
SuperTask! 

Quick Start Guide

Revision 6.2
March 2000

www.ussw.com

ii SuperTask! Quick Start Guide

Copyright and Trademark Information

Copyright 1996-2000 United States Software Corporation. All rights
reserved. No part of this publication may be reproduced, translated
into another language, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of United
States Software Corporation.

U S Software, USNET, USFiles, USLink, SuperTask!,
MultiTask!, NetPeer, TronTask!, Soft-Scope, and GOFAST
are trademarks of United States Software Corporation. Other brands
and names are marked with an asterisk (*) and are the property of
their respective owners.

United States Software Corporation makes no warranty of any kind
with regard to this material, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose.
United States Software Corporation assumes no responsibility for any
errors that may appear in this document. United States Software
Corporation makes no commitment to update or to keep current the
information contained in this document.

United States Software Corporation
7175 NW Evergreen Parkway, Suite 100

Hillsboro, OR 97124
(503) 844-6614

Fax (503) 844-6480
E-mail: support@ussw.com

SuperTask! Quick Start Guide iii

Quick Contents

I

11. SUPERTASK! QUICK START ... 1-1

INDEX ... INDEX-1

iv SuperTask! Quick Start Guide

Documentation Conventions

Computer output and code examples: Courier , usually in a
separate paragraph.

Function names and command names: Bold italic, usually
followed by parentheses, as in main() function.

Variables: Courier 11 italic (mt_busy).

File names: Times bold (the file usrclk.asm), in lower case.

Key names: Initial capital, in angle brackets, as in press <Enter>.

Menu names and selections, dialog box names, screen titles,
window titles: Times bold, as in File menu.

Notes: Indicate important information.

Cautions: Indicate potential damage to hardware or data.

Documentation History

Revision Number Date

 6 February 1997
 6.1 July 1998
 6.2 March 2000

SuperTask! Quick Start Guide v

Contents

1. SUPERTASK! QUICK START ... 1-1
Installation... 1-2

Installing MT! ... 1-2
Installing Opus Make.. 1-3

Compiling .. 1-4
Test Programs ... 1-6

Coretest ... 1-6
Mtbench .. 1-7
Stream I/O Test Programs .. 1-7

First Application ... 1-8
Header Files .. 1-8
Tasks ... 1-9
Initialization .. 1-9
Termination... 1-10

Configuration .. 1-11
Parameters in mtcfg.h ... 1-11
Parameters in depends.h ... 1-15
Parameters in the Makefile ... 1-16

Development Tips ... 1-18
Event Processing... 1-18

INDEX ... INDEX-1

vi SuperTask! Quick Start Guide

SuperTask! Quick Start Guide 1-1

1
1. SuperTask! Quick Start

Chapter Contents

Installation... 1-2
Installing MT! ... 1-2
Installing Opus Make.. 1-3

Compiling .. 1-4
Test Programs ... 1-6

Coretest ... 1-6
Mtbench .. 1-7
Stream I/O Test Programs .. 1-7

First Application ... 1-8
Header Files .. 1-8
Tasks ... 1-9
Initialization .. 1-9
Termination... 1-10

Configuration .. 1-11
Parameters in mtcfg.h ... 1-11
Parameters in depends.h ... 1-15
Parameters in the Makefile ... 1-16

Development Tips ... 1-18
Event Processing... 1-18

1-2 SuperTask! Quick Start Guide

Installation

See also: For more detail, see Installing SuperTask! in the SuperTask!
User's Guide.

SuperTask! refers to our multitasking RTOS development suite, which
consists of the MultiTask! kernel and the Opus* make utility.

Installing MT!

To install MT! perform the following steps:

1. Insert the MT! disk into disk drive <d> and type:

<d>:

where <d> is the drive letter.

2. Type:

install

You will see a list of compilers and their codes, from which you
can choose the compiler you are using.

3. Then type:

install < path > < compiler >

where <path > is the path to the directory where MT! is to be
installed, and <compiler > is a code specifying the compiler.
For example, if one wanted to install MT! into directory MT on
drive C:, then:

<path > =C:\MT

<compiler > See list from step 2 above

Installation 1. SuperTask! Quick Start

SuperTask! Quick Start Guide 1-3

1

The install batch file places all source code in the directory specified.
A makefile is generated for the indicated compiler. If the directory
does not exist, one will be created.

Installing Opus Make

Opus make is provided with the SuperTask! software. The makefiles
take advantage of the rich feature set provided with this make utility.
To avoid potential conflicts with other make utilities, rename
make.exe to omake.exe. This is how Opus make is used internally at
U S Software.

Installation1. SuperTask! Quick Start

1-4 SuperTask! Quick Start Guide

Compiling

See also: For more detail, see the Makefiles and Configuring Multi-
Task! sections in the SuperTask! User's Guide.

The installation process creates a makefile for the specified compiler.
Initially the makefile is configured to work with U S Software’s
internal network; therefore, at least one change needs to be made in
order for the makefile to work on the development system. Other
changes beyond those listed below may be necessary depending on
the make utility used by the development system.

The following symbol must be changed:

PTH = Path to compiler

The symbol PTH points to the directory where the compiler was
installed. It does not need to point to the actual compiler, just the
path.

At this point, most versions can compile. A few have some additional
symbols, such as CVERS. If your compiler version is not in the
makefile, some additional symbols might need work.

The following symbols are defined using the path defined above and
may need to be changed:

CC = Command line compiler

AS = Assembler

LNK = Linker

LIBR = Librarian

After PTH has been defined, executing the following command will
compile all MT! source code and create an MT! library:

omake

Compiling 1. SuperTask! Quick Start

SuperTask! Quick Start Guide 1-5

1

The library is linked with any MT! application in order to include
MT! functions. The library name will be MT <STCFG>.<lib>, where
<STCFG> is normally 3 and .<lib> is .lib or .a. The names of some
MT! libraries will also indicate the name of the memory model that
was used.

Compiling1. SuperTask! Quick Start

1-6 SuperTask! Quick Start Guide

Test Programs

There are two main test programs that should be compiled and run
before any attempts are made to create an application. By running
both programs, MT! stability and reliability on the development
system can be ensured.

You will need to adjust TRG_ID and DBG_ID to match the evaluation
board you have.

If you have any problems, try a “hello, world” program using
putchr() instead of printf() or putchar().

Coretest

The first test program is called coretest. It is designed to test all the
core features of MT! by running many tasks utilizing MT! functions
and comparing the internal state of the system with expectations. If
coretest does not run, there is a severe problem.

Coretest is compiled by issuing this command while in the install
directory:

omake coretest

Load and run coretest on your target board. Consult your board
documentation for information about downloading to the board
memory.

While coretest is running, it will display which functions it is
currently testing. If an error occurs, coretest will stop execution and
display which function caused the error along with the corresponding
line number of coretest.c.

Coretest should be loaded and run on the target board before any
development is performed to ensure all downloading procedures are
correct.

Test Programs 1. SuperTask! Quick Start

SuperTask! Quick Start Guide 1-7

1

Mtbench

The second program is called mtbench. This program is designed to
test the timing of MT! functions in a controlled manner. Information
from mtbench is useful in determining required task response time.
Keep in mind that timing is heavily weighted by the specifics of the
application.

Mtbench is compiled by issuing this command while in the install
directory:

omake mtbench

Load and run mtbench on your target board. Consult your board
documentation for information about downloading to the board
memory.

While mtbench is running, it will display which functions it is
currently testing. If an error occurs, mtbench will stop execution.

In addition to providing timing information, mtbench will calculate
the amount of memory required for the RTOS configuration specified
in mtcfg.h. It will also display how much space each additional
RTOS facility (e.g. another mailbox or resource) will require.

Stream I/O Test Programs

Several other test programs are included with the distribution as listed
below:

siotest.c Stream I/O tests

tintest.c Timed I/O tests

pipetest.c Pipe I/O tests

lbiotest.c Serial I/O tests

Test Programs1. SuperTask! Quick Start

1-8 SuperTask! Quick Start Guide

First Application

A first use of MT! is best created from one of the many test programs
included on the distribution disks. There are four main features an
application must have in order to be an MT! success: Header files,
tasks, initialization, and termination.

Code for a small sample application is included in the initialization
section below.

Header Files

The first feature is the MT! header files. All necessary header files
can be included easily by including rtoshdrs.h. Header file
rtoshdrs.h includes these seven necessary files in their proper order:

mtcfg.h Configuration parameters

mtlib.h Function prototypes

mtio.h Prototypes for stream I/O (may be removed in future
versions)

mtstdio.h Prototypes for I/O functions (may be removed in
future versions)

mtdata.h External data definitions

userio.h User device table definitions (may be removed in
future versions)

usrasign.h User-assigned events, resources, etc.

Files mtio.h and userio.h can be omitted if no I/O is used.

First Application 1. SuperTask! Quick Start

SuperTask! Quick Start Guide 1-9

1

Tasks

At least one task must be defined, otherwise there is no point in
running the system. A task is usually of the form:

void taskname(void)
{

for(;;){ /* Loop forever */
/* Perform operations */

}
}

Tasks in an embedded application usually loop over a set of processing
commands. The task will only terminate if it reaches the closing brace,
is killed by another task, or if MT! is terminated.

Initialization

MT! initialization has several steps:

1. Perform any application-specific initialization.

2. Initialize the MT! system by calling MTinitialize() and then
usrclk_init(). Newer ports may divide the usrclk_init() function
into three separate pieces for finer control.

3. Set up the system memory by calling MTmeminit().

4. Define at least one task to the system by a call to runtsk().

5. Start MT! by calling MTstart().

In the following code, the section in bold type shows the order of
initialization:

#include “rtoshdrs.h”

/* Define system memory */
char system_mem[10000];

First Application1. SuperTask! Quick Start

1-10 SuperTask! Quick Start Guide

/* Define stack size used by task */
#define STACK_SIZE 1000

/* Define task priority */
#define PRIORITY 100

/* Task */
void taskname(void)
{

for(;;){
/* Process Info */

}
}

/* Main application */
void main (void)
{

user_initialization();

/* Application setup */
MTinitialize(); /* Initializes MT! */
usrclk_init(); /* Starts system clock */
MTmeminit(&system_mem[0],sizeof(system_mem));

/* Creates system memory */
runtsk(PRIORITY, taskname, STACK_SIZE);

/* Defines task to MT! */
MTstart(); /* Starts MT! */
usrclk_term(); /* Shuts down system clock */

}

Termination

Ordinarily an embedded application will not terminate; however, MT!
can be terminated by calling function MTterminate() from the main
code or from a task. When all tasks are finished, execution returns to
the statement following MTstart() as indicated in the above code.

First Application 1. SuperTask! Quick Start

SuperTask! Quick Start Guide 1-11

1

Configuration

See also: For more detail, see the section on Configuring MultiTask!
in the SuperTask! User's Guide.

Three files contain the configuration parameters necessary for making
MT! conform to the needs of the application: mtcfg.h, depends.h,
and the makefile.

Parameters in mtcfg.h

See also: For more detail, see the section on Parameters in mtcfg.h in
the SuperTask! User's Guide.

The user configures MT! for a particular application by setting system
parameters in the user configuration file, mtcfg.h. The following list
summarizes the system parameters that you may configure for
specific applications. These parameters define system table sizes,
which in turn impose numerical limits on the system services
involved.

Parameter Description Maximum

NUMTSK Number of tasks 255

NUMEVT Number of events max. unsigned

NUMPER Number of periodic events <= NUMEVT

NUMGEVT Number of group events max. unsigned

NUMRES Number of resources max. unsigned

NUMMBX Number of mailboxes 32767

NUMMSG Total active messages limit max. unsigned

MBXLIMIT Maximum messages per mailbox 65535

NUMCOLORS Number of variable memory pools 3

Configuration1. SuperTask! Quick Start

1-12 SuperTask! Quick Start Guide

NUMPOOLS Number of fixed memory pools max. unsigned

NUMSTREAMS Number of open streams allowed max. unsigned

MTENVSIZE Maximum entries in environment max. unsigned

INC_KLLTSK If zero, excludes use of klltsk() 0 or 1

INC_PROFILING If zero, excludes use of profiling 0 or 1

NOTE: max. unsigned means the value of the largest number
that can be represented by an unsigned int with the
compiler in use.

The following descriptions give more detail about these parameters:

NUMTSK specifies the maximum number of tasks that MT! will
handle at any given time. Tasks are generally
referenced by task table slot number. A task TCB
structure is preallocated in RAM for each task. The
slot number is a unique number (1..255) that is
assigned by the function runtsk().

NUMEVT specifies the maximum number of user-defined events
MT! will handle. Events are referenced by event
numbers that range from 0 to NUMEVT-1. For example,
if NUMEVT equals 5, the events would be referenced as
0 to 4. Each event takes one byte of RAM that
indicates whether an event is set or clear, plus the size
of two TCB pointers for the set and clear queue heads.

If events are not required by your application, the
functions setevt(), clrevt(), chkevt(), wteset(), wteclr(),
and the table event_tab may be deleted from MT!
by setting NUMEVT = 0. See the manual for more
information on the functions setevt(), clrevt(), chkevt(),
wteset(), and wteclr().

NUMGEVT specifies the maximum number of user-defined group
events handled by the system. Group events are
referenced by group event numbers that range from 0

Configuration 1. SuperTask! Quick Start

SuperTask! Quick Start Guide 1-13

1

to NUMGEVT-1. For example, if NUMGEVT equals 5,
the group events would be referenced as 0 to 4. Each
group event takes two bytes of RAM plus the size of a
TCB pointer.

NUMRES specifies the maximum number of user-defined
resources you will use. Each resource requires one
byte of RAM plus the size of a TCB pointer. Resource
numbers are zero-based and range from 0 to
NUMGEVT-1.

If resources are not required by your application, the
functions reqres(), getres(), relres(), chkres(), and the
table space may be deleted from MT! by setting
NUMGEVT= 0. For more information on the functions
reqres(), getres(), relres(), and chkres(), refer to the
Library Reference section.

NUMMBX specifies the number of user-defined mailboxes. Each
mailbox requires enough RAM for an MBX_DEF
structure (6 to 12 bytes). Mailboxes are referenced by
mailbox numbers that range from 0 to NUMMBX-1.

If mailboxes are not required by your application,
the mailbox RAM can be eliminated by setting
NUMMBX = 0.

NUMMSG specifies the maximum number of active messages that
will be handled by the system. This is the maximum
number of messages that can be sent that have not yet
been received. Internally, a message header is
allocated for each active message to link it into the
mailbox. This is done automatically by the putmsg()
and sndmsg() functions. The header is freed
automatically when the message is received.

MBXLIMIT specifies the maximum number of messages that can
be sent to any one mailbox. MBXLIMIT is usually set
to NUMMSG/NUMMBX, which prevents all the message

Configuration1. SuperTask! Quick Start

1-14 SuperTask! Quick Start Guide

headers from being consumed by a task sending
messages to a mailbox from which they are not being
received.

NUMCOLORSspecifies the maximum number of variable-size
allocation memory pools that can be used by reqmem()
and relmem(). NUMCOLORS normally must have a
value between 1 and 3.

NUMPOOLS specifies the maximum number of fixed-size memory
pools that you will be using. The pool numbers range
from {0..NUMPOOLS-1}.

NUMSTREAMS is the number of I/O streams that can be opened at one
time. A stream is opened each time mt_fopen() is
called.

MTENVSIZE is the maximum number of environment variables that
can be entered in the environment table accessed by
get_mtenv() and put_mtenv().

INC_KLLTSK normally has a non-zero value (nominally 1). If set to
zero, it excludes the internal use of the klltsk()
function. In this case, care must be taken to ensure
klltsk() and MTterminate() are never called and tasks
do not terminate.

Configuration 1. SuperTask! Quick Start

SuperTask! Quick Start Guide 1-15

1

Parameters in depends.h

See also: For more detail, see the section on Parameters in depends.h
in the SuperTask! User's Guide.

The following parameters appear in depends.h:

Parameter Description Maximum

NUMTCK Number of clock ticks/time slice 255

CLOCKHZ Clock interrupt frequency in hertz max. unsigned

NUMTCK specifies the number of clock interrupts the system
processes before rescheduling tasks. This number
depends on the application and the frequency of the
clock interrupt. For example, if a clock interrupt
occurs every 5 milliseconds and NUMTCK is set to 4,
then tasks are rescheduled every 20 milliseconds. This
means the “time slice” that each task runs will be 20
milliseconds.

CLOCKHZ specifies the number of clock interrupts that occur
each second. This number provides the system with
the basis for maintaining a clock. In the clock
interrupt example above, CLOCKHZ would be set to
200 (200 x 5 milliseconds = 1,000 milliseconds = 1
sec.). In most cases, the clock interrupt code provided
will not automatically reprogram the interrupt rate to
match this definition. It is up to you to do so. (Note:
The usrclk_init() routine provided with MT 80x86 is
the exception to this.)

Configuration1. SuperTask! Quick Start

1-16 SuperTask! Quick Start Guide

Parameters in the Makefile

See also: For more detail, see the section on Configuration Param-
eters in the SuperTask! User's Guide.

The following variables are normally set in the makefile and passed to
the compiler and assembler as command line options to define the
variable.

STCFG is a variable used to pass multiple configuration parameters to
the compiler and assembler. It is also used in the name of the library
file -- MT3.lib . Each bit is mapped to another variable as follows:

Bit 0 = TSL

Bit 1 = INC_LOCAL_MEM

Bit 2 = INC_PROFILING (if set only)

Example: If STCFG = 5, then TSL =1, INC_LOCAL_MEM = 0, and
INC_PROFILING = 1.

TSL The Time SLicing compilation flag. This flag is
normally set in the makefile, and its value is passed
through CFLAGS and AFLAGS to all C and assembly
modules. When TSL = 1, round-robin time slicing
among tasks of equal priority is enabled. This
implements the time-slicing behavior described in the
manual. If TSL = 0, then no round-robin time slicing
will occur. In this case, if two (or more) tasks of equal
priority are in the run queue, the first one to run will
run to completion or until it is preempted by a higher
priority task. After the value of TSL is changed,
mtcore.c and mtsched.* must be recompiled for the
new setting to take effect. This is a compile time
option and cannot be dynamically switched on and off.
When TSL = 0, task switching time will be reduced.

Configuration 1. SuperTask! Quick Start

SuperTask! Quick Start Guide 1-17

1

INC_LOCAL_MEM Compile-time option that specifies the behavior of
the local memory type. If compilation is with
INC_LOCAL_MEM set to zero, then the local memory
attribute is ignored, and task-requested local memory
is not automatically released when the task dies. If
compilation is withINC_LOCAL_MEM non-zero, then
local memory behaves as described in the manual.

IMPORTANT NOTE for 80x86 TARGETS: In order to utilize
more than 64K of memory with the memory
management functions on an 80x86 (real mode) target,
the HUGE_MEMORY parameter in depends.h (which can
be set by stconfig) must be set to 1.

Configuration1. SuperTask! Quick Start

1-18 SuperTask! Quick Start Guide

Development Tips

Event Processing

See also: For more detail, see the section on How to Design Your
Application in the SuperTask! User's Guide.

Basic tasks should use the event increment (incevt) and wait until set
with decrement (wteset_dec). Tasks that are event processors will
look like this:

INIT
FOREVER

IF something to do
...process
...maybe incevt(some other task)

ELSE
wteset_dec(my_event,1000)

ENDIF

Assuming the counter in the event doesn’t overflow:

INIT
FOREVER

IF something to do
...process
...maybe incevt(some other task)

Development Tips 1. SuperTask! Quick Start

SuperTask! Quick Start Guide Index-1

Index

I

Index
A

application design 1-8

C

CLOCKHZ parameter 1-15
compiler codes

getting list of 1-2
compiling 1-4
configuration 1-11–1-17
configuration parameters

in depends.h 1-15
in mtcfg.h 1-11
in the makefile 1-16
list of 1-11

core features, testing 1-6
coretest test program 1-6
CVERS symbol 1-4

D

depends.h header file 1-17
development tips 1-18

E

evaluation boards 1-6
event processing

example code 1-18

H

header files
depends.h 1-17
list of 1-8
mtcfg.h 1-8
mtdata.h 1-8
mtio.h 1-8
mtlib.h 1-8
mtstdio.h 1-8
rtoshdrs.h 1-8
userio.h 1-8
usrasign.h 1-8

HUGE_MEMORY parameter 1-17

I

INC_KLLTSK parameter 1-14
INC_LOCAL_MEM parameter 1-17
initialization 1-9

example code 1-9
installation 1-2–1-3

MT! 1-2
Opus make 1-3

M

MBXLIMIT parameter 1-13
MT! installation 1-2
mtbench test program 1-7
mtcfg.h header file 1-8
mtdata.h header file 1-8
MTENVSIZE parameter 1-14
MTinitialize() function 1-9, 1-10

Index-2 SuperTask! Quick Start Guide

Index

mtio.h header file 1-8
mtlib.h header file 1-8
MTmeminit() function 1-9, 1-10
MTstart() function 1-9, 1-10
mtstdio.h header file 1-8
MTterminate() function 1-10

N

NUMCOLORS parameter 1-14
NUMEVT parameter 1-12
NUMGEVT parameter 1-12
NUMMBX parameter 1-13
NUMMSG parameter 1-13
NUMPOOLS parameter 1-14
NUMRES parameter 1-13
NUMSTREAMS parameter 1-14
NUMTCK parameter 1-15
NUMTSK parameter 1-12

O

Opus make
installing 1-3
renaming 1-3

P

printf() function 1-6
processing events 1-18
PTH symbol 1-4
putchar() function 1-6
putchr() function 1-6

R

rtoshdrs.h header file 1-8
runtsk() function 1-9, 1-10

S

STCFG parameter 1-16
stream I/O test programs 1-7
symbols for compiling 1-4

T

tasks, defining 1-9
termination 1-10
test programs 1-6–1-7

coretest 1-6
for stream I/O 1-7
mtbench 1-7

testing
core features 1-6
stream I/O 1-7
timing 1-7

timing, testing 1-7
TSL parameter 1-16

U

userio.h header file 1-8
usrasign.h header file 1-8
usrclk_init() function 1-9, 1-10
usrclk_term() function 1-10

	1. SuperTask! Quick Start
	Index
	1. SuperTask! Quick Start
	Installation
	Installing MT!
	Installing Opus Make
	Compiling
	Test Programs
	Coretest
	Mtbench
	Stream I/O Test Programs
	First Application
	Header Files
	Tasks
	Initialization
	Termination
	Configuration
	Parameters in mtcfg.h
	Parameters in depends.h
	Parameters in the Makefile
	Development Tips
	Event Processing
	Index
	Installation
	Installing MT!
	Installing Opus Make
	Compiling
	Test Programs
	Coretest
	Mtbench
	Stream I/O Test Programs
	First Application
	Header Files
	Tasks
	Initialization
	Termination
	Configuration
	Parameters in mtcfg.h
	Parameters in depends.h
	Parameters in the Makefile
	Development Tips
	Event Processing

