
SuperTask!

User’s Guide

Revision 6.03
December 1999

www.ussw.com

ii SuperTask! User’s Guide

Copyright and Trademark Information

Copyright 1996-2000 United States Software Corporation. All rights
reserved. No part of this publication may be reproduced, translated
into another language, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of United
States Software Corporation.

U S Software, USNET, USFiles, USLink, SuperTask!,
MultiTask!, NetPeer, TronTask!, Soft-Scope, and GOFAST
are trademarks of United States Software Corporation. Other brands
and names are marked with an asterisk (*) and are the property of
their respective owners.

United States Software Corporation makes no warranty of any kind
with regard to this material, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose.
United States Software Corporation assumes no responsibility for any
errors that may appear in this document. United States Software
Corporation makes no commitment to update or to keep current the
information contained in this document.

United States Software Corporation
7175 NW Evergreen Parkway, Suite 100

Hillsboro, OR 97124
(503) 844-6614

Fax (503) 844-6480
E-mail: support@ussw.com

SuperTask! User’s Guide iii

Quick Contents

3

2

1

4

5

6

C

A

B

1. READ THIS FIRST... 1-1

2. MULTITASK! .. 2-1

3. MULTITASK! LIBRARY REFERENCE 3-1

4. MULTITASK! INTERNALS.. 4-1

5. STREAM I/O ... 5-1

6. STREAM I/O LIBRARY .. 6-1

A. PLATFORM-SPECIFIC INFORMATIONA-1

B. PC-COMPATIBLE CONSOLE/KEYBOARD B-1

C. GLOBAL VARIABLES ...C-1

iv SuperTask! User’s Guide

Documentation Conventions

Computer output and code examples: Courier, usually in a
separate paragraph.

Function names and command names: Bold italic, usually
followed by parentheses, as in main() function.

Variables: Courier 11 italic (mt_busy).

File names: Times bold (the file usrclk.asm), in lower case.

Key names: Initial capital, in angle brackets, as in press <Enter>.

Menu names and selections, dialog box names, screen titles,
window titles: Times bold, as in File menu.

NOTE: Indicates important information.

CAUTION : Indicates potential damage to hardware or data.

WARNING : Indicates potential injury to users.

Revision History

Revision Number Date

 6.01 July 1997
 6.02 October 1997
 6.03 December 1999

SuperTask! User’s Guide v

Quick Contents (continued)

I

D

E

D. ERROR CODES ...D-1

E. GLOSSARY... E-1

INDEX ... INDEX-1

vi SuperTask! User’s Guide

Notes

SuperTask! User’s Guide vii

Contents

1. READ THIS FIRST... 1-1
How to Use this Document ... 1-2
Installing SuperTask! ... 1-4

Text Files on Delivery Diskettes ... 1-5
Makefiles .. 1-5
Source Files .. 1-6

What Is Required of You .. 1-8
Calling for Support... 1-10

When to Call ... 1-10
How to Call ... 1-10
Reporting Bugs ... 1-12

2. MULTITASK! .. 2-1
Overview .. 2-3

Introduction .. 2-3
MultiTask! Features .. 2-4
Multitasking .. 2-5

Figure 2-1: Multitasking system ... 2-6
Figure 2-2: Comparison of integrated and
 multitasking approaches .. 2-7

MultiTask! Concepts ... 2-8
Figure 2-3: The general form of a task control block (TCB) 2-9
Figure 2-4: Possible task state changes 2-12
Figure 2-5: Task queues .. 2-14
Figure 2-6: Run queue .. 2-14
Figure 2-7: Rotation of tasks ... 2-15
Figure 2-8: How task priority affects task execution 2-16
Figure 2-9: Command queue with two unprocessed commands2-18

viii SuperTask! User’s Guide

MultiTask! Services .. 2-20
Figure 2-10: Tasks shown in various wait queues
 according to priority order..................................... 2-21
Figure 2-11: Deadlock or “deadly embrace” 2-41
Figure 2-12: Memory after MTmeminit() 2-44
Figure 2-13: Diagram of a 4K block of memory 2-45
Figure 2-14: Blocks A, C, D, and B returned 2-46

How to Design Your Application ... 2-59
Real-Time Application Guidelines ... 2-59
Before You Start .. 2-59
Defining Tasks .. 2-61
Reentrancy Considerations ... 2-65
Task Activation ... 2-67
System Initialization ... 2-71
Compiling and Linking with the MultiTask! Library 2-72

Configuring MultiTask! ... 2-73
Using the Configuration Program .. 2-73
Configuration Parameters ... 2-74

Table 2-1: Parameters in mtcfg.h .. 2-75
Table 2-2: Parameters in depends.h .. 2-78

Using mtdbg() for Debugging ... 2-82

3. MULTITASK! LIBRARY REFERENCE 3-1
Functions by Category ... 3-5

System Control Functions .. 3-5
Task Control Functions ... 3-5
Event Functions and Variables .. 3-6
Group Event Functions ... 3-6
Memory (Heap) Functions and Variables 3-7
Memory (Buffer Pool) Functions and Variables 3-7
Message Functions and Variables ... 3-8
Resource Functions and Variables .. 3-8

SuperTask! User’s Guide ix

Interrupt Functions ... 3-9
Timer Functions and Variables ... 3-9
Miscellaneous Functions .. 3-10
Critical Code Protection Functions and Variables 3-10
Status Reporting Variables .. 3-10
Stream I/O Functions .. 3-11
Hooks Available for Error Recovery 3-11
New Low-Level Functions ... 3-11

Include Files ... 3-13
Typedef Names ... 3-13

Atomic Typedef Names .. 3-13
Derived Typedef Names ... 3-14
System Structure Typedef Names... 3-14

Function Descriptions .. 3-15
acquire ... 3-15
block_preemption ... 3-16
chkbuf.. 3-17
chkevt .. 3-18
chkgrp ... 3-19
chkmbx.. 3-20
chkmem... 3-21
chkmsg (obsolete) ... 3-23
chkres .. 3-24
clr_profile .. 3-25
clrevt.. 3-27
clrgrp ... 3-28
decevt .. 3-29
del_pool... 3-30
delay_until ... 3-31
dlytsk ... 3-32
flushmbx ... 3-35
freeres.. 3-36

x SuperTask! User’s Guide

get_mtenv .. 3-37
get_profile ... 3-38
get_sys_time.. 3-39
get_tcb ... 3-40
getbuf .. 3-41
getclk ... 3-42
getres ... 3-43
GrpWakeValue .. 3-44
incevt ... 3-45
init_mem_pool .. 3-46
ireqbuf_c ... 3-48
klltsk .. 3-50
MASK_INTS .. 3-52
MTinitialize ... 3-53
MTmeminit ... 3-54
MTmeminit2 ... 3-56
MTqcmd_c .. 3-57
MTsched (assembly code only) .. 3-59
MTsched_c .. 3-60
MTstart .. 3-61
MTterminate ... 3-63
oneshot .. 3-65
period .. 3-67
pritsk ... 3-69
put_mtenv .. 3-70
putmsg... 3-72
putpkt .. 3-74
rcvmsg... 3-76
reanimate ... 3-78
relbuf ... 3-79
release ... 3-80
relmem .. 3-81

SuperTask! User’s Guide xi

relpkt ... 3-82
relres .. 3-83
reqbuf .. 3-84
reqmem ... 3-85
reqres ... 3-87
runtsk... 3-88
runtskss.. 3-90
scdtsk... 3-92
setclk ... 3-93
setevt ... 3-94
setgrp ... 3-95
slttsk .. 3-96
sndmsg .. 3-97
sndpkt .. 3-99
suspend .. 3-101
unblock_preemption ... 3-103
UNMASK_INTS .. 3-104
waitgrp .. 3-105
waktsk ... 3-107
wketsk (obsolete) .. 3-108
wketsk_nto (obsolete) ... 3-109
wteclr... 3-110
wteset .. 3-112
wteset_dec ... 3-114

4. MULTITASK! INTERNALS.. 4-1
Overview .. 4-2
Interrupt Basics .. 4-3

Multilevel Interrupts – MT! Visibility .. 4-4
Interfacing to MultiTask! ... 4-5

Talking to MultiTask! Objects .. 4-5
Getting Something from MultiTask! .. 4-6

xii SuperTask! User’s Guide

Entry/Exit Adjustments .. 4-7
Figure 4-1: Simple interrupt situation ... 4-7
Figure 4-2: Interrupt with task switch ... 4-9

Nested Interrupt Issues .. 4-10
Figure 4-3: Nested interrupt routines .. 4-11
Figure 4-4: Possible interrupt problem 4-13

Avoiding Task Switching from Nested Interrupts 4-16
Interrupt Latency ... 4-17
Low-level Versus High-level Interrupt Routines 4-17
The Ticker ... 4-19
Dynamic Memory Routines – the Heap ... 4-21
The Scheduler ... 4-23

5. STREAM I/O ... 5-1
ANSI C Functions ... 5-2

Devices ... 5-4
Customizing Stream I/O .. 5-8

Functions for Customizing Stream I/O .. 5-8
Adding a New File Manager .. 5-9

File Manager _delete() function ... 5-12
File Manager close() function .. 5-12
File Manager fmioctl() function ... 5-12
File Manager makdir() function ... 5-13
File Manager open() function ... 5-13
File Manager read() function .. 5-13
File Manager readln() function... 5-14
File Manager seek() function ... 5-14
File Manager write() function .. 5-15
File Manager writeln() function ... 5-15

SuperTask! User’s Guide xiii

Adding a New Device Driver ... 5-16
Device Driver init() function .. 5-17
Device Driver ioctl() function .. 5-18
Device Driver read() function... 5-19
Device Driver term() function .. 5-20
Device Driver write() function ... 5-20
Jump Table .. 5-20
Device Driver Interrupt Service Routines 5-21
Supplied Serial Drivers (driver0.c) ... 5-24

Changing the I/O Device Table .. 5-24
Table 5-1: Device Table Codes.. 5-25

6. STREAM I/O LIBRARY .. 6-1
I/O Functions by Category .. 6-3

ANSI Stream I/O Functions ... 6-3
ANSI Stream I/O Functions in USFiles 6-3
Additional I/O Functions .. 6-3

I/O Function Descriptions .. 6-4
find_pipe ... 6-4
mt_clearerr .. 6-5
mt_fclose ... 6-6
mt_feof .. 6-7
mt_ferror ... 6-8
mt_fflush ... 6-9
mt_fgetc .. 6-10
mt_fgetpos... 6-11
mt_fgets... 6-12
mt_fopen ... 6-14
mt_fprintf .. 6-16
mt_fputc .. 6-18
mt_fputs .. 6-19
mt_fread .. 6-20

xiv SuperTask! User’s Guide

mt_fseek .. 6-21
mt_fsetpos ... 6-22
mt_ftell .. 6-23
mt_fwrite ... 6-24
mt_mkdir ... 6-25
mt_printf ... 6-26
mt_remove .. 6-27
mt_rename... 6-28
mt_rmdir ... 6-29
mt_sprintf .. 6-30
mt_sscanf .. 6-31
mt_vsprintf .. 6-33
timed_getc ... 6-34
timed_read... 6-35
timed_readln ... 6-37

A. PLATFORM-SPECIFIC INFORMATIONA-1
ARM/StrongARM Platform ..A-3

Evaluation Platforms ..A-3
The Makefile ...A-3

Support for StrongARM EBSA-285 Evaluation BoardA-3
Support for ARM7 PIE Board ..A-4

Special Issues ..A-6
ARM Operating Modes ..A-6

Interrupt Considerations ...A-7
IRQ Interrupt Handling ..A-7
FIQ Handling ..A-7
SWI Handling ...A-7

M*Core ..A-9
Evaluation Platforms ..A-9
The Makefile ...A-9
Special Issues ..A-10
Interrupt Considerations ...A-11

SuperTask! User’s Guide xv

MIPS Platform ..A-12
The Makefile ...A-12
Interrupt Considerations ...A-12

R3000 Support ..A-12
R4650 Support ..A-15
NEC 4373 ...A-18

PowerPC Platform..A-20
Evaluation Platforms ..A-20
The Makefile ...A-20
Special Issues ..A-22
Interrupt Considerations ...A-22
IBM PPC403GA Test environment ..A-23

SH Platform ..A-25
Evaluation Platforms ..A-25
The Makefile ...A-25
Notes on SH1 Support ..A-26
Notes on SH2 Support ..A-27
Notes on SH3 Support ..A-27

386 Protected Mode ..A-31
Evaluation Platforms ..A-31
The Makefile ...A-32
Hardware-Dependent Configuring ...A-33

68xxx Platform ..A-35
Special Issues ..A-35

Figure A-1: Task stack space allocationA-36
Interrupt Considerations ...A-39

80960 (i960) Platform ...A-42
The Makefile ...A-42
Special Issues ..A-45
Interrupt Considerations ...A-46

xvi SuperTask! User’s Guide

80x86 Platform ..A-47
Evaluation Platforms ..A-47
The Makefile ...A-47
Special Issues ..A-48
Interrupt Considerations ...A-54

B. PC-COMPATIBLE CONSOLE/KEYBOARD B-1
Description .. B-2
Usage .. B-3
Utility Function Summary ... B-6
Utility Function Descriptions .. B-8

assign_keyboard .. B-8
attach_keyboard .. B-10
box_view ... B-12
chatout ... B-13
clear_screen... B-14
detach_keyboard ... B-15
display_box ... B-16
freeze_view_attrib, thaw_view_attrib B-18
get_cursor_loc ... B-19
get_keyboard_assignment ... B-20
link_view... B-21
put_attribc ... B-22
restore_cursor_loc ... B-23
set_cursor_loc ... B-24
set_cursor_type ... B-25
set_text_filemode, set_binary_filemode B-26
set_view_attrib .. B-27
unlink_view... B-28
view_init .. B-29
write_attribc .. B-30

SuperTask! User’s Guide xvii

C. GLOBAL VARIABLES ...C-1
Global Variables ..C-2

Interrupt-Related Items... C-2
Kernel-Related Items .. C-3
Timing-Related Items ... C-3
Facilities-Related Items .. C-4
Extra Items.. C-4
Processor-Unique Items.. C-5
Optional Variables... C-5
Stream I/O .. C-5

D. ERROR CODES ...D-1
Error Codes Returned by Functions ..D-2

E. GLOSSARY... E-1

INDEX ... INDEX-1

xviii SuperTask! User’s Guide

SuperTask! User’s Guide 1-1

1
1. Read This First

Chapter Contents

How to Use this Document ... 1-2
Installing SuperTask! ... 1-4

Text Files on Delivery Diskettes ... 1-5
Makefiles .. 1-5
Source Files .. 1-6

What Is Required of You .. 1-8
Calling for Support... 1-10

When to Call ... 1-10
How to Call ... 1-10
Reporting Bugs ... 1-12

1-2 SuperTask! User’s Guide

How to Use this Document

MultiTask! is the RTOS kernel you will be running on the target
platform with your application code. MultiTask! is delivered in
source form with test programs that will run on your target processor,
and appropriate makefiles for building these programs with one or
more cross-compilers. Your application code will be compiled and
linked with the MultiTask! RTOS code and the whole works placed
on your target (commonly in ROM). In this manual we will refer to
the RTOS as SuperTask!, MultiTask!, or even MT!.

The SuperTask! User’s Guide contains:

1. Read This First (installation instructions, customer support,
and general information)

2. MultiTask!
3. MultiTask! Library Reference
4. MultiTask! Internals
5. Stream I/O
6. Stream I/O Library Reference
A. Platform-Specific Information
B. PC-Compatible Console/Keyboard
C. Global Variables
D. Error Codes
E. Glossary
Index

We know from experience that software documentation arrives at a
rate faster than you can possibly read. We have therefore tried to
write these new manuals in a fashion that will tell you clearly what
you need to know as briefly as possible without a lot of needless
verbiage.

All users should read through the MultiTask! chapter of this manual.
This explains our terminology and presents a descriptive explanation
of all features of the operating system. The MultiTask! Library
Reference chapter gives detailed information for each function call in
the MultiTask! library.

1. Read This FirstHow to Use this Document

SuperTask! User’s Guide 1-3

1

The How to Design your Application section of the MultiTask!
chapter gives some examples of how to accomplish various things
with MultiTask!, based on years of experience. This might be
especially helpful if this is your first excursion into multitasking with
our operating system.

The appendix on Platform-Specific Information contains information
for each target processor. You should read all sections that apply to
your environment. Any information that applies only to specific
processors or configurations is located there.

1. Read This First How to Use this Document

1-4 SuperTask! User’s Guide

Installing SuperTask!

Each of the SuperTask! diskettes contains an install.bat installation
batch file that should be used for installing the product. The
installation batch file will allow you to select the destination directory
where the software will be installed and the tool chain (compiler, etc.)
that you are using.

Put the diskette into the appropriate disk drive and make that the
current directory. Type:

a:\> install

The batch file will display the appropriate syntax. Repeat the
installation with the appropriate syntax.

The install syntax requests the destination directory (which will be
created if it does not exist) and a code for the compiler you will be
using. For the SuperTask! x86 real mode release, the compiler
options are B (for Borland) and M (for Microsoft).

Example: Installing the x86 real mode SuperTask! release for the
Borland compiler (diskette inserted in drive A), type:

c:\> cd a:

a:\> install c:\st B

The preceding will create the directory C:\ST and install all files
appropriate for use with the Borland C compiler there.

1. Read This FirstInstalling SuperTask!

SuperTask! User’s Guide 1-5

1

Text Files on Delivery Diskettes

If any of your delivery diskettes contain text files (extension .txt),
these may contain important information not in the printed
documentation. We try to keep everything up to date, but it is just not
possible to update all products simultaneously. Our highest priority is
to make sure everything on the delivery diskettes is functional and
complete. The diskettes may contain some important last-minute
instructions not printed in the manual, which can be found in the
following files: relnotes.txt, cpunotes.txt, and/or compnote.txt.
Not all of these files exist for every distribution.

Makefiles

In your installation directory there will be a makefile. This is a text
file named makefile that is used with a make program to build the
libraries and test programs from the source supplied. All makefiles
supplied with MultiTask! versions 6.20 or later are designed to use the
make from “Opus Software”. This is supplied as part of the product
package. Use the supplied makefile with Opus make only, to build
the product test programs and libraries. You can create your own
makefile using whatever make (nmake, etc.) you want and link to the
library created by the makefile we supply.

The makefiles contain important comments (lines beginning with #)
about compiling and linking the libraries and test programs. If you
have not been using a make program, we most strongly recommend
you do so as it will automate the whole build process and make it
much less tedious and error-prone.

Usually the only change necessary to the makefile to run on your
system will be to edit the PTH variable in the file to be the pathname
to where the compiler you are using resides. If you are running under
the MS-DOS prompt from Windows and experience problems, try
running directly from DOS.

1. Read This First Installing SuperTask!

1-6 SuperTask! User’s Guide

To support a particular development platform, you might need to
adjust the symbols TRG_ID and DBG_ID, which specify the
evaluation board and debugger, respectively. There will be notes in
the makefile that explain the use of these symbols. Not all makefiles
use the DBG_ID symbol.

The makefile supplied will build the library for your configuration
and the test programs supplied. Once you have a library, you might
want to do your actual development in another directory with your
own makefile, and reserve the original installation directory for
rebuilding the libraries and test programs when you change any
configuration parameters.

Source Files

Even though you should not need to change most of the source files in
the delivery, you will probably want to look at them at some time to
get a better understanding of the code. We have made an attempt to
replace all tabs with four spaces in our source code, but it is possible
that we have missed something. Editors do not all display tabs in the
same way, so you might encounter strangely formatted text if we
missed some tabs. To fix this formatting, we have included a utility
program called detab.exe that can be used to make a copy of the files,
replacing tab characters with the appropriate number of spaces.

The syntax is:

detab file [files] dir

The file specification can contain standard DOS wild card
characters “*” and “?”. The dir is the pathname to a directory to
copy the file to.

Example:

mkdir src2

detab *.c *.h src2

1. Read This FirstInstalling SuperTask!

SuperTask! User’s Guide 1-7

1

This will copy all “.c” and “.h” files in the current directory to files of
the same name in the directory src2, with tabs translated.

A UNIX-style grep utility can also be of much use in finding where
things are in the source. The Borland C compiler includes a grep
utility. It is also available in a number of commercially available
toolkits, such as the Thompson Automation Software toolkit.

Grep searches text files and prints lines containing a given text string.
For example, grep setevt *.c would print the filename and line
in every *.c file in the current directory that contained the text string
setevt .

1. Read This First Installing SuperTask!

1-8 SuperTask! User’s Guide

What Is Required of You

SuperTask! is not an application program. It is code that will be
combined with code you write, and become part of your final
application. SuperTask! is designed primarily to be a part of an
embedded application, meaning one that will reside on a piece of
hardware (usually in ROM) that is dedicated to some function.

You will need to know or learn how to perform the device-level
programming for your target hardware, i.e., serial ports, timers,
interrupts, and any other applicable devices. You will also need to
know general programming practices in C and assembly for your
selected target processor, and the use of the make utility program
(Borland or UNIX make, Microsoft nmake, Opus make, etc.). In
addition, you will need to provide the necessary startup code for your
application. SuperTask! is simply a library of functions. It is not an
environment.

We thoroughly test each release in-house on as many test platforms as
we have available. Unless your target board has exactly the same
configuration as our test platform, you will have to make the
necessary changes to the target-specific code we supply (usually only
timer and I/O routines) before you can run on your target. The
majority of the code (more than 95%) is not specific to any platform
and will not require change. The more your target differs from ours,
the more you will have to do. In most cases this will still be a small
task.

If you think massive changes will be necessary to support your
environment, we suggest you call us first to confirm what you are
thinking before you start. We might be able to save you from starting
down the wrong road and doing a lot of needless work.

Lastly, if our programming style differs from what you are used to,
we hope you will forgive us our differences. We are constrained
somewhat by the fact that all the C code must and does run on at least
a dozen different processor families, and more than two dozen
compilers. Sometimes this requires things to be not quite as pretty as

1. Read This FirstWhat Is Required of You

SuperTask! User’s Guide 1-9

1

we would like, or as we could do if we were supporting only one
environment.

If you have constructive suggestions for improvement, let us know.
We usually incorporate the best ideas we can find, although this does
take a bit of time. Since it seems to be rare that any two of our
customers want exactly the same things, it will also probably be rare
that we do everything you want. Our code will, however, probably
satisfy most of your needs as long as you are willing to fill in the last
little bit yourself, or live without it.

1. Read This First What Is Required of You

1-10 SuperTask! User’s Guide

Calling for Support

When to Call

The support line does not function as a substitute for reading the
manual. Please do not call for simple questions that are answered in
the manual. If the manual is not clear to you, or if you have some
other question that is not answered, then by all means call. We will
not design your application for you, but we can offer suggestions on
how you might best use the operating system features, given a
description of what you are trying to accomplish.

If you are lost and just want to know where to start, or you want to
check to make sure you are not lost, go ahead and give us a quick call.
To save time for both of us, please have the information listed under
How To Call ready before you place the call.

We may be able to refer you to a consultant if you need additional
help developing your application.

How to Call

Locate the product name and version number you want support for.
This is obtained from the vsnlog.txt file that is placed in the directory
where you installed the product through the install.bat procedure. If
you are running on an MS-DOS system, there is also an executable
program called vsn.exe in that directory that will display the pertinent
information from the vsnlog.txt file. In this case, typing the
following will display what you need:

CD \product_directory
VSN

1. Read This FirstCalling for Support

SuperTask! User’s Guide 1-11

1

If you cannot run vsn.exe, then you can read the top few lines of
vsnlog.txt to get this information.

Call our office at (503) 844-6614 during normal business hours,
which are 8 a.m.–5 p.m. (Pacific Time) Monday through Friday.

When the phone is answered, request “technical support for
name_of_product.”

When you are transferred to an engineer, state the “product-code,
version-number” you are calling about, and the “processor and
compiler” you are using.

This will allow us to support you better. You might have only one
version of our product, but we might be dealing with perhaps 100
variants. The aforementioned information will tell us exactly what
you have and give us the proper frame of reference to answer your
questions.

 sample name_of_product = {SuperTask!}

 sample product-code (from vsnlog.txt) = {MT80x86, MT960, etc.}

 sample version-number (from vsnlog.txt) = {6.29}

 sample processor = {68332, i960CA, etc.}

 sample compiler = {Microsoft, Borland, Watcom, etc.}

You may also fax your questions to us at any time or contact us by e-
mail.

Voice phone: (503) 844-6614

Fax: (503) 844-6480

E-Mail: support@ussw.com

1. Read This First Calling for Support

1-12 SuperTask! User’s Guide

Reporting Bugs

If you believe you have found a bug in any of our products, please do
not hesitate to notify us. We normally do not ship products with any
known bugs, and if a new one is found we try to fix the problem as
quickly as possible. From a practical standpoint, it will be much
more helpful if you can send a short example that will reproduce the
problem, along with a description of what happens. If you have an
example, it is best to fax it to us at (503) 844-6480 so we have
something printed to look at, rather than explaining it verbally. Be
sure to include the information requested under How To Call, as well
as your return fax number and voice phone number.

1. Read This FirstCalling for Support

SuperTask! User’s Guide 2-1

2

Overview .. 2-3
Introduction .. 2-3
MultiTask! Features .. 2-4
Multitasking .. 2-5

Figure 2-1: Multitasking system ... 2-6
Figure 2-2: Comparison of integrated and
 multitasking approaches .. 2-7

MultiTask! Concepts ... 2-8
Figure 2-3: The general form of a task control block (TCB) 2-9
Figure 2-4: Possible task state changes 2-12
Figure 2-5: Task queues .. 2-14
Figure 2-6: Run queue .. 2-14
Figure 2-7: Rotation of tasks ... 2-15
Figure 2-8: How task priority affects task execution 2-16
Figure 2-9: Command queue with two unprocessed commands2-18

MultiTask! Services .. 2-20
Figure 2-10: Tasks shown in various wait queues
 according to priority order..................................... 2-21
Figure 2-11: Deadlock or “deadly embrace” 2-41
Figure 2-12: Memory after MTmeminit() 2-44
Figure 2-13: Diagram of a 4K block of memory 2-45
Figure 2-14: Blocks A, C, D, and B returned 2-46

2. MultiTask!

Chapter Contents

2-2 SuperTask! User’s Guide

How to Design Your Application ... 2-59
Real-Time Application Guidelines ... 2-59
Before You Start .. 2-59
Defining Tasks .. 2-61
Reentrancy Considerations ... 2-65
Task Activation ... 2-67
System Initialization ... 2-71
Compiling and Linking with the MultiTask! Library 2-72

Configuring MultiTask! ... 2-74
Using the Configuration Program .. 2-74
Configuration Parameters ... 2-75

Table 2-1: Parameters in mtcfg.h .. 2-76
Table 2-2: Parameters in depends.h .. 2-79

Using mtdbg() for Debugging ... 2-83

2. MultiTask!

SuperTask! User’s Guide 2-3

2

Overview

Introduction

Microprocessors may be fast, but they can perform only one task at a
time. To make multiple activities appear to be occurring
simultaneously, the microprocessor must use a process called
multitasking by switching rapidly between them.

Writing a multitasking program to be run on a specific
microprocessor can be a highly complicated process requiring a
considerable investment in design and development. However, a
multitasking executive, such as MultiTask! (abbreviated MT!),
simplifies design and development by allowing the application to be
logically separated into simple tasks that are then integrated into the
application as a whole.

Multitasking applications typically operate in a real-time
environment, meaning they must perform specific tasks within a set
period of time in response to ongoing events. A real-time system
must respond quickly to interrupts and input from independent data or
processes that occur asynchronously, and it must produce output
based on the input data. The real-time system must also manage these
input and output processes as nearly simultaneously as possible.

Real-time systems are developed to control or monitor industrial
processes that require immediate response to input. For example,
process measurement input from an instrument might require an
immediate response for proper operation. In such a case, it is
extremely important that the application be available when needed to
respond quickly and accurately to input.

Multitasking executives such as MT! are used to create applications
on target processors. They can simplify the writing of an embedded
application, especially when the application requires managing a
number of different activities with events that occur asynchronously.

2. MultiTask! Overview

2-4 SuperTask! User’s Guide

MT! performs this function by allocating microprocessor resources
for the tasks. These resources are limited — a fixed amount of
memory space and computer time exists to perform any given task.
MT! allocates these resources on a user-specified basis. In other
words, MT! enables a user (programmer) to apply rules to computer
time and memory distribution inside a program. Essentially, MT!
supervises the orderly execution of separate application tasks
according to the rules the programmer specifies.

MT! provides the operating system services needed to write real-time
multitasking programs. It provides specialized software containing
functions that handle processor resource allocation, software events,
timing functions, queue management, inter-program communications,
and reentrant memory management.

MultiTask! Features

MT! is a user-configurable family of multitasking executives designed
specifically for embedded applications. The MT! code is supplied in
source form with the necessary makefile to generate an object library
of functions configured for your environment. The MT! code is both
ROMable and reentrant. MT! provides fully preemptive priority-
based scheduling of tasks, as well as round-robin time-slicing of tasks
if desired. The MT! system uses a multithreaded, as opposed to
multiprocessing, approach, and each individual task is a single thread.

To enhance the implementation of control applications, MT! provides
a comprehensive set of ANSI C system functions. These functions
allow the user to customize MT! to the application by selecting
parameters that control the amount of time, available memory, the
number of tasks, and other parameters.

Optimized for the microprocessor selected by the user, MT! is
designed to be easily configurable for specific applications. You
configure the MT! system by setting system parameters in a
configuration file and choosing only the MT! functions needed. You
can minimize RAM usage by the operating system by configuring
limits before you compile MT!. Only the code for functions you

2. MultiTask!Overview

SuperTask! User’s Guide 2-5

2

actually use will be linked to your application from the MT! library,
thus minimizing code space usage.

In the application program main() function, you initialize MT! and
transfer control to MT! to initiate multitasking. The C functions you
designate in the application code will be made to run as independent
tasks.

Multitasking

Multitasking is used to solve problems where multiple tasks must run
concurrently (and possibly at different priority levels). With MT!,
you may write these tasks (or processes) independently of one another
to reduce the time and complexity of design, implementation, and
test. Without MT!, integrated solutions can become unwieldy and
difficult to debug, thus extending the design and implementation
cycle.

For example, multitasking might be used in the firmware for an
instrumentation application. A typical application could require
software support for measurement, user interface, printer control, and
various I/O and internal functions, as shown in Figure 2-1.

2. MultiTask! Overview

2-6 SuperTask! User’s Guide

* indicates a task using
an interrupt

Front Panel
Task

Measure
Task

Parser
Task

Multiplex
Task

Custom
Interface
Task *

Printer
Task

GPIB
Task *

RS-232
Task *

Figure 2-1: Multitasking system

These activities could be programmed as a set of tasks such as T1, T2,
T3, T4, etc. Task T1 could handle measurement. Task T2 could
provide the user interface. Task T3 might control the printer, and task
T4 could direct the RS-232 activity, and so on.

Figure 2-2 compares an integrated software design approach, an in-
line design approach, and a multitasking approach to the problem.

2. MultiTask!Overview

SuperTask! User’s Guide 2-7

2T1, T2, T3, T4

T1

T2

T3

T4

T1 T2 T3 T4

Integrated Approach
(operations are serial)

In-Line Approach
(operations are serial)

Multitasking Approach
(operations are parallel)

Figure 2-2: Comparison of integrated and
multitasking approaches

2. MultiTask! Overview

2-8 SuperTask! User’s Guide

MultiTask! Concepts

The information in the following section reviews essential concepts
and terminology used in working with SuperTask!.

Tasks

A task is any C function in your application program that you
designate as a task by using the runtsk() MT! function.

Tasks have these properties:

• Each task has its own stack space and CPU context (register set)
and runs independently of other tasks.

• A waiting task, like a non-active Interrupt Service Routine, is not
using any CPU resources (time, registers, etc.).

• All tasks have access to global-scope variables in the application,
and must not use these in a way that would conflict with other
tasks.

• Since each task has its own stack, local variables in the task and
any function called by that task reside on its private stack and are,
therefore, private to the task.

• The same code may be started as a task more than once, in which
case multiple separate tasks will exist, each using the same copy
of code, but with their own private stacks and CPU context
(register set).

Associated with each task is an internal control structure that we call
the Task Control Block or TCB. The TCB contains important
information about the context of the task, its slot (ID), and the queue
in which it is currently linked, which will define its state.

2. MultiTask!Overview

SuperTask! User’s Guide 2-9

2

Task Control Block

Next Task Link

Starting Address

Stack Base Address

Stack Pointer

Allocated Memory Pointer

Current Queue Index

Group Event Set Mask

Group Event Clear Mask

Group Event Or Mask

Task Priority

Status Flags

TASK_ID

Task errno

Figure 2-3: The general form of a task control block (TCB)

2. MultiTask! Overview

2-10 SuperTask! User’s Guide

Task States

Non-existent
When SuperTask! is initialized, an array of TCBs is created. Any
TCB in this array that does not have a task associated with it is
marked as non-existent. A task is made known to the system with the
runtsk() function, which associates the task with an entry in the TCB
array. After a task is terminated by the klltsk() function, it returns to
the non-existent state, i.e., it is no longer a task.

Running/Ready
When each task is made known to the system by the runtsk()
function, it is initially in the ready state (meaning it is linked into the
run queue). The highest priority task in the ready state will be the
running task (only one task can actually be running at any time). If
no tasks are ready, the system enters an idling or low-power state.

Tasks that exist but are not ready must meet at least one of the
following criteria: 1) the task is suspended, 2) the task is waiting for
something, or 3) the task has a timeout specified (i.e. is waiting for a
particular time to elapse).

Suspended
The suspend() function allows specific tasks to be temporarily
blocked from running without affecting any other tasks. The
suspended state is a non-running state that consumes no CPU time. A
waiting task may be flagged to be suspended, so that when the normal
action is taken that would cause it to return to the ready state, it will
instead enter the suspended state and an additional action will be
required to return it to the ready state.

2. MultiTask!Overview

SuperTask! User’s Guide 2-11

2

Waiting
The waiting state is a non-running state.

Tasks in any queue other than the run queue are in the waiting state.
Tasks usually enter the waiting state by performing some MT!
function call to wait for some condition to occur, like receiving a
message from a mailbox. Tasks in the waiting state will consume no
CPU time. Tasks are moved from the waiting state back to the ready/
running state either by the action of some interrupt routine or by the
running task’s performing some MT! function call.

There are several queues in which a task may reside while waiting.
Tasks in the Time Delay Queue are only waiting for a certain time to
elapse. Tasks in the Limbo Queue are in a special wait state. Each
item that a task can wait on (e.g. a mailbox or a resource) also has a
wait queue. Tasks in these queues have a ‘suspend’ bit that allows a
task to be both waiting and suspended. They may also have a timeout
specified so that they do not wait indefinitely.

2. MultiTask! Overview

2-12 SuperTask! User’s Guide

Timeout occurs
Wait for

somethingWait
Condition
Satisfied

Suspend

Resume

Suspend

Wait without
timeout

Run

Wait with
timeout +
Suspend

Wait without
timeout +
Suspend

Wait with
timeout

Ready
Suspend

Resume

Wait
Condition
Satisfied

Suspend

Resume

Non-Existent
(Tasks can transition to here from any state)

Figure 2-4: Possible task state changes

Arrowheads indicate direction of flow. A line touching a box with no
arrowhead indicates a task coming out of that state (box).

2. MultiTask!Overview

SuperTask! User’s Guide 2-13

2

Task Queues

A number of queues exist in MT!. These queues are:

Run queue Suspend queue

Delay queue Group event queues

Event set queues Event clear queues

Resource queues Mailbox queues

Memory queues I/O queues

(Limbo queue) (Non-Existent queue)

NOTE: The I/O queues are implemented for stream I/O
functions, and their use is being phased out.

MT! maintains the queues in priority order with the highest priority
task at the head of the queue. The TCB contains the link to the TCB
of the next task in the queue, and identifies the queue in which the
task is linked. The queue that a task is linked into identifies the state
of the task; e.g., all tasks in the run queue are in the ready or running
state, and tasks in a mailbox queue are waiting to receive a message
from a particular mailbox.

You will notice that many of the queues listed above are referred to in
the plural. There are actually multiple queues. Each condition it is
possible to wait for has a separate queue. There is a queue for each
mailbox, group event, resource, and stream path. Each event actually
has two queues, one in which a task waits for the event to be set, and
another in which tasks will wait for the event to be clear. This
abundance of queues enables the fastest possible processing of tasks
waiting in a queue. The next task link field in the TCB is used to link
tasks into a task queue with other tasks.

2. MultiTask! Overview

2-14 SuperTask! User’s Guide

Qid = qQid = qQid = q

*next(TCB *) *next NULL

Head of Queue points
to TCB of first task

1st task TCB 2nd task in queue Last task in queueQueue Table[q]

Figure 2-5: Task queues

Task Priority

Tasks have a priority assigned when they are made known to the
system with the runtsk() function call. The priority is in the range
0..255. Zero is the lowest priority and 255 is the highest. The actual
magnitude of the priority is of no significance; only its magnitude
relative to other tasks in the system is significant. All that matters
when considering two tasks is that one has a higher priority than the
other; the amount of the difference does not matter.

Tasks are ordered by priority within task queues. The highest priority
task is placed at the head of the queue. Tasks of equal priority are
placed in the queue in FIFO order, i.e., the first task placed in the
queue of a given priority will remain ahead of other tasks with the
same priority that are added to the queue later.

*nextrunning NULL*next*next*next

150 130 100 100 100 99 98

Head of
Run Queue

*next

Figure 2-6: Run queue

2. MultiTask!Overview

SuperTask! User’s Guide 2-15

2

All tasks in the run queue are in the ready state, and the highest
priority task in the run queue at any time will be the running task.

If there are two or more tasks at the highest priority in the run queue,
then the default action is for MT! to time-slice between them. At
each clock scheduling tick, a task switch is made to the next task of
that priority with the task just preempted rotated to the end of that
priority level in the run queue.

Figure 2-7 shows this rotation of tasks at the scheduling tick.

100

100 100 99 98

Rotation of highest priority in run queue during time-slicing

Figure 2-7: Rotation of tasks

This rotation of task order with the highest priority in a queue takes
place only in the run queue, not within any other queue the task might
be in. Also, this time-slicing behavior and queue rotation can be
totally inhibited by a compile-time option when you compile any of
the SuperTask! libraries.

Changing the priority of a task changes the MT! view of its readiness
for execution. You can maintain control of task execution by
assigning appropriate priorities to the tasks.

For example, MT! round-robin time-slices the tasks T1 and T2
(shown in Figure 2-8 below) until both are blocked. MT! then round-
robins tasks T3, T4, and T5 until they are blocked as well. Finally,
MT! executes task T6.

2. MultiTask! Overview

2-16 SuperTask! User’s Guide

It is often necessary to delay task execution or periodically run a task.
To do this, MT! provides time-oriented suspend and resume services.
Using these services, task execution may be suspended for a specified
time interval, or if suspended, task execution may be resumed.

Task 6

Task 3

Task 4Task 5 Task 1 Task 2

High Priority Tasks Medium Priority Tasks Low Priority Tasks

Figure 2-8: How task priority affects task execution

Preemption and Task Switching

In MT!, a task switch occurs when either the running task’s time-slice
expires if it is time-slicing, or when the running task voluntarily
relinquishes the CPU during its time-slice, or when it is preempted.
Preemption is when a higher-priority task interrupts the execution of a
lower-priority task (much like an interrupt routine). When the
running task voluntarily gives up the CPU to another task, we refer to
this as a cooperative task switch because the running task is
cooperating with other tasks by sharing the CPU. In MT!, time-
slicing occurs only between tasks of equal priority. Under these

2. MultiTask!Overview

SuperTask! User’s Guide 2-17

2

conditions, when the clock interrupt occurs and the next ready task
has the same priority as the running task, a task switch will occur.
This is referred to as round-robin scheduling. Time-slicing is a
compile-time option that can be disabled in MT! if the user desires.

When preemption occurs, the context of the running task is saved and
the context of the preempting task (the task to be run) is restored.
The saving of one task’s context (its running state) and the restoring
of another task’s context is known as a context switch.

The Time Queue

MultiTask! uses a time queue to implement all time-related features
including task timeouts, delays, and periodic events. This time queue
is maintained as a linked list of time-control structures in
chronological order. If a task is waiting in a task queue (for an event,
resource, etc.), and a timeout was specified, it will also have an entry
in the time queue. The entry in the time queue is linked by a time
control structure, not the task TCB. When each clock tick is
processed, the system tick count is incremented and a check is made
to see if the entry at the head of the time queue is waiting for the
updated system tick count to equal the new setting. If it is,
appropriate processing is performed; if not, no other check need be
done regardless of how many time-related occurrences are scheduled.

The Command Queue

MultiTask! uses a command queue for processing system services
from an interrupt service routine (ISR). This is part of a strategy for
minimizing the amount of time that interrupts are masked by the
operating system and thus minimizing interrupt latency. Normal
system calls never mask interrupts. System call reentrancy is
arbitrated by a flag (mt_busy) instead. This mandates that ISRs
never call the system service functions directly. To allow system
services to be instigated by an ISR, there is a special function call,
MTqcmd_c(), that will place the desired function call in the command
queue, where it will be processed after the ISR completes.

2. MultiTask! Overview

2-18 SuperTask! User’s Guide

The command queue is implemented as a circular buffer. The pointer
cmdadd points to the location in the buffer where the next command
will be placed by MTqcmd_c(). The pointer cmdprc points to the
next command in the buffer to be processed by the operating system.
When these two pointers are equal, the command queue is considered
empty. The command queue only supports commands that will not
wait and will not return data to the calling routine. Figure 2-9
illustrates the command queue with two as-yet unprocessed
commands in it. The first command is tiktok(), which is the system
clock interrupt service process, and the second is setevt() to set event
number 2.

setevt(2);

tiktok();cmdprc

cmdadd

Figure 2-9: Command queue with two unprocessed commands

2. MultiTask!Overview

SuperTask! User’s Guide 2-19

2

The tiktok() command is placed in the queue by the clock ISR
function usrclk(). The setevt() function in this example would have
been placed in the command queue by some other ISR in the
application. With the exception of the ireqbuf_c() function, no other
system call can be made directly from an ISR. However, all useful
services (excluding those that will wait or return information) can be
initiated from an ISR indirectly, by using the MTqcmd_c() function
call. All commands in the command queue are processed at the end
of every system call, or immediately after any ISR that exits via the
MTsched or MTsched_c() functions rather than the normal return
from interrupt. See the later section on Interrupt Service Routines for
more detail before attempting to use service from an ISR.

The number of items that can reside in the command queue at any one
time is specified by the parameter MAX_CMD_CNT in the depends.h
file. The default value is 32 and it uses about 4 words per entry.

Systems with long interrupts and frequent interrupts, especially those
with both, should increase this value. Entries are filled (meaning that
commands are queued) from the start of a long interrupt until
MTqproc() can clean them out. Nesting interrupts and those that use
several commands also use up entries.

NOTE: Long system calls also require more entries, since the
queue is not flushed until the end of the system call. A
call to reqmem() when lots of blocks are being used
can take a while. Systems with lots of tasks will see a
similar problem. In both cases, linked lists have to be
searched, and the time to do so goes up linearly with
the length.

2. MultiTask! Overview

2-20 SuperTask! User’s Guide

MultiTask! Services

Starting and Contr olling T asks

When a task first comes to the attention of MT! (via the runtsk()
function) it is placed in the run queue (a queue of tasks waiting for
the CPU). The runtsk() function allocates stack space for the task,
creates an initial context for the task on the task stack, and places the
task in the run queue.

To perform these actions, runtsk() assigns a TCB structure for the
task and fills in pertinent information in the TCB.

The task’s slot number (which is the TCB index) is assigned by
runtsk(). The slot number is a unique task identifier used by many
MT! functions to identify the task to be operated on. The slot number
returned by runtsk() should be saved in some variable for future
reference if needed.

In the following examples, tasks are shown in various queues (the
priority of each task is in parentheses). Note that the tasks are in
priority order in the queues.

2. MultiTask!Overview

SuperTask! User’s Guide 2-21

2

Figure 2-10: Tasks shown in various wait queues
according to priority order

Run Queue
Wait CPU

Event Queue
Wait Event

Resource Queue
Wait Resource

Run Queue
Wait CPU

Event Queue
Wait Event

Resource Queue
Wait Resource

Run Queue
Wait CPU

Event Queue
Wait Event

Resource Queue
Wait Resource

A

B

C T1 (100)

T1 (100)

T1 (100)

T5 (100)

T4 (110) T6 (75)

T2 (90)

T3 (50)

T5 (100) T4 (110)

T3 (50)T2 (90) T6 (75)

T4 (110)

T5 (100)

T2 (90)

T3 (50)

T6 (75)

2. MultiTask! Overview

2-22 SuperTask! User’s Guide

In A, tasks T1 and T5 will take turns getting all of the CPU time-
slices (in a round-robin fashion) since these tasks are at the highest
priority level. (This is assuming the MT! library was compiled with
time-slicing enabled.)

In B, T1 has attempted to get a resource that is unavailable, so it is
moved to a queue to wait for the resource. Task T5 now gets all of
the CPU time-slices since it is the highest priority task waiting for the
CPU.

In C, the event that T4 and T3 were waiting for has been set, so they
both move out of the event queue where they were waiting back to the
run queue. Task T4 will now get all of the CPU time-slices since it is
the highest priority task waiting for the CPU.

Any task in the MT! system may start, kill, or prioritize a task. The
MT! task management functions are:

runtsk (priority, task address, stack size, argument)
runtskss (priority, task address, stack size, stack base,

 argument)
klltsk (task ID)
pritsk (task ID, priority)
slttsk (task address)
scdtsk (void)
suspend (task ID)
reanimate (task ID)

runtsk Dynamically defines a task to MT!.

runtskss Defines a task with static stack.

klltsk Dynamically kills a task.

pritsk Dynamically prioritizes a task.

slttsk Finds a task’s slot number.

scdtsk Cooperative task switch.

suspend Prevents a task from running.

reanimate Allows a suspended task to run again.

2. MultiTask!Overview

SuperTask! User’s Guide 2-23

2

A task becomes a candidate for execution only when it is defined to
MT! and in the run queue. The runtsk() function is used to define a
task to MT!. MT! assigns a TCB and stack space to the task and then
places the information required to control the task in the TCB. MT!
moves the task to the run queue at the assigned priority level. The
task is now ready for execution. The task is identified by its slot
number, which is the index into the array of TCBs kept by the system.
The slot number is returned by the runtsk() function and is passed to
other functions as an argument to identify the task.

The klltsk() function is used to halt the task and remove it from its
system slot (freeing the task’s TCB). The klltsk() function also
removes the task from its current queue, deallocates its stack and any
LOCAL memory the task had allocated, frees any resources owned by
the task, and flushes and closes any I/O streams opened by the task.

The pritsk() function allows the priority of a task to be changed
dynamically. The pritsk() function changes the task’s priority and
causes its current queue position to be reevaluated.

The slttsk() function returns the system slot number of a task. The
task is specified by address. If no address is given, MT! returns the
slot number of the currently running task. If an address is specified,
MT! searches the system task table for the task’s slot number.

A task runs only when it is the highest priority task at the head of the
run queue. A task that is running continues to run until its time-slice
expires, it performs a call that causes it to wait (on a time delay,
event, resource, message, etc.), it is preempted by a higher priority
task, or it relinquishes the CPU with the scdtsk() function. A task
may forfeit the remainder of its time-slice with the scdtsk() function.

A task in any queue can be prevented from running with the
suspend() function. A suspended task will still receive any messages,
events, or resources it is waiting on, but will be prevented from
running until the reanimate() function is called for that task.

2. MultiTask! Overview

2-24 SuperTask! User’s Guide

Switching and Running Tasks
MT! schedules tasks for execution by selecting the next task that can
be run at the highest priority, i.e., the highest priority task in the run
queue. The task runs until removed from the run queue (to wait for a
resource, event, message, time period, etc.), it is preempted (by a
higher-priority task entering the run queue), or until its time-slice
expires (in which case it is rotated to a new position in the run queue).
The time-slice (specified by the user) is usually in the range 10–100
milliseconds. The shorter the time-slice, the greater the percentage of
CPU time consumed performing task switching. A very short time-
slice causes the system to spend all of its time switching tasks
(thrashing). On the other hand, a very long time-slice causes
excessive delays between task executions.

When a task switch occurs because the task’s time-slice expires or it
is preempted, MT! selects the task at the head of the run queue as the
new task to be run. If the new task also happens to be the running
task (i.e., no task switch), then the process is simplified. In other
cases, however, the context of the running task is saved and the
context of the task to be run is restored. Since the run queue is
organized in priority order, the highest priority task in the queue is the
next task to be run. If more than one task is at this priority level, the
tasks take turns receiving time-slices (in round-robin fashion, as
explained earlier).

Blocking Preemption and Interrupts
The preferred method of controlling preemption is by carefully
selecting task priorities when you design your application. If you
have a high-priority task waiting for an event to be set, it will be in an
event queue and not actually be running or requiring any CPU time
until the event is set. When the event is set, it will be moved to the
run queue and, if it has a higher priority than any other task there, will
preempt that task and commence running. Typically this task would
take some small finite amount of time to perform its function and then
clear the event it waited on, loop back, and wait for the event to be set
again, at which point the preempted task would pick up where it left
off.

2. MultiTask!Overview

SuperTask! User’s Guide 2-25

2

It is also possible to change the priority of a task with the pritsk()
function, and block preemption by giving the current task the highest
priority and then later dropping its priority level.

If you feel you must block preemption without regard to priority
levels, there are two macros available to accomplish this.

The block_preemption() macro will stop all task switching until the
unblock_preemption() macro is executed. Interrupts remain
unmasked while preemption is blocked by this method.

NOTE: Most applications do not require these macros, and
their heavy use is probably an indication that you do
not yet understand the proper use of the other
operating system features.

If you need to only block task switching for a very short time (e.g., a
line or two of code), you could do this by globally masking interrupts.
There are two macros provided in the file depends.h for doing this.
The MASK_INTS() macro globally masks all interrupts, and the
UNMASK_INTS() macro does the reverse. (Interrupts are normally
enabled at all times in an MT! application except during actual
interrupt processing.)

Assigning System ID Numbers

Tasks are assigned ID numbers dynamically, while events, group
events, mailboxes, and resource ID numbers are assigned statically.
To aid in assigning ID numbers statically to items such as resources
and mail boxes, we have provided the file usrasign.h. Using this one
file to maintain these IDs will help to avoid duplication. If MT! has
been integrated with another product (such as USFiles) some IDs may
be defined here, and these must not be duplicated or reused.

2. MultiTask! Overview

2-26 SuperTask! User’s Guide

Events

Events are user-defined synchronization primitives used for basic
communication between tasks. Implemented as a count byte, an event
is treated as having only two states: set or clear. When the event
status byte is non-zero, the event is considered set, and when the byte
is zero, the event is clear. An event differs from other synchronization
primitives because it causes all tasks waiting for the occurrence of the
event to be rescheduled when it occurs. In other words, when an
event is set by a task, any and all tasks waiting for that event to be set
are returned to the run queue. When an event is cleared by a task, all
tasks waiting for that event to be cleared are returned to the run
queue.

Events might be used to indicate some state such as “motor-up-to-
speed,” “buffer-ready-for-processing,” “safety-off,” etc.

Events are useful in waiting for user-specified activities and
determining when they have occurred, but they don’t allow the
passing of information between tasks. For this purpose, MT! uses
messages, mailboxes, or pipes.

An interrupt routine or a task may be used to set, clear, increment, or
decrement the event associated with an activity. Setting, clearing,
incrementing, or decrementing the event causes waiting tasks to move
to the run queue and possibly preempt the running task. Only tasks
can check on or wait for events.

Events may be defined to be incremented automatically after a
specified period of time (see period() and oneshot() in the MultiTask!
Library Reference chapter). This is useful for stimulating activities
such as periodically sampling a sensor input for integration.

The event numbers are assigned by the user, and range from zero to
one less than the limit set by the configuration when MT! was
compiled. Be careful in assigning event numbers, because the first
NUMPER event ID numbers can be used for periodic and one-shot
events. The order in which you assign event ID numbers can be
significant.

2. MultiTask!Overview

SuperTask! User’s Guide 2-27

2

Example

#define MOTORON_EVT 0 /* define event for motor on */
status = wteset(MOTORON_EVT, 0);

An event is given meaning by the programmer. MT! sets and clears
events on request and arbitrates tasks waiting for those events to
become set or clear.

Managing Events
As stated earlier, a task may set, clear, or check an event, wait for an
event to be set, or wait for an event to be cleared. A periodic event,
one that is set automatically by the period() function, is treated the
same as any other event. A task may wait for a periodic event to be
set the same as for any other event. Group events are also provided.
These allow a task to wait for a combination of things to happen.
Periodic events use the same ID numbers as events, but the group
events use independent ID numbers. The number of events allowed in
the application is specified in the file mtcfg.h. The symbol NUMEVT
indicates the number of byte events for the application, and NUMPER
limits the number of periodic events.

Events are user-defined and may represent any number of interrupt-
or task-initiated occurrences. MT! manages these events on a real-
time basis. When an event occurs, tasks waiting for the event are
moved from the event wait queue to the run queue. Preemption will
occur if a higher-priority task moves to the run queue.

There is no limit on the number of tasks that may wait for an event.
The MTinitialize() function clears all events.

Event Functions
The event management functions are:

setevt (event ID)* clrevt (event ID)*
incevt (event ID)* decevt (event ID)*
chkevt (event ID) wtesetdec (event ID, timeout)
wteclr (event ID, timeout) wteset (event ID, timeout)
period (event ID, period) oneshot (event ID, time)

2. MultiTask! Overview

2-28 SuperTask! User’s Guide

NOTES: Functions marked with * can be used from an interrupt
routine. For example, calling setevt() from an
interrupt routine is achieved through the call
MTqcmd_c(SETEVT, ID). See the chapter on MT!
Internals for more information on using these
functions.
Event ID numbers are usually defined in usrasign.h,
and the values must be coordinated with periodic event
ID numbers.

setevt Sets the specified event value to 1, and moves to the
run queue all tasks waiting for this event to be set.

clrevt Clears the specified event and moves to the run queue
all tasks waiting for this event to be clear.

chkevt Returns the status of the specific event (numeric value
0..255). A zero status indicates the event is clear and
non-zero indicates it is set.

incevt Adds one to the specified event value. Any time the
event has a non-zero value, it is considered set.

decevt Subtracts one from the specified event value. The
event is considered cleared any time its value is zero.

wteset If the event is clear, moves the task from the run queue
to a wait queue, where it waits for the specified event
to be set. An event is considered set when it has any
non-zero value. The functions setevt() and incevt(),
therefore, both set the event.

wtesetdec Moves a task from the run queue to a wait queue,
where it waits for the event to be set. When the event
is set, the task is returned to the run queue, and the
event is decremented. (This saves the task from doing
a separate decevt() call and thus saves time.)

wteclr If the event is set, moves the task from the run queue
to a wait queue, where it waits for the specified event
to clear.

2. MultiTask!Overview

SuperTask! User’s Guide 2-29

2

Any of the wait event functions can optionally timeout if the
condition is not met within a specified time. If the condition is
already true when the wait call is performed, then the task remains in
the run queue and does not sleep. See the MultiTask! Library
Reference chapter for function-calling details.

period Specifies that an event is to be set periodically
(automatically at a specified interval). At each
interval, the periodic event will be automatically
incremented. The period() function can also terminate
such action.

oneshot Is used to increment an event only once at a specified
system time. If a subsequent call to oneshot() is made
for the same event before the previously specified time
is reached, then the first oneshot() time will be
replaced by the most recent call.

Two examples of synchronizing with events follow.

Example 1

char buffer[100];
void fill_task(void){

for(;;){
<Collect some data>
buffer = <data>;
setevt(my_event);
wteclr(my_event);

}
}

void consumer(void){
for(;;){

wteset(my_event);
<empty buffer>
clrevt(my_event);

}
}

2. MultiTask! Overview

2-30 SuperTask! User’s Guide

Example 2

void __interrupt my_isr(void){
<clear interrupt>
MTqcmd_c(INCEVT, my_event);
++mt_busy;
MTsched_c();

}

void my_task(void){
for(;;){

wtesetdec(my_event);
iprintf(‘’DING!\n’’);

}
}

Periodic Events
Periodic events are a mechanism that can be used to cause a task to
run synchronized to a regular time interval measured in system clock
ticks. This is done by using the period() function to set up an event to
be incremented automatically at the desired interval. The task to be
synchronized to this period then has a loop in which it performs a
wteset() and a decevt() call or just a wtesetdec() function call.

The periodic event gets incremented on a regular interval. Whether
the task is able to run immediately when the event is incremented
depends upon whether any higher-priority tasks are in the run queue
at the time the event is set.

If the task is blocked from running by higher-priority tasks, then it is
possible that the event may be incremented several times before the
periodic task is able to run. If the blocking task gives up the CPU,
then the periodic task will run through its loop several times in
immediate succession until the event is decremented back to zero.

If you wish to have the period task run only once under these
circumstances, you can start its loop with wteset() followed by
clrevt() rather than using wtesetdec().

The period() function is also used to deactivate a periodic event. See
the MultiTask! Library Reference chapter for details.

2. MultiTask!Overview

SuperTask! User’s Guide 2-31

2

The event number used with the period() function must be less than
the configuration limit set by NUMPER in mtcfg.h. See the
Configuring MultiTask! section of this chapter for more details.

One-Shot Events
One-shot events are used to signal an event at a particular value of the
system time. These events differ from periodic events, because they
execute only once. They do not repeatedly execute, unless the
application repeatedly calls oneshot().

Group Events

Group events are similar to simple events but are composed of a word
with significance to each bit. A task may wait for combinations of
bits to be set, or a combination of specific bits to be set and others to
be clear, and an or condition where any of selected bits are set.

The group event functions are:

setgrp (group ID, mask)*
clrgrp (group ID, mask)*
waitgrp (group ID, set mask, clear mask, or mask, timeout)
chkgrp (group ID, result)
GrpWakeValue

NOTE: Functions marked with * can be called from an ISR.
To set a group event from an ISR, the call
MTqcmd_c(SETGRP, ID, mask) can be used. A
similar call exists for clrgrp.

setgrp Sets the bits you specify in a group event.

clrgrp Clears the bits you specify in a group event.

waitgrp Waits until the bits you specify to be set are set, and
the bits you specify to be cleared are clear and any of
the or bits you specify are set.

2. MultiTask! Overview

2-32 SuperTask! User’s Guide

chkgrp Returns the current setting of a group event.

GrpWakeValue
Tests the group event condition that caused the task to
wake up.

Group events can be useful for synchronizing several tasks. If several
tasks each must wait until all of the others have arrived at a certain
stage of processing, they may each set a different bit in a group event
when they arrive, and then wait for all of the bits representing the
other tasks to be set.

Another use can be in waiting for one of several different conditions
to happen. Each condition could be represented by a bit in a group
event, and the task could then wait for an or of any of those bits to be
set. When the task wakes up, it could test what the wake-up condition
was with the macro GrpWakeValue. (This type of action could be
achieved with messages also; the waiting task would wake for any
message, and any number of other tasks could send messages to the
mailbox at which that task was waiting.)

The number of group events available to the application is specified
by the symbol NUMGEVT in mtcfg.h. See the MultiTask! Library
Reference chapter for function-calling details.

Example

void wait_for_group(void){
for(;;){

clrgrp(my_group, 0xFFFF);
waitgrp(my_group, 0xF0F0, 0, 0, 0);
< do processing >

}
}

void signal_group(void){
for(;;){

< do processing >
setgrp(my_group, 0xF0F0);

}
}

2. MultiTask!Overview

SuperTask! User’s Guide 2-33

2

Mailboxes

Mailboxes are places where messages and packets are queued. If a
task makes a request to receive a message or a packet from a mailbox
and none is available, the task waits in a mailbox queue for a message
or packet to arrive at the mailbox.

When you send a message or packet, a message header is
automatically allocated to link the message pointer into the mailbox.
The total number of message headers and thus the total number of
messages that can reside in all mailboxes is set by the configuration
parameter NUMMSG in mtcfg.h. When a message is received, the
message header is deallocated and is available for reuse. When
NUMMSG messages are outstanding (i.e., have been sent but not
received), no more messages can be sent until one is received.

A per-mailbox message limit is implemented and is set by MBXLIMIT.
When MBXLIMIT messages reside in a mailbox, that mailbox will
accept no more messages until one is removed. This prevents a task
from sending messages to a mailbox at which they are not being
received (receiving task blocked), and from consuming all message
headers, thus preventing other tasks from being able to send any
messages.

The specific mailbox number to use to acquire messages for a task is
arbitrarily defined by the user. It is often convenient to assign a task’s
slot number (TASK_ID of task) as the mailbox number the task will
use, especially when many tasks will be receiving messages. The
task’s slot number can then be used to reference a specific mailbox
for sending messages to that task.

Mailboxes are independent of tasks and may store messages for more
than one task. Mailboxes are referenced by mailbox number. Any
task may send or receive through any mailbox. It is often useful to
have several tasks sending messages to the same mailbox, but it is
rarely useful to have more than one task receive messages from a
particular mailbox. When multiple tasks are waiting for a message at
the same mailbox, the highest priority task will be the one to get the
next message.

2. MultiTask! Overview

2-34 SuperTask! User’s Guide

Mailbox Functions
chkmbx (mailbox ID)
flushmbx (mailbox ID)

chkmbx Returns the number of messages or packets currently
in a mailbox.

flushmbx Discards all messages and packets in a mailbox and
wakes any waiting tasks.

Messages
Communication between tasks in the MT! system may be
accomplished by message passing. The messages are left and
accessed through mailboxes. A task may leave or access a message at
a mailbox.

Message Functions

chkmsg (mailbox ID) (chkmbx is now preferred)
putmsg (mailbox ID, message pointer, priority, timeout)
sndmsg(mailbox ID, message pointer, priority)*
rcvmsg (mailbox ID, timeout)

chkmsg Checks if any messages are in mailbox (chkmbx is
now preferred).

putmsg Sends a message, and waits if mailbox is full.

sndmsg* Sends a message and returns an error if mailbox is full.

rcvmsg Waits for and returns the next message to arrive at a
mailbox.

NOTE: rcvmsg() is used to receive both messages and packets.
See rcvmsg() in the MultiTask! Library Reference
chapter for details.
The * indicates that sndmsg() can be invoked from an
ISR by using MTqcmd_c(SNDMSG, ID, pointer,
priority).

2. MultiTask!Overview

SuperTask! User’s Guide 2-35

2

A message is passed as a pointer to any user-defined data. The data
that are pointed to are not copied, only the pointer is passed.

See also: In this chapter, see Packets in the Mailboxes section for
information on passing copies of data through mailboxes;
also see Pipes in the Stream I/O chapter.

One of the features of MT! is that these messages are assigned a
priority. Messages have a priority (0..255) and are queued at the
mailbox in priority order. Messages with the same priority are
queued in a first-in-first-out (FIFO) order. The highest priority
message in the queue is the one that will be returned by the next
rcvmsg() function call. There is also a super priority (SUPERPRI)
that can be assigned to a message that will always force it to the front
of the mailbox even if the mailbox already contains a 255-priority
message.

When a task requests a message from a mailbox, the highest priority
message is returned to the task. When a task sends a message to a
mailbox, the highest priority task waiting at the mailbox for a
message receives the message and is made runnable. At any specific
message priority, messages are returned in FIFO order.

A special feature of the sndmsg() function can be used to suspend the
task sending the message immediately after the message is sent (see
sndmsg() in MultiTask! Library Reference). This is useful when
sending a message to a server task. The server task will process
messages, performing some service as instructed by the message. If
the sender of the message (requester of the service) should wait until
the service is complete, the sender can have sndmsg() automatically
suspend. The server task would be written so as to reanimate() the
requester task at the appropriate time. The task ID (slot number) of
the sending task needs to be known to the receiver so it can issue a
reanimate() call to the sender at the appropriate time. The easiest
way to identify the sender is to include its ID in the message.

2. MultiTask! Overview

2-36 SuperTask! User’s Guide

Example

#define SERVERMBX 1 /* mailbox to use */
typedef struct {

TASK_ID slot;
int function;
char returned_data[32];

}SERVERMSG;

void sender_task(void)
{
SERVERMSG p;

p.slot = cur_task; /* our ID */
p.function = 2; /* some meaningful value */
sndmsg(SERVERMBX, &p, 100|MSGSUSPEND);
/* now process p.returned_data from server */

}

void server_task(void)
{
SERVERMSG *p;

for(;;){
 p = rcvmsg(SERVERMBX, 0);
 /* process data here, return value can be
 written into packet */
 reanimate(p->slot); /* wake caller */
}

}

The putmsg() and rcvmsg() functions can specify a timeout value in
system clock ticks when waiting. If the timeout expires before they
can put/receive a message, then they cease waiting and return an error
indication.

2. MultiTask!Overview

SuperTask! User’s Guide 2-37

2

Packets
Packets are a form of message that can also be passed through a
mailbox. Sending a packet is similar to sending a message, except
that memory is allocated to hold a copy of the message, the message
data is copied to that memory, and then a pointer to the copy of the
data is sent to the mailbox. The receiving task receives the pointer to
the copy of that data and, when finished processing it, must release
the packet memory with the relpkt() function. Since packets are
exchanged through mailboxes, they have the same priority, mailbox
limit, and queuing characteristics as messages.

Packet Functions:

putpkt (mailbox ID, message pointer, priority, size,
memory pool, timeout)

sndpkt (mailbox ID, message pointer, priority, size,
memory pool)

relpkt (packet address)
rcvmsg (mailbox ID, timeout)

putpkt Sends a packet and waits if the mailbox is full.

sndpkt Sends a packet and returns an error if the mailbox is
full.

relpkt Releases the packet memory.

rcvmsg Waits for and receives a packet.

NOTE: rcvmsg() is used to receive both messages and packets.
See rcvmsg() in the MultiTask! Library Reference
chapter for details.

Pipes can transfer data faster than packets, but only from a single task
to some other task, i.e., one sender to one receiver.

Many different tasks can send packets to the same mailbox where
some other task may receive them, i.e., many senders to one receiver.

2. MultiTask! Overview

2-38 SuperTask! User’s Guide

The putpkt() and sndpkt() functions take an argument that specifies
where the memory is to be allocated from. This argument can be
from COLOR0 to COLOR2, or a buffer pool ID number from 0 to
NUMPOOLS-1 . If COLOR0, COLOR1, or COLOR2 is used, then the
memory is allocated from the variable-size allocation pools with a
reqmem() function call, and relpkt() will release the memory with a
relmem() function call. If a number 0.. n is given, then the memory
is allocated from the buffer pool specified by that number with a
reqbuf() call, and relpkt() will release the memory with a relbuf()
function call. In either case, the memory pool must be initialized
with either the Mtmeminit2() or init_mem_pool() function, as
appropriate, before the putpkt() and sndpkt() can be used
successfully. If the memory pool in use cannot allocate enough
memory to send a packet, then sndpkt() and putpkt() will fail.

Example

MTmsg_t const *message = (MTmsg_t *) "Test Message";
struct ourpkt{

PKT_HDR h;
char info[100];

};

void sender(void)
{

if(sndpkt(MBX_A, (void *)message, 100,
sizeof(message), COLOR0))
/* ERROR */

}

void receiver(void)
{
ourpkt *pkt;

pkt = (struct ourpkt *)rcvmsg(MBX_A | PKTRCV, 0);
/* Handle pkt->info */
if(relpkt((PKT_HDR *)pkt))

/* Error releasing packet */
}

2. MultiTask!Overview

SuperTask! User’s Guide 2-39

2

Resources

Resources are nesting semaphores that provide a mutual exclusion
mechanism (referred to as a mutex in some literature). For example,
the computer display screen or keyboard can be resources, but they
must be defined (a resource number assigned) by the user. A task is
assigned exclusive use of a resource. When the task is finished with
the resource, it is released to the system for use by another task.
When a resource is released, the highest priority task waiting for it is
assigned the resource.

Any task may request, get, release, or check a resource. MT!
manages resources on a priority basis. The highest priority task
waiting for a resource will be assigned the resource when it is
available.

Resource Management Functions:

reqres (resource ID)
getres (resource ID, timeout)
relres (r esource ID)
chkres (resource ID)

reqres Requests a resource.

getres Waits for and gets a resource.

relres* Releases a resource.

chkres Checks who owns a resource.

NOTE: In MT!, resources are referenced by user-assigned
resource numbers. We recommend defining these ID
numbers in the file usrasign.h.
The * indicates that relres() can be called from an ISR
via MTqcmd_c(RELRES, ID).

Only one task may own a resource at a time. Any other task trying to
get a resource while it is owned by another task is placed in a

2. MultiTask! Overview

2-40 SuperTask! User’s Guide

resource wait queue until the resource becomes available. A single
task may acquire a resource several times. It must then release that
resource an equal number of times before it is available to the system.
Resources enable tasks to share memory, code, hardware, or other
user-associated items.

The getres() function moves a task to the resource wait queue if the
required resource is not available. When the resource becomes
available to the task, the task is moved back to the run queue,
preempting any lower-priority task that is running. When more than
one task is waiting for the same resource, the task with the highest
priority in the resource wait queue will be the first to obtain that
resource. The getres() function may be specified with a timeout
delay. If the delay expires before the resource is available, then the
task that made the getres() call is reactivated and returned an error
status indicating that the timeout has expired. (The task is not
assigned the resource when the timeout expires.)

The reqres() and getres() functions are similar. With reqres(),
however, the task is not delayed if the resource is unavailable.
Instead, MT! indicates that the resource is not available.

The relres() function releases the resource and assigns it to the
highest priority task waiting for it (if any).

The chkres() function returns the ID of the task that owns the
resource, or zero if no task owns it.

Care should be taken when requesting and releasing resources. For
example, assume that Task 1 owns resource A and Task 2 owns
resource B. If Task 1 now attempts to acquire resource B and Task 2
attempts to acquire resource A, then a “deadly embrace” results. Both
tasks are placed in a queue where they wait for a resource to become
available. Since both tasks are waiting, neither task runs and the
resources are never released.

2. MultiTask!Overview

SuperTask! User’s Guide 2-41

2

RRResourceResource Queue A

Task 1 (owns resource B)

Resource Queue B

Task 2 (owns resource A)

Figure 2-11: Deadlock or “deadly embrace”

To avoid the possibility of a deadly embrace or deadlock, resources
already owned by a task should be considered when the task attempts
to acquire an additional resource. If acquiring ownership of any of
these resources could result in a deadly embrace situation, the
resources should either be released or the acquisition of the additional
resource should be conditioned on the resource’s availability. In the
case shown above, this deadlock would have been prevented simply
by both tasks requesting the resources in the same order.

Similar to events, resources are used by tasks. Only one task may
own or control a resource at a time. Like an event, a resource is a
synchronization primitive. Unlike an event, however, a resource is
used to characterize an item that a task may want to use as being
available or unavailable.

2. MultiTask! Overview

2-42 SuperTask! User’s Guide

A task waiting for a resource becomes suspended (goes to sleep) if
the resource is unavailable (if it is being used elsewhere). The task
wakes when the resource becomes available. When a task using a
resource finishes with and releases it, only one task waiting for the
resource wakes. The task that wakes first is the one with the highest
priority. When a resource is released by a task, the highest priority
task waiting for the resource is given the resource and made runnable.

A resource is user defined. Examples of resources are a data buffer, a
line printer, or a code segment. The number of resources available to
the system is determined by the value of NUMRES in the file mtcfg.h.

See also: The discussion of block_preemption() for another method
of protecting specific operations.

Memory Management

MT! has two methods for managing memory. Up to three heaps can
be used to handle variable-length memory blocks, similar in behavior
to malloc() and free(). Alternatively, MT! can allocate memory from
pools of fixed-length buffers. The fixed-buffer allocation operates
considerably faster than the variable-size block memory allocation
since it does not need to search for a block of adequate size, and when
releasing a buffer no coalescing of fragments is needed. In the next
few pages we will refer to the variable-size blocks as memory blocks
and the fixed-size blocks as buffers.

MT! uses memory in blocks, which are contiguous groups of bytes.
When a task requests a memory block, MT! returns a block that is at
least as large as the memory block requested. MT! flags an error if
available memory is inadequate. This process may require MT! to
split a large memory block, potentially creating memory
fragmentation. When a task releases a memory block, MT!
recombines the released block with existing blocks, alleviating
memory fragmentation.

MT! also provides simpler and faster fixed-size memory buffer
allocation. These buffers are arranged as arrays of fixed-size memory

2. MultiTask!Overview

SuperTask! User’s Guide 2-43

2

blocks called pools. Any number of memory pools may be defined,
with each containing any number of buffers. The buffers within any
pool are all of a fixed equal size. The memory fragmentation
problem does not arise with this scheme and therefore no
recombining of memory buffers is necessary.

Variable-Size Blocks
During initialization, blocks of contiguous memory may be released
to any of the three heaps maintained by the heap manager. The free
memory resides in RAM and is defined by the user through the
MTmeminit2() function. The MTmeminit2() function must be called
at least once before any memory will be available from the reqmem()
function. These memory blocks are maintained by the memory
manager in a linked list ordered from lowest to highest address. In
other words, a memory block with a lower starting address is linked
into the list ahead of a memory block with a higher starting address.
See Figure 2-12.

NOTE: The current code requires that sections of memory be
passed to MTmeminit2() in either ascending or
descending order.

2. MultiTask! Overview

2-44 SuperTask! User’s Guide

Higher Address:

Lower Address:

BLOCK 2

Gap

BLOCK 3

Gap

Gap

BLOCK 1

BLOCK 4

Figure 2-12: Memory after MTmeminit()

When a request is made for memory, MT! checks the blocks in its
linked list and processes the request with the first block larger than
the requested size. The block is split and the piece at the high-
memory-address end of the block is returned while the remaining
memory is left in the linked list.

2. MultiTask!Overview

SuperTask! User’s Guide 2-45

2

1K Piece D

1K Piece B

 1K Piece C

1K Piece A

Figure 2-13: Diagram of a 4K block of memory

For example, assume that the 4K block of memory shown in Figure
2-13 is the only block being managed. MT! processes a series of four
requests for 1K blocks of memory by returning pieces A, B, C, and D
in that order. The following illustration shows what happens when
the blocks are returned in the order A, C, D, and then B.

2. MultiTask! Overview

2-46 SuperTask! User’s Guide

After release of Piece B:

After release of Piece D:

After release of piece C:

After release of piece A:
gap

Piece A

Piece A + B + C + D
merged

gap

Piece A

Piece C + D

gap

gap

Piece A

Piece C

Figure 2-14: Blocks A, C, D, and B returned

When a memory block is released, it is recombined with as many free
memory blocks as possible to limit free-memory fragmentation.

2. MultiTask!Overview

SuperTask! User’s Guide 2-47

2

Variable-Size Block Memory Management Functions

In order to provide a distinction in terminology between the two types
of memory allocation in MultiTask!, we refer to the fixed-size
memory blocks as “buffers” and the variable-size allocation as
“blocks.”

MTmeminit2 (memory address, size, color)
MTmeminit (memory address, size)
reqmem(memory type, size)
relmem (memory address)
chkmem(color, info)

MTmeminit2 Adds a new memory block to the managed memory
pool.

MTmeminit Adds a new memory block to the COLOR0 memory
pool.

reqmem Requests a free memory block.

relmem* Releases a free memory block.

chkmem Performs an integrity check and reports.

The reqmem() function requests a block of memory from the system,
the relmem() function releases a block of memory to the system, and
the chkmem() function checks the memory integrity and reports the
amount of free memory currently available for the COLOR (pool)
specified.

NOTE: The * indicates that relmem() can be invoked from an
ISR by calling MTqcmd_c(RELMEM, address).

The reqmem() and relmem() functions provide a memory
management facility similar to the C functions malloc and free. MT!
maintains a linked list of the free blocks of memory, and fills a
request for memory by finding the first block large enough to satisfy
the request. MT! initially has zero bytes of free memory available.
The MTmeminit2() (or MTmeminit()) call must be used to release at

2. MultiTask! Overview

2-48 SuperTask! User’s Guide

least one block of memory to MT! before using reqmem(). Since the
runtsk() call uses reqmem() to allocate stack space for a new task, an
initial MTmeminit() call is required to release some memory before a
successful call to runtsk() can be made.

Each memory block managed by MT! is preceded by a structure of
type MEM_DEF (defined in the file mtcfg.h). The structure maintains
the block size, owner, and a link to the next block in the chain. In
general, this header structure can be ignored since MT! returns a
pointer to the actual usable memory for a reqmem() call, and the
same pointer is passed back to relmem() to release the memory. If
you request a block of memory with reqmem() and then write outside
the bounds of that block, however, you will likely be overwriting the
MEM_DEF structure for that block and will corrupt the memory
system.

The size of a MEM_DEF structure is two times the sizeof(void *)
if local memory tracking is turned off, or four times sizeof(void
*) if it is on. If you do not use reqmem()/relmem() in your code, you
may want to use runtskss() to launch tasks. See the description of
runtskss() in the MultiTask! Library Reference Chapter.

There are two types of memory that a running task may request:
GLOBAL or LOCAL. LOCAL memory belongs to the task that
requests it and normally should not be accessed by another task. If
local memory tracking is enabled, then LOCAL memory is
automatically released back to the free memory pool when the
owning task is terminated (i.e., the task is killed by klltsk() or comes
to the closing brace of the task’s main() function).

GLOBAL memory, on the other hand, is not automatically released to
the system when the task that requested it terminates.

Any time it is desirable to release a block of memory that was
requested by a different task, the request should be made for the
GLOBAL type of memory. If you want a block of memory to remain
accessible after the task that requests it terminates, request GLOBAL
memory.

Example: Task A requests a block of GLOBAL memory to hold a
data buffer (perhaps some input from a sensor). Task A then sends a

2. MultiTask!Overview

SuperTask! User’s Guide 2-49

2

pointer to the data buffer as a message to Task B. Task B receives and
processes the data buffer. When Task B is finished processing the
data buffer, it releases the data buffer memory back to the system with
the relmem() call.

If Task A always used the same fixed address to hold its data buffers,
it would need to use a resource or event mechanism to know when
Task B had finished processing the data so that Task A could again
use the buffer. If, however, Task A requests a new block of memory
for each data buffer, it may operate without this overhead and may at
times have several data buffers queued up waiting to be processed by
Task B.

Memory that is to be used only by the task that requests it should be
requested as LOCAL memory. Both LOCAL and GLOBAL memory
can be released at any time with a call to relmem(). In the case of
LOCAL memory, any requested LOCAL memory that is not explicitly
released by the requesting task will be automatically released by the
klltsk() function when the task terminates.

The variable-size memory allocation functions reqmem() and
relmem() now support three different pools of memory, referred to as
colors. Each color can actually contain multiple discontiguous blocks
of memory at any address. When memory is allocated, memory
blocks are split as necessary on a first-fit basis, and memory is
recombined into the largest contiguous block possible when it is
released. Multiple colors allow you to designate one color as normal
RAM, another as battery-backed-up RAM, etc. Another possible use
is in a design where you have requests for many small blocks of
memory and also requests for large blocks. In this situation you may
be able to avoid fragmentation problems by making the large requests
from one pool (color) and the small requests from another. You might
also want to divide memory into different pools so that if requests
from one are depleted, it will still leave memory available in another
pool assigned to more vital functions. The new memory algorithm
forces a limit of three colors specified by the predefined labels
COLOR0, COLOR1, and COLOR2.

2. MultiTask! Overview

2-50 SuperTask! User’s Guide

MT! itself always requests memory from COLOR0. Task stacks,
MTFILE structures, and serial I/O and pipe buffers are allocated from
COLOR0 by the system.

The behavior of LOCAL memory is a compile-time option controlled
by bit 1 of the #define label STCFG, which is passed in the CFLAGS
by the makefile. When bit 1 of STCFG is set, LOCAL memory is
active. When a task dies (or is killed), any memory blocks requested
as LOCAL memory by the task are automatically released along with
the task’s stack space. Tracking LOCAL memory doubles the size of
the header on each block.

When bit 1 of STCFG is zero at compile time, LOCAL memory
requests are not linked to the requesting task, and consequently
memory blocks requested with the LOCAL attribute do not get
automatically released when the task dies. (The task stack space,
however, is still released.)

This case has two performance advantages: First, the request and
release are both faster, and second, the number of bytes of overhead
allocated for each block is cut in half, making for more efficient use
of memory. You should consider this option if you are making heavy
use of dynamic memory allocation (such as when using reqmem()/
relmem() in place of new/delete in C++).

It is possible for chkmem() to perform an integrity check of both
allocated and free memory blocks at the expense of taking more time.
Chkmem() is able to spot most memory corruption situations.

To initialize the multiple colors of memory, an MTmeminit2()
function has been added that includes the color specification. If you
are using only one color, or referring to COLOR0, you do not need to
specify the color, which is done by using MTmeminit().

The relmem() function does not require the color of the pool to which
the memory block will be returned. The block will automatically be
put back into the color pool from which it was requested.

2. MultiTask!Overview

SuperTask! User’s Guide 2-51

2

Examples

char freemem[10000];
char *p;

/* initialize color 0 */
MTmeminit(freemem, 10000);
MTmeminit2(freemem, 10000, 0); /* same */

/* init color 1 */
MTmeminit2(freemem, 10000, COLOR1)

/* get GLOBAL COLOR0 memory */
p = reqmem(GLOBAL, 100);

relmem(p); /* release memory */

/* get COLOR1 memory */
p = reqmem(GLOBAL|COLOR1, 200);
relmem(p);

/* get local COLOR0 memory */
p = reqmem(LOCAL|COLOR0, 17);
relmem(p);

Existing calls to MTmeminit(), reqmem(), and relmem() do not
require any change. Whenever the color is not specified, COLOR0 will
be used. The configuration parameter NUMCOLORS in mtcfg.h
specifies the maximum number of colors you will be using. This can
be set to any value between 1 and 3. (If you remove all use of heaps,
then a value of 0 can be used.)

2. MultiTask! Overview

2-52 SuperTask! User’s Guide

Fixed-Size Blocks
In order to provide a distinction in terminology between the two types
of memory allocation in MultiTask!, we refer to the fixed-size
memory blocks as “buffers” and the variable-size allocation as
“blocks.”

Functions for Managing Fixed-Size Memory Buffers:

init_mem_pool (pool ID, address, block size, block count,
type)

del_pool (pool ID)
reqbuf (pool ID)
getbuf (pool ID, timeout)
relbuf (pool ID, buffer address)*
ireqbuf (pool ID)*
ireqbuf_c (pool ID)*
chkbuf (pool ID)

init_mem_pool Initializes a memory pool.

del_pool Deletes a memory pool.

reqbuf Requests a buffer from a pool.

getbuf Requests a buffer from a pool, and waits if one is not
available.

relbuf* Returns a buffer to its pool.

ireqbuf* Requests a buffer from a pool (for use only by an ISR
written in assembler).

ireqbuf_c* Requests a buffer from a pool (for use only by an ISR
written in C).

chkbuf Returns the number of buffers currently available in a
memory pool.

2. MultiTask!Overview

SuperTask! User’s Guide 2-53

2

NOTE: The * following a function name indicates that this
function can be used from an ISR. In fact, ireqbuf()
and ireqbuf_c() can only be called from an ISR. The
following descriptions of these functions explain how
they are used. As an example, to call relbuf() from an
ISR, one must use MTqcmd_c(RELBUF, ID).

Memory buffers are allocated from pools. Within each pool, all
buffers are of the same fixed size. Different pools are independent
and may have different buffer sizes. The buffers in a pool are
essentially an array of fixed-size memory blocks.

You must call the init_mem_pool() function to initialize each memory
pool before calling any of the other functions for that pool. The
init_mem_pool() call is passed the number of buffers in the pool,
their size, the memory address where the pool begins, and the pool
type. The number of memory pools in the system is user defined by
the parameter NUMPOOLS in the file mtcfg.h. The pool type defines
the pool as either a TASK_POOL or an ISR_POOL, meaning request
for buffers can be made either by ordinary tasks or by ISRs only. In
either case, the buffer can be later released by either a task or an ISR.

The reqbuf() function requests a buffer from a pool and returns either
a pointer to the buffer or a null pointer if a buffer is not available.

The ireqbuf and ireqbuf_c() functions act the same as reqbuf() except
that they are for use only by an ISR written in either assembler or C
respectively. These functions operate faster than the reqbuf() call and
do not check if the pool number passed to them is valid. (Note:
ireqbuf() is an optimized version of ireqbuf_c() to be called by an
assembly language ISR rather than a C language ISR, and may not be
present on all platforms. If it is not present, you may construct it by
hand by optimizing a copy of the ireqbuf_c() function.)

The getbuf() function performs the same as reqbuf() except that if a
memory buffer is not immediately available, the requesting task will
wait until one becomes available. You cannot use this call from an
ISR, which would not make any sense anyway.

2. MultiTask! Overview

2-54 SuperTask! User’s Guide

The relbuf() function returns a buffer to its memory pool. Buffers
must be returned to the same pool from which they were requested,
but do not have to be returned by the same task that requested them.

The chkbuf() function returns the number of buffers currently
available in a memory pool.

The del_pool() function de-initializes a memory pool, so that any
further requests for memory buffers by a task will not be satisfied.

Time Management

Time management in the MT! system is based on the system clock.
Any task may delay or wake a task or read the system clock. The
time management functions, dlytsk() and period(), are based upon a
number of system clock ticks from the time the call is made. Two
calls, delay_until() and oneshot(), are based upon a designated
system tick count independent of when the call is made. The system
time is kept internally as a count of clock ticks (at CLOCKHZ rate)
since system initialization. The function get_sys_time() returns the
current system tick time. By getting the current system time and
adding a number of ticks to this time, a new future time is computed.
The delay_until() function behaves exactly as dlytsk(), except that it
takes a system tick time as argument instead of the number of ticks or
seconds, etc., to delay. The call oneshot() increments an event
exactly like the period() function except that it takes an absolute tick
time to increment the event and this happens only once. The period()
and oneshot() functions are described further under the Event
Functions section earlier in this chapter.

Time Management Functions:

dlytsk (task ID, units, time)
delay_until (task ID, time)
get_sys_time (void)
oneshot (event ID, time)
period (event ID, period)
waktsk (task ID)

2. MultiTask!Overview

SuperTask! User’s Guide 2-55

2

dlytsk Delays a task for a period of time.

delay_until Delays a task until a specified system time.

get_sys_time Returns the current system time.

oneshot Increments an event at a specific system time.

period Increments an event each time the period specified
elapses.

waktsk* Wakes a delayed task -- if task is not asleep, will
prevent next task wait.

NOTE: The * following waktsk indicates that it can be used
from an ISR. To call waktsk() from an ISR, one must
use MTqcmd_c(WAKTSK, ID).

These time functions make it easy to program a sequence of events
that must occur at specific intervals from a starting point, when the
system clock tick resolution is adequate.

Example: The system clock tick time is 10 milliseconds (i.e.,
CLOCKHZ = 100). At the start of a manufacturing process, additional
steps must be taken at intervals of 50, 200, 250, and 800 milliseconds.
The following code sequence should accomplish this.

void start_process(void)

{
tick_cnt_t start_time;

start_time = get_sys_time();
process1();
delay_until(cur_task, start_time+5);
process2();
delay_until(cur_task, start_time+20);
process3();
delay_until(cur_task, start_time+25);
process4();
delay_until(cur_task, start_time+80);
process5();

}

2. MultiTask! Overview

2-56 SuperTask! User’s Guide

The system clock is stimulated by a timer interrupt supplied by the
application. Each task receives a time-slice equal to the frequency of
the clock tick times the user-specified parameter NUMTCK.

The parameter CLOCKHZ specifies the number of clock interrupts per
second, i.e., the clock frequency in hertz.

NUMTCK and CLOCKHZ are defined in depends.h. For more
information, refer to the section on Configuring MultiTask! later in
this chapter.

The dlytsk() function moves a task from the run queue to the time
delay queue. When the task’s specified delay expires, the task will
move back into the run queue.

The waktsk() function also moves a task from the time delay queue to
the run queue. If the task is not in a wait queue, then a flag will be set
so that the next attempt to delay the task will not succeed. This is
particularly useful when the task will be woken by an ISR.

Miscellaneous Functions

Profiling
The MT! task profiling functions clr_profile() and get_profile() are
not included in the library in the default configuration. They can be
included by selecting them with the configuration program, or editing
mtcfg.h, or setting bit 2 in the STCFG makefile variable before
compiling the MultiTask! library.

When profiling is enabled, MT! will keep track of which task is
running each time the clock tick occurs. The function clr_profile()
allows you to reset this count and get_profile() enables you to get a
copy of this information. These counts will allow you to compute the
percentage of CPU time taken by each task and an approximate
execution time for any task. Since these counts are of a statistical
nature, you can obtain greater accuracy by allowing a set of tasks to
operate continuously for a relatively long period of time before
inspecting the profile information.

2. MultiTask!Overview

SuperTask! User’s Guide 2-57

2

The profile count for task 0 represents the amount of idle time when
no task is running. Profile counts are maintained by MT! in an array
of type profile_t (32-bit values). The number of entries equals
NUMTSK+1.

The profile numbers can be distorted when some tasks are
synchronized to the clock ticks and others are not. In this case, some
tasks may never be active during the clock tick and are therefore not
counted.

Environment
With the release of the USFiles file system, a new dynamic task load
capability (load task from disk) was added. This introduced a need
for a method for the loaded task (which was compiled separately from
the main application) to find a valid free mailbox number or event
number, etc., or to find if a certain task was running in the main
application or some similar detail.

When the entire application was linked together during development,
these things could always be statically defined with no difficulty.
This may be difficult to do when a task is loaded separately (perhaps
developed after the main application was installed). To address this
need, we have added an environment variable mechanism similar to
DOS or UNIX and bit-map allocation (scoreboard) functions.

The environment mechanism differs slightly from what is in either
DOS or UNIX in that the environment variable value is a (void *)
type rather than a (char *). This makes it simpler to pass numeric or
other information besides strings. For example, you might want to
put a task name and the mailbox number it is using in the
environment space. To do this, you might pass a (char *) to the task
name string, and an (int *) to an int containing the task slot
number or its mailbox number, etc. The actual strings or other data
pointed to are not copied, rather only their pointers are stored in the
environment table. This means that the data pointed to must remain
constant while the string is in the environment. The environment
pointers should point to (const) or global storage that will remain
constant throughout the time that the environment entry exists. The
number of variables that can be stored in the environment is set by the
configuration program in the parameter MTENVSIZE in mtcfg.h.

2. MultiTask! Overview

2-58 SuperTask! User’s Guide

Scoreboard
The acquire() and release() functions implement bit-map oriented bit
set and clear for any user-defined table. The acquire() function
returns the bit number (0..n) of the next clear bit in the specified table
and sets that bit. The release() function clears the specified bit in the
specified table. This can be used if you want to implement dynamic
assignment of mailbox numbers, resources, or any other item. For
example, you might initialize a table to represent available mailbox
numbers and then do an acquire() call to find the next available one
for use. This again is mostly applicable when dynamically adding a
separately compiled task to a running system.

Time of Day
MT! provides a sample time_keeper() task that maintains a 24-hour
system clock with hours, minutes, and seconds based on a clock
interrupt provided by the application. The time_keeper() task must be
started with a runtsk() call before the clock will function. You can set
or read the system clock using the setclk() or getclk() functions.

setclk() Sets the time-of-day clock.

getclk() Reads the time-of-day clock.

The coretest.c program starts the time_keeper() task and tests setclk()
and getclk(). You can examine this program for an example of usage.

The get_tcb() function
The get_tcb() function returns a copy of the task control structure
(typedef TASK_DEF) for any task. The most useful structure
members for debugging purposes are usually task _que and
que_link , which are the queue index the task is currently in, and the
link to the next task TASK_DEF in the queue. You should note that the
task _sp value will not be current if you inspect the task control
structure of the currently running task.

The get_tcb() function is of little or no use in current releases, since
this information is usually better obtained by calling the mtdbg()
debug function.

2. MultiTask!Overview

SuperTask! User’s Guide 2-59

2

How to Design Your Application

Real-Time Application Guidelines

A number of guidelines should be kept in mind when writing
multitasking applications. The processing work should be divided
into small (generally single function), manageable tasks. Careful
consideration should be given to task priority level with no more
inter-task communication than necessary.

If a great deal of communication is required between tasks, it
indicates either poor task splitting or an exceptional processing
requirement that is not efficiently handled in a multitasking
environment.

Information that must be shared between tasks should be passed as
messages and events wherever possible, or through pipes. It’s
generally not a good practice to share variables between tasks.
However, if a variable in memory must be shared, that variable should
be treated as a system resource requiring each task to request
exclusive access to the variable when required and releasing the
variable when no longer needed.

By paying attention to inter-task communication and data sharing,
you can eliminate the most common cause of bugs in a multitasking
system.

Before You Start

You should have already read the MultiTask! Overview section to gain
a basic understanding of the OS features before proceeding.

You should also have built all the test programs supplied and tried to
run at least one of these on your target.

2. MultiTask! How to Design Your Application

2-60 SuperTask! User’s Guide

You should have a clear idea of what your application is required to
do.

When planning your application, keep in mind that the mtcfg.h file is
used to configure the MultiTask! environment by defining things like
number of tasks, number of events, etc. The file usrasign.h should be
used to statically define ID numbers for items such as mailboxes and
events (among others).

The mtbench.c program supplied with the MultiTask! delivery will
perform MT! function timings on your target. You should run this to
get a good idea of how long various operations will take on your
target platform. You will need to make sure the usrclk() interrupt is
set to occur at the same rate as described by the CLOCKHZ parameter
in order for the timings to be accurate. The timings are mostly for
combinations of functions, the way they will be used. For example, if
one task is waiting for an event to be set, and another sets the event,
the timing loop includes the wteset() and setevt() functions as well as
two task switch times that will be used to go full cycle. You will note
that using events is generally a little faster than sending and receiving
messages, which is generally faster than running and killing a new
task. This information is useful when you are deciding how to
structure your most time-critical operations.

Running mtbench will also provide RAM requirements for
applications of differing complexity as well as sizes for particular
MT! structures. If the symbol STACK_FILL is defined in the file
depends.h (e.g. #define STACK_FILL ‘+’), then mtbench
will determine how much stack space is left unused. This will allow
you to determine a minimum stack size to use for your application.
ROM sizing must be done by examining a map file, and this would be
done independently of mtbench.

2. MultiTask!How to Design Your Application

SuperTask! User’s Guide 2-61

2

Defining Tasks

Before you can begin building your multitasking application, you
must define what the individual tasks will be. This is an important
design phase. Take your best stab at it; you may later need to refine
this by splitting or combining some tasks.

The multitasking implemented by MT! is sometimes referred to as
multi-threading, or lightweight multitasking where tasks share global
memory, as compared to multiprocessing or UNIX-style multitasking
where a process’ memory is completely separate from other
processes. As this is the case, the task switching and communication
features are much faster and more efficient and more suitable for an
embedded real-time application. With this architecture, tasks are
often quite small, with some being only a few lines of code. As a rule
of thumb, each task performs only one simple function and waits for
one condition to stimulate it. There will, of course, be exceptions, but
this is the breakdown of tasks that will most naturally fit the OS
features.

When deciding what should be a task, use the criteria in the following
sections.

What actions must be performed?

Usually each separate action naturally dictates a separate task, for
instance updating a display, reading user controls (keypad, etc.), or
controlling an external operation (servo, valve, etc.). Each interface
(RS-232, GPIB, front panel, etc.), each process, and any shared
functions (e.g. command processing) should have separate tasks.
Interfaces that are bidirectional may need a task for each direction.
See Figure 2-1 for a graphical representation of how these tasks might
interact.

2. MultiTask! How to Design Your Application

2-62 SuperTask! User’s Guide

What stimulus will dictate those actions?

Even more important than dividing separate actions into tasks is the
division by what the stimulus for those actions will be. Most of the
MT! functions allow you to wait for a single condition and also
optionally timeout if that condition does not occur within a specified
time. The group event functions allow waiting for a combination of
stimuli. Occasionally, to wait for a complex combination of things to
occur, you may need to implement one or more helper tasks whose
only duty is to wait for some condition and signal another task to do
the real work.

What interrupt sources are available?

It is generally advantageous to use input interrupts rather than polling
to stimulate tasks whenever possible. For instance, if you must read a
switch closure, polling will require that some CPU time be expended
to watch for the switch closure; but if the switch closure causes an
interrupt that you can respond to, then no CPU time will be consumed
until the switch is actually closed. Of course, if you must poll, you
can easily set up a task using a periodic event to do this at a
reasonable period.

The frequency of the interrupt will generally dictate how you should
handle it. You don’t want to cause task switching at a very high
frequency or you will end up thrashing (using up all CPU time
merely switching tasks). For example, if you have a serial port
receiving at a high baud rate, it is better for the ISR to buffer a
number of characters and then wake the task waiting for those
characters rather than wake the task (cause a task switch) for every
byte. This is exactly what the serial stream drivers supplied will do if
a task requests a read of, say, 100 bytes (with mt_fread()). The driver
ISR will buffer each byte until the 100th and then wake the task. If
the task only requests a read of one byte, then the ISR will wake it as
soon as the byte is available.

Some very high-speed requirements may be handled directly by the
ISR without using any MT! function calls. ISRs written in this way

2. MultiTask!How to Design Your Application

SuperTask! User’s Guide 2-63

2

are completely independent of the task activity and, in a sense, are
higher priority than all tasks since normally interrupts are always
enabled.

If the process to be initiated by an interrupt is relatively lengthy and
infrequent, it may be most convenient and suitable to have the ISR
merely wake a waiting task by setting an event and allowing the task
to perform all the processing. Remember to disable that interrupt in
the ISR and reenable it in the task.

In any case, system function calls from an ISR must always be made
indirectly with the MTqcmd_c() function. With the exception of
ireqbuf(), only non-waiting functions that accept information may be
used. See the Interrupt Service Routine section in the MultiTask! I/O
chapter for details.

What is the most time-critical path?

The more time-critical operations require careful consideration.
Usually, human interfaces are not that time critical. For instance, if
you are updating a display for someone to read, the person looking at
the display will not notice a 50-millisecond delay. But if you are
controlling an electrical signal to another machine, 50 microseconds
delay might be significant. Task priorities will affect their response
time. Generally, a higher priority (relative to other tasks) will give
quicker response times. Studying the timing information given by the
mtbench.c program will help you estimate if an operation can be
handled by a task or must be coded outside the operating system in an
ISR.

What are the priorities?

Now is the time to make those “pie-in-the-sky” specifications
realistic. If you are one of the lucky few who still has leftover CPU
time after meeting all the design specs, then you will have plenty of
latitude as to your actual implementation. If you determine that some
tasks do not meet the desired response time, and/or all or nearly all of

2. MultiTask! How to Design Your Application

2-64 SuperTask! User’s Guide

the CPU bandwidth is used up, then the first thing to do is reevaluate
your specification. Do all of the response times need to be as
stringent as originally specified? Can you change the hardware to a
faster CPU, or faster memory, or maybe a different processor
altogether? When the answer to both of these questions is no, then the
only fix left is to make the code more efficient.

To squeeze more efficiency out of the code, you need to look both at
the way you code your tasks and the frequency of task switching. You
may be able to merge two tasks into one and thereby reduce the
number of task switches that take place. For example, if you have
several things that must be done periodically at the same interval, it
would be more efficient to have one periodic task perform all
functions rather than a separate periodic task performing each
function.

More predictable performance can be achieved by making the
application completely preemptive, at least for high-priority tasks. In
other words, every task will have a different priority, so time-slicing
will not occur. When all tasks have different priorities, you have
more control over how much of a task will execute before it yields the
CPU (by waiting for an event or message, doing a timed delay, etc.).
During time-slicing, you cannot predict if a task will get a full time-
slice each time it runs. This is because a task may be scheduled very
near the end of a time-slice due to the previous task’s yielding. In this
case, it will get only a fraction of the time-slice until the clock ticks
again and it is rescheduled. If you have many tasks of the same
priority, that task will wait until all of the others have run again before
it gets any more CPU time. Because of this, you may find that a task
appears not to be running. The more tasks you have of the same
priority engaged in time-slicing, the worse this phenomenon may
become.

Do not equate the importance of what your tasks are doing with
priority. Just because the duties performed by all of your tasks seem
of equal importance does not mean that they should have equal
priority. Of course, round-robin time-slicing may be just what you
want under some circumstances; however, to avoid unexpected
behavior, we would recommend you avoid it except in cases where it
really makes sense. In cases where you want equal priorities but no

2. MultiTask!How to Design Your Application

SuperTask! User’s Guide 2-65

2

time-slicing, you can configure MT! for this with a compile-time
option.

Stack Sizing

The symbol STACK_FILL can be used to help determine a minimum
stack size for tasks in your application. If you define STACK_FILL in
depends.h (e.g. #define STACK_FILL ‘+’), then runtsk() will fill
the stack with the symbol indicated. When MTterminate() is called,
it will search through the stack of each remaining task and determine
how much stack space was unused. Since this value will be printed
via iprintf() , console I/O must be operational to do this.

Reentrancy Considerations

Since a task switch may be instigated by an interrupt service routine,
you should consider every task as if it were itself an interrupt routine
when considering code reentrancy problems.

All operation system functions will block task switching in critical
code sections to avoid these problems. This allows you to call any
system service call from any task at any time without concern about
interference with other tasks.

If you have more than one task accessing common data structures, a
conflict can arise. This includes the case where two tasks call a
common function, either one that you have written or a standard
library function that accesses global data. (Examples of this are the
standard C library functions malloc/free, strtok, and use of errno,
among others.)

Consider the case where a linked list is being updated. If an interrupt
causes a task switch to another task that will also update the linked
list, there will be a critical window in the operation where the links
could be corrupted.

2. MultiTask! How to Design Your Application

2-66 SuperTask! User’s Guide

One way to prevent this from happening would be to mask interrupts
during the code that was manipulating the list. This would have the
undesirable affect of preventing tasks that have nothing to do with the
list from preempting during the time that interrupts were masked, as
well as preventing interrupts from being processed for that time. If
the time is very small, this is of little significance, but if the operation
is lengthy it could have a detrimental effect on system performance.

Another way is to allow interrupts but to prevent preemption. This
can be done via block_preemption() and unblock_preemption(), and
it will only work if the memory is shared between tasks, and no ISR
accesses it.

A better way to control reentrancy for lengthy operations would be to
assign a resource for the operations. This would block only another
task from entering the critical area of code at the same time it was
already in use. Task switching would still occur and non-conflicting
tasks could operate unhindered. Interrupts would also be processed
without delay.

The resource functions exist to take care of this sort of reentrancy
problem. They are used not only to prevent reentering non-reentrant
code, but also to prevent two tasks from trying to control the same
hardware port simultaneously, or any similar situation. A resource
provides mutual exclusion in execution of portions of tasks since only
one task may possess the resource at any time.

Of course, if the resource can be accessed by an ISR, you must
disable interrupts, either globally or just those specific to the device in
question. If your critical code can be nested, you must save and
restore the mask/enable state. Please see MTqcmd_c() and
depends.h for assistance.

2. MultiTask!How to Design Your Application

SuperTask! User’s Guide 2-67

2

Task Activation

In an application designed with multitasking, all tasks operate more
or less asynchronously much as if they were interrupt routines. In
general, a task will be inactive, i.e., not using any CPU time, until it
receives some signal that there is something to do. The signals can be
thought of as interrupts. Just as a hardware interrupt activates an ISR,
the software signal activates a task.

MultiTask! provides many types of signals that can activate a task.
These include events, messages, I/O, and time.

To make a task be activated by one of the types of software signals,
the task must first be run and the task itself must perform a function
call to cause itself to wait for the desired signal.

As you can see, in both ISRs and tasks, there is an initialization
sequence that must be done before the interrupt or signal will cause
the desired code to be run.

The various types of signals have properties far more versatile than an
interrupt. When a task is waiting for any type of signal, it can also
specify a time limit it is willing to wait. If the timeout (time limit)
passes before the signal arrives, then the task will resume and can take
alternative action.

If any of the types of signals are present when the task requests to
wait for them, then the task immediately continues and no context
switch takes place.

Task Activation via Events

The simplest form of signal is the event. The event simply signals
that some condition is present. The condition is whatever arbitrary
meaning you want to assign to the event. An event differs in nature
from a hardware interrupt in that it is capable of activating any
number of tasks simultaneously. Any number of tasks may wait for
an event to be set or clear and, when the condition arises, all will be

2. MultiTask! How to Design Your Application

2-68 SuperTask! User’s Guide

activated (returned to the run queue) simultaneously. The highest
priority of these tasks will run to completion, and then the next, and
so on.

Each of the many tasks waiting for the event could have a different
timeout period if desired.

An ISR often sets an event to signal a task to proceed. (Note: This is
done in the manner described in the previous section on interrupts.)

Task Activation via Group Events

When it is desired to have a task wait for a combination of signals, or
for any one of several signals, the group event is used. Like the event,
the group event can activate any number of tasks waiting for the same
conditions simultaneously.

A task waiting for a group event is like an ISR that only responds
when several specific interrupts are pending simultaneously.
Alternatively, it can act like an ISR that services any of several
interrupts. More complex combinations are possible also, such as
certain conditions present, some others absent, and one or more of yet
some others.

Task Activation through Mailboxes

The mailbox provides a means of both activating tasks and passing
them some data via a message or packet. Unlike the event and group
event, only one task waiting at a particular mailbox will be activated
when a message arrives. This will be the highest priority task waiting
at that mailbox, which is not necessarily the first one to wait.
Generally, however, only one task is made to wait at a particular
mailbox.

The data can be passed as just a pointer by using a message, or as a
copy of the original data with a packet.

2. MultiTask!How to Design Your Application

SuperTask! User’s Guide 2-69

2

The messages are queued in the mailbox, so several can be waiting.
In this case, they are queued in order of the priority of the message
that is specified when they are posted. Higher-priority messages will
move ahead of those already in the queue.

Messages may be sent from many sources to the same mailbox, where
they are queued for processing by a task.

Task Activation via Time

Time can be the activating signal for a task in a number of ways. All
time-related services in MultiTask! are derived from the system clock
interrupt. The smallest unit of time used is the clock tick, the period
of time between two successive clock interrupts, which is 1/CLOCKHZ
seconds.

Whenever a task is waiting for an event, group event, resource,
message or packet, a timeout period expressed in clock ticks can be
specified. After the specified timeout period passes, if the signal the
task was waiting for has not occurred, then the task is reactivated by a
time-derived signal with an indication that the timeout has expired.

A task can be made to wait only for a time signal by using dlytsk() to
delay a specified number of ticks, seconds, or minutes. It can be
made to wait until a certain system time (tick count) is reached with
the delay_until() function.

A task can be made to run at regular intervals with the period()
function. In this case, the task actually waits for an event, but the
event is being automatically incremented at regular intervals based on
the system clock.

A task can wait forever by using dlytsk(). The wait (whether finite or
infinite) can be canceled with waktsk(). The waktsk() can occur
before the dlytsk(). If this happens, then the next call to dlytsk() for
the task in question will be ignored. In essence, each task has a
wakeup bit associated with it. If this bit is set and dlytsk() is called,
the task will not enter the time delay queue, and the bit will be turned
off.

2. MultiTask! How to Design Your Application

2-70 SuperTask! User’s Guide

Task Activation through I/O Functions

The stream I/O functions signal the task requesting I/O when the I/O
is complete. A task may request to read data through a serial port or a
pipe using the stream I/O functions, and the task will become inactive
and wait when necessary for the data to arrive. The device driver
sends a wakeup signal to the task when its requested data has arrived.

A task processing I/O through the stream functions can usually be
coded very simply to read the data and process it. The task will be
active only when it has something to do without needing to use any
other signal mechanism.

2. MultiTask!How to Design Your Application

SuperTask! User’s Guide 2-71

2

System Initialization

All MultiTask! initialization is normally accomplished in the program
main() function. The minimum initialization consists of:

1. Calling MTinitialize(); to initialize MT!’s data structures and
variables.

2. Calling MTmeminit() to initialize the primary heap.
MTmeminit2(COLOR0) may be used as well. If runtskss() is being
used and no other functions make use of the heap, then this step
may be omitted.

3. Initializing the system clock interrupt with usrclk_init(); or a user-
supplied modification of this routine. (Newer ports have this step
divided into three separate pieces for finer control).

4. Executing any initialization required by your application (if
necessary).

5. Placing at least one task in the run queue by calling runtsk(); (or
runtskss()).

6. Calling MTstart().

NOTE: When developing a real embedded application, you
can omit the use of usrclk_term().

The order of the above commands is significant. The MTstart()
function call will start execution of the highest priority task.
MTstart() only returns when multitasking is terminated by some task
calling MTterminate().

Individual stack space is allocated for each task from COLOR0
memory by the runtsk() function call. This is why COLOR0 memory
must be initialized before runtsk() is called. COLOR0 memory is also
used by the system to allocate MTFILE structures and serial device
buffers when a path is opened with the mt_fopen() function.

2. MultiTask! How to Design Your Application

2-72 SuperTask! User’s Guide

Starting the Code

We suggest you copy the #include statements and main() function
from the coretest.c program and edit these to suit your application.
You should have run the coretest program on your target by this
point, if this is feasible. The coretest main() provides all the
necessary initialization commands.

Compiling and Linking with the
MultiTask! Library

The makefile supplied builds the MultiTask! library correctly for the
compile and model options you set with the various make variables in
the file. Any time you change the configuration limits with either the
configuration program or by editing mtcfg.h or depends.h directly,
you will need to rebuild the MT! library.

The library naming conventions are:

MultiTask! library: Mt n_m.lib

where n is the value of the STCFG configuration variable set
in the makefile

and m is the value of the MODEL configuration variable set in
the makefile (the MODEL variable does not exist on some
platforms, for which a NULL value is used instead).

Some compilers may use a library extension other than .lib, such as .a
(for archive).

Refer to the makefile for examples of building MultiTask! programs.
The coretest program is an example of a program using all MT!
functions except the stream I/O. The siotest program is an example
of a program including stream I/O. The only difference in linking
here is the inclusion of the object file containing the properly
configured device table. The device table contains an entry with the
name of each device it is possible to open with mt_fopen().

2. MultiTask!How to Design Your Application

SuperTask! User’s Guide 2-73

2

Configuring MultiTask!

The executable program stconfig.exe simplifies setting configuration
parameters. This is a simple program to run under DOS in the
directory where you have your SuperTask! source files. The source
for the configuration program is also provided. If you are running on
a platform other than DOS (e.g., UNIX), you may be able to
recompile stconfig.c to produce an executable to run on your system.

Using the Configuration Program

To run the program, make your development source directory your
current directory, and then type:

stconfig

The program reads the depends.h and mtcfg.h files and others if
instructed. These files contain instructions to stconfig encoded in
comments in the files. The necessary configuration parameters are
displayed, along with their current setting in [square braces]. After
each such display, press <Return> to keep the value shown, or enter a
new numeric value and press <Return>.

As the *.h files are processed, an equivalent include file for assembly
programs is produced, so that there are no longer any parameters that
need to be set in two places.

It is also possible to run stconfig and have it produce the assembly
output file only, without prompting for changes, by using the syntax:

stconfig -a

There are some parameters in the *.h files that stconfig will not show,
as these are rarely modified. If you need to change one of these, you
must do it manually, after which you should run stconfig -a to
regenerate the assembly include file. Comments in the configuration

2. MultiTask! How to Design Your Application

2-74 SuperTask! User’s Guide

files depends.h and mtcfg.h will give additional detail on specific
parameters.

Using the -d option will reset the configuration to the default settings
coded in the file. Example:

stconfig -d

When stconfig is run, it starts by renaming the file depends.h to
depends.bak. It then prompts for configuration changes and makes a
new depends.h file containing the new configuration settings. It
proceeds to mtcfg.h, first renaming it to mtcfg.bak, and then
constructing a new version of the file. As it does this, it generates an
assembler include file containing the equivalent configuration
definitions for use in the MT! assembly files. The name of the
assembler include file varies by platform.

CAUTION : If you interrupt the operation of stconfig by pressing
<Ctrl/Break> or otherwise terminate the program
prematurely, it will leave the depends.h or mtcfg.h
file incomplete. In this case you must copy the *.bak
files over the “.h” files to restore them before you
compile or run stconfig again.

Configuration Parameters

Parameters in mtcfg.h

The user configures MT! for a particular application by setting system
parameters in the user configuration file, mtcfg.h. The following
table summarizes the system parameters that may be configured for
specific applications. These parameters define system table sizes,
which in turn impose numerical limits on the system services
involved. The parameters are described in detail following the table.

2. MultiTask!Configuring MultiTask!

SuperTask! User’s Guide 2-75

2

Table 2-1: Parameters in mtcfg.h

Parameter Description Minimum

NUMTSK Number of tasks 255

NUMEVT Number of events max. unsigned

NUMPER Number of periodic events < = NUMEVT

NUMGEVT Number of group events max. unsigned

NUMRES Number of resources max. unsigned

NUMMBX Number of mailboxes 32767

NUMMSG Total active messages limit max. unsigned

MBXLIMIT Maximum messages per mailbox 65535

NUMCOLORS Number of variable memory heaps 3

NUMPOOLS Number of fixed memory pools max. unsigned

NUMSTREAMS Number of open streams allowed max. unsigned

MTENVSIZE Maximum entries in environment max. unsigned

INC_KLLTSK If zero, excludes use of kllltsk() 0 or 1

INC_PROFILING If zero, excludes use of profiling 0 or 1

*max. unsigned means the value of the largest number that can be represented by an
unsigned int with the compiler in use. Memory layouts and limits may be exceeded
by very large values.

2. MultiTask! Configuring MultiTask!

2-76 SuperTask! User’s Guide

NUMTSK specifies the maximum number of tasks that MT! will handle
at any given time. Tasks are generally referenced by task table
slot number. A task TCB structure is preallocated in RAM for
each task. The slot number is a unique number (1..255) that is
assigned by the function runtsk().

NUMEVT specifies the maximum number of user-defined events MT!
will handle. Events are referenced by event numbers that
range from 0 to NUMEVT-1. For example, if NUMEVT equals 5,
the events would be referenced as 0 to 4. Each event takes one
byte of RAM that indicates whether an event is set or clear,
plus the size of two TCB pointers for the set and clear queue
heads.

If events are not required by your application, the functions
setevt(), clrevt(), chkevt(), wteset(), wteclr(), and the table
event_tab may be deleted from MT! by setting NUMEVT= 0.
For more information on the functions setevt(), clrevt(),
chkevt(), wteset(), and wteclr(), refer to the MultiTask! Library
Reference chapter.

NUMGEVT specifies the maximum number of user-defined group
events handled by the system. Group events are referenced by
group event numbers that range from 0 to NUMGEVT-1. For
example, if NUMGEVT equals 5, the group events would be
referenced as 0 to 4. Each group event takes one word of
RAM, the size of a TCB pointer, and three words per task.

NUMRES specifies the maximum number of user-defined resources
you will use. Each resource requires one byte of RAM plus
the size of a TCB pointer. Resource numbers are zero-based
and range from 0 to NUMRES-1.

If resources are not required by your application, the functions
reqres(), getres(), relres(), chkres(), and the table space may
be deleted from MT! by setting NUMRES = 0. For more
information on the functions reqres(), getres(), relres(), and
chkres(), refer to the Library MultiTask! Reference chapter of
this manual.

2. MultiTask!Configuring MultiTask!

SuperTask! User’s Guide 2-77

2

NUMMBX specifies the number of user-defined mailboxes. Each
mailbox requires enough RAM for an MBX_DEF structure (6 to
12 bytes). Mailboxes are referenced by mailbox numbers that
range from 0 to NUMMBX-1.

If mailboxes are not required by your application, the mailbox
RAM can be eliminated by setting NUMMBX = 0.

NUMMSG specifies the maximum number of active messages that will
be handled by the system. This is the maximum number of
messages that can be sent that have not yet been received.
Internally, a message header is allocated for each active
message to link it into the mailbox. This is done
automatically by the putmsg() and sndmsg() functions. The
header is freed automatically when the message is received.

MBXLIMIT specifies the maximum number of messages that can be
sent to any one mailbox. MBXLIMIT is usually set to
NUMMSG/NUMMBX, which prevents all the message headers
from being consumed by a task sending messages to a mailbox
from which they are not being received.

NUMCOLORS specifies the maximum number of variable-size
allocation memory pools that can be used by reqmem() and
relmem(). NUMCOLORS is normally required to have a value
between 1 and 3. If runtskss() is used, then NUMCOLORS may
be 0.

NUMPOOLS specifies the maximum number of fixed-size memory
pools that you will be using. The pool numbers range from 0
to NUMPOOLS-1.

NUMSTREAMS is the number of I/O streams that can be opened at one
time. A stream is opened each time mt_fopen() is called.

MTENVSIZE is the maximum number of environment variables that
can be entered in the environment table accessed by
get_mtenv() and put_mtenv().

2. MultiTask! Configuring MultiTask!

2-78 SuperTask! User’s Guide

INC_KLLTSK normally has a non-zero value (nominally 1). If set to
zero, it excludes the internal use of the klltsk() function. In
this case, care must be taken to ensure that klltsk() and
MTterminate() are never called and tasks do not terminate.

INC_PROFILING normally is defaulted to zero. If set to one, then
task profiling will be enabled.

Memory requirements can be displayed by using the mtbench test
program.

Parameters in depends.h

Table 2-2: Parameters in depends.h

Parameter Description Maximum

NUMTCK Number of clock ticks/time slice 255

CLOCKHZ Clock interrupt frequency in hertz max. unsigned

MAX_CMD_CNT Maximum number of delay queue
commands

processor dependent

*max. unsigned means the value of the largest number that can be represented by an
unsigned int with the compiler in use.

NUMTCK specifies the number of clock interrupts the system
processes before rescheduling tasks. This number depends on
the application and the frequency of the clock interrupt. For
example, if a clock interrupt occurs every 5 milliseconds and
NUMTCK is set to 4, then tasks are rescheduled every 20
milliseconds. This means the “time-slice” each task runs will
be 20 milliseconds. To deactivate time-slicing, read the
description of STCFG found in the makefile.

2. MultiTask!Configuring MultiTask!

SuperTask! User’s Guide 2-79

2

CLOCKHZ specifies the number of clock interrupts that occur each
second. This number provides the system with the basis for
maintaining a clock. In the clock interrupt example above,
CLOCKHZ would be set to 200 (200 x 5 milliseconds = 1,000
milliseconds = 1 sec.). In most cases, the clock interrupt code
provided will automatically reprogram the interrupt rate to
match this definition. Please check the clock interrupt code
for your particular processor to verify its operation.

MAX_CMD_CNT specifies the number of entries that can reside in the
command queue at any given time. If the queue fills up then
entries will be overwritten and certain commands will not be
executed. If you require a large number (> 255) of queued
commands, please contact U S Software, and we will help you
determine the maximum safe value for your processor. Most
applications will not need such a large number of queued
commands.

MT! User-Configurable RAM Usage
To determine the RAM necessary for your application, we
recommend you run mtbench on your system. This will display the
amount of memory required for three applications of differing
complexity. It also indicates the amount of RAM size each MT!
structure requires, so you are able to compute the amount of RAM
needed for 5 tasks (for instance).

IMPORTANT NOTE for 80x86 TARGETS: In order to utilize
more than 64K of memory with the memory
management functions on an 80x86 (real mode) target,
the HUGE_MEMORY parameter in depends.h (which can
be set by stconfig) must be set to 1.

2. MultiTask! Configuring MultiTask!

2-80 SuperTask! User’s Guide

Parameters in the makefile

The following variables are normally set in the makefile and passed to
the compiler and assembler as command line options to define the
variable.

STCFG is a variable used to pass multiple configuration parameters to
the compiler and assembler. Each bit is mapped to another
variable as follows:

Bit 0 = TSL Time-slicing enabled
Bit 1 = INC_LOCAL_MEM Local heap tracking
Bit 2 = INC_PROFILING Include profiling

Example: If STCFG = 5, then TSL =1, INC_LOCAL_MEM = 0,
and INC_PROFILING = 1.

TSL is the Time-SLicing compilation flag. This flag is normally
set in the makefile, and its value is passed through CFLAGS
and AFLAGS to all C and assembly modules. When TSL = 1,
round-robin time-slicing among tasks of equal priority is
enabled. This implements the time-slicing behavior described
in the manual. If TSL = 0, then no round-robin time-slicing
will occur. In this case, if two (or more) tasks of equal
priority are in the run queue, the first one to run will run to
completion or until it is preempted by a higher-priority task.
After the value of TSL is changed, mtcore.c and mtsched.*
must be recompiled for the new setting to take effect. This is
a compile-time option and cannot be dynamically switched on
and off. When TSL = 0, task switching time will be reduced.

INC_LOCAL_MEM
is a compile-time option that specifies the behavior of the
local memory type. If compilation is with INC_LOCAL_MEM
set to zero, then the local memory attribute is ignored, and
task requested local memory is not automatically released
when the task dies. If compilation is with the
INC_LOCAL_MEM non-zero, then local memory behaves as
described in the manual.

2. MultiTask!Configuring MultiTask!

SuperTask! User’s Guide 2-81

2

TRG_ID should be set to match the evaluation board that you are
using. Please see your particular makefile for details.

Parameters in usrasign.h

When defining ID numbers for MultiTask! facilities, you should use
the file usrasign.h. By keeping ID numbers in one location, you will
more easily be able to avoid errors from duplicate ID numbers. In
addition, when MT! is integrated with other U S Software products
(e.g. USFiles), certain ID numbers may already be defined in
usrasign.h.

Parameters in userio.h

If you are using stream I/O or USFiles in your application, then the
device table in userio.h needs to be configured. The C source file
dev_tab.c #includes userio.h, and it is here that the actual device
table is generated. Our makefiles are constructed to generate different
versions of the object file containing the device table. Each version
contains a different combination of devices needed to run a specific
test program. Since different programs require different devices in
the device table, we do not include the device table in the SuperTask!
libraries. If we did, code would be linked from the libraries for file
managers and drivers for the unused devices, which would be
undesirable.

We derive the name of the object file containing a specific
configuration of the device table from the code letters shown in the
preceding table. For example, the object file dev_ps.obj contains the
PCIO and SIO (disk drives and serial devices). The object file
dev_s.obj contains only the serial port devices. The .obj extension
varies by platform; it may be .o or some other extension on the
platform you have selected.

The name of the object file containing the correct configuration of the
device table (e.g., dev_s.obj) is given explicitly during the link
operation.

2. MultiTask! Configuring MultiTask!

2-82 SuperTask! User’s Guide

Using mtdbg() for Debugging

The module mtdbg.c (along with iprintf .c and the module containing
functions getchr() and putchr()) can be linked to any MT! application
code to provide a debugging display.

By altering the getchr() and putchr() simple character I/O routines to
communicate with your target processor as appropriate (usually
through a serial port), you can use this module with any target.
Typically a dumb terminal would be connected to this target port to
provide the display and user control.

The mtdbg() function code in the target needs to be executed in some
manner to activate the debug display. There are several possible ways
of doing this:

• From some source debuggers (e.g., Borland’s Turbo Debug) you
can force a function to be called on the target system for purposes
of evaluating the return value from that function. In Borland’s
TD, this is done with the following menu sequence: DATA,
EVALUATE, mtdbg(), EVAL. Some simple ROM monitors allow
a call to be issued.

• Insert calls to mtdbg() in your code where needed, as you would
imbed printf() statements for debugging purposes.

• Set up a high-priority task to call mtdbg() when some operator
keystroke is entered, or periodically, etc.

• Set up some interrupt source, such as the abort button on the
target, to activate task as in the item above.

When the mtdbg() function is entered, it displays a table showing all
tasks that have been started in the system, showing what queue they
are in and their status (running, waiting , etc.). Mtdbg() will then
display the prompt MTDBG: and wait for you to enter a command.

Typing help will show other commands available. All pertinent
MultiTask! system information can be displayed. Pressing <Return>
or the Q command will return to the caller (i.e., debugger, etc.).
Interrupts are masked while the mtdbg() function is active, so nothing
else will run until you exit back to whatever called mtdbg.

2. MultiTask!Configuring MultiTask!

SuperTask! User’s Guide 2-83

2

The HELP command displays the following command summary:

MTDBG Commands:

<Return> Return to caller (debugger)

<n> Run for <n> steps, then break

BR{E|G|R} [-] <num> Break on event|group|resource
change

BRM [-] <num> Break when message arrives at mailbox

BRT [-] <num> Break when task runs

CE <evtnum> <value> Change event to value

CONFIG Display configuration data

DS Redisplay status screen

D{E|G|M|R|T} < num> Display
event|group|mailbox|resource|task

IGT [-] <slot> Ignore step display for Task

MEM|LMEM|GMEM Display free|local|global memory

PMEM [num] Display buffer pool <num>

NAMES Display task names table

NS No step; run until breakpoint

T Display time queue data

TK <slot> Kill task at slot

TP <slot> <priority> Change task priority

TR <pri> <name> <stk> Run task

Q Return to calling program

2. MultiTask! Using mtdbg() for Debugging

2-84 SuperTask! User’s Guide

The NAMES command displays a list of task names in the program.
In order for this command to work, the program must contain a table
of the task names, which is an array of structures of type
TASK_NAMES. This array must be named dbg_tname . See the
coretest.c program for an example of this array. When you add a new
task to your program, you must also add a name entry to this array;
otherwise, the task name will be unknown to mtdbg and the status
display will show the task name as “??? ”.

The commands DE, DG, DM, and DR display the event, group event,
mailbox, or resource requested. The command is followed by the
item number, and zero is assumed if no number is given.

Example

MTDBG:DE 1
Event[1] = 0
MTDBG:

The DT command displays detailed task information including
current stack usage. This command can be followed by either the task
slot number or the task name to indicate which task to display.

NOTE: The stack usage cannot be determined for the currently
running task. For all other tasks, the display will show
the current stack usage along with resources owned
and local memory blocks owned.

There are several commands to display how MT!-managed memory is
currently allocated. MEM displays a list of the currently free blocks
for each color of memory managed by the reqmem()/relmem()
functions. The blocks sizes are shown in decimal, and addresses are
shown in hexadecimal. LMEM shows a list of currently allocated
LOCAL memory blocks along with what task they are assigned to.
GMEM shows the currently allocated GLOBAL memory blocks.

PMEM followed by the pool number will display the status of the
selected buffer pool (memory managed by reqbuf()/relbuf(), etc.).

2. MultiTask!Using mtdbg() for Debugging

SuperTask! User’s Guide 2-85

2

The T command displays the current contents of the time queue. The
time queue contains entries for periodic events, delayed tasks, and
tasks with a timeout active. The number of clock ticks remaining is
shown along with other pertinent information.

The displayed output of mtdbg.c is made through a call to putchr() in
a single location in each of these files. You may modify where the
output is sent by changing the call in these locations. For instance, if
you are using the new console/keyboard driver (CON or VIEW
device) in the PC environment, you may want to open a VIEW
window for the debug output and send the display there by changing
the putchr() call to a mt_fputc() call. You may similarly want to
change the getchr() function to redirect input.

2. MultiTask! Using mtdbg() for Debugging

2-86 SuperTask! User’s Guide

2. MultiTask!

SuperTask! User’s Guide 3-1

3

3. MultiTask! Library
Reference

Chapter Contents

Functions by Category ... 3-5
System Control Functions .. 3-5
Task Control Functions ... 3-5
Event Functions and Variables .. 3-6
Group Event Functions ... 3-6
Memory (Heap) Functions and Variables 3-7
Memory (Buffer Pool) Functions and Variables 3-7
Message Functions and Variables ... 3-8
Resource Functions and Variables .. 3-8
Interrupt Functions ... 3-9
Timer Functions and Variables ... 3-9
Miscellaneous Functions .. 3-10
Critical Code Protection Functions and Variables 3-10
Status Reporting Variables .. 3-10
Stream I/O Functions .. 3-11
Hooks Available for Error Recovery 3-11
New Low-Level Functions ... 3-11

Include Files ... 3-13
Typedef Names ... 3-13

Atomic Typedef Names .. 3-13
Derived Typedef Names ... 3-14
System Structure Typedef Names... 3-14

Function Descriptions .. 3-15
acquire ... 3-15
block_preemption ... 3-16

3-2 SuperTask! User’s Guide

chkbuf.. 3-17
chkevt .. 3-18
chkgrp ... 3-19
chkmbx.. 3-20
chkmem... 3-21
chkmsg .. 3-23
chkres .. 3-24
clr_profile .. 3-25
clrevt.. 3-27
clrgrp ... 3-28
decevt .. 3-29
del_pool... 3-30
delay_until ... 3-31
dlytsk ... 3-32
flushmbx ... 3-35
freeres.. 3-36
get_mtenv .. 3-37
get_profile ... 3-38
get_sys_time.. 3-39
get_tcb ... 3-40
getbuf .. 3-41
getclk ... 3-42
getres ... 3-43
GrpWakeValue .. 3-44
incevt ... 3-45
init_mem_pool .. 3-46
ireqbuf_c ... 3-48
klltsk .. 3-50
MASK_INTS .. 3-52
MTinitialize ... 3-53
MTmeminit ... 3-54
MTmeminit2 ... 3-56

SuperTask! User’s Guide 3-3

3

MTqcmd_c .. 3-57
MTsched (assembly code only) .. 3-59
MTsched_c .. 3-60
MTstart .. 3-61
MTterminate ... 3-63
oneshot .. 3-65
period .. 3-67
pritsk ... 3-69
put_mtenv .. 3-70
putmsg... 3-72
putpkt .. 3-74
rcvmsg... 3-76
reanimate ... 3-78
relbuf ... 3-79
release ... 3-80
relmem .. 3-81
relpkt ... 3-82
relres .. 3-83
reqbuf .. 3-84
reqmem ... 3-85
reqres ... 3-87
runtsk... 3-88
runtskss.. 3-90
scdtsk... 3-92
setclk ... 3-93
setevt ... 3-94
setgrp ... 3-95
slttsk .. 3-96
sndmsg .. 3-97
sndpkt .. 3-99
suspend .. 3-101
unblock_preemption ... 3-103

3-4 SuperTask! User’s Guide

UNMASK_INTS .. 3-104
waitgrp .. 3-105
waktsk ... 3-107
wketsk (obsolete) .. 3-108
wketsk_nto (obsolete) ... 3-109
wteclr... 3-110
wteset .. 3-112
wteset_dec ... 3-114

SuperTask! User’s Guide 3-5

3

Functions by Category

NOTE: Functions marked with a * can be used from an ISR,
generally through the MTqcmd_c() function. The
exception is the ireqbuf() function, which can be
called directly.

System Control Functions

MTinitialize Initializes system.

Mtstart Starts multitasking.

MTterminate Terminates all tasks and shuts down.

Task Control Functions

runtsk* Initializes task and places in run queue.

klltsk* Terminates task, deallocates resources.

pritsk* Changes task priority.

dlytsk* Delays task a specified time. Units can be ticks,
seconds, minutes, hours, or forever.

delay_until Delays a task until specific system time. A time up
to 231 ticks into the future may be used.

scdtsk Reschedules (gives up time-slice).

suspend Suspends task (prevents from running).

reanimate Cancels task suspension.

waktsk* Wakes task from time delay queue

wketsk Wakes task from any queue (obsolete).

wketsk_nto Wakes task without timeout (obsolete).

3. MultiTask! Library Reference Functions by Category

3-6 SuperTask! User’s Guide

Event Functions and Variables

setevt* Sets event to one.

clrevt* Sets event to zero.

incevt* Adds one to event.

decevt Subtracts one from event.

chkevt Gets current event setting.

wteset Waits until event is non-zero.

wteclr Waits until event is zero.

wteset_dec Waits until event non-zero and subtracts 1.

period Starts/stops periodic event increment.

oneshot Increments event at specified time.

TIME_KEEPER_EVENT
ID number for event used for time keeping (see
usrasign.h).

Group Event Functions

setgrp* Sets bits in group event.

clrgrp* Clears bits in group event.

waitgrp Waits for specific group event setting.

chkgrp Gets current group event setting.

GrpWakeValue Reports wake up condition.

Functions by Category 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-7

3

Memory (Heap) Functions and Variables

MTmeminit Initializes variable memory COLOR0.

MTmeminit2 Initializes variable memory, any color.

reqmem Requests variable size memory allocation.

relmem* Releases memory obtained by reqmem.

chkmem Checks memory integrity.

COLOR0 Primary heap

COLOR1 Secondary heap

COLOR2 Last allowed heap

LOCAL Indicates local memory allocation

GLOBAL Indicates global memory allocation

Memory (Buffer Pool) Functions and Variables

init_mem_pool Initializes fixed-buffer pool.

del_pool Terminates fixed-buffer pool.

getbuf Waits for and gets fixed buffer.

reqbuf Task requests fixed buffer.

ireqbuf* ISR requests fixed buffer.

relbuf* Releases fixed buffer.

chkbuf Checks fixed-buffer availability.

TASK_POOL Specifies that a memory pool is accessed by tasks.

ISR_POOL Indicates that a memory pool is accessed by ISRs.

3. MultiTask! Library Reference Functions by Category

3-8 SuperTask! User’s Guide

Message Functions and Variables

sndmsg* Sends a message.

putmsg Sends a message; waits if mailbox full.

rcvmsg Receives message or packet with possible timeout.

chkmsg Checks if message or packet is in mailbox
(obsolete).

chkmbx Determines number of messages in mailbox.

flushmbx Discards all messages and packets in mailbox.

sndpkt Sends a packet.

putpkt Sends a packet; waits if mailbox full.

relpkt Releases packet memory.

MSGSUSPEND When ORed with priority, suspends the task sending
the message after the message is sent.

SUPERPRI When ORed with priority, forces a message to the
head of queue.

Resource Functions and Variables

getres Waits for and acquires a resource.

reqres Acquires a resource if available.

relres* Releases a resource.

chkres Finds resource owner.

freeres Unconditionally releases a resource.

PCFM_RESOURCE
Resource ID used to protect USFiles functions (see
usrasign.h).

Functions by Category 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-9

3

Interrupt Functions

Mtsched System scheduler entry from ISR (ASM).

MTsched_c System scheduler entry from ISR (C).

MTqcmd_c System function access from ISR.

Timer Functions and Variables

dlytsk* Delays a task for a specified time. Units can be
ticks, seconds, minutes, hours, or forever.

waktsk* Wakes a task. If task is not delayed yet, will cancel
next attempt to delay task.

delay_until Delays a task until a specific system time. A time
up to 231 ticks into the future may be used.

get_sys_time Gets system timer tick count.

oneshot Increments event at specified time.

period Starts/stops periodic event increment.

DLY_TICKS Specifies units for delay are ticks.

DLY_SECS Specifies units for delay are seconds.

DLY_MINS Specifies units for delay are minutes.

DLY_HOURS Specifies units for delay are hours.

CLOCKHZ Specifies the clock frequency.

3. MultiTask! Library Reference Functions by Category

3-10 SuperTask! User’s Guide

Miscellaneous Functions

clr_profile Clears task profile counts.

get_profile Returns task profile counts.

get_tcb Gets copy of task TCB.

getclk Gets time kept by timekeeper task.

setclk Sets time kept by timekeeper task.

put_mtenv Sets environment variable.

get_mtenv Gets environment variable.

Critical Code Protection Functions and Variables

MASK_INTS() Masks interrupts (not nestable).

UNMASK_INTS() Enables interrupts.

++mt_busy Locks the kernel (nestable).

MTqproc() Unlocks the kernel.

block_preemption() Prevents task switching (nestable).

unblock_preemption() Enables task switching.

Status Repor ting V ariables

TASK_ID cur_task
Variable with the current task ID number.

errno Variable containing error code for current task
(defined in rtos1.h).

STACK_FILL If defined in depends.h, will report amount of free
stack space when MTterminate() is called.

cmdqerrors Errors from queued system calls (defined in
mtdata.h).

Functions by Category 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-11

3

Stream I/O Functions

Please see the Stream I/O Library Reference chapter for a discussion
of Stream I/O functions.

Hooks Available for Error Recovery

CMDQUE_FULL_CHECK
Used in MTqcmd_c().

MTQPROC_TRAP Executed if illegal value of mt_busy
encountered in MTqproc() in MTinit.c .

MTSTACK_TRAP Executed if stack overflow detected in
MTqproc() in MTinit.c .

See also: The files depends.h and MTinit.c.

New Low-Level Functions

As we update MT!, we have been reworking our implementations of
console I/O, interrupt control, and ticker control. The following
functions replace the older functions usrclk_init(), usrclk_term(),
putchr(), and getchr(). Not all ports will have these. Please examine
the usrclk and getput files that are delivered for your CPU.

3. MultiTask! Library Reference Functions by Category

3-12 SuperTask! User’s Guide

Console I/O Functions
ussDebugInit Initializes debug device.

ussDebugTerm Terminates use of debug device.

ussDebugGetTst Reports if a character is available.

ussDebugGetChr Behaves like getchar().

ussDebugPutChr Behaves like putchar().

ussDebugPutStr Outputs a string without newline (\n)
character appended.

ussDebugPutBlk Behaves like fwrite().

Interrupt Control Functions
ussIntrptInit Initializes interrupts.

ussIntrptTerm Ends interrupt availability.

ussIntrptPut Installs a high-level interrupt handler
routine.

ussIntrptSet Installs a low-level interrupt service routine.
This function is only available for hardware
vector tables.

Ticker Control Functions
ussTickInit Initializes the ticker.

ussTickTerm Ends ticker operation.

ussTicks System ‘up time’ in ticks.

ussTimeMS System ‘up time’ in milliseconds.

uss_mSecToTicks Converts milliseconds to ticks.

ussTick10s Tick rate (in ticks per 10 seconds).

Functions by Category 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-13

3

Include Files

Programs using any of the SuperTask! library functions should
include the header file rtoshdrs.h, or copy the include statements
from this header into your program. The file rtoshdrs.h does not
exist on the distribution disks. When using MT! rtoshdrs.h is created
by copying rtos1.h.

The rtoshdrs.h file will provide all necessary function prototypes and
constant definitions as referenced in the library. Several of the
functions listed above are defined as macros. These macros can
typically be found in the mtlib.h or depends.h files.

The compilation “model” or other options that the library is compiled
with must be compatible with the way you compile your code. On
the 80x86, for instance, if your program is compiled in the LARGE
model, then the library must be compiled the same.

It will be useful to keep a printed copy of the header files on hand as a
reference.

Typedef Names

Atomic Typedef Names

The final five names are specified in the draft for ANSI C-99.

Name Description

byte unsigned char (8 bits)

int16 signed 16-bit integer

int32 signed 32-bit integer

uint unsigned integer of same size as “int ”

uint16 unsigned 16-bit integer

uint32 unsigned 32-bit integer

3. MultiTask! Library Reference Functions by Category

3-14 SuperTask! User’s Guide

Derived Typedef Names

Name Equivalent Description

TASK_ID byte Task slot number (ID)

tick_cnt_t uint32 System time tick count for delays, etc.

profile_t uint32 Task profile tick count

System Structure Typedef Names

Name Used for

ALLOCMEM_DEF Allocated memory block header

CMDARG Entry in command queue

ENV_DEF MT environment entry

MBX_DEF Mailbox structure

MEM_DEF Free memory block header

MEM_INFO Information returned by chkmem()

MEM_POOL Buffer memory control structure

MEMHEAD_DEF Color pool root structure

MSG_DEF Message structure linked into mailbox

MTtime_t Used by timekeeper task

PKT_HDR Message packet header

QARGS Command arguments union in cmdque

TASK_DEF TCB (Task Control Block structure)

TASK_NAMES Task name table used by mtdbg and protodbg

TIME_DEF Time queue entry

Functions by Category 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-15

3

Function Descriptions

See also: Error Codes appendix for a complete list of return values.

acquire

Sets the first zero bit in designated table and returns bit number.

int acquire(byte * table , int limit);

table pointer to the user-initialized table

limit number of significant bits in the table

The acquire function searches the first limit bits of memory
beginning at table and sets the first zero-bit found, returning its bit
number. The table should be initialized (set to all zeros) before it is
used. The table must be at least (limit +7)/8 bytes long. The bit-
number of the bit set by acquire() will be between 0 and limit -1. If
there were no more zero bits in the table, acquire will return an error
value.

See also: release

Return Value
{0..limit-1} bit acquired

E_TABFULL table full (all bits 1)

Example
byte mbx_aq_table[(NUMMBX+7)/8];
int i;

for(i=0; i<NUMMBX; i++)
release(mbx_aq_table, i); /* init table */

/* assign first available number */
i = acquire (mbx_aq_table, NUMMBX);

3. MultiTask! Library Reference Function Descriptions

3-16 SuperTask! User’s Guide

block_preemption

Prevents task switches from occurring.

void block_preemption(void);

The block_preemption() function allows protection of critical code
sections. Using block_preemption() still allows interrupts to occur,
but no task switch will be performed until unblock_preemption() is
called. This function is defined as a macro in the mtlib.h file, and
calls to it can be nested.

See also: unblock_preemption, MASK_INTS, UNMASK_INTS

Return Value
None

Example
/* Entering critical code section */
block_preemption (); /* Prevent task switches */
/* Execute critical code */
unblock_preemption(); /* Allow task switching */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-17

3

chkbuf

Checks number of available buffers.

int chkbuf(uint poolid);

poolid ID number of pool {0..NUMPOOLS-1}

Returns the number of memory buffers currently available in the
memory pool specified by poolid .

See also: del_pool, getbuf, init_mem_pool, relbuf, reqbuf

Return Value
count number of buffers available {0..n}

E_INVPID invalid poolid specified

Example
#define POOL0 0 /* PoolID number */

if(chkbuf (POOL0) <= 0)
{ /* no memory available or E_INVPID */ };

3. MultiTask! Library Reference Function Descriptions

3-18 SuperTask! User’s Guide

chkevt

Gets state of an event.

int chkevt(uint event);

event user-assigned event number (0..NUMEVT-1)

The system will return the status of event . If an invalid event is
specified, an error indication will be returned.

See also: clrevt, decevt, incevt, period, setevt, wteclr, wteset,
wtesetdec

Return Value
0 event clear

1..255 event set

E_INVEVT invalid event

Example
#define data_avl 50 /* assign event # */
int status; /* return status */

status = chkevt (data_avl); /* check data avail */

if (status > 0)
{
process_data(); /* process data */
clrevt(data_avl); /* no data avail */
}

else if (status == 0)
{} /* no data to process */

else
{} /* invalid event num */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-19

3

chkgrp

Gets state of group event.

int chkgrp(uint evtgrp , uint *result);

evtgrp user-assigned event number. (0..NUMGEVT)

result address of variable to hold group event value

Copies the current bit pattern of the group event specified by evtgrp
into the variable pointed to by * result . If an invalid evtgrp is
specified, an error indication is returned.

See also: clrgrp, setgrp, waitgrp, GrpWakeValue

Return Value
SUCCESS OK

E_INVGRP invalid evtgrp

Example
#define data_avl 50
int status;

/* event no. */

uint result;

status = chkgrp (data_avl,&result);
/*get event bit pattern*/

3. MultiTask! Library Reference Function Descriptions

3-20 SuperTask! User’s Guide

chkmbx

Returns count of messages in mailbox.

int chkmbx(uint mailbox);

mailbox user-assigned mailbox number (0..NUMMBX-1)

The number of messages currently in mailbox is returned. If an
invalid mailbox is specified, a negative error value is returned.

See also: flushmbx, putmsg, putpkt, rcvmsg, relpkt, sndmsg, sndpkt

Return Value
0..+n number of messages waiting in mailbox

E_INVMBX invalid mailbox specified

Example
void *msgptr; /* message address */
uint tskmbx; /* task mailbox */
uint status; /* return status */
tskslt = cur_task; /* get our slot */
tskmbx = tskslt; /* use slot as mbx */

while (chkmbx (tskmbx) == 0) scdtsk();
/* poll for a msg */

msgptr = rcvmsg(tskmbx,0); /* rcv msg */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-21

3

chkmem

Checks memory system integrity.

int chkmem(uint color , MEM_INFO *info);

color memory color of interest

info pointer to structure returned information

An integrity check of all memory blocks of the specified color is
performed. Information about free memory of the specified color is
returned by filling in the fields of the MEM_INFO structure at * info .
The MEM_INFO structure is defined in mtlib.h as:

typedef struct mem_info { /* information returned by
chkmem */

 uint fragments; /* number of fragments */

 mem_size_t total_free; /* total free bytes */

 mem_size_t largest; /* size of largest fragment in
bytes */

 uint allocated_blocks; /* number of allocated
blocks */

 uint sequence_no; /* if memory is corrupt,
sequence_no will indicate at
what point corruption was
detected by chkmem */

} MEM_INFO;

See also: Mtmeminit, Mtmeminit2, relmem, reqmem

3. MultiTask! Library Reference Function Descriptions

3-22 SuperTask! User’s Guide

Return Value
SUCCESS information returned in info struct

E_INVCOLOR invalid color specified

E_CORRUPT memory structure is corrupted

Example
MEM_INFO meminfo; /* memory info structure */

if(chkmem(COLOR0, &meminfo))
/* error */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-23

3

chkmsg (obsolete)

Checks for message in mailbox.

void *chkmsg(uint mailbox);

mailbox user-assigned mailbox number (0..NUMMBX-1)

The system will return the message pointer of the first message in
mailbox . If no message is present or an invalid mailbox is
specified, a NULL pointer is returned. Even though the message
pointer is returned, the message is not actually removed from the
mailbox. This should be done with rcvmsg().

See also: chkmbx, flushmbx, rcvmsg, sndmsg

NOTE: This function should be considered obsolete. The
chkmbx() function should be used instead

Return Value
NULL invalid mailbox or no messages available

!NULL address of first message

Example
void *msgptr; /* message address */
uint tskmbx; /* task mailbox */
uint status; /* return status */
tskslt = cur_task; /* get our slot */
tskmbx = tskslt; /* use slot as mbx */

while (chkmsg (tskmbx) == NULL) scdtsk();
/* poll for a msg */

3. MultiTask! Library Reference Function Descriptions

3-24 SuperTask! User’s Guide

chkres

Checks status of a resource.

int chkres(uint resrc);

resrc user-assigned resource number (0..NUMRES-1)

The system will return the status of resrc . If an invalid resource is
specified, an error indication will be returned. Zero is returned if the
resource is available. If the resource is owned, the TASK_ID of the
owning task is returned (which will be a positive number).

See also: getres, relres, reqres

Return Value
0 resource available

1..NUMTSK resource owner’s task slot

E_INVRES invalid resrc

Example
int owned = 0; /* own count */
int resrc = 0; /* resource number */

while (resrc != NUMRES)
{
if (chkres (resrc) ==cur_task) /* check owner */

{
owned += 1; /* count resources we own */
resrc += 1; /* next resource */
}

}

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-25

3

clr_profile

Clears task profile information.

int clr_profile(TASK_ID slot, int prof_type);

slot slot number of task entry to clear, “don’t care”
when prof _type = PROF_ALL
(1..NUMTSK, 0 = current task)

prof _type PROF_TASK clear only entry of slot
PROF_SYSTEM clear slot and system total
PROF_ALL clear all slots and system

Clears some or all of the profiling counts. One count is maintained
for each task defined by NUMTSK, plus one for the idle state when no
task is running (accessed as slot 0). One count is also maintained for
the system total, which is the sum of all tasks including slot 0. The
value passed for prof _type determines whether only a single task
count is cleared, a single task and the system total, or if all task counts
including the system total will be cleared.

See also: get_profile

Return Value
SUCCESS successful operation

E_INVPRF invalid slot or prof _type

3. MultiTask! Library Reference Function Descriptions

3-26 SuperTask! User’s Guide

Example
/* reset profile information for system total and current task */
if(clr_profile (cur_task, PROF_SYSTEM) != SUCCESS)

{} /* error handling */

/* reset profile for current task and not total */
if(clr_profile (cur_task, PROF_TASK) != SUCCESS)

{} /* error handling */

/* reset all slot profiles and system total */
if(clr_profile (0, PROF_ALL) != SUCCESS)

{} /* error handling */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-27

3

clrevt

Clears an event.

int clrevt(uint event);

event user-assigned event number (0..NUMEVT-1)

The system will clear event by setting its value to zero. If an invalid
event is specified, an error indication will be returned. Any task
waiting for the event to be cleared will be moved to the run queue
where it will preempt the running task if it has a higher priority than
that task.

See also: chkevt, decevt, incevt, setevt, wteclr, wteset, wtesetdec

Return Value
SUCCESS event cleared

E_INVEVT invalid event

Example
#define data_avl 50 /* assign event # */
int status; /* return status */

process_data(); /* process data */
status = clrevt (data_avl);

/* no data avail */

if (status != SUCCESS) /* check errors */
{} /* invalid event num */

3. MultiTask! Library Reference Function Descriptions

3-28 SuperTask! User’s Guide

clrgrp

Clears bits in group event.

int clrgrp(uint evtgrp , uint clr_mask);

evtgrp user-assigned group event number
(0..NUMGEVT-1)

clr _mask 16-bit mask of bits to clear

The bits that are set in clr _mask are cleared in the group event
specified by evtgrp . If an invalid value is passed for evtgrp , an
error indication is returned. Any tasks that are waiting for the
resulting group event bit pattern will be moved to the run queue
where they will preempt the running task if they have a higher
priority than that task.

See also: chkgrp, setgrp, waitgrp

Return Value
SUCCESS OK

E_INVGRP invalid evtgrp

Example
#define data_avl 50
int status;

/* event # */

process_data(); /* process data */

status = clrgrp (data_avl, 0xF120)
/* clear bits */

if(status != SUCCESS)
{} /* invalid event no. */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-29

3

decevt

Decrements an event.

int decevt(uint event);

event user-assigned event number (0..NUMEVT-1)

The system will subtract one from the value of event . If an invalid
event is specified, an error indication will be returned. Any task
waiting for the event to be cleared will be moved to the run queue if
decevt caused the event value to become zero. When a task is moved
to the run queue, it will preempt the running task if it has a higher
priority than that task. You should note that if you decrement an event
whose value is zero, it will have a new value of 255, at which point
the event is considered set.

See also: chkevt, clrevt, incevt, setevt, wteclr, wteset, wtesetdec

Return Value
SUCCESS event decremented

E_INVEVT invalid event

Example
#define data_avl 50 /* assign event # */
int status; /* return status */

while(TRUE){
status=wteset(data_avl,1000); /* wait for data */
if (status != SUCCESS) /* timed out ? */
 system_reset(); /* yes, must abort */
process_data(); /* process it */
(void) decevt (data_avl); /* signal finished */

} /* wait for more */
/* set data available */

3. MultiTask! Library Reference Function Descriptions

3-30 SuperTask! User’s Guide

del_pool

Deletes a memory pool.

int del_pool(uint poolid);

poolid ID number of pool {0..NUMPOOLS-1}

De-initializes the memory pool specified by poolid . Any later
request for memory from the pool will return an error.

See also: init_mem_pool, reqbuf, getbuf, relbuf, ireqbuf_c

Return Value
SUCCESS pool successfully deleted

E_INVPID invalid poolid specified

Example
#define POOL0 0 /* pool ID number */

(void) del_pool (POOL0); /* assume valid poolid */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-31

3

delay_until

Delays a task until a specified time.

int delay_until(TASK_ID slot ,tick_cnt_t time);

slot slot number of task to delay (1..NUMTSK, 0 =
current task)

time system time of wake up

The system will delay the task in slot if it is in the run queue,
otherwise an error indication will be returned. The delay will be until
the system tick count equals time . The value of time should be the
current time plus 1 to 231. Times that wrap around the largest tick
value are handled properly.

See also: get_sys_time, dlytsk, oneshot, period

Return Value
SUCCESS OK

E_INVSLT invalid task ID

E_LATE time is already less than or equal to current system
time

Example
TASK_ID slot; /* task slot */
int status; /* return status */
tick_cnt_t now;

now = get_sys_time(); /* get reference time */

{ /* do some process here that takes an unknown amount
 of time, but less than 40 ticks */ }

status = delay_until (slot, now+40);
/* delay 40 ticks from reference */

if (status != SUCCESS) /* check errors */
{} /* invalid parameter */

3. MultiTask! Library Reference Function Descriptions

3-32 SuperTask! User’s Guide

dlytsk

Delays a task.

int dlytsk(TASK_ID slot , byte dlytyp , uint dlytme);

slot slot number of task to delay (1..NUMTSK, 0 =
current task)

dlytyp delay type (DLY_TICKS, DLY_SECS, DLY_MINS, or
DLY_HOURS)

dlytme delay count (0 = infinite delay,
 1..maxvalue(uint) = timed delay)

The system will delay the task in slot if it is in the run queue,
otherwise an error indication will be returned. The delay (based on
dlytyp) will be in clock ticks, seconds, minutes, or hours, which are
respectively delay types DLY_TICKS, DLY_SECS, DLY_MINS and
DLY_HOURS. The delay will be for dlytme time periods (a number
ranging from 1 to the maximum value of type uint). A dlytme of 0
will give the maximum possible delay. All delay types are converted
internally into clock ticks, which for most processors are stored as an
unsigned long. This means the maximum possible delay is 232 clock
ticks. If the clock interrupts every 5ms, then this translates to a
maximum delay of approximately 248 days.

The accuracy of the delay for all delay types is from -1 to +0 clock
ticks; e.g., if a delay of 2 DLY_TICKS is specified, the actual delay
will be somewhere between 1 and 2 ticks.

Calling waktsk() will wake up a task that has been delayed. In
addition, if the task specified in a call to waktsk() is not presently
delayed, then the next call to dlytsk() for that task will be canceled.

See also: delay_until, period, waktsk

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-33

3

Return Value
SUCCESS OK

E_INVDLY invalid parameter

E_INVSLT invalid task slot

Example
TASK_ID slot; /* task slot */
int status; /* return status */

status = dlytsk (slot,DLY_MINS,5);
/* delay for 5 minutes */

if (status != SUCCESS) /* check errors */
{} /* invalid parameter */

3. MultiTask! Library Reference Function Descriptions

3-34 SuperTask! User’s Guide

find_pipe

This function can be found in the Stream I/O Library Reference chapter.

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-35

3

flushmbx

Discards all messages in a mailbox.

int flushmbx(uint mailbox);

mailbox mailbox number

Any messages (sndmsg, putmsg) or packets (sndpkt, putpkt) waiting
in mailbox are discarded. Any tasks waiting for a message or packet
from the mailbox and any tasks waiting for the mailbox to be not full
are awakened.

Return Value
SUCCESS no errors

E_INVMBX invalid mailbox number

Example
flushmbx (1);

flushmbx (2);

3. MultiTask! Library Reference Function Descriptions

3-36 SuperTask! User’s Guide

freeres

Frees a resource.

int freeres(uint resrc);

resrc user-assigned resource number (0..NUMRES-1)

The system will set the resource assignment count to zero and release
resource resrc to the highest priority task waiting for the resource.
The resource will be released even if the task releasing the resource
does not own it. This allows klltsk() to release a task’s resources
when it is killed. If an invalid resource is specified, an error
indication will be returned.

NOTE: This routine is not for normal use, but may be used for
error recovery.

See also: getres, reqres, relres

Return Value
SUCCESS resource released

E_INVRES invalid resource number

Example
#define printer 6

if (!getres(printer,0)){
/* use printer */
freeres (printer); /* free it */

}else
{ /* error handling */ }

NOTE: All resources owned by a task are freed automatically
by klltsk() when a task is killed, whether explicitly or
implicitly by coming to the function end.

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-37

3

get_mtenv

Returns an environment variable.

void *get_mtenv (char * member);

member pointer to the member name string to be searched
for

The pointer to the value for environment variable member is returned.
If member is not found in the environment list, a NULL pointer is
returned. The string member must match exactly an entry in the
environment; i.e., uppercase and lowercase characters are not treated
as equal.

See also: set_mtenv

Return Value
NULL no match for member found in environment

non-NULL pointer value stored as argument for member

Example
char *cp;
int *ip;

cp = get_mtenv (“Motor_task_status”);
if(!cp)
 { /* some error */ }
ip = get_mtenv(“Motor_task_ID”);
if(!ip)
 /* error handling */

3. MultiTask! Library Reference Function Descriptions

3-38 SuperTask! User’s Guide

get_profile

Gets profiling information.

profile_t get_profile(int slot , prof_type * profile);

slot slot number of task profile to copy or PROF_ALL
for all, or PROF_SYSTEM for system total only

profile address of array to copy data to
slot = 0..NUMTSK : array size = 1
slot = PROF_SYSTEM : array size = 0
slot = PROF_ALL : array size = NUMTSK+1

Returns the total system clock tick count since system startup or the
last time the count was reset by clr_profile(). If the value of slot is
PROF_SYSTEM, nothing is transferred to *profile . If the value of
slot is PROF_ALL, the entire profile array (NUMTSK+1 elements) is
copied to *profile ; otherwise only the single entry for the task at
slot is copied.

See also: clr_profile

Return Value
E_INVSLT invalid slot number

0.. n system total clock ticks

Example
profile_t total, task_data[NUMTSK+1], task1_prof;
total = get_profile(PROF_ALL, &task_data[0]);

/*get all data */

if(total == (profile_t)-1)
{} /* invalid slot error */

total = get_profile (PROF_SYSTEM, NULL);
/* get system total only */

/* get profile of slot1 task & system total: */
total = get_profile (1, &task1_prof); y

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-39

3

get_sys_time

Returns the current system time.

tick_cnt_t get_sys_time(void);

The current system time is returned. The system time is typically
maintained as a long (32-bit) integer count that is incremented at each
clock interrupt.

See also: dlytsk, delay_until, oneshot

Return Value
0..0xffffffff current tick time

Example
tick_cnt_t now;

now = get_sys_time (); /* get reference time */

3. MultiTask! Library Reference Function Descriptions

3-40 SuperTask! User’s Guide

get_tcb

Gets a copy of Task Control Block.

int get_tcb(TASK_ID slot , TASK_DEF * task_status);

slot slot number of task (1..NUMTSK, 0 = current task)

task _status pointer to structure of type TASK_DEF to be filled
with a copy of the TCB for the task at the slot
requested.

Copies the contents of the task TCB structure for the task in slot to
the structure pointed to by task _status . The structure definition
for TASK_DEF can be found in the include file mtlib.h . This
structure contains all status information about any task known to
MT!, including what queue it currently resides in and its priority. The
queue will indicate if a task is running or waiting for an event,
resource, or other stimulus.

Return Value
SUCCESS OK (task’s TCB is copied to *task _status)

E_INVSLT invalid slot number

Example
TASK_DEF guard_status;

if(get_tcb (slttsk(guard_task), &guard_status))
error_exit();

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-41

3

getbuf

Gets a memory buffer.

void * getbuf(uint poolid , uint timeout);

poolid ID number of pool {0..NUMPOOLS-1}

timeout timeout period in clock ticks {0 = none}

Returns a pointer to a memory block from the memory pool specified
by poolid . If the specified pool does not have a buffer available, the
calling task will wait until one becomes available or until the
specified timeout has elapsed. This call should only be used by
“task” code and should never be made from an ISR.

See also: reqbuf, relbuf, init_mem_pool, del_pool

Return Value
pointer pointer to memory buffer

NULL no buffer available, or E_INVPID | E_INVPT |
E_TIMED_OUT

Example
#define POOL0 0 /* PoolID number */
char *buffer; /* pointer to buffer */

buffer = (char *) getbuf (POOL0, 50);
if(buffer == NULL)

{ /* error handling */ };

3. MultiTask! Library Reference Function Descriptions

3-42 SuperTask! User’s Guide

getclk

Gets the time of day maintained by the time_keeper() task.

void getclk(MTtime_t *time);

time pointer to structure to receive the time

The time of day maintained by the time_keeper() task is copied into
the structure pointed to by time .

NOTE: The time_keeper() task must have been started for the
time of day clock to keep time.

See also: setclk

Return Value
time->hour set to system hour 0..23

time->minute set to system minute 0..59

time->second set to system second 0..59

Example
MTtime_t clock_time; /* time structure */

getclk (&clock_time); /* get time */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-43

3

getres

Waits for and gets a resource.

int getres(uint resrc , uint timeout);

resrc user-assigned resource number {0..NUMRES-1}

timeout timeout delay in ticks, 0 = infinite

The system will check the status of resource resrc . If the resource
is available, it will be assigned to the calling task. If the resource is
unavailable, the calling task will be placed in a resource wait queue
until the resource becomes available to the task. If an invalid resource
is specified, an error indication will be returned. If a non-zero value
is given for timeout and the resource is not available within
timeout scheduling ticks, then the function returns an error.

Resouce nesting is permitted up to 255 levels.

See also: chkres, reqres, relres

Return Value
SUCCESS resource acquired

E_INVRES invalid resrc

E_TIMED_OUT timeout expired (resource not acquired)

Example
#define printer 6 /* assign resource # */
int status; /* return status */

/*get the printer, but wait no longer than 1000 ticks*/
status = getres (printer,1000);
if (status == 0) /* check printer avail */

{} /* print report now */

else
{} /* invalid resrc */

3. MultiTask! Library Reference Function Descriptions

3-44 SuperTask! User’s Guide

GrpWakeValue

Returns the group event pattern that signaled the task to wake up.

uint GrpWakeValue;

This function is defined as a macro in the file mtlib.h . It returns the
pattern of the group event that caused the task to wake up.

See also: setgrp, clrgrp, waitgrp, chkgrp

Return Value
Group event bit pattern that satisfied the waitgrp() function call

Example
waitgrp(id, 0, 0, 7); /* Wait for any of three bits */
if(GrpWakeValue & 1){

/* bit 0 caused wake up */
}
if(GrpWakeValue & 2){

/* bit 1 caused wake up */
}
if(GrpWakeValue & 4){

/* bit 2 caused wake up */
}

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-45

3

incevt

Increments an event.

int incevt(uint event);

event user-assigned event number (0..NUMEVT-1)

The system will add one to the value of event . If an invalid event
is specified, an error indication will be returned. Any task waiting for
the event to be set will be moved to the run queue if incevt caused
its value to be non-zero. When a task is moved to the run queue, it
will preempt the running task if it has a higher priority than that task.
You should note that if the event is repeatedly incremented with no
task decrementing it, that after a value of 255 the next incevt
operation will wrap the value back to zero, at which point the event is
considered “cleared.”

See also: chkevt, clrevt, decevt, wteclr, wteset, wtesetdec

Return Value
SUCCESS event incremented

E_INVEVT invalid event

Example
#define data_avl 50 /* assign event # */
int status; /* return status */

status = incevt(data_avl);
/* set data available */

if (status != SUCCESS) /* check errors */
{} /* invalid event num */

3. MultiTask! Library Reference Function Descriptions

3-46 SuperTask! User’s Guide

init_mem_pool

Initializes a memory buffer pool.

int init_mem_pool(uint poolid , Mtmem_t *base_ptr ,
 uint buf_size , uint16 buf_count ,
 uint16 pool_type);

poolid ID number of pool {0..NUMPOOLS-1}

*base _ptr base address of pool memory

buf _size size of each block (see Note below)

buf _count number of blocks in pool

pool _type {TASK_POOL or ISR_POOL}

Initializes the memory pool identified by poolid for use. The
memory beginning at base _ptr is divided into buf _count blocks
each of size buf _size . All blocks are linked together. The pool will
be for use either by a task(s) or by a single ISR (Interrupt Service
Routine) depending upon whether the value of pool _type is
TASK_POOL or ISR_POOL. A memory pool of type TASK_POOL can
be shared by any number of tasks. A memory pool of type
ISR_POOL should by used only by a single Interrupt Service Routine,
and cannot be accessed by task code.

See also: chkbuf, del_pool, getbuf, ireqbuf_c, reqbuf, relbuf

Return Value
SUCCESS pool initialized

E_INVPID invalid poolid

E_INVBSZ invalid buf _size {not multiple of
sizeof (void *)}

E_INVPT invalid pool _type

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-47

3

Example
void *pool0[4*10]; /* Let C compiler allocate memory */

if(init_mem_pool (0, &pool0[0], 4*sizeof(void*), 10, TASK_POOL))

{ /* error routine */ };

Defining the memory to be used by pool0 above as an array of
pointers puts the burden of assuring proper memory alignment upon
the C compiler and linker.

NOTE: The size of each buffer in a memory pool is required
to be a multiple of sizeof (void *). The memory
used for the pool should be allocated as above or in
some other manner to assure that the memory
alignment is proper for accessing a pointer in memory.
On 8-bit processors, no alignment is required, but 16-
and 32-bit processors usually require memory
alignment at least for efficiency.

3. MultiTask! Library Reference Function Descriptions

3-48 SuperTask! User’s Guide

ireqbuf_c

Requests a memory buffer from ISR.

void *ireqbuf_c(uint poolid);

poolid ID number of pool {0..NUMPOOLS-1}

Returns a pointer to a memory block from the memory pool specified
by poolid . This call should only be used by an Interrupt Service
Routine written in C, or the portion of the routine that is written in C.
(See ireqbuf in the appendices for requesting a block from assembly
code in an ISR.) For proper operation, the memory pool specified by
poolid must have only one ISR making ireqbuf_c (or ireqbuf) calls
from it. The block may be returned to the pool with the relbuf call
from either the ISR or from a task.

NOTE: Since this routine is for use by an ISR only, no error
checking is done. You generally must ensure that the
pool has a sufficient number of buffers available so the
ISR will never be denied one.

See also: chkbuf, del_pool, getbuf, init_mem_pool, relbuf, reqbuf

Return Value
pointer pointer to memory buffer

NULL no buffer available

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-49

3

Example
#define POOL0 0 /* PoolID number */
#define MBOX_A 1 /* mailbox for task communication */

char *buffer; /* pointer to buffer */

/* ISR entry */

buffer = (char *) ireqbuf_c (POOL0);

/* Fill buffer with data */
/* send message to task which will release the buffer */
MTqcmd_c(SNDMSG, MBOX_A, (MTmsg_t *)buffer, 100);

/* ISR exit */

3. MultiTask! Library Reference Function Descriptions

3-50 SuperTask! User’s Guide

klltsk

Kills a task.

int klltsk(TASK_ID slot)

slot task slot number (1..NUMTSK, 0 = current task)

The system will remove the task from the specified slot, and release
any resources and LOCAL memory (at least the stack space) owned by
the task. If an invalid system slot is specified, an error indication is
returned. If the task being killed is the current task (suicide), klltsk()
will not return. In this case, the next ready task is run instead.

Any resources owned by the task are released and any open streams
owned by the task are closed. Memory requested as LOCAL memory
by reqmem() is released, but memory obtained as GLOBAL memory
from reqmem() as well as any buffers obtained by reqbuf() or
getbuf() are not released.

WARNING: Do not use klltsk() on a task that was started with
runtskss().

See also: runtsk

Return Value
SUCCESS task killed

E_INVSLT invalid slot number specified

Example
uint slot; /* task slot */
int status; /* function status */
slot = 3; /* use slot 3 */
status = klltsk (slot); /* kill task in slot */

if (status != SUCCESS) /* check errors */
{} /* invalid slot number */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-51

3

NOTE: When a task reaches the end of its code (closing
function brace or “return”), it will automatically
execute a klltsk() of itself unless INC_KLLTSK was set
to zero in mtcfg.h, in which case the system will likely
crash.

3. MultiTask! Library Reference Function Descriptions

3-52 SuperTask! User’s Guide

MASK_INTS

Masks interrupts.

void MASK_INTS(void);

The MASK_INTS() macro is defined in the depends.h file. It will
allow you to prevent interrupts from occurring to protect critical code.
Calls to MASK_INTS() should not be nested.

See also: UNMASK_INTS, block_preemption, unblock_preemption

Return Value
None

Example
/* Entering critical code section */
MASK_INTS(); /* Mask interrupts */
/* Execute critical code */
UNMASK_INTS(); /* Unmask interrupts */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-53

3

MTinitialize

Initializes system global tables and variables.

void MTinitialize(void);

MTinitialize() is called in the program main() function to initialize
the MT! system tables and variables. This call is part of the normal
system startup sequence. Call MTinitialize() before usrclk_init().

See also: MTmeminit, MTmeminit2, MTstart

Example
See example for MTstart.

3. MultiTask! Library Reference Function Descriptions

3-54 SuperTask! User’s Guide

MTmeminit

Adds memory blocks to dynamic COLOR0 pool.

int MTmeminit(void *memory_ptr , mem_size_t size);

memory_ptr address of memory to add to pool

size number of bytes to add

The system will add size contiguous bytes of memory starting at
memory_ptr to the COLOR0 pool of free memory managed by
reqmem() and relmem(). MTmeminit() can accept multiple blocks of
memory, but they must be provided in either ascending or descending
order. On certain tool chains, you may be able to have the linker
and/or startup code pass the actual available memory into your code.
Otherwise, use an array of type long .

NOTE: MTmeminit() is implemented as a macro that calls
MTmeminit2 for COLOR0. On processors where
memory alignment can affect access efficiency, you
should ensure that memory_ptr is aligned on the
appropriate boundary (even, quad word, etc.) for
greatest efficiency.

See also: MTmeminit2

Return Value
SUCCESS memory added to dynamic pool

E_RELMEM corrupt memory block header (should never
happen)

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-55

3

Example
long free_memory[2048]; /* allocate aligned memory */

MTmeminit (free_memory, sizeof(free_memory));

/* absolute memory designated */
MTmeminit((MTmem_t)0xc000, 0x4000);

3. MultiTask! Library Reference Function Descriptions

3-56 SuperTask! User’s Guide

MTmeminit2

Adds memory blocks to a dynamic pool.

int MTmeminit2(void *memory_ptr , mem_size_t size,
 uint color);

memory_ptr address of memory to add to pool

size number of bytes to add

color pool to add block to {COLOR0, COLOR1, or
COLOR2}

The system will add size contiguous bytes of memory starting at
memory_ptr to the color pool of free memory managed by
reqmem() and relmem().

NOTE: On processors where memory alignment can affect
access efficiency, you should ensure that memory_ptr
is aligned on the appropriate boundary (even, quad
word, etc.) for greatest efficiency.

Return Value
SUCCESS memory added to dynamic pool

E_RELMEM corrupt memory block header (should never
happen)

Example
long free_memory[2048]; /* allocate aligned memory */

MTmeminit2 (free_memory, sizeof(free_memory), COLOR0);

/* absolute memory designated */
MTmeminit2((MTmem_t)0xc000, 0x4000, COLOR1);

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-57

3

MTqcmd_c

Queues a system call from an interrupt handler.

void MTqcmd_c (void (* qfunc)(QARGS *a), ...);

qfunc function label for function to queue

... arguments taken by the function qfunc

The command specified by qfunc is added to the system command
queue along with the arguments given by One of the following
predefined labels is used for qfunc :

Function Ar guments
CLREVT uint event

CLRGRP uint evtgrp , uint clr_mask

DECEVT uint event

DLYTSK TASK_ID slot , byte dlytyp , uint dlytme

FREERES uint resrc

INCEVT uint event

PRITSK TASK_ID slot , byte priority

REANIMATE TASK_ID slot

RELBUF uint poolid , void *bufptr

RELMEM void *memptr

RELRES uint resrc

RUNTSK uint priority , void (*tskptr)(void),
uint stksze , . . .

SCDTSK void

SETEVT uint event

SETGRP uint evtgrp , uint set_mask

SNDMSG uint mailbox , void *msgptr , uint
msgpri

3. MultiTask! Library Reference Function Descriptions

3-58 SuperTask! User’s Guide

Function Ar guments

SUSPEND TASK_ID slot

TIKTOK void

WAKTSK TASK_ID slot

The following three functions are available, but their use is not
recommended:

FLUSHMBX uint mailbox

KLLTSK TASK_ID slot

MTTERMINATE void

These labels have the obvious correspondence to the functions of the
same name (in lowercase). The arguments normally given for the
function being queued are supplied as the variable arguments to
MTqcmd_c(). MTqcmd_c() is meant to be called from an ISR;
although there is no harmful side effect from calling it directly, the
reverse is not true. This is the only valid way to call a system
function from an interrupt routine! The function is actually executed
after the ISR returns from the interrupt or enters MTsched or
MTsched_c(). Since the function is called from the command queue
and not directly, the ISR cannot get the return value (error status) of
the function so called. If the queued command returns an error status
when it is called, a bit corresponding to the function called will be set
in a long status word, cmdqerrors , which can be tested for
diagnostic purposes or by a watchdog task. The bit mask for each
function is defined as the same name used for qfunc with “_BIT ”
appended. The mask for SETEVT, for example, is SETEVT_BIT .

Example
void interrupt ISR(void)
{

mt_busy++; /* prepare for MTsched entry */
MTqcmd_c(SETEVT, 3); /* set event 3 */
MTsched_c();

}

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-59

3

MTsched (assembly code only)

Jumps entry point to scheduler from ISR.

Not a function; entry is by assembly-level jump.

ISRs must jump to the system label MTsched after processing an
interrupt. Usually this is the last instruction in the ISR.

The stack must be clean at the time of the jump; i.e., only the
processor state is saved by the processor interrupt acknowledged on
the stack, unless otherwise specified for the platform being used.
ISRs may, at their option, perform a normal return from an interrupt
sequence instead of this jump under certain specific conditions.

There is no reason to perform this jump from an ISR that has not used
the MTqcmd_c() function call unless nested interrupts are possible.
Its purpose is to provide the quickest possible execution of the
commands in the command queue.

The system variable mt_busy must be incremented once by the ISR
before jumping to MTsched for proper operation.

See also: MTsched_c, MTqcmd_c

3. MultiTask! Library Reference Function Descriptions

3-60 SuperTask! User’s Guide

MTsched_c

Scheduler entry from C-level ISR.

void MTsched_c(void);

Provides a scheduler entry from an ISR written in C. This call should
be the last call made from an ISR, and the system variable mt_busy
must be incremented by one before this call is made. This call does
not need to be made from an ISR that does not use the MTqcmd_c()
function except under some circumstances detailed in the section on
interrupts in the chapter on MultiTask! Internals.

The function placing this call must be an interrupt service routine in
which all processor registers are saved on entry and restored on exit
(after return from Mtsched_c()). If the compiler in use does not
allow for the generation of such code, then ISR entry and exit must be
from the assembly level.

Because of the way nested interrupts are detected on the 68xxx and
68HC16 processors, this function cannot be used on those platforms.
For these, an assembly entry and exit must be made.

See also: Mtsched, MTqcmd_c

Example
void interrupt ISR(void)
{

mt_busy++; /* prepare for MTsched entry */
MTqcmd_c(SETEVT, 3); /* set event 3 */
MTsched_c ();

}

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-61

3

MTstart

Starts multitasking operation.

void MTstart(void);

The function is called in the main() function to begin executing the
first task. Before this function is called, MTinitialize() and either
MTmeminit() or MTmeminit2() must be called at least once to define
the COLOR0 memory pool used by the system, and runtsk() must be
called to define at least one task. This call begins multitasking
operation by starting the highest priority task defined by a previous
call to runtsk(). If runtskss() is used instead of runtsk(), then the
MTmeminit() call can be omitted. The call to MTstart() will not
return until MTterminate() is called. In fact, most embedded designs
will never call MTterminate() and therefore will never return from
this call.

NOTE: The stack in use by the main() function is separate
from all task stacks, and is used only while the main()
function is executing. This stack is usually defined by
the C startup code or the linker command file.

See also: MTinitialize, MTmeminit, MTmeminit2, runtsk,
MTterminate

Example
#define MEMLOC 0x10000 /* heap start */
#define MEMSIZE 0x8000 /* heap size */
void fAR firsttask(void); /* task prototype */
int firstid; /* save ID of task here */
void main(void)
{

MTinitialize(); /* initialize system tables */
usrclk_init(); /* initialize timer interrupt */
more_init(); /* do additional user intializations*/

3. MultiTask! Library Reference Function Descriptions

3-62 SuperTask! User’s Guide

MTmeminit((MTmem_t)MEMLOC,MEMSIZE); /* init memory */
firstid = runtsk(100, firsttask, 1024); /* define task */
if(firstid < SUCCESS)

exit(1);

MTstart() ; /* we expect no return */
usrclk_term(); /* stop timer interrupt */

}

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-63

3

MTterminate

Stops multitasking and returns to main().

void MTterminate(void);

Kills all tasks defined to the system, and performs a return to the main
function to the point after the call to MTstart(). The stack is restored
to the original stack that was in use in the main() function. This call
must be made by a task or from an ISR via the
MTqcmd_c(MTTERMINATE) call. Most systems that are designed to
operate continuously will never use this call. It is used mainly for
systems that are run under another OS, such as an application
launched from DOS. In this case, making this call would shut down
your application in preparation for return from the main() function to
DOS (or other code that called main()).

See also: MTstart

Example
/* control task */
{

if(message == “exit”)
MTterminate();

}

3. MultiTask! Library Reference Function Descriptions

3-64 SuperTask! User’s Guide

mt_xxx() (Stream I/O functions)

Functions of the type mt_xxx() are stream I/O functions and can be found
in the Stream I/O Library Reference chapter. These include:

mt_clearerr mt_fclose mt_feof mt_ferror
mt_fflush mt_fgetc mt_fgetpos mt_fgets
mt_fopen mt_fprintf mt_fputc mt_fputs
mt_fread mt_fseek mt_fsetpos mt_ftell
mt_fwrite mt_mkdir mt_printf mt_remove
mt_rename mt_rmdir mt_sprintf mt_sscanf
mt_vsprintf

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-65

3

oneshot

Increments an event at a specified time.

int oneshot(uint event , tick_cnt_t time);

event event to increment (1..NUMPER)

time system time to wake up (get_systime() + 1 ..2G)

When the system time equals time , the event number specified by
event will be incremented. (This occurs only once, in contrast to the
period() function, which causes the event to increment repeatedly at a
regular interval.)

NOTE: The valid values of event are from 1 to NUMPER,
not NUMEVT.

If a second oneshot() function call is made to the same event before
the original time is reached, the previous time value is canceled
and replaced by the new value. It is possible to cancel the oneshot
event before the event is set by performing another oneshot() call
with the time value less than the current system time, such as
(get_sys_time()-1). In this case, an error code of E_LATE is returned,
but the time value of the original call is canceled and no new
oneshot time is set, thus clearing the oneshot.

See also: delay_until, get_sys_time, period

Return Value
SUCCESS OK

E_INVEVT invalid event number

E_LATE time is already less than or equal to the current
system time

3. MultiTask! Library Reference Function Descriptions

3-66 SuperTask! User’s Guide

Example
int status; /* return status */
tick_cnt_t now;

now = get_sys_time(); /* get reference time */

status = oneshot (1, now+40);
/* increment event 1 40 ticks from reference */

if (status != SUCCESS) /* check errors */
{} /* invalid parameter */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-67

3

period

Activates or deactivates a periodic event.

int period(uint event , uint period);

event event number to be periodically incremented
(1..NUMPER)

period number of clock ticks of the period

Activates or deactivates a periodic event. If period is non-zero, then
the periodic event will be activated. If period is zero, then the
periodic event will be deactivated. Each active periodic event will
be incremented each and every time the associated number of clock
ticks has elapsed. For example, if the period for event 1 is set to 10
clock ticks, event 1 will be incremented after every 10 clock
interrupts.

NOTE: The valid values of event are from 1 to NUMPER,
not NUMEVT.

This function is used in conjunction with wteset() and decevt(), or
wtestedec(), to implement periodic tasks.

See also: delay_until, dlytsk, oneshot

Return Value
SUCCESS period set

E_INVEVT invalid event number

3. MultiTask! Library Reference Function Descriptions

3-68 SuperTask! User’s Guide

Example
if (period (1,2) != SUCCESS)

/* inc event 1 after every 2 clock ticks */

{} /* error handling code */

/* This task is synchronized to periodic event #1 and
therefore is run every two clock ticks. */

void period_task (void)
{

 while (TRUE) {
(void)wtesetdec(1,0); /* wait for event 1 set */
{ /* etc. */ }

 }
}

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-69

3

pritsk

Changes priority of a task.

uint pritsk(TASK_ID slot , byte priority);

slot slot number of task to prioritize (1..NUMTSK, 0 =
current task)

priority new priority of the task (0..255)

The system will change the priority of the task identified by slot to
priority . If an invalid system slot is specified, an error indication
is returned.

Return Value
SUCCESS task prioritized

E_INVSLT invalid slot number specified

Example
int status; /* function status */

status = pritsk (cur_task, 200);
/* prioritize ourselves */

if (status != SUCCESS) /* check errors */
{} /* invalid slot number */

3. MultiTask! Library Reference Function Descriptions

3-70 SuperTask! User’s Guide

put_mtenv

Sets an environment variable.

int put_mtenv(char * member, void * value);

member pointer to the member name string to be added/
updated

value value to be returned by a later call to
get_mtenv(member)

The environment variable member is added to the environment. The
value returned by a later call of get_mtenv(member) will be value .
If the variable member previously existed in the environment, its
value will be reset to the new value passed in the call. If value is
NULL, member is removed from the environment.

NOTES: Only the pointer values of member and value are
stored in the environment table; the items pointed to
are not copied. Consequently, the items pointed to
must persist throughout the time that member will
reside in the environment table.
Environment table space is configured by the
MTENVSIZE parameter in mtcfg.h.

See also: get_mtenv

Return Value
SUCCESS member added/updated/deleted from environment

E_ENVFULL no more space in environment table

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-71

3

Example
static int Motor_ID;

if(put_mtenv (“Motor_task_status”,”Running”))
 { /* error handling */ }
if(put_mtenv (“Motor_task_ID”,&Motor_ID))

Motor_ID = cur_task;
 /* error handling */

3. MultiTask! Library Reference Function Descriptions

3-72 SuperTask! User’s Guide

putmsg

Sends a message to a mailbox and waits if mailbox is full.

int putmsg(uint mailbox , void *msgptr , uint msgpri ,
 uint timeout);

mailbox user-assigned mailbox number (0..NUMMBX-1)

msgptr points to a message

msgpri priority of the message (0..255), or SUPERPRI, or
(0..255)|MSGSUSPEND

timeout ticks to wait if no room in mailbox

The message pointer msgptr will be linked into mailbox number
mailbox at msgpri priority. If an invalid mailbox is specified, an
error indication will be returned. If the mailbox is full (contains
MBXLIMIT messages), the sending task will wait until the message
can be sent or timeout clock ticks elapse. If the value of msgpri is
SUPERPRI, the message will be forced to the front of the mailbox
even if a previous SUPERPRI message resides there. If (msgpri &
MSGSUSPEND) evaluates as true, then the calling task will be
suspended immediately after the message is sent.

See also: sndmsg, rcvmsg

Return Value
SUCCESS message sent

E_INVMBX invalid mailbox

E_NOROOM no more message headers available

E_MBXFULL MBXLIMIT messages reside in mailbox

E_TIMED_OUT mailbox still full after timeout

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-73

3

Example
int somtsk(); /* task function */
int tskmbx; /* task mailbox */
int status; /* return status */

tskslt = runtsk(somtsk,100,200);
/* run some task */

tskmbx =cur_task; /* use slot as mailbox */

status = putmsg (tskmbx,(MTmsg_t*) “message to
somtsk”,20,10);

/* snd msg */
if (status == E_TIMED_OUT) /* check errors */

{} /* error handling */

3. MultiTask! Library Reference Function Descriptions

3-74 SuperTask! User’s Guide

putpkt

Sends a message packet and waits if mailbox is full.

int putpkt(uint mailbox , void * msgptr , uint msgpri ,
 uint size , uint mempool, uint timeout);

mailbox mailbox number to send packet to

msgptr pointer to message to be sent

msgpri priority of message

size size of message in bytes

mempool memory pool to allocate packet buffer from

timeout timeout in ticks if mailbox full

The putpkt() function behaves the same as sndpkt() except that when
the mailbox is full, putpkt() will wait up to timeout clock ticks for
space to become available. If space is available within timeout
clock ticks, then the packet is sent. Otherwise an E_TIMED_OUT
error status is returned. A timeout of zero indicates an infinite
timeout. See sndpkt() for other details.

See also: sndpkt, rcvmsg, relpkt

Return Value
SUCCESS packet sent successfully

E_INVMBX invalid mailbox number

E_TIMED_OUT mailbox full and timeout expired

E_NOROOM no more message headers

E_NORAM could not allocate memory

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-75

3

Example
int status;
status = putpkt (1,”This is a packet”,100,17,COLOR0,20);
switch(status){

case SUCCESS:
 break;
case E_TIMED_OUT:
 /* etc. */

3. MultiTask! Library Reference Function Descriptions

3-76 SuperTask! User’s Guide

rcvmsg

Waits for and receives next message in mailbox.

void *rcvmsg(uint mailbox , uint timeout);

mailbox user-assigned mailbox number (0..NUMMBX-1)

timeout timeout delay in ticks

The task will receive a message from mailbox . If no message is
available at the mailbox, then the task will be placed in a wait-for-
message queue. The task remains in the queue until it becomes the
highest priority task waiting for a message and a message arrives. If
an invalid mailbox is specified, a NULL pointer will be returned.
The return value is the pointer to the message. If a non-zero value is
given for timeout and the message is not received within timeout
scheduling ticks, then a NULL value (0) is returned. If the value
PKTRCV is ORed with mailbox , rcvmsg() expects a packet (sent by
sndpkt() or putpkt()) from the mailbox rather than a message, and
will return an error if it finds an ordinary message instead.

NOTE: It is not possible to poll a mailbox to retrieve a
message.

See also: sndmsg, putmst, sndpkt, putpkt

Return Value
NULL invalid mailbox, or timeout occurred; errno

contains the error code

!NULL address of message, errno set to zero

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-77

3

Example
PKT_HDR *pkt; /* pointer if receiving packet */
char *msgadr; /* received message pointer */
uint tskmbx; /* task mailbox */

tskmbx = cur_task; /* use slot as mbx */
msgadr = (char *) rcvmsg (tskmbx,0);

if (msgadr == NULL){ /* check errors */
if(errno == E_MSGTYPE){ /* is packet, not message */
 pkt = rcvmsg (tskmbx|PKTRCV,0); /* get packet */
 /* etc. */
}

}else
{
if (*msgadr == “message to somtsk”)

{ /* chk message content */
/* process based on message */
}

3. MultiTask! Library Reference Function Descriptions

3-78 SuperTask! User’s Guide

reanimate

Reactivates a suspended task.

int reanimate(TASK_ID slot);

slot slot number of task to suspend (1..NUMTSK, 0 =
current task)

The task specified by slot will have its suspension flag removed. If
the task is in the suspend queue, it will be moved to the run queue. If
the task was in any other queue, it will remain there until its wait
condition is satisfied.

See also: suspend

Return Value
SUCCESS task reactivated

E_INVSLT invalid slot number specified

E_NOTSUS task was not suspended

Example
int motor_taskid;

motor_taskid = runtsk(200,motor_task,1024);

if(suspend(motor_taskid) < SUCCESS)
{ /* error process */ }

/* more processing here */

(void) reanimate (motor_taskid);

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-79

3

relbuf

Releases a memory buffer.

int relbuf(uint poolid , void *bufptr);

poolid ID number of pool {0..NUMPOOLS-1}

bufptr pointer to memory buffer being returned

Returns the memory buffer pointed to by bufptr to the memory pool
specified by poolid . The memory buffer must have been previously
extracted from the pool specified by poolid and the value of
bufptr must be exactly the pointer value that was returned by the
reqbuf(), getbuf(), ireqbuf(), or ireqbuf_c() function that allocated
the buffer. If either of these conditions are not met, the memory pool
will become corrupted.

See also: getbuf, reqbuf, ireqbuf_c

Return Value
SUCCESS buffer was successfully released

E_INVPID invalid poolid specified

Example
#define POOL0 0 /* PoolID number */
char *buffer; /* pointer to buffer */

if(relbuf (POOL0, (MTmem_t*)buffer) < SUCCESS)
{ /* error handling */ };

NOTE: If the buffer is released to the wrong pool, or the value
of the bufptr released is not one that was previously
extracted from the pool, this function will likely return
SUCCESS even though the memory pool has been
corrupted and will cause a problem later as it is used.

3. MultiTask! Library Reference Function Descriptions

3-80 SuperTask! User’s Guide

release

Clears a bit in specified table.

void release(byte * table , int bitno)

table pointer to the user initialized table

bitno bit number in the table to clear

The release() function clears bit number (7 - (bitno % 8)) in
memory location table [bitno /8]. The value of bitno should be
between zero and the number of bits in the table less one. No error
checking is done.

See also: acquire

Example
byte mbx_aq_table[(NUMMBX+7)/8];
int i;

for(i=0; i<NUMMBX; i++)
release (mbx_aq_table, i); /* init table */

/* assign first available number */
i = acquire(mbx_aq_table, NUMMBX);

/* use mailbox acquired */

release (mbx_aq_table, i);

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-81

3

relmem

Releases memory that was acquired by reqmem().

int relmem(void *memptr);

memptr address of memory being released

The system will return the memory specified by memptr to the free
memory pool recombining free memory as possible. The value of
memptr must be a value that was previously returned by a call to
reqmem().

See also: Mtmeminit2, reqmem

Return Value
SUCCESS released memory to free memory

E_CORRUPT corrupt memory block header

E_INVCOLOR corrupted memory block header

E_NULLPTR memptr is NULL

E_UNALLOC redundant release

Example
byte *memptr; /* memory pointer */
uint status; /* return status */

memptr = (byte *) reqmem(GLOBAL,(mem_size_t)1000);
/* request memory */

if (memptr != 0) /* utilize memory */

usemem(memptr); /* use memory */
status = relmem (memptr); /* release memory */
if (status != SUCCESS) /* check errors */
{} /* invalid release */

}

3. MultiTask! Library Reference Function Descriptions

3-82 SuperTask! User’s Guide

relpkt

Releases packet memory.

int relpkt(PKT_HDR *pkt);

pkt pointer to packet to release

The packet memory allocated by sndpkt() or putpkt() is released.
Normally this would be done by that task using the rcvmsg() function
to receive the packet after it is finished using the packet.

See also: sndpkt, putpkt

Return Value
SUCCESS no errors

E_INVPID invalid poolid

Example
PKT_HDR *pkt;
typedef struct ourpkt_s{

int count1;
int count2;
double data[16];
}OURPKT;

OURPKT *ourpkt;

pkt = rcvmsg(MBX,100); /* get next message */
if(!pkt){ /* error */
}

ourpkt = &pkt[1]; /* point to our structure in packet */
process(ourpkt); /* do some processing */
relpkt (pkt); /* release packet memory */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-83

3

relres

Releases a resource.

int relres(uint resrc);

resrc user-assigned resource number (0..NUMRES-1)

The system will release resource resrc to the highest priority task
waiting for the resource. If an invalid resource is specified or the
calling task is not the owner of the resource, an error indication will
be returned. The getres() and reqres() functions may be nested, in
which case relres() will only release the resource when the same
nesting level is reached; i.e., if a task calls getres() and then calls a
subroutine that calls getres() for the same resource, then the resource
will remain in the possession of the task until two calls to relres() for
that resources are made.

See also: chkres, getres, reqres

Return Value
SUCCESS resource released

E_INVRES invalid resrc

E_NOTOWNER resrc not owned by calling task

Example
#define printer 6

getres(printer,0); /* acquire resource */

{ /* use the resource */ }

relres (printer); /* release resource */

3. MultiTask! Library Reference Function Descriptions

3-84 SuperTask! User’s Guide

reqbuf

Requests a fixed-size memory buffer.

void *reqbuf(uint poolid);

poolid ID number of pool {0..NUMPOOLS-1}

Returns a pointer to a memory block from the memory pool specified
by poolid . This call should only be used by task code. To request a
memory block from an ISR, see ireqbuf_c() and ireqbuf().

See also: chkbuf, getbuf, ireqbuf_c, relbuf

Return Value
pointer pointer to memory buffer

NULL no buffer available, or E_INVPID | E_INVPT

Example
#define POOL0 0 /* PoolID number */
char *buffer; /* pointer to buffer */

buffer = (char *) reqbuf (POOL0);
if(buffer == NULL)

{ /* error handling */ };

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-85

3

reqmem

Requests a variable-sized memory block.

void *reqmem(int memory_type , mem_size_t reqsize);

reqsize size of requested memory in bytes

memory_type type of memory requested and its color
{ LOCAL = memory belongs to task
GLOBAL = memory available to all tasks}
 |
COLOR{ 0..2} = memory color

The system will search the free memory blocks, allocating and
returning a pointer to memory of a size designated by reqsize from
the first block that is large enough. If reqsize contiguous bytes are
not available, a NULL pointer will be returned. The memory_type
should be one of the values LOCAL or GLOBAL that are defined in
mtlib.h . If memory is to come from other than COLOR0, the color
label defined in mtlib.h is ORed with the memory_type to specify
this.

NOTE: The actual size of the memory block returned may be
rounded up to a minimum boundary size to avoid
memory fragmentation. You are assured that the size
of the block returned is at least reqsize bytes. The
block returned is preceded by a header linking the
memory block with other memory blocks, so avoid
writing to any area outside of the block you are
returned.

See also: Mtmeminit2, relmem

Return Value
NULL insufficient memory

address pointer to memory

3. MultiTask! Library Reference Function Descriptions

3-86 SuperTask! User’s Guide

Example
byte *memptr; /* memory pointer */
uint status; /* return status */

memptr = reqmem(LOCAL|COLOR2, (mem_size_t)512);
/* get 512 bytes */

if (memptr == NULL) /* for current task */
{} /* check errors */

/* 512 bytes not avail */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-87

3

reqres

Gets a resource if it is available.

int reqres(uint resrc);

resno user-assigned resource number
(0..NUMRES-1)

The system will check the status of resource resrc . If the resource
is available, the resource will be assigned to the task. If the resource
is unavailable, an error indication will be returned. If an invalid
resource is specified, an error indication will be returned.

See also: chkres, getres, relres

Return Value
SUCCESS resource acquired

1..NUMTSK resource owner’s task slot

E_INVRES invalid resrc

Example
#define printer 6 /* assign resource # */
int owner; /* owner of resource */

if(owner= reqres (printer)==SUCCESS)
/* check printer avail */

{} /* print report now */
else

{} /* display owner */

3. MultiTask! Library Reference Function Descriptions

3-88 SuperTask! User’s Guide

runtsk

Adds a new task to the run queue.

int runtsk (uint priority , void (* tskptr), uint stksze ,
 ...);

priority task priority (0..255)

tskptr address of the “task” function

stksze stack size for task

... if present, up to four arguments are passed to task

MT! will place the task pointed to by tskptr into a system slot at
the priority designated by priority , with a task stack of stksze
bytes and return the slot number. If no slot is available, an error
indication is returned. Zero is the lowest priority, 255 is the highest
priority. Up to four arguments may be passed to the task as the
variable arguments appearing after stksze . If the task takes
arguments, it will be necessary to cast tskptr as a function without
arguments to avoid compiler warnings (or errors for C++).

NOTE: Some ports have additional information passed with
the priority.

See also: klltsk, runtskss

Return Value
E_NOSLOT no slot available

E_NORAM no RAM available for task stack

1..NUMTSK task’s assigned slot number

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-89

3

Example
void task1(void); /* task function */
void task2(char *state, int count);
int slot1,slot2; /* task slot */

slot1 = runtsk (100,task1,1024); /* run the task */

if (slot < SUCCESS) /* check errors */
{ } /* no stack or no slot */

slot2 =
runtsk (120,(void(*)(void))task2,1500,”Active”,5);

/* run with task args */
if (slot < SUCCESS) /* check errors */

{ } /* no stack or no slot */

3. MultiTask! Library Reference Function Descriptions

3-90 SuperTask! User’s Guide

runtskss

Adds a new task with a static stack to the run queue.

int runtskss (uint priority , void (* tskptr),
uint stksze , void *stkbase, ...);

priority task priority (0..255)

tskptr address of the “task” function

stksze stack size for task

stkbase starting stack base

... if present, up to four arguments are passed to task

MT! will place the task pointed to by tskptr into a system slot at
the priority designated by priority , with a task stack starting at
stkbase with stksze bytes and return the slot number. If no slot
is available, an error indication is returned. Zero is the lowest
priority, 255 is the highest priority. Up to four arguments may be
passed to the task as the variable arguments appearing after stksze .
If the task takes arguments, it will be necessary to cast tskptr as a
function without arguments to avoid compiler warnings (or errors for
C++).

NOTES: Some ports have additional information passed with
the priority.
This function is not compatible with LOCAL memory
tracking.

See also: klltsk, runtsk

Return Value
E_NOSLOT no slot available

1..NUMTSK task’s assigned slot number

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-91

3

Example
#define TASK_STKSIZ 400

uint32 ssstack1[(TASK_STKSIZ+3)/4],
ssstack2[(TASK_STKSIZ+3)/4];

void task1(void); /* task function */
void task2(char *state, int count);
int slot1,slot2; /* task slot */

/* run the task */

slot1 = runtskss (100, task1, sizeof(ssstack1), ssstack1);

if (slot1 < SUCCESS) /* check errors */
{ } /* no slot */

/* run with task args */

slot2 = runtskss (120, (void(*)(void))task2,
sizeof(ssstack1), sstack2, ”Active”, 5);

if (slot2 < SUCCESS) /* check errors */
{ } /* no stack or no slot */

3. MultiTask! Library Reference Function Descriptions

3-92 SuperTask! User’s Guide

scdtsk

Reschedules tasks in run queue.

void scdtsk(void);

The system will schedule the next runnable task. This function allows
a task to relinquish the remainder of its time slice without using a
time delay, event wait, message wait, or a resource wait.

NOTE: Time-slicing is always only among tasks of equal
priority and may be switched off by a compile-time
option. The only situation when this function is of any
use is when there is at least one other task of the same
priority as the task making this call. The scdtsk()
function will never cause a lower priority task than the
caller to run, and any higher priority task would
already be running. To give other priority tasks an
opportunity to run, use dlytsk(0, DLY_TICKS, 1).

Return Value
SUCCESS OK

Example
#define warmup 2 /* define warmup event */

while (chkevt(warmup) == 0)
{
scdtsk (); /* let other tasks run */
}

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-93

3

setclk

Sets time of day clock.

int setclk(byte hour , byte minute , byte second);

hour hour of the day (0..23)

minute minute of the hour (0..59)

second second of the minute (0..59)

The time of day clock implemented by the time_keeper() task will be
set to the hour, minute, and second specified. If an invalid value is
specified, an error indication will be returned. A 24-hour clock is
used. The valid range for hours is 0 to 23. The valid range for
minutes or seconds is 0 to 59.

NOTE: The time_keeper() task must have been started for the
system clock to keep time.

Return Value
SUCCESS OK

E_INVTME invalid parameter

Example
int status; /* return status */

status = setclk (10,35,20);
/* set time 10:35:20 */

if (status != SUCCESS) /* check errors */
{} /* invalid parameter */

3. MultiTask! Library Reference Function Descriptions

3-94 SuperTask! User’s Guide

setevt

Sets an event.

int setevt(uint event);

event user-assigned event number (0..NUMEVT-1)

The system will set event by setting its value to one. If an invalid
event is specified, an error indication will be returned. Any task
waiting for the event to be set will be moved to the run queue where it
will preempt the running task if it has a higher priority than that task.

See also: clrevt, decevt, incevt

Return Value
SUCCESS event set

E_INVEVT invalid event

Example
#define data_avl 50 /* assign event # */
int status; /* return status */

status = setevt (data_avl);
/* set data available */

if (status != SUCCESS) /* check errors */
{} /* invalid event num */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-95

3

setgrp

Sets bits in a group event.

int setgrp(uint evtgrp , uint set_mask);

evtgrp user-assigned group event number
(0..NUMGEVT-1)

set _mask 16-bit mask of bits to set

The bits that are set in set _mask are set in the group event specified
by evtgrp . If an invalid value is passed for evtgrp , an error
indication is returned. Any tasks that are waiting for the resulting
group event bit pattern will be moved to the run queue where they
will preempt the running task if they have a higher priority.

See also: clrgrp, waitgrp

Return Value
SUCCESS OK

E_INVGRP invalid evtgrp

Example
#define data_avl 50
int status;

/* event # */

status = setgrp (data_avl, 0x2315);
/* set bits */

if(status != SUCCESS)
{} /* invalid event number */

3. MultiTask! Library Reference Function Descriptions

3-96 SuperTask! User’s Guide

slttsk

Returns the slot number (TASK_ID) of a task.

int slttsk(void (* tskptr)(void));

taskptr function pointer to task function

If tskptr is zero (NULLFP), the current task’s slot number is
returned. Otherwise the slot number of the first task slot whose
starting address equals tskptr is returned. If no slot is found with a
task starting address that matches tskptr , an error indication is
returned. The slttsk() function is mostly an historical remnant. The
slot number of a task is better obtained by storing the return value
from runtsk() when the task is started, or for the currently running
task using the value in the global variable cur _task .

Return Value
1..NUMTSK slot number of matching task slot

E_INVSLT no task slot found that matches tskptr

Example
void fndtsk(); /* task function */
int ourslot; /* task slot */
int fndslot; /* task slot */
ourslot = slttsk(0); /* find our slot */

fndslot = slttsk (fndtsk);
/* find fndtsk slot */

if (fndslot < 0) /* check errors */
{} /* invalid tskptr */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-97

3

sndmsg

Sends a message to a mailbox.

int sndmsg(uint mailbox , void * msgptr , uint msgpri);

mailbox user-assigned mailbox number (0..NUMMBX-1)

msgptr points to a message

msgpri priority of the message (0..255)), or SUPERPRI, or
(0..255)|MSGSUSPEND

The message pointer msgptr will be linked into mailbox at the
priority specified by msgpri . If an invalid mailbox is specified, or
the mailbox is full, or no more message headers are available, an error
indication will be returned. If the value of msgpri is SUPERPRI, the
message will be forced to the front of the mailbox even if a previous
SUPERPRI message resides there. If (msgpri & MSGSUSPEND)
evaluates as true, then the calling task will be suspended by the
suspend() function immediately after the message is sent.

See also: putmsg, rcvmsg

Return Value
SUCCESS message sent

E_INVMBX invalid mailbox

E_NOROOM no more message headers available

E_MBXFULL mailbox is full (configured limit reached)

3. MultiTask! Library Reference Function Descriptions

3-98 SuperTask! User’s Guide

Example
int somtsk(); /* task function */
int tskslt; /* task slot */
int tskmbx; /* task mailbox */
int status; /* return status */

tskslt = runtsk(somtsk,100,200); /* run some task */

tskmbx = tskslt; /* use slot as mailbox */

status = sndmsg(tskmbx,(MTmsg_t*) “message to somtsk”,20);
/* snd msg */

if (status != SUCCESS) /* check errors */
{} /* invalid mailbox num */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-99

3

sndpkt

Sends a message packet.

int sndpkt(uint mailbox , void * msgptr , uint msgpri ,
 uint size , uint mempool);

mailbox mailbox number to send packet to

msgptr pointer to message to be sent

msgpri priority of message

size size of message in bytes

mempool memory pool to allocate packet buffer from

A memory block is allocated from the source indicated by mempool,
and the message pointed to by msgptr of size bytes is copied to
the new memory block with a packet header prepended. The packet
(consisting of the packet header followed by a copy of the message) is
placed in mailbox at the priority msgpri . Packets use the same
mailboxes as messages, and are received by issuing a rcvmsg()
function call with the macro PKTRCV ORed to the mailbox .

The mempool can be one of the variable-size pool names: COLOR0,
COLOR1, or COLOR2, or it can be the buffer pool ID for a fixed-size
buffer pool. If the variable-size pool names are used, memory will be
allocated with a reqmem() function call. If a buffer pool ID is used, a
reqbuf() call will be used to allocate the memory. If you are using a
fixed-size buffer array, you must initialize it before using sndpkt()
with the init_mem_pool() function, and the size of the buffers must
be at least size +sizeof (PKT_HDR).

See also: putpkt, rcvmsg, relpkt

3. MultiTask! Library Reference Function Descriptions

3-100 SuperTask! User’s Guide

Return Value
SUCCESS packet sent successfully

E_INVMBX invalid mailbox number

E_MBXFULL mailbox message limit reached

E_NOROOM no more message headers

E_NORAM could not allocate memory

Example 1
if(sndpkt (1,”This is a packet”,100,17,COLOR0))

{ /* some error occurred */

Example 2
/* Using fixed size buffers for message packets: */
#define MBX 2
#define POOL0 0
#define MSGSIZE 20 /* message size we want */

/* add sizeof(PKT_HDR)*/
/* and round up to sizeof(void*) multiple */
#define BUFSIZE
((MSGSIZE+sizeof(PKT_HDR)+sizeof(void *)-1)&(~(sizeof(void *)-1)))

/* Let C compiler allocate aligned memory */
void *pool0[BUFSIZE*10/sizeof(void*)];

char *msg1[MSGSIZE];

if(init_mem_pool(POOL0, &pool0[0], BUFSIZE, 10, TASK_POOL))
{ /* error routine */ };

{ /* code to fill in msg1 with something useful */ }

if(sndpkt (MBX,msg1,200,MSGSIZE,POOL0))
{ /* error handling */ }

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-101

3

suspend

Suspends a task.

int suspend(TASK_ID slot);

slot slot number of task to suspend (1..NUMTSK, 0 =
current task)

The task specified by slot will be flagged as suspended. If the task
was in the run queue, it is moved to the suspend queue where it will
remain until reactivated by the reanimate() function. If the task was
waiting in some other queue (i.e., delayed, or waiting for and event or
message, etc.), it will stay in that queue until its delay expires, event
is set, etc. When the condition it was waiting for is met, it will move
to the suspend queue instead of the run queue. When you reanimate
such a task, it will receive its proper status from such a wait (i.e.,
“message received” or “timeout”).

See also: reanimate

Return Value
SUCCESS task suspended

E_INVSLT invalid slot number specified

Example
int motor_taskid;

motor_taskid = runtsk(200,motor_task,1024);

if(suspend (motor_taskid) < SUCCESS)
{ /* error process */ }

3. MultiTask! Library Reference Function Descriptions

3-102 SuperTask! User’s Guide

timed_xxx (Stream I/O functions)

Functions of the type timed_xxx() are Stream I/O functions and can be
found in the Stream I/O Library Reference chapter. These include:

timed_getc timed_read timed_readln

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-103

3

unblock_preemption

Enables task switching.

void unblock_preemption(void);

The unblock_preemption() function enables task switching to occur.
This should be used to counter the effects of a block_preemption()
call.

See also: block_preemption, MASK_INTS, UNMASK_INTS

Return Value
None

Example
/* Entering critical code section */
block_preemption(); /* Prevent task switches */
/* Execute critical code */
unblock_preemption (); /* Allow task switching */

3. MultiTask! Library Reference Function Descriptions

3-104 SuperTask! User’s Guide

UNMASK_INTS

Removes interrupt mask.

void UNMASK_INTS(void);

The UNMASK_INTS() macro is defined in the depends.h file. It
enables interrupts from occurring after a call to MASK_INTS() has
prevented them.

See also: MASK_INTS, block_preemption, unblock_preemption

Return Value
None

Example
/* Entering critical code section */
MASK_INTS(); /* Mask interrupts */
/* Execute critical code */
UNMASK_INTS(); /* Unmask interrupts */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-105

3

waitgrp

Waits for a group event.

int waitgrp(uint evtgrp , uint set_mask , uint clr_mask ,
 uint or_mask , uint timeout);

evtgrp user-assigned group event number
(0..NUMGEVT-1)

set _mask bit mask of bits to wait until set

clr _mask bit mask of bits to wait until clear

or _mask bit mask of bits to wait for any set

timeout timeout delay in scheduling ticks
0 = infinite delay (no timeout)

The calling task is put to sleep (deactivated) until either the specified
group event bit pattern matches, or the timeout delay period specified
by timeout expires. The group event bit pattern matches when all
of the bits set in set _mask are also set in the event variable and all of
the bits set in clr _mask are clear in the event variable, and any one
or more of the bits set in or _mask are set in the event variable. Any
bits that are not set in set _mask or clr _mask or or _mask are
ignored in the event variable. If waitgrp() returns SUCCESS, then the
value of the macro GrpWakeValue contains the group event value
that woke the task.

See also: chkgrp, clrgrp, setgrp

Return Value
SUCCESS specified group event has occurred

E_INVGRP invalid evtgrp

E_TIMED_OUT timeout has expired

3. MultiTask! Library Reference Function Descriptions

3-106 SuperTask! User’s Guide

Example
#define data_avl 50 /* event name */
int status;

status = waitgrp (data_avl, 0x0234, 0x0481, 0xf000, 1000);
if(status == SUCCESS){ /* event occurred */

switch(GrpWakeValue & 0xf000){
 case 0x8000:
 case 0x4000:
/* etc. */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-107

3

waktsk

Returns a delayed task to the run queue.

int waktsk(TASK_ID slot);

slot slot number of task to wake (1..NUMTSK)

The system will move the delayed task designated by slot from the
time delay queue back into the run queue. If an invalid slot is
specified or the task is in the undefined queue, an error indication will
be returned. The waktsk() function will immediately wake up a task
from the time delay queue, except one that has been suspended by the
suspend() function. If the task is not in the time delay queue when
waktsk() is called, then the next attempt to delay the task will be
canceled.

See also: delay_until, dly_tsk

Return Value
SUCCESS OK

E_INVSLT invalid slot

Example
TASK_ID slot; /* task slot */
int status; /* return status */
status = waktsk (slot); /* wake sleepy task */
if (status != SUCCESS) /* check errors */

{} /* inv slot or queue */

3. MultiTask! Library Reference Function Descriptions

3-108 SuperTask! User’s Guide

wketsk (obsolete)

Returns a delayed or waiting task to the run queue.

int wketsk(TASK_ID slot);

slot slot number of task to wake (1..NUMTSK)

The system will move the delayed task designated by slot from any
wait queue back into the run queue. If an invalid slot is specified or
the task is in the undefined queue, the run queue, or is suspended, an
error indication will be returned. The wketsk() function will
immediately wake up a task from any queue, except one that has been
suspended by the suspend() function. If the task was waiting for a
resource, message, or event, the status return value that task receives
will indicate that the timeout expired (i.e., E_TIMED_OUT).

NOTE: We recommend that you avoid this routine unless you
are very certain of its effects.

Return Value
SUCCESS OK

E_INVSLT invalid slot

Example
TASK_ID slot; /* task slot */
int status; /* return status */
status = wketsk (slot); /* wake sleepy task */
if (status != SUCCESS) /* check errors */

{} /* inv slot or queue */

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-109

3

wketsk_nto (obsolete)

Returns a delayed or waiting task to the run queue.

int wketsk_nto(TASK_ID slot);

slot slot number of task to wake (1..NUMTSK)

This call is identical to the wketsk() call, except the task that is
awakened will not return the (E_TIMED_OUT) status. (The _nto
stands for “no timeout.”)

The system will move the delayed task designated by slot from any
wait queue back into the run queue. If an invalid slot is specified or
the task is in the undefined queue, an error indication will be
returned. The wketsk() function will immediately wake up a task from
any queue, except one that has been suspended by the suspend()
function. The task status will not indicate a timeout. This is mainly
for use with tasks waiting in I/O queues, but may have other
applications.

NOTE: This is even more risky to use than wketsk(). Use with
extreme caution.

Return Value
SUCCESS OK

E_INVSLT invalid slot

Example
TASK_ID slot; /* task slot */
int status; /* return status */
status = wketsk_nto (slot); /* wake sleepy task */
if (status != SUCCESS) /* check errors */

{} /* inv slot or queue */

3. MultiTask! Library Reference Function Descriptions

3-110 SuperTask! User’s Guide

wteclr

Waits until event is clear.

int wteclr(uint event , uint timeout);

event user-assigned event number (0..NUMEVT-1)

timeout timeout delay in scheduling ticks

The calling task will wait until the value of event is zero or
timeout clock ticks have elapsed. If the value of event is set (i.e.,
non-zero), then the task will be placed in a queue to wait for the event
to be cleared. The task will continue when the event has been cleared
or decremented to a zero value. If the event value is zero when the
call is made, the call will immediately return SUCCESS (i.e., the task
does not wait). A timeout value of zero specifies no timeout. If an
invalid event is specified, an error indication will be returned. If
timeout is non-zero, wteclr() will return an error indication after
timeout scheduling ticks if the event was not cleared.

See also: wteset, wteset_dec

Return Value
SUCCESS event clear

E_INVEVT invalid event

E_TIMED_OUT timeout expired (event not clear)

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-111

3

Example
#define data_avl 50 /* assign event # */
int status; /* return status */

status = wteclr (data_avl, 500);
/* wait for event clear, but no
more than 500 ticks */

if (status != SUCCESS) /* check errors */
{} /* invalid event num */

else
{
gather_data(); /* gather more data */
setevt(data_avl); /* data avail */
}

3. MultiTask! Library Reference Function Descriptions

3-112 SuperTask! User’s Guide

wteset

Waits until event set.

int wteset(uint event , uint timeout);

event user-assigned event number (0..NUMEVT-1)

timeout timeout delay in scheduling ticks

The calling task will wait until the value of event is non-zero or
timeout clock ticks have elapsed. If the value of event is clear
(i.e., zero), then the task will be placed in a queue to wait for the
event to be set. The task will continue when the event has been set or
incremented to a non-zero value. If the event value is non-zero when
the call is made, the call will immediately return SUCCESS (i.e., the
task does not wait). A timeout value of zero specifies no timeout.
If an invalid event is specified, an error indication will be returned. If
timeout is non-zero, then wteset() will return an error indication
after timeout scheduling ticks if the event was not set.

See also: wteclr, wteset_dec

Return Value
SUCCESS event set

E_INVEVT invalid event

E_TIMED_OUT timeout expired (event not set)

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 3-113

3

Example
#define data_avl 50 /* assign event # */
int status; /* return status */

status = wteset (data_avl, 0);
/* wait on data avail */

if (status != SUCCESS)
{} /* check errors */

else
{ /* invalid event num */
process_data(); /* process data */
clrevt(data_avl); /* no data avail */
}

3. MultiTask! Library Reference Function Descriptions

3-114 SuperTask! User’s Guide

wteset_dec

Waits until event set and decrements it.

int wteset_dec(uint event , uint timeout);

event event number {0 .. NUMEVT-1}

timeout timeout clock ticks (0 = no timeout)

The calling task will wait until the value of event is non-zero or
timeout clock ticks have elapsed. If the event is set at the time of
the call, or becomes set before timeout clock ticks have elapsed,
then the function returns SUCCESS and decrements the event . A
timeout value of zero specifies no timeout. If an invalid event is
specified, an error indication will be returned. If timeout is non-
zero, wteset() will return an error indication after timeout
scheduling ticks if the event was not set.

This function eliminates the need to perform a separate decevt() call
to recycle the event, thus saving time; however, no check is made
when the event is decremented for tasks waiting for this condition.
You should, therefore not have any tasks calling wteclr() for any
event you are specifying in a wteset_dec() call.

See also: wteclr, wteset

Return Value
SUCCESS event set

E_INVEVT invalid event

E_TIMED_OUT timeout expired (event not set)

Example
for(;;){ /* repeat forever: */

wteset_dec (50, 0); /* wait for event 50 */
process_data(); /* process data */

}

Function Descriptions 3. MultiTask! Library Reference

SuperTask! User’s Guide 4-1

4

4. MultiTask! Internals

Chapter Contents
Overview .. 4-2
Interrupt Basics .. 4-3

Multilevel Interrupts – MT! Visibility .. 4-4
Interfacing to MultiTask! ... 4-5

Talking to MultiTask! Objects .. 4-5
Getting Something from MultiTask.. 4-6
Entry/Exit Adjustments .. 4-7

Figure 4-1: Simple interrupt situation ... 4-7
Figure 4-2: Interrupt with task switch ... 4-9

Nested Interrupt Issues .. 4-10
Figure 4-3: Nested interrupt routines .. 4-11
Figure 4-4: Possible interrupt problem 4-13

Avoiding Task Switching from Nested Interrupts 4-16
Interrupt Latency ... 4-17
Low-level Versus High-level Interrupt Routines 4-17
The Ticker ... 4-19
Dynamic Memory Routines – the Heap ... 4-21
The Scheduler ... 4-23

4-2 SuperTask! User’s Guide

Overview

This chapter will largely deal with handling various interrupt
situations with MultiTask!. Following the interrupt discussion are
sections describing more detailed internal issues that may prove
useful in debugging an application. These sections will also provide a
more complete understanding of MultiTask!’s operations.

4. MultiTask! InternalsOverview

SuperTask! User’s Guide 4-3

4

Interrupt Basics

Interrupts are a hardware engineer's idea of multitasking. On most
processors, these can be coupled to the RTOS (MultiTask!) to provide
communication from the hardware devices to the software tasks.

In a single-tasking system, interrupts are implemented as sub-routine
calls triggered by hardware status lines -- called Interrupt Request
Lines. When the processor sees such a line active, and an internal
Interrupt Enable Flag is TRUE, then the processor injects a
synthesized subroutine call into the instruction stream. The interrupt
routine is then run.

Since processors differ greatly, and looking at a few will provide a
basis for understanding the issues that MultiTask is faced with.

8080_isr:
DI ; not automatic
<work>
EI
RET

In the code above, the 8080 did not provide any way to read the
Interrupt Enable Flag. In addition, an interrupt entry did not disable
interrupts although it did guarantee that one instruction would be
executed before another interrupt occurred.

generic_isr:
; PC & flags are already saved, interrupts disabled
<work>
RetI ; special instruction

The flags registers, or a special 'systems' section thereof, contains the
Interrupt Enable Bit(s). There may also be a 'User Mode' bit, which
is also turned off when an interrupt or trap occurs.

4. MultiTask! Internals Interrupt Basics

4-4 SuperTask! User’s Guide

ColdFire_isr: ; supports 7 levels in hardware
; PC & flags & vector are pushed on stack
; interrupt mask level is set to the current level
<work>
RTE ; return from exception (interrupt or trap)

The 68K and ColdFire (and 68HC16) support 7 levels of interrupts.
Since this is hardware supported, MultiTask! requires special code to
detect when a nested situation occurs.

Multilevel Interrupts – MT! Visibility

Some applications require an interrupt with an extremely fast
response. On processors that support multiple levels of hardware, it is
possible to modify MultiTask!’s use of interrupt levels to avoid
interfering with this requirement. Basically, MT!’s view of interrupts
is based on the macros defined in depends.h. If the user has a
separate set, then changing MT!’s macros can isolate or split out some
interrupt levels.

For example, let’s say that a 68K/ColdFire system has a single level 6
interrupt. This interrupt does not interface with MT!, meaning that
MTqcmd_c() and MTsched are not used. We can then cheat on MT!
by changing UNMASK_INTS() to raise the interrupt level only to 5
instead of 7. This will still block any interrupt that may interface to
MT!, but it will allow the special interrupt to occur – even inside
MT!’s critical code sections!

Unfortunately, most RISC processors also have reduced interrupt
hardware.

4. MultiTask! InternalsInterrupt Basics

SuperTask! User’s Guide 4-5

4

Interfacing to MultiTask!

There are three parts to consider when hooking an interrupt to
MultiTask!. The first is how to send a MultiTask! task something -
event, message, wakeup, etc. The second is how to let an interrupt
routine get something from MultiTask!. The third is how the interrupt
entry and exit must be changed for MultiTask!.

Talking to MultiTask! Objects

Interrupt Service Routines (ISRs) may only call MultiTask! functions
indirectly through the Mtqcmd_c() function. Interrupt routines must
not call MultiTask! functions directly! Doing so will result in
crashes. The MTqcmd_c() function allows a subset of the MultiTask!
system calls to be triggered from an ISR. This triggering is
accomplished by placing a request for the desired system call into the
command queue. The requests are executed just before a task is
resumed - see below.

Requests are made through MTqcmd_c(id ,. . .). These system calls
are available:

SETEVT event #
CLREVT event #
INCEVT event #
DECEVT event #
SETGRP group #, bits
CLRGRP group #, bits
SNDMSG mailbox #, address, priority
WAKTSK task #
DLYTSK task #, unit, amount
SUSPEND task #
REANIMATE task #
PRITSK task #, priority
RUNTSK priority, address, stack size
KLLTSK task #

4. MultiTask! Internals Interfacing to MultiTask!

4-6 SuperTask! User’s Guide

RELRES resource #
RELBUF pool #, address
RELMEM address
SCDTSK
TIKTOK

(these next 3 calls are not recommended)

FREERES resource #
FLUSHMBX mailbox #
MTTERMINATE

(these next 3 calls are obsolete)

WKETSK task #
WKETSK_NTO task #
PULSEVT event #

Example:

MTqcmd_c(SETEVT,5);

Getting Something from MultiTask!

The only facility that an interrupt routine can use from MultiTask! is
ireqbuf(), which acquires a buffer from a buffer poll set aside for use
by interrupts.

4. MultiTask! InternalsInterfacing to MultiTask!

SuperTask! User’s Guide 4-7

4

Entry/Exit Adjustments

In most processors, interrupts are distinct and atomic. That is, once
an interrupt routine starts, it runs to completion with no other
interrupts able to interrupt it. Thus, there is no preemption among
interrupts. Those systems where either the hardware or software
allow nesting of interrupts require slightly different adjustments. The
figure below shows this simple situation, which most designers are
probably familiar with:

Return from Interrupt

Interrupt Occurs

Task_A

ISR_A

Prolog

User Work

Task_A
continues

Epilog

Figure 4-1: Simple interrupt situation

Some task (Task_A) is running, and the interrupt occurs and is
acknowledged, causing the processor to vector to ISR_A.

The ISR completes its processing and returns (usually with a special
interrupt return or exception return instruction).

The original task (Task_A) resumes where it was interrupted.

4. MultiTask! Internals Interfacing to MultiTask!

4-8 SuperTask! User’s Guide

For assembly language interrupt routines on a simple processor, you
can increment the variable mt_busy and replace the interrupt return
instruction with a jump to MTsched. MTsched will handle all the
MultiTask! issues. If you have an extended C compiler with the
__interrupt keyword, you can use C and add ++mt_busy ;
MTsched_c(); to the very end of your interrupt routine.

generic_isr:
; PC & flags are already saved, interrupts disabled
<work>
INC mt_busy
JMP MTsched ; to MultiTask

void __interrupt my_isr(void){
<work>
++mt_busy; MTsched_c();

}

Depending upon the processor involved, the processor registers are
either automatically saved when the interrupt occurs, or it will be the
responsibility of the ISR to do this and then restore them before
returning. In either case, the machine state will be saved upon entry
to the ISR and restored upon exit, which will cause Task_A to resume
with a machine state identical to when it was interrupted.

The next figure shows a slightly more complicated scenario. In this
case, instead of the ISR performing a return from interrupt, it queues
some operating system service that will result in a task preemption,
and then branches to the MultiTask! scheduler entry point
MTsched_c(). The scheduler then causes a task switch to occur and
resumes execution of Task_B, rather than Task_A. This is the
common case where an ISR will cause a task switch to happen. The
clock interrupt service routine usrclk() does just this whenever a task
wakes up from a timeout or delay, or when time-slicing takes place.

Example ISR installed via a wrapper layer for handing ISR and MT!
interfaces:

void my_handler(uint dev_num){
<do processing>

}

4. MultiTask! InternalsInterfacing to MultiTask!

SuperTask! User’s Guide 4-9

4

Example ISRs installed into hardware interrupt vector table:

void __interrupt my_handler(void){
/* Note: a few processors provide vector # on entry */

++mt_busy;
<do processing>
MTsched_c(); /* does MT! work */

}

my_handler:
PUSH <some registers>
<do processing>
INC mt_busy
POP <some registers>
JMP MTsched

Interrupt Occurs

Task_A

ISR_A
MTqcmd_c()

Task_B

Return from Interrupt

Prolog

User Work

Epilog
++mt_busy

MT!

Figure 4-2: Interrupt with task switch

4. MultiTask! Internals Interfacing to MultiTask!

4-10 SuperTask! User’s Guide

At first, the thought that a return from interrupt is not issued by the
ISR may seem a little alarming. The scheduler may actually perform
the return from interrupt if necessitated by the machine architecture
or perform a functionally equivalent operation in the course of
switching tasks. Otherwise, it changes from the hardware interrupt
disabled state to a lower, kernel state controlled by mt_busy .

The actual "return from interrupt" performed when switching to
Task_B will actually be restoring the context from when Task_B was
interrupted. When Task_A is interrupted, its context (registers) are
saved (generally on a stack frame) and these will not be restored until
we return again to Task_A. This will often be on another interrupt, as
is the case with tasks that are time-slicing, i.e., the clock interrupt is
initiating the task-switch.

Nested Interrupt Issues

The next figure illustrates a simple case where interrupt service
routines are nested. On some processors this can only occur if ISR_A
executes instructions to allow further interrupts to be processed (i.e.,
re-enables interrupts). On machines with multiple interrupt priority
levels, such as the 68000 family and i960, this action is controlled by
the interrupt priority built into the CPU, and a nesting situation can
only be avoided by assigning all interrupt sources the same priority.
This is not always possible.

4. MultiTask! InternalsNested Interrupt Issues

SuperTask! User’s Guide 4-11

4

Task_A

Interrupt A occurs

ISR_A

Interrupt B occurs

ISR_B
(higher priority)

RTI from ISR_B

ISR_A
continues

MTsched_c();

 Scheduler switches task

Task_B

Figure 4-3: Nested interrupt routines

4. MultiTask! Internals Nested Interrupt Issues

4-12 SuperTask! User’s Guide

With the arrangement shown here, there is really no side effect of
having ISR_B nested within ISR_A except that the execution of
ISR_A takes longer than it would otherwise.

The next figure shows a situation that can be a problem. Task_A is
interrupted by interrupt A. A higher-priority interrupt (B) then occurs
and ISR_B begins execution. On processors with built-in interrupt
priorities (68000, i960, and others), it is possible that interrupt A has
been acknowledged by the processor but not one instruction of ISR_A
has been executed before the processor acknowledges and vectors to
ISR_B.

If ISR_B now queues a command that will cause task preemption and
then exits by branching to the scheduler as illustrated, then the
scheduler may start some other task (Task_B). From this point on, it
is possible that other tasks may run an indefinite period of time before
conditions dictate that the scheduler resume execution of Task_A.
ISR_A is at this point considered a part of Task_A, since it is the
context that was saved when Task_A was last preempted. So when
the scheduler resumes Task_A, ISR_A is continued, and ISR_A's
return from interrupt returns into Task_A at the point the original
interrupt A had occurred.

4. MultiTask! InternalsNested Interrupt Issues

SuperTask! User’s Guide 4-13

4

Task_A

Interrupt A occurs

ISR_A

Interrupt B occurs

ISR_B
(higher priority)

ISR_B exits thru scheduler

ISR_A
continues

MTsched_c();

 RTI from ISR_A

Task_A
resumes

Task_B

possible
other tasks

Task switch back to
Task_A causes ISR_A
to resume

Figure 4-4: Possible interrupt problem

4. MultiTask! Internals Nested Interrupt Issues

4-14 SuperTask! User’s Guide

It is also entirely possible that Task_B could kill Task_A, in which
case ISR_A can never be completed and interrupt A goes
unprocessed.

This is not always a problem and may be in fact what you intended
when assigning interrupt priorities, but you must design your interrupt
handling with this in mind.

For hardware nested interrupts, you must copy and expand
MTsched_c() into your routine. In addition, you must be able to
access, from C, the saved flags that the C-generated prolog has
pushed onto the stack. Finally, you must make sure the C-generated
prolog saves all required registers.

void __interrupt my_isr(exception_frame_t X){
<work>
MASK_INTS(); /* *NO* interrupts allowed */
/* interrupted a task? (vs system call) */
if(0 == mt_busy
/* Something in command queue? */
&& cmdadd != cmdprc
&& X.interrupt_level == fully_enabled
){

UNMASK_INTS(); /* kernel level */
++mt_busy;
MTqproc();
/* required by some RISC machines */
MASK_INTS();

}
}

4. MultiTask! InternalsNested Interrupt Issues

SuperTask! User’s Guide 4-15

4

For software nested interrupts, we rearrange things a bit:

void __interrupt my_isr(void){
++mt_busy;
<disable interrupts in device>
<acknowledge interrupt controller>
UNMASK_INTS();
<work>
MASK_INTS();
<reenable interrupts in device>
MTsched_c();

}

We must disable the device's interrupts, otherwise an infinite call loop
occurs. The mt_busy variable locks the kernel and stops other
interrupts from triggering a task switch when they exit.

4. MultiTask! Internals Nested Interrupt Issues

4-16 SuperTask! User’s Guide

Avoiding Task Switching from Nested
Interrupts

MultiTask! provides a simple mechanism for preventing a task switch
from happening from a nested interrupt. This mechanism requires
that you carefully adhere to the following coding rules in all interrupt
service routines.

Rule 1: Always balance mt_busy . Remember that MTsched_c()
includes --mt_busy .

Rule 2: Every ISR that queues a command should exit to the
scheduler (e.g. Mtsched_c();).

Rule 3: On CPUs with multiple priority levels (i960, 68xxx,
68HC16, ColdFire) or on other CPUs when nesting is
explicitly allowed, if any ISR of a given priority level uses
MTqcmd_c(), then all ISRs at lower priority levels must
contain mt_busy ++; and end with MTsched_c(); (or
equivalent code). (A few processors may not allow for
MTsched_c(), and then the ISR must be in assembly
language, but it may call C code.)

Rules 2 and 3 do not have to be strictly followed; however, if they are
not, delays may occur before the command queue is processed when
an ISR uses Mtqcmd_c() to instigate a command. If you want to
ensure the most prompt execution of commands queued by an ISR
and avoid any previously described problems with task switching
from a nested interrupt, then we can distill the above three rules into
one rule.

4. MultiTask! InternalsNested Interrupt Issues

SuperTask! User’s Guide 4-17

4

Interrupt Latency

As can be seen from the examples, the ++mt_busy can sometimes
occur early in the interrupt routine and will add to latency. Most
systems allow it to be near the end, executing after the application-
related code is completed.

Low-level Versus High-level Interrupt
Routines

In many systems, it is desirable to have the 'handler' portion of a
device driver be independent of the processor. The Stream-I/O serial
(UART) drivers are a good example. It is desirable to split the
interrupt support into a hardware-dependent portion that handles the
processor/chip/board-specific interrupt situation, and a hardware-
independent portion that handles only the device (e.g., UART). The
first layer may be in extended-C with __interrupt used, or in
assembler. The second portion is in plain, portable C.

One issue that arises is that there may be two or more UARTs present
in a system. Then the ISR handler routine needs to know which
UART generated the interrupt. The MultiTask! product keeps a small
integer as an argument for each installed handler.

A few processors do not support multiple Interrupt Request Lines
(e.g., PowerPC) and so all interrupts call a single ISR. It is then the
job of that ISR to read some status information and dispatch the
interrupt to the correct handler. Obviously, such a dispatch routine
can be enhanced to pass a device number to the handler and, upon
return, do the MultiTask! interfacing.

Processors that vector but also pass the vector can be made to use a
common wrapper routine. An extra is that non-handler oriented ISRs
can still be used. Thus, a mix of high level handlers and low level
ISRs is possible.

4. MultiTask! Internals Interrupt Latency

4-18 SuperTask! User’s Guide

The x86 vectors in hardware but loses the vector number. On
machines like this, each interrupt vector must have a separate wrapper
routine. These will typically look like:

void __interrupt isr8(void){
drv0_isr(0); /* COM1 is device[0] */
++mt_busy; MTsched_c();

}

void __interrupt isr9(void){
drv0_isr(1); /* COM2 is device[1] */
++mt_busy; MTsched_c();

}

As mentioned above, some processors (such as the PowerPC) do not
vector directly and a software dispatch layer is required. In such
situations, supporting low level jumps may be counter-productive
since the dispatch code is more easily written in C and the MultiTask
interfacing code (see above) can be handled in the same routine. This
may require a three-layer approach on processors that are too hard for
C to do the interrupt prolog/epilog. In that case, you will see a single
assembly routine that does the prolog/epilog, a second routine in C
that does the dispatching to the handlers and then interfaces to
MultiTask!, and the device-specific code in various handler routines,
also in C.

4. MultiTask! InternalsLow-level Versus High-level Interrupt Routines

SuperTask! User’s Guide 4-19

4

The Ticker

MultiTask! expects a timer interrupt (periodic [PIT], reload timer
channel, compare timer, or real time clock [RTC]), which it uses for
time-slicing, timed delays, and timeouts. This interrupt should
perform any user-required function and then jump to the MTtick
assembly routine as shown in appendix on Platform-Specific
Information. Alternatively the routine may call MTqcmd_c(TIKTOK).
A working version of this ISR is supplied in the file usrclk.asm or
usrclk.c. If the clock interrupt will be from a different source than
the supplied routine, you will need to make appropriate modifications.

Example 1 (Assembly Timer Interrupt):

my_tick:
<Acknowledge the hardware>
JMT MTtick

Example 2 (C Timer Interrupt, low level):

void __interrupt my_tick(void){
<Acknowledge the hardware>
if(clkon) MTqcmd_c(TIKTOK);
++mt_busy; MTsched_c();

}

Example 3 (C Timer Interrupt, high-level 'handler'):

void ticker_isr(unsigned dev){
<Acknowledge the hardware>
if(clkon) MTqcmd_c(TIKTOK);

}

Older ports lumped much of the MultiTask! required startup/
shutdown into the ticker's two routines: usrclk_init and usrclk_term.
This included any special system startup, interrupt controller/system
startup, ticker startup, and console I/O startup (for iprintf). In newer
ports, all this support has been split up into three modules and
usrclk_init/term are now macros that call the individual startups
in the correct order.

4. MultiTask! Internals The Ticker

4-20 SuperTask! User’s Guide

In such cases, you should have:

ussTickInit initializes the ticker
ussTickTerm shuts down the ticker
ussTicks counts ticks seen (similar to get_sys_time)
ussTimeMS milliseconds seen (may be from RTC)
ussTick10s number of ticks in 10 seconds (182 on

IBM-PC)
uss_mSecToTicks converts milliseconds to ticks

If time-slicing, timed delays, periodic events, and timeouts are not
needed, then the timer interrupt source is not required. In this case,
the delay_until(), oneshot(), and period() functions cannot be used
and timeouts are ineffective. The dlytsk() function can operate only
with an infinite timeout. Task switching among equal-priority tasks
can still be forced by calling the scdtsk() function from each task,
which will cause cooperative round-robin type scheduling to occur.
Preemption will still occur when a higher-priority task is returned to
the run queue.

NOTE: Future versions of MultiTask! may use different
functions. Please see the text files provided with your
release for current information.

4. MultiTask! InternalsThe Ticker

SuperTask! User’s Guide 4-21

4

Dynamic Memory Routines – the
Heap

It is always nice when everything works, but sometimes errors occur.
When you see the heap disappear, or strange crashes occur, it is time
to check your memory usage.

The primary heap corruption happens with stack overflow. Most
ports now have a C level check at task switch time that checks for a
magic bit pattern (0xDEADBEEF) that runtsk() places at the bottom of
the stack when it allocates it. If this is no longer correct, then it is
very likely that the current task has overflowed its stack. What MT!
does when it detects stack corruption is based on the MTSTACK_TRAP
macro in depends.h. Typically, this is an ASM statement with a
breakpoint instruction in it. You can replace it with a call to your own
routine – or with whatever you want.

You can check all active tasks with this code:

{ unsigned j; for(j = 1; j <= NUMTSK; ++j){
TASK_DEF pTask = task_tab[j];
if(pTask->task_que){ /* only alive tasks */

if((uint32*)task_ptr->task_stk != 0xDEADBEEF){
 iprintf(“! task %u has a trashed stack !\n”,j);
}

}
}}

You can check the entire heap by using chkmem(). This does several
checks of the heap, reporting available space and possible errors. By
calling this at various times, you can narrow down and locate the
problem. A good time to call it is just before and after calls to
reqmem() and relmem().

Do not forget you have source code. Modify the routines to stop and
iprintf() information when they see an error.

4. MultiTask! Internals Dynamic Memory Routines – the Heap

4-22 SuperTask! User’s Guide

If you are really deep into a heap problem, here is some information
on how it is organized. First, when you initialize memory via
MTmeminit2(), a ‘bumper’ is placed at each end. This bumper looks
like a tiny block of allocated memory. Since it is allocated, relmem()
will never merge it with a block being freed. Hence, the term
‘bumper’. All remaining memory in the chunk being released is
organized as a free block. It will contain a size, 2 pointers, free
space, and a size. The size is the number of bytes in the entire block
forced to a multiple of 4 plus a 2-bit code for ‘free’. (The bumpers
mentioned above are size = 4 & not free. Typically, this is 0x5.)

If local memory tracking is on (see STCFG in the makefile), then all
blocks, free or allocated, follow that format. If it is off, allocated
blocks do not have the 2 pointers in them, and the overhead shrinks to
half.

So, chkmem() starts by checking each bumper using the pointers in
mem_rootptr[] . Then it starts just after the lower bumper and
looks at the first block size. It uses that to determine where the size
field at the top end of the block is and checks that it is the same value.
By stepping through all the blocks, it should reach the ending bumper.

4. MultiTask! InternalsDynamic Memory Routines – the Heap

SuperTask! User’s Guide 4-23

4

The Scheduler

The scheduler is used at the end of a system call or interrupt routine
to catch up on any queued commands and do a task switch. It is
implemented between several routines:

Routine File

MTqproc() mtinit.c

MTsched_c() mtschedc.c

MTsched: mtsched.asm/s

The scheduler only operates if it will be exiting to a task. Otherwise,
it is nested and does nothing. It operates with interrupts enabled, so
interrupts can occur while it is processing. The final check, when it
decrements mt_busy , is performed with interrupts disabled. This
prevents an interrupt sneaking something into the command queue
while it is testing the exit conditions.

if(1==mt_busy){
startover:

process Command Queue
if(run_queue empty){

spin loop or low power mode
goto startover;

}
if(preemption allowed && different task){

rsched(); /* CPU specific context sw in asm */
++mt_busy;

}
MASK_INTS();
if(cmdprc != cmdadd){ /* one last check of cmd Q */

UNMASK_INTS();
goto startover;

}
—mt_busy;
UNMASK_INTS();

}

4. MultiTask! Internals The Scheduler

4-24 SuperTask! User’s Guide

The code used in interrupt routines increments mt_busy and calls
MTsched_c():

if(1==mt_busy){ /* interrupted a task? */
UNMASK_INTS();
MTqproc();
MASK_INTS();

}else{
—mt_busy();

}

Finally, the routine rsched: is an assembly language routine that saves
the current context, switches the stack pointers, and restores the
context from the next task. It also decrements mt_busy in case the
next task is new (was just set up via runtsk()).

4. MultiTask! InternalsThe Scheduler

SuperTask! User’s Guide 5-1

5

5. Stream I/O

Chapter Contents
ANSI C Functions ... 5-2

Devices ... 5-4
Customizing Stream I/O .. 5-8

Functions for Customizing Stream I/O .. 5-8
Adding a New File Manager .. 5-9

File Manager _delete() function ... 5-12
File Manager close() function .. 5-12
File Manager fmioctl() function ... 5-12
File Manager makdir() function ... 5-13
File Manager open() function ... 5-13
File Manager read() function .. 5-13
File Manager readln() function... 5-14
File Manager seek() function ... 5-14
File Manager write() function .. 5-15
File Manager writeln() function ... 5-15

Adding a New Device Driver ... 5-16
Device Driver init() function .. 5-17
Device Driver ioctl() function .. 5-18
Device Driver read() function... 5-19
Device Driver term() function .. 5-20
Device Driver write() function ... 5-20
Jump Table .. 5-20
Device Driver Interrupt Service Routines 5-21
Supplied Serial Drivers (driver0.c) ... 5-24

Changing the I/O Device Table .. 5-24
Table 5-1: Device Table Codes.. 5-25

5-2 SuperTask! User’s Guide

ANSI C Functions

The stream I/O portion of the SuperTask! package implements the
following ANSI C stream I/O functions in source form:

fopen fread fwrite fgetc
fgets fputc fputs printf
fprintf sprintf vsprintf sscanf
fgetpos fsetpos fseek ftell
fflush fclose mkdir remove
rewind rmdir feof ferror
clearerr

The functions shown in the lighter font are present in the SuperTask!
package but perform no function for serial port streams and pipes.
These additional functions are only meaningful with the disk file
manager in the USFiles package. The function names shown above
(fopen, etc.) are actually all coded with a prefix of mt_, so the
function names are listed in the Stream I/O Library chapter under the
names mt_fopen, mt_fread, etc. The reason for these modified names
is to allow the use of another I/O library simultaneously with the MT!
stream functions. For instance, when running under MS-DOS, you
might want to use the standard C library fopen to open a disk file
through DOS, and mt_fopen to open a serial port through the MT!
stream system. Normally each of the function names (mt_fopen, etc.)
has an alias without the mt_ prefix defined in the include file
mtstdio.h, so that the two names both refer to the MT! library
function. If you #include <stdio.h> before including mtstdio.h,
however, then these aliases are not defined, thus allowing you to link
in another library with fopen, etc. Keep in mind, however, that if you
switch off the defines in mtstdio.h, you will be referring to them
as mt_fopen, mt_fread, etc., instead. With the #defines switched
off, the file descriptor type for MultiTask! I/O becomes MTFILE
rather than FILE . Throughout this document, we may refer to the
streamio functions both with and without the mt_ prefix; unless
specifically stated otherwise, we are referring to the same MT!
functions.

5. Stream I/OANSI C Functions

SuperTask! User’s Guide 5-3

5

MultiTask! Stream I/O is built upon a three-layer code structure that
allows additional devices (ports) to be added with the minimum of
coding. The top layer is composed of the ANSI C functions already
mentioned, most of which are contained in the source file streamio.c.
The device numbers corresponding to stdin, stdout, and stderr are also
defined in mtstdio.h and may be changed freely. The paths to stdin,
stdout, and stderr are not automatically opened. They must be
opened explicitly with a call to fopen() before they are used. If you
are using your C compiler library I/O in conjunction with the
MultiTask! I/O functions, you must not use mt_printf, or use the
stdin, stdout, and stderr macros with the mt_ functions, since the
values defined in stdio.h will not be compatible with the mtstdio.h
values.

The fprintf() and sscanf() functions will be generated as integer-only
versions (not supporting floats and doubles) unless the label
PF_FLOATS is defined when you compile these modules.

Whether or not “text” mode stream I/O differs from “binary” mode
depends upon the specific driver being used by the stream.

The mt_fopen() function searches the device table for the filename
requested as the first argument to mt_fopen(). The device table is an
array of structures of type DEVICE, which is defined in userio.h.
There is an entry in the device table for each device (port, pipe, disk
drive, etc.) that can be opened in your configuration. The userio.h
file is usually supplied with a number of devices predefined for our
test environment. The inclusion of different devices is controlled by
conditional #ifdefs in userio.h. There is more information on this
in the comments of the makefile supplied for your platform and in
comments in userio.h. The first (perhaps only) serial port entry in
the device _table will have the device name COM1. This is done
on all platforms so there will be a common name for the serial port
that can be used by the test programs siotest and tintest. To add or
delete devices or change the default port settings (baud rate, etc.), you
will need to edit userio.h.

5. Stream I/O ANSI C Functions

5-4 SuperTask! User’s Guide

Devices

Serial Ports
For an interrupt-driven device, a task waiting for I/O to complete will
automatically sleep in the I/O queue until I/O is complete, and then
reawaken. This allows other tasks to use the processor time that
would be wasted in polling the port. The wait for I/O sleep works as
follows:

• For a read operation, if the input buffer does not contain enough
bytes to satisfy the read, then the task will sleep until the
requested number of bytes are put into the input buffer by the
interrupt service routine for the device. The driver will then wake
the task and the transfer of bytes from the interrupt input buffer to
the user’s buffer will be completed. If the requested number of
bytes to be input is larger than the buffer size, the task waiting for
input will sleep and wake for each filled buffer, until the total
requested input is satisfied.

• For a write operation, the data are placed in the output buffer and
the write interrupts for the device are enabled, allowing the output
interrupt service routine to immediately commence the output of
data. If the output buffer becomes full, then the task will be put to
sleep until the buffer is nearly empty again. When the C-level
write call that caused the output to occur returns, there may still
be a (large) number of bytes in the output buffer that have not
actually been transmitted yet. If the task must wait until all the
output has actually been transmitted, it may do so by issuing a
fflush() call for the device.

The sfm serial drivers can handle one task performing writes and
another task performing reads simultaneously on the same port. For
proper operation, you must ensure that there is not more than one task
requesting reads and one task requesting writes from the same port at
any time. You can arbitrate this with a resource if necessary. The
same task can perform both reading and writing if desired.

5. Stream I/OANSI C Functions

SuperTask! User’s Guide 5-5

5

The device is initialized each time the mt_fopen() function is called.
The specific device parameters such as port address, interrupt vector
location, ISR address, baud rate, etc., are defined as tables of
initialized data in the file userio.h. Study this file for more
information about how specific drivers supplied with MT! were
implemented. You will need to modify this file to change any of these
parameters or when you add another device. This will require
recompiling dev_tab.c.

Pipes
Pipes provide a method of synchronizing the transfer of information
from one task to another. As such, they provide an alternative to
using a mailbox to pass messages or packets. Pipes transfer a copy of
the data from the task writing to the pipe to the task reading the pipe.
The streamio calls such as mt_fread() and mt_fwrite() are used to
transfer the data after the pipe is opened by a call to mt_fopen().
Reading or writing to the pipe will cause the calling task to
automatically wait as appropriate. In other words, if a task performs
an mt_fread() of a pipe, and no data are currently in the pipe buffer,
then the task will wait until the task at the other end of the pipe
transfers the number of bytes requested by the read.

SuperTask! pipes were implemented to be as fast as possible. They
are implemented entirely by the pipe file manager in pipefm.c, with
no associated driver. “Text mode” has no significance for pipes, i.e.,
there is no translation of the end-of-line character if you open the pipe
in text mode as there would be for an sfm or pcfm device.

Whether you use pipes or mailboxes for a given situation will depend
on several factors. The main limitation of pipes is that when you
open a pipe, you may have only one task reading the pipe and one
task writing to it. The other limitation is that there is no timeout
available on reading a pipe as there would be with the rcvmsg()
function. If this is suitable for the situation, then pipes bring the
advantage of providing faster data transfer than messages, and the
passing of a copy of the data rather than just a pointer. Since they
pass the data by value, they are equivalent in function to packets
transferred through a mailbox. An added advantage of pipes is that

5. Stream I/O ANSI C Functions

5-6 SuperTask! User’s Guide

since they use streamio functions for the data transfer, the transfer
can easily be redirected to another device, such as a serial port (or
disk file with USFiles).

To use a pipe, it must be opened by a task by using one of the
following filename forms for mt_fopen():

PIPE: Anonymous pipe

PIPE:mypipe Named pipe

PIPE:/10 Anonymous pipe with buffer size of 10

PIPE:yourpipe/200 Named pipe with buffer size of 200

As shown, pipes can be either anonymous or named. If a named pipe
is opened and another request is made to open a pipe with the same
name (case is significant), then an error is returned. Each mt_fopen()
of an anonymous pipe will create a new pipe. If the optional “/”
followed by an integer number is supplied in the name, then this is
used as the size of the buffer for the pipe, which is dynamically
allocated from global COLOR0 memory when the pipe is opened. The
buffer will be released when the pipe is closed (by mt_fclose()). If
the buffer size is not given, the value of the #define
DEFAULT_PIPE_SIZE is used.

The first task to read from the pipe becomes locked as the task
allowed to read, and any other task requesting a read after this will be
denied. The first task writing to the pipe is locked as the writing task
in a similar fashion.

The find_pipe() function is provided so another task can locate the
file handle (MTFILE *) for an opened named pipe.

Any of the functions mt_fread(), mt_fwrite(), mt_fgets(), mt_fputs(),
mt_getc(), and mt_putc(), may be used to communicate through the
pipe. The size of the pipe buffer does not affect the speed in a
manner you might expect. This is largely due to the implementation,
which will transfer multi-byte blocks directly from one task’s
memory to the other whenever this is possible, instead of going
through the buffer. Because of this, a one-byte buffer will in some
circumstances give faster throughput than a large buffer. The pipetest

5. Stream I/OANSI C Functions

SuperTask! User’s Guide 5-7

5

program will give timings for various combinations of task priority
and buffer size relative to the size of the block being transferred. You
should study the output of this test program if you intend to use pipes.

The reading task will wait whenever the pipe buffer is empty and
there are still bytes to be read to satisfy the last read request. The
writing task will wait whenever the pipe buffer is full and there are
remaining bytes to write.

Disk File System
The PC-compatible disk file system is not a part of the SuperTask!
package. The USFiles package provides this file system, which will
integrate smoothly with SuperTask! as an additional stream device.
The USFiles file system can also be used in a single-tasking
environment or with an operating system other than SuperTask!
USFiles supports any size diskette, hard disk, or RAM disk with an
MS-DOS-compatible format, providing complete interchangability of
media between your target and any PC. Additional support is
available for USFiles for CompactFlash or for CD-ROM media.

Other Devices
The 80x86 version of SuperTask! contains console and keyboard
drivers for a standard PC keyboard and a text mode CGA display.
The keyboard is completely interrupt driven, allowing a task to wait
for keyboard input without using any CPU time in polling as well as
giving a true <control>-break interrupt to the application. The
display implements non-overlapping screen views (windows) that can
each be controlled independently by separate tasks. Complete details
on this driver are contained the Platform-Specific Information
appendix or the cpunotes.txt file delivered with the x86 MultiTask!
release.

See the next section for information on adding customized drivers for
additional devices.

5. Stream I/O ANSI C Functions

5-8 SuperTask! User’s Guide

Customizing Stream I/O

Functions for Customizing Stream I/O

These lists show the relationships of particular stream I/O functions to
file manager and device driver functions. The relationships are
explained in the following sections.

Connections
ANSI Stream I/O File Manager Device Driver

mt_fopen open init
mt_fclose close term

Data Transfer
ANSI Stream I/O File Manager Device Driver

mt_fread read read
mt_fgetc read read
mt_fgets readln read

(raw_read)
mt_fwrite write write
mt_fputc write write
mt_fputs writeln write

(raw_write)

Control (Stream)
ANSI Stream I/O File Manager Device Driver

fm_ioctl ioctl
(diskchange)
(timestamp)
(format)

5. Stream I/OCustomizing Stream I/O

SuperTask! User’s Guide 5-9

5

Control (Outside Connection)
ANSI Stream I/O File Manager Device Driver
mt_remove _delete
mt_rmdir fm_ioctl
mt_mkdir makdir

Adding a New File Manager

The MultiTask! stream I/O features are implemented by three layers
of functions. The upper layer is composed of the ANSI C functions
fopen(), fread(), fwrite(), etc. The middle layer is known as the file
manager and the lower layer as the device driver. The standard C
level functions such as fgetc(), for example, call the file manager
routines associated with the stream, which in turn call the driver
routines. The driver also has interrupt service routines (ISRs)
associated with it for interrupt-driven devices.

The maximum number of paths (i.e., ports, or devices) that can be
open at any time is set by the NUMSTREAMS parameter in depends.h.
Each stream has a structure of type MTFILE (alias FILE) associated
with it, which contains all the control information for the stream. The
MTFILE structure is defined in mtio.h. This structure contains a great
deal of information, including pointers to other structures necessary
for controlling the device. Some of these include buffer pointers,
buffer sizes, and counts of characters in the buffers. Some of this
information could have been omitted, but it was placed here in this
implementation to minimize the code overhead in the ISRs for the
device.

Some of the control structures are contained in unions to allow for
expansion to new types of devices. The mtio.h file contains
comments indicating where new structures would be added to control
new port types or classes of devices.

The file manager, device driver, and ISRs all access the MTFILE
structure for the stream they are currently operating on. It may be
expedient for you to directly access some of the MTFILE structure
entries also. You might, for instance, wish to test the input buffer

5. Stream I/O Customizing Stream I/O

5-10 SuperTask! User’s Guide

character count of a serial port to test if there are any characters in the
input buffer.

Example:

if (((FILE *)fp->device->devparm.pcs->inbuf_cnt))

We will refer to the type MTFILE structure for a stream as its file
descriptor.

The file descriptor for each stream contains a pointer to the file
manager and device driver that are associated with that stream. The
file manager is a structure of type FILEMAN (defined in mtio.h). This
structure, sometimes called a ‘vector table,’ consists of a list of
function pointers to the functions that constitute the file manager.
The driver is a similar structure of type DRIVER, which contains
function pointers to the functions that constitute the device driver.
There are two DRIVER variants. One is for character devices, and
the other is for record devices. If your system has several ports of the
same characteristics (same type UART chip, etc.) they would most
likely be using the same driver and file manager. If you have two
different types of UARTs, they will most likely share the same file
manager but have different drivers.

The sfm file manager routines provided should be usable for any type
of serial character I/O device (i.e., UART). These routines are all
written in C. If another type of device is to be supported, such as a
floppy disk with a file system, then new file manager routines would
be developed that perform the same functions as the sfm routines but
for the new class of device.

The following lists show the functions in the order in which they are
usually used.

5. Stream I/OCustomizing Stream I/O

SuperTask! User’s Guide 5-11

5

The defined file manager functions for any file manager are:

open()
read()
readln()
write()
writeln()
close()
seek()
makdir()
_delete()
fmioctl()

The specific routines that constitute the sfm file manager are:

sfm_open()
sfm_read()
sfm_readln()
sfm_write()
sfm_writeln()
sfm_clos()
sfm_seek()
sfm_makdir()
sfm_delete()
sfm_fmioctl()

The sfm_seek(), sfm_makdir() and sfm_delete() are dummy routines;
they perform no function, since these operations have no meaning for
serial ports.

If you are adding only another serial I/O device, you will not need to
make a new file manager or modify the sfm . In this case you can
skip ahead to the discussion of Device Drivers. The earlier lists in
Functions for Customizing Stream I/O show the relationship between
the stream I/O, file manager, and driver functions.

The following function descriptions are in alphabetical order.

5. Stream I/O Customizing Stream I/O

5-12 SuperTask! User’s Guide

File Manager _delete() function

This function is unused unless USFiles is included.

int _delete(MTFILE * fp)

The file manager _delete() function removes the file pointed to by fp
from the file system. In the sfm file manager, this is a dummy
routine.

File Manager close() function

int close(MTFILE * fp)

The file manager close() function calls the driver term() function to
deinitialize the stream. This function returns zero if successful or
EOF if an error is detected (i.e., the calling task does not own the
device).

File Manager fmioctl() function

int fmioctl(MTFILE * fp , int function , va_list ap)

The file manager fmioctl() function provides multiple miscellaneous
control functions for the device. The fp identifies the path to operate
on and the function defines the function to be performed. Any
additional parameters required are contained in the variable argument
list ap. The function IO _FLUSH is defined for all sfm devices to
flush the output buffer for the device. Other function codes that are
applicable to specific devices are defined in mtstdio.h.

5. Stream I/OCustomizing Stream I/O

SuperTask! User’s Guide 5-13

5

File Manager makdir() function

This function is unused unless USFiles is included.

int makdir(MTFILE * fp)

The file manager makdir() function converts the open path fp into a
new directory. This is a dummy routine in the sfm file manager.

File Manager open() function

MTFILE * open(MTFILE * fp , const char * filename)

The open() function of a file manager is passed the file descriptor
pointer fp and the filename . In the sfm file manager, the
filename is not used and is ignored. The open() function fills in
most of the ile descriptor tructure and associated substructures with
initial values, and calls the driver _init routine to initialize the
device. The open() function returns a pointer to the file descriptor
structure if it is successful, otherwise it returns a NULL pointer.

File Manager read() function

int read(MTFILE * fp , char * buf , int bytes)

The file manager read() function reads the number of bytes specified
by bytes from the stream specified by fp into the buffer pointed to
by buf . Sfm_read calls the driver read routine for each byte to be
transferred from thISR input buffer to the user’s buffer. The control
structure wake_cnt and wake_mode parameters are set as necessary
to cause the task to sleep until the necessary data bytes are in the
input buffer if they are not immediately available. The read()
function returns the number of bytes actually read. If this is fewer
than the bytes requested, then some sort of error occurred.

5. Stream I/O Customizing Stream I/O

5-14 SuperTask! User’s Guide

File Manager readln() function

int readln(MTFILE * fp , char * buf , int bytes)

The file manager readln() (read line) routine reads at most the
number of bytes specified by bytes from the stream specified by fp
into the buffer pointed to by buf . The read will terminate early if the
EOL_CHAR is read. n all other respects, this call is the same as the
read() function.

File Manager seek() function

This function is unused unless USFiles is included.

int seek(MTFILE * fp , uint32 s)

The file manager seek() function repositions the file pointer for fp so
that the next access will be at pos bytes from the beginning of the
file. This is a dummy function that returns an unimplemented error
for the sfm file manager.

5. Stream I/OCustomizing Stream I/O

SuperTask! User’s Guide 5-15

5

File Manager write() function

int write(MTFILE * fp , char * buf , int bytes)

The file manager write() function writes the number of bytes
specified by bytes taken from the memory buffer pointed to by buf
and writes these to the stream specified by fp. The write() routine
accomplishes this by sendi each byte to the driver write() routine for
the device. If the device is interrupt driven, the driver write() routine
will place the characters into the ISR output buffer and the ISR will
do the actual transmitting of the data. The file manager write()
routine will set up the necessary parameters so that the task will sleep
if the output buffer is full and there are more data to be written. The
actual number of bytes written is returned by this function. This will
be zero if an error occurs.

File Manager writeln() function

int writeln(MTFILE * fp , char * buf , int bytes)

The file manager writeln() function is identical to the write() function
except that the write will terminate before bytes have been transmitted
if an EOL_CHAR is encountered in the output stream. (The writeln()
termines after the transmission of the EOL_CHAR.)

5. Stream I/O Customizing Stream I/O

5-16 SuperTask! User’s Guide

Adding a New Device Driver

The group of functions necessary to implement a device driver
depends upon what file manager will be controlling it. All device
drivers controlled by the sfm file manager consist of the following
routines:

init()
read()
write()
ioctl()
term()

For a specific instance of a driver, these routines will be given the
above-mentioned names with a unique prefix prepended to them to
designate the driver; e.g., drv0_init(). The drv0_read() function is in
sfm.c, and the other functions will be in the driver0.c (or similarly
named) file.

The exact function performed by these routines depends somewhat
upon what file manager will be calling them. The division of
responsibilities between the file manager and the device driver may be
altered if a new file manager is developed. Since we expect all serial-
type devices to use the sfm file manager, we will explain the exact
function of the driver as expected by the sfm file manager.

5. Stream I/OCustomizing Stream I/O

SuperTask! User’s Guide 5-17

5

Device Driver init() function

int init(FILE * fp)

The file descriptor pointed to by fp will be initialized with all
available information before the driver init() function is called. This
function can be written in assembly language or C for the particular
device. This function will perform all hardware initialization
necessary to use the device, including:

• Initializing device registers (baud rate, interrupt controller setup if
necessary, etc.)

• Installing the device interrupt vector(s), unless this is already in
ROM or in some other way already initialized

• Enabling the device receiver interrupt (unless the device will be
polled, i.e., not interrupt-driven)

• Copying fp->mode to fp->init_flag when the initialization is
complete

NOTE: It may be necessary to physically mask interrupts for
some of the above operations.

The return value is not used by sfm and therefore does not need to
be implemented in an assembly init routine.

5. Stream I/O Customizing Stream I/O

5-18 SuperTask! User’s Guide

Device Driver ioctl() function

int ioctl(FILE * fp , int function , va_list ap)

The driver ioctl() function is a catch-all for miscellaneous control
functions for the device. Function code numbers less than 100 are
reserved for definition by US Software. User-added function codes
should begin at 100. The ioctl() function returns 0 if successful or
EOF (-1) as an error indication.

Function code: IO_FLUSH

The ioctl() IO_FLUSH function flushes the output buffer for the
stream, i.e., the function waits until all characters in the output buffer
have been transmitted by the transmit ISR.

Function code: IO_BAUD

int ioctl(FILE * fp , IO_BAUD, baud_code)

The ioctl() change baud function uses the device-specific baud_code
to reprogram the device baud rate for the stream. For some drivers
the baud _code is the specific value to stuff into the device registers
to set the new baud rate. On most of the newer ports, it is the desired
BAUD divided by 100.

Other function codes are listed in mtstdio.h. Examine supplied
drivers for examples of their use.

5. Stream I/OCustomizing Stream I/O

SuperTask! User’s Guide 5-19

5

Device Driver read() function

byte read(FILE * fp)

The driver read() routine returns the next byte available from the
stream specified by fp . The routine drv0_read() can be used as the
driver read() routine for all interrupt-driven sfm serial devices. In
this case, the device ISR does the actual reading in response to
interrupts, and places the input characters into the stream input buffer.
The drv0_read() routine returns the next available character from the
input buffer. If the input buffer is empty when drv0_read() is called,
it will cause the calling task to wait in the I/O queue until characters
are available. The read() ISR will wake up the task when the input
buffer contains the appropriate number of characters that cause
drv0_read() to resume its transfer of data. Each serial device has a
parameter structure that is accessible through a pointer in the file
descriptor pointed to by fp . The parameter structure contains
pointers to the read circular buffers for the port and other needed
information such as the task requesting I/O and the conditions to
wake the task for.

If a device is to be polled rather than interrupt-driven, the driver
read() function for that device can be a simple polling routine that
returns the next byte of data, rather than the drv0_read() routine. In
this case, there would be no ISR for the device, and a task will never
sleep waiting for input from the device but rather waste time in the
polling loop until the input is available.

5. Stream I/O Customizing Stream I/O

5-20 SuperTask! User’s Guide

Device Driver term() function

void term(FILE * fp)

The driver term() function flushes the device output buffer and then
deinitializes the device, disabling any interrupt generation by the
device. When this is complete, it writes zero to fp > init _flag and
fp >owner _slot .

Device Driver write() function

void write(FILE * fp , byte c)

The driver write() function for a polled device would simply transmit
the character c to the device indicated by stream fp .

For an interrupt-driven device, the write() function will place
character c into the stream output buffer and enable the device
transmitter interrupt. The transmit ISR will remove the character
from the output buffer and actually transmit it.

Jump Table

The above device driver functions are gathered in a jump table used
by the appropriate file manager. This table can be found in userio.h
for older ports, and at the end of the particular driver?.c file for
newer ports.

5. Stream I/OCustomizing Stream I/O

SuperTask! User’s Guide 5-21

5

Device Driver Interrupt Service Routines

Interrupt-driven serial devices that perform both read and write
logically have both a read and a write ISR. In many cases, only one
interrupt vector services both interrupts. If this is the case, the
beginning of the ISR will determine if the interrupt was caused by
received data and will vector to the read interrupt service, or, if the
interrupt was due to the transmit buffer becoming empty, it will
vector to the transmit interrupt code.

On some processors, several devices will be vectored to the same
interrupt service location. In this case, a poll of each device needs to
be done to determine the source of the interrupt, and then a jump
made to the appropriate service routine.

If the version of MT! you are using was supplied with an interrupt-
driven device driver, you will be able to reuse parts of the ISR code in
the ISRs to support a new device.

The first step on entering any ISR will be to save any registers that
will be used in the ISR code. Each device ISR will then need to
locate the address of the file descriptor, i.e., the (MTFILE *) value for
that device. Each device has a DEVICE structure entry in device
table (device _tab). The file descriptor pointer (MTFILE *) for the
device can be obtained from here at device _tab [n]. fp , where n is
the index into the device table for the port causing the interrupt. This
value is initialized by sfm_open() when the port is opened.

The ISR will need to initialize a pointer to the file descriptor for the
port to locate information such as buffer locations needed for
servicing the interrupt. Once the proper file descriptor has been
located, code common to all ports of the type can be used for the
remaining processing, since all details specific to the port are
contained in the file descriptor.

If the device supports both read and write and will generate a separate
interrupt for each, the (MTFILE *) value will be the same for both
the read and write. If there is only one interrupt vector for both the
read and write, now is the time to determine if the interrupt is a read
or write interrupt (after locating the (MTFILE *) value) and then
branch to either the read or write service path.

5. Stream I/O Customizing Stream I/O

5-22 SuperTask! User’s Guide

Device Read ISR
The read interrupt for the device will indicate that a character has
been received and is ready to be read from the device hardware.

The read interrupt service routine for a driver will save any registers
that will be used by the routine and then locate the address of the file
descriptor for the device being serviced. This file descriptor address
would be a type (MTFILE *) in C. This value should be saved into a
local variable. We will refer to this value as fp and use the C
notation for accessing elements in this structure (e.g.,
fp->init_flag) in order to make clear what operations we require
the ISR to perform. The ISR can be written in assembly for
maximum efficiency, or in C.

The device table entry can be located at fp ->device , and from this a
pointer to the device parameter table that contains most of the
information needed for port control can be obtained as:

parmp = fp ->device->devparm.pcs

In most processors supported, interrupts will be disabled when the
ISR is entered. If this is not the case, then it will be necessary to
disable them before any parameters in the file descriptor are updated.

The input byte c is read from the device and placed in the input buffer
at (*parmp ->inbuf _addp++ = c). If after incrementing the input
buffer add pointer is past the end of the buffer, then it is wrapped back
to the beginning.

if(parmp->inbuf_addp == parmp->inbuf_end)
parmp->inbuf_addp = parmp->inbuf_beg;

If the input buffer is overrun, then set bit 0 of fp->error _code .
Bits 1..7 of fp->error _code can be used to log any other I/O errors
for the device.

Increment parmp->inbuf _cnt , which is the count of the number of
characters currently in the input buffer. If the WAKE_READ bit is set in
parmp->wake _mode and the number of characters currently in the
input buffer is greater than or equal to parmp->wake _cnt , then
wake up the task at the slot specified by parmp->read _owner by

5. Stream I/OCustomizing Stream I/O

SuperTask! User’s Guide 5-23

5

using the MTqcmd_c() call to queue a wketsk() command and clear
the WAKE_READ and WAKE_LINE bits in parmp->wake _mode.

If the WAKE_LINE bit is set in parmp->wake _mode and the last
character c received was equal to fp->eol _char , then wake up the
task at the slot specified by parmp->read _owner by using the
MTqcmd_c() call to queue a wketsk() command and clear the
WAKE_READ and WAKE_LINE bits in parmp->wake _mode.

If the ISR sends a wketsk() command via the MTqcmd_c() call, it will
then restore any saved registers and jump to MTsched() (or call
MTsched_c()) rather than performing a return from interrupt.

If the ISR did not send a wketsk() command, then it will restore any
saved registers and do a normal return from interrupt.

Device Write ISR
The write interrupt for the device will indicate that the device is ready
to accept another character for transmission.

The write ISR for a device will save any registers that the routine will
use, and then locate the file descriptor address value fp for the
device, and the parameter structure parmp as in the read ISR.

If parmp->outbuf _cnt (the number of characters in the output
buffer waiting to be transmitted) equals zero, then further transmit
interrupts from the device are disabled and the ISR is exited.

If parmp->outbuf _cnt <> 0, then the character pointed to by
parmp->outbuf _remp is transmitted, fp->outbuf _remp is
incremented and wrapped if necessary:

parmp->outbuf_remp++;
if(parmp->outbuf_remp == parmp->outbuf_end)

parmp->outbuf_remp = parmp->outbuf_beg;

The count if characters in the output buffer is decremented:
(parmp->outbuf_cnt— ;).

5. Stream I/O Customizing Stream I/O

5-24 SuperTask! User’s Guide

If the resulting value of parmp->outbuf _cnt is greater than
parmp->outbuf _min , the ISR is exited (registers restored, and
return from interrupt executed).

If the new value of parmp->outbuf _cnt is less than or equal to
parmp->outbuf _min and the bit WAKE_OBE is set in
parmp->wake _mode, then a wketsk() command is sent to the task at
slot parmp->write _owner as described for the read ISR. (The
wketsk() command is queued with the MTqcmd_c() call, registers are
restored, and the ISR exits by jumping to MTsched or calling
MTsched_c()).

Supplied Serial Drivers (driver0.c)

Each platform contains a driver either for an internal CPU serial port,
if applicable, or a commonly used UART. You can study this source
code that follows the form just described. This can usually serve as
code for any other serial UART device, with minor modifications.

We will provide drivers for the three major UARTs (8250, Zilog
85xx, and 26xx) if requested. These have been done for various
ports, but will still require tweaking to work with your board.

Changing the I/O Device Table

The device table is an array of structures of type DEVICE (defined in
mtio.h). The table is named device_tab and is defined in the file
userio.h. There must be a device table entry for each device that can
be opened.

The mt_fopen() function will search the name entries in the device
table to find a name that matches the filename given as the first
argument of the mt_fopen() call. If the name is not found, the device
cannot be opened.

The DEVICE structures contain essential information about the
device, such as port address, interrupt number, and initialization

5. Stream I/OCustomizing Stream I/O

SuperTask! User’s Guide 5-25

5

parameters in addition to the device name. These other items of
information are initialized data in the device table.

All of this essential initialized data to define a device is in userio.h.
To add another device (port, etc.), an entry must be added to the
device table.

The device table (in userio.h) is delivered preconfigured for
supported devices. All deliveries will have support for at least a pipe
named “PIPE ,” and most will have a serial port named “COM1.”
Some platforms also have entries for ramdisk, floppies, hard
disk, CD-ROM, and console/keyboard . These supplied entries
are conditionally included in the table when the following labels are
defined during compilation.

Table 5-1: Device Table Codes

Code Label Device Included in Device Table

s SIO Serial port devices

i PIPE Pipes

cd CDIO CD-ROM (with USFiles only)

c CIO Console/keyboard (PC only)

p PCIO Hard disk/floppy (with USFiles only)

r RIO RAM disk (with USFiles only)

5. Stream I/O Customizing Stream I/O

5-26 SuperTask! User’s Guide

SuperTask! User’s Guide 6-1

6

6. Stream I/O Library

Chapter Contents

I/O Functions by Category .. 6-3
ANSI Stream I/O Functions ... 6-3
ANSI Stream I/O Functions in USFiles 6-3
Additional I/O Functions .. 6-3

I/O Function Descriptions .. 6-4
find_pipe ... 6-4
mt_clearerr .. 6-5
mt_fclose ... 6-6
mt_feof .. 6-7
mt_ferror ... 6-8
mt_fflush ... 6-9
mt_fgetc .. 6-10
mt_fgetpos... 6-11
mt_fgets... 6-12
mt_fopen ... 6-14
mt_fprintf .. 6-16
mt_fputc .. 6-18
mt_fputs .. 6-19
mt_fread .. 6-20
mt_fseek .. 6-21
mt_fsetpos ... 6-22
mt_ftell .. 6-23
mt_fwrite ... 6-24
mt_mkdir ... 6-25

6-2 SuperTask! User’s Guide

mt_printf ... 6-26
mt_remove .. 6-27
mt_rename... 6-28
mt_rmdir ... 6-29
mt_sprintf .. 6-30
mt_sscanf .. 6-31
mt_vsprintf .. 6-33
timed_getc ... 6-34
timed_read... 6-35
timed_readln ... 6-37

SuperTask! User’s Guide 6-3

6

I/O Functions by Category

ANSI Stream I/O Functions

mt_fclose mt_fflush mt_fgetc mt_fgets

mt_fopen mt_fprintf mt_fputc mt_fputs

mt_fread mt_fwrite mt_printf mt_sprintf

mt_vsprintf sscanf

ANSI Stream I/O Functions in USFiles

mt_clearerr mt_feof mt_fseek mt_fgetpos

mt_fsetpos mt_ftell mt_rename mt_rewind

Additional I/O Functions

find_pipe mt_ioctl mt_remove mt_rmdir

I/O Functions by Category6. Stream I/O Library

6-4 SuperTask! User’s Guide

I/O Function Descriptions

find_pipe

Finds handle for a named pipe.

MTFILE *find_pipe(char * filename);

filename pathname to the named pipe

This function attempts to return the file-descriptor pointer to the
named pipe specified by filename . The pipe must be open, or it
will not be found.

Return Value
MTFILE * pointer to the pipe

NULL pipe not found (not open)

Example
MTFILE *pfp;

pfp = find_pipe (“PIPE:pipe1”); /* get pipe handle */
if(!pfp)

error(“pipe1 not opened”);

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-5

6

mt_clearerr

Clears the end of file and error indicators.

void mt_clearerr(MTFILE * stream);

stream pointer to the stream file descriptor

The end of file and error indicators associated with stream are
cleared.

See also: rewind, feof, ferror

Example
FILE *fp;

/* open for read/write */
fp = mt_fopen(DEVICE_0, “r+b”);
mt_clearerr (fp);

I/O Function Descriptions6. Stream I/O Library

6-6 SuperTask! User’s Guide

mt_fclose

Closes an open path to a stream.

int mt_fclose(MTFILE * stream);

stream pointer to the stream file descriptor object

The mt_fclose() function returns zero if the stream was successfully
closed, or EOF if any errors were detected. For mt_fclose() to
successfully complete, the stream must be open and accessible by the
task making the mt_fclose() call. The stream output buffer will be
flushed before the device is closed. The device interrupts are disabled
when the device is closed, and any tasks waiting for the device I/O to
complete will be reactivated.

Return Value
0 file successfully closed

EOF error (file not open, or not in possession of task
making the call)

Example
MTFILE *fp;

fp = mt_fopen(“COM1”, “r+b”); /* open for read/write */
{ /* processing */ }

if(mt_fclose (fp))

 { /* file close error */ }

NOTE: If the task in possession of an open stream or streams
dies, or is killed (by klltsk()), all streams in the
possession of that task are closed.

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-7

6

mt_feof

Tests for end of file condition.

int mt_feof(MTFILE * stream);

stream pointer to the stream file descriptor object

The mt_feof() function returns non-zero if the stream is at end of
file. Once the EOF flag is set, it will only be cleared by a rewind() or
clearerr() function, or by closing the stream.

NOTE: This function is implemented as a macro in mtstdio.h.

Return Value
0 file is not at end

!0 file is positioned at end

Example
MTFILE *fp;
int i;

/* open for read/write */
fp = mt_fopen(“a:file1”, “r+b”);
while(! mt_feof (fp)){
 i = mt_fgetc(fp);
 /* etc. */

I/O Function Descriptions6. Stream I/O Library

6-8 SuperTask! User’s Guide

mt_ferror

Returns the file error indicator.

int mt_ferror(MTFILE * stream);

stream pointer to the stream file descriptor object

The mt_ferror() function returns non-zero if the error indicator is set
for the stream. The error indicator will be cleared by a rewind() or
clearerr() function, or by closing the stream.

NOTE: ANSI C does not specify under what conditions the
error indicator for the stream is set. In the current
implementation, only the driver level ever sets the
error indicator. You should generally rely on the return
status of each function to determine errors, and the
value of errno . Note also that errno is not cleared
by any ANSI C function. Once it is set non-zero, it is
up to you to clear it.

Return Value
0 no error

!0 some kind of error

Example
MTFILE *fp;
int i;

/* open for read/write */
fp = mt_fopen(DEVICE_0, “r+b”);
while(!mt_feof(fp)){
 i = mt_fgetc(fp);
 if(mt_ferror (fp))
 report_error(“File error occurred”);
 /* etc. */

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-9

6

mt_fflush

Flushes the output buffer of a stream.

int mt_fflush(MTFILE * stream);

stream pointer to the stream file descriptor object

The mt_fflush() function will cause the calling task to wait until any
remaining data in the stream output buffer has been transmitted to
the port or file. If the argument is NULL, then all open streams are
flushed.

Return Value
0 file successfully flushed

EOF error (file not open, or not accessible from the task
making the call)

Example
MTFILE *fp;

if(mt_fflush (fp))
 { /* file flush error */ }

I/O Function Descriptions6. Stream I/O Library

6-10 SuperTask! User’s Guide

mt_fgetc

Gets a character from a stream.

int mt_fgetc(MTFILE * stream);

stream pointer to the stream file descriptor

The mt_fgetc() function obtains the next character as an unsigned
char converted to an int , from the input stream pointed to by
stream .

Return Value
character the next character from the stream

EOF error (stream not opened or not in possession of
calling task)

Example
MTFILE *fp; /* open stream pointer */
int c;

c = mt_fgetc (fp); /* get character */
if(c == EOF)
 { /* stream error */ }

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-11

6

mt_fgetpos

Gets stream’s current position.

int mt_fgetpos(MTFILE * stream , fpos_t * position);

stream pointer to I/O stream

position position returned by function

The mt_fgetpos() function fills position with a value representing
the current position of the file pointer for stream . This is usually the
byte number from the beginning of the file. In the case of a file open
in text mode, this may not be the same as the actual number of bytes
you have read from the file. The position returned by
mt_fgetpos() should be used as an argument to mt_fsetpos() to
reposition a file to a former location.

See also: mt_fsetpos

Return Value
0 success

<>0 errno set to EBADFP or EUNSUP

Example
MTFILE *fp; /* open stream pointer */
fpos_t offset; /* place to remember position */
int status; /* for error value */

status = mt_fgetpos (fp, &offset);
if(status){ /* error code here */ }

/* read/write work with the file */
status = mt_fsetpos(fp,&offset);
if(status){ /* error code here */ }

/* we are now back at the same position */

I/O Function Descriptions6. Stream I/O Library

6-12 SuperTask! User’s Guide

mt_fgets

Gets a string from a stream.

char *mt_fgets (char * s, int n, MTFILE * stream);

s pointer to character array of at least size n

n maximum number of characters to read plus one
(for the null string terminator)

stream pointer to the stream file descriptor

The mt_fgets() function reads at most one less than the number of
characters specified by n from the stream pointed to by stream into
the array pointed to by s. No additional characters are read after the
new-line character (which is retained). A null character is written
immediately after the last character read into the array.

NOTE: The new-line character is defined in userio.h as
EOL_CHAR and is not necessarily the same as “\n”
produced by your C compiler. The default value of
EOL_CHAR is the ASCII carriage return (“\r ”) for sfm
and pipe devices, and new line (“\n”) for pcfm
devices.

See also: mt_fputs

Return Value
s operation successful

NULL error (stream not open, or not in our possession)

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-13

6

Example
MTFILE *fp; /* open stream pointer */
char buf[80];

if(mt_fgets (buf, 80, fp)){
 /* we have string */
}else{
 /* error processing */
}

I/O Function Descriptions6. Stream I/O Library

6-14 SuperTask! User’s Guide

mt_fopen

Opens a path to a stream.

MTFILE *mt_fopen(const char * name, const char * mode);

name pathname to device:[file]

mode type of access permitted

The mt_fopen() function opens a path to name and returns a pointer
to the MTFILE structure controlling the stream. The device
component part of name must appear in the device table
(device _tab). The additional name components, if any, must
conform to the rules for the type of device opened. If the operation
fails, a null pointer is returned. The mode string specifies the type of
access requested as follows:

“r” open text mode for reading

“w” create text mode for writing

“a” append (open/create for write at EOF)

“rb” open binary mode for reading

“wb” create or truncate for binary write

“ab” append binary (open/create for write at EOF)

“r+” open for update (read and write)

“w+” truncate or create for update

“a+” append (update at EOF)

“r+b” open binary mode for update

“w+b” truncate or create for binary update

“a+b” append; open/create for binary update at EOF

“d” open directory (USFiles only)

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-15

6

NOTE: Not all modes defined are meaningful for every
device; i.e., for sfm -controlled serial streams,
truncating or appending to a file is the same as just
opening it for write. Text mode translation is
implemented for pcfm (USFiles) streams and sfm
serial streams, but not for pipes.

See also: mt_fclose

Return Value
MTFILE * File descriptor pointer to be used as a “handle”

argument for all subsequent I/O calls for the device.

NULL Unable to open the device, possibly because the
device name was invalid, or the device is already in
the possession of another task. The value of the
global errno may contain additional error status.
See mtio.h for the error codes returned in errno .

Example
MTFILE *fp;

fp = mt_fopen (“COM1”, “r+b”); /* open for r/w binary mode */

if(!fp)

 { /* error opening device */ }

I/O Function Descriptions6. Stream I/O Library

6-16 SuperTask! User’s Guide

mt_fprintf

Sends formatted output to a stream.

int mt_fprintf(MTFILE * stream , const char * format , ...);

stream output stream file descriptor pointer

format format specification string

... arguments to be formatted for output

The mt_fprintf() function writes output to the stream pointed to by
stream , under control of the string pointed to by format that
specifies how subsequent arguments are converted for output. If there
are insufficient arguments for the format , the behavior is undefined.
If the format is exhausted while arguments remain, the excess
arguments are ignored. The mt_fprintf function returns when the end
of the format string is encountered.

The format must be a multibyte character sequence composed of
zero or more directives. A directive is one or more white-space
characters, ordinary characters (not %) that are copied unchanged to
the output stream, or a conversion specification. A conversion
specification is introduced by the character %, and has the following
format:

%[flags][width][precision][mod]type

flags - left-justify result
+ always prefix with + or -
space prefix with a blank if non-negative
alternate form conversion

width n prints at least n characters, pad with spaces
0n prints at least n characters, pad with zeros
* next argument that must be type int ; is

consumed from the args list and used as the
width specifier

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-17

6

precision
(default) =1 for d,i,o,u,x,X

 =6 for e,E,f
.0 no decimal point for e,E,f
.n n decimal places or characters are printed

mod h short int for types: d,i,o,u,x
l long int for types: d,i,o,u,x

double for types: e,f,g
L same as l

type c int converted to unsigned char printed
d signed decimal int
e signed exponential
f signed floating point
g same as e or f based on value and precision
i signed decimal int
n argument is a pointer to int into which is

written number of char s written to stream so far
o octal unsigned int
p pointer
s string
u decimal unsigned int
x hexidecimal unsigned int (a..f)
X hexidecimal unsigned int (A..F)

Return Value
+n number of characters written

EOF output error (stream not open or not accessible)

Example
MTFILE *fp; /* open stream pointer */
int count,i,j;
double x,y;
count = mt_fprintf (fp,”i = %d, (%04X hex), x=%e\r\n”,i,i,x);

I/O Function Descriptions6. Stream I/O Library

6-18 SuperTask! User’s Guide

mt_fputc

Writes a character to a stream.

int mt_fputc(int c , MTFILE *stream);

c character to be output

stream pointer to the stream file descriptor object

The mt_fputc() function writes the character specified by c
(converted to an unsigned char) to the output stream pointed to by
stream . The mt_fputc() function returns the char acter written
unless an error occurs, in which case it returns EOF.

See also: mt_fgetc

Return Value
character next character from the stream

EOF error (stream not opened or not in possession of
calling task)

Example
MTFILE *fp; /* open stream pointer */
int c;

if(mt_fputc (c,fp) == EOF)
 { /* stream error */ }

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-19

6

mt_fputs

Writes a string to a stream.

int mt_fputs(const char *s , MTFILE *stream);

s pointer to the string to write

stream pointer to the stream file descriptor

The mt_fputs() function writes the string pointed to by s to the stream
pointed to by stream . The terminating null of s is not written. The
number of characters written is returned unless a write error occurs,
in which case EOF is returned. (NOTE: The ANSI C standard
specifies only that a non-negative value is returned in the normal
case.)

See also: mt_fgets

Return Value
count number of characters written

EOF error (stream not opened for write or not in
possession of calling task)

Example
MTFILE *fp; /* open stream pointer */

if(mt_fputs (“Hello there”,fp) == EOF)
 { /* write error handling */ }

I/O Function Descriptions6. Stream I/O Library

6-20 SuperTask! User’s Guide

mt_fread

Reads bytes from a stream.

int mt_fread(void *ptr , int size , int nmemb, MTFILE
 * stream);

ptr pointer to the buffer to receive data

size size in bytes of each element

nmemb number of elements

stream stream object pointer

The mt_fread() function attempts to read nmemb elements of size
bytes into the array pointed to by ptr , from stream . The actual
number of elements read is returned. Note that the number of
elements returned will be equal to nmemb unless the EOF is reached
or some error occurs.

See also: mt_fwrite

Return Value
+n number of elements actually read

EOF end of file reached or some other error

Example
MTFILE *fp; /* open stream pointer */
char buf[80];

if(mt_fread (buf, 1, 80, fp) != 80)
 { /* incomplete read */ }

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-21

6

mt_fseek

Repositions file pointer.

int mt_fseek(MTFILE * stream , long offset , int location);

stream pointer to I/O stream

offset number of bytes to offset from location to
determine new file pointer position

location file position from which to add offset
SEEK_SET (0) - beginning of file
SEEK_CUR (1) - current file pointer position
SEEK_END (2) - end of file

The mt_fseek function repositions the file pointer for stream by
offset bytes from location . If the stream is text mode, offset
should be 0 or the value returned by mt_ftell(). The value in
location should be SEEK_SET for beginning of file, SEEK_CUR
for current file pointer position, or SEEK_END for end of file.

See also: mt_ftell

Return Value
0 file pointer successfully repositioned

<>0 reposition error (stream not open or not the owner)

Example
MTFILE *fp; /* open stream pointer */
int status;
/* Note: second arg below is 30”ell” */

status = mt_fseek (fp,30l,SEEK_SET);

I/O Function Descriptions6. Stream I/O Library

6-22 SuperTask! User’s Guide

mt_fsetpos

Sets stream’s current position (byte offset from beginning of file).

long int mt_fsetpos(MTFILE * stream , const fpos_t * pos);

stream pointer to I/O stream

pos new position to set

The mt_fsetpos() function sets the file pointer associate with stream
to the new position pos . The new position is the value obtained by a
previous call to mt_fgetpos() on that stream. The reason for the
existence of fgetpos() and fsetpos() (in addition to fseek) is that if you
want to position to a file in text mode, you cannot necessarily find a
position by counting the characters you have written out because text
mode translation may change that number, in which case you can only
use fgetpos() to find a current position and then return there later with
fsetpos().

See also: mt_fgetpos

Return Value
0 success

non-zero failure, with the global variable errno set to a
non-zero error code

Example
MTFILE *fp; /* open stream pointer */
fpos_t offset; /* place to remember position */
int status; /* for error value */

status = mt_fgetpos(fp, &offset);
if(status){ /* error code here */ }
/* read/write work with the file */
status = mt_fsetpos (fp,&offset);
if(status){ /* error code here */ }
/* we are now back at the same position */

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-23

6

mt_ftell

Gets current file position.

long int mt_ftell(MTFILE * stream)

stream pointer to I/O stream

The mt_ftell() function returns the value of the file pointer for
stream . The file pointer contains a value that specifies the current
position of the file as the byte offset from the beginning of the file.

See also: mt_fseek

Return Value
offset value of file pointer on success

-1 errno set positive on failure

Example
MTFILE *fp; /* open stream pointer */
long offset;
int i;
double x;

offset = mt_ftell (fp);
status = mt_fseek(fp,offset,SEEK_SET);

I/O Function Descriptions6. Stream I/O Library

6-24 SuperTask! User’s Guide

mt_fwrite

Writes to a stream.

int mt_fwrite(const void *ptr , int size , int nmemb,
MTFILE * stream);

ptr pointer to the data to write

size size of each data item

nmemb number of data items

stream pointer to the stream file descriptor

The mt_fwrite() function writes, from the array pointed to by ptr , up
to nmemb elements of size bytes each, to stream . The number of
elements actually written is returned, which will be less than nmemb
only if an error occurred. If the stream is not open or not accessible
to the calling task, EOF will be returned.

See also: mt_fread

Return Value
count number of items written

EOF error (stream not opened for write or otherwise not
accessible by the calling task)

Example
MTFILE *fp; /* open stream pointer */
int count;
int data[10];

count = mt_fwrite (data, sizeof(int), 10, fp);
if(count < 10)
 { /* write error occurred */ }

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-25

6

mt_mkdir

Creates a new directory.

int mt_mkdir(const char * path)

path complete pathname of the directory to create

The mt_mkdir() function creates a new directory from the given
pathname path .

Return Value
0 success

EOF error, and global variable errno set to a non-zero
error code (errno codes are defined in mtio.h)

Example
int status

status = mt_mkdir (“a:\\thisdir/thatdir/newdir”);
if(status)
 { /* mkdir error occurred */ }

NOTE: US Files accepts either ‘\’ or ‘/’ characters as name
separators interchangeably.

I/O Function Descriptions6. Stream I/O Library

6-26 SuperTask! User’s Guide

mt_printf

Formats output to stdout stream.

int mt_printf(const char * format , ...);

format format specification string

... arguments to be formatted for output

The mt_printf() function writes output to the stdout stream, under
control of the string pointed to by format that specifies how
subsequent arguments are converted for output. The mt_printf() call
behaves exactly like an mt_fprintf() call with stdout specified as the
stream, and indeed it is implemented as this. See mt_fprintf() for
further information on the format specification. The definition of
stdout is in the file mtstdio.h and may be modified by the user to
be any device.

NOTE: stdout is not automatically opened.

Return Value
+n number of characters written

EOF output error (stream not open or not the owner)

Example
FILE *fp; /* open stream pointer */
int count;
int i,j;
double x,y;

 count = mt_printf (“i = %d, (%04X hex), x=%e\r\n”,i,i,x);

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-27

6

mt_remove

Deletes a file.

int mt_remove(const char * pathname);

pathname complete pathname to the file

The mt_remove() function deletes a file specified by pathname . A
complete pathname, including the device name, must be specified.

Return Value
0 success

EOF error condition, with the global variable errno set
to the specific error code

Example
if(mt_remove (“a:\\subdir\\thisfile.txt”))

 printf(“errno = %d\n”, errno);

I/O Function Descriptions6. Stream I/O Library

6-28 SuperTask! User’s Guide

mt_rename

Renames (or moves) a file or subdirectory.

int mt_rename(const char * oldname , const char * newname);

oldname pathname to an existing file

newname new pathname to give file

The mt_rename() function changes the name of the file oldname to
newname. A complete pathname must be given for both, which must
be on the same device (drive). Subdirectories can be renamed. The
newname does not need to be in the same directory as oldname . The
effect in this case is that of moving the file to the new directory (and
possibly renaming it in the process).

Return Value
0 success

EOF error condition, with the global variable errno set
to the specific error code

Example
if(mt_rename (“a:\\file1.txt”,”a:\\file2.txt”))

 printf(“errno = %d\n”, errno);

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-29

6

mt_rmdir

Removes a subdirectory.

int mt_rmdir(const char * pathname);

pathname the complete pathname of the directory to delete

The mt_rmdir() function removes the directory specified by
pathname from the file system. The directory must be empty or an
error is returned. An attempt to remove the root directory returns an
error.

See also: mkdir()

Return Value
0 success

EOF error, and global variable errno set to a non-zero
error code

Example
int status

status = mt_rmdir (“a:\\thisdir/thatdir/newdir”);
if(status)
 { /* rmdir error occurred */ }

NOTE: US Files accepts either ‘\’ or ‘/’ characters as name
separators interchangeably.

I/O Function Descriptions6. Stream I/O Library

6-30 SuperTask! User’s Guide

mt_sprintf

Formats output to a string.

int mt_sprintf(char * s, const char * format , ...);

s pointer to string to receive output

format format specification string

... arguments to be formatted for output

The mt_sprintf() function writes output to the string pointed to by s,
under control of the string pointed to by format that specifies how
subsequent arguments are converted for output. The mt_sprintf() call
behaves exactly like mt_fprintf() except that the output is written to
the string s rather than a stream.

See also: mt_fprintf() for further information on the format specifi-
cation

Return Value
+n number of characters written

EOF output error (stream not open or not accessible)

Example
MTFILE *fp; /* open stream pointer */
int count;
int i,j;
double x,y;
char line[100];

count = mt_sprintf
(line,”i = %d, (%04X hex), x=%e\r\n”,i,i,x);

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-31

6

mt_sscanf

Formats conversion from a string.

int mt_sscanf(const char *s , const char *format , ...);

s pointer to string containing input characters

format format specification string

... pointers to objects to receive input items

The mt_sscanf() function reads input from the string pointed to by s,
under control of the string pointed to by format that specifies the
admissible input sequences and how they are to be converted for
assignment, using subsequent arguments as pointers to the objects to
receive the converted input. If there are insufficient arguments for the
format , the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are ignored.

The format shall be a multibyte character sequence composed of zero
or more directives. A directive is: One or more white-space
characters, an ordinary character (neither a % nor a white-space), or a
conversion specification. A conversion specification is introduced by
the character % and has the following format:

%[flags][width][mod] type

flags * suppresses assignment of next field

width n maximum number of characters that will be read

mod h short int for types: d,i,o,u,x
l long int for types: d,i,o,u,x

double for types: e,f,g
L same as l

I/O Function Descriptions6. Stream I/O Library

6-32 SuperTask! User’s Guide

type c single character
d signed decimal int
e signed exponential
f signed floating point
g same as e or f based on value and precision
i signed decimal, octal, or hex int

(e.g. 123, 0123, 0x123)
[abc] matches characters in set or...
[^ab] matches characters NOT in set
n int to receive count of char s consumed so far
p pointer
s string

Return Value
+n number of input items assigned {0..n}

EOF failure

Example
MTFILE *fp; /* open stream pointer */
char buf[80];
int count, arg[4];

mt_fgets(buf, 80, fp); /* read string */
count = mt_sscanf
(buf,”%d %d %d %d”,&arg[0], &arg[1], &arg[2], &arg[3]);

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-33

6

mt_vsprintf

Formats output to string.

#include < stdarg.h >

int mt_vsprintf(char * s, const char * format , va_list arg);

s pointer to string to receive output

format format specification string

arg list of arguments to be formatted for output

The mt_vsprintf() function is equivalent to mt_sprintf(), with the
variable argument list replaced by arg , which shall have been
initialized by the va_start macro (and possibly subsequent va_arg
calls). The mt_vsprintf() function returns the number of characters
written in the array, not counting the terminating null character.

Return Value
+n number of characters written

EOF output error (stream not open or not accessible)

Example
MTFILE *fp; /* open stream pointer */
int count;
int i;
double x;
void *args[3];

args[0] = &i;
args[1] = &i;
args[2] = &x;

count = mt_vsprintf
(line,”i = %d, (%04X hex), x=%e\r\n”,&args[0]);

I/O Function Descriptions6. Stream I/O Library

6-34 SuperTask! User’s Guide

timed_getc

Gets a character from a stream with timeout.

#include “timedin.h”

int timed_getc(MTFILE * fp , uint timeout);

fp pointer to the stream file descriptor object

timeout maximum clock ticks to wait for char

The timed_getc() function obtains the next character as an unsigned
char converted to an int from the input stream pointed to by fp . If
timeout clock ticks elapse with no input available, a value of
E_TIMED_OUT is returned instead of a character from the stream.

This input function with timeout works with any MultiTask! interrupt-
driven serial (sfm) stream driver. To use this function, #include
timedin.h in your source file for the function prototype. (This
function does not work with pcfm or pipefm paths.)

See also: timed_read, timed_readln

Return Value
character next character from the stream

EOF error (stream not opened or not accessible by
calling task)

E_TIMED_OUT timeout expired before character received

Example
MTFILE *fp; /* open stream pointer */
int c;

c = timed_getc (fp, 5); /* get character */
if(c == E_TIMED_OUT)
 { /* timeout occurred */ }

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-35

6

timed_read

Reads a block with timeout.

#include “timedin.h”

int timed_read(MTFILE * fp , char * buf , int bytes , int
timeout);

fp pointer to the stream file descriptor

buf pointer to char buffer

bytes number of bytes to transfer

timeout maximum clock ticks to wait for char

The timed_read() function reads the number of bytes specified by
bytes from the stream specified by fp into the buffer pointed to by
buf . If the input data is not already available in the interrupt input
buffer, then the task will sleep until the specified number of bytes is
received or timeout clock ticks elapse with no new input. The
timed_read() function returns the number of bytes actually read. If
this is less than the bytes requested, then some sort of error
occurred. A return value of zero could result from the stream not
being open, or the calling task not having access permission, or a
timeout with no input available. If a timeout occurs, then the
return value could be any value less than bytes .

This input function with timeout works with any MultiTask!
interrupt-driven serial (sfm) stream driver. It will not work with and
should not be used with pcfm (disk) or pipefm (pipe) paths. To use
this function, be sure to #include timedin.h in your source file for
the function prototype.

See also: timed_getc, timed_readln

Return Value
n number of bytes actually returned

I/O Function Descriptions6. Stream I/O Library

6-36 SuperTask! User’s Guide

Example
MTFILE *fp; /* open stream pointer */
char buf[40];
int count;

count = timed_read (fp,buf,40,10);
if(count < 40)
 /* timeout */

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide 6-37

6

timed_readln

Reads a line with timeout.

#include “timedin.h”

int timed_readln(FILE * fp , char * buf , int bytes , int
 timeout);

fp pointer to the stream file descriptor
buf pointer to char buffer
bytes number of bytes to transfer
timeout maximum clock ticks to wait for char

The timed_readln() function reads at most the number of bytes
specified by bytes from the stream specified by fp into the buffer
pointed to by buf . The timed_readln() function will terminate early
if the EOL_CHAR is read. In all other respects, this call is the same as
the timed_read() function.
This input function with timeout works with any MultiTask! interrupt-
driven serial (sfm) stream driver. It will not work with and should
not be used with pcfm (disk) or pipefm (pipe) paths. To use this
function, be sure to #include timedin.h in your source file for the
function prototype.

See also: timed_getc, timed_read

Return Value
n number of bytes actually returned

I/O Function Descriptions6. Stream I/O Library

6-38 SuperTask! User’s Guide

Example
MTFILE *fp; /* open stream pointer */
char buf[81];
int count;

count = timed_readln (fp,buf,80,10);
buf[count] = 0; /* add terminating null */
if(count < 80)
 /* timeout */

I/O Function Descriptions 6. Stream I/O Library

SuperTask! User’s Guide A-1

A

A. Platform-Specific
Information

Chapter Contents

ARM/StrongARM Platform ..A-3
Evaluation Platforms ..A-3
The Makefile ...A-3

Support for StrongARM EBSA-285 Evaluation BoardA-3
Support for ARM7 PIE Board ..A-4

Special Issues ..A-6
ARM Operating Modes ..A-6

Interrupt Considerations ...A-7
IRQ Interrupt Handling ..A-7
FIQ Handling ..A-7
SWI Handling ...A-7

M*Core ..A-9
Evaluation Platforms ..A-9
The Makefile ...A-9
Special Issues ..A-10
Interrupt Considerations ...A-11

MIPS Platform ..A-12
The Makefile ...A-12
Interrupt Considerations ...A-12

R3000 Support ..A-12
R4650 Support ..A-15
NEC 4373 ...A-18

A-2 SuperTask! User’s Guide

PowerPC Platform..A-20
Evaluation Platforms ..A-20
The Makefile ...A-20
Special Issues ..A-22
Interrupt Considerations ...A-22
IBM PPC403GA Test environment ..A-23

SH Platform ..A-25
Evaluation Platforms ..A-25
The Makefile ...A-25
Notes on SH1 Support ..A-26
Notes on SH2 Support ..A-27
Notes on SH3 Support ..A-27

386 Protected Mode ..A-31
Evaluation Platforms ..A-31
The Makefile ...A-32
Hardware-Dependent Configuring ...A-33

68xxx Platform ..A-35
Special Issues ..A-35

Figure A-1: Task stack space allocationA-36
Interrupt Considerations ...A-39

80960 (i960) Platform ...A-42
The Makefile ...A-42
Special Issues ..A-45
Interrupt Considerations ...A-46

80x86 Platform ..A-47
Evaluation Platforms ..A-47
The Makefile ...A-47
Special Issues ..A-48
Interrupt Considerations ...A-54

SuperTask! User’s Guide A-3

A

ARM/StrongARM Platform

Evaluation Platforms

ARM7 PIE
Processor: ARM7*
Compiler: ARM SDT*
Debugger: EmbeddedICE*

EBSA-285
Processor: StrongARM*
Compiler: ARM SDT
Debugger: Angel Debug Monitor*

The Makefile

Be sure to set PTH (and IPTH , if necessary) before compiling.
TRG_ID = 0 selects ARM7 PIE, and TRG_ID = 3 selects EBSA-285.

Support for StrongARM EBSA-285 Evaluation Board

The support for running on the StrongARM EBSA-285 Evaluation
Board is selected by setting the macro TRG_ID = 3 in the makefile
before compiling.

Test Setup:
The EBSA-285 board is plugged into the System PCI slot of the
Digital Semiconductor PCI Development Backplane.

A. Platform-Specific Information ARM/StrongARM Platform

A-4 SuperTask! User’s Guide

A PC serial port is connected to the serial port on the EBSA-285 with
a null modem cable. The port is set up for 9600 baud, 8 data-bits, no
parity, and 1 stop-bit.

SuperTask! has been configured to run under the control of the Angel
debug monitor, which interacts with a symbolic debugger running on
a host PC running Windows*. The debug monitor uses the FIQ
interrupt but leaves the IRQ free for the application to use.
SuperTask! uses the IRQ for its timer interrupt.

SuperTask! uses SWI interrupts, but we need to retain the SWI
interrupt handling provided by the debug monitor so that SuperTask!
can chain the debug monitor SWI interrupt handler, enabling it to
execute if SuperTask! does not recognize the SWI.

SuperTask! uses the debug monitor character I/O capability for output
of diagnostic messages, because the EBSA-285 has only one serial
port. Since the debug monitor uses FIQ for all its interrupt
processing, including serial I/O, a large amount of character output
can have an effect on overall system performance and IRQ interrupt
response.

The debugger can be invoked from the DOS command line like this:

armsd -ADP -Port h=0,s=2 -LINEspeed 9600 my_program.aif

Support for ARM7 PIE Board

The support for running on the ARM7 PIE* board is selected by
setting the macro TRG_ID = 0 in the makefile before compiling.

Test setup:
EmbeddedICE connected to ARM7 PIE board JTAG port.

PC (or SUN) serial port connected to EmbeddedICE.

ARM7 PIE card serial port connected to 9600 baud terminal.

ARM/StrongARM Platform A. Platform-Specific Information

SuperTask! User’s Guide A-5

A

The scc2691 interrupt on the PIE card must be vectored to the IRQ
rather than the FIQ for all MT! code to run. This must be done by
moving LK5 on the board from the B setting to the A setting.
(Unfortunately this jumper is soldered to the board so you will need a
soldering pencil to change it. There appear to be through-holes in the
board connected to each leg of the jumper settings, so alternately you
could use 30-gauge wire-wrap wire and solder a switch to these. This
would allow quick switching between the two settings if you still need
to run code requiring the B setting also.)

(Note: The monitor EPROM u16 must be removed from the PIE card
for running with EmbeddedICE attached. This requires the use of a
plcc extraction tool.)

It is essential that $semihosting _enabled variable of armsd be
set to 0 (off) to run all test programs provided. If this is not done, the
EmbeddedICE will intercept the SWI interrupt.

We have found the following command sequence to work:

C:\ajunk>armsd -serial -li

A.R.M. Source-level Debugger vsn 4.45b (ARM Toolkit v2.0) [Oct 4 1995]

EmbeddedICE v1.03, 512kB RAM, ROM CRC OK, Little Endian

ARMSD: 0x00000018 = 0xE1A00000

ARMSD: 0x0000001C = 0xE14FD000

ARMSD: 0x00000020 = 0xE38DD0C0

ARMSD: 0x00000024 = 0xE169F00D

ARMSD: 0x00000028 = 0xE25EF004

ARMSD: $semihosting_enabled=0

ARMSD: load coretest.aif

ARMSD: go

A. Platform-Specific Information ARM/StrongARM Platform

A-6 SuperTask! User’s Guide

NOTE: The first five lines starting with ARMSD: are from the
armsd.ini file, which must be in the current directory
to be found. The last three lines are typed in by you.
All of the test programs (coretest, mtbench, pipetest,
siotest, tintest) begin by writing a line of text out the
serial port, so after you enter go you should see
something on the attached terminal.

The serial port is programmed to 9600 baud, 8 data-bits, no parity, 1
stop-bit.

Special Issues

ARM Operating Modes

All tasks are run in USER32 mode. The MT! kernel itself is an
extension of the task making the service call, and is therefor also in
USER32 mode. We have provided an SWI service call that can be
used for masking interrupts or changing into supervisor (SVC32)
mode temporarily when necessary.

Supervisor mode might be necessary for accessing regions of memory
that are accessible only in this mode. For instance, on the ARM7 PIE
board, the serial port is mapped into supervisor memory space, so it
can only be accessed when the CPU is in supervisor mode (any mode
except USER32).

The scheduler entry (MTsched) can be entered from IRQ32 mode,
i.e.; for an IRQ handler, but not from FIQ32 mode. The fast interrupt
mode (FIQ32) is reserved for use by interrupt handlers that will not
be entering the scheduler. This is with keeping in the overall intent of
the FIQ32 interrupt mode, that it should provide the quickest possible
interrupt response.

The MT! OS never masks the FIQ32 interrupt.

The IRQ32 interrupt is masked very briefly in some instances.

ARM/StrongARM Platform A. Platform-Specific Information

SuperTask! User’s Guide A-7

A

Interrupt Considerations

IRQ Interrupt Handling

In order to provide the best possible performance when task switching
from the IRQ32 interrupt, the IRQ_Handler saves all registers
immediately on the task’s user-mode stack. The handler then vectors
to the usrclk() or another individual service routine.

The specific service routine can either return from the interrupt with a
mov pc,lr instruction, or branch to Mtsched, which is the scheduler
entry point.

The usrclk() handler branches to MTtick, which is optimized code to
queue the TIKTOK command (clock processing) and then continues to
MTsched, which processes the command queue, thus acting on the
queued command immediately. This allows the easiest recoding of
the usrclk() function itself to support a different interrupt source as
the system clock. An alternate usrclk() function need only
acknowledge the interrupt if necessary and then branch to MTtick.

FIQ Handling

The FIQ interrupt is not used in any of our test programs. The user
can devise their own handler for this interrupt with the one condition
that the FIQ interrupt handler must not branch to MTsched.

SWI Handling

A software interrupt service routine is provided which duplicates the
“demon” SWI_WriteC(), SWI_ReadC(), and SWI_Exit functions.
The exit function only hangs in a loop where you can break execution
if using the EmbeddedICE.

A. Platform-Specific Information ARM/StrongARM Platform

A-8 SuperTask! User’s Guide

Another function, change_cpsr, is also provided. It is used to
implement several macros essential to the MT! implementation.
These are:

MASK_INTS() disables the IRQ interrupt.

UNMASK_INTS() enables the IRQ interrupt.

SAVE_AND_MASK_INTS() disables the IRQ interrupt saving
previous state.

RESTORE_INT _MASK() restores IRQ interrupt mask to the state
when the SAVE_AND_MASK_INTS() macro
was called.

ENTER_SUPERVISOR_MODE() switches to SVC32 mode.

LEAVE_SUPERVISOR_MODE() switches to USER32 mode.

ARM/StrongARM Platform A. Platform-Specific Information

SuperTask! User’s Guide A-9

A

M*Core

Evaluation Platforms

PowerStrike MMC2001
Processor: MMC2001
Compiler: Diab Data 4.2b
Debugger: Single Step* 7.41

Red Cap 56651
Processor: 56651
Compiler: Diab Data 4.2b
Debugger: Single Step 7.3

The Makefile

Modify PTH to point to your tool chain, and CVER to specify the tool
chain version number.

Setting TRG_ID = 1 selects the PowerStrike MMC2001, and
TRG_ID = 2 uses the Red Cap 56651.

A. Platform-Specific Information M*Core

A-10 SuperTask! User’s Guide

Special Issues

CPU Notes

Red Cap Issues
Red Cap has an early rev part with some problems. The divide
instruction is not implemented for M*Core rev. 1.0. The breakpoint
is shaky, which SDS had to work around. We ran into this issue in a
couple of places. In particular, Console I/O to SDS/SS is very shaky
— use the external UART support in getput20.

Also, the Red Cap chip is designed with the JTAG sharing pins with
the internal UART. Since SDS/SS can only work via the JTAG, we
could not try the UART. Thus both the Stream-I/O driver and the
internal UART option in getput20 have not been tested.

Stack Size
There is a brief (1 sentence) note in the C calling convention guide
that the stack should be modified by multiples of 8 bytes. The current
interrupt and task-switch code does not follow that convention. At
some point, Motorola may finalize the M*Core Reference Manual
and provide some Assembly Programming Guides.

Software Breakpoints in Single Step
When running under an HP-Probe and Single Step, the system
occasionally gets a ‘software breakpoint’ and loses it. This shows up
as pc: ???unknown . SDS is aware of the problem.

M*Core A. Platform-Specific Information

SuperTask! User’s Guide A-11

A

Interrupt Considerations

Interrupt Vectoring
The M*Core 2001 does not vector interrupts. So we have a vectoring
facility in intrpt1.c that allows the drivers to ‘register’ some non-
interrupt subroutines. The vectoring code handles the jump to the
scheduler too. Thus we only support ‘handler’ style interrupts.

Interrupts and the Diab Data Compiler
The early Diab Data compiler (4.1a) available for this port does not
handle the M*Core interrupts properly. The compiler assumes all
exceptions are ‘fast’ style, which is invalid for traps. The next version
(4.2b) supports command-line selection between ‘normal’ and ‘fast’
styles. This does not help much since the intrpt.c module has both
styles in a single module.

Diab Data 4.2b is out with some fixes for the interrupt problems. The
Red Cap support has been partially upgraded to support both interrupt
levels, but some work is still needed.

The interrupt interfacing has been localized in the intrpt.c module.
The other modules (ticker and UART) register their interrupts via a
setvect type call. MTtick: has not been provided since the ticker is
in C. MTsched: needs modification to comply with the Diab Data
limitations.

If you use assembly language interrupts and do not want to do a lot of
work, change MTsched: in MTsched.s to use rfi as the exit
instruction.

See also: For further information, see the files cpunotes.txt and
compnote.txt in the SuperTask! installation directory.

A. Platform-Specific Information M*Core

A-12 SuperTask! User’s Guide

MIPS Platform

The Makefile

You might need to set the PTH macro to point to your tool chain
directory. The TRG_ID macro will specify the proper board as
follows:

TRG_ID = 1 is for 79R385
TRG_ID = 2 is for 79S461/P400i
TRG_ID = 3 selects IDT v7.13 for 79S465
TRG_ID = 4 is for NEC 4373

Interrupt Considerations

R3000 Support

Interrupt Handling
The interrupt handling code used by MultiTask! resides in the file
usrclk.s (or usrclk.S for GNU tools).

With the EPI tools, the debugger (ROMS) have already implemented
handling of the general exception vector, so hardware interrupt
handlers have to change back to the debugger’s handlers for other
exceptions. The usrclk_init() function attaches to the general
exception vector and sets up the structures used by EPI so it can chain
to the previous handler for exceptions we don’t want to handle.

The version of usrclk.s provided for the GNU tools simply takes over
the general exception vector. (You must add code to handle the
exceptions other than hardware interrupts.)

In both cases, the general exception will enter the int_dispatch()
function also in usrclk.s.

MIPS Platform A. Platform-Specific Information

SuperTask! User’s Guide A-13

A

The int_dispatch function will create a stack frame and save most
CPU registers, then read the C0_CAUSE register for the source of the
interrupt. If the EXC CODE = 0, then the IP field is used to vector to
one of 8 interrupt sources. The vectors for these are placed in the
vector table xint_dispatch_table beforehand. The small
lookup table offtab is used to prioritize the interrupts so than IP7 is
the highest and IP0 is the lowest priority. If the vector table entry for
the particular interrupt being asserted is zero, then int_dispatch
chains to the next exception handler. If it is not zero, a call to the
function at the vector address is made.

The interrupt handler called can be in C or assembly. If the handler is
in assembly, you must take care to preserve the registers that are
normally preserved by C, if these are to be used. See the following
list showing the stack frame and registers saved by xint_dispatch.

If a jump to MTsched is made from the interrupt handler instead of
returning, then the stack must be as set up by int_dispatch before this
jump is made.

NOTE: The usrclk function provided essentially does this
through the helper function Mttick, which queues the
clock tick command.

MultiTask! Version 6.xx MIPS (R3000)
The following list shows the register stack frame saved by
int_dispatch() before calling the interrupt handler (— indicates
nothing saved at this location).

Location: Register Saved
$29+offset

sp+31*4+16 $31 (ra)

sp+30*4+16 —

sp+29*4+16 —

sp+28*4+16 $28 (gp)

sp+27*4+16 C0_SR

A. Platform-Specific Information MIPS Platform

A-14 SuperTask! User’s Guide

Location: Register Saved
$29+offset

sp+26*4+16 C0_EPC

sp+25*4+16 $25 (t9)

sp+24*4+16 $24 (t8)

sp+23*4+16 —

sp+22*4+16 —

sp+21*4+16 —

sp+20*4+16 —

sp+19*4+16 —

sp+18*4+16 —

sp+17*4+16 —

sp+16*4+16 —

sp+15*4+16 $15 (t7)

sp+14*4+16 $14 (t6)

sp+13*4+16 $13 (t5)

sp+12*4+16 $12 (t4)

sp+11*4+16 $11 (t3)

sp+10*4+16 $10 (t2)

sp+9*4+16 $9 (t1)

sp+8*4+16 $8 (t0)

sp+7*4+16 $7 (a3)

sp+6*4+16 $6 (a2)

sp+5*4+16 $5 (a1)

sp+4*4+16 $4 (a0)

MIPS Platform A. Platform-Specific Information

SuperTask! User’s Guide A-15

A

Location: Register Saved
$29+offset

sp+3*4+16 $3 (v1)

sp+2*4+16 $2 (v0)

sp+1*4+16 $1 (at)

sp+0*4+16 — (used by isr0() to save ra)

sp+12 reserved for called function use

sp+8 reserved for called function use

sp+4 reserved for called function use

sp+0 reserved for called function use

Registers s0..s8 (r16..r23,r30) are not saved. These will be
automatically saved by any C-level interrupt handler the user has
installed which is called by int_dispatch(). If int_dispatch() is to call
an assembly-level handler, you must take care to preserve these
registers. The four words at sp+0..sp+12 allow you to call a C
handler function taking up to four word-sized arguments. The C
compiler generates code to store the arguments in these locations.

R4650 Support

For the IDT79R4650, support files are provided only for the GNU
tool set (UNIX workstation). The release diskette is in PC (DOS)
format and contains an install shell script which will copy the files to
the workstation using the dos2unix command. Please examine the
script comments for the usage syntax.

If you use the script to install these files, you will get support file
versions for both the R3000 and R4650. The makefile is for the
R3000, and makefile.4 is for the R4650. If you are using the R4650,
you might want to rename makefile.4 to makefile, and discard the
R3000 version.

A. Platform-Specific Information MIPS Platform

A-16 SuperTask! User’s Guide

Interrupt Handling
The interrupt handling for the 4650 is similar to what was described
above for the R3000, with the following differences:

• The alternate vector for the external interrupts is used. This is
done by setting the IV bit in the Cause register in the usrclk_init
function.

• The system clock interrupt is implemented with the internal
COUNT and COMPARE registers (which use xint5).

• The int_dispatch routine saves 64-bit registers rather than 32-bit.
(See the stack frame diagram below.)

MultiTask! Version 6.xx MIPS (R4650)
The following list shows the register stack frame saved by
int_dispatch() before calling interrupt handler (— indicates nothing
saved at this location).

Location: Register Saved
$29+offset

sp+31*8+32 $31 (ra)

sp+30*8+32 —

sp+29*8+32 —

sp+28*8+32 $28 (gp)

sp+27*8+32 C0_SR

sp+26*8+32 C0_EPC

sp+25*8+32 $25 (t9)

sp+24*8+32 $24 (t8)

sp+23*8+32 —

sp+22*8+32 —

MIPS Platform A. Platform-Specific Information

SuperTask! User’s Guide A-17

A

Location: Register Saved
$29+offset

sp+21*8+32 —

sp+20*8+32 —

sp+19*8+32 —

sp+18*8+32 —

sp+17*8+32 —

sp+16*8+32 —

sp+15*8+32 $15 (t7)

sp+14*8+32 $14 (t6)

sp+13*8+32 $13 (t5)

sp+12*8+32 $12 (t4)

sp+11*8+32 $11 (t3)

sp+10*8+32 $10 (t2)

sp+9*8+32 $9 (t1)

sp+8*8+32 $8 (t0)

sp+7*8+32 $7 (a3)

sp+6*8+32 $6 (a2)

sp+5*8+32 $5 (a1)

sp+4*8+32 $4 (a0)

sp+3*8+32 $3 (v1)

sp+2*8+32 $2 (v0)

sp+1*8+32 $1 (at)

sp+0*8+32 — (used by isr0() to save ra)

sp+24 reserved for called function use

A. Platform-Specific Information MIPS Platform

A-18 SuperTask! User’s Guide

Location: Register Saved
$29+offset

sp+16 reserved for called function use

sp+8 reserved for called function use

sp+0 reserved for called function use

Registers s0..s8 (r16..r23,r30) are not saved. These will be
automatically saved by any C-level interrupt handler the user has
installed which is called by int_dispatch(). If int_dispatch() is to call
an assembly-level handler, you must take care to preserve these
registers. The four double words at sp+0..sp+24 allow you to call
a C handler function taking up to four double-word-sized (64-bit)
arguments. The C compiler generates code to store the arguments in
these locations.

NEC 4373

The chip has 32 integer/address registers with 64 bits each. There is
also a set of 32 floating point registers with 64 bits each. The context
switch saves and restores most of the integer registers. If you use
floats, then you must add similar code to save and restore the float
registers.

Interrupts
The EPI compiler provides the hooks to the interrupt vector. For
simplicity, we hook to EPI’s chain and then implement a table of six
entries for each of the size interrupt lines. Again, for simplicity, we
only support high level ‘handler’ type routines.

Ticker
We use the processor’s Count/Compare registers. It uses the standard
interrupt and is installed as a handler.

MIPS Platform A. Platform-Specific Information

SuperTask! User’s Guide A-19

A

Console I/O and Stream I/O Driver
The onboard UART is an old, slow part, and the onboard wait-state
generator either cannot support it, or else EPI used the incorrect
settings. The chip unfortunately links the two channels’ interrupts
together. Because EPI uses the interrupt, the Stream I/O driver
cannot use it.

A. Platform-Specific Information MIPS Platform

A-20 SuperTask! User’s Guide

PowerPC Platform

Evaluation Platforms

Version 6.28 of SuperTask! provides support for the MPC8xx
PowerPC* parts. Support for the IBM 403 has been suspended.
Later releases will add support for other PowerPC family members,
and/or additional peripheral device support.

Motorola MPC821
Processor: MPC821/860
Compilers: Diab Data 4.2b Green Hills 1.8.9
Debuggers: Single Step MULTI*

The Makefile

The PTH macro in the makefile will need to be edited to equal the
pathname where your compiler is installed, and CVER should specify
the tool chain version. The TRG_ID macro in the makefile selects
the target board (processor) as follows:

TRG_ID = 8 selects the MPC821/860

TRG_ID = 1 selects the PPC403GA (support discontinued)

The DBG_ID macro must also be set to specify the proper debugger:

DBG_ID = 0 selects MPC8Bug

DBG_ID = 1 selects SDS/Single Step (when using Diab Data)

DBG_ID = 2 selects Green Hills/MULTI (not using Diab Data)

No other change should be required to build the test programs and
library for either of these two environments.

PowerPC Platform A. Platform-Specific Information

SuperTask! User’s Guide A-21

A

MPC8xx Test Environment
We have been using the 821-ADS board and the 860-FAD board for
testing. For these boards, we use the MPC8bug via an ADI interface
card in an IBM PC clone. For console I/O, we use a terminal
program on an IBM PC.

We have also done testing with SDS Single Step* using the
Background Debug Mode and with Green Hills MULTI* via OCD.

Building and Running Test Programs
Build the test programs by invoking Opus make:

omake

This will build all of the OS modules, put them in a library, and
finally build the test program modules.

We have supplied our initialization file init.cfg for use with the
MPC8Bug board interface program. It will configure the debug
registers to allow external interrupts to be handled.

All test programs use the PIT periodic interval timer in the MPC8xx
for the system timer interrupt.

The siotest and tintest programs (serial port driver) use the SMC1
UART interrupts.

To run a program:

1. Start MPC8BUG.
(Note: The MPC821.CFG and MPC860.CFG files need to be
present so they will be automatically loaded by MPC8BUG,
otherwise the board will not be configured properly.)

2. To load our initialization file, which enables the program to get
control of external interrupts, type:

ex init.cfg

A. Platform-Specific Information PowerPC Platform

A-22 SuperTask! User’s Guide

3. To load the program code and symbols, type:

load coretest.elf

4. To execute the program, type:

go

Console I/O routines are provided for a UART, SDS/SS, and MULTI.

Special Issues

Cache
SuperTask!’s interrupt code saves and restores the cache state around
an interrupt and disables it for interrupt processing. I/O is mapped
into cached memory space and the chip select logic does not override
it. You will want to enable cache at the start of each task.

Interrupt Considerations

MPC8xx Interrupt Handling
The files Intrpt8a.s and Intrpt8.c provide new code to support the
SIU and the CPM. Decrementer support is not provided. Jumping to
low-level assembly routines is also not supported. All ISRs are
treated as handlers and are called as plain C routines.

PowerPC Platform A. Platform-Specific Information

SuperTask! User’s Guide A-23

A

IBM PPC403GA Test environment

NOTE: Support for this environment is currently suspended.

For the 403GA (IBM Oak board), target-specific code is:

File Contents

usrclk1.s timer int handler and init

getput1.c serial port polled routines, for both internal and
external ports; you set which one with an #if in the
file

ireq403.s external interrupt decode and vectoring

sup403.s SPFR access routines

driver1.c interrupt driver for internal serial port

driver2.c interrupt driver for Oak board 16550 UART

uart403.s ISR stubs for above 2 drivers

The appropriate routines above will be selected in the makefile
simply by setting the TRG macro in the makefile. You might want to
make some alteration to the interrupt code in respect to how vectors
are initialized for your final environment. We have set things up
assuming you are downloading code to RAM (hopefully with a
debugger) in order to test. Our usrclk and serial driver init
routines initialize the vector to the interrupt handler when they are
called. We implement vector tables for the individual interrupt
sources in ireqhand.s or ireq403.s. Our entry point for the external
interrupt in these files will save all appropriate registers on the stack
(156 bytes of stack space is used for this). This is more than needs to
be saved in some cases, but all of this will need to be saved if you
want to call MT! (using MTqcmd_c) and task switch from the
interrupt (by exiting to MTsched). Saving the registers immediately
on entry saves you doing it later, and optimizes the process for task
switching from an interrupt.

A. Platform-Specific Information PowerPC Platform

A-24 SuperTask! User’s Guide

On the 403GA board, we are running the SDS Singlestep debugger
using a target monitor through the serial port. The original monitor
from SDS uses the internal serial port (S1), at 19200 baud. This has
the drawback that you can’t run/debug any code making use of this
port (which you will probably want to do). We have retargeted the
monitor to use the other (16550) port at 115200 baud, and can supply
you with an image of either. (It’s up to you to get it into flash on the
board.)

NOTE: When you use the internal serial port, the CTS line on
this port must be tied high (or connect to an active
signal on the other end). This is pin 6 on the S1
connector (our documentation page 3-8 for Oak board
incorrectly shows this as pin 4; the schematics are
correct). There is no way (that I could find) to do 3-
wire-only communication with this port without tying
CTS/DSR active.

PowerPC Platform A. Platform-Specific Information

SuperTask! User’s Guide A-25

A

SH Platform

Evaluation Platforms

Version 6.28 of SuperTask! for the SH-series processors contains
specific board support for the SH-1 LCEVB from Hitachi with either
a SH7032 or SH7034, the SH7604 (SH-2 board), and the SH7708
(SH-3 board).

SH7032
Processor: SH1
Compilers: Hitachi GNU
Debuggers: None None

SH7604
Processor: SH2
Compilers: Hitachi
Debuggers: None

SH7708
Processor: SH3
Compilers: Hitachi
Debuggers: None

The Makefile

To compile SuperTask! for any of these three platforms with the
Hitachi compiler, we provide both a UNIX makefile (called makefile)
and a DOS makefile (called makefile.dos). In both cases, you will
need to set PTH to point to the directory containing the tool chain.

A. Platform-Specific Information SH Platform

A-26 SuperTask! User’s Guide

The TARGET macro will need to be specified as follows:
TARGET = 1 is for the SH7032 board
TARGET = 2 is for the SH7604 board
TARGET = 3 is for the SH7708 board.

Notes on SH1 Support

The macro TARGET = 1 in the makefile will select the target-specific
support files for the SH1 test environment. Other settings will be
used for the SH-2 and SH-3 targets. Examine the makefile for
specific details. The $(TARGET) becomes a filename suffix to select
the appropriate support files.

The usrclk_init function in usrclk1.s reprograms the wait states for
areas 1, 2, and 6 to one wait state (i.e., 2 clock cycle access). Change
this if it is not appropriate for your target design.

The MTtick function expects r0 through r3 to be saved on the stack
when it is entered.

For efficiency, there are several entry points for the MTsched function
(in mtsched.s):

MTsched expects the stack to be empty except for the ‘sr’ and
‘pc’ register values that were saved by the exception.

MTsched2 is a shortcut that you can jump to with r0 through r3
saved on the stack.

MTsched_fullexpects all registers saved on the stack.

Using these can eliminate redundant saves and restores from interrupt
processing.

There is also a “return from ISR” function, _isr_exit, that can be
jumped to for restoring all registers. Examine the mtsched.s file for
the stacking order if you intend to use these. Also examine isr0a.s,
which is the driver0.c interrupt serial driver entry point for the serial
ports. This makes use of MTsched_full, and this stacking order. You
can copy this when implementing other ISRs that will interact with
the OS.

SH Platform A. Platform-Specific Information

SuperTask! User’s Guide A-27

A

The MTqcmd_c() function has been written in assembly for this
implementation. This provides greater efficiency. This function now
resides in mtsched.s, so the mtqcmd_c.c file will not be used for this
implementation even though it is included in the release.

Notes on SH2 Support

The SH2 support files are selected by setting the TARGET macro in
the makefile to 2. Most of the SH2 support files are the same as for
the SH1. Differences are in the serial port initialization and timer
interrupt initialization. The test programs for this environment are
configured to be downloaded into RAM on a DENSAN SH7604
VME board. The difference between this and running from ROM is
that we assume the interrupt vector table to be in RAM, and during
program initialization dynamically alter interrupt vectors for the
devices we are using. When moving to ROM, these vectors should
probably reside in ROM. In this case you will modify the vector
initialization code in the functions usrclk_init() and drv0_init().

Notes on SH3 Support

The SH3 test environment consisted of a DENSAN SH7700 board
connected to a UNIX (Solaris 2.4) workstation via serial and ethernet
connections. All test code is configured for this environment to be
downloaded to RAM using the on-board monitor. For testing code in
ROM (or ROM image with an emulator), you should make minor
changes to how interrupt vectors are initialized. Our existing support
code dealing with interrupts is in the files ireqhand.s, usrclk3.c, and
driver3.c. Our test environment assumes that there are existing
exception handlers in place in RAM where they can be overwritten by
the program.

During program startup, code in the usrclk_init() function will
replace the interrupt handler (at address vbr+0x600) with our new
handler. This is accomplished by copying the code from new_intsrv

A. Platform-Specific Information SH Platform

A-28 SuperTask! User’s Guide

in ireqhand.s to the handler location in RAM. The new_intsrv
handler uses a new vector table, new_vectortab , which is defined
in usrclk3.c to vector to the appropriate code for handling the
individual interrupts.

SH3 new_intsrv interrupt handler
The new_intsrv handler function that is supplied has been optimized
to allow the user's interrupt handling functions to efficiently use
MultiTask! service calls and initiate task switching. The user’s
interrupt handlers for individual interrupt sources are written in C (or
assembler if preferred) as ordinary functions. Do not use the
#pragma interrupt for these functions. The code in new_intsrv
will save all CPU registers (except bank1 registers which may be
modified by the interrupt). When the user's handler function returns
to the calling point in new_intsrv, these registers are restored and
execution returns to the context before the interrupt happened.

The new_vectortab (defined in usrclk3.c) is an array of the
following type:

typedef struct inttab_entry {
 void (*isr)(void); /* handler address */
 uint32 newsr; /* new sr value */
} INTTAB_ENTRY;

Each "vector" entry is composed of two words, the isr element is the
handler function address, and the newsr element is the value that will
be placed into the SR (status register) before the call is made to the
handler function.

Since MultiTask! is currently designed to run only in the "privileged
mode", the MD bit must be set in the newsr value. In addition, the
BL and RB bits will normally be cleared, and the I3..I0 bits will be
set to the interrupt level of the associated interrupt. (It is possible to
set the I3..I0 bits to any level). A sample vector entry in
new_vectortab taken from usrclk3.c is shown below:

usrclk,SRMD|(T0level<<4),/* Vector 32 (TICPI2)*/

SH Platform A. Platform-Specific Information

SuperTask! User’s Guide A-29

A

SRMD is defined as the value of the status register word with only
MD bit position set. T0level , in this case, is the priority level of this
interrupt source, and usrclk is the function name of the interrupt
handler function, which is an ordinary function (no #pragma
interrupt). The T bit position (bit 0) of the newsr word should
be zero. When the T bit of the newsr is 1, then the interrupt is
handled in a different manner. All interrupt handler functions that
have the newsr T bit (bit 0) equal to zero should be functions
returning an int value, rather than void . A non-zero handler return
value designates that the return path is to be through the MultiTask!
scheduler entry MTsched. A zero value returned by the handler
instructs that the new_intsrv code is to return directly to the previous
context without going through MTsched.

In addition to this, the new_intsrv code takes care of incrementing the
mt_busy variable before the user’s handler function is called, and
also decrementing it, when appropriate, upon return. The user should
therefore not increment mt_busy in their interrupt handler functions
that are entered through the new_vectortab by the new_intsrv
code. This applies only to the SH3. The interrupt handlers for the
SH1 and SH2 should follow the normal rules for this described earlier
in Chapter 2 of this manual. In all cases it is best to study the usrclk
and serial driver handlers (driver?.c) for examples of the proper
handling.

Raw-mode interrupt handling
When the newsr value for the handler in new_vectortab has the
T bit (bit-0) set, then the vectoring is done in a different manner
(which we will call raw-mode). In this case, only the SSR and SPC
registers are saved on the stack before vectoring to the user’s interrupt
handler. This mode should not be used by an interrupt handler that
needs to queue MultiTask! system commands with the MTqcmd or
MTqcmd_c functions, or that needs to exit through the scheduler
(MTsched). This is suitable for handlers that need to use only a few
registers, and which do not need to use MultiTask! services. These
interrupt sources should also have a high enough priority to ensure
they will not be interrupted by any normal mode handlers which
might use MultiTask! services. By setting the RB bit in the newsr

A. Platform-Specific Information SH Platform

A-30 SuperTask! User’s Guide

value for a raw handler, it can use the bank-1 registers, which do not
need to be saved, if you ensure that the handler cannot be interrupted
by another interrupt source. Otherwise, a raw-mode handler should
save any registers used on the stack, and restore them before exiting.
The exit should be done with this sequence:

ldc.l @r15+,spc
ldc.l @r15+,ssr
rte
nop

SH Platform A. Platform-Specific Information

SuperTask! User’s Guide A-31

A

386 Protected Mode

Evaluation Platforms

i386EX
Processor: 386
Compilers: Microsoft, Borland, Watcom, MetaWare
Debugger: CSi-Mon

NS486SXF
Processor: 486
Compilers: Microsoft, Borland, Watcom, MetaWare
Debugger: CSi-Mon

DOS PC
Processor: 386, 486, Pentium
Compilers: Microsoft, Borland, Watcom, MetaWare
Debugger: Soft-Scope

NOTE: This uses U S Software’s Hexloader to load the
SuperTask! application and run.

A. Platform-Specific Information 386 Protected Mode

A-32 SuperTask! User’s Guide

The Makefile

The provided makefile will build the MultiTask! test programs for
any of several environments. These are selected by setting macros
near the beginning of the makefile. You will need to specify PTH as
your compiler directory, APTH (or possibly MPTH) for your assembler
directory, and CVER for the version of your compiler.

TARGET Specifies the intended target environment. (This name
will eventually change to TRG_ID.)

TARGET = 1 For all compilers, specifies the 386EX (eval board) as
the target. (This is without DOS.) This has two
variants: Running with the Soft-Scope debugger
(CSIMON = 1) and running without (CSIMON = 0).
When running without the debugger, support code is
provided that will handle all initialization from power-
on reset, and call the program main function. This
version is programmed into the flash memory using a
flash program. When running with the debugger, the
debugger performs some of the initialization, so the
startup code is a little different. This version is
downloaded by the CSI monitor programmed into
ROM and can be executed or debugged using CSI
Soft-Scope.

TARGET = 2 For the Microsoft compiler only, specifies building a
Windows95* executable that currently only runs until
the multitasker needs a clock interrupt to continue (no
longer supported).

TARGET = 3 For the Watcom compiler only, specifies building a
DOS Extender application that runs with Pharlap’s
RUN386* (no longer supported).

TARGET = 4 For all compilers, specifies the NS486SXF* (eval
board) as the target. (This is without DOS.) The
programs created are downloaded to the board either in
ROM or RAM using a flash loader program.

386 Protected Mode A. Platform-Specific Information

SuperTask! User’s Guide A-33

A

TARGET = 5 For the Watcom compiler only, specifies building a
DOS Extender application that runs with the Rational
Systems DOS-extender* (no longer supported).

TARGET = 6 Boot MT! application from DOS with U S Software
hexload program.

The kernel code is the same for all targets. The appropriate start-up
code and the support code for initializing interrupt vectors, hardware
port addresses, interrupt numbers, etc., is specifically selected during
a build, based upon the target selected. The correct code will be
included in the Multitask! library that is created when you make one
of the test programs, and the correct linking commands will be
selected to build either an absolute file for debugging, or a hex file for
programming in flash.

We suggest all customers build the program coretest, which will
create a library with the appropriate support code. After you have the
coretest program running in your environment, you can be sure the
library contains the correct support code. You might need to modify
some of the support code (usrclk.asm contains hardware initialization
code) to account for differences in your target hardware.

See the makefile, and compnote.txt for more details.

Hardware-Dependent Configuring

Many 386 linkers (e.g. USLINK) and Pharlap’s LinkLoc*) will
create the structures necessary to run in protected mode. However,
they will not handle the transition from real to protected mode. The
startup file ustart1.asm contains the code to handle this transition for
TARGET = 1 , CSIMON = 0.

For the NS486SXF board, TARGET = 4, CSIMON = 0 , the processor
starts out in protected mode, and it uses the different startup code
contained in usstart4.asm.

If TARGET = 6 , then the application starts in protected mode as well.
TARGET = 6 specifies U S Software’s Hexload support. The file

A. Platform-Specific Information 386 Protected Mode

A-34 SuperTask! User’s Guide

usstart6.asm contains the code to accept execution from hexload and
perform the necessary operations to switch to the application’s setup.
This includes installing the linker’s GDT and IDT, saving the size of
memory to be passed to meminit(), and resetting the programmable
interrupt controller (PIC) to use interrupt vectors 20h to 27h for the
master and 28h to 2Fh for the slave. CSi-Mon is supported in
addition to stand-alone.

This code and the initialization code in usrclk.asm is specific to the
environments supported, and would need possibly extensive
modification to support another environment (for example, if you
wanted to use it in the process of loading a program under DOS and
then taking over the machine and switching to protected mode).

386 Protected Mode A. Platform-Specific Information

SuperTask! User’s Guide A-35

A

68xxx Platform

Special Issues

Creating Supervisor State Tasks
All tasks that are run under MT! are by default run in the 68000 user
state. In order to run a task in the supervisor state, the initial machine
status register value for the task is shifted left 16 bits and ORed to the
priority value given to runtsk() when the task is started.

MT! will then use the upper 16 bits of the priority value passed to
runtsk() as the status register value for the task. The label
SUPERMASK is defined in depends.h as the value to OR with the task
priority to create a supervisor-mode task. Note that it is possible to
set an initial interrupt mask level for the task (which may not
necessarily be a good idea). You might want to run a task in
supervisor state in order to access privileged resources (including
instructions). An example is some peripheral registers in the
MC68332 that exist only in the supervisor data space. These are
accessible only when the processor is in supervisor state. It might be
necessary to initialize some of these registers during startup. One
way would be to have the startup code in assembler do this before it
calls the program main() function. An alternative is to create a
supervisor-state task to perform the initialization once during program
startup.

If a supervisor-state task is run for initialization, it could conceivably
be useful to set the interrupt mask level of this task higher than the
clock tick interrupt level to block rescheduling of tasks until that task
is complete. The same thing would be effectively accomplished by
giving the init task a higher priority than all of the other tasks.

Since each task is allocated both supervisor and user stack space, you
can save RAM space by making tasks run in supervisor mode. If a

A. Platform-Specific Information 68xxx Platform

A-36 SuperTask! User’s Guide

task runs in supervisor mode, it will never use its user-mode stack
space, so this can be eliminated.

Example of starting a supervisor state task:

runtsk(SUPERMASK | 100, init_task, 2000)

Task Stack Space Allocation
This example starts the task init_task with a status register value of
0x2000 , which puts it in supervisor state. The task priority is 100,
and 2,000 bytes of stack space are allocated. The stack argument in
runtsk() specifies the total stack space allocation, which is a
combination of the supervisor and user stacks for that task. The stack
space allocated is divided into a supervisor stack space of size
SSTKSIZE (defined in depends.h), the upper portion of the 2,000-
byte allocation, and a user mode stack occupying the remaining
space. For a task running in supervisor mode, the allocation is
entirely supervisor stack space since the user stack will not be used by
that task.

stack space
allocated by

runtsk

total stack

supervisor stack

user stack

initial ssp

initial usp

Figure A-1: Task stack space allocation

68xxx Platform A. Platform-Specific Information

SuperTask! User’s Guide A-37

A

Stacks in the 68020/68030/68040
When running MultiTask! on 68020 or above processors that have
separate supervisor master and interrupt stack pointers, the
master stack pointer should not be used. The master stack pointer
will not be used unless you specifically set the m status register bit
while in supervisor mode. Check the startup code for your C
compiler to ensure that this is not done. As long as the master stack
pointer is not used, MultiTask! will run properly on any 68000-family
processor.

Use of Math Coprocessors
If the 68881 or 68882 math coprocessor is used, the macro fp in the
makefile should be set to a non-zero value. This will enable the
appropriate code to save the coprocessor status during a task switch.
If a coprocessor is used, the supervisor stack allocation for each task
should allow about 320 bytes extra for saving the coprocessor state.
This is the worst-case amount saved for the coprocessor, and in most
instances only a far smaller amount will be saved.

MT_TRAP Vector Initialization
MultiTask! uses one trap vector to switch into supervisor state in
various places in mtsched.s. The trap number used can be configured
in the file mtcfg2.s. The vector is initialized by the MTstart() call. If
the vectors in your system reside in ROM, you can omit the
initialization code in MTstart().

Stack Allocation
The supervisor stack requirements for each task must be sufficient to
hold the task’s context (processor register set), the coprocessor
context if applicable, plus the requirements by the deepest level of
interrupt nesting anticipated. The supervisor stack space requirement
will be essentially the same for all tasks. Set the label SSTKSIZE in
mtcfg.s (or with stconfig.exe) to the desired task supervisor stack
allocation size (in bytes). The user stack requirement will be
determined primarily by the number and size of auto variables used

A. Platform-Specific Information 68xxx Platform

A-38 SuperTask! User’s Guide

by the task and all function calls nested within the task, plus some
temporary storage space used by the C compiler for storing registers.
The user stack requirement can vary considerably from task to task.
Each task may have a different stack size specified by the runtsk()
function call, if desired.

The stack size specified to runtsk() will be the sum of the desired
supervisor and user stack allocations for the task. This number must
always be larger than the value of SSTKSIZE. SSTKSIZE bytes of
the stack allocation made by runtsk() will be used for the task’s
supervisor stack, and the remaining amount becomes the task’s user
stack allocation. If the task runs in supervisor mode, then the amount
of stack space specified by runtsk() will essentially be all supervisor
stack space for the task. For supervisor-mode tasks, the C storage
requirements for auto variables, etc. that usually reside on the user
stack will instead be on the supervisor stack for that task.

The label stack _checking (defined in mtcfg.s) when set to 1
causes stack overflow checking code to be included in the scheduler
in mtsched.s. Leaving this code in will save you a lot of grief. If
either the task’s supervisor or user stacks are overflowed during a
context switch, an illegal instruction will be executed. If your system
ever stops at the labels stack _err or sstack _err , you will know
that either the user stack or supervisor stack, respectively, has
overflowed for that task and the stack allocation should be increased.

There is also a check for command queue overflow. The command
queue is where commands are sent to be executed by the MTqcmd
and MTqcmd_c() functions. These functions are always called from
interrupt routines. If overflow occurs, an illegal instruction at
cmdque_err is executed. If you have a legitimate need for a deeper
command queue, you can define a larger queue by changing the value
of MAX_CMD_CNT in depends.h. The illegal instructions can be
replaced by routines of your choice if you want some action
performed when these situations arise. A possibility is to use the
overflow conditions as a kind of watchdog timer and reset the system.
Supervisor stack overflow can be caused by too heavy an interrupt
load. A scheduling clock tick interval much shorter than 1
millisecond can overload a 16Mhz 68000.

68xxx Platform A. Platform-Specific Information

SuperTask! User’s Guide A-39

A

Configuration
It is essential for proper operation that you correctly set several
parameters in the file depends.h. These will be set by the supplied
stconfig.exe program if you run it. The most important of these is
PROC_TYPE, which should be set to the appropriate processor value
for your target system. This is set to zero for 68000 and 68008 and
any variants that have a 6-byte exception frame, and non-zero for all
those with an 8-byte exception frame (CPU32, 68010, 68020, 68030,
68040). If this parameter is set wrong, you won’t run very long!

Interrupt Considerations

ireqbuf Function Call
The function ireqbuf is an assembly language function that can be
called from an Interrupt Service Routine to request a memory buffer
from a pool. This function must only be called by ISR routines and
not by ordinary “task” code. Furthermore, for any given memory
pool, only one ISR can request memory from that pool.

The ireqbuf function is equivalent to the ireqbuf_c() function except
that it is called from the assembly level rather than C-level code.
Both of these functions perform the equivalent operation to the
reqbuf() function, except that to maximize speed no error checking is
done. Error recovery in an ISR is generally not possible anyway.

Calling Convention
entry: d0.l = poolid

exit: a0.l= returned buffer pointer
(NULL if no buffer available)

altered regs: d0.l, a0.l, SR

A. Platform-Specific Information 68xxx Platform

A-40 SuperTask! User’s Guide

Example
movem.l d0-d1/a0,-(sp) save regs
moveq.l #2,d0 poolid = 2
jsr ireqbuf get buffer ptr

Example: Interrupt Exiting through MT! Scheduler
intrtn:

movem.l d0-d2/a0,-(sp) save registers used here
.. interrupt code ...

moveq.l #setevt,d0 set event command code
moveq.l #2,d1 set event 2
jsr MTqcmd issue the command
movem.l (sp)+,d0-d2/a0 restore registers we used

addq.b #1,_mt_busy
jmp MTsched exit through MT!

NOTE: This routine exits with a jump to MTsched rather than
an RTE instruction. This provides faster processing of
the command issued with the MTqcmd_c call. If the
routine ends with an RTE instead, the command might
be delayed for up to one clock tick before it is
processed.

Example: User Clock Tick Interrupt
intrtn
... interrupt code ... (preserve any registers used)
jmp MTtick enter MT! clock process

68xxx Platform A. Platform-Specific Information

SuperTask! User’s Guide A-41

A

ISR Coding
On the 68xxx platform, the MTsched_c() function is not valid. To
enter the scheduler from an ISR, you must use a jump at the assembly
level. This requirement is imposed because the MTsched entry point
checks the exception frame on the supervisor stack. If the interrupt
mask level in the exception frame is non-zero, it assumes the interrupt
is nested and does an RTE instead of scheduling. The exception
frame must be at 0,sp when MTsched is entered; this is impossible
to do if entry is from C. If your ISR needs to exit through the
scheduler; you can make an entry stub in assembly, call a C-level
handler, and on return from the C-level handler, jump to MTsched
after restoring all registers. See isr0a.s and driver0 .c for an example
of this.

This scheme will prevent task switches from occurring within a
nested interrupt, but requires that you operate normally at interrupt
mask level 0. This only poses a problem if you have a spurious
interrupt source you are trying to mask by raising the interrupt mask
level. You must instead shut off unwanted interrupts at the source.

Interrupt Priorities
The scheduling clock normally should have a low priority such as 1.
For fastest interrupt response, interrupt routines that do not call any
MT! function can have a priority value higher than INTOFF (defined
in mtcfg2.s).

A. Platform-Specific Information 68xxx Platform

A-42 SuperTask! User’s Guide

80960 (i960) Platform

The Makefile

The following macros in the makefile should be configured to your
particular situation:

COMP macro You must set the COMP macro for the compiler you
will be using (Archelon, GNU, or iC960).

PTH macro Under the conditional section for the compiler you
are using (!if $(COMP) == x), you must set the
PTH macro to be the root path where your compiler
resides, and the PTH2 macro to the root path where
the Pharlap DOS extender used by the compiler
resides. (PTH2 is not used for Archelon C.)

BOARD macro Selects one of several evaluation boards we support:
The QT960*, EP80960CX,* TomCAt*, and
Cyclone* boards. If you are using one of these,
setting the BOARD macro to the appropriate board
number will also select the use of the correct
support files for serial I/O and clock interrupt.

PROC macro Selects the processor you are compiling for. If you
are not testing on one of the BOARDs we have
routines for, you will need to develop the usrclk and
character I/O routines to match your environment.
These are contained in the files io$(BOARD).ss and
ioc$(BOARD).c where the $(BOARD) is the
numeric value of the BOARD macro. The
usrclk_init function also performs some hardware
initialization such as writing the IMAP and ICON
registers. These should be modified to suit your
environment.

80960 (i960) Platform A. Platform-Specific Information

SuperTask! User’s Guide A-43

A

TIM macro Has meaning only when the Cyclone board is
selected. TIM=0 , selects the internal timer 0 of the
Jx part to be the source of the clock interrupt
(usrclk() and usrclk_init() functions). TIM=1
selects the Z8536 counter/timer 1 on the Cyclone
base board to be the clock interrupt source.

FP macro Controls conditional code to save the state of the
floating point hardware during a task switch. This
should be set to 1 only if using the 960 parts with
floating point hardware (e.g. KB, CB).

ALLC macro Selects between versions of the usrclk() function
written completely in assembly (when ALLC=0) or
in C (when ALLC=1). The usrclk() function is the
Interrupt Service Routine for the clock interrupt.

IRSTACK macro Controls whether or not a separate interrupt stack
will be used for each task. When IRSTACK=0, the
processor is run always in the interrupt state, so that
the hardware stack pointer in use is always the
interrupt stack pointer. Each task has its own stack
space, which will be the machine interrupt stack
while that task is running. This mode of operation
is the fastest, and is therefore preferred for all PROC
types.

When IRSTACK is set to 1, tasks normally run in
supervisor mode with their own stack, and the
upper 512 bytes of their stack space is reserved to
be the interrupt stack for the task. When a task
switch occurs from an interrupt, the operating
system must copy the stack contents from the task
interrupt stack to its normal (supervisor mode)
stack. This makes the task switch considerably
slower.

A. Platform-Specific Information 80960 (i960) Platform

A-44 SuperTask! User’s Guide

INEST macro The operating system must prevent a task switch
from occurring during a nested interrupt for reasons
explained elsewhere in the manual. There are three
different methods of doing this selected by the
INEST macro. Methods 0 and 1 are available on
all processors. Method 2 (which we feel is the best)
is available only on the Cx and Jx processor
families.

Methods 0 and 1 work by detecting that MTsched is
being entered from a nested interrupt call and then
preventing the call to MTqproc (the command
queue processing and scheduling routine). When
INEST=0 , the pfp is checked to see if the previous
frame type was type interrupt ; if so a nested
interrupt is assumed. When INEST=1 , priority
level in the saved PC is checked and a non-zero
value infers a nested interrupt. (The normal
operating priority should always be zero when this
method is used.)

When INEST=2 , the ICON register is programmed
to clear the IMSK register when any interrupt is
acknowledged (thus masking further interrupts).
The IMSK value prior to clearing is stored in
register r3 (by the hardware). The ISR can
increment mt_busy , and then copy r3 to IMSK,
reenabling interrupts. As long as all ISRs use this
procedure before reenabling interrupts, and then
exit to MTsched, nested interrupts (of any priority)
will be allowed and no task switch will be
performed from inside a nested interrupt. You may
of course also leave IMSK clear until just before
returning from the interrupt to prevent any interrupt
nesting.

80960 (i960) Platform A. Platform-Specific Information

SuperTask! User’s Guide A-45

A

If you have set the COMP, BOARD, and PTH macros for your
environment (and you are using one of the evaluation boards we have
support routines for) you should be able to “make coretest ” and
get a working test program in the file called coretest.dwn which you
can download to the test board and run.

If you are using a different test platform than one of the boards we are
supporting with the makefile, then you may also need to change the
link address. This is controlled with the macros ROMPAR and
RAMPAR in the makefile.

The user-buildable targets in the makefile are coretest, mtbench,
siotest, tintest, and pipetest. There are a number of other targets
used for in-house testing at U S Software only.

Downloading Code to Target Board
A simple program upload is provided in C source form and compiled
to .exe, which will upload code via a serial port to a MON960* or
NINDY* monitor and then emulate a terminal. The option -Pn
selects the port (where n=1 for COM1, etc.). You can also use any
other terminal emulator program that can download via XMODEM
protocol to these monitors.

Special Issues

Assembly File Preprocessing
Since the assemblers with GNU and the other compilers do not
support conditional assembly, we have provided a simple
preprocessor which implements this. All assembly source files are
supplied with the extension .ss. The makefile will run the
preprocessor step pp.exe on these to convert them to .s files before
assembly.

A. Platform-Specific Information 80960 (i960) Platform

A-46 SuperTask! User’s Guide

Interrupt Considerations

Calling C Functions from an Assembly ISR
An 80960 interrupt handler can call C subroutines under the
following conditions:

• It must save registers g0 -g14 at the start, and restore these before
returning.

• It must make sure g14 is zero before calling any C code.

Example: ISR Calling C Code
intrtn: mov sp,r4 get a base pointer

lda 64(sp),sp reserve space
stq g0,(r4) save g0-g14
stq g4,16(r4)
stq g8,32(r4)
stt g12,48(r4)
mov 0,g14 clear g14
call _Croutine call subroutine
ldq (r4),g0 restore g0-g14
ldq 16(r4),g4
ldq 32(r4),g8
ldt 48(r4),g12
ret returnc

The 80960 processors can’t be masked against level 31 interrupts.
Therefore, you should use level 31 interrupts for emergency purposes
only.

The 80960 tasks need a large stack, especially if they call library
functions. About 2000 bytes should suffice in most cases.

80960 (i960) Platform A. Platform-Specific Information

SuperTask! User’s Guide A-47

A

80x86 Platform

Evaluation Platforms

The 80x86 version of MultiTask! is applicable to all 8086* family
processors and compatible NEC V-series processors running in real
address mode. There is also a 386 version for 386 and above
processors running in protected mode to provide flat memory address
support.

AMD Net 186
Processor: 186
Compilers: Microsoft, Borland
Debuggers: Soft-Scope and E86Mon

DOS PC
Processor: x86
Compilers: Microsoft, Borland
Debuggers: Soft-Scope

The Makefile

For the 80x86, all code modules must be compiled with the same
compilation model (e.g., small , medium, compact , large , etc.).
The makefile provided sets the variable MODEL to the compilation
model for all modules and automatically uses this for all compilation
and assembly. If you change models, you must be sure to delete all
* .obj files, which can be accomplished by using omake clean.

A. Platform-Specific Information 80x86 Platform

A-48 SuperTask! User’s Guide

NOTE: IMPORTANT FOR 80x86 TARGETS
In order to utilize more than 64K of memory with the
memory management functions on an 80x86 (real
mode) target, the #define HUGE_MEMORY in
depends.h must be set to 1. This can be done with the
stconfig program or by editing depends.h directly,
after which the operating system library must be
rebuilt.

The small and medium models give the best performance because
data pointers are all near pointers. Microsoft C allows the use of
“based pointers” that will be controlled by the makefile variable _BP.
This allows the large and compact models to be nearly as efficient
as the small models.

NOTE: All function name arguments to runtsk() must be
declared as far functions in the Tiny , Small , and
Compact code models. The far is implicit in the
other code models.

Special Issues

Using usrclk
The usrclk routine provided is for running your application on a DOS
machine. The usrclk_init() function chains the original DOS clock
interrupt to another interrupt number and, after calling this on a clock
tick, jumps into MTtick. The usrclk_init function will reprogram the
timer to any value specified by the CLOCKHZ label defined in
depends.h. When CLOCKHZ is 18, the default PC setting is used,
which is actually 18.2 hertz. If you change this by a multiple of 5 (to
91, for example) the actual timer interrupt rate will match the
CLOCKHZ parameter and the usrclk routine we provide will only
chain to the DOS handler at the 18.2 hertz rate; i.e., every fifth

80x86 Platform A. Platform-Specific Information

SuperTask! User’s Guide A-49

A

interrupt at 91 hertz. When usrclk_term is called, it resets the timer
to the 18.2 hertz rate and restores the original interrupt vector. If you
exit the program prematurely (without executing MTterminate()),
which might occur when running under a debugger, then the timer
rate does not get restored. Worse yet, the interrupt vector does not get
restored, which generally means your computer will crash as soon as
something is loaded over the memory location containing the usrclk
routine. Two short programs are provided that might be able to fix
this after an abnormal program exit, provided they don’t themselves
write over a critical area when the clock ticks. The program
clockfix.exe should be run after an abnormal exit from a program
using the 18.2 hertz clock rate, or clk91fix.exe after a program using
the 91 hertz (or other than 18.2 hertz) rate.

Running an Application Under MS-DOS
A multitasking application can be written and run under DOS using
MultiTask! 80x86 with Borland C or Microsoft C. If no DOS calls
are made by any task, nothing special needs to be done. If more than
one task will make calls to DOS functions (e.g., C-library calls that
ultimately make DOS or BIOS calls), then special precautions must
be taken.

The problem arises because DOS and many BIOS calls are not
reentrant. When a task is inside a DOS call, you must prevent a task
switch from occurring to another task that will make a DOS call. A
simple way to accomplish this is to treat DOS as a “resource” and
surround each function call that will call DOS with a getres() and
relres() MultiTask! call.

Example
#define DOS_RES 0

{
getres(DOS_RES,0); /* wait for exclusive use of DOS */
printf(...
fopen(...
relres(DOS_RES,0); /* allow others to use DOS */

A. Platform-Specific Information 80x86 Platform

A-50 SuperTask! User’s Guide

This technique will allow you to run multiple tasks, each using DOS
services. A related problem you will encounter is really a library
problem. Most of the C libraries supplied with DOS-resident
compilers contain many functions that are not reentrant. Some ANSI
functions are also by definition non-reentrant (e.g., strtok). Use of
ANSI-defined global variables such as errno will make a function
non-reentrant, although in the case of errno , if you are not using the
value in errno , this can be ignored.

In the case of non-reentrant library functions, your choices are:

• Don’t use them.

• Use them in only one task.

• Protect them with a resource.

• Get a replacement library that is reentrant.

• Write your own reentrant functions.

If you are protecting the library call with a resource, it can be the
same DOS_RES as used for DOS library calls, or if you know that the
function being called does not enter DOS, it can be a separate
resource. An example might be floating point math. The compiler-
supplied libraries are not reentrant, but the functions do not call any
DOS int 21H function (I think). In this case you could use a
separate resource from the DOS_RES to protect these. A better
solution might be to call us and inquire about our replacement math
libraries that are both reentrant and faster (and in some cases more
accurate).

DOS Control-C Handler
In order to make a graceful exit via a user-installed control-C handler,
the control-C handler function (which is an interrupt function) should
use the MTqcmd_c() function to issue a RUNTSK deferred call to run
a task that will terminate MultiTask!.

80x86 Platform A. Platform-Specific Information

SuperTask! User’s Guide A-51

A

Example
void (interrupt far abort_func(void))
{

MTqcmd_c(RUNTSK, 255, terminate, TASK_STKSIZ);
}

void far terminate(void)
{

MTterminate();
}

When abort_func is entered after <Ctrl-C> is pressed, it sets up the
terminate task to run at a high priority. This should be the highest
priority task if you want immediate action. You could also
accomplish the same result by having terminate run during startup,
and then wait for an event that will be set by abort_func.

Running an Application as a DOS TSR
The MultiTask! 80x86 delivery includes an example TSR (Terminate
and Stay Resident) application in the source file tsr.c. This example
demonstrates how a MultiTask! application can be written as a TSR.
Once the application is started, DOS becomes the lowest priority task
of the application, and the user is returned to the command processor.
The DOS prompt reappears on the console, and you are able to run
other DOS applications on the system, while the TSR is able to
perform activities such as logging data to a disk file.

The main routine for this program calls inittsr(0x200) before calling
MTstart(). The inittsr function determines the size of the program
and saves this value in a global variable progsize for the DOS task
to use when it makes the DOS TSR call. In our example, we do this
by subtracting the application’s PSP (Program Segment Prefix)
segment value from the stack segment. The stack segment is the last
segment of the program, and the PSP immediately precedes the
program and is the process ID used by DOS to keep its I/O straight,
among other things. The fopen library call allocates a file buffer in
the heap space that must be retained. In tsr.c, we added 0x200
paragraphs to progsize (the argument to inittsr()) to allow for heap

A. Platform-Specific Information 80x86 Platform

A-52 SuperTask! User’s Guide

space used by the program. This works for both small and large
program models. In practice, you would probably want to use the
tiny or small program models for a TSR whenever possible. Since
the tiny model can use no more than 64K, you would be totally safe
by specifying a 64K allocation for a tiny model TSR, which is
0x1000 paragraphs.

In our example, the only task running besides DOS is LogTask. There
could be any number of other tasks, but DosTask must be the lowest
priority, and every other task must be stimulated by an interrupt in
some way. Every task must be waiting (i.e., no longer in the run
queue) before DosTask will run. LogTask is reawakened by the clock
interrupt. This is accomplished by doing a dlytsk() for three seconds.
Every three seconds, LogTask will write a line to a disk file. The file
is either A:\testlog.txt or the path given by argv[1] on the
command-line, if present. If argv[2] is present on the command
line, it will be included as part of the message written to the output
file. The output file is opened in append mode, so if the file already
exists, new data is appended to its end.

LogTask writes 10 lines to the output file (one every three seconds for
30 seconds) and then displays a status message on the 25th line of the
terminal. The message remains until <Escape> is pressed, at which
point the original 25th line contents are repainted, and the TSR takes
itself out of memory and terminates.

Application note 2 already describes the method of using a resource
for DOS when you have multiple tasks within an application making
DOS system calls. For a TSR application, however, something
additional is required. DOS provides the necessary hooks via a flag
that is set every time a DOS (int 21h) call is made, and another
interrupt that is called while in the keyboard polling loop within DOS.

The functions GetDos(), GetDosCon(), and ReleaseDos() employ
these hooks in conjunction with a MultiTask! resource to allow a task
to safely make DOS function calls from a TSR application. Any task
that is going to make a function call through DOS (this includes C
library functions) must call either GetDos() or GetDosCon() before
calling the DOS function(s), and then call ReleaseDos() when
finished.

80x86 Platform A. Platform-Specific Information

SuperTask! User’s Guide A-53

A

GetDos() will allow the task to run when it is safe to make any DOS
function call except for console I/O. GetDosCon() will allow the task
to run when it is safe to make any DOS call including console I/O
(e.g., printf). Console I/O can be performed after a GetDos() call
only via BIOS console functions (e.g., status_msg() is safe to use
after a GetDos() call since it is built upon BIOS calls rather than DOS
int 21h calls).

The first time DosTask is run, it performs some initialization
necessary for GetDos() and GetDosCon(), and then calls the DOS
TSR function. At this point, the DOS command processor becomes
the DosTask. and whatever is run from this command processor is in
effect the DosTask. When some interrupt (clock or other) causes a
higher-priority task to wake up, the DosTask is suspended until all
higher-priority tasks are again dormant. As soon as all tasks with a
priority higher than the DosTask are dormant (waiting), the DosTask
will be resumed.

A MultiTask! TSR application must not call MTterminate() to
terminate the way a non-TSR application would. To do so would
cause a crash. A TSR application should terminate by a task calling
the function endtsr(), which will perform the necessary cleanup, and
then calling suspend(cur_task), which will cause the final return to
the DosTask.

If you have added code to chain to or take over any other interrupts,
these should be restored to their original state either immediately
before or after the call to endtsr() before the final return to DOS. You
might, for example, wish to chain to an interrupt to allow a utility
command to be run in the foreground to check the status of or kill the
TSR.

Microsoft Publications do not document some of the interrupts used
to implement this TSR example. If you intend to write a TSR
application, we suggest you obtain some other publication that does.
A good example is DOS Programmer’s Reference, 2nd edition, by
Que Publishing (ISBN 0-88022-458-4). Que Publishing’s order
phone is (800) 428-5331, extension ORDR.

A. Platform-Specific Information 80x86 Platform

A-54 SuperTask! User’s Guide

Interrupt Considerations

Example: Interrupt Routine Allowing Nested Interrupts
intrtn:

inc mt_busy ;next nesting level
sti ;interrupts enabled
... interrupt code ...
cli ;interrupts disabled
jmp MT_sched ;schedule tasks

NOTE: While mt_busy is non-zero, interrupts are processed
but task switching is prevented. It is preferable to keep
interrupt routines as short as possible and not allow
nesting as above.

Example: Interrupt Exiting through MT! Scheduler
intrtn: ... interrupt processing ...

push ax
push ds ;save regs
mov ax,seg DGROUP
mov ds,ax
inc mt_busy ;next nesting level
push 2 ;event #2
push seg _qp_incevt
push offset _qp_incevt
call far ptr _MTqcmd_c
add sp,6
call MTqcmd_c ;issue the command
pop ds ;restore regs
pop ax
jmp MTsched ;exit through MT!

80x86 Platform A. Platform-Specific Information

SuperTask! User’s Guide A-55

A

Example: User Clock Tick Interrupt
intrtn:

... interrupt code ...
jmp Mttick ;enter MT! clock

process

ireqbuf Function Call
The function ireqbuf is an assembly language function that can be
called from an Interrupt Service Routine to request a memory buffer
from a pool. This function must only be called by ISR routines and
not by ordinary “task” code. Furthermore, for any given memory
pool, only one ISR can request memory from that pool.

The ireqbuf function is equivalent to the ireqbuf_c function except
that it is called from the assembly level rather than C-level code.
Both of these functions perform the equivalent operation to the
reqbuf() function, except that in order to maximize speed no error
checking is done, since error recovery in an ISR is generally not
possible anyway.

Calling Convention:
entry: ax = poolid
exit: ds:bx = returned buffer pointer,

 (NULL if no buffer available)
altered regs: ax,bx,ds,flags

Example
pushf
push ax
push bx
push ds
mov ax,2 ;poolid = 2
call ireqbuf

; ds:bx points to memory

A. Platform-Specific Information 80x86 Platform

A-56 SuperTask! User’s Guide

SuperTask! User’s Guide B-1

B

B. PC-Compatible
Console/Keyboard

Chapter Contents

Description .. B-2
Usage .. B-3
Utility Function Summary ... B-6
Utility Function Descriptions .. B-8

assign_keyboard .. B-8
attach_keyboard .. B-10
box_view ... B-12
chatout ... B-13
clear_screen... B-14
detach_keyboard ... B-15
display_box ... B-16
freeze_view_attrib, thaw_view_attrib B-18
get_cursor_loc ... B-19
get_keyboard_assignment ... B-20
link_view... B-21
put_attribc ... B-22
restore_cursor_loc ... B-23
set_cursor_loc ... B-24
set_cursor_type ... B-25
set_text_filemode, set_binary_filemode B-26
set_view_attrib .. B-27
unlink_view... B-28
view_init .. B-29
write_attribc .. B-30

B-2 SuperTask! User’s Guide

Description

The console/keyboard driver described here supports interrupt-driven
keyboard input and text mode screen output, from a PC-AT standard
101-key keyboard and VGA monitor screen in 80 x 25 color text
mode. This driver applies only to this environment and is not
applicable to any other, and is therefore contained only in the 80x86
distribution. The function of this driver does not make use of any
BIOS or DOS function calls, and therefore solves many reentrancy
and performance problems associated with using those calls.

The keyboard portion of the driver takes control of the keyboard
interrupt when the device is initialized by mt_fopen(). Keyboard
input is fully driven by interrupts, requiring no polling for characters
by the user. A task performing a read function will wait (relinquish
the CPU) until the desired number of characters are ready. Nearly all
special keys on the keyboard return simple single-character codes
(above 0x80). The codes returned are determined by a table lookup
that you can easily modify if you desire different return codes.

The console output portion of the driver provides for dividing the
screen into any number of separate non-overlapping windows that we
will refer to as views. Each of these views is opened by a call to
mt_fopen() and has a separate distinct file handle (MTFILE *). This
allows separate tasks to control each of these views independently
without the need of locking screen control with a resource. The
keyboard can be reassigned to any open view, allowing that task input
with its own separate input buffer.

The sample program stdemo.exe (compiled from stdemo.c)
demonstrates most of the features of this driver, and should be studied
as example code.

B. PC-Compatible Console/KeyboardDescription

SuperTask! User’s Guide B-3

B

Usage

To use the console/keyboard driver, you must compile and link the
files condrv.c, conintr.asm, streamio.c and sfm.c with your
application. These files should be in the MultiTask! library file, but
can be linked separately if you wish. The device table created in
userio.h must add entries for the CON and VIEW devices. The table is
set up to do this automatically if you define the label CIO when you
compile dev_tab.c. The application should also include the file
console.h along with other MultiTask! files for function prototypes
and console/keyboard-related definitions.

Before any I/O can be performed, the CON device must be opened.
This must be done in a task, not in the program main routine.
Example:

MTFILE *confp;

confp = mt_fopen(“CON”,”r+”);

Opening this device causes the keyboard interrupt to be intercepted,
and the screen to be cleared and set to its initial values of 25 lines of
80 characters each. Note that the driver initialize routine does not
actually change the mode registers on the VGA controller board, as
this would require specific settings for all possible controller boards.
For the driver to function properly, the screen must already be in 80 x
25 color text mode.

After the device is opened successfully, I/O can be performed using
the other stream calls with the file handle returned by the open. The
fopen mode should allow both reading and writing if this is intended.
If the CON device is opened in binary mode, then any read call will
return the key value for any key typed without the key being echoed
to the screen.

If the device is opened or later placed in text mode, then input editing
takes place. In text mode, only ASCII printable characters plus
<Tab> and <Return> will be returned by the call, and each character
returned is also echoed to the display. Furthermore, if a call is used

B. PC-Compatible Console/Keyboard Usage

B-4 SuperTask! User’s Guide

that requests more than one character, such as mt_fgets(), then line
editing takes place. In the line edit mode, the <Backspace> key will
cause the removal of the previous character from both the display and
the input buffer. When line editing, the <Escape> key will remove all
characters to the beginning of the field. The input buffer size must be
greater than the size of the field to be input in line edit mode,
otherwise the characters in the buffer will be returned when the buffer
is full, and then input will resume with the effect that the line editing
cannot back up before the point where the buffer emptied out. The
buffer size is currently set to 128 bytes in userio.h.

Two macros are provided in console.h to switch the path between
binary and text modes after the device is open:

set_text_mode(confp);
set_binary_mode(confp);

After the CONsole device is opened, you may open one or more paths
to the VIEW device. This is used to establish a separate path to an
area of the screen to which a task can privately write without
contending for ownership of the screen with other tasks. Each view is
initially opened in write only mode. After it is opened, an
attach_keyboard() function call can be performed, which will
dynamically set up an input buffer for the view and condition it so
that the keyboard can be later assigned to the view with an
assign_keyboard() call. The attach_keyboard() call modifies the
view path so that reading will also be allowed. After the keyboard is
assigned to a view with assign_keyboard(), any keystrokes entered
will be placed into the input buffer for that view. The console path
(CON) must remain open at all times because when it is closed, the
keyboard interrupt vector will be restored to its original contents and
no more keyboard input can be received, even if the keyboard was
assigned to another view when the CON path was closed. The CON
path will be automatically closed if the task that opened that path is
killed, so this should be avoided also. Alteratively, a field in the CON
path handle (e.g., confp-> owner_slot) could be changed to the
slot number of another task, which would prevent path closure when
the original task is killed.

B. PC-Compatible Console/KeyboardUsage

SuperTask! User’s Guide B-5

B

The console (CON device) and all view paths (VIEW device) occupy an
area of the display described by the coordinates of the upper left and
lower right character positions on screen. The upper left corner of the
screen has coordinates row 0, column 0. The lower right corner of
the screen is row 24, column 79. When the CON and each VIEW is
initially opened, its display area encompasses the entire screen and
the foreground and background color attributes are as set in
console.h. Initially, scrolling and line wrap are also enabled within
each view.

Once a view is opened, the function view_init() can be called to
change its screen limits and/or color attributes and other parameters.
Each view has its own foreground and background color attributes
and cursor position independent of all other views and the console.

A number of utility functions are provided to facilitate writing to the
screen and drawing borders around a view as well as handling
keyboard assignment. These are in addition to all of the ANSI stream
I/O functions (contained in streamio.c) that can deal with any open
device for which you have a file manager and a driver.

B. PC-Compatible Console/Keyboard Usage

B-6 SuperTask! User’s Guide

Utility Function Summary

view_init() Initializes view screen limits and attributes.

get_cursor_loc() Gets current cursor coordinates.

set_cursor_loc() Sets current cursor coordinates.

set_cursor_type() Changes cursor shape.

set_view_attrib() Sets the default foreground/background
color attributes.

put_attribc() Writes only the attribute character without
changing the displayed character.

write_attribc() Writes a field of attribute characters at
specified coordinates.

clear_screen() Blanks the view screen to background color.

display_box() Draws a box on the screen at specified
coordinates.

box_view() Draws a box around a view.

attach_keyboard() Conditions a view to accept keyboard input.

detach_keyboard() Inverse of attach_keyboard.

assign_keyboard() Directs future keyboard input to the
assigned view.

get_keyboard_assignment() Returns the file pointer of the view to
which the keyboard is currently assigned.

link_view() Allows <Ctl/Tab> or <Atl/Tab> to move
keyboard assignment to the view.

unlink_view() Inverse of link_view.

set_text_filemode() Changes an open path’s access mode to text.

B. PC-Compatible Console/KeyboardUtility Function Summary

SuperTask! User’s Guide B-7

B

set_binary_filemode() Changes an open path’s access mode to
binary.

freeze_view_attrib() Causes all attribute characters in a view to
remain constant.

thaw_view_attrib() Causes future output to the view to use the
attribute character set by set_view_attrib.

B. PC-Compatible Console/Keyboard Utility Function Summary

B-8 SuperTask! User’s Guide

Utility Function Descriptions

assign_keyboard

Assigns keyboard input to a new path.

#include “console.h”

int assign_keyboard(MTFILE * fp);

fp pointer to the VIEW path with keyboard attached

Assigns all subsequent keyboard input to be directed to the VIEW or
CON path fp . Any previous path that the keyboard was attached to
will receive no further input until the keyboard is again assigned
there. Assigning the keyboard to a path cancels any previous
assignment so that the keyboard can only be assigned to one path at a
time.

NOTE: Typing the <Ctl/Tab> or <Alt/Tab> key combinations
will cause the keyboard driver (condrv.c) to assign the
keyboard to the next or previous linked view path. See
link_view().

Return Value
SUCCESS function succeeded

EBADAFP bad MTFILE* argument

EBADASS bad assignment, cannot assign to path until
attach_keyboard performed

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide B-9

B

Example
#include “console.h”
MTFILE *viewfp;
int status;

status = assign_keyboard (viewfp);
if(status != SUCCESS)

error_routine();

B. PC-Compatible Console/Keyboard Utility Function Descriptions

B-10 SuperTask! User’s Guide

attach_keyboard

Makes keyboard input possible from view.

#include “console.h”

int attach_keyboard(MTFILE * fp);

fp pointer to the VIEW path

Modifies the path to the view specified by fp so that keyboard input
may later be requested through that path. This is accomplished by
allocating an input buffer along with some new internal structures to
modify the path. This allows keyboard input from this path to be
isolated from all others. The file access mode is modified to permit
reading during this process. No actual input can arrive at the new
buffer until the assign_keyboard() function is called to assign input to
this path. The CON path must remain open for the keyboard to be
active.

Return Value
SUCCESS function succeeded

EBADFP bad MTFILE* argument

EISATT keyboard already attached

ENOMEM no COLOR0 memory available

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide B-11

B

Example
#include “console.h”
MTFILE *confp,*viewfp;
VIEW_INIT_DATA vdata = {BLACK,WHITE,10,40,20,79,1,1};

if(!(confp = mt_fopen(“CON”,”r+”))); /* open console */
error_routine(1);

if(!(viewfp = mt_fopen(“VIEW”,”w”))); /* open view */
error_routine(2);

view_init(viewfp, &vdata); /* initialize view limits */

if(!(attach_keyboard (viewfp))/* condition for input */
error_routine(3);

B. PC-Compatible Console/Keyboard Utility Function Descriptions

B-12 SuperTask! User’s Guide

box_view

Draws a rectangular box around an open view.

#include “console.h”

void box_view(MTFILE * fp , int background_color ,
int foreground_color , int style);

fp pointer to the open CON or VIEW path

background _color background attribute

foreground _color foreground attribute

style box line style as defined in console.h

Draws a rectangular box on the screen (using PC text mode line draw
character set) around the view path specified by fp . The box
occupies the character positions just outside the view limits of fp . In
other words, the ulrow and ulcol positions of the box are one less
than the ulrow and ulcol positions of the view limit, and the
lrrow and lrcol positions of the box are one greater than the
lrrow and lrcol positions of the view limit. The box position
must lie within the screen or the result is undefined. The style value
is specified as for the display_box() function and the
background _color and foreground _color parameters specify
the attribute character with which the box will be drawn.

Example
#include “console.h”
MTFILE *fp;

box_view (fp, BLACK, YELLOW, SINGLE_SIDES);

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide B-13

B

chatout

Writes character and attribute to screen.

#include “console.h”

void chatout(MTFILE * fp , int row , int col , uint16 chat);

fp pointer to the open CON or VIEW path

row the row position to access

col the column position to access

chat the combined character and attribute to write

Writes a word containing both the screen attribute byte and the
character to display to the absolute screen location given by row and
col . The coordinates row and col are absolute from the upper left
corner of the screen regardless of the current view limits set for fp .
The character and attribute word chat is constructed as: chat =
((background _color << 12) + (foreground _color << 8) +
character).

Example
MTFILE *fp;
uint16 att = (GRAY << 12) + (RED << 8);
char *msgp = “WARNING!”;
byte row=2;
byte col=60;

if(!(fp = mt_fopen(“CON”,”r+”)))
return -1; /* return error */

while(*msgp)
chatout (fp, row, col++, *msgp++);

B. PC-Compatible Console/Keyboard Utility Function Descriptions

B-14 SuperTask! User’s Guide

clear_screen

Blanks the view.

#include “console.h”

void clear_screen(MTFILE * fp);

fp pointer to the open CON or VIEW path

Clears the screen within the limits of the current view path pointed to
by fp , and sets the current cursor position to 0,0 relative to the
current view limits. The screen is cleared by writing a space
character with the current default attributes to every position within
the view limits.

Example
#include “console.h”
MTFILE *fp;

clear_screen (fp); /* blank the screen */

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide B-15

B

detach_keyboard

Makes further keyboard input from the view impossible.

#include “console.h”

int detach_keyboard(MTFILE * fp);

fp pointer to the VIEW path with keyboard attached

If the keyboard was attached to the view specified by fp , it no longer
is after this call. The buffers and structures allocated by
attach_keyboard() are deallocated. The read mode permission is
removed from the path so that any future read function calls made to
this path will return an error status. If the keyboard was also assigned
to this path, it will be reassigned to the CON path.

Return Value
SUCCESS function succeeded

EBADFP bad MTFILE* argument

ENOTATT keyboard not attached

Example
#include “console.h”
MTFILE *viewfp;
int status;
status = detach_keyboard (viewfp);
if(status != SUCCESS)

error_routine();

B. PC-Compatible Console/Keyboard Utility Function Descriptions

B-16 SuperTask! User’s Guide

display_box

Draws a rectangular box on the screen.

#include “console.h”

void display_box(MTFILE * fp , int ulrow , int ulcol ,
 int lrrow , int lrcol, int style ,
 int background_color ,
 int foreground_color);

fp pointer to the open CON or VIEW path

ulrow absolute row of upper left point

ulcol absolute column of upper left point

lrrow absolute row of lower right point

lrcol absolute column of lower right point

style box line style as defined in console.h

background _color background attribute

foreground _color foreground attribute

Draws a rectangular box on the screen using PC text mode line draw
character set. The box’s position is defined by the coordinates of its
upper left and lower right character positions as absolute row and
column offsets from the upper left corner of the screen (i.e.,
coordinates are not relative to the view limits of the path pointed to by
fp). The upper left position row and column coordinates are given by
ulrow and ulcol respectively, and the lower right row and column
by lrrow and lrcol . The style is specified as SINGLE_ALL for
single lines on all sides, DOUBLE_ALL for double lines on all sides,
SINGLE_SIDES for single lines on the sides with double lines at the
top and bottom, or DOUBLE_SIDES for double lines on the sides and
single lines on the top and bottom. A style value of ERASE_BOX can
be used to remove the box by blanking the area to the
background _color specified.

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide B-17

B

Example
#include “console.h”
MTFILE *fp;

display_box (fp,0,0,10,79,DOUBLE_ALL,LIGHT_BLUE,BLACK);

B. PC-Compatible Console/Keyboard Utility Function Descriptions

B-18 SuperTask! User’s Guide

freeze_view_attrib,
thaw_view_attrib

Macros to control attribute character change behavior.

#include “console.h”

void freeze_view_attrib(MTFILE * fp);

void thaw_view_attrib(MTFILE * fp)

After the freeze_view_attrib() call is made, the default attribute
character for the view is no longer used when data is written to the
view. The attribute previously existing in each character location is
left unchanged instead. The thaw_view_attrib() call restores the
default state where the current view attribute byte, as set by
set_view_attrib(), is written with each data byte.

Example
MTFILE *vfp; /* path to open view */
set_cursor_loc(vfp, 5, 10); /* move cursor */
freeze_view_attrib (vfp); /* use existing attributes /

mf_fprintf(vfp,”This string uses colors in place”);
thaw_view_attrib (vfp); /* use default attrib */

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide B-19

B

get_cursor_loc

Gets current cursor location of view.

#include “console.h”

uint16 get_cursor_loc(MTFILE * fp);

fp pointer to the open CON or VIEW path

Returns the current cursor location of the open path to a CON or VIEW
device fp in a form suitable for later restoring with the function
restore_cursor_loc().

Return Value
uint16 the current cursor position of the path

Example
MTFILE *fp;
uint16 cursor_save;

cursor_save = get_cursor_loc (fp);

B. PC-Compatible Console/Keyboard Utility Function Descriptions

B-20 SuperTask! User’s Guide

get_keyboard_assignment

Returns the pointer to the path where the keyboard is assigned.

#include “console.h”

MTFILE * get_keyboard_assignment(void);

Returns the MTFILE * to the path where the keyboard is currently
assigned.

Return Value
NULL CON path not yet opened

<nonzero> MTFILE * to path where keyboard is assigned

Example
#include “console.h”
MTFILE *viewfp;

viewfp = get_keyboard_assignment ();

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide B-21

B

link_view

Links view with attached keyboard to others.

#include “console.h”

int link_view(MTFILE * oldfp , MTFILE * newfp);

oldfp MTFILE * to an existing path in the linked list

newfp MTFILE * to the path to add to the list

The path with keyboard attached, newfp , is linked to other CON/VIEW
paths so that the keyboard driver (in condrv.c) can reassign the
keyboard to newfp when the <Ctl/Tab> or <Alt/Tab> keys are typed.
When the CON path is opened, it is the only one in the linked view
list. When a VIEW path is later opened, it can be added by first
performing the attach_keyboard() call and the link_view() call with
oldfp = CON path, and newfp = the new VIEW path.

Return Value
SUCCESS function succeeded

EBADAFP bad MTFILE* argument

Example
#include “console.h”
MTFILE *confp,*viewfp;
VIEW_INIT_DATA vdata = {BLACK,WHITE,10,40,20,79,1,1};

if(!(confp = mt_fopen(“CON”,”r+”))); /* open console */
error_routine(1);

if(!(viewfp = mt_fopen(“VIEW”,”w”))); /* open view */
error_routine(2);

view_init(viewfp, &vdata); /* initialize view limits */
if(!(attach_keyboard(viewfp))/* condition for input */

error_routine(3);
if(!(link_view (confp, viewfp)) /* link view */

error_routine(4);

B. PC-Compatible Console/Keyboard Utility Function Descriptions

B-22 SuperTask! User’s Guide

put_attribc

Writes attribute character only.

#include “console.h”

void put_attribc(MTFILE * fp , int attribc);

fp pointer to the open CON or VIEW path

attribc the attribute byte to write

Writes the attribute byte attribc only at the current cursor position
in the CON or VIEW path specified by fp . This is used to change the
attribute of a character without modifying the character or the current
default attribute. The cursor position is not changed. The attribute
character is defined as:

attribc = (background _color << 4) + foreground _color ;

Example
#include “console.h”
MTFILE *fp;

put_attribc (fp, (BLACK << 4) + YELLOW);

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide B-23

B

restore_cursor_loc

Restores cursor location of view.

#include “console.h”

void restore_cursor_loc(MTFILE * fp , uint16 loc);

fp pointer to the open CON or VIEW path

loc the cursor location to restore

Restores the cursor location of the open path to a CON or VIEW device
fp to the value loc . The loc value should have previously been
returned by a call to get_cursor_loc().

Example
MTFILE *fp;
uint16 cursor_save;

cursor_save = get_cursor_loc(fp);
{ /* other screen stuff here */ }

restore_cursor_loc (fp, cursor_save);

B. PC-Compatible Console/Keyboard Utility Function Descriptions

B-24 SuperTask! User’s Guide

set_cursor_loc

Sets current cursor location within a view.

#include “console.h”

void set_cursor_loc(MTFILE * fp , int row , int col);

fp pointer to the open CON or VIEW path

row row position relative to the path ulrow

col column position relative to the path ulcol

Sets the cursor location of the open path to a CON or VIEW device fp ,
to the coordinates given by row and col . The row and col
coordinates are relative to the view boundaries and cannot be moved
outside of them with this call.

Example
MTFILE *fp;

set_cursor_position (fp, 2, 10);
/* Set cursor at row 2 column 10 */

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide B-25

B

set_cursor_type

Sets the shape of the cursor within a view.

#include “console.h”

void set_cursor_type(MTFILE * fp , uint16 curs_start ,
 uint16 curs_end);

fp pointer to the open CON or VIEW path

curs _start starting scan line (0..13)

curs _end ending scan line (0..13) >= curs _start

Sets the starting and ending scan lines of the cursor. The values range
from 0..13. Scan line 0 is the top of the cell, and scan line 13 is the
bottom. The default values are curs _start = 12, curs _end = 13,
which produces an underline cursor. If the value
CURSOR_INVISIBLE is ORed with the curs _start value, then
the cursor will not be displayed within the view.

Example
MTFILE *fp;

set_cursor_type (fp, 7, 13); /* Make cursor thicker */

B. PC-Compatible Console/Keyboard Utility Function Descriptions

B-26 SuperTask! User’s Guide

set_text_filemode,
set_binary_filemode

Macros to change file access mode.

#include “console.h”

void set_text_filemode(MTFILE * fp);

void set_binary_filemode(MTFILE * fp);

These macros change the file access mode of any path opened with
mt_fopen() to either text or binary as indicated.

Example
#include “console.h”
MTFILE *viewfp;
char linein[80];

set_text_filemode (viewfp);
mt_fgets(linein, 80, viewfp); /* input with editing */
set_binary_filemode (viewfp);
mt_fgets(linein, 4, viewfp); /* raw input, no echo */

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide B-27

B

set_view_attrib

Sets the default attribute character for the view.

#include “console.h”

void set_view_attrib(MTFILE * fp , int background_color ,
 int foreground_color);

fp pointer to the open CON or VIEW path

background _color value from console.h

foreground _color value from console.h

Sets the default color attribute value for the CON or VIEW path
specified by fp . Any subsequent characters written to the path with
mt_fputc(), mt_fputs(), mt_fwrite(), or mt_fprintf() will use this
default attribute value.

Example
#include “console.h”

MTFILE *fp;

set_view_attrib (fp, BLUE, BRIGHT_WHITE);

B. PC-Compatible Console/Keyboard Utility Function Descriptions

B-28 SuperTask! User’s Guide

unlink_view

Unlinks the view path from the list of views.

#include “console.h”

int unlink_view(MTFILE * fp);

fp MTFILE * to the path to unlink

The path fp that was previously linked with other views by
link_view() is unlinked. After unlinking, the <Ctl/Tab> or <Atl/Tab>
keys will no longer be capable of assigning the keyboard to this view;
however, the keyboard may still be assigned here with a call to
assign_keyboard(). If the keyboard was assigned here when the
unlink_view() function was called, it will be reassigned to the
previous view in the linked list.

Return Value
SUCCESS function succeeded

EBADAFP bad MTFILE* argument

Example
#include “console.h”
MTFILE *viewfp;
if(!unlink_view (viewfp))

{ /* error handling */ }

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide B-29

B

view_init

Initializes view or console limits and attributes.

#include “console.h”

int view_init(MTFILE * fp , VIEW_INIT_DATA * p);

fp pointer to the open CON or VIEW path

p pointer to initialization data structure

Initializes the view or console window size, attributes, line wrap, and
scroll flags. This call can be used repeatedly on an open console view
to change these settings.

typedef struct view_init_data{
byte background_color,

foreground_color,
ulrow, /* view limits
ulcol,
lrrow,
lrcol,
linewrap, /* auto linewrap flag
scroll; /* scroll flag

} VIEW_INIT_DATA;

Return Value
SUCCESS function succeeded

EBADFP NULL fp , or device not open

Example
MTFILE *fp; /* open stream pointer */
VIEW_INIT_DATA vdata = {BLUE,WHITE,5,10,15,70,1,1};

if(!(fp = mt_fopen(“CON”,”r+”)))
return -1; /* return error*/

view_init (fp, &vdata);

B. PC-Compatible Console/Keyboard Utility Function Descriptions

B-30 SuperTask! User’s Guide

write_attribc

Writes a field’s attribute characters only.

#include “console.h”

void write_attribc(MTFILE * fp , int row , int col , int
 attribc , int cnt)

fp pointer to the open CON or VIEW path

attribc the attribute byte to write

Writes cnt attribute bytes attribc starting at the absolute screen
position row ,col in the CON or VIEW path specified by fp . This is
used to change the attribute of a character without modifying the
character or the current default attribute. The cursor position is not
changed. The attribute character is defined as:

attribc = (background _color << 4) + foreground _color ;

Example
#include “console.h”
MTFILE *fp;

/* Change attribute of 20 characters starting at 1,15 */

write_attribc (fp, 1, 15, (BLACK << 4) + YELLOW, 20);

B. PC-Compatible Console/KeyboardUtility Function Descriptions

SuperTask! User’s Guide C-1

C

C. Global Variables

Chapter Contents

Global Variables ..C-2
Interrupt-Related Items... C-2
Kernel-Related Items .. C-3
Timing-Related Items ... C-3
Facilities-Related Items .. C-4
Extra Items.. C-4
Processor-Unique Items.. C-5
Optional Variables... C-5
Stream I/O .. C-5

C-2 SuperTask! User’s Guide

Global Variables

SuperTask! uses a variety of global variables internally, some of
which may prove useful when debugging an application. This
appendix lists the global variables that SuperTask! uses. Not all of
them may be of use when debugging. These definitions are found in
mtio.h, and most of the variables are associated with the mtinit
module.

Interrupt-Related Items

boolean clkon; if on, interrupts may add entries to cmdque

CMDARG *cmdadd; pointer to where next cmdque entry will go

CMDARG *cmdprc; pointer to next cmdque entry to process

uint32 cmdqerrors; error flag for queued commands

CMDARG cmdque[MAX_CMD_CNT];
command queue

C. Global VariablesGlobal Variables

SuperTask! User’s Guide C-3

C

Kernel-Related Items

MTflag_t mt_busy; signals kernel is busy

MTflag_t mt_block; disables task dispatching

boolean scdflg; signals context switch needed

TASK_DEF task_tab[NUMTSK+1];
array of task control blocks (TCBs)

TASK_ID cur_task; ID of currently running task

TASK_DEF * task_ptr; pointer to TCB of currently running task

TASK_DEF * quetab[MAX_Q];
array of pointers to various queues

byte *usrsp; saves state of processor in MTstart

TASK_DEF *new_task_ptr;
pointer to TCB of task to create (used by
runtsk/inistk)

va_list new_argp; argument list used by runtsk/inistk

Timing-Related Items

tick_cnt_t sys_time; system time in ticks

TIME_DEF *mt_timeq; pointer to time queue

TIME_DEF mt_timestr[NUMTIME];
array of time event structures

byte tckcnt; number of ticks before rescheduling occurs

C. Global Variables Global Variables

C-4 SuperTask! User’s Guide

Facilities-Related Items

MEM_POOL pool_table[NUMPOOLS];
array of fixed buffer pools

uint grp_event_tab[NUMGEVT];
array of event flags

byte event_tab[NUMEVT]; array of event flags

TASK_DEF *resrc_tab[NUMRES];
resource table

byte resrc_count[NUMRES]; counts resource acquisition level

MEMHEAD_DEF mem_rootptr[NUMCOLORS];
free memory pointers for dynamic
memory allocation

MSG_DEF msgtab[NUMMSG+1]; message header table

MBX_DEF mbx_tab[NUMMBX]; array of mailboxes

MSG_DEF *mtbnxt; pointer to next available spot in
msgtab

Extra Items

ENV_DEF mtenv[MTENVSIZE]; environment table

profile_t sys_ticks; system clock ticks

profile_t profile_tab[NUMTSK+1];
task profile data

C. Global VariablesGlobal Variables

SuperTask! User’s Guide C-5

C

Processor-Unique Items

byte page_cluster_tab[END_PAGE-FIRST_PAGE];
page RAM control table (for Z180-MMU)

Optional Variables

These may be implemented as globals to save stack space. These are
only used if the macro STATIC_OPT1 is defined (generally in
depends.h).

TASK_DEF *prv_taskp; pointer to previous task in queue

TASK_DEF *cur_taskp; pointer to current task in queue

TASK_DEF *prvtskp; pointer to previous task in queue

TASK_DEF *curtskp; pointer to current task in queue

TASK_DEF *nxttskp; pointer to next task in queue

byte keypri; priority of tasks to rotate

byte curpri; priority of current task in queue

Stream I/O

DEVICE device_tab[]; device table

MTFILE *mtstreams[NUMSTREAMS];
open streams table

C. Global Variables Global Variables

C-6 SuperTask! User’s Guide

SuperTask! User’s Guide D-1

D
D. Error Codes

Chapter Contents

Error Codes Returned by Functions ..D-2

D-2 SuperTask! User’s Guide

Error Codes Returned by Functions

These are defined in mtlib.h .

Label Value Meaning

SUCCESS 0 successful operation

E_NOSLOT -10 no TCB slot available

E_NORAM -11 no RAM available for stack or packet

E_INVTME -12 invalid time

E_INVSLT -13 invalid slot (TASK_ID)

E_INVDLY -14 invalid delay type

E_INVEVT -15 invalid event number

E_INVGRP -16 invalid group event number

E_INVRES -17 invalid resource number

E_INVMBX -18 invalid mailbox

E_RELMEM -19 invalid memory release (corrupt)

E_TIMED_OUT -20 function timeout expired

E_PTFULL -21 periodic event table full

E_INVPRF -22 invalid profile_type code

E_INVPAG -23 invalid MMU180 page number

E_NOTOPEN -24 device not open

E_RELDEV -25 device not open or not device owner

E_INVPID -26 invalid pool ID

E_INVBSZ -27 invalid block size for pool

E_INVPT -28 invalid pool type

E_NOROOM -29 no table space available for message

D. Error CodesError Codes

SuperTask! User’s Guide D-3

D

Error codes (mtlib.h) (continued)

Label Value Meaning

E_INVFDP -30 invalid file descriptor pointer

E_NOTSUS -31 task not suspended

E_NOTOWNER -32 not owner of stream

E_IOERR -33 stream access error

E_INVCOLOR -34 color requested > NUMCOLORS

E_LATE -35 missed system time required

E_ENVFULL -36 mtenv table full

E_TABFULL -37 acquire/release table full

E_TOOSMALL -38 too small of memory release to MTmeminit

E_CORRUPT -39 memory chain corrupt

E_MBXFULL -40 MBXLIMIT messages in mailbox

E_TOOSML -41 too small of memory passed to MTmeminit

E_MSGTYPE -42 not message type expected (pkt vs. msg)

E_UNALLOC -43 release of unallocated memory

E_NULLPTR -44 NULL pointer passed to system call

D. Error Codes Error Codes

D-4 SuperTask! User’s Guide

SuperTask! User’s Guide E-1

E. Glossary

E

E. Glossary

Address space A linear array of locations that a thread can access.
Simple processors have only one, and these
processors are referred to as ‘linear’ addressing.
Some processors allow code and data to have
separate spaces and are referred to as ‘split’
addressing. A few processors (IBM-360 and Intel
x86) have a large number of ‘segments’, each a
linear piece, and are referred to as having
‘segmented’ addressing. In addition, processors
may have a special set of I/O instructions that
access a distinct I/O space.

Block A block is a variable-size piece of memory that a
task can acquire. Blocks are allocated from heaps.
[Related: Buffer, heap]

Buffer A fixed-size piece of memory that a task can
acquire. Buffers are allocated from buffer pools.
[Related: Block]

Event A point in time where something happened,
typically things like a button pressed (or released), a
character arriving at a UART, an analog to digital
conversion completes, a message is received, etc.
Business people call them ‘transactions’. MT!
provides both counting and multi-bit (group) events.

Counting event
An event variable that can be incremented or
decremented. Changing to/from zero can be
used to trigger task wakeup.

Group (multi-bit) event
Uses the fact that a typical processor accesses
memory in pieces larger than a single bit. MT!

E-2 SuperTask! User’s Guide

E. Glossary

uses a ‘word’ of bits. A task may wait on any bit
(or combination of bits) and in that word to be
set or cleared.

Event flag A single bit that can be set or cleared and that is
visible to the RTOS’s scheduler. Since most
microprocessors don’t support single bits, MT!
provides both counting and multi-bit (group) events.

Device A piece of physical hardware that interfaces a
program to the real world. Typical devices are
UARTs, disk drives, network chips, ADC/DAC,
GPIB, video screens, etc. Today, most devices are
being multiplexed (multiplexing the CPU is called
multitasking), so most I/O is to files, windows, and
connections. [Related: File, stream]

File A part of a storage device that contains a set of data.
It appears to be a small disk drive. Older systems
treated files as a series of fixed or variable length
records. Newer systems (especially UNIX) use a
record size of one byte and, thus, files look like a
byte stream. [Related: Stream, device]

Heap A region of memory used for dynamic memory
allocation. We refer to the variable-sized pieces of
memory allocated by heaps as blocks. [Related:
Block]

Location Smallest unit of memory that has a unique address.
This is typically an 8-bit byte. The implementation
(e.g., chip) may physically use a larger size, and is
often rated as such: 8-bit, 16-bit, 32-bit, or 64-bit
processor. Such a rating does not indicate the size
of program that can be run, but is only an efficiency
rating. [Related: Word]

Messages A means of communication between two tasks. As
implemented in MultiTask! messages are sent by
passing a pointer to data. No additional memory is
allocated when a message is passed. [Related:
Packets]

SuperTask! User’s Guide E-3

E. Glossary

E

MMU A “Memory Management Unit” is hardware that
checks and/or translates a process’ addresses into
physical addresses. The simplest version simply
checks the addresses and provides “memory
protection” to prevent a process from damaging
other processes’ code/data. Other versions may
modify the address by adding an offset or using a
lookup table. Many systems use a form called
‘bank switching’. Multiuser systems use privileged
instructions with an MMU to fully isolate each
process. With instruction restart and a large disk,
this becomes “virtual memory”.

Multitasking Mechanisms that allow a single processor to work
on multiple jobs or tasks by switching back and
forth between them. If multitasking is within a
single address space, it is known as multi-threading.
If multiple address spaces are used (via an MMU),
it is known as multiprocessing. [Related:
Multithreading, multiprocessing]

Multiprogramming
Having more than one program executing at once.
This requires having several execution units inside a
single chip and/or several processors within a
system. Note that this is true parallel execution, not
rapid switching as in multitasking.

MUTEX Mutual exclusion, a method of allowing only one
task at a time access to an object. May be
implemented as a bit, a count, or as a semaphore.
[Related: Resource, semaphore]

Packet A means of communication between tasks. As
implemented in MultiTask!, when a packet is
passed, an actual copy of the packet is transferred.
Memory is allocated for the packet, and a pointer is
not used. [Related: Message]

E-4 SuperTask! User’s Guide

E. Glossary

Process A term used to label a user addressing space and the
program running within it. On a multiprocessing
system, there are many processes and each exists in
its own address space. Some systems allow a
process to be multi-threaded, others do not.
[Related: Task, thread, address space, MMU]

Resource A synchronization facility, usually attached to some
hardware or software object, to allow ownership.
This allows only one task access to the object at a
time. Resources support nesting — that is, a task
may acquire a resource several times and must
release it an equal number of times before the
object becomes available again. Also known as
MUTEX (mutual exclusion). [Related:
Semaphore, MUTEX]

Semaphore, bit An exclusion mechanism that allows only one task
to own the semaphore at a time. [Related:
MUTEX, resource]

Semaphore, counting
An exclusion mechanism that allows only a limited
number of tasks to ‘own’ the semaphore at a time.
Typically seen as a limit (“There are 5 users out of
10 allowed on this FTP site.”). Resources are more
useful in embedded applications. [Related:
MUTEX, resource]

Stream An I/O channel that transfers data in bytes instead
of in packets or records. Popularized by UNIX. A
UART is a byte stream device. Disk drives and
network chips are not stream oriented. [Related:
File, device]

Task Something that needs to get done, usually somewhat
independently of other ’tasks’. [Related: Process,
thread]

SuperTask! User’s Guide E-5

E. Glossary

E

Thread A separate, distinct set of executions that the
processor follows. Internally implemented as some
data that include a ‘register set’, the instruction
pointer, and certain flags. A multiprocessing
system may restrict itself to one thread per
addressing space, or it may allow multi-threading
within each process. [Related: Process, task]

Word A term used to reference a data object that is a
convenient size for calculations on a given
processor. Since the most calculations are
performed on addresses, most processors make a
word large enough to hold an address. [Related:
Location]

There are many exceptions, though, either due to
the architecture or just mistakes in the
documentation:

• 16-bit word & address processors: 8080/Z80,
 68xx, 8051

• 16-bit word >16-bit address processors: Z-180,
 8088+, 68HC16, banking

• 32-bit word & address processors: 68000/
 ColdFire(*), 80386(flat), M*Core

• (*) 68K is clearly a 32-bit word processor, but
 Motorola documents it as 16-bit

• Both the Power-PC and MIPS are oriented as
 64-bit word and address, but they are 32-bit
 implementations.

E-6 SuperTask! User’s Guide

E. Glossary

SuperTask! User’s Guide Index-1

Index

I

Index
Symbols

_delete file manager function 5-12
386 protected mode A-31–A-34
68xxx platform A-35
80960 (i960) platform A-42
80x86 platform A-47

A

acquire ST! library function 3-15
activating tasks 2-67
address space, definition E-1
ANSI C stream I/O functions 5-2
ANSI stream I/O functions (sfm) 6-3
applications

designing 2-59
running under DOS A-49

ARM/StrongArm platform A-3
assign_keyboard console/keyboard utility

function B-8
atomic typedef names 3-13
attach_keyboard console/keyboard utility

function B-10

B

block, definition E-1
block_preemption ST! library function

3-16
blocking task preemption 2-24
box_view console/keyboard utility

function B-12
bugs, reporting 1-12

C

chatout console/keyboard utility function
B-13

chkbuf ST! library function 3-17
chkevt ST! library function 3-18
chkgrp ST! library function 3-19
chkmbx ST! library function 3-20
chkmem ST! library function 3-21
chkmsg ST! library function 3-23
chkres ST! library function 3-24
clear_screen console/keyboard utility

function B-14
close file manager function 5-12
clr_profile ST! library function 3-25
clrevt ST! library function 3-27
clrgrp ST! library function 3-28
code reentrancy 2-65
colored memory

description 2-49
initialization 2-50

command queue, basic description 2-17
compiling MultiTask! library 2-72
configuring MultiTask! 2-73
connections, functions for 5-8
console/keyboard driver

description B-2
usage B-3

console/keyboard utility functions
assign_keyboard B-8
attach_keyboard B-10
box_view B-12
chatout B-13
clear_screen B-14
detach_keyboard B-15
display_box B-16

Index-2 SuperTask! User’s Guide

Index

freeze_view_attrib B-18
get_cursor_loc B-19
get_keyboard_assignment B-20
link_view B-21
put_attribc B-22
restore_cursor_loc B-23
set_binary_filemode B-26
set_cursor_loc B-24
set_cursor_type B-25
set_text_filemode B-26
set_view_attrib B-27
summary B-6–B-7
thaw_view_attrib B-18
unlink_view B-28
view_init B-29
write_attribc B-30

controlling tasks, basic description 2-20
counting events

definition E-1
Customer Support 1-10
customizing MultiTask! 5-9

D

data transfer, functions for 5-8
deadlock 2-41
deadly embrace 2-40
debugging using mtdbg() 2-82
decevt ST! library function 3-29
defining tasks 2-61
del_pool ST! library function 3-30
delay_until ST! library function 3-31
depends.h

configuration parameters in 2-78
derived typedef names 3-14
designing applications 2-59
detach_keyboard console/keyboard utility

function B-15
device, definition E-2

device driver functions
init 5-17
ioctl 5-18
read 5-19
related to file manager functions 5-8
related to stream I/O functions 5-8
term 5-20
write 5-20

device drivers
adding new 5-16
ISRs 5-21

disk file system 5-7
display_box console/keyboard utility

function B-16
dlytsk ST! library function 3-32
documentation

how to use 1-2
text files 1-5

DOS
running applications under A-49

driver0.c supplied serial driver 5-24

E

error codes, table of D-2–D-3
errors, recovery hooks 3-11
event flag, definition E-2
events

basic description 2-26
counting, definition E-1
definition E-1
group 2-31
group, definition E-1
managing 2-27
periodic 2-30, 2-31
ST! library functions for 2-27, 3-6

SuperTask! User’s Guide Index-3

Index

I

F

facilities, global variables for C-4
file, definition E-2
file manager

adding 5-9–5-15
adding new 5-9
sfm 5-11

file manager functions
_delete 5-12
close 5-12
fmioctl 5-12
makdir 5-13
open 5-13
read 5-13
readln 5-14
related to device driver functions 5-8
related to stream I/O functions 5-8
seek 5-14
write 5-15
writeln 5-15

fixed-size memory buffers
ST! library functions for managing

2-52
flushmbx ST! library function 3-35
fmioctl file manager function 5-12
freeres ST! library function 3-36
freeze_view_attrib console/keyboard

function B-18
functions

ANSI C stream I/O 5-2
ANSI stream I/O 6-3
console/keyboard utility, descriptions

B-8–B-30
console/keyboard utility, summary B-6
device driver 5-16–5-24
error codes returned by D-2–D-3

file manager 5-9–5-15
MT! library, by category 3-5–3-14
MT! library, descriptions 3-15–3-114
return codes D-2–D-3
stream I/O, by category 6-3
stream I/O, descriptions 6-4–6-38

G

get_cursor_loc console/keyboard utility
function B-19

get_keyboard_assignment console/
keyboard function B-20

get_mtenv ST! library function 3-37
get_profile ST! library function 3-38
get_sys_time ST! library function 3-39
get_tcb ST! library function 2-58, 3-40
getbuf ST! library function 3-41
getclk ST! library function 3-42
getres ST! library function 3-43, 3-44
global variables C-2

facilities-related C-4
for pointers C-5
interrupt-related C-2
kernel-related C-3
optional C-5
processor-unique C-5
stream I/O C-5
timing-related C-3

group events 2-31
definition E-1
ST! library functions for 3-6

H

heap 4-21–4-22
definition E-2

Index-4 SuperTask! User’s Guide

Index

I

I/O device table
changing 5-24

I/O, ST! library functions for 6-3
i960 platform A-42
incevt ST! library function 3-45
include files

for ST! library functions 3-13
init driver function 5-17
init_mem_pool ST! library function 3-46
initialization of MultiTask! 2-71
installating SuperTask! 1-4
interfacing 4-5
interrupts 4-3

entries 4-7
exits 4-7
global variables for C-2
high-level 4-17
latency 4-17
low-level 4-17
multilevel 4-4
nested 4-10–4-16
simple 4-7
ST! library functions for 3-9
with task switch 4-9

ioctl driver function 5-18
ireqbuf_c ST! library function 3-48
ISRs 4-5

with device drivers 5-21

K

kernel, global variables for C-3
klltsk ST! library function 3-50

L

link_view console/keyboard utility
function B-21

linking
with the MultiTask! library 2-72

location, definition E-2

M

M*Core platform A-9
mailboxes

basic description 2-33
compared with pipes 5-5
functions for 2-34

makdir file manager function 5-13
makefiles

configuration parameters in 2-80
general information 1-5

MASK_INTS ST! library macro 3-52
memory

buffers 2-53
definition E-1

colors, defined 2-49
dynamic 4-21
fixed-size blocks 2-52
global, defined 2-48
local, defined 2-48
pools 2-53
ST! library functions for 3-7
variable-size blocks 2-43

management functions 2-47
memory management

basic description 2-42
messages

basic description 2-34
definition E-2
ST! library functions for 3-8

SuperTask! User’s Guide Index-5

Index

I

MIPS platform A-12
MMU, definition E-3
mt_clearerr ST! library function 6-5
mt_fclose ST! library function 6-6
mt_feof ST! library function 6-7
mt_ferror ST! library function 6-8
mt_fflush ST! library function 6-9
mt_fgetc ST! library function 6-10
mt_fgetpos ST! library function 6-11
mt_fgets ST! library function 6-12
mt_fopen ST! library function 6-14
mt_fprintf ST! library function 6-16
mt_fputc ST! library function 6-18
mt_fputs ST! library function 6-19
mt_fread ST! library function 6-20
mt_fseek ST! library function 6-21
mt_fsetpos ST! library function 6-22
mt_ftell ST! library function 6-23
mt_fwrite ST! library function 6-24
mt_mkdir ST! library function 6-25
mt_printf ST! library function 6-26
mt_remove ST! library function 6-27
mt_rename ST! library function 6-28
mt_rmdir ST! library function 6-29
mt_sprintf ST! library function 6-30
mt_vsprintf ST! library function 6-33
mtcfg.h, configuration parameters in 2-74
mtdbg()

commands 2-83
using for debugging 2-82

MTinitialize ST! library function 3-53
MTmeminit ST! library function 3-54
MTmeminit2 ST! library function 3-56
MTqcmd_c ST! library function 3-57
MTsched ST! library function 3-59
MTsched_c ST! library function 3-60
MTstart ST! library function 3-61

MTterminate ST! library function 3-63
multiprogramming, definition E-3
MultiTask!

adding a new file manage 5-9
adding a new file manager 5-9
basic concepts 2-8
configuration parameters 2-74
configuring 2-73
customizing 5-9
environment 2-57
features 2-4
general description 1-2
overview 2-3
scoreboard 2-58
services 2-20–2-59
stream I/O basics 5-3
time of day functions 2-58

MultiTask! library
compling 2-72
linking with 2-72

multitasking 2-5
definition E-3

multitasking applications
designing 2-59

MUTEX, definition E-3

O

oneshot ST! library function 3-65
open file manager function 5-13

P

packets
basic description 2-37
definition E-3
functions for 2-37

PC-compatible console/keyboard
B-1–B-30

Index-6 SuperTask! User’s Guide

Index

period ST! library function 3-67
periodic events 2-30
pipes

basic description 5-5
compared with mailboxes 5-5

platforms
68xxx A-35
80960 (i960) A-42
80x86 A-47
ARM/StrongArm A-3
DOS A-49
i960 A-42
M*Core A-9
MIPS A-12
PowerPC A-20
SH A-25

pointers, global variables for C-5
PowerPC platform A-20
preemption of tasks

basic description 2-16
pritsk ST! library function 3-69
process, definition E-4
profiling

functions for 2-56
protected mode, 386 A-31
put_attribc console/keyboard utility

function B-22
put_mtenv ST! library function 3-70
putmsg ST! library function 3-72
putpkt ST! library function 3-74

R

rcvmsg ST! library function 3-77
read driver function 5-19
read file manager function 5-13
readln file manager function 5-14
reanimate ST! library function 3-79
reentrancy 2-65

relbuf ST! library function 3-80
release ST! library function 3-81
relmem ST! library function 3-82
relpkt ST! library function 3-83
relres ST! library function 3-84
reporting bugs 1-12
reqbuf ST! library function 3-85
reqmem ST! library function 3-86
reqres ST! library function 3-88, 3-90
resource management functions 2-39
resources 2-39

basic description 2-39
deadlocking 2-41
definition E-4
ST! library functions for 3-8

restore_cursor_loc console/keyboard
function B-23

return values D-2–D-3
running tasks 2-24
runtsk ST! library function 3-92

S

scdtsk ST! library function 3-93
scheduler 4-23
seek file manager function 5-14
semaphore, bit, definition E-4
semaphore, counting, definition E-4
sending messages

suspending after 2-35
serial drivers, supplied 5-24
serial ports, basic description 5-4
set_binary_filemode console/keyboard

function B-26
set_cursor_loc console/keyboard utility

function B-24
set_cursor_type console/keyboard utility

function B-25

SuperTask! User’s Guide Index-7

Index

I

set_text_filemode console/keyboard
function B-26

set_view_attrib console/keyboard utility
function B-27

setclk ST! library function 3-94
setevt ST! library function 3-95
setgrp ST! library function 3-96
sfm file manager 5-16

routines 5-11
SH platform A-25
slttsk ST! library function 3-97
sndmsg ST! library function 3-99
sndpkt ST! library function 3-100
source files, general information 1-6
sscanf ST! library function 6-32
starting tasks, basic description 2-20
stream, definition E-4
stream I/O 2-56

basic description 5-3
customizing 5-8–5-25
functions for 5-2
global variables for C-5

stream I/O functions
related to device driver functions 5-8
related to file manager functions 5-8

SuperTask!
installation 1-4
reporting bugs 1-12
source files 1-6
user requirements 1-8

SuperTask! library functions
acquire 3-15
ANSI stream I/O (sfm) 6-3
block_preemption 3-16
by category 3-5–3-14
chkbuf 3-17
chkevt 3-18
chkgrp 3-19
chkmbx 3-20

chkmem 3-21
chkmsg 3-23
chkres 3-24
clr_profile 3-25
clrevt 3-27
clrgrp 3-28
code protection 3-10
console I/O 3-12
decevt 3-29
del_pool 3-30
delay_until 3-31
dlytsk 3-32
flushmbx 3-35
for events 2-27, 3-6
for file manager 5-11
for group events 3-6
for interrupts 3-9
for mailboxes 2-34
for managing fixed-size memory

buffers 2-52
for memory 3-7
for messages 3-8
for packets 2-37
for profiling 2-56
for resource management 2-39
for resources 3-8
for stream I/O 5-2
for system clock 2-58
for system startup 3-5
for task control 3-5
for timers 3-9
for variable-size block memory man-

agement 2-47
freeres 3-36
get_mtenv 3-37
get_profile 3-38
get_sys_time 3-39
get_tcb 3-40
getbuf 3-41

Index-8 SuperTask! User’s Guide

Index

getclk 3-42
getres 3-43, 3-44
I/O 6-3
incevt 3-45
init_mem_pool 3-46
interrupt control 3-12
ireqbuf_c 3-48
klltsk 3-50
library include files for 3-13
low level 3-11
MASK_INTS macro 3-52
miscellaneous 3-10
mt_clearerr 6-5
mt_fclose 6-6
mt_feof 6-7
mt_ferror 6-8
mt_fflush 6-9
mt_fgetc 6-10
mt_fgetpos 6-11
mt_fgets 6-12
mt_fopen 6-14
mt_fprintf 6-16
mt_fputc 6-18
mt_fputs 6-19
mt_fread 6-20
mt_fseek 6-21
mt_fsetpos 6-22
mt_ftell 6-23
mt_fwrite 6-24
mt_mkdir 6-25
mt_printf 6-26
mt_remove 6-27
mt_rename 6-28
mt_rmdir 6-29
mt_sprintf 6-30
mt_vsprintf 6-33
MTinitialize 3-53
MTmeminit 3-54

MTmeminit2 3-56
MTqcmd_c 3-57
MTsched 3-59
MTsched_c 3-60
MTstart 3-61
MTterminate 3-63
oneshot 3-65
period 3-67
pritsk 3-69
put_mtenv 3-70
putmsg 3-72
putpkt 3-76
rcvmsg 3-77
reanimate 3-79
relbuf 3-80
release 3-81
relmem 3-82
relpkt 3-83
relres 3-84
reqbuf 3-85
reqmem 3-86
reqres 3-88, 3-90
runtsk 3-92
scdtsk 3-93
setclk 3-94
setevt 3-95
setgrp 3-96
slttsk 3-97
sndmsg 3-99
sndpkt 3-100
sscanf 6-32
stream I/O 3-64
suspend 3-101
ticker control 3-12
timed_getc 6-34
timed_read 6-35
timed_readln 6-37
unblock_preemption 3-103

SuperTask! User’s Guide Index-9

Index

I

UNMASK_INTS macro 3-104
waitgrp 3-105
wketsk 3-107, 3-108
wketsk_nto 3-109
wteclr 3-110
wteset 3-112
wteset_dec 3-114

suspend ST! library function 3-101
switching tasks 2-24

basic description 2-16
system clock 2-54

functions for 2-58
system initialization 2-71
system structure typedef names 3-14

T

tasks
activating 2-67
basic description 2-8
blocking preemption 2-24
controlling 2-20
defining 2-61
definition E-4
interrupts 2-62
preemption

basic description 2-16
blocking 2-24

priorities 2-63
basic description 2-14

queues, basic description 2-13
running 2-24
starting 2-20
states, basic description 2-10
stimulus 2-62
switching 2-24

basic description 2-16
term driver function 5-20

text files on delivery diskettes 1-5
thaw_view_attrib console/keyboard utility

function B-18
thread, definition E-5
threading 2-61
ticker 4-19–4-20
time functions 2-54
time management, functions for 2-54
time queue, basic description 2-17
timed_getc ST! library function 6-34
timed_read ST! library function 6-35
timed_readln ST! library function 6-37
timers, ST! library functions for 3-9
timing, global variables for C-3
TSR (DOS), running application as A-51
typedef names 3-13

U

unblock_preemption ST! library functions
3-103

unlink_view console/keyboard utility
function B-28

UNMASK_INTS ST! library macro 3-
104

USFiles disk file system
basic description 5-7

V

variables
status reporting 3-10

view_init console/keyboard utility
function B-29

W

waitgrp ST! library function 3-105
wketsk ST! library function 3-107, 3-108

Index-10 SuperTask! User’s Guide

Index

wketsk_nto ST! library function 3-109
word, definition E-5
write driver function 5-20
write file manager function 5-15
write_attribc console/keyboard utility

function B-30
writeln file manager function 5-15
wteclr ST! library function 3-110
wteset ST! library function 3-112
wteset_dec ST! library function 3-114

	1. Read This First
	2. MultiTask!
	3. MultiTask! Library Reference
	4. MultiTask! Internals
	5. Stream I/O
	6. Stream I/O Library
	A. Platform-Specific Information
	B. PC-Compatible Console/Keyboard
	C. Global Variables
	D. Error Codes
	E. Glossary
	Index
	1. Read This First
	How to Use this Document
	Installing SuperTask!
	Text Files on Delivery Diskettes
	Makefiles
	Source Files
	What Is Required of You
	Calling for Support
	When to Call
	How to Call
	Reporting Bugs
	2. MultiTask!
	Overview
	Introduction
	MultiTask! Features
	Multitasking
	Figure 2-1: Multitasking system
	Figure 2-2: Comparison of integrated and multitasking approaches
	MultiTask! Concepts
	Figure 2-3: The general form of a task control block (TCB)
	Figure 2-4: Possible task state changes
	Figure 2-5: Task queues
	Figure 2-6: Run queue
	Figure 2-7: Rotation of tasks
	Figure 2-8: How task priority affects task execution
	Figure 2-9: Command queue with two unprocessed commands
	MultiTask! Services
	Figure 2-10: Tasks shown in various wait queues according to priority order
	Figure 2-11: Deadlock or "deadly embrace"
	Figure 2-12: Memory after MTmeminit()
	Figure 2-13: Diagram of a 4K block of memory
	Figure 2-14: Blocks A, C, D, and B returned
	How to Design Your Application
	Real-Time Application Guidelines
	Before You Start
	Defining Tasks
	Reentrancy Considerations
	Task Activation
	System Initialization
	Compiling and Linking with the MultiTask! Library
	Configuring MultiTask!
	Using the Configuration Program
	Configuration Parameters
	Table 2-1: Parameters in mtcfg.h
	Table 2-2: Parameters in depends.h
	Using mtdbg() for Debugging
	3. MultiTask! Library Reference
	Functions by Category
	System Control Functions
	Task Control Functions
	Event Functions and Variables
	Group Event Functions
	Memory (Heap) Functions and Variables
	Memory (Buffer Pool) Functions and Variables
	Message Functions and Variables
	Resource Functions and Variables
	Interrupt Functions
	Timer Functions and Variables
	Miscellaneous Functions
	Critical Code Protection Functions and Variables
	Status Reporting Variables
	Stream I/O Functions
	Hooks Available for Error Recovery
	New Low-Level Functions
	Include Files
	Typedef Names
	Atomic Typedef Names
	Derived Typedef Names
	System Structure Typedef Names
	Function Descriptions
	acquire
	block_preemption
	chkbuf
	chkevt
	chkgrp
	chkmbx
	chkmem
	chkmsg (obsolete)
	chkres
	clr_profile
	clrevt
	clrgrp
	decevt
	del_pool
	delay_until
	dlytsk
	flushmbx
	freeres
	get_mtenv
	get_profile
	get_sys_time
	get_tcb
	getbuf
	getclk
	getres
	GrpWakeValue
	incevt
	init_mem_pool
	ireqbuf_c
	klltsk
	MASK_INTS
	MTinitialize
	MTmeminit
	MTmeminit2
	MTqcmd_c
	MTsched (assembly code only)
	MTsched_c
	MTstart
	MTterminate
	oneshot
	period
	pritsk
	put_mtenv
	putmsg
	putpkt
	rcvmsg
	reanimate
	relbuf
	release
	relmem
	relpkt
	relres
	reqbuf
	reqmem
	reqres
	runtsk
	runtsk
	scdtsk
	setclk
	setevt
	setgrp
	slttsk
	sndmsg
	sndpkt
	suspend
	unblock_preemption
	UNMASK_INTS
	waitgrp
	waktsk
	wketsk (obsolete)
	wketsk_nto (obsolete)
	wteclr
	wteset
	wteset_dec
	4. MultiTask! Internals
	Overview
	Interrupt Basics
	Multilevel Interrupts - MT! Visibility
	Interfacing to MultiTask!
	Talking to MultiTask! Objects
	Getting Something from MultiTask!
	Entry/Exit Adjustments
	Figure 4-1: Simple interrupt situation
	Figure 4-2: Interrupt with task switch
	Nested Interrupt Issues
	Figure 4-3: Nested interrupt routines
	Figure 4-4: Possible interrupt problem
	Avoiding Task Switching from Nested Interrupts
	Interrupt Latency
	Low-level Versus High-level Interrupt Routines
	The Ticker
	Dynamic Memory Routines - the Heap
	The Scheduler
	5. Stream I/O
	ANSI C Functions
	Devices
	Customizing Stream I/O
	Functions for Customizing Stream I/O
	Adding a New File Manager
	File Manager _delete() function
	File Manager close() function
	File Manager fmioctl() function
	File Manager makdir() function
	File Manager open() function
	File Manager read() function
	File Manager readln() function
	File Manager seek() function
	File Manager write() function
	File Manager writeln() function
	Adding a New Device Driver
	Device Driver init() function
	Device Driver ioctl() function
	Device Driver read() function
	Device Driver term() function
	Device Driver write() function
	Jump Table
	Device Driver Interrupt Service Routines
	Supplied Serial Drivers (driver0.c)
	Changing the I/O Device Table
	Table 5-1: Device Table Codes
	6. Stream I/O Library
	I/O Functions by Category
	ANSI Stream I/O Functions
	ANSI Stream I/O Functions in USFiles
	Additional I/O Functions
	I/O Function Descriptions
	find_pipe
	mt_clearerr
	mt_fclose
	mt_feof
	mt_ferror
	mt_fflush
	mt_fgetc
	mt_fgetpos
	mt_fgets
	mt_fopen
	mt_fprintf
	mt_fputc
	mt_fputs
	mt_fread
	mt_fseek
	mt_fsetpos
	mt_ftell
	mt_fwrite
	mt_mkdir
	mt_printf
	mt_remove
	mt_rename
	mt_rmdir
	mt_sprintf
	mt_sscanf
	mt_vsprintf
	timed_getc
	timed_read
	timed_readln
	A. Platform-Specific Information
	ARM/StrongARM Platform
	Evaluation Platforms
	The Makefile
	Support for StrongARM EBSA-285 Evaluation Board
	Support for ARM7 PIE Board
	Special Issues
	ARM Operating Modes
	Interrupt Considerations
	IRQ Interrupt Handling
	FIQ Handling
	SWI Handling
	M*Core
	Evaluation Platforms
	The Makefile
	Special Issues
	Interrupt Considerations
	MIPS Platform
	The Makefile
	Interrupt Considerations
	R3000 Support
	R4650 Support
	NEC 4373
	PowerPC Platform
	Evaluation Platforms
	The Makefile
	Special Issues
	Interrupt Considerations
	IBM PPC403GA Test environment
	SH Platform
	Evaluation Platforms
	The Makefile
	Notes on SH1 Support
	Notes on SH2 Support
	Notes on SH3 Support
	386 Protected Mode
	Evaluation Platforms
	The Makefile
	Hardware-Dependent Configuring
	68xxx Platform
	Special Issues
	Figure A-1: Task stack space allocation
	Interrupt Considerations
	80960 (i960) Platform
	The Makefile
	Special Issues
	Interrupt Considerations
	80x86 Platform
	Evaluation Platforms
	The Makefile
	Special Issues
	Interrupt Considerations
	B. PC-Compatible Console/Keyboard
	Description
	Usage
	Utility Function Summary
	Utility Function Descriptions
	assign_keyboard
	attach_keyboard
	box_view
	chatout
	clear_screen
	detach_keyboard
	display_box
	freeze_view_attrib, thaw_view_attrib
	get_cursor_loc
	get_keyboard_assignment
	link_view
	put_attribc
	restore_cursor_loc
	set_cursor_loc
	set_cursor_type
	set_text_filemode, set_binary_filemode
	set_view_attrib
	unlink_view
	view_init
	write_attribc
	C. Global Variables
	Global Variables
	Interrupt-Related Items
	Kernel-Related Items
	Timing-Related Items
	Facilities-Related Items
	Extra Items
	Processor-Unique Items
	Optional Variables
	Stream I/O
	D. Error Codes
	Error Codes Returned by Functions
	E. Glossary
	Index
	How to Use this Document
	Installing SuperTask!
	Text Files on Delivery Diskettes
	Makefiles
	Source Files
	What Is Required of You
	Calling for Support
	When to Call
	How to Call
	Reporting Bugs
	Overview
	Introduction
	MultiTask! Features
	Multitasking
	Figure 2-1: Multitasking system
	Figure 2-2: Comparison of integrated and multitasking approaches
	MultiTask! Concepts
	Figure 2-3: The general form of a task control block (TCB)
	Figure 2-4: Possible task state changes
	Figure 2-5: Task queues
	Figure 2-6: Run queue
	Figure 2-7: Rotation of tasks
	Figure 2-8: How task priority affects task execution
	Figure 2-9: Command queue with two unprocessed commands
	MultiTask! Services
	Figure 2-10: Tasks shown in various wait queues according to priority order
	Figure 2-11: Deadlock or "deadly embrace"
	Figure 2-12: Memory after MTmeminit()
	Figure 2-13: Diagram of a 4K block of memory
	Figure 2-14: Blocks A, C, D, and B returned
	How to Design Your Application
	Real-Time Application Guidelines
	Before You Start
	Defining Tasks
	Reentrancy Considerations
	Task Activation
	System Initialization
	Compiling and Linking with the MultiTask! Library
	Configuring MultiTask!
	Using the Configuration Program
	Configuration Parameters
	Table 2-1: Parameters in mtcfg.h
	Table 2-2: Parameters in depends.h
	Using mtdbg() for Debugging
	Functions by Category
	System Control Functions
	Task Control Functions
	Event Functions and Variables
	Group Event Functions
	Memory (Heap) Functions and Variables
	Memory (Buffer Pool) Functions and Variables
	Message Functions and Variables
	Resource Functions and Variables
	Interrupt Functions
	Timer Functions and Variables
	Miscellaneous Functions
	Critical Code Protection Functions and Variables
	Status Reporting Variables
	Stream I/O Functions
	Hooks Available for Error Recovery
	New Low-Level Functions
	Include Files
	Typedef Names
	Atomic Typedef Names
	Derived Typedef Names
	System Structure Typedef Names
	Function Descriptions
	acquire
	block_preemption
	chkbuf
	chkevt
	chkgrp
	chkmbx
	chkmem
	chkmsg
	chkres
	clr_profile
	clrevt
	clrgrp
	decevt
	del_pool
	delay_until
	dlytsk
	flushmbx
	freeres
	get_mtenv
	get_profile
	get_sys_time
	get_tcb
	getbuf
	getclk
	getres
	GrpWakeValue
	incevt
	init_mem_pool
	ireqbuf_c
	klltsk
	MASK_INTS
	MTinitialize
	MTmeminit
	MTmeminit2
	MTqcmd_c
	MTsched (assembly code only)
	MTsched_c
	MTstart
	MTterminate
	oneshot
	period
	pritsk
	put_mtenv
	putmsg
	putpkt
	rcvmsg
	reanimate
	relbuf
	release
	relmem
	relpkt
	relres
	reqbuf
	reqmem
	reqres
	runtsk
	runtsk
	scdtsk
	setclk
	setevt
	setgrp
	slttsk
	sndmsg
	sndpkt
	suspend
	unblock_preemption
	UNMASK_INTS
	waitgrp
	waktsk
	wketsk (obsolete)
	wketsk_nto (obsolete)
	wteclr
	wteset
	wteset_dec
	Overview
	Interrupt Basics
	Multilevel Interrupts - MT! Visibility
	Interfacing to MultiTask!
	Talking to MultiTask! Objects
	Getting Something from MultiTask
	Entry/Exit Adjustments
	Figure 4-1: Simple interrupt situation
	Figure 4-2: Interrupt with task switch
	Nested Interrupt Issues
	Figure 4-3: Nested interrupt routines
	Figure 4-4: Possible interrupt problem
	Avoiding Task Switching from Nested Interrupts
	Interrupt Latency
	Low-level Versus High-level Interrupt Routines
	The Ticker
	Dynamic Memory Routines - the Heap
	The Scheduler
	ANSI C Functions
	Devices
	Customizing Stream I/O
	Functions for Customizing Stream I/O
	Adding a New File Manager
	File Manager _delete() function
	File Manager close() function
	File Manager fmioctl() function
	File Manager makdir() function
	File Manager open() function
	File Manager read() function
	File Manager readln() function
	File Manager seek() function
	File Manager write() function
	File Manager writeln() function
	Adding a New Device Driver
	Device Driver init() function
	Device Driver ioctl() function
	Device Driver read() function
	Device Driver term() function
	Device Driver write() function
	Jump Table
	Device Driver Interrupt Service Routines
	Supplied Serial Drivers (driver0.c)
	Changing the I/O Device Table
	Table 5-1: Device Table Codes
	
	I/O Functions by Category
	ANSI Stream I/O Functions
	ANSI Stream I/O Functions in USFiles
	Additional I/O Functions
	I/O Function Descriptions
	find_pipe
	mt_clearerr
	mt_fclose
	mt_feof
	mt_ferror
	mt_fflush
	mt_fgetc
	mt_fgetpos
	mt_fgets
	mt_fopen
	mt_fprintf
	mt_fputc
	mt_fputs
	mt_fread
	mt_fseek
	mt_fsetpos
	mt_ftell
	mt_fwrite
	mt_mkdir
	mt_printf
	mt_remove
	mt_rename
	mt_rmdir
	mt_sprintf
	mt_sscanf
	mt_vsprintf
	timed_getc
	timed_read
	timed_readln
	
	ARM/StrongARM Platform
	Evaluation Platforms
	The Makefile
	Support for StrongARM EBSA-285 Evaluation Board
	Support for ARM7 PIE Board
	Special Issues
	ARM Operating Modes
	Interrupt Considerations
	IRQ Interrupt Handling
	FIQ Handling
	SWI Handling
	M*Core
	Evaluation Platforms
	The Makefile
	Special Issues
	Interrupt Considerations
	MIPS Platform
	The Makefile
	Interrupt Considerations
	R3000 Support
	R4650 Support
	NEC 4373
	PowerPC Platform
	Evaluation Platforms
	The Makefile
	Special Issues
	Interrupt Considerations
	IBM PPC403GA Test environment
	SH Platform
	Evaluation Platforms
	The Makefile
	Notes on SH1 Support
	Notes on SH2 Support
	Notes on SH3 Support
	386 Protected Mode
	Evaluation Platforms
	The Makefile
	Hardware-Dependent Configuring
	68xxx Platform
	Special Issues
	Figure A-1: Task stack space allocation
	Interrupt Considerations
	80960 (i960) Platform
	The Makefile
	Special Issues
	Interrupt Considerations
	80x86 Platform
	Evaluation Platforms
	The Makefile
	Special Issues
	Interrupt Considerations
	Description
	Usage
	Utility Function Summary
	Utility Function Descriptions
	assign_keyboard
	attach_keyboard
	box_view
	chatout
	clear_screen
	detach_keyboard
	display_box
	freeze_view_attrib, thaw_view_attrib
	get_cursor_loc
	get_keyboard_assignment
	link_view
	put_attribc
	restore_cursor_loc
	set_cursor_loc
	set_cursor_type
	set_text_filemode, set_binary_filemode
	set_view_attrib
	unlink_view
	view_init
	write_attribc
	Global Variables
	Interrupt-Related Items
	Kernel-Related Items
	Timing-Related Items
	Facilities-Related Items
	Extra Items
	Processor-Unique Items
	Optional Variables
	Stream I/O
	Error Codes Returned by Functions

