

USFiles
Processor-Independent
DOS/Win95 File System
User’s Manual

Revision 3.02
October 2001

Copyright and Trademark Information
Copyright 1996-2001 United States Software Corporation. All rights
reserved. No part of this publication may be reproduced, translated into
another language, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of United States Software
Corporation.

U S Software, USNET, USFiles, USLink, SuperTask!,
MultiTask!, NetPeer, TronTask!, Soft-Scope, and GOFAST are
trademarks of United States Software Corporation. Other brands and
names are marked with an asterisk (*) and are the property of their
respective owners.

United States Software Corporation makes no warranty of any kind with
regard to this material, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose.
United States Software Corporation assumes no responsibility for any
errors that may appear in this document. United States Software
Corporation makes no commitment to update or to keep current the
information contained in this document.

United States Software Corporation
7175 NW Evergreen Parkway, Suite 100

Hillsboro, OR 97124
(503) 844-6614

Fax (503) 844-6480
E-mail: support@ussw.com

mailto:support@ussw.com

Documentation Conventions
Computer output and code examples: Courier, usually in a separate

paragraph.

Function names and command names: Bold italic, usually followed by
parentheses, as in main() function.

Variables: Courier 11 italic (mt_busy).

File names: Times bold (the file usrclk.asm), in lower case.

Key names: Initial capital, in angle brackets, as in press <Enter>.

Menu names and selections, dialog box names, screen titles, window
titles: Times bold, as in File menu.

NOTE: Indicates important information.

CAUTION: Indicates potential damage to hardware or data.

WARNING: Indicates potential injury to users.

Revision History
Revision Date
Previous issue June 1997

Reorganized and reformatted December 1997

3.00 Added new features February 2000

3.01 Updated for new directory structure September 2000

3.02 New configuration options October 2001

NOTES

USFiles User's Manual 1-1

Contents

1. USFILES INTERNALS...1-7
Introduction..1-9

File Managers...1-10
Drivers..1-10
Code Hierarchy ..1-11

Stream I/O ..1-12
Stream I/O Function Summary1-12
Error Reporting ..1-14
File Allocation..1-15
The Device Table ...1-17

File Managers...1-20
File Manager Function Summary1-20
File Manager Function Descriptions............................1-21
Text and Binary Files ...1-24
Additional File Manager Functions1-24
Buffers..1-25
Adding New File Managers ...1-26

Device Drivers ...1-29
Driver Function Summary ...1-30
Driver Function Descriptions.......................................1-31
RAM Disk Driver...1-35
DOS BIOS Driver ..1-35
Hard Disk Driver..1-36
Diskette Driver ...1-37
Adding New Device Drivers..1-37

How It Ties Together ...1-41
An Example..1-41
Function Call Hierarchy...1-43

Directory Access ..1-46
Global Variables ..1-47

2. CONFIGURING USFILES...2-1

1-2 USFiles User's Manual

Configuration Overview ..2-2
Configuring Devices ..2-2

Configuring Drives and Drivers...2-6
Configuring Streams and Buffers ..2-7

Buffer Configuration Guidelines2-8
VFAT ...2-9

Checking Configuration Parameters ..2-9
Protecting Resources..2-10
Setting Timeouts for Device Drivers2-12
Files Used for Configuration..2-13
USFiles Tips...2-14

3. LIBRARY REFERENCE..3-1
Overview of USFiles Functions...3-4
Function Names ...3-5

Using errno ..3-6
Atomic typedef Names...3-7
User Interface Library Functions ...3-8

Function Summary...3-8
Function Descriptions ..3-12

4. SUPPORTED RTOSES...4-1
Using Stream I/O from Multiple Tasks......................................4-3
Multitasking with errno ...4-4
Supported RTOSes...4-5
Stand-alone Mode ..4-7
MultiTask!..4-8

Stack Size...4-8
Dynamic Task Loading with fruntsk4-9

TronTask!...4-12
Initializing USFiles ..4-13
Stack Size...4-13

Hitachi ITRON...4-14
Test Environment...4-15

USFiles User's Manual 1-3

Using Library Header Files..4-15
The depends.h File ...4-16
Configuration Files ..4-17
Interface ...4-17
Various Makefiles ..4-18

RX850 and RX850 Pro ..4-19
Test Environment...4-20
Board Revisions ...4-20
Configuration Files ..4-20
Interface ...4-21

5. PORTING GUIDE...5-1
Porting USFiles Stand-alone Mode..5-2

Setting Up Makefiles ...5-2
Editing Header Files...5-4
Porting Drivers...5-4
Memory Alignment..5-6

Porting USFiles to a New RTOS ...5-7
Integrating an RTOS with USFiles5-7
Porting Drivers...5-10

6. SUPPORTED RTOSES...6-1
Using Stream I/O from Multiple Tasks......................................6-2
Multitasking with errno ...6-3
Supported RTOSes...6-4
Stand-alone Mode ..6-6
MultiTask!..6-7

Stack Size...6-7
Dynamic Task Loading with fruntsk6-8

TronTask!...6-11
Initializing USFiles ..6-12
Stack Size...6-12

Hitachi ITRON...6-13
Test Environment...6-14

1-4 USFiles User's Manual

Using Library Header Files..6-14
The depends.h File ...6-15
Configuration Files ..6-16
Interface ...6-16
Various Makefiles ..6-17

RX850 and RX850 Pro ..6-18
Test Environment...6-19
Board Revisions ...6-19
Configuration Files ..6-19
Interface ...6-20

7. PORTING GUIDE...7-1
Porting USFiles Stand-alone Mode..7-2

Setting Up Makefiles ...7-2
Editing Header Files...7-4
Porting Drivers...7-4
Memory Alignment..7-6

Porting USFiles to a New RTOS ...7-7
Integrating an RTOS with USFiles7-7
Porting Drivers...7-10

A. HANDLING DISK CHANGES ...A-1
Overview...A-1

Continuing with the New Disk..A-2
Putting Back the Old Disk ..A-4
Other Situations...A-6

B. 386 PROTECTED MODE ...B-1
Supported Compilers... B-1

Memory Allocation ... B-1
Libraries .. B-3

C. VFAT..C-1
Overview...C-1

USFiles User's Manual 1-5

How VFAT Works..C-1
Restrictions on VFAT ...C-5

Using VFAT..C-7
Case Sensitivity...C-9
Dynamic Memory Use ..C-10

Files Used for Configuring VFAT..C-11

D. USFILES FOR COMPACTFLASH......................................D-1
Installing CompactFlash ...D-1
Text Files...D-1

Overview of CompactFlash ..D-2
Configuration ..D-2
Testing...D-3
Not Supported ...D-4

E. USFILES FOR CD-ROM...E-1
Installing USFiles for CD-ROM................................... E-1
Source Files... E-1
Text Files... E-1

Overview of CD-ROM.. E-2
CD-ROM Driver ... E-2
CD-ROM File Manager .. E-2
Multisession CD-ROMs.. E-2

Basics of the ISO 9660 File System.. E-3
Volume Descriptors .. E-3
Path Table ... E-4
Directory Records ... E-4
Navigating the File System... E-5
The USFiles Implementation .. E-5

Configuring USFiles for CD-ROM... E-9
Including CD-ROM Support... E-9
Devices.. E-9
Buffers... E-10
Memory... E-11

1-6 USFiles User's Manual

Mixed-case File Names... E-11
Files Used to Configure USFiles for CD-ROM......... E-12

Testing (cdfmtest... E-13
Additional Functions... E-15
Additional errno Values.. E-23
Global Variables ... E-25
CD-ROM Driver Functions .. E-26
Function Call Hierarchy.. E-29
Recommended Reading .. E-30

F. FAT32 FILE SYSTEM... F-1
Overview... F-1
Installation and Configuration F-1
Test Programs ... F-2

Modified Structures... F-3
BIOS Parameter Block (BPB)....................................... F-3
Partition Table... F-5
File Allocation Table (FAT) ... F-5
Directory Entries ... F-5
The Root Directory ... F-7

New Structures .. F-8
File System Information Sector F-8
Limitations on USFiles-32 .. F-9

G. ERROR CODES ...G-1
USFiles Error Codes ...G-1

H. INDEX..H-1

USFiles User's Manual 1-7

1. USFiles Internals
Chapter Contents

1. USFILES INTERNALS...1-1
Introduction..1-9

File Managers...1-10
Drivers..1-10
Code Hierarchy ..1-11

Stream I/O ..1-12
Stream I/O Function Summary1-12
Error Reporting ..1-14
File Allocation..1-15
The Device Table ...1-17

File Managers...1-20
File Manager Function Summary1-20
File Manager Function Descriptions............................1-21
Text and Binary Files ...1-24
Additional File Manager Functions1-24
Buffers..1-25
Adding New File Managers ...1-26

Device Drivers ...1-29
Driver Function Summary ...1-30
Driver Function Descriptions.......................................1-31
RAM Disk Driver...1-35
DOS BIOS Driver ..1-35
Hard Disk Driver..1-36
Diskette Driver ...1-37
Adding New Device Drivers..1-37

How It Ties Together ...1-41
An Example..1-41
Function Call Hierarchy...1-43

1-8 USFiles User's Manual

Directory Access ..1-46
Global Variables ..1-47

USFiles User's Manual 1-9

Introduction
This Chapter will explain a bit about how USFiles handles things internally.
As we have mentioned before, three layers of functions implement the
USFiles stream I/O features. The top layer is the stream I/O layer. The
middle layer is the file manager, and the lower layer is the device driver.
The standard C-level functions like mt_fgetc() call the file manager routines
associated with the stream, which in turn call the driver routines. The driver
also has interrupt service routines associated with it for interrupt-driven
devices.

The system is configured for a fixed number of devices as specified in
userio.h, and a maximum number of open streams (i.e. ports or files) as
defined by the NUMSTREAMS parameter, which is described in Chapter 4,
Configuring USFiles. Each stream has a structure of type FILE (an alias of
MTFILE) associated with it, which contains all of the control information
for the stream. These FILE structures are dynamically allocated by
mt_fopen() via a call to alloc_mem(). The FILE type structure is defined in
mtio.h, and it contains all the information about the stream, including
pointers to other structures needed for control of the stream. If you develop
a driver for a new type of device, it might be necessary to add some new
structures to some of the union types in this file.

The file manager, device driver, and ISR (Interrupt Service Routine) all
access the FILE structure for the stream they are currently operating on.
We will refer to the FILE structure for a stream as its file descriptor.

The file descriptor for each stream contains pointers to the file manager,
device driver, and device data structure associated with that stream. The
file manager is a structure of type FILEMAN (defined in mtio.h). This
structure consists of function pointers to the routines that constitute the file
manager. The driver is a similar structure of type DRIVER, which contains
function pointers to the functions that constitute the device driver, and the
data structure is of type DEVICE.

If your system has several ports with the same characteristics (same type
UART chip, diskette, etc.) they would most likely be using the same driver
and file manager. The BIOS-based driver supplied in biosdrv.c combines
diskette and hard disk control into one driver. The high bit of the unit
number selects hard disk versus diskette operation. If you develop new

1-10 USFiles User's Manual

drivers for hard disk and diskette drives, it is more likely that these
functions will be in separate drivers if you are controlling the hardware
directly. Not all file managers require the presence of the device driver.
The pipe file manager this is provided with MultiTask! is an example of
this.

File Managers
pcfm PC File System Manager (in this package).

sfm Serial File Manager (in MultiTask! product).

pipefm Pipe File Manager (in MultiTask! product).

cdfm CD-ROM File System Manager (in USFiles for CD-ROM).

Drivers
biosdrv USFiles diskette/hard disk driver for 80 x 86 PC-style system

via BIOS calls (in this package).

ramdrv USFiles RAM disk driver (in this package).

flopdrv USFiles PC diskette driver accessing controller directly (in
this package, developed for 80x86 real mode).

lbahddrv USFiles ATA (IDE) LBA mode hard disk driver accessing
ATA interface directly on a PC. Also works with non-LBA
drives (in this package, developed for 80x86 real mode).

cdromdrv ATAPI CD-ROM driver (in USFiles for CD-ROM).

pcmciadrv Driver used to initialize PCMCIA controller for use with
CompactFlash Cards (in USFiles for CompactFlash).

driver0 MultiTask! serial driver (in MultiTask! product).

other User-supplied drivers for interfacing with either pcfm, or
sfm, or other file managers.

USFiles User's Manual 1-11

Code Hierarchy
Figure 3-1 below illustrates the code hierarchy. Only the files with names
in bold are part of USFiles. The PC file manager is divided among the four
files pcfmapi.c, pcfmbuf.c, pcfmclus.c, and pcfmdir.c.

Figure 3-1: Code Hierarchy for USFiles

Stream I/O
(streamio.c) and File

I/O (fileio.c)

Serial
File

Manager
(sfm.c)

Pipe File
Manager

(pipefm.c)

PC File
Manager
(pcfm?.c)

Serial
Driver

(driver0.c)

Other
File

Manager

BIOS
Driver

(biosdrv.c)

RAM disk
Driver

(ramdrv.c)

Other
Driver

File
Managers

Drivers

API
(main level)

Other
Driver

1-12 USFiles User's Manual

Stream I/O
The stream I/O routines are primarily found in the files streamio.c and
fileio.c. Applications will typically directly interface with only the stream
I/O layer. There are a few functions provided as utilities to the user at the
file manager level that will bypass stream I/O. These will be discussed in
the File Manager section of this chapter.

Stream I/O Function Summary
The stream I/O functions that USFiles provides are:

 mt_fopen mt_fread mt_fwrite mt_fgetc
 mt_fgets mt_fputc mt_fputs mt_printf
 mt_fprintf mt_sprintf mt_vsprintf mt_sscanf
 mt_fgetpos mt_fsetpos mt_fseek mt_ftell
 mt_fflush mt_fclose mt_mkdir mt_remove
 mt_rewind mt_rmdir mt_feof mt_ferror
 mt_clearerr mt_rename

The full syntax of these functions can be found in the Library Reference
chapter, but they can be divided into several groups.

Functions for File Control
mt_fopen Opens a file

mt_fclose Closes a file

mt_renameRenames a file or directory

mt_remove Removes a file

mt_mkdir Creates a directory

mt_rmdir Removes a directory

mt_rewind Sets file pointer to beginning

USFiles User's Manual 1-13

mt_fseek Positions file pointer to desired location

mt_fsetpos Positions file pointer to desired location

mt_ftell Reports position of file pointer

mt_fgetposReports position of file pointer

Functions for Writing
mt_fwrite Writes to a file

mt_fputc Writes a single character to a file

mt_fputs Writes a string to a file

mt_printf Writes formatted output to stdout

mt_fprintf Writes formatted output to a file

mt_sprintf Writes formatted output to a string

mt_vsprintf Writes formatted output to a string
mt_fflush Flushes file’s output buffer

Functions for Reading
mt_fread Reads from a file

mt_fgetc Reads a single character from a file

mt_fgets Reads a string from a file

mt_sscanf Converts a string according to specified format

Functions for Error Reporting
mt_feof Tests for end of file

mt_ferror Returns file error condition

mt_clearerr Clears file error condition

1-14 USFiles User's Manual

Error Reporting
Error reporting deserves some special attention, since errors may arise in
various places. For the ANSI stream I/O functions that we provide, we
follow the ANSI specification. These functions often return an integer
value. If that value is zero, it means that the function executed successfully.
If it is non-zero (usually EOF), then an error has occurred. There are
exceptions to this, so please check Chapter 5, Library Reference, for
particular functions. To determine the details of an error, the variable
errno is used. The possible values that errno can have can be found in
Appendix G, Error Codes.

NOTE: Be aware that no function ever clears errno. Once it is set,
you must be sure to clear it after you handle any error
recovery.

The mt_fopen() function does not return an integer, but rather a file pointer.
If the pointer returned is NULL, then this signals an error. The following
code snippet gives an example of how an error encountered by mt_fopen()
could be tested.

fp = mt_fopen(“C:\\myfile.txt”,”w”);
if(!fp){

if(errno == ENOPATH)
/* Device probably not in device_tab[] */

else
/* Some default error handling */

}
errno = 0; /* Clear errno */

This example is reentrant if the RTOS implementation of errno is
multitasking safe, which is the case for MultiTask! and TronTask!. For
other RTOSes, you will have to study the RTOS or tool chain
implementation of errno.

USFiles User's Manual 1-15

Another (less reliable) method of error checking is provided by the
mt_ferror() function, which checks the error code for a specific open file
pointer. Although this is an ANSI C function, it is not specified under what
conditions the file pointer error code should be set. USFiles sets this error
code when a driver error is encountered. Often (but not necessarily always)
when a driver error is reported, errno is set to the same value.

Please check Chapter 5, Library Reference to determine how each function
reports an error individually. Not all functions return EOF for an error and
zero for success. For example, if mt_fread() returns a value of zero, an
error has occurred. We feel that a careful use of errno works best to
determine error conditions.

File Allocation
USFiles maintains a static array of file pointers. The number of elements in
this array is determined by the NUMSTREAMS parameter, which is discussed
in Chapter 4, Configuring USFiles. When a file is opened, memory for the
file structure is dynamically allocated at the stream I/O level. This file
structure is represented in Figure 3-2, and the complete structure definition
can be found in mtio.h.

1-16 USFiles User's Manual

Figure 3-2: Elements of the MTFILE Structure

The device number identifies which device table entry is associated with the
file. The file number indicates which entry in the open streams table the file
occupies. The error code is used to indicate driver errors that occurred
while operating on the file, and the pointers provide access to the functions
that are used to handle the file operations, which are coordinated using the
file system parameters.

Device Number (index into device table)

File Number

Error Code

Pointer to Driver Jump Table

Pointer to File Manager Jump Table

Pointer to Device Data Structure

File System Parameters (stream-specific data)

Other Items

USFiles User's Manual 1-17

The Device Table
To enable the stream I/O functions to communicate with a particular device,
we need to configure the device table device_tab[] in devtab.c (found in
the siosrc directory). The device table is an array of device structures. The
format for the device structure is defined in mtio.h and is outlined in Figure
3-3.

Figure 3-3: Elements in the device_s Structure

Device Type (serial, PC file, etc.)

Capabilities (read, write, etc.)

Flags (internal use)

Number of Open Paths

Unit Number

Partition Number

Device Name

Pointer to Device Driver Jump Table

Pointer to Device File Manager Jump Table

File Pointer*

* Not used by USFiles

Number of Open Paths

Flags

1-18 USFiles User's Manual

This is a sample entry in a device table for the first partition on a hard drive:

&pcparmC, /* device-dependent data */
“C”, /* name */
FM_PCFM, /* device type = PC device */
0xf, /* bits: text write read */
0x80, /* unit# */
0, /* partition */
(DRIVER *)&lbadrv_s, /* pointer to driver */
&pcfm, /* pointer to file manager */
NULL, /* pointer to FILE */
0, /* flags */
0, /* # open paths (RAM) */

At this point, the important items to note are that the driver is lbadrv_s,
the file manager is pcfm, and the device name is “C”. Many of the device
table entry fields are not used by USFiles.

When a call to mt_fopen() is made by the application, the entire path name
to the file must be specified. This includes the drive name. If we wanted to
open a file on the hard drive described above, we would need to specify the
name as c:\file.txt. The mt_fopen() function recognizes that the
portion of the file name in front of the colon is the device name. It then
searches the device table until it finds the device with that name. Once it is
found, the device table entry indicates which file manager and driver will be
used to access the file. In this example, the file manager is for a PC file
system, and the driver is a logical block addressing hard drive driver.
Stream I/O functions will not call driver functions directly. They only deal
with the file manager.

NOTE: USFiles accepts either ‘\’ or ‘/’ characters as name separators
interchangeably.

WARNING: The file devtab.c uses a new device structure. If you are
copying any older device structures into devtab.c, be careful
to reorder the fields. See mtio.h for the specifics.

The default device configuration for USFiles is simply a RAM
disk (R:). To use another type of device you will have to add
it to the device table. The file siosrc\devtab.c has samples for

USFiles User's Manual 1-19

various kinds of devices. You will have to uncomment
structure and variable definitions to support new devices.
Look for file managers, device drivers, and device parameter
structures in devtab.c.

1-20 USFiles User's Manual

File Managers
Once stream I/O has found the device table entry that belongs to a device, it
is able to call the file manager functions.

File Manager Function Summary
The pcfm file manager provided is capable of controlling all types of DOS-
compatible disk drives, including diskette drives, hard drives, and RAM- or
ROM-based drives. FAT32 partitions are supported through an add-on to
USFiles. The sfm file manager included with MultiTask! can control all
types of serial ports. Each of these requires the addition of the appropriate
low-level driver routines to interface to the actual hardware.

These are the defined file manager functions for any file manager. They are
most often used in this order:

open() Opens a file

read() Reads bytes from a file

readln() Reads a string from a file

write() Writes bytes to a file

writeln() Writes a string to a file

seek() Positions the file pointer

makdir() Creates a directory

_delete() Removes a file

fmioctl() Other I/O control functions

close() Closes a file

USFiles User's Manual 1-21

The specific routines that constitute the pcfm file manager are:

 pcfm_open()
pcfm_read()
pcfm_readln()
pcfm_write()
pcfm_writeln()
pcfm_seek()
pcfm_makdir()
pcfm_delete()
pcfm_fmioctl()
pcfm_close()

File Manager Function Descriptions

File Manager close() function
int close(MTFILE *fp)

The file manager close() function ends access to the stream, making its
position in the open streams table available. This function returns zero if
successful, or EOF if an error is detected.

File Manager delete() function
int _delete(MTFILE *fp)

The file manager delete() function removes the file described by fp from
the file system. The file’s storage is freed and its directory entry deleted. A
zero is returned if no errors are detected.

File Manager fmioctl() function
int fmioctl(MTFILE *fp, int function, void *arg,

size_t size);

The file manager fmioctl() function performs any other miscellaneous
operations on the device. The function IO_FLUSH is defined for all device

1-22 USFiles User's Manual

types to flush all output buffers associated with the device. Other
operations are implementation-dependent.

The parameter arg is used to pass the argument(s) for the request. This may
be a pointer to a simple variable, or a pointer to a structure if several
variables need to be passed in. Values can be passed in, out, or in both
directions.

The parameter size is useful if arg points to a variable-size buffer. The
length of the buffer could be indicated by building a structure that includes
size information. However, including size as a separate argument allows an
arbitrary starting point and length to be passed without requiring the buffer
to be modified or copied. The size parameter may also be useful for
passing small integers with minimal overhead.

File Manager makdir() function
int makdir(MTFILE *fp)

The file manager makdir() function turns the newly create path described
by fp into a directory. A zero is returned if no errors are detected.

File Manager open() function
MTFILE * open(MTFILE *fp, char *filename)

The open() function of a file manager is passed the file descriptor pointer
fp and the filename. The open() function fills in the file descriptor
structure for the stream, where necessary, with initial values, and may call a
driver init routine to initialize the device. The open() function returns a
pointer to the file descriptor structure if it is successful; otherwise it returns
a NULL pointer.

File Manager read() function
size_t read(MTFILE *fp, byte *buf, size_t bytes)

USFiles User's Manual 1-23

The file manager read() routine reads the number of bytes specified by
bytes, from the stream specified by fp into the buffer pointed to by buf.

File Manager readln() function
size_t readln(MTFILE *fp, byte *buf, size_t bytes)

The file manager readln() (read line) routine reads at most the number of
bytes specified by bytes, from the stream specified by fp into the buffer
pointed to by buf. The read will terminate early if the EOL_CHAR is read.
In all other respects this call is the same as the read() function.

File Manager seek() function
int seek(MTFILE *fp, uint32 position)

The file manager seek() function takes action to assure that the next read or
write to the file will be at absolute position bytes from the beginning of
the file. A non-zero error code is returned if an error is detected.

File Manager write() function
size_t write(MTFILE *fp, byte *buf, size_t bytes)

The file manager write() function writes the number of bytes specified by
bytes taken from the memory buffer pointed to by buf, and writes these to
the stream specified by fp. The actual number of bytes written is returned
by this function. This will be zero if an error occurs.

File Manager writeln() function
size_t writeln(MTFILE *fp, byte *buf, size_t bytes)

The file manager writeln() function is identical to the write() function
except that the write will terminate before bytes have been transmitted if
an EOL_CHAR is encountered in the output stream. (The writeln()
terminates after the transmission of the EOL_CHAR.)

1-24 USFiles User's Manual

Text and Binary Files
Whether or not “text” mode stream I/O differs from “binary” mode depends
upon the specific file manager or driver being used by the stream. Text
mode is implemented for PCFM devices (disks). If the file is opened in text
mode (which is the default), carriage return characters are removed upon
read, transforming carriage return-linefeed pairs into only linefeeds (“\n”).
On writes, each “\n” is written as “\r\n”.

Additional File Manager Functions
In addition to the functions provided via the file manager structure, pcfm.c
contains a few other functions that may be safely accessed from an
application. These additional functions are:

free_byte_cnt() Returns number of unallocated bytes on drive

free_clust_cnt() Returns number of unallocated clusters on drive

pcfm_chmod() Changes attributes of file (specified by path)

pcfm_chmodfp() Changes attributes of file (specified by pointer)

pcfm_chtime() Changes time and date of file (specified by path)

pcfm_chtimefp() Changes time and date of file (specified by pointer)

pcfm_chvlabel() Changes an existing volume label

See also: Chapter 5, Library Reference, describes how to use these
functions.

USFiles User's Manual 1-25

Buffers
The PC file manager maintains an array of physical record (generally
referred to as sector) buffers. The number of buffers used is determined by
the value of NUMBUFFERS, which is user configurable. The file in which
you will find NUMBUFFERS depends on the RTOS being used.

See also: Chapter 4, Configuring USFiles, for more information on buffers.

The buffer is defined in mtio.h as:
typedef struct pcfm_buffer_s{

DEVICE *devp;
uint32 lsect;
uint32 serial_no;
byte *userbuf;
uint16 nsects;
uint16 age;
int error_status;
byte flags;
byte filenum;
byte devnum;
byte padding;
byte buf[512];

} PCFM_BUFFER;

Buffers are used to hold physical record contents in an attempt to limit the
number of times that the driver has to read or write to the device. Since the
buffers are maintained in memory, reading from or writing to them is much
faster than accessing a disk.

By using the age parameter USFiles makes an attempt to keep track of
buffers that are accessed regularly. When a buffer is allocated to a
particular sector, we increase that buffer’s age by a certain value. When
we search through the buffer array and opt not to use a given buffer, we
decrease that buffer’s age. In this manner, buffers that are accessed
frequently have higher ages than buffers that are rarely used.

This becomes important when we reach a situation where all buffers are
being used, and we need a buffer to perform some operation. If the sector
we are looking for is not already buffered, then we have to take one of the

1-26 USFiles User's Manual

other buffers. We look for the oldest (least accessed, lowest age value)
buffer that can be used. If this buffer is “dirty” (its sector contents have
been modified but not yet saved to disk), then we save the sector and use it
for the new sector. If the buffer is not dirty, then we simply use the buffer.

If you are doing binary (not text) reads and writes of data segments that
span at least a full sector, then buffers may be bypassed. This can result in
faster data transfer times.

Adding New File Managers
USFiles is delivered with a DOS file system manager, and a CD-ROM ISO
9660 file system manager can be provided as well. A serial file manager
comes with MultiTask!, so several file managers are available to you. If
you need to develop your own file manager, it can be done. It will involve
a significant time investment, though.

The file mtio.h has most of the definitions necessary for adding a new file
manager. The basic file manager structure is:

struct fileman_s{

int (*open)(MTFILE *, char *); /* character open routine */

size_t (*read)(MTFILE *, byte *, size_t); /* read from
stream */

size_t (*readln)(MTFILE *, byte *, size_t); /* read line
routine */

size_t (*write)(MTFILE *, byte *, size_t); /* write to
stream */

size_t (*writeln)(MTFILE *, byte *, size_t); /* write line
to stream */

int (*close)(MTFILE *); /* close stream */

int (*seek)(MTFILE *, uint32); /* reposition file */

int (*makdir)(MTFILE *); /* create a directory */

int (*_delete)(MTFILE *); /* delete a file */

USFiles User's Manual 1-27

int (*fmioctl)(MTFILE *,int,void*,size_t); /*
miscellaneous control */
};

This file manager structure should be suitable for any file system, since it
only depends on the MTFILE structure, which is common to all of USFiles.

The source file for the particular file manager defines the specific file
manager structure. For example, the PC file manager is defined at the end
of pcfmapi.c as:

FILEMAN const pcfm = {
pcfm_open,
pcfm_read,
pcfm_readln,
pcfm_write,
pcfm_writeln,
pcfm_close,
pcfm_seek,
pcfm_makdir,
pcfm_delete,
pcfm_fmioctl

};

The device table needs to know about the file managers in use, so devtab.c
includes the line:

extern FILEMAN const pcfm;

When developing a new file manager, the PC file manager serves as a good
starting point (see pcfmapi.c).

File System Parameters
File system parameters are defined in mtio.h in the form XXX_FSP. For
example, PCFM_FSP provides PC file system parameters, PIPE_FSP
provides useful parameters for a pipe file system, and CDFM_FSP provides
the parameters for a CD file system.

These are joined together in a union like:

typedef union fm_parm_u{
struct sfm_fsp s;

1-28 USFiles User's Manual

struct pcfm_fsp p;
struct pipe_fsp pi;
struct cdfm_fsp cd;

}FM_FSP_U;

Any new file system will likely have its own set of useful parameters. This
new structure should be defined as NEWFM_FSP (for example), and an entry
should be added to the FM_FSP_U union.

The parameter items are accessed through calls like this, which is from
count_seq_clusters() in pcfm.c:

last = fp->fsp.p.cur_clust;

Identifying a File System
To be able to easily identify the file system associated with a particular
device, we use macros defined in mtio.h. The ones that are defined for
distribution with USFiles are:

#define FM_SFM 0
#define FM_PCFM 1
#define FM_PIPE 2
#define FM_CDFM 3

If you define a new file manager, this list should be updated.

USFiles User's Manual 1-29

Device Drivers
Each DOS device driver is defined to USFiles by specifying eight routines:

 1. Driver initialize
2. Cylinder, Head, Sector read
3. CHS write
4. Format
5. Logical block read
6. Logical block write
7. Time stamp
8. Disk change

The time stamp routine records the date/time code at the address specified.
The value should be encoded in MS-DOS directory entry format. See the
biosdrv_timestamp() function the mak_ftime() and mak_fdate() macros for
details. This routine can be replaced with a dummy with no ill effect other
than the directory entries on files will not show the actual date/time of
access. The dummy routine may return nothing, or zeroes, or anything else
you desire.

The CHS read is only called by PCFM to get the first logical sector from a
diskette that contains the DOS BPB, which describes the disk format
(number of tracks and sectors, etc.). The logical block read and write
routines perform the bulk of the work, although on disks using CHS format,
the logical block routines calculate the appropriate cylinder, head, and
sector, and call the CHS routines.

You can get away with only writing one read and one write routine. If you
are doing diskette or old hard drive access (identifying a sector by cylinder,
head, and sector), then you only need to develop a CHS read and a CHS
write routine, which accept a drive number, cylinder, head, sector number,
number of sectors, and a buffer pointer for the data.

The logical block read and write routines compute the cylinder, head, and
sector number from the logical block number and call the CHS read/write
routines. The logical read and write routines in biosdrv.c can be used for
this purpose if you develop substitutes for the biosdrv_raw_read() and
biosdrv_raw_write() routines in that file.

1-30 USFiles User's Manual

The logical block read and write routines are appropriate for accessing hard
drives that use logical block addressing (LBA). In this case, the CHS read
and write routines are simply dummy routines. A driver (called
lbahddrv.c) that supports logical block addressing is provided with the
80x86 real mode release of USFiles.

See also: Chapter 7, Porting Guide, for assistance if you need to integrate
your driver with an RTOS.

Driver Function Summary
The file manager makes the calls to the device driver functions. The device
driver functions for an sfm device are described in the MultiTask! manual.
The functions comprising a pcfm (disk) driver are described below.

A pcfm device driver consists of these functions, which are typically used
in this order:

init() Initialize device

format() Physically formats sector

raw_read() Read sector specified by cylinder, head, and sector

raw_write() Write sector specified by cylinder, head, and sector

read() Read sector specified as a logical sector number

write() Write sector specified as a logical sector number

timestamp() Reports time and date

diskchange() Reports if a disk has been changed

For a specific instance of a driver, these routines will be given the above-
mentioned names with a unique prefix prepended to them to designate the
driver (e.g., pcfdrv_raw_read()).

The exact function performed by these routines depends upon what the file
manager calling them expects. The division of responsibilities between the
file manager and the device driver may be altered if a new file manager is
developed. The expectations of the pcfm file manager are as follows.

USFiles User's Manual 1-31

Driver Function Descriptions

Driver diskchange() function
int diskchange(DEVICE *devp);

The diskchange() function returns a non-zero error code if a media change
or other error has been detected since the last read or write operation to the
drive. Sensing the disk change status line for diskette drives is useful for
this operation. For non-removable media, this is a dummy routine that
always returns 0.

The purpose of returning an error code is to be able to distinguish between a
disk change (EDSKCHG) and having no disk present (ENORESP). Other
errors may be returned if required by your driver.

See also: Appendix A, Handling Disk Changes

Driver format() function
int format(DEVICE *devp, int cylinder, int head,

int nsects, void *buffer);

The format() function should physically format the track specified by
cylinder and head, on the drive specified by devp->unit_no. The
buffer contains format information for nsects if applicable. The
format() function returns zero if successful or non-zero on an error. If the
format function will not be used, format() can be a dummy function that
does nothing.

1-32 USFiles User's Manual

Driver init() function
int init(DEVICE *devp);

The initialize function is called once for each drive controlled by the driver.
It should do any initialization required by the device, such as hardware
reset, initialize interrupt vectors, etc. Zero is returned if successful, and a
non-zero error code if not. If more than one drive is called, init() should
keep a static flag to tell it that it has already been called so it can avoid
repeating operations that should be done only once. The flopdrv_init()
function hooks controller-interrupt vectors on the first call, and for each
time it is called (it will be called only once for each drive) it starts a motor
control task.

Driver raw_read() function
int raw_read(DEVICE *devp, int cylinder, int head,

int sector, int, nsects, void *buffer);

The file descriptor and all associated structures will be initialized with all
available information before the driver raw_read() function is called. This
function should:

1. Seek the specified drive to the indicated cylinder. The drive is specified
by devp->unit_no..

2. Attempt to read nsects consecutive sectors starting with sector,
under the specified head into the buffer indicated.

3. Retry several times if an error is encountered, and then return a non-zero
error code if the error persists. If the read is successful, return a zero
value with the data in the buffer.

USFiles User's Manual 1-33

Driver raw_write() function
int raw_write(DEVICE *devp, int cylinder, int head,

int sector, int, nsects, void *buffer);

The file descriptor and all associated structures will be initialized with all
available information before the driver raw_write() function is called. This
function should:

1. Seek the specified drive to the indicated cylinder. The drive number is
contained in devp->unit_no.

2. Attempt to write nsects consecutive sectors starting with sector,
under the specified head into the buffer indicated.

3. Retry several times if an error is encountered, and then return a non-zero
error code if the error persists. If the read is successful, return a zero
value with the data in the buffer.

Driver read() function
int read(uint32 logical_sect, PCFM_BUFFER *bufp);

The driver read() function reads the indicated logical sector into the buffer
at bufp->buf, from the drive indicated by the bufp structure. Any other
information required by the driver about the device can be found through
the bufp structure. Parameters in bufp may indicate that a consecutive
number of sectors are to be read, in which case this action should be taken.
The supplied driver in biosdrv.c should be used as a guide for coding a new
driver.

This read routine may accomplish its function by converting the logical
sector number into a physical cylinder, head, and sector number, and then
calling the raw_read() routine, or by directly accessing the disk drive. If
the read is successful the driver read() function returns a value of zero;
otherwise it returns a non-zero error code.

If bufp->usrbuf is not NULL, then the read() function will read
bufp->nsects sectors to the user’s buffer at bufp->userbuf, instead of
transferring a single sector to bufp->buf.

1-34 USFiles User's Manual

Driver timestamp() function
void timestamp(uint16 *time);

The timestamp() routine gets the time and date if available from the system,
and encodes the time as a 16-bit value which it writes to location *time.

The date is encoded as a 16-bit value that is written to time[1]. See
biosdrv.c for an explanation of the time and date encoding format. This
routine can be replaced by a dummy function with no ill effect other than
the date and time recorded in the directory entries for the file system will
not be correct.

Driver write() function
int write(uint32 logical_sect, PCFM_BUFFER *bufp);

The driver write() function writes the indicated logical sector into the buffer
at bufp->buf, from the drive indicated by fp->device->unit_no. Any
other information required by the driver about the device can be found
through the bufp structure. Parameters in bufp may indicate that a
consecutive number of sectors are to be written, in which case this action
should be taken. The supplied driver in biosdrv.c should be used as a guide
for coding a new driver.

This write routine may accomplish its function by converting the logical
sector number into a physical cylinder, head, and sector number, and then
calling a raw_write() routine, or by accessing the disk drive directly. If the
write is successful it returns a value of zero; otherwise it returns a non-zero
error code.

If bufp->usrbuf is not NULL, then the write() function will write
bufp->nsects sectors from the user’s buffer at bufp->userbuf to disk,
instead of transferring a single sector from bufp->buf.

USFiles User's Manual 1-35

RAM Disk Driver
USFiles is supplied with a configurable RAM disk device driver, which
should be used in initial tests to verify that USFiles is functioning in your
target environment. The RAM disk driver is contained in the file ramdrv.c.

The RAM disk driver can support any number of logical RAM drives. The
number of drives supported is defined by the parameter NUMRAMDRIVES in
the driver source file. This driver source duplicates the same timestamp
routines used in biosdrv.c. If you are using both drivers, you really only
need one set of the timestamp routines. You can leave one copy out and
change the DRIVER structure for one of the devices in userio.h to use the
timestamp routine of the other driver.

Each RAM drive must be initialized by a call to ramdrive_init() before you
can open any file on that drive.

DOS BIOS Driver
USFiles is supplied with a DOS device driver called biosdrv.c, which may
be used in x86 target systems supplied with PC-compatible BIOS. This
driver supports diskette and hard disk devices.

The BIOS calls in biosdrv.c present an oversimplification of what a
diskette read or write sector will actually do. You will usually need to step
the head to track zero on initialization and record the track that each drive is
currently on. Then when presented with a request for a sector on a new
track, issue a seek command to step to the new track, and then the read
command.

The raw driver routines should retry several times on soft errors and return a
non-zero error code on failure. These routines should return zero when
successful. The actual error codes can be user-defined, but need to be
coordinated between the raw driver routines and the
biosdrv_error_handler() routine (in biosdrv.c) or its replacement.

The biosdrv_error_handler() routine can be modified to take whatever
action you want for critical errors. One critical error it must respond to is
the diskette being changed. The BIOS routines return an error code of
0x06 if a disk change is signaled by the diskette drive. This value is

1-36 USFiles User's Manual

currently hard-coded into biosdrv_error_handler() and also
pcfm_get_bpb() in pcfm.c. This error needs to be passed back by the raw
read/write routines to assure proper operation of the file system.

Hard Disk Driver
The hard disk driver delivered with the 80x86 real mode and i386 protected
mode versions of USFiles (lbahddrv.c) provides direct access to an IDE
hard drive. The drive can either operate in logical block addressing (LBA)
mode, or in cylinder, head, sector (CHS) mode. Each drive’s unit number
in the device table determines how it is accessed.

See also: Configuring USFiles chapter for more details.

This driver assumes that PC hardware is in use, which includes the Intel
8259 Programmable Interrupt Controller (PIC) and the Intel 82062 Disk
Controller. The driver initialization installs an interrupt service routine
(ISR) in the expected DOS vector for IRQ 14. When operating in stand-
alone mode, an ISR is also installed into the DOS timer interrupt vector to
allow drive commands to timeout.

The hard disk driver does not implement raw_read() or raw_write()
routines. It strictly uses read() and write().

USFiles User's Manual 1-37

Diskette Driver
The diskette driver is also provided with 80x86 real mode and i386
protected mode, and it has similar assumptions to the hard disk driver. It
assumes the presence of the Intel 8259 PIC, 8272 Floppy Disk Controller,
and 8237 Programmable DMA Controller. The diskette drive ISR is
installed in the DOS vector used by the diskette drive controller.

The notes concerning the BIOS driver error handler also apply to the
diskette driver. There are two routines that are used to check for a disk
change. One is used only within the driver itself
(internal_pcfdrv_diskchange()), and does not call the error handler. The
other is pcfdrv_diskchange() and can be called by file manager functions
(like pcfm_open()). This routine will call the error handler.

Adding New Device Drivers
The driver structures are also defined in mtio.h. The PC file system driver
is:

struct driver_p { /* for PC Disk File System */

int (*init)(DEVICE *);

int (*raw_read)(DEVICE *, int, int, int, int, void *);

int (*raw_write)(DEVICE *, int, int, int, int, void *);

int (*format)(DEVICE *, int, int, int, void *);

int (*read)(uint32, struct pcfm_buffer_s *);

int (*write)(uint32, struct pcfm_buffer_s *);

void (*timestamp)(uint16 *);

int (*diskchange)(DEVICE *);

};

1-38 USFiles User's Manual

For comparison, the serial driver structure is:

struct driver_s { /* For Serial devices */
int (*init)(MTFILE *);
byte (*read)(MTFILE *);
void (*write)(MTFILE *, byte);
int (*ioctl)(MTFILE *, int, va_list);
void (*term)(MTFILE *);

};

If you are adding a new driver to USFiles to work with the PC file manager,
then we recommend that you define it as an instance of the driver_p
driver. There is no need to create an entirely new driver structure.

If you need a driver to work with a file manager that you are adding to
USFiles, then you may find that a new driver structure is necessary. When
developing USFiles for CD-ROM, we found this to be the case.

See also: The file mtio.h or Appendix E, USFiles for CD-ROM, to see the
CD-ROM driver structure.

Any new driver types added to the system need to be included in the driver
union in mtio.h:

union driver_u{
struct driver_s s; /* sfm serial driver */
struct driver_p p; /* pcfm disk driver */
struct driver_cd cd; /* cdfm CD-ROM driver */

};

The source file for the particular driver defines the specific driver structure.
For example, the RAM disk driver is defined at the end of ramdrv.c as:

struct driver_p ramdrv_s = {
ramdrv_init,
ramdrv_raw_read,
ramdrv_raw_write,
ramdrv_format,
ramdrv_read,
ramdrv_write,
ramdrv_timestamp,
ramdrv_diskchange

};

USFiles User's Manual 1-39

The device table needs to know about the drivers in use, so devtab.c
includes the line:

extern struct driver_p ramdrv_s;

Driver Errors
All the driver functions except the timestamp() routine return an integer
value to report errors. When a driver error occurs, some file manager
functions will set errno to that driver error and signal an error to the
application level. If the list of error codes in mtio.h (duplicated in
Appendix G, Error Codes) does not contain a code that adequately
describes the situation, you may extend the list.

Device Parameters
Since you can have several types of a particular device (e.g. two diskette
drives), we need a mechanism to keep track of the data associated with each
one separately. To do this we use a device parameter union (DEVPARM).
Each device in the device table specifies the variable used to keep track of
device parameters. When USFiles is delivered, the device table has two
diskette drives (A: and B:). Each has its own device parameter variable.
These are global variables defined in userio.h as:

PCFM_PARM pcparmA = {1}; /* set motor_event for drive A */
PCFM_PARM pcparmB = {2}; /* set motor_event for drive B */

Other fields in the device parameter structure will be filled when a device is
initialized.

1-40 USFiles User's Manual

Depending on the device type, the parameters used to characterize it will
differ. Examples of these are PCFM_PARM and CDFM_PARM in mtio.h.
Since the driver structure has to support all these different parameter
combinations, we use a union of pointers to device parameter structures:

typedef union devparm_u{
PCFM_PARM *pcd; /* PC disk I/O parameters */
SFM_PARM *pcs; /* Serial port parameters */
PIPE_PARM *pip; /* Pipe parameters */
CDFM_PARM *cdparm; /* CD-ROM drive parameters */
EXAMPLE_PARM *other; /* Add others here */

}DEVPARM;

If you add a new device type, you will have to add a new device parameter
type to the union.

USFiles User's Manual 1-41

How It Ties Together
Remember that all of this really is brought together in the device table. The
device table entry specifies which file manager, driver, and device
parameter variable to use. It is through the device table that we are able to
navigate the USFiles three-layer structure.

An Example

As an example of how things are used, let us see what happens when we
open a file using mt_fopen(). The function mt_fopen() is in streamio.c.
After entering that routine, we determine what capabilities the file is to
have, decide which device to access (e.g. A:), and set up some parameters
for the file pointer. A pointer (devp) is set up to the device table entry for
the device in question, and using the pointer, USFiles calls the appropriate
file manager open function via:
status = devp->fileman->open(fp, fname);

The file manager is specified in the device table entry. For a diskette
device, the file manager is pcfm, so the above function call will take us to
pcfm_open(). In pcfm_open() we access the driver init() call. This is done
with:
devp = fp->device;
if(devp->driver->p.init(devp)){

/* do stuff */
}

The driver that is called in the above example is also specified in the device
table. If we were using a CD-ROM device instead of a diskette drive, the
file manager open would resolve to cdfm_open(), and within that call, the
init() command could be accessed by:
devp = fp->device;
if(devp->driver->cd.init(devp)){

/* do stuff */
}

The difference is resolved by the driver_u union, which was described
above. Of course, we would have to make sure that the driver shown in the

1-42 USFiles User's Manual

device table is truly a CD-ROM driver. If a new file manager is written
with a new driver type, then its function calls would be accessed through:
fp->device->driver->newdriver.function(params);

It is important to realize that a file manager is associated with only one type
of device driver. The PC file manager maps to PC device drivers, and the
CD file manager is related to the CD-ROM driver, so this connection is
hard-coded into the file managers through the p.function() or cd.funtion()
lines described above. It seems conceivable that two different file managers
could use the same type of driver, but it is difficult to imagine how this
would occur. It is not possible for a particular file manager to use different
driver types, though.

USFiles User's Manual 1-43

Function Call Hierarchy
Figure 3-4 shows how the file structure ties the various USFiles internal
components together. Table 3-1 shows how the stream I/O, PC file
manager, and driver functions all relate. When stream I/O opens a file, it
finds the appropriate device table entry, and the file manager and driver
pointers are copied from the device table into the file structure. Stream I/O
functions then call the file manager, which calls the driver via the pointer in
the file structure.

Figure 3-4: Schematic Linking the USFiles Internals Together

File Structure

Device Table
Index

Driver Pointer

File Manager
Pointer

Device Pointer

Device Table

Device for
File

Driver Pointer

File Manager
Pointer

Driver

File
Manager

Stream I/O

1-44 USFiles User's Manual

Table 3-1: Function Hierarchy

Stream I/O File Manager Driver
mt_clearerr()

mt_fclose() pcfm_close() timestamp(), write()

mt_feof()

mt_ferror()

mt_fflush() pcfm_fmioctl() write()

mt_fgetc() pcfm_read() read()

mt_fgetpos()

mt_fgets() pcfm_readln() read()

mt_fopen() pcfm_open() init(), diskchange(), read()

mt_fprintf() pcfm_write() write()

mt_fputc() pcfm_write() write()

mt_fputs() pcfm_writeln() write()

mt_fread() pcfm_read() read()

mt_fseek() pcfm_seek() read(), write() (indirectly called)

mt_fsetpos() pcfm_seek() read(), write()(indirectly called)

mt_ftell()

mt_fwrite() pcfm_write() write()

mt_mkdir() pcfm_makdir() timestamp(), write()

Table continued on next page.

USFiles User's Manual 1-45

Table 3-1 (continued): Function Hierarchy

Stream I/O File Manager Driver
mt_printf() pcfm_write() write()

mt_readdir() pcfm_fmioctl(),

mt_remove() pcfm_open(),
pcfm_delete()

init(), read(), write()

mt_rename() pcfm_open(),
pcfm_delete()

init(), read(), write()

mt_rewind() pcfm_seek() read(), write() (indirectly called)

mt_rmdir() pcfm_open(),
pcfm_fmioctl()

init(), read(), write()

mt_sprintf()

mt_sscanf()

mt_vsprintf()

1-46 USFiles User's Manual

Directory Access
The fopen() function can be used to access directories as ordinary files
(read-only). This will allow you to use fseek(), rewind(), and fread() to
access a directory. When using long file names, knowing how far to seek
and read is not obvious.

USFiles comes with a function, mt_readdir(), to read directory entries from
a directory. Here is a sample use:

MTFILE *fp;
MT_DIRENT entry;

fp = mt_fopen(pathname,”d”);
if(!fp)

iprintf(“Error opening directory”);
while (!mt_feof(fp)) {

if(!mt_readdir(fp, &entry))
iprintf(“ %s\n”,entry.name);

else if(errno != 0)
iprintf(“mt_readdir error”);

}
mt_clearerr(fp);
mt_fclose(fp);

The “pathname” above will be the directory to open. For example, “a:”
would open the root directory, and “a:\SUBDIR” would open a
subdirectory named SUBDIR on drive A:.

See also: Please see the entry for mt_readdir() in Chapter 5, Library
Reference, for a more detailed description of this function.

USFiles User's Manual 1-47

Global Variables
USFiles makes use of a few global variables that may be useful when
debugging an application.

DEVICE device_tab[]
Device table

MTFILE *mtstreams[NUMSTREAMS]
Open streams table

MEMHEAD_DEF mem_rootptr[NUMCOLORS]
Heap array (only for stand-alone USFiles for 386
protected mode)

DIR_SEARCH_BLK workblk
Used to search for a PC-type file (protected by
LOCK_FILESYSTEM())

PCFM_BUFFER pcfm_buf[NUMBUFFERS]
PC file manager sector buffers

byte pcfm_agescale
Signals when buffer age parameter wraps

1-48 USFiles User's Manual

USFiles User's Manual 2-1

2. Configuring USFiles
Chapter Contents

2. CONFIGURING USFILES...2-1
Configuration Overview ..2-2

Configuring Devices ..2-2
Configuring Drives and Drivers...2-6
Configuring Streams and Buffers ..2-7

Buffer Configuration Guidelines2-8
VFAT ...2-9

Checking Configuration Parameters ..2-9
Protecting Resources..2-10
Setting Timeouts for Device Drivers2-12
Files Used for Configuration..2-13
USFiles Tips...2-14

2-2 USFiles User's Manual

Configuration Overview
There are a variety of items that can be configured for USFiles, ranging
from what devices are available to how many buffers are used. This chapter
will describe the individual configuration parameters and details, and then
provide a summary of these parameters arranged by file.

Configuring Devices
Possibly the most important configuration issue is setting up the device.
The device table is an array defined in devtab.c. A device table entry
consists of initialized data structures that define the device characteristics
and map the appropriate file manager and driver routines to the device.

The default USFiles device that resides in the device table is a RAM disk.
This device is functional on any board. To add device table entries to match
your hardware, you must:

1. Declare the file manager. For USFiles devices this is already done with
the line:

extern FILEMAN const pcfm;

 NOTE: The pcfm structure is defined in pcfmapi.c.

1. Declare the driver. The USFiles RAM disk does this with:

extern struct driver_p const ramdrv_s;

 NOTE: The ramdrv_s structure is defined in ramdrv.c.

1. Define the variable for storing device dependent data. The USFiles
RAM disk uses:

PCFM_PARM pcparmR;

1. Place an entry for the device in device_tab[]. The RAM disk entry
is:

USFiles User's Manual 2-3

&pcparmR, /* device dependent data */
“R”, /* name */
FM_PCFM, /* device type = PC device */
0xF, /* bits: text write read */
0, /* unit# */
0, /* partition */
(DRIVER *)&ramdrv_s, /* pointer to driver */
&pcfm, /* pointer to file manager */
NULL, /* pointer to FILE */
0, /* flags */
0 /* # open paths (RAM) */

For USFiles devices the file manager is always of type FILEMAN, the driver
is always of type driver_p, and the device parameter variable is always of
type PCFM_PARM. When using USFiles for CD-ROM, the driver and device
parameter type change. Please see Appendix E, USFiles for CD-ROM, for
more details.

You will very likely need to add or delete structure initializers from this
table. Depending on the file manager and driver, not every element in the
device_s structure will necessarily be used for a particular device.
However, there must be initialized data present for each element as a place
holder.

See also: For the definition of the device structure, see mtio.h (struct
device_s) or Chapter 3, USFiles Internals.

In the above sample device table entry, the drive will be identified as “R:”.
The device name does not need to be a single character; there is no size
limit on the device name. The name given in this table is required to be all
upper case characters. The pathname given to fopen() is case insensitive.

2-4 USFiles User's Manual

The capabilities field of the device table entry (fourth item in device_s)
can be any combination of:

CAP_READ Read is permitted

CAP_WRITE Write is permitted

CAP_UPDATE Read and Write (== CAP_READ | CAP_WRITE)

CAP_TEXT Text mode is permitted

You will need to set up the device table to represent your hardware.

NOTE: Only the lower three bits of the capabilities field are
significant to USFiles. Any values in the upper 5 bits are
ignored. This means that capabilities = 0x7 is the same
as capabilities = 0xF.

Unit Numbers
When specifying a diskette or hard drive in the device table, the unit
number assigned will affect how it is accessed. The particular bits in the
unit number are presented in Table 4-1.

Table 4-1: Bits in the Unit Number

The explanation of each field is:

drive type 0 = diskette drive; 1 = hard drive
mode 0 = CHS mode; 1 = LBA mode (hard drives only)
device number Actual unit number
The PC file manager uses the drive type bit to determine how to read the
device BPB. The mode bit is used in lbahddrv.c to decide whether a

Bit 7 6 5 4 3 2 1 0
Use drive unused mode device number

type

USFiles User's Manual 2-5

logical sector number should be converted to cylinder, head, and sector.
For hard drives, LBA mode is preferred, since it allows access to larger
devices.

Diskette drives can have numbers ranging from 0 to 3. Hard drives using
CHS may be numbered from 80h to 83h, and those using LBA can range
from 84h to 87h. A master drive is specified by bit 0 being clear, and the
slave drive is specified by bit 0 being set. Therefore on the primary IDE
cable, master drives are 80h or 84h, and slave drives are 81h or 85h,
depending on the access mode.

Configuring Partition Numbers
Hard drive partitions are assigned consecutively. The first partition on a
drive is partition 0, the second is partition 1, and so on.

NOTE: When DOS determines drive letters, all primary DOS
partitions are assigned letters first, and then the logical drives
in extended partitions are handled. For example, if you have
two drives, each with a primary partition and a logical drive,
then the first disk will have drives C: and E:. The second disk
will have drives D: and F:. In the USFiles device table, you
may associate drive letters with whatever partition you desire.

2-6 USFiles User's Manual

Configuring Drives and Drivers
The file siosrc\sioconf.h has definitions used to control the behavior of test
programs in certain situations. When using a RAM disk, the application
needs to ‘format’ the device before it can be accessed. By setting RIO to 1
in sioconf.h, the test programs know to execute the RAM disk format
command.

Likewise, if you are using the i8086 BIOS driver (biosdrv.c) to access the
hard disk or diskette drives, you should uncomment the line:

#define USEBIOS

When USEBIOS is not defined, the test programs will attempt to restore the
interrupt service routines that DOS was originally using. The BIOS driver
does not change these routines. So when the BIOS driver is used, we do not
want to restore them.

#define RIO 1 enables test programs to format the RAM disk

#define USEBIOS will not attempt to restore DOS interrupt service
routines

USFiles User's Manual 2-7

Configuring Streams and Buffers
USFiles allows the user to specify the maximum number of open streams
(files) and the number and types of sector buffers used internally. Each
sector buffer requires 512 bytes for the sector contents, plus additional
space for internal use. The file siosrc\sioconf.h contains the specification
for the number of streams and buffers allowed.

NUMSTREAMS specifies the maximum number of paths that can
be open at the same time. NUMSTREAMS must be
at least 1, and is limited to a maximum of 254, due
to the internal use of a byte to track the index.

NUMBUFFERS specifies the number of general purpose file
buffers allocated by USFiles. Each buffer
consumes approximately 530 bytes of RAM. At
least 2 buffers are required for operation. More
buffers give better performance.

NUMFATBUFS specifies the number of buffers to hold FAT
sectors only

NUMDIRBUFS specifies the number of buffers to hold directory
sectors only

NUMINFBUFS specifies the number of buffers to hold FAT32 file
system information sectors only
See also: The section on USFiles Tips for more
discussion of configuring buffers.

See also: The section on USFiles Tips for more discussion of configuring
buffers.

When using DOS 8.3 file names only, USFiles requires approximately 30
KB of ROM and 6 KB of RAM. The RAM size includes 10 file buffers,
which is user-configurable.

The total number of buffers will be the sum of the four buffer numbers
specified in siosrc\sioconf.h.

2-8 USFiles User's Manual

Buffer Configuration Guidelines
NUMBUFFERS is used for data sectors, so increase this for large files. If
there are many files or subdirectories in a single directory, increase
NUMDIRBUFS. If you are using very large files (many clusters per file),
increase NUMFATBUFS. Use only one file system information sector buffer
for each FAT32 partition.

NUMBUFFERS cannot be zero. All the others can be set to zero, and they are
zero as the default. Any sectors that do not have a specific buffer pool
assigned (e.g. a FAT sector when NUMFATBUFS is 0) will be placed in the
general buffer pool (NUMBUFFERS). If you are only using the general buffer
pool, then NUMBUFFERS must be at least 2. If either NUMDIRBUFS or
NUMFATBUFS is non-zero, then NUMBUFFERS must be at least 1.

To aid in tuning the buffer numbers, there is a symbol in siosrc\sioconf.h
called USF_BUF_DEBUG. If this is set to 1, then the get_buffer() function
will track buffer usage. The statistics can be displayed by calling
buf_dump(). Please refer to siosrc\usfbdump.c for the buf_dump()
function call. Below are the statistics that are tracked for buffers.

calls: The number of times get_buffer() was called for this type of
buffer

pushes: The number of times get_buffer() had to write out a dirty buffer
to make room for a new buffer of the given type

reads: The number of times get_buffer() had to call the driver read
function for this buffer type

unused: The number of buffers of this type that were allocated but not
used

total: The total number of buffers of this type allocated

In general, if the number of pushes is large increase that buffer pool. If
there are unused buffers for a given pool, then decrease its size.

USFiles User's Manual 2-9

VFAT
For information on using and configuring VFAT, please refer to Appendix
C, VFAT.

Checking Configuration Parameters
The user can also enable careful input parameter checking. To turn on
parameter checking, set USS_SIO_PCHK in siosrc\sioconf.h to 1. This
would most likely only be used during development and not for production
code. To remove the extra code that checks the input to functions, set
USS_SIO_PCHK to 0.

NOTE: When passing in addresses from which USFiles will read (e.g.
USFiles reads data from the buffer passed to mt_fwrite() and
writes that data to a file), we do not test for a NULL address.
Reading from the NULL address will generally not cause
catastrophic failures. When passing in an address to which
USFiles will write (e.g. mt_fread()), turning on parameter
checking will test that the address is not NULL. This will
prevent USFiles from writing data to an obviously incorrect
region of memory.

2-10 USFiles User's Manual

Protecting Resources
In integrating USFiles with an RTOS, there are two levels of resource
protection used. The first level is protecting the stream I/O layer, and the
second is protecting directory-level access in the file system. The method
of resource protection varies between the supported RTOSes. Typically a
resource or semaphore is used. The RTOS header file has the definitions
for LOCK_ and UNLOCK_STREAMIO(), and LOCK_ and
UNLOCK_FILESYSTEM(). If this protection is implemented as a
resource, then definitions are made for the symbols STREAM_RESOURCE
and PCFM_RESOURCE. The resource definitions (if any) can be found in the
file rtos.h in the appropriate siosrc\<rtos> subdirectory.

NOTE: The LOCK_FILESYSTEM() call may become nested, so a
protection mechanism that allows resource nesting is required.

Table 4-2: Symbols for Locking Stream I/O and File System

RTOS STREAM_RESOURCE
Default Value

PCFM_RESOURCE
Default Value

MultiTask! N/A 1

TronTask! 1 2

Hitachi ITRON 2 1

RX850 N/A N/A

RX850 Pro N/A N/A

NOTE: The RX850 and RX850 Pro RTOSes do not take static
resource ID definitions. They will be dynamically configured,
hence there are no default values.

USFiles User's Manual 2-11

STREAM_RESOURCE specifies the resource number used to lock stream
I/O access while the current task is accessing it.

PCFM_RESOURCE specifies the resource number used to lock the file
system while the current task is accessing it.

You do not need to use the default values for these ID numbers, but these
symbols must be defined to valid resource ID numbers.

2-12 USFiles User's Manual

Setting Timeouts for Device Drivers
If you are using one of our direct-access device drivers on PC-type
hardware without an RTOS, then there is one more parameter that you
should be aware of. The depends.h file defines the clock frequency as
CLOCKHZ. If you are testing USFiles on a DOS PC in stand-alone mode,
then you should set CLOCKHZ to 18. If you leave this value at its default
setting (182), then the timeout periods for lbahddrv.c and flopdrv.c will be
exceptionally long. Leaving the default setting will not cause an error, but
you may wait for a long time for a timeout to occur. This is because the
direct access device drivers use the DOS ticker interrupt, which has a
frequency of 18.2 Hz. If CLOCKHZ does not match this, then our timeout
period will not be what we expect, since we convert from milliseconds to
clock ticks based on the value of CLOCKHZ.

NOTE: If a board support package (BSP) is being used with USFiles,
then the depends.h file will not be present. The clock speed
will be specified in config.mak as USS_CLOCKS_PER_SEC.
See siosrc\<cpu>\cpunotes.txt to determine whether your
version of USFiles is using a BSP.

USFiles User's Manual 2-13

Files Used for Configuration
compiler.mak Specifies target board (see comments in file for details).

Located in config\<cpu>\<compiler> directory.

config.mak Specifies product installation directory, products to build,
CPU, compiler and RTOS used, and possibly
USScCLOCKS_PER_SEC.

devtab.c Contains the device table.

depends.h May specify CLOCKHZ if no BSP is used. Located in
siosrc\<cpu>\<compiler> directory, if present.

rtos.h May specify STREAM_RESOURCE and PCFM_RESOURCE.
Located in siosrc\<rtos> directory.

sioconf.h Specifies NUMSTREAMS, NUMBUFFERS, NUMFATBUFS,
NUMDIRBUFS, and NUMINFBUFS. For debugging use,
USF_BUF_DEBUG and USS_SIO_PCHK are set. Also
used to specify RIO and USEBIOS. Located in siosrc
directory.

sio.mak Specifies VFAT and FAKEUNICODE (See Appendix C,
VFAT, for more details). Located in config directory.

The file siosrc\<cpu>\cpunotes.txt might contain more information on
configuration for a particular processor.

2-14 USFiles User's Manual

USFiles Tips
This section provides a few suggestions that should improve the
performance of USFiles. If you would like to discuss any of these items,
please contact us.

Use Short File Names
If possible use short file names. Building up long file name entries can be a
time-consuming process.

Use Unique Long File Names
If long file names are necessary, try to make file names in a given directory
unique in the first six characters. This would mean using the names
file01_for_testing.tmp, file02_for_testing.tmp, etc. instead of
testing_file01.tmp, testing_file02.tmp, etc. USFiles will more quickly be
able to assign a unique 8.3 name to the file.

Do Not Place Too Many Files in a Directory
Do not keep too many files in a given directory. When searching for a file
name, USFiles will have to read each entry in the directory until it finds the
desired name. Each entry is 32 bytes, so a directory with 1000 files uses 63
sectors (for 8.3 names). If you use long file names, that number could
easily double (see the first item above).

Tune Buffer Usage
Performance can be improved by using the use-specific buffers that have
been introduced in USFiles 3.07. Some guidelines for use are:

NUMBUFFERS (Number of Devices) x (Number of sectors per cluster)
NUMFATBUFS Number of files
NUMDIRBUFS Number of files
NUMINFBUFS Number of FAT32 devices

These should be used as starting points. Set USF_BUF_DEBUG in
siosrc\sioconf.h to help fine tune these numbers. See the section

USFiles User's Manual 2-15

"Configuring Streams and Buffers" for a description of the buffer tracking
statistics. In general, the more buffers the better, but this can lead to large
RAM requirements.

Increase Cluster Size
Using a larger cluster size will limit the number of times USFiles has to
access the FAT. If you are typically dealing with large files a larger cluster
size can provide a significant performance improvement. When dealing
with smaller files, you may end up wasting more disk space than you want.
There are utilities like Partition Magic* that will allow you to choose the
disk cluster size.

2-16 USFiles User's Manual

USFiles User's Manual 3-1

3. Library Reference
Chapter Contents

Overview of USFiles Functions...3-4
Function Names ...3-5

Using errno ..3-6
Atomic typedef Names...3-7
User Interface Library Functions ...3-8

Function Summary...3-8
File Control Functions3-8
Writing Functions ..3-9
Reading Functions..3-9
Error Reporting Functions3-9
Error Recovery Functions3-10
File Time Functions ...3-10
File Attribute Functions3-10
Miscellaneous Functions..................................3-11

Function Descriptions ..3-12
char2uni..3-12
free_byte_cnt..3-13
free_clust_cnt ...3-14
free_kb_cnt...3-15
getBigEnd16...3-16
getBigEnd32...3-17
getLitEnd16..3-18
getLitEnd32..3-18
getf_attrib ...3-19
getf_date...3-20
getf_day..3-21
getf_hour ..3-22
getf_min ...3-23
getf_month ...3-24
getf_sec ..3-25

3-2 USFiles User's Manual

getf_size ...3-26
getf_time ..3-27
getf_year...3-29
invalidate_streams..3-30
mak_fdate...3-31
mak_ftime ..3-32
mt_clearerr ...3-32
mt_fclose..3-33
mt_feof ...3-35
mt_ferror ..3-36
mt_fflush ..3-37
mt_fgetc ...3-38
mt_fgetpos..3-40
mt_fgets..3-41
mt_fopen ..3-43
mt_fprintf ...3-46
mt_fputc ...3-49
mt_fputs ...3-51
mt_fread ...3-52
mt_fseek ...3-54
mt_fsetpos ..3-56
mt_ftell ...3-58
mt_fwrite..3-59
mt_mkdir..3-61
mt_printf...3-63
mt_readdir ..3-64
mt_remove ...3-66
mt_rename..3-68
mt_rewind ..3-70
mt_rmdir...3-71
mt_sprintf ...3-73
mt_sscanf ...3-74
mt_vsprintf ...3-76
otherFilesOpen ...3-77
pcfm_chmod...3-79

USFiles User's Manual 3-3

pcfm_chmodfp ...3-81
pcfm_chtime...3-82
pcfm_chtimefp ...3-84
pcfm_chvlabel ..3-85
pcfm_invalidate_buffers3-87
putBigEnd16 ..3-88
putBigEnd32 ..3-89
putLitEnd16 ...3-89
putLitEnd32 ...3-90
total_byte_cnt...3-91
total_clust_cnt ..3-92
total_kb_cnt..3-93
uni2char..3-94

3-4 USFiles User's Manual

Overview of USFiles Functions
At the user program level, all I/O devices (streams) are accessed through the
familiar ANSI C functions: fopen, fread, fwrite, fgetc, fgets, fputc, fputs,
printf, fprintf, sprintf, vsprintf, sscanf, fflush, and fclose. Disk (pcfm)
devices also accept the functions fgetpos, fsetpos, fseek, ftell, mkdir, and
remove. These latter calls will do nothing on a serial (sfm) device other
than return an error code. All of these functions are supplied in source form
and conform to the ANSI specifications with these exceptions: All devices
are unbuffered in the ANSI sense of the word. Interrupt-driven serial
devices are actually buffered with separate input and output buffers for each
device. This buffering is on the level of the interrupt service routine in the
driver and not on the higher level buffering as dealt with by the ANSI
setvbuf function. (This function is therefore not supplied.) Disk devices
are buffered by at least a full sector at a time when any access is made. The
paths defined as stdin and stdout are not automatically opened when
your application is started; they must be explicitly opened before they can
be used.

The first fopen() function initializes the required device. If initialization
takes some time, then you may notice that the first attempt to open a file on
a device takes considerably longer than subsequent calls.

The direct access disk drivers (lbahddrv.c and flopdrv.c) that we provide
are interrupt driven. For these devices, the task that sends the command
then enters a wait state until the device signals that the command is
completed. If an RTOS is being used with USFiles, then other tasks may
run while the drive is executing the command. If USFiles is in stand-alone
mode, then everything is put on hold until the drive is finished.

USFiles User's Manual 3-5

Function Names
The I/O functions (fopen(), fread(), etc.) are contained in the source files
streamio.c and fileio.c. Each of these functions are defined in the source
with a prefix of “mt_”, i.e.; fopen() is defined as mt_fopen(), etc. The
header file ussio.h contains #defines to equate the names such as
mt_fopen() to fopen(). These defines can be switched off, which would
make the names without the mt_ prefix disappear. If you do this it will
allow you to use I/O functions from another source (such as the library that
came with your compiler), simultaneously with USFiles. In this case,
fopen() would refer to the compiler library version of the function and
mt_fopen() to the USFiles version of the function. In the remainder of this
document we will refer to our functions as fopen(), fread(), etc.,
interchangeably with the names with the mt_ prefix. Keep in mind however
that if you switch off the #defines in ussio.h you will be referring to them
as mt_fopen(), mt_fread(), etc. exclusively. With the #defines switched
off, the file descriptor type for USFiles becomes MTFILE rather than FILE.
You can switch off the #defines by including your compiler library
<stdio.h> header file before you include the file ussio.h. Providing
stdio.h defines EOF, the mt_ defines will be omitted. The paths to stdin,
stdout, and stderr are NOT automatically opened; they must be opened
explicitly with a call to fopen() before they are used. If you are using your
C compiler library I/O in conjunction with the USFiles I/O functions, you
must not use mt_printf(), or use the stdin, stdout, and stderr macros
with the mt_ functions, since the values defined in stdio.h will not be
compatible with the USFiles values.
To use any of the stream I/O functions in your code, you must compile and
link streamio.c and fileio.c along with the appropriate file manager and
driver source files to your program. If additional devices are defined, they
must be added as entries in the device_tab definition in devtab.c. All of
the printf() functions are contained in the files fprintf.c and sprintf.c, and
sscanf() is in the file sscanf.c. These files must be compiled and linked to
your code to use these functions. If you are using VFAT to record long file
names, then you may need to include sprintf.c.
The makefile provided will compile all necessary modules and build a
library containing them if you make any of the test program targets. You

3-6 USFiles User's Manual

need then only link this library with your application code to make the
USFiles functions available to your code.
The fprintf() and scanf() functions will be generated as integer-only
versions (not supporting floats and doubles) unless the label PF_FLOATS is
defined when you compile these modules (fprintf.c and sscanf.c).

Using errno
Many of the I/O functions may set the variable errno to a non-zero value.
When using an RTOS, we have to be careful how errno is defined.
Chapter 6, Supported RTOSes, discusses how errno is implemented.
USFiles operating in stand-alone mode defines errno by including the
compiler library’s errno.h file.
In either case, once an error code is written into errno by one of the
functions returning an error, it is never cleared unless you clear it in the
application. You will need to do this unless you are aborting your program
on any error.
The error codes placed into errno by the USFiles functions are defined in
mtio.h, and they are listed in Appendix G, Error Codes. Some of these
may conflict with values defined in your compiler library header errno.h if
you try to include both of these files in your application.
The library entries for functions that can set errno list the possible errno
values. Since errno can be set at either the stream I/O or file manager
level, we distinguish between the two. If you are using a file manager other
than the PC file manager, then the possible errno values will differ.
Because we are continually developing USFiles, do not regard these as
comprehensive lists.

USFiles User's Manual 3-7

Atomic typedef Names
In addition to the ANSI C type definitions, USFiles specifies additional
types (see depends.h).

Name Description

byte unsigned char (8 bits)

int16 signed 16-bit integer

int32 signed 32-bit integer

uint unsigned integer

uint16 unsigned 16-bit integer

uint32 unsigned 32-bit integer

(The final five names are specified in the draft for ANSI C-99)

3-8 USFiles User's Manual

User Interface Library Functions
The functions are summarized by type, and then described individually in
detail.

Function Summary

File Control Functions
mt_fopen Opens a file

mt_fclose Closes a file

mt_renameRenames a file

mt_remove Removes a file

mt_mkdir Creates a directory

mt_readdir Reads a directory entry

mt_rmdir Removes a directory

mt_rewind Sets file pointer to start of file

mt_fseek Positions file pointer to desired location

mt_fsetpos Positions file pointer to desired location

mt_ftell Reports position of file pointer

mt_fgetpos Reports position of file pointer

USFiles User's Manual 3-9

Writing Functions
mt_fwrite Writes to a file
mt_fputc Writes a single character to a file
mt_fputs Writes a string to a file
mt_printf Writes formatted output to stdout
mt_fprintf Writes formatted output to a file
mt_sprintf Writes formatted output to a string
mt_vsprintf Writes formatted output to a string
mt_fflush Flushes file’s output buffer

Reading Functions
mt_fread Reads from a file

mt_fgetc Reads a single character from a file
mt_fgets Reads a string from a file
mt_sscanf Converts a string according to specified format

Error Reporting Functions
mt_feof Tests for end of file
mt_ferror Returns file error condition
mt_clearerr Clears file error condition

3-10 USFiles User's Manual

Error Recovery Functions
invalidate_streams Invalidates all open streams for a given device
otherFilesOpen Checks to see if there are open files on a device

pcfm_invalidate_buffers Invalidates all buffers for a given device

File Time Functions
getf_date Returns file modification date
getf_day Returns file modification day
getf_hour Returns file modification hour
getf_min Returns file modification minute
getf_month Returns file modification month
getf_sec Returns file modification seconds
getf_time Returns file modification time
getf_year Returns file modification year
mak_fdate Converts year, month, day to file date format
mak_ftime Converts hours, minutes, seconds to file time format
pcfm_chtime Changes time and date of file (specified by path)
pcfm_chtimefp Changes time and date of file (specified by path)

File Attribute Functions
getf_attrib Returns file attribute byte

getf_size Returns file size

pcfm_chmod Changes attributes of file (specified by path)

pcfm_chmodfp Changes attributes of file (specified by pointer)

USFiles User's Manual 3-11

Miscellaneous Functions
char2uni Converts ASCII and Shift-JIS to Unicode

free_byte_cnt Returns number of unallocated bytes on drive

free_clust_cnt Returns number of unallocated clusters on drive

free_kb_cnt Returns number of unallocated kilobytes on drive

getBigEnd16 Reads 16-bit integer recorded in Big-Endian mode

getBigEnd32 Reads 32-bit integer recorded in Big-Endian mode

getLitEnd16 Reads 16-bit integer recorded in Little-Endian mode

getLitEnd32 Reads 32-bit integer recorded in Little-Endian mode

pcfm_chvlabel Changes an existing volume label

putBigEnd16 Records 16-bit integer in Big-Endian mode

putBigEnd32 Records 32-bit integer in Big-Endian mode

putLitEnd16 Records 16-bit integer in Little-Endian mode

putLitEnd32 Records 32-bit integer in Little-Endian mode

total_byte_cnt Returns total number of bytes on drive

total_clust_cnt Returns total number of clusters on drive

total_kb_cnt Returns total number of kilobytes on drive

uni2char Converts Unicode to ASCII and Shift-JIS

3-12 USFiles User's Manual

Function Descriptions

char2uni

Converts ASCII and Shift-JIS to Unicode.

uint16 char2uni(uint16 c);

c Character to convert

The variable c is either an 8-bit ASCII character or a Shift-JIS two-byte
character. It will return the appropriate Unicode character for the character.
If c is a character that we do not recognize, then the return value is
0xFFFD.

NOTE: If you do not need to convert Kanji characters into Unicode,
then be sure that the symbol FAKEUNICODE is defined as 1
(see Configuring USFiles). This will remove the Shift-JIS to
Unicode conversion table and simplify the conversion process.

See also: uni2char

Return Value
Unicode character corresponding to c

0xFFFD if character c is not supported

USFiles User's Manual 3-13

Example
/* MACRO: Returns true if c is first byte of double byte Shift-
JIS char */
#define is_dbc(c) ((((byte)c >= 0x81) && ((byte)c <= 0x9f)) || \

(((byte)c >= 0xe0) && ((byte)c <= 0xfc)))

char filename[10];
char *fptr, namec;
uint16 unichar;

/* Get characters in filename */

fptr = filename;
namec = *fptr;
if(namec >= ‘ ‘){

fptr++; /* Next byte */
if(is_dbc(namec))

unichar = char2uni((uint16)((((uint16) namec) << 8)
| (byte) (*fptr)));

else
unichar = char2uni((unsigned char)namec);

}

free_byte_cnt

Returns the number of unallocated bytes available on the drive.

uint32 free_byte_cnt(MTFILE *stream);

stream pointer to the stream file descriptor

The number of bytes available to be allocated on the disk drive associated
with stream is returned. If an error occurs, 0 is returned.

NOTE: If using the FAT32 addition to USFiles, be careful with this
function. Since the number of FAT32 clusters can be a 32-bit
number, converting that to the number of bytes might
overflow a 32-bit unsigned integer.

3-14 USFiles User's Manual

See also: free_clust_cnt, free_kb_cnt, total_byte_cnt, total_clust_cnt,
total_kb_cnt

Return Value
Number of bytes available on disk.

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
ELOCKED timeout while waiting for file system access

Example
FILE *fp;
uint32 freebytes;

/* open for read/write */
fp = mt_fopen(“A:\file1”, “r+b”);
freebytes = free_byte_cnt(fp);

free_clust_cnt

Returns the number of unallocated clusters available on the drive.

uint32 free_clust_cnt(MTFILE *stream);

stream pointer to the stream file descriptor

The number of clusters available to be allocated on the disk drive associated
with stream is returned. If an error occurs, 0 is returned.

See also: free_byte_cnt, free_kb_cnt, total_byte_cnt, total_clust_cnt,
total_kb_cnt

USFiles User's Manual 3-15

Return Value
Number of clusters available on disk.

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
ELOCKED timeout while waiting for file system access

Example
FILE *fp;
uint32 clusters;

/* open for read/write */
fp = mt_fopen(“A:\file1”, “r+b”);
clusters = free_clust_cnt(fp);

free_kb_cnt

Returns the number of unallocated kilobytes available on the drive.

uint32 free_kb_cnt(MTFILE *stream);

stream pointer to the stream file descriptor

This function returns the number of kilobytes available to be allocated on
the disk drive associated with stream. If an error occurs, 0 is returned.

See also: free_byte_cnt, free_clust_cnt, total_byte_cnt, total_clust_cnt,
total_kb_cnt

Return Value
Number of bytes available on disk.

3-16 USFiles User's Manual

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
ELOCKED timeout while waiting for file system access

Example
FILE *fp;
uint32 freekb;

/* open for read/write */
fp = mt_fopen(“A:\file1”, “r+b”);
freekb = free_kb_cnt(fp);

getBigEnd16

Reads 16-bit integer recorded in Big-Endian mode.

uint16 getBigEnd16(byte **pos);

pos address of pointer indicating start of Big-Endian integer

The routine getBigEnd16() is primarily an internal routine, but it may prove
useful in some applications. The pointer will be incremented to the next
byte following the 16-bit integer.

See also: getBigEnd32, getLitEnd16, getLitEnd32, putBigEnd16,
putBigEnd32, putLitEnd16, putLitEnd32

Return Value
Unsigned 16-bit integer

USFiles User's Manual 3-17

Example
byte buffer[512], *bp;
uint16 number;

/* Point to beginning of 16-bit Big-Endian integer */
bp = &buffer[10];
number = getBigEnd16(&bp);
/* bp will now be at &buffer[12] */

getBigEnd32

Reads 32-bit integer recorded in Big-Endian mode.

uint32 getBigEnd32(byte **pos);

pos address of pointer indicating start of Big-Endian integer

The routine getBigEnd32() is primarily an internal routine, but it may prove
useful in some applications. The pointer will be incremented to the next
byte following the 32-bit integer.

See also: getBigEnd16, getLitEnd16, getLitEnd32, putBigEnd16,
putBigEnd32, putLitEnd16, putLitEnd32

Return Value
Unsigned 32-bit integer

Example
byte buffer[512], *bp;
uint32 number;

/* Point to beginning of 32-bit Big-Endian integer */
bp = &buffer[10];
number = getBigEnd32(&bp);
/* bp will now be at &buffer[14] */

3-18 USFiles User's Manual

getLitEnd16

Reads 16-bit integer recorded in Little-Endian mode.

uint16 getLitEnd16(byte **pos);

pos address of pointer indicating start of Little-Endian integer

The routine getLitEnd16() is primarily an internal routine, but it may prove
useful in some applications. The pointer will be incremented to the next
byte following the 16-bit integer.

See also: getBigEnd16, getBigEnd32, getLitEnd32, putBigEnd16,
putBigEnd32, putLitEnd16, putLitEnd32

Return Value
Unsigned 16-bit integer

Example
byte buffer[512], *bp;
uint16 number;

/* Point to start of 16-bit Little-Endian integer */
bp = &buffer[10];
number = getLitEnd16(&bp);
/* bp will now be at &buffer[12] */

getLitEnd32

Reads 32-bit integer recorded in Little-Endian mode.

uint32 getLitEnd32(byte **pos);

pos address of pointer indicating start of Little-Endian integer

The routine getLitEnd32() is primarily an internal routine, but it may prove
useful in some applications. The pointer will be incremented to the next
byte following the 32-bit integer.

USFiles User's Manual 3-19

See also: getBigEnd16, getBigEnd32, getLitEnd16, putBigEnd16,
putBigEnd32, putLitEnd16, putLitEnd32

Return Value
Unsigned 32-bit integer

Example
byte buffer[512], *bp;
uint32 number;

/* Point to start of 32-bit Little-Endian integer */
bp = &buffer[10];
number = getLitEnd32(&bp);
/* bp will now be at &buffer[14] */

getf_attrib

Returns attribute byte of file.

byte getf_attrib(MTFILE *stream);

stream pointer to the stream file descriptor object

The getf_attrib() function accesses the attribute byte of an open file’s
directory entry. The significant bits in the attribute byte for the FAT file
system are:

0 Read Only (FA_RDONLY)

1 Hidden File (FA_HIDDEN)

2 System File (FA_SYSTEM)

3 Volume Label (FA_LABEL)

4 Directory (FA_DIR)

5 Archive (FA_ARCH)

3-20 USFiles User's Manual

See also: pcfm_chmod, pcfm_chmodfp

Return Value
Attribute byte

0xf failure

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

Example
MTFILE *fp;
byte att;
att = getf_attrib(fp);
if(att & FA_RDONLY)

/* File is read only */

getf_date

Returns file modification date.

uint16 getf_date(MTFILE *stream);

stream pointer to the stream file descriptor object

The getf_date() function accesses the modification date of an open file’s
directory entry. The date format for the FAT file system combines the year,
month, and day in one 16-bit entry. To retrieve each part of the date
separately, use the functions getf_year, getf_month, and getf_day.

See also: mak_fdate, getf_year, getf_month, getf_day

USFiles User's Manual 3-21

Return Value
File modification date
0 failure

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

Example
MTFILE *fp;
uint16 date;
date = getf_date(fp);
if((date & 0x1f) == 10)

/* If the modification day is the 10th */

getf_day

Returns day file was modified.

byte getf_day(MTFILE *stream);

stream pointer to the stream file descriptor object

The getf_day() function returns the day of the month on which the file was
last modified. The day will range from 1 to 31

See also: mak_fdate, getf_year, getf_month, getf_date

Return Value
File modification day (1..31)

0 failure

3-22 USFiles User's Manual

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

Example
MTFILE *fp;
byte day;

day = getf_day(fp);
if(day == 27)

/* If the modification day is the 27th */

getf_hour

Returns hour file was modified.

byte getf_hour(MTFILE *stream);

stream pointer to the stream file descriptor object

The getf_hour() function returns the hour of the day in which the file was
last modified. The hour will range from 0 to 23

See also: mak_ftime, getf_min, getf_sec, getf_time

Return Value
File modification hour (0..23)

USFiles User's Manual 3-23

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

Example
MTFILE *fp;
byte hour;

hour = getf_hour(fp);
if(hour == 1)

/* If the modification hour is 1 */

getf_min

Returns minute file was modified.

byte getf_min(MTFILE *stream);

stream pointer to the stream file descriptor object

The getf_min() function returns the minute in the hour in which the file was
last modified. The minute will range from 0 to 59.

See also: mak_ftime, getf_hour, getf_sec, getf_time

Return Value
File modification minute (0..59)

3-24 USFiles User's Manual

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

Example
MTFILE *fp;
byte minute;

minute = getf_min(fp);
if(minute == 30)

/* If the modification minute is 30 */

getf_month

Returns month file was modified.

byte getf_month(MTFILE *stream);

stream pointer to the stream file descriptor object

The getf_month() function returns the month in which the file was last
modified. The month will range from 1 to 12.

See also: mak_fdate, getf_year, getf_day, getf_date

Return Value
File modification month (1..12)

0 failure

USFiles User's Manual 3-25

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

Example
MTFILE *fp;
byte month;

month = getf_month(fp);
if(month == 6)

/* If the modification month is June */

getf_sec

Returns seconds at which file was modified.

byte getf_sec(MTFILE *stream);

stream pointer to the stream file descriptor object

The getf_sec() function returns the number of seconds in the minute in
which the file was last modified. The seconds value will range from 0 to
59.

NOTE: For a file recorded in the FAT file system, the seconds value is
stored in 2-second increments.

See also: mak_ftime, getf_hour, getf_min, getf_time

Return Value
File modification seconds (0..58)

3-26 USFiles User's Manual

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

Example
MTFILE *fp;
byte secs;

secs = getf_secs(fp);
if(secs == 22)

/* If modified at second 22 of the minute */

getf_size

Returns file size.

uint32 getf_size(MTFILE *stream);

stream pointer to the stream file descriptor object

The getf_size() function returns the size of an open file. If the file size
cannot be determined, then a file size of zero will be reported.

Return Value
File size

errno Value

Stream I/O
EBADFP bad file pointer

USFiles User's Manual 3-27

PC File Manager
None

Example
MTFILE *fp;
uint32 size, max_size;

max_size = free_byte_cnt(fp);
size = getf_size(fp);
if(size > max_size)

/* Cannot store file copy */

getf_time

Returns time at which file was modified.

uint16 getf_time(MTFILE *stream);

stream pointer to the stream file descriptor object

The getf_time() function returns the file’s last modification time. For the
FAT file system, the 16-bit value has a combination of hour, minute, and
seconds at which the file was modified. To get each field separately, use
the functions getf_hour(), getf_min(), getf_sec().

CAUTION: This function cannot be used by USFiles for
CD-ROM.

See also: mak_ftime, getf_hour, getf_min, getf_sec

Return Value
File modification time
0 failure

errno Value

Stream I/O
EBADFP bad file pointer

3-28 USFiles User's Manual

PC File Manager
None

USFiles User's Manual 3-29

Example
MTFILE *fp;
uint16 time;

time = getf_time(fp);
if((time & 0x1f) == 15)

/* If modified during the 15th 2-second interval */

getf_year

Returns year when file was last modified.

uint16 getf_year(MTFILE *stream);

stream pointer to the stream file descriptor object

The getf_year() function returns the year in which the file was last
modified. For the FAT file system the year ranges from 1980 to 2107.

See also: mak_fdate, getf_month, getf_day, getf_date

Return Value
File modification year (1980..2107, for FAT file)

0 failure

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

3-30 USFiles User's Manual

Example
MTFILE *fp;
uint year;

year = getf_year(fp);
if(year == 1997)

/* If modified during 1997 */

invalidate_streams

Invalidates all streams open on a device.

int invalidate_streams(DEVICE *devp);

devp pointer to device

The invalidate_streams() function is provided for error recovery purposes.
This function will close all streams for the device specified.

See also: otherFilesOpen, pcfm_invalidate_buffers

Return Value
0 successful completion

EOF error occurred, check errno

errno Value

Stream I/O
EMEMERR memory release error

EBADARG devp is NULL (only if USS_SIO_PCHK is set to 1)

PC File Manager
None

USFiles User's Manual 3-31

Example
DEVICE *devp;

/* Disk has changed */
pcfm_invalidate_buffers(devp);
if(otherFilesOpen(devp))

invalidate_streams(devp);
else

/* No open files, so ignore error */

mak_fdate

Converts the year, month, and day to DOS date format.

uint16 mak_fdate(uint year, byte month, byte day);

year year in which file was modified (1980 – 2107)

month month in which file was modified (1 – 12)

day day in which file was modified (1 – 31)

The DOS date format is produced based on the year, month, and day
provided. This function is implemented as a macro in mtio.h.

CAUTION: This function cannot be used by USFiles for
CD-ROM.

Return Value
File modification date in DOS format

Example
uint16 dos_date;

/* Convert June 27, 1997 to DOS date */
dos_date = mak_fdate(1997, 06, 27);

3-32 USFiles User's Manual

mak_ftime

Converts the hour, minute, and second to DOS time format.

uint16 mak_ftime(byte hour, byte minute,
byte second);

hour hour in which file was modified (0 –23)

minute minute in which file was modified (0 – 59)

second second in which file was modified (0 – 59)

The DOS time format is produced based on the hour, minute, and second
provided. This function is implemented as a macro in mtio.h.

CAUTION: This function cannot be used by USFiles for
CD-ROM.

Return Value
File modification date in DOS format

Example
uint16 dos_time;

/* Convert 11:12:30 am to DOS time */
dos_time = mak_ftime(11, 12, 30);

mt_clearerr

Clears the end-of-file and error indicators.

void clearerr(MTFILE *stream);

stream pointer to the stream file descriptor

The end-of-file and error indicators associated with stream are cleared.

USFiles User's Manual 3-33

See also: rewind, feof, ferror

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

Example
FILE *fp;

/* open for read/write */
fp = mt_fopen(DEVICE_0, “r+b”);
mt_clearerr(fp);

mt_fclose

Closes an open path to a stream.

int mt_fclose(MTFILE *stream);

stream pointer to the stream file descriptor object

The mt_fclose() function returns zero if the stream was successfully
closed, or EOF if any errors were detected. For mt_fclose() to successfully
complete, the stream must be open and accessible by the task making the
mt_fclose call. The stream output buffer will be flushed before the device
is closed. The device interrupts are disabled when the device is closed, and
any tasks waiting for the device I/O to complete will be reactivated.

Return Value
0 file successfully closed

EOF error (file not open, or not in possession of task making the call)

3-34 USFiles User's Manual

errno Value

Stream I/O
EBADFP bad file pointer

EMEMERR memory release error

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EWRTPRT attempted write to write-protected disk

driver error

USFiles User's Manual 3-35

Example
MTFILE *fp;

fp = mt_fopen(“COM1”, “r+b”);
/* open for read/write */

{ /* processing */ }
if(mt_fclose(fp)){

if(errno == EMEMERR)
/* Handle this error */

else
/* Handle other errors */

}

NOTE: If USFiles is operating with MultiTask! and the task in
possession of an open stream or streams dies, or is killed (by
klltsk()), all streams in the possession of that task are closed.

mt_feof

Tests for end-of-file condition.

int mt_feof(MTFILE *stream);

stream pointer to the stream file descriptor object

The mt_feof() function returns non-zero if the stream is at end-of-file.
Once the EOF flag is set it will only be cleared by calls to rewind(),
clearerr(), or successful calls to fseek() or fsetpos(), which is in accordance
with the ANSI C 99 specification. Of course, closing the stream makes the
EOF flag invalid as well.

NOTE: This function is implemented as a macro in ussio.h.

Return Value
0 file is not at end

!0 file is positioned at end

3-36 USFiles User's Manual

errno Value

Stream I/O
EBADFP fp is not valid (only if USS_SIO_PCHK is set to 1)

Example
MTFILE *fp;
int i;

/* open for read/write */
fp = mt_fopen(“a:file1”, “r+b”);
while(!mt_feof(fp)){

i = mt_fgetc(fp);
/* etc. */

mt_ferror

Returns the file error indicator.

int mt_ferror(MTFILE *stream);

stream pointer to the stream file descriptor object

The mt_ferror() function returns non-zero if the error indicator is set for the
stream. The error indicator will be cleared by a rewind(), or clearerr()
function, or by closing the stream. This function is implemented as a macro
in ussio.h.

NOTE: ANSI C does not specify under what conditions the error
indicator for the stream is set. In the current implementation,
only the driver level ever sets the error indicator. You should
generally rely on the return status of each function to
determine errors, and the value of errno. Note also that
errno is not cleared by any ANSI C function. Once it is set
non-zero, it is up to you to clear it.

Return Value
0 No error for file

USFiles User's Manual 3-37

> 0 Error occurred on file, see Appendix G, Error Codes
EOF File pointer not valid (only if USS_SIO_PCHK is 1)

errno Value

Stream I/O
EBADFP fp is not valid (only if USS_SIO_PCHK is set to 1)

Example
MTFILE *fp;
int i;

/* open for read/write */
fp = mt_fopen(DEVICE_0, “r+b”);
while(!mt_feof(fp)){

i = mt_fgetc(fp);
if(mt_ferror(fp))

report_error(“File error occurred”);
/* etc. */

mt_fflush

Flushes the output buffer of a stream.

int mt_fflush(MTFILE *stream);

stream pointer to the stream file descriptor object

The mt_fflush() function will cause the calling task to wait until any
remaining data in the stream output buffer has been transmitted to the port
or file. If the specified *stream == NULL then all open streams are
flushed.

A call to mt_fflush() will update the specified file's directory entry as well
as flush data to disk. This allows a file on disk to be consistent after every
mt_fflush() call. This behavior is different from DOS, which does not
update the directory entry until the file is closed.

3-38 USFiles User's Manual

Return Value
0 file successfully flushed

EOF error (file not open, or not accessible from the task making the
call)

errno Value

Stream I/O
EBADFP bad file pointer

EUNINIT file not initialized

PC File Manager
None

Example
MTFILE *fp;

if(mt_fflush(fp)){
if(errno == EUNINIT)

/* Handle this error */
else

/* Handle other errors */
}

mt_fgetc

Gets a character from a stream.

int mt_fgetc(MTFILE *stream);

stream pointer to the stream file descriptor

The mt_fgetc() function obtains the next character, as an unsigned char
converted to an int, from the input stream pointed to by stream.

USFiles User's Manual 3-39

Return Value
character the next character from the stream

EOF error (stream not opened or not in possession of calling task)

errno Value

Stream I/O
EBADFP bad file pointer

EACCESS file not opened for read

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT sector encountered

EATEOF at end of file

driver error

3-40 USFiles User's Manual

Example
MTFILE *fp; /* open stream pointer */
int c;

c = mt_fgetc(fp); /* get character */
if(c == EOF){

if(errno == EACCESS)
/* Handle this error */

else
/* Handle other errors */

}

mt_fgetpos

Gets a stream’s current position.

int mt_fgetpos(MTFILE *stream, fpos_t *position);

stream pointer to I/O stream

position position returned by function

The mt_fgetpos() function fills position with a value representing the
current position of the file pointer for stream. This is usually the byte
number from the beginning of the file. In the case of a file open in text
mode this may not be the same as the actual number of bytes you have read
from the file. The position returned by mt_fgetpos() should be used as
an argument to mt_fsetpos() to reposition a file to a former location.

NOTE: On an error condition, errno is also set to the return value.

See also: mt_fsetpos

Return Value
0 success

EBADFP invalid file pointer

EUNSUP device does not support function

USFiles User's Manual 3-41

EBADARG position is NULL (only if USS_SIO_PCHK is 1)

errno Value

Stream I/O
EBADFP bad file pointer

EBADARG position is NULL (only if USS_SIO_PCHK is 1)

PC File Manager
None

Example
MTFILE *fp; /* open stream pointer */
fpos_t position;
int i;
double x;

status = mt_fgetpos(fp,&position);

mt_fgets

Gets a string from a stream.

char *mt_fgets (char *s, int n, MTFILE *stream);

s pointer to character array of at least size n

n maximum number of characters to read plus one (for the null
string terminator)

stream pointer to the stream file descriptor

The mt_fgets() function reads at most one less than the number of
characters specified by n from the stream pointed to by stream into the
array pointed to by s. No additional characters are read after the new-line
character (which is retained). A null character is written immediately after
the last character read into the array.

3-42 USFiles User's Manual

NOTE: The new-line character is defined in userio.h as EOL_CHAR
and is not necessarily the same as “\n” produced by your C
compiler. The default value of EOL_CHAR is the ASCII
carriage return for sfm and pipe devices, and “\n” for pcfm
devices.

See also: mt_fputs

Return Value
s operation successful

NULL error: Stream not open, or not in our possession

errno Value

Stream I/O
EBADFP bad file pointer

EACCESS file not opened for read

EBADARG s is NULL or cnt < 1 (only if USS_SIO_PCHK is 1)

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT encountered

EATEOF at end of file

driver error

Example
MTFILE *fp; /* open stream pointer */
char buf[80];

if(mt_fgets(buf, 80, fp)){
/* we have string */

USFiles User's Manual 3-43

}else{
if(errno == EACCESS)

/* Handle this error */
else

/* Handle other errors */
}

mt_fopen

Opens a path to a stream.

MTFILE *mt_fopen(const char *name, const char *mode);

name pathname to device:[file]

mode type of access permitted

The mt_fopen() function opens a path to name and returns a pointer to the
MTFILE structure controlling the stream. The device component part of
name must appear in the device table (device_tab). The additional name
components if any must conform to the rules for the type of device opened.
If the operation fails, a null pointer is returned.

When using short (8.3) file names, USFiles will truncate any long names to
become 8.3 names. If there are more than 8 characters preceding the
extension, the name will be truncated to 8, unless the 8th byte is the first
byte of a two-byte character. In this case, the name will be truncated to use
the first 7 bytes only. The same rule holds for extensions that exceed 3
characters. If a file name has multiple occurrences of '.', the last one found
marks the extension. For example, the file name "long.tmp.txt.dat" is
recorded as "long.dat".

NOTE: Although * and ? are characters not allowed in file names,
USFiles will not reject them. They are recognized as wild
card characters, but USFiles does not support matching file
names with them. Please avoid using these unless you
implement wild card pattern matching.

The mode string specifies the type of access requested as follows:

“r” open text mode for reading

3-44 USFiles User's Manual

“w” create text mode for writing

“a” append (open/create for write at EOF)

“rb” open binary mode for reading

“wb” create or truncate for binary write

“ab” append binary (open/create for write at EOF)

“r+” open for update (read and write)

“w+” truncate or create for update

“a+” append (update at EOF)

“r+b” open binary mode for update

“w+b” truncate or create for binary update

“a+b” append; open/create for binary update at EOF

“d” open directory (USFiles only)

CAUTION: USFiles has an incompletely implemented append mode.
When opening a file in append mode, USFiles will set the
initial position to the end of the file. This is the extent of
supporting append mode. USFiles does not force the file
position to EOF before any write, as is required by the ANSI
specification.

See also: mt_fclose

Return Value
MTFILE * the file descriptor pointer to be used as a “handle” argument

for all subsequent I/O calls for the device.

NULL unable to open the device, possibly because the device
name was invalid, or the device is already in the possession
of another task. The value of the global errno may contain
additional error status. See mtio.h for the error codes
returned in errno.

USFiles User's Manual 3-45

errno Value

Stream I/O
EBADARG bad value in mode

ENOPATH device not found (see PC File Manager errno codes)

ECAPERR device does not support open for mode specified

ENMFILE no entries available in open streams array

EBADARG name is NULL, empty, or filled with blanks

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

ECTLFAIL device controller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation

EBADPART sector does not contain partition table

EDSKCHG disk has changed

EBADNAM file name too long or has bad characters

ENOPATH part of directory path not found (see Stream I/O errno codes)

ENOENT file not found in directory

ENOTDIR path contains a file name (instead of a directory)

EACCESS trying to access a file as a directory or vice versa

ERDONLY opening read only file for write

EBIGPATH path length exceeds VFAT restrictions

3-46 USFiles User's Manual

ERDFULL root directory is full

EISOPEN attempted to open a file multiple times, when not all opens
are for reading only

EDSKFUL disk is full

driver error

Example
MTFILE *fp;

fp = mt_fopen(“A:\\temp.txt”, “r+b”);
/* open for r/w binary mode */

if(!fp){
if(errno == ECAPERR)

/* Handle this error */
else

/* Handle other errors */
}

NOTE: USFiles accepts either ‘\’ or ‘/’ characters as name separators
interchangeably.

mt_fprintf

Writes formatted output to a stream.

int mt_fprintf(MTFILE *stream, const char *format, ...);

stream the output stream file descriptor pointer

format format specification string

... arguments to be formatted for output

The mt_fprintf() function writes output to the stream pointed to by stream,
under control of the string pointed to by format that specifies how
subsequent arguments are converted for output. If there are insufficient
arguments for the format, the behavior is undefined. If the format is

USFiles User's Manual 3-47

exhausted while arguments remain, the excess arguments are ignored. The
fprintf function returns when the end of the format string is encountered.

The format shall be a multi-byte character sequence composed of zero or
more directives. A directive is one or more white-space characters,
ordinary characters (not %) which are copied unchanged to the output
stream, or a conversion specification. A conversion specification is
introduced by the character %, and has this format:

%[flags][width][precision][mod]type

flags - Left-justify result
 + Always prefix with + or -
 space Prefix with a blank if non-negative
 # Alternate form conversion

width n Prints at least n characters, pad with spaces
 0n Prints at least n characters, pad with zeros
 * The next argument, which must be type int;
 it is consumed from the args list and used
 as the width specifier.

precision (default) =1 for d,i,o,u,x,X
 =6 for e,E,f
 .0 No decimal point for e,E,f
 .n n decimal places or characters are printed

mod h Short int for types: d,i,o,u,x
 l Long int for types: d,i,o,u,x
 double for types: e,f,g
 L Same as l

type c Int converted to unsigned char printed
 d Signed decimal int
 e Signed exponential
 f Signed floating point
 g Same as e or f based on value and
 precision
 i Signed decimal int
 n Argument is a pointer to int into which is
 written the number of chars written to

3-48 USFiles User's Manual

 stream so far
 o Octal unsigned int
 p Pointer
 s String
 u Decimal unsigned int
 x Hexadecimal unsigned int (a..f)
 X Hexadecimal unsigned int (A..F)

Return Value
+n the number of characters written
EOF output error (stream not open or not accessible)

USFiles User's Manual 3-49

errno Value

Stream I/O
EBADFP bad file pointer

EACCESS file not opened for write

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT encountered

EDSKFUL disk is full

driver error

Example
MTFILE *fp; /* open stream pointer */
int count,i,j;
double x,y;

count = mt_fprintf(fp,”i = %d, (%04X hex),
x=%e\r\n”,i,i,x);

if(count == EOF){
if(errno == EACCESS)

/* Handle this error */
else

/* Handle other errors */
}

mt_fputc

Writes a character to a stream.

int mt_fputc(int c, MTFILE *stream);

3-50 USFiles User's Manual

c the character to be output

stream pointer to the stream file descriptor object

The mt_fputc() function writes the character specified by c (converted to an
unsigned char) to the output stream pointed to by stream. The mt_fputc()
function returns the character written unless an error occurs, in which case it
returns EOF.

See also: mt_fgetc

Return Value
character the character written to the stream

EOF error (stream not opened or not in possession of calling task)

errno Value

Stream I/O
EBADFP bad file pointer

EACCESS file not opened for write

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT encountered

EDSKFUL disk is full

driver error

Example
MTFILE *fp; /* open stream pointer */
int c;

if(mt_fputc(c,fp) == EOF){
if(errno == EACCESS)

USFiles User's Manual 3-51

/* Handle this error */
else

/* Handle other errors */
}

mt_fputs

Writes a string to a stream.

int mt_fputs(const char *s, MTFILE *stream);

s pointer to the string to write
stream pointer to the stream file descriptor

The mt_fputs() function writes the string pointed to by s to the stream
pointed to by stream. The terminating null of s is not written. The
number of characters written is returned unless a write error occurs, in
which case EOF is returned. (Note that the ANSI C standard specifies only
that a non-negative value is returned in the normal case.)

See also: mt_fgets

Return Value
count the number of characters written
EOF error (stream not opened for write or not in possession of calling

task)

errno Value

Stream I/O
EBADFP bad file pointer

EACCESS file not opened for write

3-52 USFiles User's Manual

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT encountered

EDSKFUL disk is full

driver error

Example
MTFILE *fp; /* open stream pointer */

if(mt_fputs(“Hello there”,fp) == EOF)){
if(errno == EACCESS)

/* Handle this error */
else

/* Handle other errors */
}

mt_fread

Reads bytes from a stream.

size_t mt_fread(void *ptr, size_t size, size_t nmemb,
MTFILE *stream);

ptr pointer to the buffer to receive data

size the size in bytes of each element

nmemb the number of elements

stream the stream object pointer

The mt_fread() function attempts to read nmemb elements of size bytes
into the array pointed to by ptr, from stream. The actual number of
elements read is returned. Note that the number of elements returned will
be equal to nmemb unless the EOF is reached or some error occurs.

USFiles User's Manual 3-53

One method of reading blocks of data is to call mt_fread(buffer,
blocksize, numblocks, fp), but we recommend calling
mt_fread(buffer, 1, blocksize*numblocks, fp). In the first case,
the return value will be the number of blocks read. If some part of a block
is read, but not the entire block, then there is no way to know how many
additional bytes were read, and therefore, the file position is unknown. The
second method described reports how many bytes are read.

NOTE: It is not recommended that mt_fread() be used for files opened
in text mode. It will not cause difficulties, but it may return
unexpected values.

See also: mt_fwrite

Return Value
+n the number of elements actually read

0 no bytes read, typically indicating an error

errno Value

Stream I/O
EBADFP bad file pointer

EACCESS file not opened for read

EBADARG ptr is NULL or nmemb * size exceeds UINT_MAX (only if
USS_SIO_PCHK is 1)

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT encountered

EATEOF at end of file

3-54 USFiles User's Manual

driver error

Example
MTFILE *fp; /* open stream pointer */
char buf[80];

if(mt_fread(buf, 1, 80, fp) != 80)){
if(errno == EACCESS)

/* Handle this error */
else

/* Handle other errors */
}

mt_fseek

Repositions a file pointer.

int mt_fseek(MTFILE *stream, long offset, int location);

stream pointer to I/O stream

offset number of bytes to offset from location
to determine new file pointer position

location file position from which to add offset
SEEK_SET (0) - Beginning of file
SEEK_CUR (1) - Current file pointer position
SEEK_END (2) - End of file

The mt_fseek() function repositions the file pointer for stream by offset
bytes from location. If the stream is text mode, offset should be 0 or the
value returned by mt_ftell(). The value in location should be SEEK_SET
for beginning of file, SEEK_CUR for current file pointer position, or
SEEK_END for end of file. A successful seek will clear the EOF flag, in
accordance with the ANSI C 99 specification.

NOTE: USFiles supports seeking past EOF in a file that is opened for
write access. This is only allowed if SEEK_END is specified as
the location.

USFiles User's Manual 3-55

See also: mt_ftell

Return Value
0 file pointer successfully repositioned

errno see errno values below

3-56 USFiles User's Manual

errno Value

Stream I/O
EBADFP bad file pointer

EBADARG bad value of location

EBADPOS illegal offset

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT encountered

EDSKFUL disk is full

driver error

Example
MTFILE *fp; /* open stream pointer */
int status;

/* Note: second arg below is 30”ell” */
status = mt_fseek(fp,30l,SEEK_SET);

mt_fsetpos

Sets a stream’s current position (byte offset from beginning of file).

long int mt_fsetpos(MTFILE *stream, const fpos_t *pos);

stream pointer to I/O stream

pos new position to set

USFiles User's Manual 3-57

The mt_fsetpos() function sets the file pointer associated with stream to
the new position pos. The new position is the value obtained by a previous
call to mt_fgetpos() on that stream. The reason for the existence of fgetpos
and fsetpos (in addition to fseek) is that if you want to position to a file in
text mode, you cannot necessarily find a position by counting the characters
you have written out, since text mode translation may change that number.
In this case you can only use fgetpos to find a current position and then
return there later with fsetpos.

See also: mt_fgetpos

Return Value
0 success

errno see errno values below

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT encountered

EDSKFUL disk is full

driver error

Example
MTFILE *fp; /* open stream pointer */
fpos_t offset;
int i;

3-58 USFiles User's Manual

status = mt_fsetpos(fp, &offset);

mt_ftell

Gets current file position.

long int mt_ftell(MTFILE *stream)

stream pointer to I/O stream

The mt_ftell() function returns the value of the file pointer for stream.
The file pointer contains a value that specifies the current position of the file
as the byte offset from the beginning of the file.

See also: mt_fseek

Return Value
offset value of file pointer on success

byte offset from beginning of file

-1 errno set positive on failure

errno Value

Stream I/O
EBADFP bad file pointer

EUNSUP function unsupported for this file

PC File Manager
None

USFiles User's Manual 3-59

Example
MTFILE *fp; /* open stream pointer */
long offset;
int i;
double x;

offset = mt_ftell(fp);
if(offset == -1L){

if(errno == EUNSUP)
/* Handle this error */

else
/* Handle other errors */

}
status = mt_fseek(fp,offset,SEEK_SET);

mt_fwrite

Writes to a stream.

size_t mt_fwrite(void *ptr, size_t size, size_t nmemb,
MTFILE *stream);

ptr pointer to the data to write

size the size of each data item

nmemb the number of data items

stream pointer to the stream file descriptor

The mt_fwrite() function writes, from the array pointed to by ptr, up to
nmemb elements of size bytes each, to stream. The number of elements
actually written is returned, which will be less than nmemb only if an error
occurred. If the stream is not open or not accessible to the calling task, EOF
will be returned.

See also: mt_fread

Return Value
count the number of items written

3-60 USFiles User's Manual

EOF error (stream not opened for write or otherwise not accessible by
the calling task)

errno Value

Stream I/O
EBADFP bad file pointer

EACCESS file not opened for write

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT encountered

EDSKFUL disk is full

driver error

Example
MTFILE *fp; /* open stream pointer */
int count;
int data[10];

count = mt_fwrite(data, sizeof(int), 10, fp);
if(count < 10) {

if(errno == EACCESS)
/* Handle this error */

else
/* Handle other errors */

}

USFiles User's Manual 3-61

mt_mkdir

Creates a new directory.

int mt_mkdir(const char *path)

path the complete pathname of the directory to create

The mt_mkdir() function creates a new directory from the given pathname
path.

Return Value
0 successful

EOF error, and global variable errno set to a non-zero error code
(errno codes are defined in mtio.h)

errno Value

Stream I/O
EEXIST directory already exists

ECAPERR device cannot be written to

ENOPATH part of directory path not found

ENMFILE no available entries in open streams array

EMEMERR memory release error

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

ECTLFAIL device controller failed

EWRGFMT sector size not 512 bytes

3-62 USFiles User's Manual

ENOMEM no memory for file structure allocation

EBADPART sector does not contain partition table

EDSKCHG disk has changed

EBADNAM file name too long or has bad characters

ENOPATH part of directory path not found (see Stream I/O errno codes)

ENOTDIR path contains a file name (instead of a directory)

EBIGPATH path length exceeds VFAT restrictions

ERDFULL root directory is full

EDSKFUL disk is full

EWRTPRT trying to write to a write-protected disk

driver error

Example
int status

status = mt_mkdir(“a:\\thisdir/thatdir/newdir”);
if(status){

if(errno == EEXIST)
/* Handle this error */

else
/* Handle other errors */

}

NOTE: USFiles accepts either ‘\’ or ‘/’ characters as name separators
interchangeably.

USFiles User's Manual 3-63

mt_printf

Writes formatted output to stdout stream.

int mt_printf(const char *format, ...);

format format specification string

... arguments to be formatted for output

The mt_printf() function writes output to the stdout stream, under control
of the string pointed to by format that specifies how subsequent arguments
are converted for output. The mt_printf function behaves exactly like an
mt_fprintf call with stdout specified as the stream, and indeed it is
implemented as this. See mt_fprintf for further information on the format
specification. The definition of stdout is in the file ussio.h and may be
modified by the user to be any device. Note that stdout is not
automatically opened.

Return Value
+n the number of characters written

EOF output error (stream not open or not the owner)

errno Value

Stream I/O
EBADFP bad file pointer

EACCESS file not opened for write

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT encountered

3-64 USFiles User's Manual

EDSKFUL disk is full

driver error

Example
FILE *fp; /* open stream pointer */
int count;
int i,j;
double x,y;

count = mt_printf(“i = %d, (%04X hex),
x=%e\r\n”,i,i,x);

if(count == EOF){
if(errno == EBADFP)

/* Handle this error */
else

/* Handle other errors */
}

mt_readdir

Reads a directory entry.

int mt_readdir(MTFILE *stream, MT_DIRENT *dirp);

stream Pointer to I/O stream (open directory)

dirp Pointer to directory entry structure

The mt_readdir() function reads the next directory entry in the opened
directory, and stores the data in the structure pointed to by dirp. When the
end of the directory is reached the end-of-file indicator will be set. The
MT_DIRENT structure is defined in ussio.h as:

typedef struct mt_dirent{
uint32 size; /* File size */
uint16 year; /* File mod year */
byte month, /* File mod month */

day, /* File mod day */
hour, /* File mod hour */

USFiles User's Manual 3-65

minute, /* File mod minute */
second, /* File mod second */
dir_flag; /* =1 if directory */

#if VFAT
byte name[_MAX_FILENAME+1]; /* VFAT file name */

#else
byte name[13]; /* 8.3 file name */

#endif
}MT_DIRENT;

Return Value
0 successful

EOF entry not read; errno or end of directory reached

errno Value

Stream I/O
EBADFP bad file pointer

ENOTDIR file specified is not a directory

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT encountered

EATEOF positioned at end of file

driver error

NOTE: In a multitasking system, be careful not to modify a directory
while you are reading its entries. This might result in an
incorrect listing.

3-66 USFiles User's Manual

Example
MT_DIRENT entry;
int status;

iprintf(“\nListing Root Directory on A:\n”);
fp = mt_fopen(“A:”,”d”);
while (!mt_feof(fp)) {

if(!mt_readdir(fp, &entry))
iprintf(“ %s\n”,entry.name);

else if(errno != 0)
iprintf(“mt_readdir errno = %d”,errno);

}
mt_clearerr(fp); /* Clear EOF indicator */
mt_fclose(fp);

mt_remove

Deletes a file.

int mt_remove(const char *pathname);

pathname the complete pathname to the file

The mt_remove() function deletes a file specified by pathname. A
complete pathname including the device name must be specified.

Return Value
0 successful

EOF error, with the global variable errno set to the specific error
code

errno Value

Stream I/O
ECAPERR device cannot be written to

ENOPATH device not found

USFiles User's Manual 3-67

ENMFILE no available entries in open streams array

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

ECTLFAIL device controller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation

EBADPART sector does not contain partition table

EDSKCHG disk has changed

EBADNAM file name too long or has bad characters

ENOPATH part of directory path not found (see Stream I/O errno codes)

ENOTDIR path contains a file name (instead of a directory)

EBIGPATH path length exceeds VFAT restrictions

ERDFULL root directory is full

EWRTPRT trying to write to a write-protected disk

driver error

Example
if(mt_remove(“a:\\subdir\\thisfile.txt”))

printf(“errno = %d\n”, errno);

NOTE: USFiles accepts either ‘\’ or ‘/’ characters as name separators
interchangeably.

3-68 USFiles User's Manual

mt_rename

Renames (or moves) a file or subdirectory.

int mt_rename(const char *oldname, const char *newname);

oldname pathname to an existing file

newname new pathname to give file

The mt_rename() function changes the name of the file oldname to
newname. A complete pathname must be given for both, which must be on
the same device (drive). Subdirectories can be renamed. The newname
does not need to be in the same directory as oldname. The effect in this
case is that of moving the file to the new directory (and possibly renaming it
in the process). Attempting to rename a directory to be its own subdirectory
is not allowed and generates an EACCESS error.

Return Value
0 successful

EOF error, with the global variable errno set to the specific error
code.

errno Value

Stream I/O
ECAPERR device cannot be written to

ENOPATH part of directory path not found

ENMFILE no available entries in open streams array

EEXIST file (or directory) with newname already exists

EWRGDEV trying to rename file to a different device

USFiles User's Manual 3-69

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

ECTLFAIL device controller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation

EBADPART sector does not contain partition table

EDSKCHG disk has changed

EBADNAM file name too long or has bad characters

ENOPATH part of directory path not found (see Stream I/O errno codes)

ENOENT file not found in directory

ENOTDIR path contains a file name (instead of a directory)

ERDONLY opening read only file for write

EBIGPATH path length exceeds VFAT restrictions

ERDFULL root directory is full

EDSKFUL disk is full

EACCESS attempting to rename a directory to its own subdirectory

EWRTPRT trying to rename file on write-protected disk

driver error

3-70 USFiles User's Manual

Example
if(mt_rename(“a:\\file1.txt”,”a:\\file2.txt”))

printf(“errno = %d\n”, errno);

NOTE: USFiles accepts either ‘\’ or ‘/’ characters as name separators
interchangeably.

mt_rewind

Repositions file pointer to start of file.

void mt_rewind(MTFILE *stream);

stream pointer to I/O stream

The mt_rewind() function will position the file pointer to the start of the
file, and clear any end-of-file and error indicators associated with the
stream.

See also: mt_fsetpos, mt_fseek

Return Value
None

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

EBADFAT bad FAT encountered driver error

USFiles User's Manual 3-71

Example
MTFILE *fp;
if(mt_feof(fp))

mt_rewind(fp);

mt_rmdir

Removes (deletes) a subdirectory.

int mt_rmdir(const char *pathname);

pathname the complete pathname of the directory to delete

The mt_rmdir() function removes the directory specified by pathname
from the file system. The directory must be empty or an error is returned.
An attempt to remove the root directory returns an error.

See also: mt_mkdir()

Return Value
0 successful

EOF error, and global variable errno set to a non-zero error code

errno Value

Stream I/O
ENOPATH device not found

ENMFILE no available entries in open streams array

EACCESS pathname is a file, not a directory

ENOTMT directory is not empty

EWRTPRT trying to remove directory on write-protected disk

3-72 USFiles User's Manual

PC File Manager
ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

ECTLFAIL device controller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation

EBADPART sector does not contain partition table

EDSKCHG disk has changed

EBADNAM file name too long or has bad characters

ENOPATH part of directory path not found (see Stream I/O errno codes)

ENOTDIR path contains a file name (instead of a directory)

EBIGPATH path length exceeds VFAT restrictions

ERDFULL root directory is full

EWRTPRT trying to write to a write-protected disk

driver error

Example
int status

status = mt_rmdir(“a:\\thisdir/thatdir/newdir”);
if(status){

if(errno == ENOTMT)
/* Handle this error */

else
/* Handle other errors */

}

USFiles User's Manual 3-73

NOTE: USFiles accepts either ‘\’ or ‘/’ characters as name separators
interchangeably.

mt_sprintf

Writes formatted output to a string.

int mt_sprintf(char *s, const char *format, ...);

s pointer to string to receive output

format format specification string

... arguments to be formatted for output

The mt_sprintf() function writes output to the string pointed to by s, under
control of the string pointed to by format that specifies how subsequent
arguments are converted for output. The mt_sprintf() function behaves
exactly like an mt_fprintf call except that the output is written to the string
s rather than a stream.

See also: mt_fprintf for further information on the format specification.

Return Value
+n the number characters written

EOF output error (stream not open or not accessible)

errno Value

Stream I/O
EBADARG s is NULL (only if USS_SIO_PCHK is 1)

3-74 USFiles User's Manual

Example
MTFILE *fp; /* open stream pointer */
int count;
int i,j;
double x,y;
char *line[100];

count = mt_sprintf(line,
”i = %d, (%04X hex),x=%e\r\n”,i,i,x);

mt_sscanf

Converts a string, using the specified format.

int mt_sscanf(const char *s, const char *format,
...);

s pointer to string containing input characters

format format specification string

... pointers to objects to receive input items

The sscanf() function reads input from the string pointed to by s, under
control of the string pointed to by format that specifies the admissible
input sequences and how they are to be converted for assignment, using
subsequent arguments as pointers to the objects to receive the converted
input. If there are insufficient arguments for the format, the behavior is
undefined. If the format is exhausted while arguments remain, the excess
arguments are ignored.

The format shall be a multibyte character sequence composed of zero or
more directives. A directive is one or more white-space characters, an
ordinary character (neither a % nor a white-space), or a conversion
specification. A conversion specification is introduced by the character %
and has this format:

%[flags][width][mod]type

flags * Suppresses assignment of next field

USFiles User's Manual 3-75

width n Maximum number of characters that will be read

mod h Short int for types: d,i,o,u,x
 l Long int for types: d,i,o,u,x
 double for types: e,f,g
 L Same as l

type c Single character
 d Signed decimal int
 e Signed exponential
 f Signed floating point
 g Same as e or f based on value and precision
 i Signed decimal, octal, or hex int
 (e.g. 123, 0123, 0x123)
 [abc] Matches characters in set or …
 [^ab] Matches characters NOT in set
 n Int to receive count of chars consumed so far
 p Pointer
 s String

Return Value
+n the number of input items assigned {0..n}

EOF failure

Example
MTFILE *fp; /* open stream pointer */
char buf[80];
int count, arg[4];

mt_fgets(buf, 80, fp); /* read string */
count = mt_sscanf(buf,”%d %d %d %d”,&arg[0],

&arg[1], &arg[2],&arg[3]);

3-76 USFiles User's Manual

mt_vsprintf

Writes formatted output to a string.

#include <stdarg.h>

int mt_vsprintf(char *s, const char *format,
va_list arg);

s pointer to string to receive output

format format specification string

arg list of arguments to be formatted for output

The mt_vsprintf() function is equivalent to mt_sprintf, with the variable
argument list replaced by arg, which shall have been initialized by the
va_start macro (and possibly subsequent va_arg calls). The mt_vsprintf()
function returns the number of characters written in the array, not counting
the terminating null character.

Return Value
+n the number characters written

EOF output error (stream not open or not accessible)

errno Value

Stream I/O
EBADARG s is NULL (only if USS_SIO_PCHK is 1)

USFiles User's Manual 3-77

Example
MTFILE *fp; /* open stream pointer */
int count;
int i;
double x;
void *args[3];

args[0] = &i;
args[1] = &i;
args[2] = &x;

count = mt_vsprintf(line,”i = %d, (%04X hex),
x=%e\r\n”,&args[0]);

otherFilesOpen

Tests to see if files are open on the specified device.

int otherFilesOpen(DEVICE *devp);

devp pointer to device

The otherFilesOpen() function is provided for error recovery purposes. If a
disk change error is sensed, then we can call otherFilesOpen() to see if files
on the device are open.

The mt_fopen() function sets a pointer in the device structure when a file is
opened. This pointer is only used by stream devices and not by disk
devices. Once pcfm_open() successfully opens the file, it clears this
pointer. This is done to handle the case when a disk change is sensed
during a file open.

Imagine the situation where you close all open files, change the disk, and
then open a file on a new disk. The drive will have sensed that a disk has
changed. If we simply scan to see if there are any files open on the disk,
then we will find the file we are trying to open! By using the pointer
mentioned above, we know that it is safe to continue with the file open.
This is why the function name refers to “other” files. An examination of the
code is useful for understanding this.

See also: pcfm_invalidate_buffers, invalidate_streams

3-78 USFiles User's Manual

Return Value
0 no files open

1 files open on device

USFiles User's Manual 3-79

Example
DEVICE *devp;

/* Disk has changed */
pcfm_invalidate_buffers(devp);
if(otherFilesOpen(devp))

invalidate_streams(devp);
else

/* No open files, so ignore error */

pcfm_chmod

Changes file attributes (uses path).

int pcfm_chmod(const char *pathname, int attribute);

pathname the pathname to the file

attribute new file attribute value

The pcfm_chmod() function will change the attribute associated with
the file specified by pathname. The attributes must be one or more of the
following:

FA_NORMAL Normal file (no attributes)
FA_RDONLY Read-only file
FA_HIDDEN Hidden file (does not affect accessibility)
FA_SYSTEM System file
FA_ARCH Archive bit (file changed since bit cleared)

See also: pcfm_chmodfp

Return Value
+n new attribute

EOF failure

3-80 USFiles User's Manual

errno Value

Stream I/O
None

PC File Manager
ENMFILE no entries available in open streams array

EACCESS illegal attribute change

EBADARG requested attribute is illegal

ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

ECTLFAIL device controller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation

EBADPART sector does not contain partition table

EDSKCHG disk has changed

EBADNAM file name too long or has bad characters

ENOPATH part of directory path or device not found

ENOENT file not found in directory

ENOTDIR path contains a file name (instead of a directory)

EACCESS trying to access a directory

EBIGPATH path length exceeds VFAT restrictions

EWRTPRT trying to modify file on write-protected disk

driver error

USFiles User's Manual 3-81

Example
int att;

/* Set file attributes to “system” and “read-only” */
att = pcfm_chmod(“a:\\myfile.bin”, FA_SYSTEM|FA_RDONLY);
if(att == EOF)

fatal(“Chmod error, a:\\myfile.bin\n”);

NOTE: USFiles accepts either ‘\’ or ‘/’ characters as name separators
interchangeably.

pcfm_chmodfp

Changes file attributes (uses pointer).

int pcfm_chmodfp(MTFILE *fp, int function, int
attribute);

fp file descriptor pointer to open file

function 0 = return current, 1 = set new attribute

attribute new file attribute value

The pcfm_chmodfp() function will either return, or change the attributes of
the open file specified by fp. If function = 0, then the current file
attributes are returned. If function = 1, then the file attributes are set to
attribute. The FA_DIR attribute cannot be changed by this function.
The new attributes will have no effect until the file is closed and reopened
(e.g., if the file is currently open for write, and is made read-only by this
function, writes to the file are still permitted until the file is closed and
reopened).

FA_NORMAL Normal file (no attributes)
FA_RDONLY Read-only file
FA_HIDDEN Hidden file (does not affect accessibility)
FA_SYSTEM System file
FA_ARCH Archive bit (file changed since bit cleared)
FA_DIR File is a subdirectory

See also: pcfm_chmod

3-82 USFiles User's Manual

Return Value
+n current attribute of the file

EOF failure

errno Value

Stream I/O
None

PC File Manager
EBADFP bad file pointer

EACCESS illegal attribute change

EBADARG requested attribute is illegal, or function is not 0 or 1 (only if
USS_SIO_PCHK is 1)

Example
MTFILE *fp;
fp = mt_fopen(“A:\\MYFILE.BIN”, “r+b”);
att = pcfm_chmodfp(fp, FA_SYSTEM|FA_RDONLY);
if(att == EOF)

fatal(“Chmodfp error, a:\\myfile.bin\n”);

pcfm_chtime

Changes file date and time (uses path).

int pcfm_chtime (const char *pathname, uint16 ftime,
uint16 fdate);

pathname full pathname to the file

ftime the new file time to set

fdate the new file date to set

USFiles User's Manual 3-83

The pcfm_chtime() function changes the file’s modification date and time
fields in its directory entry to the new values given. The ftime and fdate
values are in the binary encoded format that is stored in the directory (as
returned by the driver timestamp function). You can use the macros
mak_fdate and mak_ftime, which are defined in mtio.h, to convert year,
month, day into the fdate format, and hour, minute, second into the ftime
format.

See also: pcfm_chtimefp

Return Value
0 OK
EOF file not found or not accessible

errno Value

Stream I/O
None

PC File Manager
ENMFILE no entries available in open streams array

ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

ECTLFAIL device controller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation

EBADPART sector does not contain partition table

EDSKCHG disk has changed

EBADNAM file name too long or has bad characters

3-84 USFiles User's Manual

ENOPATH part of directory path or device not found

ENOENT file not found in directory

ENOTDIR path contains a file name (instead of a directory)

EBIGPATH path length exceeds VFAT restrictions

EWRTPRT trying to change time on write-protected disk

driver error

Example
pcfm_chtime(“a:\\myfile.bin”, mak_ftime(12,30,00),

mak_fdate(1997,1,1));

NOTE: USFiles accepts either ‘\’ or ‘/’ characters as name separators
interchangeably.

pcfm_chtimefp

Changes file date and time (uses pointer).

int pcfm_chtimefp(MTFILE *fp, uint16 ftime, uint16
fdate);

fp file descriptor pointer to open file

ftime the new file time to set

fdate the new file date to set

The pcfm_chtimefp() function changes the file’s modification date and time
fields in its directory entry to the new values given. The ftime and fdate
values are in the binary encoded format that is stored in the directory (as
returned by the driver timestamp function). You can use the macros
mak_fdate and mak_ftime, which are defined in mtio.h, to convert year,
month, day into the fdate format, and hour, minute, second into the ftime
format.

See also: pcfm_chtime

USFiles User's Manual 3-85

Return Value
0 OK

EBADFP bad file pointer

ELOCKED timeout waiting for access to file system

Example
MTFILE *fp;
fp = mt_fopen(“A:\\MYFILE.BIN”, “r+b”);
pcfm_chtimefp(fp, mak_ftime(12,30,00),

mak_fdate(1997,1,1));

pcfm_chvlabel

Changes an existing volume label.

int pcfm_chvlabel(const char *drivename,
char *oldlabel, const char *newlabel);

drivename name of drive to alter label on (e.g. “A:”)

oldlabel pointer to where to return old label

newlabel the new label string to set

The pcfm_chvlabel() function returns the existing volume label of the
specified drive in oldlabel. If no volume label currently exists,
oldlabel will be set to an empty string. If newlabel does not equal
NULL, then the newlabel string is made the current volume label.

Return Value
0 OK
errno see errno values below

3-86 USFiles User's Manual

errno Value

Stream I/O
None

PC File Manager
ENMFILE no entries available in open streams array

ELOCKED timeout while waiting for file system access

ENOBUF no buffers available

ECTLFAIL device controller failed

EWRGFMT sector size not 512 bytes

ENOMEM no memory for file structure allocation

EBADPART sector does not contain partition table

EDSKCHG disk has changed

EBADNAM file name too long or has bad characters

ENOPATH device not found

ERDFULL root directory is full

EDSKFUL disk is full

EWRTPRT trying to modify write-protected disk

driver error

Example
char olda[12], oldb[12];
if(pcfm_chvlabel(“A:”,olda,NULL))

/* get drive a: label */
error_stop(1);

if(pcfm_chvlabel(“b:”,oldb,”New Volume”))

USFiles User's Manual 3-87

/* set drive b: label */
error_stop(2);

pcfm_invalidate_buffers

Invalidates all buffers on a device.

int pcfm_invalidate_buffers(DEVICE *devp);

devp pointer to device

The pcfm_invalidate_buffers() function is provided for error recovery
purposes. We can use this function to mark all buffers for the device as
unused. If there are dirty buffers found for the device, then 1 is returned.
These buffers are still invalidated. We simply report that some data will be
lost. If no dirty buffers are found for the device, then 0 is returned.

See also: otherFilesOpen, invalidate_streams

Return Value
0 no dirty buffers for device

1 dirty buffers found for device

EOF devp is NULL (only if USS_SIO_PCHK is 1)

errno Value

Stream I/O
None

PC File Manager
EBADARG devp is NULL (only if USS_SIO_PCHK is 1)

3-88 USFiles User's Manual

Example
DEVICE *devp;

/* Disk has changed */
pcfm_invalidate_buffers(devp);
if(otherFilesOpen(devp))

invalidate_streams(devp);
else

/* No open files, so ignore error */

putBigEnd16

Records 16-bit integer in Big-Endian mode.

void putBigEnd16(uint16 value, byte **pos);

value number to store

pos address of pointer indicating where to store Big-Endian integer

The routine putBigEnd16() is primarily an internal routine, but it may
prove useful in some applications. The pointer will be incremented to the
next byte following the 16-bit integer.

See also: getBigEnd16, getBigEnd32, getLitEnd16, getLitEnd32,
putBigEnd32, putLitEnd16, putLitEnd32

Return Value
None

Example
byte buffer[512], *bp;
uint16 number;

/* Point to beginning of 16-bit Big-Endian integer */
bp = &buffer[10];
number = 0xFACE;

USFiles User's Manual 3-89

putBigEnd16(number, &bp);
/* bp will now be at &buffer[12] */

putBigEnd32

Records 32-bit integer in Big-Endian mode.

void putBigEnd32(uint32 value, byte **pos);

value number to store

pos address of pointer indicating where to store Big-Endian integer

The routine putBigEnd32() is primarily an internal routine, but it may
prove useful in some applications. The pointer will be incremented to the
next byte following the 32-bit integer.

See also: getBigEnd16, getBigEnd32, getLitEnd16, getLitEnd32,
putBigEnd16, putLitEnd16, putLitEnd32

Return Value
None

Example
byte buffer[512], *bp;
uint32 number;

/* Point to beginning of 32-bit Big-Endian integer */
bp = &buffer[10];
number = 0x12FACE32;
putBigEnd32(number, &bp);
/* bp will now be at &buffer[14] */

putLitEnd16

Records 16-bit integer in Little-Endian mode.

void putLitEnd16(uint16 value, byte **pos);

3-90 USFiles User's Manual

value number to store

pos address of pointer indicating where to store Little-Endian
integer

The routine putLitEnd16() is primarily an internal routine, but it may prove
useful in some applications. The pointer will be incremented to the next
byte following the 16-bit integer.

See also: getBigEnd16, getBigEnd32, getLitEnd16, getLitEnd32,
putBigEnd16, putBigEnd32, putLitEnd32

Return Value
None

Example
byte buffer[512], *bp;
uint16 number;

/* Point to start of 16-bit Little-Endian integer */
bp = &buffer[10];
number = 0xFACE;
putLitEnd16(number, &bp);
/* bp will now be at &buffer[12] */

putLitEnd32

Records 32-bit integer in Little-Endian mode.

void putLitEnd32(uint32 value, byte **pos);

value number to store

pos address of pointer indicating where to store Little-Endian
integer

The routine putLitEnd32() is primarily an internal routine, but it may prove
useful in some applications. The pointer will be incremented to the next
byte following the 32-bit integer.

USFiles User's Manual 3-91

See also: getBigEnd16, getBigEnd32, getLitEnd16, getLitEnd32,
putBigEnd16, putBigEnd32, putLitEnd16

Return Value
None

Example
byte buffer[512], *bp;
uint32 number;

/* Point to start of 32-bit Little-Endian integer */
bp = &buffer[10];
number = 0x12FACE32;
putLitEnd32(number, &bp);
/* bp will now be at &buffer[14] */

total_byte_cnt

Returns the number of bytes on the drive.

uint32 total_byte_cnt(MTFILE *stream);

stream pointer to the stream file descriptor

The number of bytes on the disk drive associated with stream is returned. If
an error occurs, 0 is returned.

NOTE: If using FAT32 support, the total byte count may exceed the
limits of a 32-bit unsigned integer.

See also: total_clust_cnt, total_kb_cnt, free_byte_cnt, free_clust_cnt,
free_kb_cnt

Return Value
Number of bytes on disk.

3-92 USFiles User's Manual

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

Example
FILE *fp;
uint32 totalbytes;

/* open for read/write */
fp = mt_fopen(“A:\file1”, “r+b”);
totalbytes = total_byte_cnt(fp);

total_clust_cnt

Returns the number of clusters on the drive.

uint32 total_clust_cnt(MTFILE *stream);

stream pointer to the stream file descriptor

The number of clusters on the disk drive associated with stream is returned.
If an error occurs, 0 is returned.

See also: total_byte_cnt, total_kb_cnt, free_byte_cnt, free_clust_cnt,
free_kb_cnt

Return Value
Number of clusters on disk.

USFiles User's Manual 3-93

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

Example
FILE *fp;
uint32 totalclusts;

/* open for read/write */
fp = mt_fopen(“A:\file1”, “r+b”);
totalclusts = total_clust_cnt(fp);

total_kb_cnt

Returns the number of kilobytes on the drive.

uint32 total_kb_cnt(MTFILE *stream);

stream pointer to the stream file descriptor

The number of kilobytes on the disk drive associated with stream is
returned. If an error occurs, 0 is returned.

See also: total_byte_cnt, total_clust_cnt, free_byte_cnt, free_clust_cnt,
free_kb_cnt

Return Value
Number of kilobytes on disk.

3-94 USFiles User's Manual

errno Value

Stream I/O
EBADFP bad file pointer

PC File Manager
None

Example
FILE *fp;
uint32 totalkb;

/* open for read/write */
fp = mt_fopen(“A:\file1”, “r+b”);
totalkb = total_kb_cnt(fp);

uni2char

Converts a Unicode character to ASCII or Shift-JIS.

void uni2char(char **asciiPos, uint16 uniChar);

asciiPos address of pointer where ASCII character will be stored

uniChar Unicode character to convert

A Unicode character may be converted to either a single-byte (ASCII) or
double-byte (Shift-JIS) character. The uni2char() function will move the
asciiPos pointer to indicate where the next character should be recorded.
It will be incremented by either one or two bytes.

This function is not included with the default settings of USFiles. No
USFiles functions make use of this utility, but it is provided for application
use. To include the uni2char() function, please see the comments in
usfutil.c.

USFiles supports a limited set of Unicode characters. The file uni2jis.c
provides details of which characters are allowed. If an unsupported

USFiles User's Manual 3-95

Unicode character is passed into uni2char(), then we set **asciiPos
equal to the ASCII replacement character (0x1A).

See also: char2uni

Return Value
none

3-96 USFiles User's Manual

Example
uint16 uniString[20];
char saveString[20],*pAscii;
int i;

pAscii = saveString;
for(i=0; i<20; i++)

if(uniString[i]){
uni2char(&pAscii, uniString[i]);
/* pAscii will point to next available
** position */

}else{
pAscii = 0; / NULL Terminate */
break;

}

USFiles User's Manual 3-97

USFiles User's Manual 4-1

4. Supported RTOSes
Chapter Contents

Using Stream I/O from Multiple Tasks......................................4-3
Multitasking with errno ...4-4
Supported RTOSes...4-5
Stand-alone Mode ..4-7

Table 6-1: Stand-alone Mode Calls4-7
MultiTask!..4-8

Table 6-2: MultiTask! Mode Calls....................4-8
Stack Size...4-8
Dynamic Task Loading with fruntsk4-9

fruntsk ..4-10
TronTask!...4-12

Table 6-3: TronTask! Mode Calls...................4-12
Initializing USFiles ..4-13
Stack Size...4-13

Hitachi ITRON...4-14
Table 6-4: Hitachi ITRON Mode Calls...........4-14

Test Environment...4-15
Using Library Header Files..4-15

stdlib.h..4-15
stdio.h...4-16

The depends.h File ...4-16
Configuration Files ..4-17
Interface ...4-17
Various Makefiles ..4-18

4-2 USFiles User's Manual

RX850 and RX850 Pro ..4-19
Table 6-5: RX850 and RX850 Pro Mode Calls4-19

Test Environment...4-20
Board Revisions ...4-20
Configuration Files ..4-20
Interface ...4-21

USFiles User's Manual 4-3

Using Stream I/O from Multiple Tasks
USFiles will allow multiple tasks to use the file system simultaneously
when used with an RTOS. There is no record locking on individual files,
however, so any file opened for modification (write, rename, or delete)
cannot be opened by another task. An attempt to do so will result in the
second open returning a NULL file pointer and setting errno to EISOPEN.
There will be no conflict between any accesses to separate files, or multiple
read-only accesses to the same file if that file is not opened for modification
by any task.

The LOCK_FILESYSTEM() macro used to acquire the PCFM_RESOURCE
when using USFiles with an RTOS locks the file system for the duration of
each read or write operation. This will insure the operation is complete
before another task gets control of the file system. You should therefore be
able to have two or more tasks appending records to the end of the same
file, as long as they are using the same file handle (i.e., one task should
open the file only, and the other task make use of the same FILE *).

After a write operation, the data may not be immediately transferred to disk,
but may remain in an internal buffer until either the buffer is needed, or the
stream is flushed with fflush(), or closed by fclose().

4-4 USFiles User's Manual

Multitasking with errno
Customers must pay special attention to errno, especially with uITRON
RTOSes, which generally do not implement protections for errno. Many
libraries (floating point, TCP/IP, file system, etc.) could theoretically use
errno. If you are using several libraries that utilize errno, then you must
implement a system-wide task-safe errno.

For USFiles only, an example is provided below to implement a task-safe
errno on RTOSes that do not already protect it. This example assumes a
uITRON RTOS.

In rtossup.c:

ID my_task_id(void){
ID myid;
get_tid(&myid);
return myid;

}

In rtos.h:
int errno_array[NUMTASKS];

#define errno errno_array[my_task_id()]

This will set up an array that stores errno for each task.

USFiles User's Manual 4-5

Supported RTOSes
At present USFiles has been integrated with the following RTOSes:

• None (does not require an RTOS)

• MultiTask!

• TronTask! (both versions 2.x and 3.x)

• Hitachi SH-7, SH-77, and HI7750

• RX850

• RX850 Pro

• PPSM and PPSM GT

When integrating USFiles with an RTOS, these items must be considered:

• Protecting stream I/O

• Protecting the file system

• Dynamic memory allocation

• Defining errno

The following sections will describe how each of the supported RTOSes
handles these issues as well as discussing other items of interest concerning
the RTOS. The tables in each section map a USFiles call to an RTOS call
(or to an intermediate function that uses an RTOS call) and list the files that
are related to this integration. Please examine the files, because some of the
calls may change. All USFiles RTOS-specific information has been placed
in the files rtos.h and rtossup.c, which are found in the siosrc\<rtos>
subdirectory.

The file system has four cases where it requests memory allocation:

• A single 512-byte block is requested when reading the BPB sector. This is
returned immediately after accessing the data in that sector.

4-6 USFiles User's Manual

• Each time mt_fopen is called a file handle structure (MTFILE) is allocated.
This will be released when the file is closed.

• Before the file handle allocation is done, mt_fopen will request allocation of
space to copy the filename argument passed to the open call. This is used to
parse the device name from the device table, and will be released as soon as
this process is finished.

• When using the mt_readdir function with long file names (VFAT), USFiles
dynamically allocates space to temporarily hold the Unicode name before it
is converted to ASCII. This requires 260 bytes, which are released before
the function return.

USFiles User's Manual 4-7

Stand-alone Mode

Table 6-1: Stand-alone Mode Calls

errno
USFiles in stand-alone mode uses the compiler library’s errno.h file.

USFiles Call RTOS Call

Protecting Stream I/O

N/A

Protecting the File System

N/A

Dynamic Memory Allocation

alloc_mem() calloc()

dealloc_mem() free()

4-8 USFiles User's Manual

MultiTask!

Table 6-2: MultiTask! Mode Calls

errno
MultiTask! defines errno for each task. Please refer to the MultiTask!
documentation and source code for details.

Stack Size
The file depends.h specifies a minimum stack size required for the
MultiTask! test programs to run. USFiles requires a larger stack size, so in
the test programs, we define macros XTRA_STACK and XTRA_MEM to
account for this difference.

USFiles Call RTOS Call
Protecting Stream I/O

LOCK_ STREAMIO() mt busy++

UNLOCK_ STREAMIO() MTqproc()

Protecting the File System

LOCK_ FILESYSTEM() getres (PCFM_RESOURCE,
PCFM TIMEOUT)

UNLOCK_ FILESYSTEM() relres (PCFM_RESOURCE)

Dynamic Memory Allocation

alloc _mem() reqmem()

dealloc _mem() relmem()

USFiles User's Manual 4-9

If the MultiTask! test programs and usftest in stand-alone mode all run
successfully, but usftest fails when running with MultiTask!, then you may
want to try increasing the stack size.

NOTE: When using a board support package (BSP), the default stack
size will be specified in a BSP header file. Please see
siosrc\<cpu>\cpunotes.txt to determine whether a BSP is
being used.

Dynamic Task Loading with fruntsk
With USFiles for the 80x86 platform we have added the capability to
dynamically load and start a MultiTask! task or several tasks from a
separately compiled *.exe file. This requires a task that is already running
to initiate the load and startup of the task in the *.exe file by making a call
to fruntsk().

We will call the currently running portion of your application the “static
part” and the part you will be loading from the file the “overlay” (although
it is not overwriting any code).

The static part must be compiled as huge model, and must contain all of the
MultiTask! operating system as well as USFiles or equivalent file access
library and the new modules:

 fruntsk.c
 dyload.c
 dytable.asm

The overlay is compiled as either large or huge model (Microsoft C), or
huge model (Borland C) with the label MT_OVERLAY defined (usually by
adding -DMT_OVERLAY to the CFLAGS variable in the makefile). The
overlay module is then linked with dyentry.asm instead of the usual startup
module (i.e., dyentry replaces the compiler C startup routine which calls
main).

The model restrictions are necessary in order to relocate the code in the
overlay file and be able to dynamically link it to the system services in the
static part. Dyentry and dytable set up a jump table in the overlay with a
jump to each MultiTask! system function in the static part. The commonly

4-10 USFiles User's Manual

needed MultiTask! global variables are redefined for the overlay as
functions returning pointers to the variable. This is all transparent to the
overlay, and all coding in the overlay task is identical on the user level to
coding for the static part.

If you need to add access for the overlay to an additional function or
variable which resides in the static part, you can do so by adding a table
entry to the file dyconf.asm and recompiling both the static and overlay
parts.

Each item requiring a dynamic link appears in the dyconf.asm file as a line
with the item name preceded by either the funclnk macro for functions or
the datalnk macro for data items. Each data item also requires a #define
and extern declaration in the C overlay file. An example of this is shown
in the dyconf.asm file. The MultiTask! data items already defined in this
file have their #define and extern declarations already in place in
mtdata.h where they are conditionally included when MT_OVERLAY is
defined.

The makefile contains a target program, dytest.c, which builds a static part
that loads in the coretest program as an overlay and runs it. Refer to this as
an example of using the dynamic load capability.

NOTE: Dynamic task loading is now considered unsupported, and the
source files can be found in the siosrc\unsupp directory.

fruntsk
Loads and runs a task from a file.

int fruntsk(uint priority, char *fname, uint stksiz,
...);

priority task priority to be assigned to the loaded task
*fname the complete pathname to code being loaded
stksiz the size of stack to assign to the loaded task
... up to 4 arguments to be passed to task
The fruntsk() function is similar to runtsk except the task is first loaded
from a file whose pathname is given by fname. The file must be a

USFiles User's Manual 4-11

relocatable type as used by dyload.c. (For 80x86 this will be a *.exe file.)
Memory is allocated by a call to reqmem() to hold the code in the module
loaded. The code is located and loaded into memory, and the stack space
stksiz bytes is allocated with a call to reqmem(). The main() function of
the loaded file is started as the first (and possibly only) task in the file. If
there was more than one task contained in the file, each of these needs to be
started by the first task (main()) in that file. Be aware that all code memory
is attached to the first task of that file and will be deallocated when that task
dies. Because of this you must ensure that it will be the last task to die of
the group loaded in that module.
NOTE: The fruntsk function is part of USFiles and is currently only

supported on the 80x86 real mode platform.

Return Value
+n TASK_ID (slot number) of loaded task
E_IOERR Error reading file (more information may be contained in

errno)
E_NOSLOT All task slots in configuration (NUMTSK) are in use
E_NORAM insufficient memory (reqmem)

Example
TASK_ID slot;

slot = fruntsk(100, “a:\\bin\\ovltask.exe”, 1000);
if(slot < 0)

{ error }

4-12 USFiles User's Manual

TronTask!

Table 6-3: TronTask! Mode Calls

Since tasks cannot ‘own’ a resource governed by TronTask!’s semaphores,
we had to implement our own routines to interface with the resources to
allow nested LOCK_ calls. These are found in the file rtossup.c.
The alloc_mem() function in rtossup.c calls the kernel reqmem() function.

errno
TronTask! defines errno for each task. Please refer to the TronTask!
documentation and source code for details.

USFiles Call RTOS Call

Protecting Stream I/O

LOCK_ STREAMIO() ussStreamForbid()

UNLOCK_ STREAMIO() ussStreamPermit()

Protecting the File System

LOCK_ FILESYSTEM() ussFileForbid()

UNLOCK_ FILESYSTEM() ussFilePermit()

Dynamic Memory Allocation

alloc _mem() alloc_mem()

dealloc _mem() relmem()

USFiles User's Manual 4-13

Initializing USFiles
To gain access to stream I/O and the file system, the semaphores protecting
these must be created (for TronTask! 3.x only) and signaled. This should be
done at the start of your application by calling the function ussSIOInit(),
which is found in the file rtossup.c. This routine will create the
semaphores, if necessary, and signal them so that access can be granted to
tasks. For an example of initializing USFiles with TronTask!, please see
usftest.c.

Stack Size
The file depends.h specifies a minimum stack size required for the
TronTask! test programs to run. USFiles requires a larger stack size, so in
the test programs, we define macros XTRA_STACK and XTRA_MEM to
account for this difference.

If the TronTask! test programs and usftest in stand-alone mode all run
successfully, but usftest fails when running with TronTask!, then you might
want to try increasing the stack size.

NOTE: When using a board support package (BSP), the default stack
size will be specified in a BSP header file. Please see
siosrc\<cpu>\cpunotes.txt to determine whether a BSP is
being used.

4-14 USFiles User's Manual

Hitachi ITRON

Table 6-4: Hitachi ITRON Mode Calls

Since tasks cannot ‘own’ a resource governed by Hitachi ITRON’s
semaphores, we had to implement our own routines to interface with the
resources to allow nested LOCK_FILESYSTEM() calls. These are found
in the file rtossup.c.
The alloc_mem() and dealloc_mem() calls are also in rtossup.c. We make
use of the RTOS get_blk() and rel_blk() calls, but we also tried to do some
optimization. Please see the rtossup.c file for details.

errno
We include the compiler library’s errno.h file in rtos.h.

USFiles Call RTOS Call

Protecting Stream I/O

LOCK_ STREAMIO() wai_sem(STREAM_RESOURCE)

UNLOCK_STREAMIO() sig_sem(STREAM_RESOURCE)

Protecting the File System

LOCK_FILESYSTEM() usfitron_getres()

UNLOCK_FILESYSTEM() usfitron_relres()

Dynamic Memory Allocation

alloc_mem() alloc_mem()

dealloc_mem() dealloc_mem()

USFiles User's Manual 4-15

Test Environment
Refer to the config\sh\hitachi\compiler.mak file for instructions on
configuring USFiles for a particular SH processor. Depending on your
RTOS, you might have to modify another makefile in config\sh\hitachi to
specify the path to the RTOS directory. The appropriate makefile is:

 SH7 sh7dos.mak

 SH77 sh77dos.mak

 HI7750 hi7750.mak

The test is downloaded to RAM in the board via the serial port, and then
run. The test sends text out the serial port from the board to a terminal
attached to this port. The debug monitor is assumed to have initialized the
serial port for the test. All test output goes through the function putch() in
the file getput?.c, which can be found in the siosrc\sh directory. To direct
the text displayed by the program to another location, you can replace this
function. Note that there are multiple versions of this file specified by
replacing ? with the TARGET number selected by setting compiler.mak
appropriately.

Using Library Header Files

stdlib.h
Compiling the file system requires that three lines be added to the compiler
header file stdlib.h in order to compensate for nested inclusion of this file.

Near the top of stdlib.h (before any statements that are not comments) add
these two lines:

#ifndef stdlib_h
#define stdlib_h

After the last line of the file add:

#endif

4-16 USFiles User's Manual

These will prevent any problem if the file is included more than once,
which is the case with the file system code. This is difficult to avoid
because of the way the header files are used for other systems.

Check the contents of stdarg.h to see if similar lines already exist (the exact
name defined is not important, but the structure is). This is common
practice for most C compilers, and may already be present in later releases
of the Hitachi compiler.

stdio.h
Using the Hitachi compiler library stdio.h with USFiles may produce a
linker error, due to the name of the USFiles module sprintf.c. This
problem can be remedied by following these steps:

1. Rename sprintf.c to usprintf.c.

2. Edit siosrc\makefile to change sprintf to usprintf.
3. Rebuild the library and application.

The USFiles modules and test programs do not use stdio.h, so this fix is
only necessary if your application needs stdio.h.

The depends.h File
You should make changes only to the following statements, when
appropriate.

#define MASK_INTS() set_imask(0xf)

This line defines a macro used to mask interrupts in the system. Normally
this sets the interrupt mask value to the highest possible setting to disable all
interrupts. This may be set to some other level for some circumstances if
you understand the usage.

#define UNMASK_INTS() set_imask(0)

This macro returns interrupt mask setting to zero. For the case of using
USFiles without an RTOS, there is only one place where these macros are
used, for a very brief time, in streamio.c.

USFiles User's Manual 4-17

Configuration Files
When using SH7 or SH77, customized configuration files are provided in
the siosrc\<rtos> subdirectories. Other configuration files needed for these
RTOSes are the default files. Their location is identified by the MTPTH
symbol in sh7dos.mak or sh77dos.mak (see siosrc\<rtos>\makefile). The
customized configuration files are:

suptbl7.c Variation of hisuptbl.c for SH1 or SH2

suptbl77.c Variation of hisuptbl.c for SH3

tstsup2.c SH2 version of above

tstsup3.c SH3 version of above

When using HI7750, we do not provide any customized configuration files.
The user must configure the RTOS files according to the instructions found
in siosrc\sh\cpunotes.txt.

Interface
The file rtossup.c provides the functions to interface the file system to
Hitachi ITRON.

The only ITRON functions used by the file system are:

 get_tid
get_blk
rel_blk
sig_sem
wai_sem

4-18 USFiles User's Manual

In addition to these, the test program usftest.c uses the following functions,
and depends upon the timer interrupt handler calling irot_rdq(2):

 clr_flg
set_flg
wai_flg
sta_tsk
slp_tsk
wai_tsk
wup_tsk

The event flag used by SH7 and SH77 in usftest is defined in usftest.c as
XEVT, which has a value of 10. HI7750 dynamically assigns the event flag
ID number.

Various Makefiles
compiler.mak Used to select the board

makefile.sh2 Specific information for DVE-7604 board

makefile.sh3 Specific information for DVE-7708 board

makefile.sh4 Specific information for Hitachi SH4 Solution Engine

sh7dos.mak Specific rules for SH7 RTOS

sh77dos.mak Specific rules for SH77 RTOS

hi7750.mak Specific rules for HI7750 RTOS

USFiles User's Manual 4-19

RX850 and RX850 Pro

Table 6-5: RX850 and RX850 Pro Mode Calls

Since tasks cannot ‘own’ a resource governed by RX850’s semaphores, we
had to implement our own routines to interface with the resources to allow
nested LOCK_FILESYSTEM() calls. These are found in the file rtossup.c.

The alloc_mem() and dealloc_mem() calls are also in rtossup.c. We make
use of the RTOS get_blf() and rel_blf() (get_blk() and rel_blk() for RX850
Pro) calls, but we also tried to do some optimization. Please see the
rtossup.c file for details.

errno
We include the compiler library’s errno.h file in rtos.h

USFiles Call RTOS Call

Protecting Stream I/O

LOCK_ STREAMIO() wai_sem(STREAM_RESOURCE)

UNLOCK_STREAMIO() sig_sem(STREAM_RESOURCE)

Protecting the File System

LOCK_FILESYSTEM() usfitron_getres()

UNLOCK_FILESYSTEM() usfitron_relres()

Dynamic Memory Allocation

alloc_mem() alloc_mem()

dealloc_mem() dealloc_mem()

4-20 USFiles User's Manual

Test Environment
The provided makefiles are configured to compile USFiles with the Green
Hills compiler located in the directory specified by PTH in
config\v8xx\green\compiler.mak. In addition, the directory containing
support for the RTOS is indicated by NUCLEUS_TOP in the same
compiler.mak.

We have tested our software using the Kyoto Micro Computer Partner-ET
Extended Target Debugger ROM emulator. You should be able to simply
start the Partner software, load the compiled test, and run. Output is
directed to the JRS232C port on the
RTE-V850E/MS1-PC board. If you connect this to a monitor, the test
output will be displayed.

If you are using a different board, then you will have to modify the putchr()
routine in getput1.850, which is found in siosrc\v8xx

Board Revisions
We have tested our software with two different revisions of the
RTE-V850E/MS1-PC board. The only difference that you need to be aware
of is the clock speed. The file siosrc\v8xx\serial.c provides the serial driver
for the evaluation boards. If you are using rev. 3.0 of the evaluation board,
then be sure that BRGC0 = 65 to indicate a 40MHz clock. If using rev. 3.1
of the evaluation board, then BRGC0 should be 54, indicating a 33 MHz
clock. One way to check for the proper clock speed is that output will
appear garbled if the wrong clock speed is specified.

Configuration Files
The following files are used to configure usftest to run as a task with
RX850 (Pro). These are modified versions of several of the original RX850
sample configuration files.

sit850.cf RX850 configuration file in siosrc\rx850 directory

sit850p.cf RX850 Pro configuration file in siosrc\rx850pro directory

USFiles User's Manual 4-21

These files define all the RTOS items that are required (tasks, semaphores,
memory pools, etc.). When the STREAM_RESOURCE and PCFM_RESOURCE
semaphores are defined, they are initialized to 1, meaning that they are
available to be accessed immediately. Please see the RX850 (Pro)
documentation to see how to properly configure your particular application.

Interface
The file rtossup.c provides the functions to interface the file system to
RX850 and RX850 Pro.

The only ITRON functions used by the file system are:
 get_tid

get_blk (RX850 Pro)
rel_blk (RX850 Pro)
get_blf (RX850)
rel_blf (RX850)
sig_sem
wai_sem

In addition to these, the test program usftest.c uses the following functions:
 clr_flg

set_flg
wai_flg
sta_tsk
slp_tsk
dly_tsk
wup_tsk

The event flag used by usftest is XEVT, the value of which is determined by
the configuration file.

For RX850, memory allocation is done with fixed-size blocks from pool
USFILES_MEMPOOL. The block size is 608 bytes (defined in sit850.cf) and
USFILES_MEMPOOL is defined in siosrc\rx850\rtos.h.

For RX850 Pro, memory allocation is done with variable-size blocks from
pool USFILES_MEMPOOL, which is defined in siosrc\rx850pro\rtos.h.

USFiles User's Manual 5-1

5. Porting Guide
Chapter Contents

Porting USFiles Stand-alone Mode..5-2
Setting Up Makefiles ...5-2
Editing Header Files...5-4
Porting Drivers...5-4

RAM Disk Driver...5-4
BIOS Driver ...5-4
Hard Disk Driver..5-5
Diskette Driver ...5-5

Memory Alignment..5-6
Porting USFiles to a New RTOS ...5-7

Integrating an RTOS with USFiles5-7
Integrating Files ...5-7
Building Your Application.................................5-9

Porting Drivers...5-10
Diskette Driver ...5-10

5-2 USFiles User's Manual

Porting USFiles Stand-alone Mode
There is little in USFiles that is processor dependent, so porting mostly
involves identifying the correct libraries. USFiles makes use of several
string functions like strcmp() and memory routines like memcpy() or
memset(). The easiest way to determine what library from your tool chain
is required is to compile and link the usftest program and see which
symbols remain unresolved.
We are assuming that you have been able to run a simple “Hello, World”
program on your hardware before you start to port USFiles.

Setting Up Makefiles
To develop makefiles for a new processor and/or compiler, we recommend
using existing makefiles as a starting point. If you are porting to a new
CPU, you will have to add CPU and CPU\compiler subdirectories to the
config and siosrc directories. Copy the existing makefile and
compiler.mak files into these directories and edit them.
You will also have to add your new CPU and compiler names to the
appropriate lists in config.mak. Make sure that the names in config.mak
match the directory names that you have created.
NOTE: If a board support package (BSP) has been provided for your

CPU, then porting is most easily done in the BSP model.
Please see BSP documentation for porting instructions.

As an example, consider porting to a CPU called NewCpu, and a compiler
called NewComp. These are the steps for porting:
1. Create these directories:
 siosrc\NewCpu
 siosrc\NewCpu\NewComp
 config\NewCpu
 config\NewCpu\NewComp

USFiles User's Manual 5-3

2. Copy the makefiles:
a. Copy siosrc\i8086\makefile to siosrc\NewCpu\makefile
b. Copy siosrc\i8086\borland\makefile to

siosrc\NewCpu\NewComp\makefile
c. Copy config\i8086\borland\compiler.mak to

siosrc\NewCpu\NewComp\compiler.mak
3. Edit the makefiles:

a. The siosrc\NewCpu\makefile should contain USFiles device
drivers and may contain character I/O. Character I/O may be found
in the bspsrc directory.

b. The siosrc\NewCpu\NewComp\makefile will most likely not build
anything.

c. The config\NewCpu\NewComp\compiler.mak file has the
necessary flags for tool chains, the paths to the tool chains, the rules
for building, and the target-specific information

d. In the config.mak file, add and select these lines:
CPU = NewCpu
COMPILER = NewComp

Of course, you will need to modify the code to support drivers and character
output on a new board. Interrupts are only dealt with by the drivers
themselves for USFiles. The RAM disk driver does not need any interrupts,
but the i8086 hard disk and diskette drivers utilize interrupts. Please pay
attention to interrupts when porting.
NOTE: When using a BSP, the BSP will handle the interrupt level.

When building a USFiles library or application in stand-alone mode, the
files indicated in siosrc\makefile, siosrc\NewCpu\makefile,
siosrc\NewCpu\NewComp\makefile, and siosrc\none\makefile will be
compiled and added to the library according to the rules found in
config\NewCpu\NewComp\compiler.mak. The library is then placed in
the lib directory and the application (in appsrc) is compiled and linked with
the library.

5-4 USFiles User's Manual

Editing Header Files
Copy the existing header files depends.h and usstypes.h to the
siosrc\NewCpu\NewComp directory, and edit these files as needed.

NOTE: If a BSP is being used, then these files are unnecessary. The
BSP header files replace these.

Porting Drivers
The drivers provided with USFiles, with the exception of the RAM disk
driver, have been specifically developed for operation on PC hardware.
Please regard these as samples only. Unless you are using PC hardware,
they will require modification to work with your hardware. If you choose
to use one of our drivers as a sample, we recommend avoiding the diskette
driver (flopdrv.c). It has some peculiarities that will be discussed later.
The BIOS driver (biosdrv.c) or the hard disk driver (lbahddrv.c) are
clearer.

RAM Disk Driver
The RAM disk driver (ramdrv.c) should operate on any hardware with at
least 256 KB of memory available. The size of the RAM disk can be
configured in ramdef.c.

BIOS Driver
The BIOS driver (biosdrv.c) requires a BIOS to operate. It uses functions
provided by the Microsoft and Borland tools to access the BIOS. This
driver is representative of the structure required in a USFiles driver, but its
utility is limited.

USFiles User's Manual 5-5

Hard Disk Driver
The hard disk driver (lbahddrv.c) provides direct access to an IDE hard
drive. The drive can either operate in logical block addressing (LBA)
mode, or in cylinder, head, sector (CHS) mode. Each drive’s unit number
in the device table determines how it is accessed. See Chapter 4,
Configuring USFiles, for more details.

The driver initialization installs an interrupt service routine (ISR) in the
expected DOS vector for IRQ 14. When operating in stand-alone mode, an
ISR is also installed into the DOS timer interrupt vector to allow drive
commands to timeout. These ISRs will require attention when porting to
new hardware. In stand-alone mode, you may not wish to use interrupts.
You could simply let the driver enter a spin loop until the drive operation
completes.

You will also need to modify the hard drive communication port definitions
near the top of the file. The file diskio.asm has the get_sector() and
put_sector() routines called by the driver. There are samples of how these
functions can be replicated in C code, but you may wish to provide
assembly routines to improve speed.

Finally, you might wish to redefine the macro ptr_norm(). This is used to
normalize the 80x86 real mode buffer pointer. Other CPUs should not need
this, so it can be redefined to do nothing.

Diskette Driver
The diskette driver does the same sort of initialization as the hard disk
driver. It installs an ISR in the DOS interrupt vector for a floppy disk drive
controller, and it will install the timer ISR in stand-alone mode, if it is not
already installed.

The diskette driver has four ports defined, which will require modification
to match your hardware. It also uses DMA. If your hardware does not have
DMA, then this driver will require significant modification.

5-6 USFiles User's Manual

Memory Alignment
When developing or porting drivers, be aware of the memory alignment
requirements of your CPU. This may become an issue when we directly
transfer data from a disk to the user’s buffer (bypassing internal USFiles
buffers). Imagine the following situation:

1. We open a file and read 511 bytes from it.

2. We then call mt_fread() to read 2000 bytes into an application buffer.

3. The read routine realizes that we have to read one byte from an internal
buffer. It does that and then increments the pointer to the application
buffer by one.

4. The read routine then tries to directly transfer 1536 bytes from the disk
to the application buffer. The application buffer is now positioned on
an odd byte, so accessing the buffer this way may fail.

A solution to this problem is to have a 512-byte buffer in the driver that can
be used to temporarily hold sectors. The read and write routines will have
to test whether bufp->userbuf has the proper alignment. If it does not,
transfer to the temporary buffer, and then to the application buffer (for
read).

Another solution is to make sure that reads and writes are always done to
maintain the proper alignment (e.g. a minimum of two bytes at a time).

USFiles User's Manual 5-7

Porting USFiles to a New RTOS
Chapter 6, Supported RTOSes, describes the issues that must be considered
when integrating USFiles with an RTOS. These will be discussed in a bit
more detail here. If you are porting USFiles to a processor and/or compiler
for which we do not provide makefiles, you should first port USFiles to this
environment in stand-alone mode, which is discussed in the previous
section. This will insure that USFiles is operating properly for your
development environment, and then the RTOS integration can be
performed.

Integrating an RTOS with USFiles
When integrating USFiles with an RTOS, you must consider these items:

• Protecting stream I/O

• Protecting the file system

• Dynamic memory allocation

• Defining errno

Integrating Files
We have attempted to keep the files involved in RTOS integration to a
minimum. For supported RTOSes, these files are rtos.h and rtossup.c.
They are located in the appropriate siosrc\<rtos> directory. You will need
to create a subdirectory in siosrc for your new RTOS and create rtos.h and
rtossup.c files there. Make sure that you update the RTOS list in
config.mak to include your new RTOS.

RTOS Header File
A good starting point for your RTOS header file is copying rtos.h from
siosrc\none and editing that. This rtos.h file includes the definitions
required by USFiles, and you can substitute the appropriate functions for
your RTOS.

5-8 USFiles User's Manual

In this RTOS header file, you will need to define these macros:

LOCK_STREAMIO()
UNLOCK_STREAMIO()
LOCK_FILESYSTEM()
UNLOCK_FILESYSTEM()

These are typically implemented as resources (e.g. LOCK_STREAMIO()
requests a resource and UNLOCK_STREAMIO() releases a resource). You
will then have to define the ID numbers for the resources that protect the
stream I/O and file system. This can be done directly in the header support
file.

NOTE: Calls to LOCK_FILESYSTEM() may be nested. The
implementation must allow a single task to call
LOCK_FILESYSTEM() twice consecutively without an
UNLOCK_FILESYSTEM() call in between. The counting
semaphores of µITRON do not allow this, so we must wrap
the semaphore calls with our own code. If your RTOS has
similar behavior, please see the rtos.h and rtossup.c files in
siosrc\tt3 for an example of how to handle this.

Here you will also need to define how errno is implemented. For our
MultiTask! and TronTask! RTOSes, each task can have an error code
associated with it, so we use a macro to map errno to the task error code.
With other supported RTOSes, we include the compiler library’s errno.h
file. Be sure that the errno is safe for a multitasking environment before
using this.

RTOS Support File
The RTOS support file (rtossup.c) will contain the functions for dynamic
memory allocation. Again, a good starting point is the rtossup.c file in the
siosrc\none directory. Copy this to your new RTOS directory and edit as
needed.

USFiles calls the functions alloc_mem() and dealloc_mem() to acquire and
release heap memory. These functions should be defined in the RTOS
support file. Since USFiles often allocates a PCFM_BUFFER structure, you
may find it useful to set aside a block of memory with this size. When a

USFiles User's Manual 5-9

function requests a block that is sizeof(PCFM_BUFFER), you can return
the address of this dedicated space. This is safe, because all the calls that
would request this block are protected, so only one task at a time will access
it. Here is an example that implements this technique:

/* defined as long to get address alignment */
uint32 usfblock[(sizeof(PCFM_BUFFER) + 3) / 4];

int dealloc_mem(void *reladr)
{ /* release memory */

if (reladr != usfblock) {
/* Do RTOS memory free */

} else {
/* ignore release of PCFM_BUFFER block */
return 0;

}
}

void *alloc_mem(int reqsize)
{

if (reqsize == sizeof(PCFM_BUFFER)) {
/* return pointer to 512 byte block */
return (usfblock);

}
else

/* Do RTOS memory allocation */
/* Return pointer to memory */

}

NOTE: The memory returned by a call to alloc_mem() must be
initialized to zero for USFiles to function properly.

Building Your Application
When you build an application with USFiles and a new RTOS, you will
obviously need to specify the RTOS library so that your application and
USFiles can link with it. You can either do this in the
config\<cpu>\<compiler>\compiler.mak file or by adding the RTOS
library to the USER_LIBS list in config.mak.

5-10 USFiles User's Manual

Porting Drivers
If you have not already read the discussion on porting drivers for USFiles in
stand-alone mode, you should do so now. Most of the issues discussed
there are still applicable when using an RTOS. This section will only deal
with issues specific to an RTOS.

Generally there are two items that must be handled when integrating a
USFiles driver with an RTOS:

• Putting a task to sleep

• Waking up the task from an interrupt service routine

The lbahddrv driver is a good example to use. It typically:

• Saves the ID of the task that is running (so it can be woken up)

• Sends the proper command to the drive

• Waits with a timeout specified (here other tasks can operate)

When the interrupt is received from the drive, the ISR then wakes up the
task so it can continue operation. This is usually all that must be handled
when integrating our drivers with a new RTOS. Unfortunately, the diskette
driver is an exception to this.

Diskette Driver
The complication with the diskette driver is that we need to keep track of
the motor operation. We dedicate a task to turning the motor off when
necessary. This is done in the pcfdrv_init() function. The device table
entry for diskette drives has a field to specify the ID number of an event that
indicates when the drive motor should be turned off. Be careful that you do
not reuse this event ID number.

USFiles User's Manual 5-11

The motor_off_task() is started as a very high priority task. It only checks
to see if the motor should be turned off. If so, it executes the MotorOff()
function. When the motor_on() function is called we determine at what
time the motor should be shut off by adding the present system time to the
timeout period passed into motor_on(). Signaling the motor_off_task()
must be implemented so that if there is a second call to motor_on() before
the current motor off time is reached, the old time is ignored, and the new
time is recognized.

5-12 USFiles User's Manual

USFiles User's Manual 6-1

6. Supported RTOSes
Chapter Contents

6. SUPPORTED RTOSES...6-1
Using Stream I/O from Multiple Tasks......................................6-2
Multitasking with errno ...6-3
Supported RTOSes...6-4
Stand-alone Mode ..6-6
MultiTask!..6-7

Stack Size...6-7
Dynamic Task Loading with fruntsk6-8

TronTask!...6-11
Initializing USFiles ..6-12
Stack Size...6-12

Hitachi ITRON...6-13
Test Environment...6-14
Using Library Header Files..6-14
The depends.h File ...6-15
Configuration Files ..6-16
Interface ...6-16
Various Makefiles ..6-17

RX850 and RX850 Pro ..6-18
Test Environment...6-19
Board Revisions ...6-19
Configuration Files ..6-19
Interface ...6-20

6-2 USFiles User's Manual

 Using Stream I/O from Multiple Tasks
USFiles will allow multiple tasks to use the file system simultaneously
when used with an RTOS. There is no record locking on individual files,
however, so any file opened for modification (write, rename, or delete)
cannot be opened by another task. An attempt to do so will result in the
second open returning a NULL file pointer and setting errno to EISOPEN.
There will be no conflict between any accesses to separate files, or multiple
read-only accesses to the same file if that file is not opened for modification
by any task.

The LOCK_FILESYSTEM() macro used to acquire the PCFM_RESOURCE
when using USFiles with an RTOS locks the file system for the duration of
each read or write operation. This will insure the operation is complete
before another task gets control of the file system. You should therefore be
able to have two or more tasks appending records to the end of the same
file, as long as they are using the same file handle (i.e., one task should
open the file only, and the other task make use of the same FILE *).

After a write operation, the data may not be immediately transferred to disk,
but may remain in an internal buffer until either the buffer is needed, or the
stream is flushed with fflush(), or closed by fclose().

USFiles User's Manual 6-3

Multitasking with errno
Customers must pay special attention to errno, especially with uITRON
RTOSes, which generally do not implement protections for errno. Many
libraries (floating point, TCP/IP, file system, etc.) could theoretically use
errno. If you are using several libraries that utilize errno, then you must
implement a system-wide task-safe errno.

For USFiles only, an example is provided below to implement a task-safe
errno on RTOSes that do not already protect it. This example assumes a
uITRON RTOS.

In rtossup.c:

ID my_task_id(void){
ID myid;
get_tid(&myid);
return myid;

}

In rtos.h:
int errno_array[NUMTASKS];

#define errno errno_array[my_task_id()]

This will set up an array that stores errno for each task.

6-4 USFiles User's Manual

Supported RTOSes
At present USFiles has been integrated with the following RTOSes:

• None (does not require an RTOS)

• MultiTask!

• TronTask! (both versions 2.x and 3.x)

• Hitachi SH-7, SH-77, and HI7750

• RX850

• RX850 Pro

• PPSM and PPSM GT

When integrating USFiles with an RTOS, these items must be considered:

• Protecting stream I/O

• Protecting the file system

• Dynamic memory allocation

• Defining errno

The following sections will describe how each of the supported RTOSes
handles these issues as well as discussing other items of interest concerning
the RTOS. The tables in each section map a USFiles call to an RTOS call
(or to an intermediate function that uses an RTOS call) and list the files that
are related to this integration. Please examine the files, because some of the
calls may change. All USFiles RTOS-specific information has been placed
in the files rtos.h and rtossup.c, which are found in the siosrc\<rtos>
subdirectory.

The file system has four cases where it requests memory allocation:

• A single 512-byte block is requested when reading the BPB sector. This is
returned immediately after accessing the data in that sector.

USFiles User's Manual 6-5

• Each time mt_fopen is called a file handle structure (MTFILE) is allocated.
This will be released when the file is closed.

• Before the file handle allocation is done, mt_fopen will request allocation of
space to copy the filename argument passed to the open call. This is used to
parse the device name from the device table, and will be released as soon as
this process is finished.

• When using the mt_readdir function with long file names (VFAT), USFiles
dynamically allocates space to temporarily hold the Unicode name before it
is converted to ASCII. This requires 260 bytes, which are released before
the function return.

6-6 USFiles User's Manual

Stand-alone Mode

Table 6-1: Stand-alone Mode Calls

errno
USFiles in stand-alone mode uses the compiler library’s errno.h file.

USFiles Call RTOS Call

Protecting Stream I/O

N/A

Protecting the File System

N/A

Dynamic Memory Allocation

alloc_mem() calloc()

dealloc_mem() free()

USFiles User's Manual 6-7

MultiTask!

Table 6-2: MultiTask! Mode Calls

errno
MultiTask! defines errno for each task. Please refer to the MultiTask!
documentation and source code for details.

Stack Size
The file depends.h specifies a minimum stack size required for the
MultiTask! test programs to run. USFiles requires a larger stack size, so in
the test programs, we define macros XTRA_STACK and XTRA_MEM to
account for this difference.

USFiles Call RTOS Call
Protecting Stream I/O

LOCK_ STREAMIO() mt busy++

UNLOCK_ STREAMIO() MTqproc()

Protecting the File System

LOCK_ FILESYSTEM() getres (PCFM_RESOURCE,
PCFM TIMEOUT)

UNLOCK_ FILESYSTEM() relres (PCFM_RESOURCE)

Dynamic Memory Allocation

alloc _mem() reqmem()

dealloc _mem() relmem()

6-8 USFiles User's Manual

If the MultiTask! test programs and usftest in stand-alone mode all run
successfully, but usftest fails when running with MultiTask!, then you may
want to try increasing the stack size.

NOTE: When using a board support package (BSP), the default stack
size will be specified in a BSP header file. Please see
siosrc\<cpu>\cpunotes.txt to determine whether a BSP is
being used.

Dynamic Task Loading with fruntsk
With USFiles for the 80x86 platform we have added the capability to
dynamically load and start a MultiTask! task or several tasks from a
separately compiled *.exe file. This requires a task that is already running
to initiate the load and startup of the task in the *.exe file by making a call
to fruntsk().

We will call the currently running portion of your application the “static
part” and the part you will be loading from the file the “overlay” (although
it is not overwriting any code).

The static part must be compiled as huge model, and must contain all of the
MultiTask! operating system as well as USFiles or equivalent file access
library and the new modules:

 fruntsk.c
 dyload.c
 dytable.asm

The overlay is compiled as either large or huge model (Microsoft C), or
huge model (Borland C) with the label MT_OVERLAY defined (usually by
adding -DMT_OVERLAY to the CFLAGS variable in the makefile). The
overlay module is then linked with dyentry.asm instead of the usual startup
module (i.e., dyentry replaces the compiler C startup routine which calls
main).

The model restrictions are necessary in order to relocate the code in the
overlay file and be able to dynamically link it to the system services in the
static part. Dyentry and dytable set up a jump table in the overlay with a
jump to each MultiTask! system function in the static part. The commonly

USFiles User's Manual 6-9

needed MultiTask! global variables are redefined for the overlay as
functions returning pointers to the variable. This is all transparent to the
overlay, and all coding in the overlay task is identical on the user level to
coding for the static part.

If you need to add access for the overlay to an additional function or
variable which resides in the static part, you can do so by adding a table
entry to the file dyconf.asm and recompiling both the static and overlay
parts.

Each item requiring a dynamic link appears in the dyconf.asm file as a line
with the item name preceded by either the funclnk macro for functions or
the datalnk macro for data items. Each data item also requires a #define
and extern declaration in the C overlay file. An example of this is shown
in the dyconf.asm file. The MultiTask! data items already defined in this
file have their #define and extern declarations already in place in
mtdata.h where they are conditionally included when MT_OVERLAY is
defined.

The makefile contains a target program, dytest.c, which builds a static part
that loads in the coretest program as an overlay and runs it. Refer to this as
an example of using the dynamic load capability.

NOTE: Dynamic task loading is now considered unsupported, and the
source files can be found in the siosrc\unsupp directory.

fruntsk
Loads and runs a task from a file.

int fruntsk(uint priority, char *fname, uint stksiz,
...);

priority task priority to be assigned to the loaded task
*fname the complete pathname to code being loaded
stksiz the size of stack to assign to the loaded task
... up to 4 arguments to be passed to task
The fruntsk() function is similar to runtsk except the task is first loaded
from a file whose pathname is given by fname. The file must be a

6-10 USFiles User's Manual

relocatable type as used by dyload.c. (For 80x86 this will be a *.exe file.)
Memory is allocated by a call to reqmem() to hold the code in the module
loaded. The code is located and loaded into memory, and the stack space
stksiz bytes is allocated with a call to reqmem(). The main() function of
the loaded file is started as the first (and possibly only) task in the file. If
there was more than one task contained in the file, each of these needs to be
started by the first task (main()) in that file. Be aware that all code memory
is attached to the first task of that file and will be deallocated when that task
dies. Because of this you must ensure that it will be the last task to die of
the group loaded in that module.
NOTE: The fruntsk function is part of USFiles and is currently only

supported on the 80x86 real mode platform.

Return Value
+n TASK_ID (slot number) of loaded task
E_IOERR Error reading file (more information may be contained in

errno)
E_NOSLOT All task slots in configuration (NUMTSK) are in use
E_NORAM insufficient memory (reqmem)

Example
TASK_ID slot;

slot = fruntsk(100, “a:\\bin\\ovltask.exe”, 1000);
if(slot < 0)

{ error }

USFiles User's Manual 6-11

TronTask!

Table 6-3: TronTask! Mode Calls

Since tasks cannot ‘own’ a resource governed by TronTask!’s semaphores,
we had to implement our own routines to interface with the resources to
allow nested LOCK_ calls. These are found in the file rtossup.c.
The alloc_mem() function in rtossup.c calls the kernel reqmem() function.

errno
TronTask! defines errno for each task. Please refer to the TronTask!
documentation and source code for details.

USFiles Call RTOS Call

Protecting Stream I/O

LOCK_ STREAMIO() ussStreamForbid()

UNLOCK_ STREAMIO() ussStreamPermit()

Protecting the File System

LOCK_ FILESYSTEM() ussFileForbid()

UNLOCK_ FILESYSTEM() ussFilePermit()

Dynamic Memory Allocation

alloc _mem() alloc_mem()

dealloc _mem() relmem()

6-12 USFiles User's Manual

Initializing USFiles
To gain access to stream I/O and the file system, the semaphores protecting
these must be created (for TronTask! 3.x only) and signaled. This should be
done at the start of your application by calling the function ussSIOInit(),
which is found in the file rtossup.c. This routine will create the
semaphores, if necessary, and signal them so that access can be granted to
tasks. For an example of initializing USFiles with TronTask!, please see
usftest.c.

Stack Size
The file depends.h specifies a minimum stack size required for the
TronTask! test programs to run. USFiles requires a larger stack size, so in
the test programs, we define macros XTRA_STACK and XTRA_MEM to
account for this difference.

If the TronTask! test programs and usftest in stand-alone mode all run
successfully, but usftest fails when running with TronTask!, then you might
want to try increasing the stack size.

NOTE: When using a board support package (BSP), the default stack
size will be specified in a BSP header file. Please see
siosrc\<cpu>\cpunotes.txt to determine whether a BSP is
being used.

USFiles User's Manual 6-13

Hitachi ITRON

Table 6-4: Hitachi ITRON Mode Calls

Since tasks cannot ‘own’ a resource governed by Hitachi ITRON’s
semaphores, we had to implement our own routines to interface with the
resources to allow nested LOCK_FILESYSTEM() calls. These are found
in the file rtossup.c.
The alloc_mem() and dealloc_mem() calls are also in rtossup.c. We make
use of the RTOS get_blk() and rel_blk() calls, but we also tried to do some
optimization. Please see the rtossup.c file for details.

errno
We include the compiler library’s errno.h file in rtos.h.

USFiles Call RTOS Call

Protecting Stream I/O

LOCK_ STREAMIO() wai_sem(STREAM_RESOURCE)

UNLOCK_STREAMIO() sig_sem(STREAM_RESOURCE)

Protecting the File System

LOCK_FILESYSTEM() usfitron_getres()

UNLOCK_FILESYSTEM() usfitron_relres()

Dynamic Memory Allocation

alloc_mem() alloc_mem()

dealloc_mem() dealloc_mem()

6-14 USFiles User's Manual

Test Environment
Refer to the config\sh\hitachi\compiler.mak file for instructions on
configuring USFiles for a particular SH processor. Depending on your
RTOS, you might have to modify another makefile in config\sh\hitachi to
specify the path to the RTOS directory. The appropriate makefile is:

 SH7 sh7dos.mak

 SH77 sh77dos.mak

 HI7750 hi7750.mak

The test is downloaded to RAM in the board via the serial port, and then
run. The test sends text out the serial port from the board to a terminal
attached to this port. The debug monitor is assumed to have initialized the
serial port for the test. All test output goes through the function putch() in
the file getput?.c, which can be found in the siosrc\sh directory. To direct
the text displayed by the program to another location, you can replace this
function. Note that there are multiple versions of this file specified by
replacing ? with the TARGET number selected by setting compiler.mak
appropriately.

Using Library Header Files

stdlib.h
Compiling the file system requires that three lines be added to the compiler
header file stdlib.h in order to compensate for nested inclusion of this file.

Near the top of stdlib.h (before any statements that are not comments) add
these two lines:

#ifndef stdlib_h
#define stdlib_h

After the last line of the file add:

#endif

USFiles User's Manual 6-15

These will prevent any problem if the file is included more than once,
which is the case with the file system code. This is difficult to avoid
because of the way the header files are used for other systems.

Check the contents of stdarg.h to see if similar lines already exist (the exact
name defined is not important, but the structure is). This is common
practice for most C compilers, and may already be present in later releases
of the Hitachi compiler.

stdio.h
Using the Hitachi compiler library stdio.h with USFiles may produce a
linker error, due to the name of the USFiles module sprintf.c. This
problem can be remedied by following these steps:

4. Rename sprintf.c to usprintf.c.

5. Edit siosrc\makefile to change sprintf to usprintf.
6. Rebuild the library and application.

The USFiles modules and test programs do not use stdio.h, so this fix is
only necessary if your application needs stdio.h.

The depends.h File
You should make changes only to the following statements, when
appropriate.

#define MASK_INTS() set_imask(0xf)

This line defines a macro used to mask interrupts in the system. Normally
this sets the interrupt mask value to the highest possible setting to disable all
interrupts. This may be set to some other level for some circumstances if
you understand the usage.

#define UNMASK_INTS() set_imask(0)

This macro returns interrupt mask setting to zero. For the case of using
USFiles without an RTOS, there is only one place where these macros are
used, for a very brief time, in streamio.c.

6-16 USFiles User's Manual

Configuration Files
When using SH7 or SH77, customized configuration files are provided in
the siosrc\<rtos> subdirectories. Other configuration files needed for these
RTOSes are the default files. Their location is identified by the MTPTH
symbol in sh7dos.mak or sh77dos.mak (see siosrc\<rtos>\makefile). The
customized configuration files are:

suptbl7.c Variation of hisuptbl.c for SH1 or SH2

suptbl77.c Variation of hisuptbl.c for SH3

tstsup2.c SH2 version of above

tstsup3.c SH3 version of above

When using HI7750, we do not provide any customized configuration files.
The user must configure the RTOS files according to the instructions found
in siosrc\sh\cpunotes.txt.

Interface
The file rtossup.c provides the functions to interface the file system to
Hitachi ITRON.

The only ITRON functions used by the file system are:

 get_tid
get_blk
rel_blk
sig_sem
wai_sem

USFiles User's Manual 6-17

In addition to these, the test program usftest.c uses the following functions,
and depends upon the timer interrupt handler calling irot_rdq(2):

 clr_flg
set_flg
wai_flg
sta_tsk
slp_tsk
wai_tsk
wup_tsk

The event flag used by SH7 and SH77 in usftest is defined in usftest.c as
XEVT, which has a value of 10. HI7750 dynamically assigns the event flag
ID number.

Various Makefiles
compiler.mak Used to select the board

makefile.sh2 Specific information for DVE-7604 board

makefile.sh3 Specific information for DVE-7708 board

makefile.sh4 Specific information for Hitachi SH4 Solution Engine

sh7dos.mak Specific rules for SH7 RTOS

sh77dos.mak Specific rules for SH77 RTOS

hi7750.mak Specific rules for HI7750 RTOS

6-18 USFiles User's Manual

RX850 and RX850 Pro

Table 6-5: RX850 and RX850 Pro Mode Calls

Since tasks cannot ‘own’ a resource governed by RX850’s semaphores, we
had to implement our own routines to interface with the resources to allow
nested LOCK_FILESYSTEM() calls. These are found in the file rtossup.c.

The alloc_mem() and dealloc_mem() calls are also in rtossup.c. We make
use of the RTOS get_blf() and rel_blf() (get_blk() and rel_blk() for RX850
Pro) calls, but we also tried to do some optimization. Please see the
rtossup.c file for details.

errno
We include the compiler library’s errno.h file in rtos.h

USFiles Call RTOS Call

Protecting Stream I/O

LOCK_ STREAMIO() wai_sem(STREAM_RESOURCE)

UNLOCK_STREAMIO() sig_sem(STREAM_RESOURCE)

Protecting the File System

LOCK_FILESYSTEM() usfitron_getres()

UNLOCK_FILESYSTEM() usfitron_relres()

Dynamic Memory Allocation

alloc_mem() alloc_mem()

dealloc_mem() dealloc_mem()

USFiles User's Manual 6-19

Test Environment
The provided makefiles are configured to compile USFiles with the Green
Hills compiler located in the directory specified by PTH in
config\v8xx\green\compiler.mak. In addition, the directory containing
support for the RTOS is indicated by NUCLEUS_TOP in the same
compiler.mak.

We have tested our software using the Kyoto Micro Computer Partner-ET
Extended Target Debugger ROM emulator. You should be able to simply
start the Partner software, load the compiled test, and run. Output is
directed to the JRS232C port on the
RTE-V850E/MS1-PC board. If you connect this to a monitor, the test
output will be displayed.

If you are using a different board, then you will have to modify the putchr()
routine in getput1.850, which is found in siosrc\v8xx

Board Revisions
We have tested our software with two different revisions of the
RTE-V850E/MS1-PC board. The only difference that you need to be aware
of is the clock speed. The file siosrc\v8xx\serial.c provides the serial driver
for the evaluation boards. If you are using rev. 3.0 of the evaluation board,
then be sure that BRGC0 = 65 to indicate a 40MHz clock. If using rev. 3.1
of the evaluation board, then BRGC0 should be 54, indicating a 33 MHz
clock. One way to check for the proper clock speed is that output will
appear garbled if the wrong clock speed is specified.

Configuration Files
The following files are used to configure usftest to run as a task with
RX850 (Pro). These are modified versions of several of the original RX850
sample configuration files.

sit850.cf RX850 configuration file in siosrc\rx850 directory

sit850p.cf RX850 Pro configuration file in siosrc\rx850pro directory

6-20 USFiles User's Manual

These files define all the RTOS items that are required (tasks, semaphores,
memory pools, etc.). When the STREAM_RESOURCE and PCFM_RESOURCE
semaphores are defined, they are initialized to 1, meaning that they are
available to be accessed immediately. Please see the RX850 (Pro)
documentation to see how to properly configure your particular application.

Interface
The file rtossup.c provides the functions to interface the file system to
RX850 and RX850 Pro.

The only ITRON functions used by the file system are:
 get_tid

get_blk (RX850 Pro)
rel_blk (RX850 Pro)
get_blf (RX850)
rel_blf (RX850)
sig_sem
wai_sem

In addition to these, the test program usftest.c uses the following functions:
 clr_flg

set_flg
wai_flg
sta_tsk
slp_tsk
dly_tsk
wup_tsk

The event flag used by usftest is XEVT, the value of which is determined by
the configuration file.

For RX850, memory allocation is done with fixed-size blocks from pool
USFILES_MEMPOOL. The block size is 608 bytes (defined in sit850.cf) and
USFILES_MEMPOOL is defined in siosrc\rx850\rtos.h.

For RX850 Pro, memory allocation is done with variable-size blocks from
pool USFILES_MEMPOOL, which is defined in siosrc\rx850pro\rtos.h.

USFiles User's Manual 6-21

USFiles User's Manual 7-1

7. Porting Guide
Chapter Contents

7. PORTING GUIDE...7-1
Porting USFiles Stand-alone Mode..7-2

Setting Up Makefiles ...7-2
Editing Header Files...7-4
Porting Drivers...7-4
Memory Alignment..7-6

Porting USFiles to a New RTOS ...7-7
Integrating an RTOS with USFiles7-7
Porting Drivers...7-10

7-2 USFiles User's Manual

Porting USFiles Stand-alone Mode
There is little in USFiles that is processor dependent, so porting mostly
involves identifying the correct libraries. USFiles makes use of several
string functions like strcmp() and memory routines like memcpy() or
memset(). The easiest way to determine what library from your tool chain
is required is to compile and link the usftest program and see which
symbols remain unresolved.
We are assuming that you have been able to run a simple “Hello, World”
program on your hardware before you start to port USFiles.

Setting Up Makefiles
To develop makefiles for a new processor and/or compiler, we recommend
using existing makefiles as a starting point. If you are porting to a new
CPU, you will have to add CPU and CPU\compiler subdirectories to the
config and siosrc directories. Copy the existing makefile and
compiler.mak files into these directories and edit them.
You will also have to add your new CPU and compiler names to the
appropriate lists in config.mak. Make sure that the names in config.mak
match the directory names that you have created.
NOTE: If a board support package (BSP) has been provided for your

CPU, then porting is most easily done in the BSP model.
Please see BSP documentation for porting instructions.

As an example, consider porting to a CPU called NewCpu, and a compiler
called NewComp. These are the steps for porting:
4. Create these directories:
 siosrc\NewCpu
 siosrc\NewCpu\NewComp
 config\NewCpu
 config\NewCpu\NewComp

USFiles User's Manual 7-3

5. Copy the makefiles:
d. Copy siosrc\i8086\makefile to siosrc\NewCpu\makefile
e. Copy siosrc\i8086\borland\makefile to

siosrc\NewCpu\NewComp\makefile
f. Copy config\i8086\borland\compiler.mak to

siosrc\NewCpu\NewComp\compiler.mak
6. Edit the makefiles:

e. The siosrc\NewCpu\makefile should contain USFiles device
drivers and may contain character I/O. Character I/O may be found
in the bspsrc directory.

f. The siosrc\NewCpu\NewComp\makefile will most likely not build
anything.

g. The config\NewCpu\NewComp\compiler.mak file has the
necessary flags for tool chains, the paths to the tool chains, the rules
for building, and the target-specific information

h. In the config.mak file, add and select these lines:
CPU = NewCpu
COMPILER = NewComp

Of course, you will need to modify the code to support drivers and character
output on a new board. Interrupts are only dealt with by the drivers
themselves for USFiles. The RAM disk driver does not need any interrupts,
but the i8086 hard disk and diskette drivers utilize interrupts. Please pay
attention to interrupts when porting.
NOTE: When using a BSP, the BSP will handle the interrupt level.

When building a USFiles library or application in stand-alone mode, the
files indicated in siosrc\makefile, siosrc\NewCpu\makefile,
siosrc\NewCpu\NewComp\makefile, and siosrc\none\makefile will be
compiled and added to the library according to the rules found in
config\NewCpu\NewComp\compiler.mak. The library is then placed in
the lib directory and the application (in appsrc) is compiled and linked with
the library.

7-4 USFiles User's Manual

Editing Header Files
Copy the existing header files depends.h and usstypes.h to the
siosrc\NewCpu\NewComp directory, and edit these files as needed.

NOTE: If a BSP is being used, then these files are unnecessary. The
BSP header files replace these.

Porting Drivers
The drivers provided with USFiles, with the exception of the RAM disk
driver, have been specifically developed for operation on PC hardware.
Please regard these as samples only. Unless you are using PC hardware,
they will require modification to work with your hardware. If you choose
to use one of our drivers as a sample, we recommend avoiding the diskette
driver (flopdrv.c). It has some peculiarities that will be discussed later.
The BIOS driver (biosdrv.c) or the hard disk driver (lbahddrv.c) are
clearer.

RAM Disk Driver
The RAM disk driver (ramdrv.c) should operate on any hardware with at
least 256 KB of memory available. The size of the RAM disk can be
configured in ramdef.c.

BIOS Driver
The BIOS driver (biosdrv.c) requires a BIOS to operate. It uses functions
provided by the Microsoft and Borland tools to access the BIOS. This
driver is representative of the structure required in a USFiles driver, but its
utility is limited.

USFiles User's Manual 7-5

Hard Disk Driver
The hard disk driver (lbahddrv.c) provides direct access to an IDE hard
drive. The drive can either operate in logical block addressing (LBA)
mode, or in cylinder, head, sector (CHS) mode. Each drive’s unit number
in the device table determines how it is accessed. See Chapter 4,
Configuring USFiles, for more details.

The driver initialization installs an interrupt service routine (ISR) in the
expected DOS vector for IRQ 14. When operating in stand-alone mode, an
ISR is also installed into the DOS timer interrupt vector to allow drive
commands to timeout. These ISRs will require attention when porting to
new hardware. In stand-alone mode, you may not wish to use interrupts.
You could simply let the driver enter a spin loop until the drive operation
completes.

You will also need to modify the hard drive communication port definitions
near the top of the file. The file diskio.asm has the get_sector() and
put_sector() routines called by the driver. There are samples of how these
functions can be replicated in C code, but you may wish to provide
assembly routines to improve speed.

Finally, you might wish to redefine the macro ptr_norm(). This is used to
normalize the 80x86 real mode buffer pointer. Other CPUs should not need
this, so it can be redefined to do nothing.

Diskette Driver
The diskette driver does the same sort of initialization as the hard disk
driver. It installs an ISR in the DOS interrupt vector for a floppy disk drive
controller, and it will install the timer ISR in stand-alone mode, if it is not
already installed.

The diskette driver has four ports defined, which will require modification
to match your hardware. It also uses DMA. If your hardware does not have
DMA, then this driver will require significant modification.

7-6 USFiles User's Manual

Memory Alignment
When developing or porting drivers, be aware of the memory alignment
requirements of your CPU. This may become an issue when we directly
transfer data from a disk to the user’s buffer (bypassing internal USFiles
buffers). Imagine the following situation:

5. We open a file and read 511 bytes from it.

6. We then call mt_fread() to read 2000 bytes into an application buffer.

7. The read routine realizes that we have to read one byte from an internal
buffer. It does that and then increments the pointer to the application
buffer by one.

8. The read routine then tries to directly transfer 1536 bytes from the disk
to the application buffer. The application buffer is now positioned on
an odd byte, so accessing the buffer this way may fail.

A solution to this problem is to have a 512-byte buffer in the driver that can
be used to temporarily hold sectors. The read and write routines will have
to test whether bufp->userbuf has the proper alignment. If it does not,
transfer to the temporary buffer, and then to the application buffer (for
read).

Another solution is to make sure that reads and writes are always done to
maintain the proper alignment (e.g. a minimum of two bytes at a time).

USFiles User's Manual 7-7

Porting USFiles to a New RTOS
Chapter 6, Supported RTOSes, describes the issues that must be considered
when integrating USFiles with an RTOS. These will be discussed in a bit
more detail here. If you are porting USFiles to a processor and/or compiler
for which we do not provide makefiles, you should first port USFiles to this
environment in stand-alone mode, which is discussed in the previous
section. This will insure that USFiles is operating properly for your
development environment, and then the RTOS integration can be
performed.

Integrating an RTOS with USFiles
When integrating USFiles with an RTOS, you must consider these items:

• Protecting stream I/O

• Protecting the file system

• Dynamic memory allocation

• Defining errno

Integrating Files
We have attempted to keep the files involved in RTOS integration to a
minimum. For supported RTOSes, these files are rtos.h and rtossup.c.
They are located in the appropriate siosrc\<rtos> directory. You will need
to create a subdirectory in siosrc for your new RTOS and create rtos.h and
rtossup.c files there. Make sure that you update the RTOS list in
config.mak to include your new RTOS.

RTOS Header File
A good starting point for your RTOS header file is copying rtos.h from
siosrc\none and editing that. This rtos.h file includes the definitions
required by USFiles, and you can substitute the appropriate functions for
your RTOS.

7-8 USFiles User's Manual

In this RTOS header file, you will need to define these macros:

LOCK_STREAMIO()
UNLOCK_STREAMIO()
LOCK_FILESYSTEM()
UNLOCK_FILESYSTEM()

These are typically implemented as resources (e.g. LOCK_STREAMIO()
requests a resource and UNLOCK_STREAMIO() releases a resource). You
will then have to define the ID numbers for the resources that protect the
stream I/O and file system. This can be done directly in the header support
file.

NOTE: Calls to LOCK_FILESYSTEM() may be nested. The
implementation must allow a single task to call
LOCK_FILESYSTEM() twice consecutively without an
UNLOCK_FILESYSTEM() call in between. The counting
semaphores of µITRON do not allow this, so we must wrap
the semaphore calls with our own code. If your RTOS has
similar behavior, please see the rtos.h and rtossup.c files in
siosrc\tt3 for an example of how to handle this.

Here you will also need to define how errno is implemented. For our
MultiTask! and TronTask! RTOSes, each task can have an error code
associated with it, so we use a macro to map errno to the task error code.
With other supported RTOSes, we include the compiler library’s errno.h
file. Be sure that the errno is safe for a multitasking environment before
using this.

RTOS Support File
The RTOS support file (rtossup.c) will contain the functions for dynamic
memory allocation. Again, a good starting point is the rtossup.c file in the
siosrc\none directory. Copy this to your new RTOS directory and edit as
needed.

USFiles calls the functions alloc_mem() and dealloc_mem() to acquire and
release heap memory. These functions should be defined in the RTOS
support file. Since USFiles often allocates a PCFM_BUFFER structure, you
may find it useful to set aside a block of memory with this size. When a

USFiles User's Manual 7-9

function requests a block that is sizeof(PCFM_BUFFER), you can return
the address of this dedicated space. This is safe, because all the calls that
would request this block are protected, so only one task at a time will access
it. Here is an example that implements this technique:

/* defined as long to get address alignment */
uint32 usfblock[(sizeof(PCFM_BUFFER) + 3) / 4];

int dealloc_mem(void *reladr)
{ /* release memory */

if (reladr != usfblock) {
/* Do RTOS memory free */

} else {
/* ignore release of PCFM_BUFFER block */
return 0;

}
}

void *alloc_mem(int reqsize)
{

if (reqsize == sizeof(PCFM_BUFFER)) {
/* return pointer to 512 byte block */
return (usfblock);

}
else

/* Do RTOS memory allocation */
/* Return pointer to memory */

}

NOTE: The memory returned by a call to alloc_mem() must be
initialized to zero for USFiles to function properly.

Building Your Application
When you build an application with USFiles and a new RTOS, you will
obviously need to specify the RTOS library so that your application and
USFiles can link with it. You can either do this in the
config\<cpu>\<compiler>\compiler.mak file or by adding the RTOS
library to the USER_LIBS list in config.mak.

7-10 USFiles User's Manual

Porting Drivers
If you have not already read the discussion on porting drivers for USFiles in
stand-alone mode, you should do so now. Most of the issues discussed
there are still applicable when using an RTOS. This section will only deal
with issues specific to an RTOS.

Generally there are two items that must be handled when integrating a
USFiles driver with an RTOS:

• Putting a task to sleep

• Waking up the task from an interrupt service routine

The lbahddrv driver is a good example to use. It typically:

• Saves the ID of the task that is running (so it can be woken up)

• Sends the proper command to the drive

• Waits with a timeout specified (here other tasks can operate)

When the interrupt is received from the drive, the ISR then wakes up the
task so it can continue operation. This is usually all that must be handled
when integrating our drivers with a new RTOS. Unfortunately, the diskette
driver is an exception to this.

Diskette Driver
The complication with the diskette driver is that we need to keep track of
the motor operation. We dedicate a task to turning the motor off when
necessary. This is done in the pcfdrv_init() function. The device table
entry for diskette drives has a field to specify the ID number of an event that
indicates when the drive motor should be turned off. Be careful that you do
not reuse this event ID number.

USFiles User's Manual 7-11

The motor_off_task() is started as a very high priority task. It only checks
to see if the motor should be turned off. If so, it executes the MotorOff()
function. When the motor_on() function is called we determine at what
time the motor should be shut off by adding the present system time to the
timeout period passed into motor_on(). Signaling the motor_off_task()
must be implemented so that if there is a second call to motor_on() before
the current motor off time is reached, the old time is ignored, and the new
time is recognized.

7-12 USFiles User's Manual

USFiles User's Manual A-1

A. Handling Disk Changes
Overview

Handling a disk change is the responsibility of the application designer. We
are not able to anticipate all the situations under which an application can
experience a disk change. Therefore, USFiles does not automatically
provide for all possible methods of handing a disk change, which is largely
the work of the driver. In the case of the PC drivers that we provide
(flopdrv.c and biosdrv.c), the error_handler() routine deals with the disk
change recovery.

The diskette drive disk change is checked in three places: During a raw
read, during a raw write, and during a file open. The sector read and write
routines call the raw read and write routines, so these will also pass through
the disk change test. The sector reads and writes will then call the error
handler if an error is encountered. The raw reads and writes do not, which
is why USFiles almost exclusively uses the logical sector reads and writes
from pcfm. When pcfm_open() is called, it also checks for a disk change
and will branch to the error handler if one is sensed. All disk change errors
should pass through the error handler.

A-2 USFiles User's Manual

Continuing with the New Disk
One method of handling a disk change error is to simply continue with the
new disk that was inserted. This is the default method used in the USFiles
drivers. The precise method that we have implemented in these drivers will
not corrupt any diskettes. The worst that might happen is that data meant to
be stored on the original disk is lost.

In pcfdrv_error_handler(), case 0x06 is the disk change condition. The
code there is:

status = EDSKCHG; / our error code */
/* read sector 0 */
tmpstatus = pcfm_get_bpb(bufp->devp);
if(tmpstatus){

bufp->error_status = tmpstatus;
break; /* no retrys */

}
/*
** some recovery action is possible here
*/

/*
** Invalidate buffers regardless of whether files are
** open. This is necessary to clear out FAT buffers.
*/
pcfm_invalidate_buffers(bufp->devp);
/*
** If there are any open files for the device,
** invalidate the streams for this device with
** no attempt at error recovery.
*/
if(otherFilesOpen(bufp->devp))

invalidate_streams(bufp->devp);
else

status = 0; / No open files, ignore error */
retstatus = 0; /* Default is do not retry */
break;

USFiles User's Manual A-3

The first thing we try to do is read the BPB of the new disk. If that
produces an error, then we simply give up and report an error. Once the
BPB is successfully read, then we can test to see if the disk truly changed
by comparing the old disk serial number found in
bufp->serial_no to the new one found in
bufp->devp->devparm.pcd->serial_no. We do not do this by
default. If the serial numbers match, then we do not really have an error.

If the disk has truly changed (or if we do not bother checking), then we
need to invalidate all buffers for the device, which will clear out FAT
buffers as well. Then we check to see if files are open on the device. If
there are, then we must also invalidate those streams.

The otherFilesOpen() routine only returns 1 if files other than the one being
opened are found for the device. This allows handling the following
situation seamlessly:

• Open file

• Close file

• Change disk

• Open new file

If we only checked for any open files, then we would receive a disk change
error on the second file open.

A-4 USFiles User's Manual

Putting Back the Old Disk
The other common method for handling a disk change is to expect the
original disk to be inserted again. One complicating factor with this method
is that putting the original disk back in will signal another disk change.
This will have to be accounted for in your error handling. One method is to
call the driver diskchange() function to make sure that a disk has changed,
and then make sure that it’s the original (e.g. by checking serial numbers).
You do not want to call a diskchange() function that will call the
error_handler() again. This will result in nested error_handler() calls that
may produce odd results.
A possible way to achieve this recovery method with flopdrv is:

status = EDSKCHG; / our error code */
/* read sector 0 */
tmpstatus = pcfm_get_bpb(bufp->devp);
if(tmpstatus){

bufp->error_status = tmpstatus;
break; /* no retrys */

}
/*
** some recovery action is possible here
*/
iprintf(“Please insert original disk and press any key to

continue\n”);
getchr();
/* If disk has changed again */
if(internal_pcfdrv_diskchange()){

tmpstatus = pcfm_get_bpb(bufp->devp);
if(tmpstatus){

bufp->error_status = tmpstatus;
break; /* no retrys */

}

USFiles User's Manual A-5

if(bufp->serial_no ==
bufp->devp->devparm.pcd->serial_no){

status = 0; / No error necessary */
retstatus = 0; /* Do not retry */
break; /* Get out */

}
}
/*
** If we get here, either the disk was not changed again,
** or the disk that was put in was not the original.
** Invalidate buffers regardless of whether files are
** open. This is necessary to clear out FAT buffers.
*/
pcfm_invalidate_buffers(bufp->devp);
/*
** If there are any open files for the device,
** invalidate the streams for this device with
** no attempt at error recovery.
*/
if(otherFilesOpen(bufp->devp))

invalidate_streams(bufp->devp);
else

status = 0; / No open files, ignore error */
retstatus = 0; /* Default is do not retry */
break;

A-6 USFiles User's Manual

Other Situations
We want to emphasize that there are likely other methods to handle a
changed disk. The two methods that we outlined above should prove useful
in devising your own recovery scheme. If you need assistance with this
matter, please contact U S Software

USFiles User's Manual B-1

B. 386 Protected Mode
Supported Compilers

The USFiles 386 protected mode port may be built with the Microsoft,
Borland, and CAD-UL tools. When using Borland or Microsoft be sure that
the file siosrc\i386\runtime.c is added to the library. See
siosrc\i386\makefile. For CAD-UL, this file should NOT be placed in the
library.

Memory Allocation
USFiles operates in 386 Protected Mode with MultiTask! and TronTask! for
the Microsoft, Borland, Watcom, MetaWare, and CAD-UL tools. Due to
deficiencies in the libraries provided by Microsoft and Borland, these tool
chains do not support USFiles in stand-alone mode.

The MetaWare and Watcom tool chains require some additions to allow
USFiles to operate in stand-alone mode. Typically USFiles stand-alone
mode maps alloc_mem() to the library calloc() routine and dealloc_mem()
to free(), but the calloc() provided by these libraries is not embeddable.

To enable support of 386 Protected Mode, USFiles uses the MultiTask!
memory allocation routines reqmem() and relmem(). This requires some
initialization before it can be used. The test program usftest.c has this
included, and the steps are:

1. Define a global array that will be used for memory allocation:
uint32 free_memory[(MEMORY_SIZE +7)/4];

2. Initialize the memory array in the main() function:
MTmeminit(&free_memory[1], MEMORY_SIZE);

In this example, MEMORY_SIZE is the amount of memory that can be
dynamically allocated.

B-2 USFiles User's Manual

NOTE: The CAD-UL support also uses the MultiTask! reqmem() and
relmem() functions for consistency.

MTmeminit

Adds memory blocks to dynamic memory pool.

int MTmeminit(void *memory_ptr, mem_size_t size);

memory_ptr address of memory to add to pool

size number of bytes to add

The system will add size contiguous bytes of memory starting at
memory_ptr to the pool of free memory managed by reqmem() and
relmem(). MTmeminit() can accept multiple blocks of memory, but they
must be provided in either ascending or descending order. On certain tool
chains, you may be able to have the linker and/or startup code pass the
actual available memory into your code. Otherwise, use an array of type
long.

Return Value
SUCCESS memory added to dynamic pool

E_RELMEM corrupt memory block header
(should never happen)

Example
long free_mem[2048]; /* allocate aligned memory */

MTmeminit(free_mem, sizeof(free_mem));

/* absolute memory designated */
MTmeminit((MTmem_t)0xc000, 0x4000);

USFiles User's Manual B-3

Libraries
The Watcom compiler requires use of the library
$(PTH)\lib386\dos\clib3s.lib, and MetaWare uses $(PTH)\flat\hc386.lib.
Here PTH is the path to the compiler directory and is specified in the
makefile.

B-4 USFiles User's Manual

USFiles User's Manual C-1

C. VFAT
Overview

Long file names can be supported with an extension to the standard FAT
file system called VFAT. This appendix explains VFAT and how it is
implemented by USFiles.

How VFAT Works
VFAT was introduced to allow for longer file names recorded in Unicode.
It makes use of the 32-byte directory entry structures, but several entries are
strung together to make a VFAT directory entry. The short file name entry
also has some fields that are not used by standard FAT12/16 entries. The
extended directory entry is shown in Table C-1, with the new fields shown
in boldface.

C-2 USFiles User's Manual

Table C-1: VFAT Short File Name Directory Entry

Relative Byte
Position
(hex [decimal])

Field Description Comments

00-07 [0-7] File name Base of short file name
08-0A [8-10] File extension Extension of short file

name
0B [11] File attribute See Table 2-5
0C [12] Reserved
0D [13] Creation time in 4-

millisecond units
VFAT only

0E-11 [14-17] Time and date created VFAT only
12-13 [18-19] Date of last access VFAT only
14-15 [20-21] Reserved
16-19 [22-25] Time and date created
1A-1B [26-27] First cluster for file
1C-1F [28-31] File size

A directory entry is marked as part of the long file name by setting the
attribute byte to 0Fh (i.e., read only, hidden, system, and label all set). The
directory entries containing the long file name are stored in reverse order;
the end of the file name will be encountered first, the beginning is near the
end, and the DOS 8.3 version of the file name is last. Table C-2 shows how
a directory entry is used as part of a long file name.

USFiles User's Manual C-3

Table C-2: VFAT Long File Name Directory Entry

Relative Byte
Position
(hex [decimal])

Field Description Comments

0 [00] ID Entry number for given file.
ID > 40h indicates end of
long file name

01-0A [1-10] First 5 characters of
name

Unicode uses two bytes per
character.

0B [11] File attribute 0Fh
0C [12] Reserved 00h
0D [13] Alias Checksum Checksum of DOS 8.3 name
0E-19 [14-25] Next 6 characters of

name

1A-1B [26-27] Reserved 00h
1C-1F [28-31] Last 2 characters of

name

It is probably easiest to see how VFAT works by studying an example. Let
us consider a file named “This is a really long file name.temporary”, and
see how it would be handled by USFiles.

First, the DOS 8.3 version of the file name is created. Any characters that
are allowed by VFAT but not by DOS are replaced by an underscore (‘_’).
The exception is the space. If a space is encountered, it is just ignored. If
illegal characters are found, or if the name is longer than DOS allows, then
the file name will have a ~# attached to it. The # will be a number to make
the 8.3 file name unique. Our sample long file name will be converted to
the DOS 8.3 file name “THISIS~1.TEM”. DOS file names only use
capital letters.

C-4 USFiles User's Manual

USFiles converts the ASCII long file name characters to Unicode. Every
character is converted, including the ‘.’ separating the file name from the
extension. Each directory entry can hold 13 characters of the long file
name, and we calculate how many slots are needed to hold the long file
name. Our example has 41 characters, so it requires four slots. We need to
find five consecutive available slots in the directory where the file will be
stored (four for the long file name plus one for the DOS 8.3 file name).
Once we have done this, we can store the directory entry. Table C-3 shows
a representation of how these entries would appear in the directory. Be
aware that for the long file name entries, the characters indicated will be
stored in Unicode, not in ASCII.

Table C-3: Storage of Long File Names

Directory
Entry Number

Slot
ID

Characters
Stored

Comments

N 44h “ry” Slot 4, but end of file name,
so ID = 44h

N=1 03h ‘name
“tempora”

N=2 02h “lly long file”
N=3 01h “this is a rea”
N=4 N/A “THISIS~1”

“TEM”
DOS 8.3 does not use slot ID
and does not store ‘.’

Since files with long names require several directory entries, one must be
careful with the root directory. It has a limited number of entries available,
and the number of files (if long file names are used) will be less than this.

USFiles User's Manual C-5

Restrictions on VFAT

Allowed VFAT Characters
VFAT allows these characters in addition to the DOS characters:

• a to z (lower case)

• [] ; , = + <Space>

VFAT records long file names in Unicode, and it does make a distinction
between lower and upper case letters. In addition to the long file name,
VFAT creates a DOS 8.3 name. For the DOS 8.3 name any lower case
letters are converted to upper case, any spaces are removed, and any of the
characters allowed by VFAT but not by DOS are replaced by an underscore
(‘_’).

VFAT file names may also contain Shift-JIS characters, but USFiles may
only support converting a limited set of these into Unicode. The file
jis2uni.c can be examined to determine which specific characters are
supported.

File Name Lengths
The longest file name that VFAT allows contains 256 characters. This
includes the ‘.’, the extension, and the NULL character at the end.

Path Lengths
When VFAT is used, a limit of 260 characters is imposed on the total path
length. This includes the NULL character. Therefore, if you use the
maximum 256 characters for a filename, that leaves you with three
characters to specify a directory name, and one for the separator character
(‘\’).

C-6 USFiles User's Manual

Number of Directory Entries
USFiles places a limit on the number of directory entries that a directory
can hold when VFAT is being used. To keep track of available slots, we
use a 16-bit unsigned integer to count slots, and therefore we are limited to
216 = 65536 slots for any directory except the root directory. The number of
entries available to a FAT 12/16 root directory is determined when the disk
is formatted.

Recall that long file name entries generally occupy several directory entries.
If all file names occupy two slots (one for the DOS 8.3 name and one for
the long file name), then that leaves us with 32768 files. The first two slots
are reserved as aliases for the current directory and its parent, so that limits
us to 32766 files in any directory (other than the root directory). Please be
aware of this limitation.

USFiles User's Manual C-7

Using VFAT
To enable VFAT, the symbol VFAT in config\sio.mak must be set to 1.
The following tables show the character set configuration options for
USFiles.

Access means the file is created with USFiles, and read by USFiles.

Import means the file is created by Windows95 or WindowsNT (or
DOS for short file names), and may be properly found and
opened by USFiles.

Export means the file is created by USFiles, and read by either
Windows95, WindowsNT or DOS.

In all cases where long file name access is not permitted, USFiles can still
access the 8.3 name that corresponds to the long name, and access the file
this way. The symbols VFAT and FAKEUNICODE are both found in
config\sio.mak.

When FAKEUNICODE = 0, code size requirement is increased by
approximately 14K for the necessary Unicode translation tables.

Table C-4: Access Configuration Options

Configuration
Option

VFAT
= 0

VFAT = 1
FAKEUNICODE = 0

VFAT = 1
FAKEUNICODE = 1

Access ASCII 8.3
(short name) files

Yes Yes Yes

Access Kanji
(Shift-JIS) 8.3
short name files

Yes Yes Yes

Access ASCII
long name files

No Yes Yes

Access Kanji
(Shift-JIS) long
name files

No Yes Yes

C-8 USFiles User's Manual

Table C-5: Import Configuration Options

Configuration
Option

VFAT
= 0

VFAT = 1
FAKEUNICODE = 0

VFAT = 1
FAKEUNICODE = 1

Import ASCII 8.3
(short name) files

Yes Yes Yes

Import Kanji
(Shift-JIS) 8.3
short name files

Yes Yes Yes

Import ASCII
long name files

No Yes Yes

Import Kanji
(Shift-JIS) long
name files

No Yes No

Table C-6: Export Configuration Options

Configuration
Option

VFAT
= 0

VFAT = 1
FAKEUNICODE = 0

VFAT = 1
FAKEUNICODE = 1

Export ASCII 8.3
(short name) files

Yes Yes Yes

Export Kanji
(Shift-JIS) 8.3
short name files

Yes Yes Yes

Export ASCII
long name files

No Yes Yes

Export Kanji
(Shift-JIS) long
name files

No Yes No

USFiles User's Manual C-9

The Unicode translation table is actually mostly initialized data, but is
counted as code space since it is ROMable. The figures below do not
include the driver layer. The RAM disk driver consumes approximately
1.2K of code space. Data size includes 10 file buffers (number is
configurable).

Table C-7: Approximate Code Sizes on 80x86 (Real-mode)
 Compiled with Borland C, Large Model

NOTE: All numbers with Borland C/C++ 5.0, NUMBUFFERS = 10.

Configuration Code Size
(in Kbytes)

Data Size
(BSS, in Kbytes)

VFAT = 0 31 6
VFAT = 1 FAKEUNICODE = 1 36 7
VFAT = 1 FAKEUNICODE = 0 53 7

Case Sensitivity
When only using DOS 8.3 file names, USFiles automatically converts any
lower case characters to upper case. With long file names enabled, this is
not necessarily done. The file usfutil.c contains the symbol
CASE_INSENSITIVE, which is 1 by default. If CASE_INSENSITIVE is 1,
any lower case Unicode characters will be converted to upper case. This
means that the file name “AbCd.txt” is the same as “ABCD.TXT”. If you
will be using file names that differ only by case, then you will need to set
CASE_INSENSITIVE to 0, which will preserve case sensitivity.

NOTE: Case sensitivity only works for files that do not meet the DOS
8.3 length limit or those that have characters in their names
that DOS 8.3 names do not permit.

C-10 USFiles User's Manual

Dynamic Memory Use
When calling mt_readdir() and using long file names, a 256-byte block of
memory is dynamically allocated to build up the directory name. This
block is immediately freed after being used.

USFiles User's Manual C-11

Files Used for Configuring VFAT
In addition to the files listed in Chapter 4, Configuring USFiles, the
following file determines how VFAT is used:

makefile Defines VFAT and FAKEUNICODE. Found in siosrc directory.

usfutil.c Specifies CASE_INSENSITIVE

NOTE: The VFAT and FAKEUNICODE symbols may be found in
config\sio.mak.

C-12 USFiles User's Manual

USFiles User's Manual D-1

D. USFiles for CompactFlash
Installing CompactFlash

USFiles for CompactFlash* (USFCF) is delivered on a single disk. To
install USFCF: Insert the disk, change to the drive with the disk, and type
install. Follow the instructions for installation. Install USFCF into the
same directory where USFiles is installed.

Text Files
Along with source files, we provide several text files with important
information. Please read all files in your installation directory that end in
.txt. Information in these files is likely more recent than that found in the
manual. Some files that may be of particular interest are:

vsnlog3.txt USFiles for CompactFlash version information. Located in
the siosrc directory.

enable.txt Notes on enabling USFiles for CompactFlash. Located in
the siosrc directory.

appnote.txt Topics that should be considered when developing an
application. Can be found in the siosrc or siosrc\<cpu>
directory.

This is not a comprehensive list of the possible text files, and not all
releases have each of these files.

D-2 USFiles User's Manual

Overview of CompactFlash
USFiles for CompactFlash (USFCF) provides a driver for CompactFlash
cards that integrates with the USFiles product. The driver has been
specifically developed on two platforms:

• AMD Elan SC400

• RTE-V850E/MS1-PC with FB2215a CompactFlash Interface Board

The driver supports CompactFlash Cards in ATA mode or True-IDE mode
as well as ATA Flash Cards. The driver developed for the Elan board has
code to initialize a PCMCIA controller, which is compatible with the Intel
82365 controller. This initialization is done when the first file is opened on
the device.

After this initialization, the card is then accessed via the lbahddrv
functions.

Configuration
In order for USFiles to recognize and use the CompactFlash driver, you
must edit config.mak to include usf and usfcf in the PRODLIST. The
CompactFlash driver requires direct hardware access, so when using the
i8086 driver, be sure to have #define USEBIOS commented out in
siosrc\sioconf.h. When using another processor, USEBIOS has no effect.

USFiles User's Manual D-3

You will need to add a device to the device table to represent your CF card.
To specify the CF card as device “C:”, you can use:

&pcparmC, /* device dependent data */
”C”, /* name */
FM_PCFM, /* device type = PC device */
0xf, /* bits: text write read */
0x80, /* unit# */
0, /* partition */
(DRIVER *)&lbadrv_s, /* pointer to driver */
&pcfm, /* pointer to file manager */
NULL, /* pointer to FILE */
0, /* flags */
0, /* # open paths (RAM) */

Be sure that these lines are present in devtab.c:

PCFM_PARM pcparmC;
extern struct driver_p const lbadrv_s;

Testing
Once configuration has been done and USFiles is rebuilt, the first partition
on the CompactFlash card will be recognized as C: (if you use the device
table entry above). In order to test the CompactFlash card on the V850
board using usftest, main() must be modified in usftest.c. The line
defpath = “r:”; should be changed to defpath = “c:”; so that the
CompactFlash card is used instead of the RAM drive. Running usftest on
the Elan board allows you to specify which drive to test at the command
line.

See also: Chapter 1, Getting Started, for more details.

After usftest is run, it leaves all of its files on the CompactFlash card. In
order to run it again, these files must be deleted. A utility called wipe is
included with USFCF to delete all the files on c:, the default CompactFlash
card. If you change this mapping and still want to use wipe, you should
change wipe, lest you erase the wrong drive.

D-4 USFiles User's Manual

Not Supported
Support for PCMCIA on a Personal Computer uses various software layers,
which are designed specifically to operate with the Windows operating
system. USFiles does not support these layers, which include socket
services, card services, and hardware drivers.

Other PCMCIA memory cards may be compatible with USFiles, but they
will require customization by the user. For example, a customer may want
to configure a PCMCIA controller to allow memory-mapped access to an
SRAM PCMCIA card with battery backup. Once the PCMCIA controller is
configured, the USFiles ramdrv.c driver can be used to access the SRAM
card.

Linear flash cards are used with Flash Translation Layer (FTL) software
that allows applications to access the linear flash card as a standard ATA
disk drive. The FTL software takes care of the special access requirements
of the linear flash cards, such as the requirement that the flash memory be
erased in blocks. USFiles does not support the FTL capability. Therefore,
a customer wanting to use linear flash cards with USFiles would have to
write a driver for the device.

USFiles User's Manual E-1

E. USFiles for CD-ROM
Installing USFiles for CD-ROM

USFiles for CD-ROM (USFCD) is delivered on a single disk. To install
USFCD insert the disk, change to the drive with the disk, and type
install. Follow the instructions for installation. Install USFCD into the
same directory where USFiles is installed

Source Files
USFiles for CD-ROM consists of primarily two files: cdfm.c (in siosrc), the
CD-ROM file system manager, and cdromdrv.c (in siosrc\i8086), the
ATAPI CD-ROM driver.

Text Files
Along with source files, we provide several text files with important
information. Please read all files in your installation directory that end in
.txt. Information in these files is likely more recent than that found in the
manual. Some files that may be of particular interest are:
vsnlog4.txt USFiles for CD-ROM version information. Found in the

siosrc directory.
cdreadme.txt Information specific to the USFiles for CD-ROM release.

Found in the siosrc directory.
appnote.txt Topics that you should consider when developing an

application. May be in either the siosrc or siosrc\i8086
directory.

This is not a comprehensive list of the possible text files, and not all
releases have each of these files.

E-2 USFiles User's Manual

Overview of CD-ROM
There are several varieties of CD-ROM recording standards. USFiles for
CD-ROM supports the CD-ROM format (as opposed to the
CD-ROM/XA format, for example). The supported format only has sectors
with 2048 bytes of user data.

CD-ROM Driver
The CD-ROM driver (cdromdrv.c) that is provided works for ATAPI
devices. These are connected via IDE cables. No other CD-ROM drives
(e.g. SCSI) will work with this driver. At initialization we instruct the CD-
ROM drive to use its default PIO transfer mode.
We have tested the driver with a Hitachi CDR-7730 4x drive and with
Matsushita CR-583 8x and 40x drives. We have encountered problems
with a BTC 40SB drive, which we have not yet resolved. If there are
difficulties with your CD-ROM device and our driver, please contact us.

CD-ROM File Manager
USFiles for CD-ROM file manager (cdfm.c) supports ISO 9660
CD-ROMs recorded at interchange level 1 (each file contains only one file
section, and file names comply with the DOS 8.3 convention). In addition,
we support CDs recorded using Microsoft Joliet Extensions. These
extensions allow longer paths, file names, and the use of Unicode
characters.

Multisession CD-ROMs
The CD-ROM driver code handles multisession disks. It is configured to
only read from the last recorded session on the disk. With modifications
another session could be selected.

USFiles User's Manual E-3

Basics of the ISO 9660 File System
The ISO 9660 file system differs considerably from the DOS FAT file
system, which is why a new file manager had to be developed. This section
will outline the basic items found in the ISO 9660 file system. A complete
description of the ISO 9660 file system can be purchased from ISO or
ANSI.

Volume Descriptors
The volume descriptors are analogous to the DOS file system BPB. These
define the layout and size of the CD-ROM. There are five defined volume
descriptors, but only three are recognized by cdfm.c. These are:

• Primary Volume Descriptor

• Supplementary Volume Descriptor

• Volume Descriptor Set Terminator

Primary Volume Descriptor
The Primary Volume Descriptor (PVD) lays out the CD-ROM with the ISO
9660 file system. It specifies the size of the CD-ROM, the location of the
Path Tables, the root directory record, and various other items that are
largely unused by USFiles for CD-ROM.

Supplementary Volume Descriptor
The Supplementary Volume Descriptor (SVD) provides the same details as
the PVD, but it allows for variations to the ISO 9660 specification. In
particular, the SVD can be used to specify a
CD-ROM that uses the Microsoft Joliet Extensions. The Path Table and
root directory entry that the SVD point to will record names in Unicode if
Joliet Extensions are used. A particular field in the SVD (Escape
Sequences) identifies the file system used by a specific SVD.

E-4 USFiles User's Manual

Volume Descriptor Set Terminator
The Volume Descriptor Set Terminator is used to indicate the end of the
sectors containing volume descriptors. After this sector follow the
remaining file system structures (Path Tables, directories, and files).

Path Table
The Path Table specifies in which sector each directory begins. This speeds
up searching for a file, because it limits the number of sector reads required.
A Path Table Entry includes (among other things):
• Location (sector) of directory
• Parent directory number
• Directory name

The parent directory number is needed to differentiate between directories
with the same name but different parents. For example, the directories
TEST1\SUBDIR and TEST2\SUBDIR would have the same name in the
Path Table, but they would have different parent directory numbers.

NOTE: A Path Table Entry can cross a sector boundary.

Directory Records
A directory record is used to define each file or directory. The directory
record for the root directory is specified in the volume descriptor. A
directory is composed of the directory records for each file or directory
contained within it. The directory record contains these items, as well as
others:
• Location (sector)
• Size
• Flags
• Name
• System use field

USFiles User's Manual E-5

The length of the name is not known in advance; it is also specified in the
directory record. USFiles dynamically allocates the space to hold the file
name when a file is opened. USFiles releases that space when a file is
closed, but you should be aware that if you have many files with long
names open simultaneously, you may require a large heap.

The same thing is true for the system use field. This field can contain
anything, but USFiles for CD-ROM does nothing with it. It will save this
field in the CD_DIR_ENTRY structure associated with CDFM_FSP. These
structures are defined in mtio.h, and the system use field can be accessed
via the cdfm_read_su() function.

The only bit in the flags field that we make use of is bit 1 (where bit 0 is the
lowest). If bit 1 is set to 1, then the directory record describes a directory.
Otherwise it represents a file.

NOTE: A Directory Record cannot cross a sector boundary.

Navigating the File System
When a file on a CD-ROM device is opened by USFiles, the steps used to
find the file are:

1. Read the volume descriptor.
If using Joliet Extensions, try SVD first, then PVD (if no SVD present).
If not using Joliet Extensions, only try PVD.

2. Find the proper directory in the Path Table.

3. Find the proper directory entry in the directory.

4. Go to the sector indicated by the directory entry.

The USFiles Implementation
There are several restrictions imposed by the ISO 9660 file system, but
since USFiles does not record CD-ROMs, we tend to ignore some of these.

E-6 USFiles User's Manual

Allowed ISO Characters
The ISO 9660 file system allows these characters:

• A to Z (upper case)

• 0 to 9 (numerals)

• _ (underscore)

Allowed Joliet Characters
Joliet Extensions permit the use of all Unicode characters except control
characters and those listed below, but USFiles expects names to be
specified in ASCII and/or Shift-JIS. We are limited to characters that can
be represented by these means. If Joliet Extensions are being used, we
translate the ASCII and Shift-JIS characters to Unicode. The characters not
allowed with Joliet Extensions are:

* / : ; ? \

File Name Lengths
Without Joliet Extensions, USFiles conforms to Interchange Level 1 of the
ISO standard, which means that 8.3 file names are used. If Joliet
Extensions are in use, then the length of the file name plus the length of the
extension shall not exceed 128 bytes (64 Unicode characters).

Directory Name Lengths
Without Joliet Extensions an 8-character directory name is the limit. If
Joliet Extensions are in use, then the length of the directory name shall not
exceed 128 bytes (64 Unicode characters).

Extensions for Directory Names
When using Joliet Extensions, directories may have an extension. For
example, dir.tmp is an allowed directory name with Joliet Extensions, but
not for ISO 9660 alone.

USFiles User's Manual E-7

Directory Levels
ISO 9660 allows for only eight levels of directories. For example
G:\D1\D2\D3\D4\D5\D6\D7\D8\FILE.TXT is allowed, but no
subdirectories are allowed in D8. USFiles does not test for this. When
using Joliet Extensions, this limitation is removed. In both cases, the sum
of the following items must be less than 255:

• Length of the file name

• Length of all relevant directory names

• Number of relevant directories

Again, USFiles does not test for this condition.

E-8 USFiles User's Manual

Other Items
We do not make use of the following items covered under the ISO standard:

• Files recorded in interleaved mode

• Use of extended attribute records

• Boot record volume descriptors

• Volume partition volume descriptors

• Directory structures recorded over multiple disks (Volume sets)

• CDs recorded with sector sizes other than 2048 bytes

This seems to be largely consistent with Microsoft’s handling of these
options with MSCDEX (Microsoft CD Extensions) for DOS, with the
possible exception of CDs recorded with different sector sizes.

USFiles User's Manual E-9

Configuring USFiles for CD-ROM

Including CD-ROM Support
To include the CD-ROM support, the PRODLIST in config.mak must
include usfcd. To avoid conflicts with a BIOS, you must be sure that no
device in the device table uses the BIOS driver (biosdrv_s). The ISO 9660
Level 1 standard requires that file names on CDs comply with the DOS 8.3
convention. In addition to this, USFiles supports the use of Joliet
Extensions, which allow (among other things) the use of long file names on
the CD. Enabling long file names for the CD file manager is the same as
enabling long file names for the PC file manager. This is accomplished by
setting VFAT to 1 in siosrc\makefile.

See also: Appendix C, under Using VFAT, for information on Kanji
character support.

Devices
To make use of the CD-ROM device, an appropriate entry must be made in
the device_tab[] found in devtab.c. This is a sample entry:

(PCFM_PARM *)&cdparmG, /* device parameter table pointer */
”G”, /* Device name */
FM_CDFM, /* device type */
0x5, /* capabilities, 0x5 = read + text mode */
0, /* unit number 0=master, 1=slave */
0, /* partition number */
(DRIVER *)&cdromdrv_s, /* Pointer to driver structure */
&cdfm, /* Address of filemanager structure */
NULL, /* Unused for CD */
0, /* flags */
0 /* number of open paths */

The device name (in this example G) is determined by your configuration
(i.e. the number of hard disks, partitions, and CD-ROM drives). Also make

E-10 USFiles User's Manual

sure that the variable cdparmG (or some other appropriate name) is defined
globally in devtab.c. This is done with:

CDFM_PARM cdparmG;

Each CD-ROM device requires its own unique parameter variable.

In addition to specifying that CD-ROM support is included, the user must
indicate on which IDE channel the CD-ROM drive resides. The default
setting is for the primary IDE channel, but this can be changed by
uncommenting this line in siosrc\sioconf.h:

#define CD_SEC

If the CD-ROM is used in conjunction with a hard drive, the hard drive
must be on the primary IDE channel, and we recommend that the hard drive
be the master device.

Table E-1 describes the possible CD-ROM drive configurations.

Table E-1: CD-ROM Drive Configuration

IDE Cable Master/Slave Unit Number
(userio.h)

CD_IDE
(makefile)

Primary Master 0 1
Primary Slave 1 1
Secondary Master 0 2
Secondary Slave* 1 2

* We have not tested the CD-ROM drive as a slave on the secondary IDE cable, nor
have we tested more than one CD-ROM drive on a system.

Buffers
The user can determine how many buffers to use with the CD file manager.
With the CD sector size of 2048 bytes, having many buffers may not be
feasible for certain applications. The number of buffers is determined by
NUMCDBUFS, which is in the file siosrc\sioconf.h. The value of
NUMCDBUFS is set to 3 as the default.

USFiles User's Manual E-11

Memory
In addition to statically defined sector buffers, there are a few CDFM
routines that dynamically allocate memory to read in specific CD sectors
(such as the sector containing the Volume Descriptor). This memory is
freed after the necessary information has been acquired, but be aware that a
suitable amount of memory must be available for this use. Each sector is
2048 bytes, and if multitasking is used, only one task will be allocating this
amount of memory at a time. Memory for directory entry file names is also
dynamically allocated. Be aware of this if you will have many files open at
one time.

Mixed-case File Names
We have encountered some CD-ROM disks that use only a Primary Volume
Descriptor (meaning that they are presumably ISO 9660 compliant), but
have file and directory names that were recorded in mixed-case. By default,
we change all file and directory names referred to by a PVD to upper case.
If you do not want all names changed to upper case, then comment out the
line #define ALL_UPPER in the file cdfm.c. Doing this will make your
PVD file and directory names case sensitive.

If you are using Secondary Volume Descriptor information (long Unicode
file names described by the Joliet Extensions), we can still turn on or off
case-sensitivity. To allow for case-sensitive names for the long file names,
the line #define CASE_INSENSITIVE 1 (in usfutil.c) must be changed
to #define CASE_INSENSITIVE 0. These options are summarized in
Table E-2.

Table E-2: Case-sensitivity Options

Name Type Case Sensitive Case Insensitive
Long File Names
(usfutil.c)

#define
CASE_INSENSITIVE 0

#define
CASE_INSENSITIVE 1

Short (ISO) File
Names (cdfm.c)

/* #define ALL_UPPER
*/

#define ALL_UPPER

E-12 USFiles User's Manual

The reason that we have two methods here is that CASE_INSENSITIVE
also governs how the long file names on diskettes or hard disks are handled.
ALL_UPPER only affects CD-ROM files referred to by the Primary Volume
Descriptor.

Files Used to Configure USFiles for
CD-ROM

In addition to those files and configuration parameters mentioned in
Chapter 4, Configuring USFiles, the following files are used to configure
USFiles for CD-ROM:
cdfm.c Has ALL_UPPER.
config.mak Set usfcd and usf in config.mak.
devtab.c Has device_tab[].
makefile Has VFAT and FAKEUNICODE. Found in siosrc directory.
sioconf.h Has CD_SEC. Found in siosrc directory.
NOTE: In future releases, VFAT and FAKEUNICODE may be in

config\sio.mak.

USFiles User's Manual E-13

Testing (cdfmtest
We tested a Hitachi CD-ROM drive with model number CDR-7730 under
the following configurations:

• CD-ROM Master on Primary IDE channel (no slave)

• CD-ROM Slave on Primary IDE channel (Hard drive master)

• CD-ROM Master on Secondary IDE channel (no slave)

Our test program copies specified files from a CD-ROM disk to a
recordable disk. We have used both diskettes and hard drives for testing
purposes. The files on the CD-ROM are then compared to the copied file
with various read methods. The stream I/O commands are also tested on
the CD-ROM files to ensure that acceptable commands function properly
and unacceptable commands return the appropriate errors.

This test program is provided for your use as well. The source code is
found in cdfmtest.c. To use it with a CD-ROM of your own, follow these
steps:

1. Select a few files on the CD to open as text files. Enter their full path
names (excluding drive letter) in array *textFile[] in cdfmtest.c.

2. Select a few files on the CD to open as binary files. Enter their full
path names (excluding drive letter) in array *binFile[] in
cdfmtest.c.

NOTE: Be careful in choosing files. Since we will copy files to a
recordable disk, you must be aware of file sizes so the disk
does not fill up.

3. Select a directory from the CD. Enter its full path name (excluding
drive letter) in directory[] in cdfmtest.c.

4. Save the file.

5. Configure the device table in userio.h to match your hardware.

6. Compile cdfmtest. If using Opus make, you may use omake
cdfmtest.

E-14 USFiles User's Manual

7. Run cdfmtest by entering cdfmtest <cd> <dest>. The symbol
<cd> represents the CD-ROM drive as configured in userio.h. The
default is G:. Specifying <dest> indicates to which drive the files will
be copied. The default is R: if RAM disk is included or A: if not.
Entering cdfmtest with no arguments will use the default drives.

WARNINGS: The cdfmtest requires a lot of memory, and may not work
with the RAM disk. If you indicate a hard drive as the
destination drive, you must reboot your machine after the test
completes to ensure that DOS does not corrupt your hard
drive. This test cannot be run in a DOS window in
Windows95/98. It can only be run from DOS. It is
recommended that you reboot the machine after the test in any
case. We have noticed that the hardware may get confused
after the test is completed.

Initialization
In testing the CD-ROM driver and file manager, we noticed that particular
CD-ROM drives took a while to initialize (30 seconds or more).
Initialization is done when the first file on the device is opened, so you may
notice that it takes quite some time to open the first file on a CD-ROM
device, but afterwards it is much faster. We have not determined why this
happens. Some devices do not have this behavior.

If you consistently receive the ETONRDY error when the CD-ROM drive is
being initialized, then you may want to increase the value of
CDROM_RETRY_TIMEOUT in cdromdrv.c.

USFiles User's Manual E-15

Additional Functions
These additional functions are provided with the CD file manager:

cdfm_invalidate_buffers
Invalidates all buffers on a device

cdfm_esc_codes Retrieves escape codes field from Supplementary Volume
Descriptor

cdfm_len_su Returns length of system use field from file’s directory
entry

cdfm_read_ear Reads Extended Attribute Record for specified file

cdfm_read_su Returns contents of system use field from file’s directory
entry

cdfm_vol_info Retrieves the indicated field from Volume Descriptor

Three of these (cdfm_esc_codes(), cdfm_vol_info(), and cdfm_read_ear())
are commented out at the end of cdfm.c. If you wish to use these, you must
uncomment this section of the file.

cdfm_esc_codes

Retrieves escape codes field from Supplementary Volume Descriptor.

int cdfm_esc_codes(DEVICE *devp, byte *retBuf);

devp pointer to device

retBuf address of return buffer

The escape codes field of a Supplementary Volume Descriptor is 32 bytes
long. The cdfm_esc_codes() function reads the SVD and copies that field
to retBuf. The escape codes field is used to identify which volume type
(e.g. Joliet Extensions) the SVD describes.

WARNING: This function has not been tested!

E-16 USFiles User's Manual

Return Value
0 success

EUNSUP disk only has a PVD

EBADARG sector read is not a volume descriptor

ENOMEM no memory for buffer

ENOTJOLIET there is an SVD, but it is not a Joliet SVD

ENODESC volume descriptor not found

driver error

Example
DEVICE *devp;
char codes[32];

if(cdfm_esc_codes(devp, (byte *)codes))
/* Some error */

else
/* Do something with codes */

cdfm_invalidate_buffers

Invalidates all buffers on a device.

int cdfm_invalidate_buffers(DEVICE *devp);

devp pointer to device

The cdfm_invalidate_buffers() function is provided for error recovery
purposes. We can use this function to mark all buffers for the device as
unused. This function differs from the pcfm_invalidate_buffers() function
in that it can never return the value 1, since a CD-ROM disk cannot be
written to.

See also: otherFilesOpen, invalidate_streams

USFiles User's Manual E-17

Return Value
0 success

Example
DEVICE *devp;

/* Disk has changed */
cdfm_invalidate_buffers(devp);
if(otherFilesOpen(devp))

invalidate_streams(devp);
else

/* No open files, so ignore error */

cdfm_len_su

Returns length of system use field from file’s directory entry.

int cdfm_len_su(MTFILE *fp);

fp pointer to file

The purpose of the system use field is not defined by the ISO 9660
standard. The length of the system use field is not predefined, so this
function provides a means of determining the amount of memory necessary
to handle the contents of the system use field.

WARNING: This function has not been tested!

Return Value
Length of system use field

EOF bad file pointer

errno Value
CD File Manager

EBADFP file fp has not been opened

E-18 USFiles User's Manual

Example
MTFILE *fp;

char *sysUse;
int length;
fp = mt_fopen(“G:\\test.txt”,”r”);
length = cdfm_len_su(fp);
if(length == EOF)

/* Process error */
else

/* Allocate length bytes of memory
** to sysUse */

if(cdfm_read_su(fp, sysUse))
/* error reading */

else
/* Do something with sysUse */

cdfm_read_ear

Reads Extended Attribute Record for specified file.

int cdfm_read_ear(MTFILE *fp, CD_EXT_ATTR *record);

fp pointer to file
record address of record storage
The CD_EXT_ATTR structure is defined in mtio.h as:

typedef struct cd_ext_attr{

CD_VOL_TIME creDate; /* File creation date and time */

CD_VOL_TIME modDate; /* File modification date and time */

CD_VOL_TIME expDate; /* File expiration date and time */

CD_VOL_TIME effDate; /* File is valid after date & time */

byte *appUse; /* Pointer to application use field */

byte *escSeq; /* Pointer to escape sequences field */

uint16 ownerID; /* File owner number */

uint16 groupID; /* Owner’s group number */

uint16 permissions; /* File permissions */

uint16 recLen; /* Record length */

byte recFormat; /* Record format */

USFiles User's Manual E-19

byte recAttr; /* Record attributes */

byte systemID[32]; /* System identifier */

byte systemUse[64];/* System use field */

byte version; /* Ext. attr. rec. version */

byte escLen; /* Length of escape sequences */

byte appLen; /* Len. of application use field */

} CD_EXT_ATTR;

The cdfm_read_ear() function will fill a CD_EXT_ATTR structure for a
specified file, if the file has an extended attribute record. The appUse and
escSeq fields do not have predefined lengths, so we dynamically allocate
them. Be sure to free those memory areas if your structure is deleted.
Details of the Extended Attribute Record are not provided here. If you need
more details on this record, please refer to the ISO 9660 specification.
WARNING: This function has not been tested!

Return Value
0 success

EBADFP file fp has not been opened

ENOMEM no memory for buffer

driver read error

errno Value

CD File Manager
EBADFP bad file pointer

Example
MTFILE *fp;
CD_EXT_ATTR ear;

fp = mt_fopen(“G:\\test.txt”,”r”);
if(cdfm_read_ear(fp, &ear))

E-20 USFiles User's Manual

/* Some error */
else

/* Do something with ear */

cdfm_read_su

Returns contents of system use field from file’s directory entry.

int cdfm_read_su(MTFILE *fp, char *buf);

fp pointer to file

buf pointer to buffer for system use storage

The purpose of the system use field is not defined by the ISO 9660
standard. The length of the system use field is not predefined. You can use
cdfm_len_su() to determine the necessary amount of memory for storage.
The cdfm_read_su() function returns the contents of the system use field to
the address indicated by buf.

WARNING: This function has not been tested!

Return Value
0 successful completion

EOF bad file pointer

errno Value
CD File Manager

EBADFP file fp has not been opened

Example
MTFILE *fp;
char *sysUse;
int length;

USFiles User's Manual E-21

fp = mt_fopen(“G:\\test.txt”,”r”);
length = cdfm_len_su(fp);
if(length == EOF)

/* Process error */

else
/* Allocate length bytes of memory
** to sysUse */

if(cdfm_read_su(fp, sysUse))
/* error reading */

else
/* Do something with sysUse */

cdfm_vol_info

Retrieves the indicated field from Volume Descriptor.

int cdfm_vol_info(DEVICE *pDev, byte *retBuf,
enum idFields fieldType);

devp pointer to device

retBuf address of return buffer

fieldType file name to read

The idFields enumeration is defined in mtio.h as:

enum idFields { ussCDVolSetID
ussCDCopyRtID,
ussCDAbsID,
ussCDBibID

};

Specifying ussCDVolSetID will not return a file name, but it will return
the name of the Volume Set of which the CD-ROM is a member. This field
is 128 bytes long.

The other three fieldTypes specify file names. Each one of these fields
is 37 bytes. The symbol ussCDCopyRtID specifies the copyright file,
ussCDAbsID indicates the abstract file, and ussCDBibID points to the
bibliography file. These files are mentioned in the ISO 9660 specification.

E-22 USFiles User's Manual

WARNING: This function has not been tested!

Return Value
0 success

EBADARG sector read is not a volume descriptor, or improper
fieldType

ENOMEM no memory for buffer

EBADBPB there is an SVD, but it is not a Joliet SVD

driver read error

Example
DEVICE *devp;
char volID[128],crID[37];

if(cdfm_vol_info(devp, (byte *)(volID), ussCDVolSetID))
/* Some error */

else
/* Do something with volID */

if(cdfm_vol_info(devp, (byte *)(crID), ussCDCopyRtID))
/* Some error */

else
/* Do something with crID */

USFiles User's Manual E-23

Additional errno Values
When using the CD-ROM file manager, certain stream I/O function calls
may set errno differently than the PC file manager. Table E-3 lists the
functions for which the CD-ROM file manager may set errno differently
than the PC file manager.

Table E-3: CD-ROM File Manager errno Codes

Function errno Values Description

mt_fclose() driver error

mt_fgetc() ELOCKED

ENOBUF

driver
error

Timeout waiting for access to file system
No buffer for sector.

mt_fgets() ELOCKED

ENOBUF

Timeout waiting for access to file system.
No buffer for sector.

mt_fopen() ELOCKED

EBADARG

ENOMEM

ENOTJOLIET

ENODESC

ENOTPT

EACCESS

ENOENT

ENOPATH

Driver error

Timeout waiting for access to file system.
Unsupported descriptor type accessed.
No memory for sector storage.
SVD exists, but not Joliet compliant.
Specified volume descriptor not found.
Path table sector not found.
Trying to open a file as a directory, or vice
 versa.
No entry for file found in directory.
Part of directory path not found.

E-24 USFiles User's Manual

Table E-3 (continued): CD-ROM File Manager errno codes

Function errno Values Description

mt_fprintf() ECAPERR Device not available for write.
mt_fputc() ECAPERR Device not available for write.
mt_fputs() ECAPERR Device not available for write.
mt_fread() ELOCKED

ENOBUF

driver error

Timeout waiting for access to file system.
No buffer for sector.

mt_remove() ECAPERR Device not available for write.
mt_rename() ECAPERR Device not available for write.
mt_rmdir() ECAPERR Device not available for write.

USFiles User's Manual E-25

Global Variables
These additional global variables are used when the CD-ROM file manager
is added to USFiles:

CDFM_BUFFER cdfm_buf[NUMCDBUFS]
CD-ROM sector buffers

byte cdfm_agescale
Indicates when buffer age parameter wraps

byte dirBuf[256] Used when calling mt_readdir() to hold the raw
contents of a directory entry

CD_DIR_ENTRY readEntry
Used when calling mt_readdir() to hold the
processed contents of a directory entry

E-26 USFiles User's Manual

CD-ROM Driver Functions
A cdfm device driver consists of these functions, which are typically used
in this order:

init() Initializes device

readTOC() Reads CD-ROM table of contents

read() Reads sector specified as a logical sector number

diskchange() Reports if a disk has been changed

The CD-ROM driver structure is defined in mtio.h as:

struct driver_cd {
int (*init)(DEVICE *);
int (*read)(uint32, struct cdfm_buffer_s *);
int (*diskchange)(DEVICE *);
int (*readTOC)(DEVICE *);

};

For a specific instance of a driver, these routines will be given the above-
mentioned names with a unique prefix prepended to them to designate the
driver (e.g., cdromdrv_read()).
The exact function performed by these routines depends upon what the file
manager calling them expects. The division of responsibilities between the
file manager and the device driver may be altered if a new file manager is
developed. The expectations of the cdfm file manager are described in the
following function descriptions.

Driver diskchange() function
int diskchange(DEVICE *devp);

The diskchange() function returns a non-zero value if a media change has
been detected since the last read or write operation to the drive. This
function should return a valid error code. It is possible that a timeout may
occur while the drive is becoming ready after the CD-ROM has been

USFiles User's Manual E-27

changed, in which case an ETONRDY error may be reported.

Driver init() function
int init(DEVICE *devp);

The initialize function is called once for each drive controlled by the driver.
It should do any initialization required by the device such as hardware reset,
initialize interrupt vectors, etc. Zero is returned if successful, and a non-
zero error code if not. If more than one drive is called, init() should keep a
static flag to tell it that it has already been called so it can avoid repeating
operations that should be done only once. The cdromdrv_init() function
installs interrupt vectors, sets up the CD-ROM drive I/O mode, and tests to
see if the device is ready.

Driver read() function
int read(uint32 logical_sect, CDFM_BUFFER *bufp);

The driver read() function reads the logical sector indicated into the buffer
at bufp->buf, from the drive indicated by the bufp structure. Any other
information required by the driver about the device can be found through
the bufp structure. Parameters in bufp may indicate that a consecutive
number of sectors are to be read, in which case this action should be taken.

If bufp->usrbuf is not NULL, then the read() function will read
bufp->nsects sectors to the user’s buffer at bufp->userbuf, instead of
transferring a single sector to bufp->buf.

Driver readTOC() function
int read(DEVICE *devp);

The driver readTOC() function reads the CD-ROM’s table of contents.
This is used to determine the location of the last session of a multisession
CD-ROM. The starting sector of the last session is stored in the device
parameter session_start in the CDFM_PARM structure (see
cdromdrv_readTOC() in cdromdrv.c and mtio.h). If you will not be using
multisession disks, then session_start can simply be set to 16. This

E-28 USFiles User's Manual

function will return 0 if the table of contents is successfully read, otherwise
an error value should be returned.

USFiles User's Manual E-29

Function Call Hierarchy
Table E-4 shows how the stream I/O functions map to the CD-ROM file
manager and then to the driver. Not all stream I/O functions are shown,
because they are not all appropriate for a CD-ROM device.

Table E-4: Function Hierarchy for CD File Manager

Stream I/O File Manager Driver
mt_clearerr()
mt_fclose() cdfm_close()
mt_feof()
mt_ferror()
mt_fflush() cdfm_fmioctl()
mt_fgetc() cdfm_read() read()
mt_fgetpos()
mt_fgets() cdfm_readln() read()
mt_fopen() cdfm_open() init(), diskchange(),

readTOC(), read()
mt_fread() cdfm_read() read()
mt_readdir() cdfm_fmioct()
mt_fseek() cdfm_seek()
mt_fsetpos() cdfm_seek()
mt_ftell()
mt_rewind() cdfm_seek()

E-30 USFiles User's Manual

Recommended Reading
For a detailed description of the ISO 9660 file system we recommend the
specification document:

ISO 9660 : 1988
Information processing – Volume and file structure of CD-ROM for
information interchange.

USFiles User's Manual E-31

USFiles User's Manual F-1

F. FAT32 File System
Overview

The FAT32 file system is heavily dependent on the DOS FAT12/16 file
system. You should read Chapter 2, File System Description, before
reading this appendix if you are not already familiar with the FAT file
system.

This appendix will describe how to install and configure USFiles-32 and
describe the differences between the following FAT32 and FAT12/16
structures:

• BPB

• Partition Table

• FAT

• Directory entries

• Root directory

There are also additional items contained in a FAT32 partition, and these
will also be mentioned. Only one of these new items is of interest to
USFiles.

Installation and Configuration
USFiles-32 is provided on a single disk. Make the drive containing the
installation disk the current drive and type install. You will be provided
with installation instructions.

To include support for USF-32 you will have to include usf32 in the
PRODLIST in config.mak.

F-2 USFiles User's Manual

Test Programs
USFiles for FAT32 is provided with the test program f32test.c. We
recommend that you run usftest (provided as standard with USFiles)
initially.

The usftest routines will exercise most of the functionality on a FAT32
partition, but there are some additional features of FAT32 that usftest does
not test. These features are tested with f32test.c.

The usftest tests will likely take some time, since the last thing that it does
is fill the disk. We recommend only running usftest on a partition that is
set aside for USFiles testing.

After running usftest, you will have to make room on the drive to run
f32test. FAT32 devices treat the root directory differently from FAT12/16
devices. Therefore, you can either reformat the drive, or remove the file
bigfile.tmp from the drive’s root directory. This should clear up the space
necessary for the remaining tests.

The size of the root directory is not defined in advance, and clusters can be
allocated to the root directory. The f32test ensures that additional clusters
are allocated to the root directory when necessary for:

• adding a volume label, and

• adding a file or directory

There is one additional test in f32test that is by default disabled. This test
creates a small file and moves it to the last available cluster on the drive to
ensure that USFiles will access the full extent of the drive. To enable this
test:

1. Set the macro DO_LASTCLUSTTEST in f32test.c to 1.

2. Remove (or comment out) the static label on the set_fat() function in
pcfmclus.c.

3. Compile and run.

USFiles User's Manual F-3

Modified Structures
This section describes the BIOS parameter block (BPB), the partition table,
and the file allocation table (FAT).

BIOS Parameter Block (BPB)
The FAT32 BPB is used the same way as the FAT12/16 BPB, but there are
additional fields included. Table F-1 outlines the fields in the BPB. Bold
items indicate entries that are new to FAT32.

Table F-1: The FAT32 BPB

Byte in Sector
(hex [decimal])

Field Description Comments

0B-0C [11-12] Bytes per sector USFiles only supports
disks with 512 bytes per
sector.

0D [13] Sectors per cluster
0E-0F [14-15] Reserved sectors
10 [16] Number of FATs
11-12 [17-18] Number of root directory

entries
Not used by FAT32.

13-14 [19-20] Total sectors in logical
volume

Not used if volume size
is greater than 32 MB.

15 [21] Media descriptor byte Stored, but not used.
16-17 [22-23] Number of sectors per FAT Always 0 for FAT32.
18-19 [24-25] Number of sectors per

track

F-4 USFiles User's Manual

Table F-1 (continued): The FAT32 BPB

Byte in Sector
(hex [decimal])

Field Description Comments

1A-1B [26-27] Number of heads
1C-1F [28-31] Number of hidden sectors We have found that some,

but not all, disk format
utilities include prior disk
partitions in this value.

20-23 [32-35] Total sectors in logical
volume

Used only if volume size
is greater than 32 MB.

24-27 [36-39] Number of sectors per FAT
28-29 [40-41] Partition flags Ignored
2A-2B [42-43] File system version Ignored
2C-2F [44-47] Root directory starting

cluster

30-31 [48-49] File system information
sector

32-33 [50-51] Backup boot sector number
34-3F [52-63] Reserved
40 [64] Physical drive number Ignored (new location)
41 [65] Reserved Ignored (new location)
42 [66] Extended boot signature

record
Ignored (new location)

43-46 [67-70] Drive serial number (new location)
47-51 [71-81] Volume label (new location)

USFiles User's Manual F-5

Partition Table
The FAT 32 Partition Table remains unchanged. With the addition of
FAT32 support to USFiles, the two partition types 0Bh and 0Ch (see Table
2-3) are now supported.

File Allocation Table (FAT)
As the name indicates, the FAT entries for FAT32 consist of 32 bits. The
upper four bits of each FAT entry are unused, though. Possible FAT entries
are:

00000000h Cluster free for use

00000001h – 0FFFFFEFh Indicates next cluster for file

0FFFFFF8h – 0FFFFFFFh Last cluster of file

0FFFFFF0h – 0FFFFFF7h Cluster not usable

USFiles will neither read nor modify the upper four bits of a FAT32 entry.

Directory Entries
The FAT32 directory entries must indicate a 32-bit starting cluster. The
additional two bytes are taken from previously reserved bytes. The FAT32
directory entry is described in Table F-2.

Table F-2: FAT32 Directory Entry

Relative Byte
Position
(hex [decimal])

Field Description Comments

00-07 [0-7] File name Base of file name
08-0A [8-10] File extension
0B [11] File attribute See Table 2-5

F-6 USFiles User's Manual

0C [12] Reserved
0D [12] Creation time in 4-

millisecond units
VFAT only

0E-11 [14-17] Time and date created VFAT only
12-13 [18-19] Date of last access VFAT only
14-15 [20-21] High bytes of first cluster

for file
FAT32 only

16-19 [22-25] Time and date created
1A-1B [26-27] Low bytes of first cluster

for file

1C-1F [28-31] File size

USFiles User's Manual F-7

With FAT32, the root directory is now allocated like any other directory, as
is discussed in the next section, so it has a non-zero cluster number
associated with it. Any subdirectory that resides in the root directory has a
directory entry (‘..’) that refers back to the root directory. The cluster
number indicated in this entry is still zero, even though the root directory
has a non-zero cluster number with FAT32.

The Root Directory
The root directory on a FAT32 partition is allocated like any other file or
directory. It has a starting cluster (generally 2), and it has no limits on the
number of sectors that it can occupy. The root directory starting cluster is
provided by the FAT 32 BPB.

F-8 USFiles User's Manual

New Structures
Several more sectors are used in FAT32 partitions for file system
maintenance. As is indicated in Table F-1, there is a sector that has a copy
of the boot sector. This is ignored by USFiles. The bootstrap code for
FAT32 partitions now spans more than one sector, because the BPB has
more entries in it now. USFiles does nothing with bootstrap code, so this is
ignored.

File System Information Sector
The one new structure that USFiles maintains is the File System
Information Sector, which keeps track of the number of free clusters and the
last sector allocated on the disk. The information sector number is stored in
the FAT32 BPB and is recorded as the number of sectors past the BPB
sector. The significant elements in the sector are shown in Table F-3.

Table F-3: FAT32 File System Information Sector

Byte in Sector
(hex [decimal])

Field Description Comments

1E4-1E7 [484-487] File system information
sector signature

61417272h stored
Little-Endian

1E8-1EB [488-491] Number of free clusters
1EC-1EF [492-495] Last cluster allocated

There are additional codes in the sector, but USFiles only checks the bytes
from 1E4h to 1E7h for identification. USFiles updates the number of free
clusters and the last cluster allocated. The number of free clusters is
returned by free_clust_cnt().

USFiles User's Manual F-9

Limitations on USFiles-32
Directory entries in the FAT32 file system only allow 32 bits to specify the
file size. Even though the disk geometry may allow it, we have to limit the
file size to 4 GB. If the user attempts to write a file larger than this, then the
error code EBIGFILE will be returned.

The FAT32 file system BPB specifies the following items that USFiles
ignores:

• Drive flags to signal whether FAT mirroring is enabled (USFiles will
always mirror the FAT)

• File system version number

• Backup boot sector

Using free_byte_cnt
The function free_byte_cnt() returns the number of free bytes on a disk as
an unsigned 32-bit integer. For a FAT32 partition, a 32-bit integer may not
be large enough to store the number of free bytes. Use this function with
caution.

The functions free_kb_cnt() and free_clust_cnt() might provide the most
reliable means of determining free space on a FAT32 volume. FAT32
partitions that are smaller than 8 GB have 4 KB per cluster. Be aware that
FAT32 partitions may be as large as 2 TB, in which case each cluster has 32
KB.

F-10 USFiles User's Manual

USFiles User's Manual G-1

G. Error Codes
USFiles Error Codes

This is a summary of the error codes that USFiles functions may signal.
The error will usually be reported through the variable errno.

Table G-1: USFiles Error Codes (from mtio.h

Label Decimal
Value

Meaning

EWRGFMT 1 Wrong disk format
ECAPERR 2 Device capabilities error
ENOMEM 3 No memory available
ENMFILE 4 NUMSTREAMS limit has been reached
ENOENT 5 No file entry found in directory
EDSKCHG 6 Disk change error has occurred
ENOPATH 7 Part of the path was not found
EATEOF 8 File pointer is at EOF
EBADCLUST 9 Bad cluster found
ENOBUF 10 No file buffer is available
EBADNAM 11 File name too long or contains bad characters
ENOTDIR 12 Name specified is not for a directory
EACCESS 13 Trying to open directory as file or vice versa
ERDONLY 14 Trying to open read-only file for write

G-2 USFiles User's Manual

Table G-1 (continued): USFiles Error Codes (from mtio.h)

Label Decimal
Value

Meaning

EDSKFUL 15 Disk is full, no more clusters to allocate
ERDFULL 16 Root directory is full
EBADFP 17 Bad file pointer or device not initialized
EUNSUP 18 Device does not support requested operation
EBADARG 19 Bad function argument supplied
EBADPOS 20 Seeking past allowed file boundaries
EEXIST 21 Trying to create a directory that already exists
EBADPART 22 Bad partition signature encountered
EPARTID 23 Unsupported ID byte in partition entry
EISOPEN 24 Path already open
EUNINIT 25 Trying to access uninitialized RAM drive
EWRGDEV 26 Attempted rename to different device
ENOTMT 27 Subdirectory is not empty
EISATT 28 Keyboard is already attached
ENOTATT 29 Keyboard is not attached
EBADASS 30 Keyboard cannot be assigned at this location
EWRTPRT 31 Attempted to write to write-protected disk
ENORESP 32 No response from drive (door may be open)

USFiles User's Manual G-3

Table G-1 (continued): USFiles Error Codes (from mtio.h)

Label Decimal
Value

Meaning

ENOTFND 33 Address mark or sector not found
EBADSECT 34 Bad sector encountered
EDMABND 35 DMA memory-boundary crossing error
EIOERR 36 Miscellaneous I/O error
EBADSIZE 37 Pipe size of zero requested
EMEMERR 38 Memory release error
EBADFAT 39 FAT sectors not readable
EBADBPB 40 Bad BPB sector
ELOCKED 41 Timeout waiting for access to file system
ECTLFAIL 42 Controller failure
EBIGPATH 43 Path name too long
ENODESC 44 CD-ROM Volume Descriptor not found
ENOTJOLIET 45 CD-ROM has Supplementary Volume

Descriptor, but it is not for Joliet Extensions
ENOTPT 46 Sector does not contain path table
ENODISK 47 No disk in CD-ROM drive (door may be open)
ETONRDY 48 Timeout occurred while waiting for device to

become ready
EDEVRST 49 Device reset occurred
EBIGFILE 50 File size cannot exceed 232 bytes

G-4 USFiles User's Manual

Several of these error codes do not apply specifically to USFiles, and error
codes 44 - 49 only apply to USFiles for CD-ROM. The error code
EBIGFILE is only used by USF-32. With expansion of USFiles support,
more error codes might be added. Please examine the file ussio.h for the
most recent list of error codes.

USFiles User's Manual H-1

H. Index
386 protected mode, B-1

libraries, B-3
memory allocation, B-1

ANSI C functions, 3-4
ASCII, converting to Unicode, 3-12
Big-Endian mode, 3-17, 3-18, 3-93, 3-94
binary mode, 1-20, 3-46
BPB

FAT32, F-3
buffers, 1-21

configuring for CD-ROM, E-10
flushing, 3-39
invalidating, 3-91

bytes
finding free, 3-14
on disk drive, 3-97

cdfm_esc_codes() CD-ROM function, E-15
cdfm_invalidate_buffers() CD-ROM

function, E-16
cdfm_len_su() CD-ROM function, E-17
cdfm_read_ear() CD-ROM function, E-19
cdfm_read_su() CD-ROM function, E-21
cdfm_vol_info() CD-ROM function, E-22
CD-ROM

configuring buffers for, E-10
configuring memory for, E-11
configuring USFiles for, E-9
driver, E-2
global variables, E-26
multisession, E-2
overview, E-2

CD-ROM driver functions
sequential list, E-27

CD-ROM file manager, E-2
CD-ROM functions

cdfm_esc_codes(), E-15

cdfm_invalidate_buffers(), E-16
cdfm_len_su(), E-17
cdfm_read_ear(), E-19
cdfm_read_su(), E-21
cdfm_vol_info(), E-22
summary list, E-15

char2uni() UI library function, 3-12
characters

converting, 3-12, 3-100
getting from streams, 3-40
writing to streams, 3-52

clusters
finding free, 3-15
on disk drive, 3-98

code
hierarchy, 1-6
sizes, C-9

and FAKEUNICODE, C-7
CompactFlash

overview, D-2
testing, D-3

configuring, 2-2
device table, 2-2
timeouts, 2-12

date format, converting, 3-32
device driver functions

sequential list, 1-25, 1-26
device driver union, 1-34
device drivers

adding new, 1-33
DOS BIOS, 1-31
errors, 1-35
list of, 1-4
RAM-disk, 1-31

device table, 1-12, 1-37
configuring, 2-2

H-2 USFiles User's Manual

unit numbers in, 2-4
devices, 1-3

configuring for CD-ROM, E-9
invalidating streams on, 3-31
parameters, 1-35

directories
access, 1-42
creating, 3-64
reading entries, 3-67

disk drive
bytes on, 3-97
clusters on, 3-98
finding unallocated bytes on, 3-14
finding unallocated clusters on, 3-15
finding unallocated kilobytes on, 3-16
kilobytes on, 3-99

diskette driver, 1-33
disks

changing, A-1
continuing with new, A-2
putting back old, A-4

DOS
BIOS driver, 1-31

end-of-file
clearing, 3-34
testing for, 3-36

errno
clearing, 3-6
using, 3-6

errno codes, G-1
errno.h file, 3-6
error codes, G-1
error indicator

clearing, 3-34
finding, 3-37

errors
recovery, UI library functions for, 3-10
reporting, 1-9

UI library functions for, 3-9
FAT32, 3-97, F-1
file control functions, 3-8
file manager functions, 1-15

additional, 1-20
sequential list, 1-15

file managers
adding, 1-22
description, 1-3
list of, 1-4

file system
identifying, 1-24
parameters, 1-24

fileio.c file, 3-5
files

allocation, 1-10
attributes

changing, 3-83, 3-85, 3-89
getting, 3-21
UI library functions for, 3-10

current position, 3-61
date and time, changing with path, 3-87
deleting, 3-69
descriptors, 1-3
EOF, finding, 3-36
error indicator, finding, 3-37
modification date, 3-22
modification day, 3-23
modification hour, 3-24
modification minute, 3-25
modification month, 3-26
modification second, 3-27
modification times, 3-29

UI library functions for, 3-10
modification year, 3-30
moving, 3-71
names

lengths allowed, C-5
long, C-4, C-7
mixed-case, E-11

pointers, 1-10
repositioning, 3-57, 3-74

renaming, 3-71
size, finding, 3-28
testing if open, 3-81

fprintf.c file, 3-5

free_byte_cnt() UI library function, 3-14,
F-9

free_clust_cnt() UI library function, 3-15
free_kb_cnt() UI library function, 3-16
fruntsk() function, 4-10, 6-9
functions

CD-ROM, E-15
CD-ROM driver, E-27
choosing type, 3-5
device driver, 1-25
file manager, 1-15
for error reporting, 1-9
for file control, 1-7
for file management, 1-15
for reading, 1-8
for stream I/O, 1-7
for writing, 1-8
free_byte_cnt(), F-9
fruntsk(), 4-10, 6-9
introduction, 1-3
layers of, 1-3
MTmeminit(), B-2
stream I/O, 1-7

getBigEnd16() UI library function, 3-17
getBigEnd32() UI library function, 3-18
getf_attrib() UI library function, 3-21
getf_date() UI library function, 3-22
getf_day() UI library function, 3-23
getf_hour() UI library function, 3-24
getf_min() UI library function, 3-25
getf_month() UI library function, 3-26
getf_sec() UI library function, 3-27
getf_size() UI library function, 3-28
getf_time() UI library function, 3-29
getf_year() UI library function, 3-30
getLitEnd16() UI library function, 3-19
getLitEnd32() UI library function, 3-20
global variables, 1-43

for CD-ROM, E-26
hard disk driver, 1-32
hard disks

partitions, 2-5

header files
and function names, 3-5

Hitachi ITRON
functions, 4-17, 6-16
interface, 4-17, 6-16
testing, 4-15, 6-14

installation
with MultiTask!, 4-8, 6-7
with stand-alone mode, 4-7, 6-6

invalidate_streams() UI library function, 3-
31

kilobytes
finding free, 3-16
on disk drive, 3-99

Little-Endian mode, 3-19, 3-20, 3-95, 3-96
macros

for identifying file systems, 1-24
for masking interrupts, 4-16, 6-15
for stack size, 4-8, 4-13, 6-7, 6-12
for time conversion, 3-87, 3-89
in RTOS header files, 5-8, 7-8

mak_fdate() UI library function, 3-32
mak_ftime() UI library function, 3-33
makefiles

Hitachi Itron, 4-15, 6-14
memory

configuring for CD-ROM, E-11
dynamic, 1-10, 4-5, 6-4, C-10

allocation, 4-5, 5-8, 6-4, 7-8, E-5, E-
11

mt_clearerr() UI library function, 3-34
mt_fclose() UI library function, 3-34
mt_feof() UI library function, 3-36
mt_ferror() UI library function, 3-37
mt_fflush() UI library function, 3-39
mt_fgetc() UI library function, 3-40
mt_fgetpos() UI library function, 3-42
mt_fgets() UI library function, 3-43
mt_fopen() UI library function, 3-45
mt_fprintf() UI library function, 3-49
mt_fputc() UI library function, 3-52
mt_fputs() UI library function, 3-53

H-4 USFiles User's Manual

mt_fread() UI library function, 3-55
mt_fseek() UI library function, 3-57
mt_fsetpos() UI library function, 3-59
mt_ftell() UI library function, 3-61
mt_fwrite() UI library function, 3-62
mt_mkdir() UI library function, 3-64
mt_printf() UI library function, 3-66
mt_readdir() UI library function, 3-67
mt_remove() UI library function, 3-69
mt_rename() UI library function, 3-71
mt_rewind() UI library function, 3-74
mt_rmdir() UI library function, 3-75
mt_sprintf() UI library function, 3-77
mt_vsprintf() UI library function, 3-80
mtio.h file, 3-6
MTmeminit() function, B-2
otherFilesOpen() UI library function, 3-81
paths

names
lengths allowed, C-5

opening to streams, 3-45
pcfm device driver, 1-26, E-27
pcfm file manager, 1-15
pcfm_chmod() UI library function, 3-83
pcfm_chmodfp() UI library function, 3-85
pcfm_chtime() UI library function, 3-87
pcfm_chtimefp() UI library function, 3-89,

3-100
pcfm_chvlabel() UI library function, 3-90
pcfm_invalidate_buffers() UI library

function, 3-91
PCMCIA, D-4
ports, 1-3
protected mode, B-1

libraries, B-3
memory allocation, B-1

putBigEnd16() UI library function, 3-93
putBigEnd32() UI library function, 3-94
putLitEnd16() UI library function, 3-95
putLitEnd32() UI library function, 3-96
RAM-disk driver, 1-31
reading

from streams, 3-55
UI library functions for, 3-9

resource protection, 2-10
RTOSes supported, 4-5, 6-4

TronTask!, 4-12, 6-11
RX850 and RX850 Pro

configuration files, 4-20, 6-19
testing, 4-20, 6-19

Shift-JIS characters, converting to Unicode,
3-12

source files
and I/O functions, 3-5

sprintf.c file, 3-5
SRAM, D-4
sscanf.c file, 3-5
stand-alone mode, 4-7, 6-6

porting drivers, 5-4, 7-4
stdio.h file, 3-5
stream I/O functions

summary list, 1-7
streamio.c file, 3-5
streams, 1-3

closing open paths, 3-34
current position, 3-42, 3-59
flushing output buffers, 3-39
getting character from, 3-40
getting strings from, 3-43
invalidating open, 3-31
opening paths to, 3-45
reading from, 3-55
writing characters to, 3-52
writing formatted output to, 3-49
writing strings to, 3-53
writing to, 3-62
writing to stdout, 3-66

strings
converting, 3-78
getting from streams, 3-43
writing formatted output to, 3-77, 3-80

structures
buffer, 1-21
device driver, 1-33

file manager, 1-22
subdirectories

deleting, 3-75
moving, 3-71
renaming, 3-71

tasks
dynamic loading, 4-9, 4-10, 6-8, 6-9

testing
with Hitachi ITRON, 4-15, 6-14
with RX850 and RX850 Pro, 4-20, 6-19

text mode, 1-20, 3-46
time format, converting, 3-33
timeouts, configuring, 2-12
total_byte_cnt() UI library function, 3-97
total_clust_cnt() UI library function, 3-98
total_kb_cnt() UI library function, 3-99
Unicode

converting, 3-100
translation table, C-9

unit numbers in device table, 2-4
user interface library functions

char2uni(), 3-12
for error recovery, 3-10
for error reporting, 3-9
for file attributes, 3-10
for file times, 3-10
for reading files, 3-9
for writing, 3-9
free_byte_cnt(), 3-14
free_clust_cnt(), 3-15
free_kb_cnt(), 3-16
getBigEnd16(), 3-17
getBigEnd32(), 3-18
getf_attrib(), 3-21
getf_date(), 3-22
getf_day(), 3-23
getf_hour(), 3-24
getf_min(), 3-25
getf_month(), 3-26
getf_sec(), 3-27
getf_size(), 3-28
getf_time(), 3-29

getf_year(), 3-30
getLitEnd16(), 3-19
getLitEnd32(), 3-20
invalidate_streams(), 3-31
mak_fdate(), 3-32
mak_ftime(), 3-33
miscellaneous, 3-12
mt_clearerr(), 3-34
mt_fclose(), 3-34
mt_feof(), 3-36
mt_ferror(), 3-37
mt_fflush(), 3-39
mt_fgetc(), 3-40
mt_fgetpos(), 3-42
mt_fgets(), 3-43
mt_fopen(), 3-45
mt_fprintf(), 3-49
mt_fputc(), 3-52
mt_fputs(), 3-53
mt_fread(), 3-55
mt_fseek(), 3-57
mt_fsetpos(), 3-59
mt_ftell(), 3-61
mt_fwrite(), 3-62
mt_mkdir(), 3-64
mt_printf(), 3-66
mt_readdir(), 3-67
mt_remove(), 3-69
mt_rename(), 3-71
mt_rewind(), 3-74
mt_rmdir(), 3-75
mt_sprintf(), 3-77
mt_vsprintf(), 3-80
otherFilesOpen(), 3-81
pcfm_chmod(), 3-83
pcfm_chmodfp(), 3-85
pcfm_chtime(), 3-87
pcfm_chtimefp(), 3-89, 3-100
pcfm_chvlabel(), 3-90
pcfm_invalidate_buffers(), 3-91
putBigEnd16(), 3-93
putBigEnd32(), 3-94

H-6 USFiles User's Manual

putLitEnd16(), 3-95
putLitEnd32(), 3-96
total_byte_cnt(), 3-97
total_clust_cnt(), 3-98
total_kb_cnt(), 3-99

userio.h file, 3-5
ussio.h file, 3-5
variables, global, 1-43

for CD-ROM, E-26
VFAT, C-1

and long file names, C-4
volume labels, changing, 3-90
writing

to stdout stream, 3-66
to streams, 3-62
to streams, characters, 3-52
to streams, formatted output, 3-49
to streams, strings, 3-53
to strings, formatted, 3-80
to strings, formatted output, 3-77
UI library functions for, 3-9

	1.	USFILES INTERNALS	1-7
	Introduction
	File Managers
	Drivers
	Code Hierarchy

	Stream I/O
	Stream I/O Function Summary
	Functions for File Control
	Functions for Writing
	Functions for Reading
	Functions for Error Reporting

	Error Reporting
	File Allocation
	The Device Table

	File Managers
	File Manager Function Summary
	File Manager Function Descriptions
	Text and Binary Files
	Additional File Manager Functions
	Buffers
	Adding New File Managers
	File System Parameters
	Identifying a File System

	Device Drivers
	Driver Function Summary
	Driver Function Descriptions
	RAM Disk Driver
	DOS BIOS Driver
	Hard Disk Driver
	Diskette Driver
	Adding New Device Drivers
	Driver Errors
	Device Parameters

	How It Ties Together
	An Example
	Function Call Hierarchy

	Directory Access
	Global Variables

	Configuring USFiles
	Configuration Overview
	Configuring Devices
	Unit Numbers
	Configuring Partition Numbers

	Configuring Drives and Drivers
	Configuring Streams and Buffers
	Buffer Configuration Guidelines
	VFAT

	Checking Configuration Parameters
	Protecting Resources
	Setting Timeouts for Device Drivers
	Files Used for Configuration
	USFiles Tips
	
	
	Use Short File Names
	Use Unique Long File Names
	Do Not Place Too Many Files in a Directory
	Tune Buffer Usage
	Increase Cluster Size

	Library Reference
	Overview of USFiles Functions
	Function Names
	Using errno

	Atomic typedef Names
	User Interface Library Functions
	Function Summary
	File Control Functions
	Writing Functions
	Reading Functions
	Error Reporting Functions
	Error Recovery Functions
	File Time Functions
	File Attribute Functions
	Miscellaneous Functions

	Function Descriptions
	
	
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	Stream I/O
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	Stream I/O
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager
	Stream I/O
	PC File Manager

	Supported RTOSes
	Using Stream I/O from Multiple Tasks
	Multitasking with errno
	Supported RTOSes
	Stand-alone Mode
	
	
	errno

	MultiTask!
	
	
	errno

	Stack Size
	Dynamic Task Loading with fruntsk

	TronTask!
	
	
	errno

	Initializing USFiles
	Stack Size

	Hitachi ITRON
	
	
	errno

	Test Environment
	Using Library Header Files
	stdlib.h
	stdio.h

	The depends.h File
	Configuration Files
	Interface
	Various Makefiles

	RX850 and RX850 Pro
	
	
	errno

	Test Environment
	Board Revisions
	Configuration Files
	Interface

	Porting Guide
	Porting USFiles Stand-alone Mode
	Setting Up Makefiles
	Editing Header Files
	Porting Drivers
	RAM Disk Driver
	BIOS Driver
	Hard Disk Driver
	Diskette Driver

	Memory Alignment

	Porting USFiles to a New RTOS
	Integrating an RTOS with USFiles
	Integrating Files
	RTOS Header File
	RTOS Support File

	Building Your Application

	Porting Drivers
	Diskette Driver

	Supported RTOSes
	6.	SUPPORTED RTOSES	6-1
	Multitasking with errno
	Supported RTOSes
	Stand-alone Mode
	
	
	errno

	MultiTask!
	
	
	errno

	Stack Size
	Dynamic Task Loading with fruntsk

	TronTask!
	
	
	errno

	Initializing USFiles
	Stack Size

	Hitachi ITRON
	
	
	errno

	Test Environment
	Using Library Header Files
	stdlib.h
	stdio.h

	The depends.h File
	Configuration Files
	Interface
	Various Makefiles

	RX850 and RX850 Pro
	
	
	errno

	Test Environment
	Board Revisions
	Configuration Files
	Interface

	Porting Guide
	Porting USFiles Stand-alone Mode
	Setting Up Makefiles
	Editing Header Files
	Porting Drivers
	RAM Disk Driver
	BIOS Driver
	Hard Disk Driver
	Diskette Driver

	Memory Alignment

	Porting USFiles to a New RTOS
	Integrating an RTOS with USFiles
	Integrating Files
	RTOS Header File
	RTOS Support File

	Building Your Application

	Porting Drivers
	Diskette Driver
	
	
	Handling Disk Changes

	Overview

	Continuing with the New Disk
	Putting Back the Old Disk
	Other Situations
	
	
	
	
	386 Protected Mode

	Supported Compilers

	Memory Allocation
	Libraries
	
	
	
	
	VFAT

	Overview
	How VFAT Works
	Restrictions on VFAT
	Allowed VFAT Characters
	File Name Lengths
	Path Lengths
	Number of Directory Entries

	Using VFAT
	Case Sensitivity
	Dynamic Memory Use

	Files Used for Configuring VFAT
	
	
	
	
	USFiles for CompactFlash

	Installing CompactFlash
	Text Files

	Overview of CompactFlash
	Configuration
	Testing
	Not Supported
	
	
	
	USFiles for CD-ROM

	Installing USFiles for CD-ROM
	Source Files
	Text Files

	Overview of CD-ROM
	CD-ROM Driver
	CD-ROM File Manager
	Multisession CD-ROMs

	Basics of the ISO 9660 File System
	Volume Descriptors
	Primary Volume Descriptor
	Supplementary Volume Descriptor
	Volume Descriptor Set Terminator

	Path Table
	Directory Records
	Navigating the File System
	The USFiles Implementation
	Allowed ISO Characters
	Allowed Joliet Characters
	File Name Lengths
	Directory Name Lengths
	Extensions for Directory Names
	Directory Levels
	Other Items

	Configuring USFiles for CD-ROM
	Including CD-ROM Support
	Devices
	Buffers
	Memory
	Mixed-case File Names
	Files Used to Configure USFiles for �CD-ROM

	Testing (cdfmtest
	
	Initialization

	Additional Functions
	
	
	
	CD File Manager

	Additional errno Values
	Global Variables
	CD-ROM Driver Functions
	Function Call Hierarchy
	Recommended Reading
	
	
	
	
	FAT32 File System

	Overview
	Installation and Configuration
	Test Programs

	Modified Structures
	BIOS Parameter Block (BPB)
	Partition Table
	File Allocation Table (FAT)
	Directory Entries
	The Root Directory

	New Structures
	File System Information Sector
	Limitations on USFiles-32
	Using free_byte_cnt
	
	
	Error Codes

	USFiles Error Codes
	
	
	
	Index

