3
short name files
Import ASCII No Yes Yes
long name files
Import Kanji No Yes No
(Shift-JIS) long
name files

Table C-6: Export Configuration Options
Configuration VFAT | VFAT =1 VFAT = 1
Option =0 FAKEUNI CODE = 0 | FAKEUNI CCDE = 1
Export ASCII 8.3 | Yes Yes Yes
(short name) files
Export Kanji Yes Yes Yes
(Shift-JIS) 8.3
short name files
Export ASCII No Yes Yes
long name files
Export Kanji No Yes No
(Shift-JIS) long
name files

USFiles User's Manual

The Unicode trangdlation table is actually mostly initialized data, but is
counted as code space since it isROMable. The figures below do not
include the driver layer. The RAM disk driver consumes approximately
1.2K of code space. Data sizeincludes 10 file buffers (number is
configurable).

Table C-7: Approximate Code Sizes on 80x86 (Real-mode)
Compiled with Borland C, Large Model

NOTE: All numberswith Borland C/C++ 5.0, NUMBUFFERS = 10.

Configuration Code Size Data Size

(in Kbytes) (BSS, in Kbytes)
VFAT = 0 31 6
VFAT = 1 FAKEUNI CODE = 36 7
VFAT = 1 FAKEUNI CODE = O 53 7

Case Sensitivity

When only using DOS 8.3 file names, USFiles automatically converts any
lower case charactersto upper case. With long file names enabled, thisis
not necessarily done. The file usfutil.c contains the symbol

CASE_| NSENSI TI VE, which is 1 by default. If CASE_| NSENSI TI VEis 1,
any lower case Unicode characters will be converted to upper case. This
means that the file name “AbCd.txt” isthe sameas“ABCD.TXT". If you
will be using file names that differ only by case, then you will need to set
CASE_| NSENSI TI VE to 0, which will preserve case sensitivity.

NOTE: Case sensitivity only works for files that do not meet the DOS
8.3 length limit or those that have charactersin their names
that DOS 8.3 names do not permit.

USFiles User's Manual Cc-9

Dynamic Memory Use

When calling mt_readdir() and using long file names, a 256-byte block of
memory is dynamically allocated to build up the directory name. This
block isimmediately freed after being used.

C-10 USFiles User's Manual

Files Used for Configuring VFAT

In addition to the files listed in Chapter 4, Configuring USFiles, the
following file determines how VFAT is used:

makefile Defines VFAT and FAKEUNI CODE. Found in siosr ¢ directory.
usfutil.c Specifies CASE_|I NSENSI TI VE

NOTE: The VFAT and FAKEUNICODE symbols may be found in
config\sio.mak.

USFiles User's Manual C-11

C-12 USFiles User's Manual

D. USFiles for CompactFlash

Installing CompactFlash

USFiles for CompactFlash* (USFCF) isdelivered on asingledisk. To
install USFCF: Insert the disk, change to the drive with the disk, and type
install. Follow the instructions for installation. Install USFCF into the
same directory where USFilesisinstalled.

Text Files

Along with source files, we provide several text files with important
information. Pleaseread al filesin your installation directory that end in
Axt. Information in thesefilesislikely more recent than that found in the
manual. Some filesthat may be of particular interest are:

vsnlog3.txt USFiles for CompactFlash version information. Located in
the siosr c directory.

enable.txt Notes on enabling USFiles for CompactFlash. Located in
the siosrc directory.

appnote.txt Topicsthat should be considered when developing an
application. Can be found in the siosr ¢ or siosr c\<cpu>
directory.

Thisis not acomprehensive list of the possible text files, and not all
releases have each of these files.

USFiles User's Manual D-1

Overview of CompactFlash

USFiles for CompactFlash (USFCF) provides adriver for CompactFlash
cards that integrates with the USFiles product. The driver has been
specifically developed on two platforms:

* AMD Elan SC400
* RTE-V850E/MS1-PC with FB2215a CompactFlash Interface Board

The driver supports CompactFlash Cardsin ATA mode or True-IDE mode
aswell asATA Flash Cards. Thedriver developed for the Elan board has
codeto initialize a PCMCIA controller, which is compatible with the Intel
82365 controller. Thisinitidization is done when thefirst fileis opened on
the device.

After thisinitialization, the card is then accessed via the Ibahddrv
functions.

Configuration

In order for USFilesto recognize and use the CompactFlash driver, you
must edit config.mak to includeusf and usf cf inthe PRODLI ST. The
CompactFlash driver requires direct hardware access, so when using the
18086 driver, be sureto have #def i ne USEBI OS commented out in
siosrc\sioconf.h. When using another processor, USEBI OS has no effect.

D-2 USFiles User's Manual

Y ou will need to add a device to the device table to represent your CF card.
To specify the CF card asdevice “C:”, you can use:

&pcpar nC, /* device dependent data */
"C, [* nanme */

FM PCFM /* device type = PC device */
Oxf, /* bits: text wite read */
0x80, [* unit# */

0, /* partition */

(DRI'VER *) &l badrv_s, /* pointer to driver */
&pcfm /* pointer to file manager */
NULL, /* pointer to FILE */

0, /* flags */

0, /* # open paths (RAM */

Be sure that these lines are present in devtab.c:

PCFM_PARM pcpar nC;
extern struct driver_p const |badrv_s;

Testing

Once configuration has been done and USFilesis rebuilt, the first partition
on the CompactFlash card will be recognized as C: (if you use the device
table entry above). In order to test the CompactFlash card on the V850
board using usftest, main() must be modified in usftest.c. Theline

def path = “r:”; should bechangedtodef path = “c:”; sothat the
CompactFlash card is used instead of the RAM drive. Running usftest on
the Elan board allows you to specify which drive to test at the command
line.

See also: Chapter 1, Getting Sarted, for more details.

After usftest isrun, it leaves all of itsfiles on the CompactFlash card. In
order to run it again, these files must be deleted. A utility called wipeis
included with USFCF to delete all the files on c:, the default CompactFlash
card. If you change this mapping and still want to use wipe, you should
change wipe, lest you erase the wrong drive.

USFiles User's Manual D-3

Not Supported

D-4

Support for PCMCIA on aPersonal Computer uses various software layers,
which are designed specifically to operate with the Windows operating
system. USFiles does not support these layers, which include socket
services, card services, and hardware drivers.

Other PCMCIA memory cards may be compatible with USFiles, but they
will require customization by the user. For example, a customer may want
to configure aPCMCIA controller to allow memory-mapped access to an
SRAM PCMCIA card with battery backup. Once the PCMCIA controller is
configured, the USFilesramdrv.c driver can be used to access the SRAM
card.

Linear flash cards are used with Flash Trandation Layer (FTL) software
that allows applications to access the linear flash card as a standard ATA
disk drive. The FTL software takes care of the special access requirements
of the linear flash cards, such as the requirement that the flash memory be
erased in blocks. USFiles does not support the FTL capability. Therefore,
a customer wanting to use linear flash cards with USFiles would have to
write adriver for the device.

USFiles User's Manual

E. USFiles for CD-ROM
Installing USFiles for CD-ROM

USFilesfor CD-ROM (USFCD) is delivered on asingledisk. To install
USFCD insert the disk, change to the drive with the disk, and type

i nstal | . Follow theinstructions for installation. Install USFCD into the
same directory where USFilesisinstalled

Source Files

USFilesfor CD-ROM consists of primarily two files: cdfm.c (in siosr ¢), the
CD-ROM file system manager, and cdromdrv.c (in siosr c\i8086), the
ATAPI CD-ROM driver.

Text Files

Along with source files, we provide several text files with important
information. Pleaseread al filesin your installation directory that end in
xt. Information in these filesis likely more recent than that found in the
manual. Some files that may be of particular interest are:

vsnlog4.txt USFilesfor CD-ROM version information. Found in the
siosrc directory.

cdreadme.txt Information specific to the USFilesfor CD-ROM release.
Found in the siosrc directory.

appnote.txt Topics that you should consider when developing an
application. May bein either the siosrc or siosr c\i8086
directory.

Thisis not acomprehensive list of the possible text files, and not all
releases have each of these files.

USFiles User's Manual E-1

Overview of CD-ROM

There are several varieties of CD-ROM recording standards. USFiles for
CD-ROM supports the CD-ROM format (as opposed to the

CD-ROM/XA format, for example). The supported format only has sectors
with 2048 bytes of user data.

CD-ROM Driver

The CD-ROM driver (cdromdrv.c) that is provided works for ATAPI
devices. These are connected via|DE cables. No other CD-ROM drives
(e.g. SCSI) will work with thisdriver. At initialization we instruct the CD-
ROM drive to useits default PIO transfer mode.

We have tested the driver with a Hitachi CDR-7730 4x drive and with
Matsushita CR-583 8x and 40x drives. We have encountered problems
with aBTC 40SB drive, which we have not yet resolved. If there are
difficulties with your CD-ROM device and our driver, please contact us.

CD-ROM File Manager

USFilesfor CD-ROM file manager (cdfm.c) supports 1SO 9660

CD-ROMs recorded at interchange level 1 (each file contains only onefile
section, and file names comply with the DOS 8.3 convention). In addition,
we support CDs recorded using Microsoft Joliet Extensions. These
extensions allow longer paths, file names, and the use of Unicode
characters.

Multisession CD-ROMSs

The CD-ROM driver code handles multisession disks. It is configured to
only read from the last recorded session on the disk. With modifications
another session could be selected.

E-2 USFiles User's Manual

Basics of the ISO 9660 File System

The 1SO 9660 file system differs considerably from the DOS FAT file
system, which iswhy a new file manager had to be developed. This section
will outline the basic items found in the ISO 9660 file system. A complete
description of the ISO 9660 file system can be purchased from ISO or
ANSI.

Volume Descriptors

The volume descriptors are analogous to the DOS file system BPB. These
define the layout and size of the CD-ROM. There are five defined volume
descriptors, but only three are recognized by cdfm.c. These are:

* Primary Volume Descriptor
» Supplementary Volume Descriptor
* Volume Descriptor Set Terminator

Primary Volume Descriptor

The Primary Volume Descriptor (PVD) lays out the CD-ROM with the ISO
9660 file system. It specifiesthe size of the CD-ROM, the location of the
Path Tables, the root directory record, and various other items that are
largely unused by USFiles for CD-ROM.

Supplementary Volume Descriptor

The Supplementary Volume Descriptor (SVD) provides the same details as
the PVD, but it adlows for variations to the 1SO 9660 specification. In
particular, the SVD can be used to specify a

CD-ROM that uses the Microsoft Joliet Extensions. The Path Table and
root directory entry that the SVD point to will record namesin Unicode if
Joliet Extensions are used. A particular field in the SVD (Escape
Sequences) identifies the file system used by a specific SVD.

USFiles User's Manual E-3

Volume Descriptor Set Terminator

The Volume Descriptor Set Terminator is used to indicate the end of the
sectors containing volume descriptors. After this sector follow the
remaining file system structures (Path Tables, directories, and files).

Path Table

The Path Table specifies in which sector each directory begins. This speeds
up searching for afile, because it limits the number of sector reads required.
A Path Table Entry includes (among other things):

» Location (sector) of directory
» Parent directory number

» Directory name
The parent directory number is needed to differentiate between directories
with the same name but different parents. For example, the directories

TEST1\SUBDIR and TEST 2\SUBDI R would have the same namein the
Path Table, but they would have different parent directory numbers.

NOTE: A Path Table Entry can cross a sector boundary.

Directory Records

E-4

A directory record is used to define each file or directory. The directory
record for the root directory is specified in the volume descriptor. A
directory is composed of the directory records for each file or directory
contained within it. The directory record contains these items, aswell as
others:

» Location (sector)

 Size
* Flags
* Name

o Systemusefield

USFiles User's Manual

The length of the name is not known in advance; it is aso specified in the
directory record. USFilesdynamically allocates the space to hold the file
name when afileis opened. USFilesreleasesthat space when afileis
closed, but you should be aware that if you have many files with long
names open simultaneously, you may require alarge heap.

The same thing is true for the system use field. Thisfield can contain
anything, but USFilesfor CD-ROM does nothing with it. It will savethis
fidd inthe CD_DI R_ENTRY structure associated with COFM_FSP. These
structures are defined in mtio.h, and the system use field can be accessed
viathe cdfm_read_su() function.

The only bit in the flags field that we make use of isbit 1 (where bit Oisthe
lowest). If bit 1isset to 1, then the directory record describes a directory.
Otherwise it represents afile.

NOTE: A Directory Record cannot cross a sector boundary.

Navigating the File System

When afile on a CD-ROM device is opened by USFiles, the steps used to
find thefile are:

1. Read the volume descriptor.
If using Joliet Extensions, try SVD first, then PVD (if no SVD present).
If not using Joliet Extensions, only try PVD.

Find the proper directory in the Path Table.
Find the proper directory entry in the directory.
Go to the sector indicated by the directory entry.

The USFiles Implementation

There are several restrictions imposed by the SO 9660 file system, but
since USFiles does not record CD-ROMSs, we tend to ignore some of these.

USFiles User's Manual E-5

Allowed ISO Characters
The 1SO 9660 file system allows these characters:

* A toZ (upper case)
 0to9 (numeras)
e (underscore)

Allowed Joliet Characters

Joliet Extensions permit the use of all Unicode characters except control
characters and those listed below, but USFiles expects names to be
specified in ASCII and/or Shift-JIS. We are limited to characters that can
be represented by these means. If Joliet Extensions are being used, we
trandate the ASCII and Shift-JIS charactersto Unicode. The characters not
allowed with Joliet Extensions are:

* [2\

File Name Lengths

Without Joliet Extensions, USFiles conformsto Interchange Level 1 of the
ISO standard, which means that 8.3 file names are used. If Joliet
Extensions are in use, then the length of the file name plus the length of the
extension shall not exceed 128 bytes (64 Unicode characters).

Directory Name Lengths

Without Joliet Extensions an 8-character directory nameisthe limit. If
Joliet Extensions are in use, then the length of the directory name shall not
exceed 128 bytes (64 Unicode characters).

Extensions for Directory Names

When using Joliet Extensions, directories may have an extension. For
example, dir.tmp is an alowed directory name with Joliet Extensions, but
not for ISO 9660 alone.

E-6 USFiles User's Manual

Directory Levels

SO 9660 allows for only eight levels of directories. For example

G \ D1\ D2\ D3\ D4\ D5\ D6\ D7\ D8\ FI LE. TXT isallowed, but no
subdirectories are allowed in D8. USFiles does not test for this. When
using Joliet Extensions, this limitation is removed. In both cases, the sum
of the following items must be less than 255:

» Length of the file name

» Length of al relevant directory names

* Number of relevant directories

Again, USFiles does not test for this condition.

USFiles User's Manual E-7

Other Items
We do not make use of the following items covered under the ISO standard:

» Filesrecorded in interleaved mode

» Use of extended attribute records

* Boot record volume descriptors

* Volume partition volume descriptors

» Directory structures recorded over multiple disks (Volume sets)
» CDsrecorded with sector sizes other than 2048 bytes

This seemsto be largely consistent with Microsoft’ s handling of these
options with MSCDEX (Microsoft CD Extensions) for DOS, with the
possible exception of CDs recorded with different sector sizes.

E-8 USFiles User's Manual

Configuring USFiles for CD-ROM

Including CD-ROM Support

To include the CD-ROM support, the PRODLI ST in config.mak must
include usf cd. To avoid conflicts with a BIOS, you must be sure that no
device in the device table uses the BIOS driver (biosdrv_s). The ISO 9660
Level 1 standard requires that file names on CDs comply with the DOS 8.3
convention. In addition to this, USFiles supports the use of Joliet
Extensions, which allow (among other things) the use of long file names on
the CD. Enabling long file names for the CD file manager is the same as
enabling long file names for the PC file manager. Thisis accomplished by
setting VFAT to 1 in siosrc\makefile.

See d so: Appendix C, under Using VFAT, for information on Kanji
character support.

Devices

To make use of the CD-ROM device, an appropriate entry must be made in
thedevi ce_t ab[] foundindevtab.c. Thisisasample entry:

(PCFM _PARM *) &cdparmG, /* device paraneter table pointer */

G, /* Device nanme */

FM CDFM /* device type */

0x5, /* capabilities, 0x5 = read + text node */
0, /* unit nunber O=nmster, 1=slave */

0, /* partition nunmber */

(DRI'VER *)&cdrondrv_s, [/* Pointer to driver structure */
&cdf m /* Address of filemanager structure */
NULL, /* Unused for CD */

0, /* flags */

0 /* nunmber of open paths */

The device name (in this example G) is determined by your configuration
(i.e. the number of hard disks, partitions, and CD-ROM drives). Also make

USFiles User's Manual E-9

sure that the variable cdpar nG (or some other appropriate name) is defined
globally in devtab.c. Thisisdone with:

CDFM_PARM cdpar nt5
Each CD-ROM device requires its own unique parameter variable.

In addition to specifying that CD-ROM support isincluded, the user must
indicate on which IDE channel the CD-ROM drive resides. The default
setting is for the primary IDE channel, but this can be changed by
uncommenting this linein siosr c\sioconf.h:

#defi ne CD_SEC

If the CD-ROM is used in conjunction with a hard drive, the hard drive
must be on the primary IDE channel, and we recommend that the hard drive
be the master device.

Table E-1 describes the possible CD-ROM drive configurations.

Table E-1: CD-ROM Drive Configuration

IDE Cable Master/Slave Unit Number CD_IDE
(userio.h) (makefile)
Primary Master 0 1
Primary Slave 1 1
Secondary Master 0 2
Secondary Save* 1 2

* We have not tested the CD-ROM drive as a Slave on the secondary | DE cable, nor
have we tested more than one CD-ROM drive on a system.

Buffers

The user can determine how many buffersto use with the CD file manager.
With the CD sector size of 2048 bytes, having many buffers may not be
feasible for certain applications. The number of buffersis determined by
NUMCDBUFS, which isin the file siosrc\sioconf.h. The value of

NUMCDBUFS is set to 3 as the default.

E-10

USFiles User's Manual

Memory

In addition to statically defined sector buffers, there are afew CDFM
routines that dynamically allocate memory to read in specific CD sectors
(such as the sector containing the Volume Descriptor). Thismemory is
freed after the necessary information has been acquired, but be aware that a
suitable amount of memory must be available for thisuse. Each sector is
2048 bytes, and if multitasking is used, only one task will be allocating this
amount of memory at atime. Memory for directory entry file namesis also
dynamically allocated. Be aware of thisif you will have many files open at
onetime.

Mixed-case File Names

We have encountered some CD-ROM disks that use only a Primary Volume
Descriptor (meaning that they are presumably SO 9660 compliant), but
have file and directory names that were recorded in mixed-case. By default,
we change al file and directory names referred to by a PV D to upper case.

If you do not want all names changed to upper case, then comment out the
line#defi ne ALL_UPPERIn thefile cdfm.c. Doing thiswill make your
PVD file and directory names case sensitive.

If you are using Secondary Volume Descriptor information (long Unicode
file names described by the Joliet Extensions), we can still turn on or off
case-sensitivity. To allow for case-sensitive names for the long file names,
theline #defi ne CASE_I NSENSI TI VE 1 (inusfutil.c) must be changed
to#defi ne CASE_I NSENSI TI VE 0. These options are summarized in
Table E-2.

Table E-2: Case-sensitivity Options

Name Type Case Senditive Case Insensitive
Long File Names #define #define
(usfutil.c) CASE_INSENSITIVEO | CASE INSENSITIVE 1

Short (ISO) File | /* #define ALL_UPPER | #define ALL_UPPER
Names (cdfm.c) | */

USFiles User's Manual E-11

The reason that we have two methods here isthat CASE_| NSENSI TI VE
also governs how the long file names on diskettes or hard disks are handled.
ALL_UPPER only affects CD-ROM filesreferred to by the Primary Volume
Descriptor.

Files Used to Configure USFiles for
CD-ROM

In addition to those files and configuration parameters mentioned in
Chapter 4, Configuring USFiles, the following files are used to configure
USFilesfor CD-ROM:

cdfm.c Has ALL_UPPER.

configomak Set usf cd and usf in config.mak.

devtab.c Hasdevice tab[].

makefile Has VFAT and FAKEUNI CODE. Found in siosr ¢ directory.
sioconf.h Has CD_SEC. Found in siosrc directory.

NOTE: In future releases, VFAT and FAKEUNI CODE may bein
config\sio.mak.

E-12 USFiles User's Manual

Testing (cdfmtest

We tested a Hitachi CD-ROM drive with model number CDR-7730 under
the following configurations:

* CD-ROM Master on Primary IDE channel (no slave)
 CD-ROM Slave on Primary IDE channel (Hard drive master)
* CD-ROM Master on Secondary IDE channel (no slave)

Our test program copies specified files from a CD-ROM disk to a
recordable disk. We have used both diskettes and hard drives for testing
purposes. Thefiles on the CD-ROM are then compared to the copied file
with various read methods. The stream I/O commands are also tested on
the CD-ROM files to ensure that acceptable commands function properly
and unacceptable commands return the appropriate errors.

Thistest program is provided for your use aswell. The source codeis
found in cdfmtest.c. To useit with aCD-ROM of your own, follow these

steps:

1. Select afew files on the CD to open astext files. Enter their full path
names (excluding drive letter) inarray *t ext Fi | e[] in cdfmtest.c.

2. Select afew files on the CD to open as binary files. Enter their full
path names (excluding drive letter) in array *bi nFi |l e[] in
cdfmtest.c.

NOTE: Be careful in choosing files. Since we will copy filesto a
recordable disk, you must be aware of file sizes so the disk
does not fill up.

w

Select adirectory from the CD. Enter its full path name (excluding
driveletter) indi rect ory[] incdfmtest.c.

Savethefile.
Configure the device table in userio.h to match your hardware.

Compile cdfmtest. If using Opus make, you may use omake
cdfmtest.

USFiles User's Manual E-13

7. Run cdfmtest by entering cdf nt est <cd> <dest >. The symbol
<cd> represents the CD-ROM drive as configured in userio.h. The
default is G:. Specifying <dest > indicates to which drive the files will
be copied. The defaultisR: if RAM disk isincluded or A: if not.
Entering cdfmtest with no arguments will use the default drives.

WARNINGS: The cdfmtest requires alot of memory, and may not work
with the RAM disk. If you indicate ahard drive asthe
destination drive, you must reboot your machine after the test
completes to ensure that DOS does not corrupt your hard
drive. Thistest cannot be runinaDOS window in
Windows95/98. It can only be run from DOS. Itis
recommended that you reboot the machine after the test in any
case. We have noticed that the hardware may get confused
after the test is completed.

Initialization

In testing the CD-ROM driver and file manager, we noticed that particular
CD-ROM drivestook awhileto initialize (30 seconds or more).
Initialization is done when the first file on the device is opened, so you may
notice that it takes quite some time to open thefirst file on a CD-ROM
device, but afterwards it is much faster. We have not determined why this
happens. Some devices do not have this behavior.

If you consistently receive the ETONRDY error when the CD-ROM driveis
being initialized, then you may want to increase the value of
CDROM _RETRY_TI MEQUT in cdromdrv.c.

E-14 USFiles User's Manual

Additional Functions

These additional functions are provided with the CD file manager:

cdfm_invalidate buffers
Invalidates all buffers on adevice

cdfm_esc_codes Retrieves escape codes field from Supplementary Volume
Descriptor

cdfm_len_su Returns length of system use field from file' s directory
entry

cdfm_read ear Reads Extended Attribute Record for specified file

cdfm_read su Returns contents of system use field from file’ s directory
entry

cdfm_vol_info Retrievestheindicated field from Volume Descriptor

Three of these (cdfm_esc_codes(), cdfm_vol_info(), and cdfm_read_ear())
are commented out at the end of cdfm.c. If you wish to use these, you must
uncomment this section of thefile.

cdfm_esc_codes

Retrieves escape codes field from Supplementary V olume Descriptor.
i nt cdfmesc_codes(DEVI CE *devp, byte *retBuf);
devp pointer to device
retBuf address of return buffer

The escape codes field of a Supplementary Volume Descriptor is 32 bytes
long. The cdfm_esc_codes() function reads the SVD and copiesthat field
tor et Buf . The escape codes field is used to identify which volume type
(e.g. Joliet Extensions) the SVD describes.

WARNING: This function has not been tested!

USFiles User's Manual E-15

Return Value

0 success
EUNSUP disk only hasaPVD
EBADARG sector read is not a volume descriptor
ENOMEM no memory for buffer
ENOTJOLIET thereisan SVD, but itisnot aJoliet SVD
ENODESC volume descriptor not found
driver error
Example

DEVI CE *devp;
char codes[32];

i f(cdfmesc_codes(devp, (byte *)codes))
/* Sonme error */

el se
/* Do sonething with codes */

cdfm_invalidate buffers

Invalidates all buffers on a device.
int cdfminvalidate buffers(DEVI CE *devp);
devp pointer to device

The cdfm_invalidate buffers() function is provided for error recovery
purposes. We can use this function to mark all buffersfor the device as
unused. Thisfunction differs from the pcfm_invalidate buffers() function
in that it can never return the value 1, since a CD-ROM disk cannot be
written to.

See dso: otherFilesOpen, invalidate _streams

E-16 USFiles User's Manual

Return Value

0 success
Example
DEVI CE *devp;

/* Di sk has changed */
cdf m.invalidate buffers(devp);
i f(otherFilesOpen(devp))
i nval i dat e_streans(devp);
el se
/* No open files, so ignore error */

cdfm_len_su

Returns length of system use field from file's directory entry.
int cdf m|en_su(MIFILE *fp);
fp pointer to file

The purpose of the system use field is not defined by the SO 9660
standard. The length of the system use field is not predefined, so this
function provides a means of determining the amount of memory necessary
to handle the contents of the system use field.

WARNING: This function has not been tested!

Return Value
Length of system usefield

ECF bad file pointer

errno Value
CD File Manager

EBADFP filefp has not been opened

USFiles User's Manual E-17

Example

MTFI LE *f p;

char *sysUse;
int length;
fp =m _fopen(“G\\test.txt”,"r");
length = cdfmlen_su(fp);
i f(length == ECF)
/* Process error */
el se
/* Allocate length bytes of menory
** to sysUse */
i f(cdf mread_su(fp, sysUse))
/* error reading */
el se
/* Do sonething with sysUse */

cdfm_read_ear

Reads Extended Attribute Record for specified file.

int cdfmread_ear (MIFILE *fp, CD EXT_ATTR *record);

pointer tofile

record address of record storage
The CD_EXT_ATTR structure is defined in mtio.h as:

typedef struct cd_ext_attr{
CD VOL_TIME creDate; [/* File creation date and tine */
CD VOL_TI ME nodDate; /* File nodification date and tine */
CD VOL_TIME expDate; /* File expiration date and time */
CD VOL_TIME effDate; /* File is valid after date & tinme */

byte *appUse; /* Pointer to application use field */
byte *escSeq; /* Pointer to escape sequences field */
ui nt 16 ownerI D, /* File owner nunber */

ui nt 16 groupl D, /* Omer’s group number */

ui nt 16 perm ssions; /* File perm ssions */

ui nt 16 recLen; /* Record length */

byte r ecFor nat ; /* Record format */

E-18

USFiles User's Manual

byt e recAttr; /* Record attributes */

byt e system D[32]; /* Systemidentifier */

byt e systenlJse[64];/* Systemuse field */

byte ver si on; /* Ext. attr. rec. version */

byte esclen; /* Length of escape sequences */
byte applLen; /* Len. of application use field */

} CD_EXT_ATTR

The cdfm_read_ear() function will fill aCD_EXT_ATTR structure for a
specified file, if the file has an extended attribute record. TheappUse and
escSeq fields do not have predefined lengths, so we dynamically allocate
them. Be sureto free those memory areasif your structure is deleted.

Details of the Extended Attribute Record are not provided here. If you need
more details on this record, please refer to the ISO 9660 specification.

WARNING: This function has not been tested!

Return Value
0 success

EBADFP filefp has not been opened
ENOMEM no memory for buffer

driver read error

errno Value

CD File Manager
EBADFP bad file pointer

Example

MTFI LE *f p;
CD_EXT_ATTR ear;

fp=m _fopen(“G\\test.txt”,"r");
if(cdimread_ear(fp, &ear))

USFiles User's Manual E-19

/* Some error */
el se
/* Do sonething with ear */

cdfm_read_su

Returns contents of system use field from file' s directory entry.

int cdfmread_su(MIFILE *fp, char *buf);

fp pointer to file

buf pointer to buffer for system use storage

The purpose of the system use field is not defined by the ISO 9660
standard. The length of the system use field is not predefined. Y ou can use
cdfm_len_su() to determine the necessary amount of memory for storage.
The cdfm_read_su() function returns the contents of the system use field to

the address indicated by buf .

WARNING: This function has not been tested!

Return Value
0 successful completion

EOF bad file pointer

errno Value
CD File Manager

EBADFP filefp has not been opened

Example

MIFI LE *f p;
char *sysUse;
int length;

E-20

USFiles User's Manual

fp =m _fopen(“G\\test.txt”,"r");
length = cdfmlen_su(fp);
i f(length == ECF)

/* Process error */

el se
/* Allocate |length bytes of nenory
** to sysUse */
if(cdfmread su(fp, sysUse))
/* error reading */
el se
/* Do sonething with sysUse */

cdfm_vol_info

Retrieves the indicated field from Volume Descriptor.

int cdf mvol _i nfo(DEVI CE *pDev, byte *retBuf,
enum i dFi el ds fiel dType);

devp pointer to device

retBuf address of return buffer
fieldType filenameto read

Thei dFi el ds enumeration is defined in mtio.h as:

enum i dFi el ds { ussCDVol Set| D
ussCDCopyRt | D,
ussCDADbsI D,
ussCDBi bl D

s

Specifying ussCDVol Set | Dwill not return afile name, but it will return
the name of the Volume Set of which the CD-ROM isamember. Thisfield
is 128 bytes long.

The other threef i el dTypes specify file names. Each one of these fields
is 37 bytes. The symbol ussCDCopyRt | D specifies the copyright file,
ussCDAbs| Dindicates the abstract file, and uss CDBi bl D points to the
bibliography file. These files are mentioned in the ISO 9660 specification.

USFiles User's Manual E-21

WARNING: This function has not been tested!

Return Value

0 success

EBADARG sector read is not a volume descriptor, or improper
fieldType

ENOVEM no memory for buffer

EBADBPB thereisan SVD, but itisnot aJoliet SVD

driver read error

Example

DEVI CE *devp;
char vol 1 D[128],crl D 37];

i f(cdfmvol _info(devp, (byte *)(vollD), ussCDVol SetlD))
/* Some error */

el se
/* Do sonmething with vol ID */

i f(cdfmvol _info(devp, (byte *)(crlD), ussCDCopyRtID))
/* Some error */

el se
/* Do sonething with criD */

E-22 USFiles User's Manual

Additional errno Values

When using the CD-ROM file manager, certain stream 1/O function calls
may set er r no differently than the PC file manager. Table E-3 liststhe
functions for which the CD-ROM file manager may set er r no differently
than the PC file manager.

Table E-3: CD-ROM File Manager errno Codes

Function errno Values | Description

mt_fclose() | driver error

mt_fgetc() | ELOCKED Timeout waiting for access to file system
ENCBUF No buffer for sector.
driver
error

mt_fgets() ELOCKED Timeout waiting for access to file system.
ENGBUF No buffer for sector.

mt_fopen() | ELOCKED Timeout waiting for access to file system.
EBADARG Unsupported descriptor type accessed.
ENOVEM No memory for sector storage.
ENOTJOLI ET | SVD exists, but not Joliet compliant.
ENODESC Specified volume descriptor not found.
ENOTPT Path table sector not found.
EACCESS Trying to open afile as adirectory, or vice

versa.

ENCENT No entry for file found in directory.
ENGPATH Part of directory path not found.
Driver error

USFiles User's Manual E-23

E-24

Table E-3 (continued): CD-ROM File Manager errno codes

Function errno Values | Description
mt_fprintf() | ECAPERR Device not available for write.
mt_fputc() | ECAPERR Device not available for write.
mt_fputs) | ECAPERR Device not available for write.
mt_fread() | ELOCKED Timeout waiting for access to file system.
ENOBUF No buffer for sector.
driver error
mt_remove() | ECAPERR Device not available for write.
mt_rename() | ECAPERR Device not available for write.
mt_rmdir() | ECAPERR Device not available for write.
USFiles User's Manual

Global Variables

These additional global variables are used when the CD-ROM file manager
is added to USFiles:

CDFM BUFFER cdf m buf [NUMCDBUFS]
CD-ROM sector buffers

byt e cdf m agescal e
Indicates when buffer age parameter wraps

byte dirBuf[256] Usedwhen caling mt_readdir() to hold the raw
contents of a directory entry

CD DI R_ENTRY readEntry

Used when calling mt_readdir() to hold the
processed contents of a directory entry

USFiles User's Manual E-25

CD-ROM Driver Functions

Dri

A cdf mdevice driver consists of these functions, which are typically used
in this order:

init() Initializes device
readTOC() Reads CD-ROM table of contents
read() Reads sector specified as alogical sector number

diskchange() Reportsif adisk has been changed

The CD-ROM driver structureis defined in mtio.h as;

struct driver_cd {
int (*init)(DEVICE *);
int (*read)(uint32, struct cdfmbuffer_s *);
i nt (*di skchange) (DEVI CE *);
int (*readTCC) (DEVI CE *);
b

For a specific instance of adriver, these routines will be given the above-
mentioned names with a unique prefix prepended to them to designate the
driver (e.g., cdromdrv_read()).

The exact function performed by these routines depends upon what the file
manager calling them expects. The division of responsibilities between the
file manager and the device driver may be altered if anew file manager is
developed. The expectations of the cdf mfile manager are described in the
following function descriptions.

ver diskchange() function

E-26

i nt di skchange(DEVI CE *devp);

The diskchange() function returns a non-zero value if a media change has
been detected since the last read or write operation to the drive. This
function should return avalid error code. It is possible that atimeout may
occur while the drive is becoming ready after the CD-ROM has been

USFiles User's Manual

changed, in which case an ETONRDY error may be reported.

Driver init() function

int init(DEVICE *devp);

The initialize function is called once for each drive controlled by the driver.
It should do any initialization required by the device such as hardware reset,
initialize interrupt vectors, etc. Zeroisreturned if successful, and a non-
zero error codeif not. If more than one driveis called, init() should keep a
static flag to tell it that it has already been called so it can avoid repeating
operations that should be done only once. The cdromdrv_init() function
installsinterrupt vectors, sets up the CD-ROM drive I/O mode, and tests to
seeif the deviceisready.

Driver read() function

int read(uint32 |ogical _sect, CDFM BUFFER *bufp);

The driver read() function reads the logical sector indicated into the buffer
a buf p- >buf , from the drive indicated by the buf p structure. Any other
information required by the driver about the device can be found through
the buf p structure. Parametersin buf p may indicate that a consecutive
number of sectors are to be read, in which case this action should be taken.

If buf p- >usr buf isnot NULL, then the read() function will read
buf p- >nsect s sectorsto the user’s buffer at buf p- >user buf , instead of
transferring a single sector to buf p- >buf .

Driver read TOC() function

i nt read(DEVICE *devp);

The driver readTOC() function reads the CD-ROM'’ s table of contents.
Thisis used to determine the location of the last session of amultisession
CD-ROM. The starting sector of the last session is stored in the device
parameter sessi on_st art inthe CDFM_PARMSstructure (see
cdromdrv_readTOC() in cdromdrv.c and mtio.h). If you will not be using
multisession disks, then sessi on_st art cansimply be set to 16. This

USFiles User's Manual E-27

function will return O if the table of contentsis successfully read, otherwise
an error value should be returned.

E-28 USFiles User's Manual

Function Call Hierarchy

Table E-4 shows how the stream 1/0 functions map to the CD-ROM file

manager and then to the driver. Not al stream 1/O functions are shown,

because they are not all appropriate for a CD-ROM device.

Table E-4: Function Hierarchy for CD File Manager

Stream 1/0 File Manager Driver

mt_clearerr()

mt_fclose() cdfm_close()

mt_feof ()

mt_ferror()

mt_fflush() cdfm_fmioctl()

mt_fgetc() cdfm_read() read()

mt_fgetpos()

mt_fgets() cdfm_readin() read()

mt_fopen() cdfm_open() init(), diskchange(),
readTOC(), read()

mt_fread() cdfm_read() read()

mt_readdir() cdfm_fmioct()

mt_fseek() cdfm_seek()

mt_fsetpos() cdfm_seek()

mt_ftell()

mt_rewind() cdfm_seek()

USFiles User's Manual

E-29

Recommended Reading

For a detailed description of the ISO 9660 file system we recommend the
specification document:

1SO 9660 : 1988
Information processing — Volume and file structure of CD-ROM for
information interchange.

E-30 USFiles User's Manual

USFiles User's Manual E-31

F. FAT32 File System

Overview

The FAT32 file system is heavily dependent on the DOS FAT12/16 file
system. Y ou should read Chapter 2, File System Description, before
reading this appendix if you are not already familiar with the FAT file
system.

This appendix will describe how to install and configure USFiles-32 and
describe the differences between the following FAT32 and FAT12/16
structures:

 BPB

* Partition Table

« FAT

» Directory entries
* Root directory

There are al'so additional items contained in a FAT32 partition, and these
will aso be mentioned. Only one of these new itemsis of interest to
USFiles.

Installation and Configuration

USFiles-32 is provided on asingle disk. Make the drive containing the
installation disk the current drive and typeinstall. Y ou will be provided
with installation instructions.

To include support for USF-32 you will haveto includeusf 32 inthe
PRODLI ST in config.mak.

USFiles User's Manual F-1

Test Programs

F-2

USFilesfor FAT32 is provided with the test program f32test.c. We
recommend that you run usftest (provided as standard with USFiles)
initialy.

The usftest routines will exercise most of the functionality on a FAT32

partition, but there are some additional features of FAT32 that usftest does
not test. These features are tested with f32test.c.

The usftest testswill likely take some time, since the last thing that it does
isfill the disk. We recommend only running usftest on a partition that is
set aside for USFiles testing.

After running usftest, you will have to make room on the drive to run
f32test. FAT32 devicestreat the root directory differently from FAT12/16
devices. Therefore, you can either reformat the drive, or remove the file
bigfile.tmp from the drive’ sroot directory. This should clear up the space
necessary for the remaining tests.

The size of the root directory is not defined in advance, and clusters can be
allocated to the root directory. The f32test ensures that additional clusters
are allocated to the root directory when necessary for:

» adding avolume label, and
» adding afile or directory

There is one additional test in f32test that is by default disabled. Thistest
creates asmall file and movesit to the last available cluster on the drive to
ensure that USFiles will access the full extent of the drive. To enable this
test:

1. Setthemacro DO LASTCLUSTTEST inf32test.cto 1.

2. Remove (or comment out) the static label on the set_fat() functionin
pcfmclus.c.

3. Compile and run.

USFiles User's Manual

Modified Structures

This section describes the BIOS parameter block (BPB), the partition table,
and thefile alocation table (FAT).

BIOS Parameter Block (BPB)

The FAT32 BPB is used the same way asthe FAT12/16 BPB, but there are
additional fieldsincluded. Table F-1 outlinesthe fieldsin the BPB. Bold
items indicate entries that are new to FAT32.

Table F-1: The FAT32 BPB

Bytein Sector
(hex [decimal])

Field Description

Comments

0B-0C [11-12]

Bytes per sector

USFiles only supports

disks with 512 bytes per
sector.

0D [13] Sectors per cluster

OE- OF [14-15] | Reserved sectors

10 [16] Number of FATs

11-12 [17- 18]

Number of root directory
entries

Not used by FAT32.

13- 14 [19- 20]

Total sectorsin logical
volume

Not used if volume size
is greater than 32 MB.

15 [21]

Media descriptor byte

Stored, but not used.

16- 17 [22- 23]

Number of sectors per FAT

Always 0 for FAT32.

18- 19 [24- 25]

Number of sectors per
track

USFiles User's Manual

F-3

Table F-1 (continued): The FAT32 BPB

Bytein Sector Field Description Comments
(hex [decimal])
1A- 1B [26-27] | Number of heads
1C 1F [28-31] | Number of hidden sectors We have found that some,
but not all, disk format
utilitiesinclude prior disk
partitionsin this value.
20- 23 [32-35] | Tota sectorsin logical Used only if volume size
volume is greater than 32 M B.
24-27 [36-39] | Number of sectorsper FAT
28-29 [40-41] | Partition flags Ignored
2A- 2B [42-43] | Filesystem version Ignored
2C 2F [44-47] | Root directory starting
cluster
30- 31 [48-49] | Filesystem information
sector
32-33 [50-51] | Backup boot sector number
34-3F [52-63] | Reserved
40 [64] Physical drive number Ignored (new location)
41 [65] Reserved Ignored (new location)
42 [66] Extended boot signature Ignored (new location)
record

43- 46 [67-70]

Drive seria number

(new location)

47-51 [71-81]

Volume label

(new location)

F-4

USFiles User's Manual

Partition Table

The FAT 32 Partition Table remains unchanged. With the addition of
FAT32 support to USFiles, the two partition typesO0Bh and 0Ch (see Table
2-3) are now supported.

File Allocation Table (FAT)

Asthe nameindicates, the FAT entriesfor FAT32 consist of 32 bits. The
upper four bits of each FAT entry are unused, though. Possible FAT entries
are

00000000h Cluster free for use

00000001h — OFFFFFEFh Indicates next cluster for file
OFFFFFF8h — OFFFFFFFh Last cluster of file

OFFFFFFOh — OFFFFFF7h Cluster not usable

USFiles will neither read nor modify the upper four bits of a FAT32 entry.

Directory Entries

The FAT32 directory entries must indicate a 32-bit starting cluster. The
additional two bytes are taken from previously reserved bytes. The FAT32
directory entry is described in Table F-2.

Table F-2: FAT32 Directory Entry

Relative Byte Field Description Comments
Position

(hex [decimal])

00-07 [0-7] File name Base of file name
08- 0A [8-10] File extension

0B [11] File attribute See Table 2-5

USFiles User's Manual F-5

F-6

0C [12] Reserved

0D [12] Cregtion timein 4- VFAT only
millisecond units

OE-11 [14-17] | Timeand date created VFAT only

12-13 [18-19] | Dateof last access VFAT only

14- 15 [20-21] | High bytesof first cluster | FAT32 only

for file

16-19 [22-25]

Time and date created

1A- 1B [26- 27]

Low bytes of first cluster
for file

1C 1F [28-31]

Filesize

USFiles User's Manual

With FAT32, the root directory is now allocated like any other directory, as
isdiscussed in the next section, so it has a non-zero cluster number
associated with it. Any subdirectory that residesin the root directory has a
directory entry (‘..") that refers back to the root directory. The cluster
number indicated in this entry is still zero, even though the root directory
has a non-zero cluster number with FAT32.

The Root Directory

The root directory on a FAT32 partition is allocated like any other file or
directory. It has astarting cluster (generaly 2), and it has no limits on the
number of sectorsthat it can occupy. The root directory starting cluster is
provided by the FAT 32 BPB.

USFiles User's Manual F-7

New Structures

Several more sectors are used in FAT32 partitions for file system
maintenance. Asisindicated in Table F-1, there is a sector that has a copy
of the boot sector. Thisisignored by USFiles. The bootstrap code for
FAT32 partitions now spans more than one sector, because the BPB has
more entriesin it now. USFiles does nothing with bootstrap code, so thisis
ignored.

File System Information Sector

The one new structure that USFiles maintainsis the File System

Information Sector, which keeps track of the number of free clusters and the
last sector allocated on the disk. The information sector number is stored in
the FAT32 BPB and is recorded as the number of sectors past the BPB
sector. The significant e ements in the sector are shown in Table F-3.

Table F-3: FAT32 File System Information Sector

Bytein Sector Field Description Comments
(hex [decimal])

1E4- 1E7 [484- 487] File system information | 61417272h stored

sector signature Little-Endian

1E8- 1EB [488- 491] Number of free clusters

1EC 1EF [492- 495] Last cluster alocated

F-8

There are additional codes in the sector, but USFiles only checks the bytes
from 1E4h to 1E7h for identification. USFiles updates the number of free
clusters and the last cluster allocated. The number of free clustersis
returned by free clust_cnt().

USFiles User's Manual

Limitations on USFiles-32

Directory entriesin the FAT32 file system only allow 32 bits to specify the
filesize. Even though the disk geometry may allow it, we have to limit the
filesizeto 4 GB. If the user attemptsto write afile larger than this, then the
error code EBI GFI LE will be returned.

The FAT32 file system BPB specifies the following items that USFiles
ignores.

» Driveflagsto signal whether FAT mirroring is enabled (USFiles will
aways mirror the FAT)

* File system version number
» Backup boot sector

Using free_byte cnt
The function free_byte cnt() returns the number of free byteson adisk as
an unsigned 32-bit integer. For a FAT32 partition, a 32-bit integer may not

be large enough to store the number of free bytes. Use this function with
caution.

The functionsfree_kb_cnt() and free_clust_cnt() might provide the most
reliable means of determining free space on aFAT32 volume. FAT32
partitions that are smaller than 8 GB have 4 KB per cluster. Be aware that
FAT32 partitions may be aslarge as 2 TB, in which case each cluster has 32
KB.

USFiles User's Manual F-9

F-10 USFiles User's Manual

G. Error Codes
USFiles Error Codes

Thisisasummary of the error codes that USFiles functions may signal.
The error will usually be reported through the variable er r no.

Table G-1: USFiles Error Codes (from mtio.h

L abel Decimal | Meaning
Value
EWRGFMT 1 Wrong disk format
ECAPERR 2 Device capabilities error
ENOMEM 3 No memory available
ENMFILE 4 NUMSTREAMS limit has been reached
ENOENT 5 No file entry found in directory
EDSKCHG 6 Disk change error has occurred
ENOPATH 7 Part of the path was not found
EATEOF 8 File pointer is at EOF
EBADCLUST 9 Bad cluster found
ENOBUF 10 No file buffer is available
EBADNAM 11 File name too long or contains bad characters
ENOTDIR 12 Name specified is not for a directory
EACCESS 13 Trying to open directory asfile or vice versa
ERDONLY 14 Trying to open read-only file for write

USFiles User's Manual G-1

Table G-1 (continued): USFiles Error Codes (from mtio.h)

Label Decimal | Meaning

Value
EDSKFUL 15 Disk isfull, no more clusters to allocate
ERDFULL 16 Root directory isfull
EBADFP 17 Bad file pointer or device not initialized
EUNSUP 18 Device does not support requested operation
EBADARG 19 Bad function argument supplied
EBADPCS 20 Seeking past allowed file boundaries
EEXI ST 21 Trying to create a directory that already exists
EBADPART 22 Bad partition signature encountered
EPARTI D 23 Unsupported ID byte in partition entry
El SOPEN 24 Path already open
EUNINIT 25 Trying to access uninitialized RAM drive
EVWRGDEV 26 Attempted rename to different device
ENOTMI 27 Subdirectory is not empty
El SATT 28 Keyboard is already attached
ENCTATT 29 Keyboard is not attached
EBADASS 30 Keyboard cannot be assigned at this location
EWRTPRT 31 Attempted to write to write-protected disk
ENORESP 32 No response from drive (door may be open)

G-2

USFiles User's Manual

Table G-1 (continued): USFiles Error Codes (from mtio.h)

Label Decimal | Meaning
Value
ENCTFND 33 Address mark or sector not found
EBADSECT 34 Bad sector encountered
EDVABND 35 DMA memory-boundary crossing error
El CERR 36 Miscellaneous 1/O error
EBADSI ZE 37 Pipe size of zero requested
EMEMERR 38 Memory release error
EBADFAT 39 FAT sectors not readable
EBADBPB 40 Bad BPB sector
ELOCKED 41 Timeout waiting for access to file system
ECTLFAI L 42 Controller failure
EBI GPATH 43 Path name too long
ENODESC 44 CD-ROM Volume Descriptor not found
ENOTJCLI ET 45 CD-ROM has Supplementary Volume
Descriptor, but it is not for Joliet Extensions
ENOTPT 46 Sector does not contain path table
ENCDI SK 47 No disk in CD-ROM drive (door may be open)
ETONRDY 48 Timeout occurred while waiting for deviceto
become ready
EDEVRST 49 Device reset occurred
EBI GFI LE 50 File size cannot exceed 2% bytes

USFiles User's Manual

G-3

G-4

Severa of these error codes do not apply specifically to USFiles, and error
codes 44 - 49 only apply to USFilesfor CD-ROM. The error code

EBI GFI LE isonly used by USF-32. With expansion of USFiles support,
more error codes might be added. Please examine the file ussio.h for the
most recent list of error codes.

USFiles User's Manual

386 protected mode, B-1
libraries, B-3
memory allocation, B-1
ANSI C functions, 3-4
ASCII, converting to Unicode, 3-12
Big-Endian mode, 3-17, 3-18, 3-93, 3-94
binary mode, 1-20, 3-46
BPB
FAT32, F-3
buffers, 1-21
configuring for CD-ROM, E-10
flushing, 3-39
invalidating, 3-91
bytes
finding free, 3-14
on disk drive, 3-97
cdfm_esc_codes() CD-ROM function, E-15
cdfm_invalidate_buffers() CD-ROM
function, E-16
cdfm_len_su() CD-ROM function, E-17
cdfm_read_ear() CD-ROM function, E-19
cdfm_read_su() CD-ROM function, E-21
cdfm_vol_info() CD-ROM function, E-22
CD-ROM
configuring buffersfor, E-10
configuring memory for, E-11
configuring USFiles for, E-9
driver, E-2
global variables, E-26
multisession, E-2
overview, E-2
CD-ROM driver functions
sequentia list, E-27
CD-ROM file manager, E-2
CD-ROM functions
cdfm_esc_codes(), E-15

USFiles User's Manual

H. Index

cdfm_invalidate buffers(), E-16

cdfm_len_su(), E-17

cdfm_read_ear(), E-19

cdfm_read_su(), E-21

cdfm_vol_info(), E-22

summary list, E-15
char2uni() Ul library function, 3-12
characters

converting, 3-12, 3-100

getting from streams, 3-40

writing to streams, 3-52
clusters

finding free, 3-15

on disk drive, 3-98
code

hierarchy, 1-6

sizes, C-9

and FAKEUNICODE, C-7

CompactFlash

overview, D-2

testing, D-3
configuring, 2-2

device table, 2-2

timeouts, 2-12
date format, converting, 3-32
device driver functions

sequential list, 1-25, 1-26
device driver union, 1-34
device drivers

adding new, 1-33

DOSBIOS, 1-31

errors, 1-35

list of, 1-4

RAM-disk, 1-31
devicetable, 1-12, 1-37

configuring, 2-2

H-1

unit numbersin, 2-4
devices, 1-3
configuring for CD-ROM, E-9
invalidating streams on, 3-31
parameters, 1-35
directories
access, 1-42
creating, 3-64
reading entries, 3-67
disk drive
bytes on, 3-97
clusterson, 3-98
finding unallocated bytes on, 3-14
finding unallocated clusters on, 3-15
finding unallocated kilobytes on, 3-16
kilobytes on, 3-99
diskette driver, 1-33
disks
changing, A-1
continuing with new, A-2
putting back old, A-4
DOS
BIOS driver, 1-31
end-of-file
clearing, 3-34
testing for, 3-36
errmo
clearing, 3-6
using, 3-6
errno codes, G-1
errno.hfile, 3-6
error codes, G-1
error indicator
clearing, 3-34
finding, 3-37
errors
recovery, Ul library functions for, 3-10
reporting, 1-9
Ul library functions for, 3-9
FAT32, 3-97, F-1
file control functions, 3-8
file manager functions, 1-15

H-2

additional, 1-20
sequential list, 1-15
file managers
adding, 1-22
description, 1-3
list of, 1-4
file system
identifying, 1-24
parameters, 1-24
fileio.cfile, 3-5
files
allocation, 1-10
attributes
changing, 3-83, 3-85, 3-89
getting, 3-21
Ul library functions for, 3-10
current position, 3-61
date and time, changing with path, 3-87
deleting, 3-69
descriptors, 1-3
EOF, finding, 3-36
error indicator, finding, 3-37
modification date, 3-22
modification day, 3-23
modification hour, 3-24
modification minute, 3-25
modification month, 3-26
modification second, 3-27
modification times, 3-29
Ul library functions for, 3-10
modification year, 3-30
moving, 3-71
names
lengths alowed, C-5
long, C-4, C-7
mixed-case, E-11
pointers, 1-10
repositioning, 3-57, 3-74
renaming, 3-71
size, finding, 3-28
testing if open, 3-81
fprintf.c file, 3-5

USFiles User's Manual

free_byte cnt() Ul library function, 3-14,

F-9
free_clust_cnt() Ul library function, 3-15
free_kb_cnt() Ul library function, 3-16
fruntsk() function, 4-10, 6-9
functions

CD-ROM, E-15

CD-ROM driver, E-27

choosing type, 3-5

device driver, 1-25

file manager, 1-15

for error reporting, 1-9

for file control, 1-7

for file management, 1-15

for reading, 1-8

for stream 1/0, 1-7

for writing, 1-8

free_byte cnt(), F-9

fruntsk(), 4-10, 6-9

introduction, 1-3

layers of, 1-3

MTmeminit(), B-2

stream |/O, 1-7
getBigEnd16() Ul library function, 3-17
getBigEnd32() Ul library function, 3-18
getf_attrib() Ul library function, 3-21
getf_date() Ul library function, 3-22
getf_day() Ul library function, 3-23
getf_hour() Ul library function, 3-24
getf_min() Ul library function, 3-25
getf_month() Ul library function, 3-26
getf_sec() Ul library function, 3-27
getf_size() Ul library function, 3-28
getf_time() Ul library function, 3-29
getf_year() Ul library function, 3-30
getLitEnd16() Ul library function, 3-19
getLitEnd32() Ul library function, 3-20
global variables, 1-43

for CD-ROM, E-26
hard disk driver, 1-32
hard disks

partitions, 2-5

header files
and function names, 3-5
Hitachi ITRON
functions, 4-17, 6-16
interface, 4-17, 6-16
testing, 4-15, 6-14
installation
with MultiTask!, 4-8, 6-7
with stand-alone mode, 4-7, 6-6

invalidate_streams() Ul library function, 3-

31

kilobytes
finding free, 3-16
on disk drive, 3-99

Little-Endian mode, 3-19, 3-20, 3-95, 3-96

macros
for identifying file systems, 1-24
for masking interrupts, 4-16, 6-15
for stack size, 4-8, 4-13, 6-7, 6-12
for time conversion, 3-87, 3-89
in RTOS header files, 5-8, 7-8
mak_fdate() Ul library function, 3-32
mak_ftime() Ul library function, 3-33
makefiles
Hitachi Itron, 4-15, 6-14
memory
configuring for CD-ROM, E-11
dynamic, 1-10, 4-5, 6-4, C-10

allocation, 4-5, 5-8, 6-4, 7-8, E-5, E-

11
mt_clearerr() Ul library function, 3-34
mt_fclose() Ul library function, 3-34
mt_feof() Ul library function, 3-36
mt_ferror() Ul library function, 3-37
mt_fflush() Ul library function, 3-39
mt_fgetc() Ul library function, 3-40
mt_fgetpos() Ul library function, 3-42
mt_fgets() Ul library function, 3-43
mt_fopen() Ul library function, 3-45
mt_fprintf() Ul library function, 3-49
mt_fputc() Ul library function, 3-52
mt_fputs() Ul library function, 3-53

mt_fread() Ul library function, 3-55
mt_fseek() Ul library function, 3-57
mt_fsetpos() Ul library function, 3-59
mt_ftell() Ul library function, 3-61
mt_fwrite() Ul library function, 3-62
mt_mkdir() Ul library function, 3-64
mt_printf() Ul library function, 3-66
mt_readdir() Ul library function, 3-67
mt_remove() Ul library function, 3-69
mt_rename() Ul library function, 3-71
mt_rewind() Ul library function, 3-74
mt_rmdir() Ul library function, 3-75
mt_sprintf() Ul library function, 3-77
mt_vsprintf() Ul library function, 3-80
mtio.h file, 3-6
MTmeminit() function, B-2
otherFilesOpen() Ul library function, 3-81
paths

names

lengths allowed, C-5

opening to streams, 3-45
pcfm device driver, 1-26, E-27
pcfm file manager, 1-15
pcfm_chmod() Ul library function, 3-83
pcfm_chmodfp() Ul library function, 3-85
pcfm_chtime() Ul library function, 3-87
pcfm_chtimefp() Ul library function, 3-89,

3-100
pcfm_chvlabel () Ul library function, 3-90
pcfm_invalidate buffers() Ul library

function, 3-91
PCMCIA, D-4
ports, 1-3
protected mode, B-1

libraries, B-3

memory allocation, B-1
putBigEnd16() Ul library function, 3-93
putBigend32() Ul library function, 3-94
putLitEnd16() Ul library function, 3-95
putLitEnd32() Ul library function, 3-96
RAM-disk driver, 1-31
reading

H-4

from streams, 3-55
Ul library functions for, 3-9
resource protection, 2-10
RTOSes supported, 4-5, 6-4
TronTask!, 4-12, 6-11
RX850 and RX850 Pro
configuration files, 4-20, 6-19
testing, 4-20, 6-19
Shift-JIS characters, converting to Unicode,
3-12
source files
and 1/O functions, 3-5
sprintf.cfile, 3-5
SRAM, D-4
sscanf.c file, 3-5
stand-alone mode, 4-7, 6-6
porting drivers, 5-4, 7-4
stdio.hfile, 3-5
stream 1/O functions
summary list, 1-7
streamio.c file, 3-5
streams, 1-3
closing open paths, 3-34
current position, 3-42, 3-59
flushing output buffers, 3-39
getting character from, 3-40
getting strings from, 3-43
invalidating open, 3-31
opening pathsto, 3-45
reading from, 3-55
writing charactersto, 3-52
writing formatted output to, 3-49
writing strings to, 3-53
writing to, 3-62
writing to stdout, 3-66
strings
converting, 3-78
getting from streams, 3-43
writing formatted output to, 3-77, 3-80
structures
buffer, 1-21
devicedriver, 1-33

USFiles User's Manual

file manager, 1-22
subdirectories

deleting, 3-75

moving, 3-71

renaming, 3-71
tasks

dynamic loading, 4-9, 4-10, 6-8, 6-9
testing

with Hitachi ITRON, 4-15, 6-14

with RX850 and RX850 Pro, 4-20, 6-19
text mode, 1-20, 3-46
time format, converting, 3-33
timeouts, configuring, 2-12
total_byte cnt() Ul library function, 3-97
total_clust_cnt() Ul library function, 3-98
total_kb_cnt() Ul library function, 3-99
Unicode

converting, 3-100

trandation table, C-9
unit numbersin device table, 2-4
user interface library functions

char2uni(), 3-12

for error recovery, 3-10

for error reporting, 3-9

for file attributes, 3-10

for file times, 3-10

for reading files, 3-9

for writing, 3-9

free_byte cnt(), 3-14

free clust_cnt(), 3-15

free_kb_cnt(), 3-16

getBigEnd16(), 3-17

getBigEnd32(), 3-18

getf_attrib(), 3-21

getf_date(), 3-22

getf_day(), 3-23

getf_hour(), 3-24

getf_min(), 3-25

getf_month(), 3-26

getf_sec(), 3-27

getf_size(), 3-28

getf_time(), 3-29

getf_year(), 3-30
getLitEnd16(), 3-19
getLitEnd32(), 3-20
invalidate streams(), 3-31
mak_fdate(), 3-32
mak_ftime(), 3-33
miscellaneous, 3-12
mt_clearerr(), 3-34
mt_fclose(), 3-34
mt_feof(), 3-36
mt_ferror(), 3-37
mt_fflush(), 3-39
mt_fgetc(), 3-40
mt_fgetpos(), 3-42
mt_fgets(), 3-43
mt_fopen(), 3-45
mt_fprintf(), 3-49
mt_fputc(), 3-52
mt_fputs(), 3-53
mt_fread(), 3-55
mt_fseek(), 3-57
mt_fsetpos(), 3-59
mt_ftell(), 3-61
mt_fwrite(), 3-62
mt_mkdir(), 3-64
mt_printf(), 3-66
mt_readdir(), 3-67
mt_remove(), 3-69
mt_rename(), 3-71
mt_rewind(), 3-74
mt_rmdir(), 3-75
mt_sprintf(), 3-77
mt_vsprintf(), 3-80
otherFilesOpen(), 3-81
pcfm_chmod(), 3-83
pcfm_chmodfp(), 3-85
pcfm_chtime(), 3-87
pcfm_chtimefp(), 3-89, 3-100
pcfm_chvlabel (), 3-90
pcfm_invalidate_buffers(), 3-91
putBigend16(), 3-93
putBigend32(), 3-94

putLitEnd16(), 3-95
putLitEnd32(), 3-96
total_byte cnt(), 3-97
total_clust_cnt(), 3-98
total_kb_cnt(), 3-99
userio.hfile, 3-5
ussio.hfile, 3-5
variables, global, 1-43
for CD-ROM, E-26
VFAT, C-1
and long file names, C-4
volume labels, changing, 3-90
writing
to stdout stream, 3-66
to streams, 3-62
to streams, characters, 3-52
to streams, formatted output, 3-49
to streams, strings, 3-53
to strings, formatted, 3-80
to strings, formatted output, 3-77
Ul library functions for, 3-9

H-6

USFiles User's Manual

	1.	USFILES INTERNALS	1-7
	Introduction
	File Managers
	Drivers
	Code Hierarchy

	Stream I/O
	Stream I/O Function Summary
	Functions for File Control
	Functions for Writing
	Functions for Reading
	Functions for Error Reporting

	Error Reporting
	File Allocation
	The Device Table

	File Managers
	File Manager Function Summary
	File Manager Function Descriptions
	Text and Binary Files
	Additional File Manager Functions
	Buffers
	Adding New File Managers
	File System Parameters
	Identifying a File System

	Device Drivers
	Driver Function Summary
	Driver Function Descriptions
	RAM Disk Driver
	DOS BIOS Driver
	Hard Disk Driver
	Diskette Driver
	Adding New Device Drivers
	Driver Errors
	Device Parameters

	How It Ties Together
	An Example
	Function Call Hierarchy

	Directory Access
	Global Variables

	Configuring USFiles
	Configuration Overview
	Configuring Devices
	Unit Numbers
	Configuring Partition Numbers

	Configuring Drives and Drivers
	Configuring Streams and Buffers
	Buffer Configuration Guidelines
	VFAT

	Checking Configuration Parameters
	Protecting Resources
	Setting Timeouts for Device Drivers
	Files Used for Configuration
	USFiles Tips
	
	
	Use Short File Names
	Use Unique Long File Names
	Do Not Place Too Many Files in a Directory
	Tune Buffer Usage
	Increase Cluster Size

	Library Reference
	Overview of USFiles Functions
	Function Names
	Using errno

	Atomic typedef Names
	User Interface Library Functions
	Function Summary
	File Control Functions
	Writing Functions
	Reading Functions
	Error Reporting Functions
	Error Recovery Functions
	File Time Functions
	File Attribute Functions
	Miscellaneous Functions

	Function Descriptions
	
	
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	Stream I/O
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	Stream I/O
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager

	Supported RTOSes
	Using Stream I/O from Multiple Tasks
	Multitasking with errno
	Supported RTOSes
	Stand-alone Mode
	
	
	errno

	MultiTask!
	
	
	errno

	Stack Size
	Dynamic Task Loading with fruntsk

	TronTask!
	
	
	errno

	Initializing USFiles
	Stack Size

	Hitachi ITRON
	
	
	errno

	Test Environment
	Using Library Header Files
	stdlib.h
	stdio.h

	The depends.h File
	Configuration Files
	Interface
	Various Makefiles

	RX850 and RX850 Pro
	
	
	errno

	Test Environment
	Board Revisions
	Configuration Files
	Interface

	Porting Guide
	Porting USFiles Stand-alone Mode
	Setting Up Makefiles
	Editing Header Files
	Porting Drivers
	RAM Disk Driver
	BIOS Driver
	Hard Disk Driver
	Diskette Driver

	Memory Alignment

	Porting USFiles to a New RTOS
	Integrating an RTOS with USFiles
	Integrating Files
	RTOS Header File
	RTOS Support File

	Building Your Application

	Porting Drivers
	Diskette Driver

	Supported RTOSes
	6.	SUPPORTED RTOSES	6-1
	Multitasking with errno
	Supported RTOSes
	Stand-alone Mode
	
	
	errno

	MultiTask!
	
	
	errno

	Stack Size
	Dynamic Task Loading with fruntsk

	TronTask!
	
	
	errno

	Initializing USFiles
	Stack Size

	Hitachi ITRON
	
	
	errno

	Test Environment
	Using Library Header Files
	stdlib.h
	stdio.h

	The depends.h File
	Configuration Files
	Interface
	Various Makefiles

	RX850 and RX850 Pro
	
	
	errno

	Test Environment
	Board Revisions
	Configuration Files
	Interface

	Porting Guide
	Porting USFiles Stand-alone Mode
	Setting Up Makefiles
	Editing Header Files
	Porting Drivers
	RAM Disk Driver
	BIOS Driver
	Hard Disk Driver
	Diskette Driver

	Memory Alignment

	Porting USFiles to a New RTOS
	Integrating an RTOS with USFiles
	Integrating Files
	RTOS Header File
	RTOS Support File

	Building Your Application

	Porting Drivers
	Diskette Driver
	
	
	Handling Disk Changes

	Overview

	Continuing with the New Disk
	Putting Back the Old Disk
	Other Situations
	
	
	
	
	386 Protected Mode

	Supported Compilers

	Memory Allocation
	Libraries
	
	
	
	
	VFAT

	Overview
	How VFAT Works
	Restrictions on VFAT
	Allowed VFAT Characters
	File Name Lengths
	Path Lengths
	Number of Directory Entries

	Using VFAT
	Case Sensitivity
	Dynamic Memory Use

	Files Used for Configuring VFAT
	
	
	
	
	USFiles for CompactFlash

	Installing CompactFlash
	Text Files

	Overview of CompactFlash
	Configuration
	Testing
	Not Supported
	
	
	
	USFiles for CD-ROM

	Installing USFiles for CD-ROM
	Source Files
	Text Files

	Overview of CD-ROM
	CD-ROM Driver
	CD-ROM File Manager
	Multisession CD-ROMs

	Basics of the ISO 9660 File System
	Volume Descriptors
	Primary Volume Descriptor
	Supplementary Volume Descriptor
	Volume Descriptor Set Terminator

	Path Table
	Directory Records
	Navigating the File System
	The USFiles Implementation
	Allowed ISO Characters
	Allowed Joliet Characters
	File Name Lengths
	Directory Name Lengths
	Extensions for Directory Names
	Directory Levels
	Other Items

	Configuring USFiles for CD-ROM
	Including CD-ROM Support
	Devices
	Buffers
	Memory
	Mixed-case File Names
	Files Used to Configure USFiles for �CD-ROM

	Testing (cdfmtest
	
	Initialization

	Additional Functions
	
	
	
	CD File Manager

	Additional errno Values
	Global Variables
	CD-ROM Driver Functions
	Function Call Hierarchy
	Recommended Reading
	
	
	
	
	FAT32 File System

	Overview
	Installation and Configuration
	Test Programs

	Modified Structures
	BIOS Parameter Block (BPB)
	Partition Table
	File Allocation Table (FAT)
	Directory Entries
	The Root Directory

	New Structures
	File System Information Sector
	Limitations on USFiles-32
	Using free_byte_cnt
	
	
	Error Codes

	USFiles Error Codes
	
	
	
	Index

