

GoFast® x86 Floating-Point Emulators
User’s Guide

May 12, 2006

by Harry Ohlson

1 Introduction... 1
2 Using the Drop-In Versions.. 3

2.1 GoFast / BCC.. 3
2.2 GoFast / IC86.. 7
2.3 GoFast / MSC ... 9
2.4 GoFast / HIGHC ... 13
2.5 GoFast / WCC... 16
2.6 GoFast / AT... 18

3 Using the General Versions.. 20
3.1 GoFast/EMU... 20
3.2 GoFast/PROT.. 22

4 Technical Background.. 23
4.1 Emulation Interface... 23
4.2 Floating-Point Exceptions... 25
4.3 Accuracy in Floating-Point Calculations .. 27

5 References.. 31

© Copyright 1991-2006 Lantronix Inc.

Now maintained by
Micro Digital Associates Inc.
2900 Bristol Street, #G204

Costa Mesa, CA 92626
(714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved.

GoFast x86 Floating-Point Emulators User’s Guide

1 Introduction
The GoFast products help accelerate applications which execute on the Intel 80x86
architecture. This is accomplished by relinking the application with GoFast. The
relinking process replaces the application’s numerics with GoFast numerics.

The Intel 80x86 architecture uses a special coprocessor to execute floating-point
instructions. The following table shows which coprocessor is needed in each case:

System Processor Coprocessor Generation

XT, embedded 8088 8087 pre-IEEE
embedded 80188 8087

80187
pre-IEEE
post-IEEE

XT, embedded 8086 8087 pre-IEEE
embedded 80186 8087

80187
pre-IEEE
post-IEEE

AT, embedded 80286 80287
80287XL

pre-IEEE
post-IEEE

AT, embedded 386 387 post-IEEE
AT, embedded i486 none post-IEEE

The coprocessors fall into two generations: pre-IEEE and post-IEEE. IEEE here refers to
the IEEE 754 floating-point standard for microprocessors, approved in March 1985.

The pre-IEEE features are mostly a subset of the post-IEEE features. (Some pre-IEEE
features were dropped, but an application would have to be really strange to even notice
this.) The 80287 has a couple of control-level features not present in the 8087. The
80187 and the 80287XL are identical to the 387 except for the 32-bit mode.

The 80x86 compilers generate direct 8087 instructions in most cases. As few users
actually have a coprocessor, the compilers come with an emulator. The 8087 chip is
difficult to emulate exactly, and most emulators cut corners.

Computers have been getting faster and come with more memory, so math without a
coprocessor is not as impractical as it used to be. Both the IEEE floating-point standard
and the proposed ANSI C standard have gained wide acceptance. For these reasons,
efficient and accurate emulation of the 80x87 chips has become quite important. The
GoFast family of emulators and libraries was created to fill this need.

1

GoFast x86 Floating-Point Emulators User’s Guide

US Software designed GoFast to be:

accurate GoFast is fully compatible with both IEEE and ANSI, fully accurate,
and emulates the coprocessor exactly.

fast GoFast had to be faster than anything in the market, even the corner-
cutting versions.

adaptable GoFast is re-entrant, rommable and independent of DOS. It will
automatically use a coprocessor if one is present, even in ROM.

usable We have produced a drop-in version for several different compilers,
and will do more of these as the need arises. We also have a general
version that comes with several sample installation routines.

2

GoFast x86 Floating-Point Emulators User’s Guide

2 Using the Drop-In Versions

2.1 GoFast / BCC

GoFast/BCC supports re-entrant floating-point calculations for the Borland C++
compiler. The following is included in library format:

floating-point emulator
_status87, _clear87, _control87, _fpreset
sqrt
sin, cos, tan
asin, acos, atan, atan2
sinh, cosh, tanh
log, log10
exp, pow
initialization (for the DOS version)

The following routines are included in source form to support linking without the
Borland library:

sscanf, sprintf
floor, ceil, fabs
modf, fmod, frexp, ldexp
internal long integer math
skeleton startup routine
initialization (embedded versions)

The library routines work for all memory models; the source routines have to be
compiled with the proper options. (The included makefile will do this.)

When you start using GoFast/BCC, you have two major choices to make:

1) Is the environment DOS or an embedded system? If the answer is DOS, mark
your choice as “A” and skip the following question. “A” uses library
USEMU.LIB which includes an automatic initialization routine.

2) Will you emulate using software interrupts or with the “coprocessor not
present” interrupt? We’ll call the first option B, the second C. See below for
the differences, or section 4 for technical background. Both these choices use
library file USEMUND.LIB, the initialization for B is in EMUINIT.ASM, for C
in EMUIR7.ASM.

3

GoFast x86 Floating-Point Emulators User’s Guide

The following table sums up how the three choices behave:

Target Init Vectors Environ Processor Coprocessor Use
 A AUTO 34-3e DOS ANY USED if no ROM
 B PROGR 34-3e EMBEDDED ANY IGNORED
 C PROGR 7 EMBEDDED ANY EXCPT

8088/8086 V20
USED

Any of these works for all memory models. The first will not run in a non-DOS system
unless the DOS environment is simulated. The second will work also in DOS, but will
ignore the presence of a coprocessor. The third version uses interrupt 7: coprocessor not
present. This lets GoFast take full advantage of a coprocessor when one is present, even
if all the code is in ROM. The IR7 version will actually run under DOS in most cases,
but there may be complications, and the computer may have to be reset afterwards.

For a simple GoFast test under DOS, just specify the library name to the linker, for
instance:

 bcc -v t1.c usemu.lib

or

 tlink “path”lib\c0s t1, t1,, usemu “path”\lib\cs

For anything more complicated, use the provided makefile. This lets you configure the
target very simply, and provides automatically the needed options.

4

GoFast x86 Floating-Point Emulators User’s Guide

The following table gives the timing of some floating-point operations, both with and
without GoFast. The times, given in microseconds, were measured using a 16 MHz
386SX.

Operation C++ GoFast
add 163 132
subtract 170 125
multiply 198 174
divide 205 198
sqrt 370 348
exp 1,337 1,099
log 1,154 1,081
sin 806 824
cos 788 806
tan 1,374 1,264
atan 1,264 916

These times include the C overhead, which varies from case to case, and is often
substantial.

GoFast is fully rommable: it does not change any data in the code segment, it does not
assume any initial value in the data segment, and it does not need DOS to run.

In the DOS version, the Borland C startup code will automatically initialize the emulator.
In the embedded versions, you perform the installation with a far call to initex87. This
can either be in the initialization routine (as in the included skeleton), or at the start of the
main program.

GoFast uses interrupt 2 for unmasked exceptions. To change this, store the new number
into the publicly defined byte ex_ir.

There are two ways to save the floating-point status at task switch:

1. Save the status with an FSAVE instruction and restore with an FRSTOR. This
uses 94 bytes of space. Most multitaskers provide support for emulated
FSAVE/FRSTOR. In others the user has to add the code. A few (Intel RMX)
only support a coprocessor. Even this will work with GoFast if you can use the
EMUIR7 initialization, that is if your processor is not 8088, 8086 or V20.

2. Use of a quick shortcut. The global word s_stk gives the segment of the
emulator data area. The area must be 256 bytes long and start at a new page,
in other words the segment address must end in 4 zero bits. If you allocate each
task this 256-byte area, the emulator will be reentrant if you just save and
restore s_stk at task switch time.

Each task must call the _fpreset function before any other use of the emulator.

5

GoFast x86 Floating-Point Emulators User’s Guide

This method is somewhat of a trick; don’t consider it unless you really need the
speed.

The GoFast emulator uses a maximum of 110 bytes on the stack. The emulator data
segments are about 400 bytes, the emulator code about 24,000 bytes.

To use USEMUIR7 in a 188/186, you must store the value of the relocation register (in
hardware format) into the publicly defined location rel_reg before calling init87 for the
first time. The power-up value is 20FF, but this is often changed in the board
initialization.

GoFast/BCC uses the following segments:

where name class use

initialize _INIT_ INITDATA code

initialize, library _TEXT
_DATA

CODE
DATA

code
scratch

emulator hwseg
fpcseg
emuseg

FAR_BSS
FAR_BSS
CODE

scratch
scratch
code

6

GoFast x86 Floating-Point Emulators User’s Guide

2.2 GoFast / IC86

GoFast/IC86 provides a replacement emulator for the Intel IC86 compiler. It also
includes an interface for the common C routines SQRT, SIN, COS, TAN, ATAN,
ATAN2, ASIN, ACOS, LOG, LOG10, EXP and POW. There are three versions of
GoFast/ IC86:

GoFast/IC86 Target System for Application Operation
Library Name Vectors Environ Processor Coprocessor Use

USEMU.LIB D4-DF DOS/EMBD ANY IGNORED
USEMUND.LIB 14-1F EMBEDDED ANY IGNORED
USEMUIR7.LIB 7 EMBEDDED ANY EXCPT

8088/8086 NEC V
USED

Any of these replaces the Intel libraries DE8087.LIB and DE8087 for all memory
models. The first two differ only in the interrupt vectors they use. The third version uses
interrupt 7: coprocessor not present. This lets GoFast take full advantage of a
coprocessor when one is present, even if all the code is in ROM. The IR7 version will
actually run under DOS in most cases, but there may be complications, and the computer
may have to be reset afterwards.

To speed up your application simply relink it using the GoFast emulator and library. You
can also link in just the emulator; this alone will give you a big speed improvement.

To replace both the Intel emulator and the common Intel routines with GoFast, link as
follows:

link86 cstartL.obj, MYPROG.obj, &

usemu.lib, &

clibL.lib, cfloatL.lib, cdosL.lib, cel87.lib &

to MYPROG.exe exe

If you only want to replace the Intel emulator, link as follows:

link86 cstartL.obj, MYPROG.obj, &

clibL.lib, cfloatL.lib, cdosL.lib, cel87.lib, &

usemu.lib &

to MYPROG.exe exe

The following table gives the timing of some floating-point operations, both with and
without GoFast. The times, given in microseconds, were measured using a 16 MHz
386SX.

7

GoFast x86 Floating-Point Emulators User’s Guide

Operation IC86 GoFast
add 745 150
subtract 765 152
multiply 862 194
divide 1,540 214
sqrt 5,917 223
exp 11,203 987
log 8,733 933
sin 11,187 697
cos 11,827 714
tan 8,127 1,117
atan 8,420 770

These times include the C overhead, which varies from case to case, and is often
substantial.

GoFast is reentrant in the same way as the floating point chip. As with the coprocessor, a
task switch is done by using an FSAVE to save floating point status, and by using an
FRSTOR to restore floating point status.

GoFast is fully rommable: it does not change any data in the code segment, it does not
assume any initial value in the data segment, and it does not need DOS to run.

The C startup code will automatically initialize the emulator. In cases where this is not
done, you can perform the installation with a far call to init87.

GoFast uses interrupt 2 for unmasked exceptions. To change this, store the new number
into the publicly defined byte ex_ir.

The GoFast emulator uses a maximum of 110 bytes on the stack.

To use USEMUIR7 in a 188/186, you must store the value of the relocation register (in
hardware format) into the publicly defined location rel_reg before calling init87 for the
first time. The power up value is 20FF, but this is often changed in the board
initialization.

GoFast/IC86 uses the following segments:

where name class use
initialize, library CODE CODE code
emulator hwseg

xseg
emuseg

BSS
BSS
CODE

scratch
scratch
code

8

GoFast x86 Floating-Point Emulators User’s Guide

2.3 GoFast / MSC

GoFast/MSC supports re-entrant floating-point calculations for the Microsoft C compiler
versions 5.1, 6 and 7. The following is included in library format:

floating-point emulator
_status87, _clear87, _control87, fpreset
sqrt
sin, cos, tan
asin, acos, atan, atan2
sinh, cosh, tanh
log, log10
exp, pow
initialization (for the DOS version)

The following routines are included in source form to support linking without the
Microsoft library:

sscanf, sprintf
floor, ceil, fabs
modf, fmod, frexp, ldexp
hypot, cabs
internal long integer math
skeleton startup routine
initialization (embedded versions)

The library routines work for all memory models; the source routines have to be
compiled with the proper options. (The included makefile will do this.)

When you start using GoFast/MSC, you have two major choices to make:

1. Is the environment DOS or an embedded system? If the answer is DOS, mark
your choice as “A” and skip the following question. “A” uses library
USEMU.LIB which includes an automatic initialization routine.

2. Will you emulate using software interrupts or with the “coprocessor not
present” interrupt? We’ll call the first option B, the second C. See below for
the differences, or section 4 for technical background. Both these choices use
library file USEMUND.LIB, the initialization for B is in EMUINIT.ASM, for C
in EMUIR7.ASM.

9

GoFast x86 Floating-Point Emulators User’s Guide

The following table sums up how the three choices behave:

Target Init Vectors Environ Processor Coprocessor Use
A AUTO 34-3e DOS ANY USED if no ROM
B PROGR 34-3e EMBEDDED ANY IGNORED
C PROGR 7 EMBEDDED ANY EXCPT

8088/8086 V20
USED

Any of these works for all memory models. The first will not run in a non-DOS system
unless the DOS environment is simulated. The second will work also in DOS, but will
ignore the presence of coprocessor. The third version uses interrupt 7: coprocessor not
present. This lets GoFast take full advantage of a coprocessor when one is present, even
if all the code is in ROM. The IR7 version will actually run under DOS in most cases,
but there may be complications, and the computer may have to be reset afterwards.

For a simple GoFast test under DOS, specify the library name to the linker using the
NOE option, for instance:

cl –c t1.c

link /NOE t1,,,usemu;

NOE is needed to tell the Microsoft linker that the same symbols are defined in two
different libraries. For anything more complicated, use the provided makefile. This lets
you configure the target very simply, and provides automatically the needed options.

If you forget the NOE option, the link will either fail or produce an unusable load
file. (But if you use NOD for “no standard libraries”, the NOE is not needed.)

Compiler option Aw is usually needed in multitasking compact and large models.
(Leaving it out will in practice hurt floating-point the most.)

The following table gives the timing of some floating-point operations, both with and
without GoFast. The times, given in microseconds, were measured using a 16 MHz
386SX.

Operation MSC GoFast
add 165 128
subtract 172 128
multiply 220 174
divide 247 194
sqrt 608 271
exp 2,527 990
log 2,067 987
sin 2,840 697
cos 2,800 713
tan 2,197 1,137
atan 2,217 787

10

GoFast x86 Floating-Point Emulators User’s Guide

These times include the C overhead, which varies from case to case, and is often
substantial.

GoFast is fully rommable: it does not change any data in the code segment, it does not
assume any initial value in the data segment, and it does not need DOS to run.

In the DOS version, the Microsoft C startup code will automatically initialize the
emulator. In the embedded versions, you perform the installation with a far call to
initex87. This can either be in the initialization routine (as in the including skeleton),
or at the start of the main program.

GoFast uses interrupt 2 for unmasked exceptions. To change this, store the new
number into the publicly defined byte ex_ir.

There are two ways to save the floating-point status at task switch:

1. Save the status with an FSAVE instruction and restore with and FRSTOR. This
uses 94 bytes of space. Most multitaskers provide support for emulated
FSAVE/FRSTOR. In others the user has to add the code. A few (Intel RMX)
only support a coprocessor. Even this will work with GoFast if you can use the
EMUIR7 initialization, that is if your processor is not 8088, 8086, or V20.

2. Use a quick shortcut. The global word s_stk gives the segment of the emulator
data area. The area must be 256 bytes long and start at a new page, in other
words the segment address must end in 4 zero bits. If you allocate each task this
256-byte area, the emulator will be reentrant if you just save and restore s_stk at
task switch time.

Each task must call the _fpreset function before any other use of the emulator.

This method is somewhat of a trick; don’t consider it unless you really need the
speed.

Unfortunately the Microsoft C compiler stores the return value from type double
functions into the global variable _fac. This is not reentrant, not even when a
coprocessor is used. The only satisfactory solution is to have the real-time executive save
and restore _fac. This is 8 bytes in Microsoft release 5.1, 10 bytes in releases 6 and 7.

If you can’t get the scheduler to save _fac, you can perhaps still use the compiler in
multitasking with some limitations:

- Compiler option / Oi takes out the _fac use from all intrinsic functions
(SQRT, SIN, etc.).

- Function type long double does not use _fac, and is not necessarily any
slower than double.

The GoFast emulator uses a maximum of 110 bytes on the stack. The emulator data
segments are about 400 bytes, the emulator code about 24,000 bytes.

To use USEMUIR7 in a 188/186, you must store the value of the relocation register (in
hardware format) into the publicly defined location rel_reg before calling init87 for the

11

GoFast x86 Floating-Point Emulators User’s Guide

first time. The power-up value is 20FF, but this is often changed in the board
initialization.

GoFast/MSC uses the following segments:

where name class use
initialize CDATA DATA code
initialize, library _TEXT

_DATA
CODE
DATA

code
scratch

emulator hwseg
fpcseg
emuseg

FAR_BSS
FAR_BSS
CODE

scratch
scratch
code

12

GoFast x86 Floating-Point Emulators User’s Guide

2.4 GoFast / HIGHC

GoFast/HIGHC provides a replacement emulator for the Metaware High C 386/486
compiler version 3. The following is included in library format:

floating-point emulator
initialization

The following routines are included in source form:

floor, ceil
atan2
sinh, cosh, tanh
pow
hypot
sscanf, sprintf
modf, fmod, frexp, ldexp
conversion from double to integer
initialization

(Some common math routines are missing from the list. This is because the compiler will
generate in-line code for them, and there is no convenient way to use a subroutine.)

You’ll find the file names and the needed compilation and link commands in the included
makefile.

The emulator and the installation routine are in a Pharlap format library. There are two
versions: USEMU.LIB for flat addressing, and USEMUSEG.LIB for segmented
addressing. (The standard versions of the High C library and the Pharlap linker only
support flat addressing, but segmented versions for embedded systems exist.)

GoFast/HIGHC is a true emulator: it uses the “coprocessor not present” interrupt. The
emulator will use a 387 if one is present, unless the DOS environment variable “NO87” is
set.

Because GoFast is a true emulator, you have to compile the source with the 387 option.
To link in GoFast, include the GoFast library and the system libraries. An example might
look like this:

hc386 –f387 –priv test1.c

(The “priv” option is needed so that GoFast can install the coprocessor interrupt under the
Pharlap DOS extender.)

The GoFast installation routine is for the Pharlap DOS extender. Installing interrupts in
protected mode can be tricky, and the provided method might not work under some other
extender or under a multitasking executive. We are including the source for a couple of
different installation routines.

13

GoFast x86 Floating-Point Emulators User’s Guide

The following table gives the timing of some floating-point operations, both with and
without GoFast. The times, given in microseconds, were measured using a 16 MHz
386SX.

Operation HIGHC GoFast
add 110 117
subtract 143 117
multiply 124 135
divide 366 146
sqrt 1675 145
exp 2653 790
log 3550 493
sin 2417 350
cos 2710 367
tan 3040 567
atan 3060 420

These times include the C overhead, which varies from case to case, and is often
substantial.

Metaware uses library calls for floating-point emulation. A native High C program
compiled with the 387 option will not run without a coprocessor. A native High C
program compiled with the default options will run with or without a coprocessor, but
does not use the 387 very efficiently. Just linking in GoFast will remove these
limitations.

GoFast is reentrant in the same way as the floating point chip. As with the coprocessor, a
task switch is done by using an FSAVE to save floating point status, and by using an
FRSTOR to restore it.

GoFast is fully rommable: it does not change any data in the code segment, it does not
assume any initial value in the data segment, and it does not need DOS to run.

The C startup code will automatically initialize the emulator. In cases where this is not
done, you can perform the installation with a call to inite387.

GoFast uses interrupt 2 for unmasked exceptions. To change this, change the variable
EXIRNO in the initialization code and replace the initialization module in the library.
(Some hardware uses interrupt 16.)

As a default, GoFast enables interrupts right at the entry if they were enabled at the main
level. You can turn off this feature by changing the variable ENABLE in the
initialization module to 0. (In some environments enabling of interrupts is either very
slow or prohibited.)

The GoFast 32-bit emulator uses a maximum of 160 bytes on the stack.

14

GoFast x86 Floating-Point Emulators User’s Guide

GoFast/HIGHC uses the following segments:

where name class use
initialize _TEXT CODE code
emulator hwseg

emuseg
DATA
CODE

scratch
code

15

GoFast x86 Floating-Point Emulators User’s Guide

2.5 GoFast / WCC

GoFast/WCC provides a replacement emulator for the WATCOM C 386/486 compiler.

The emulator and the installation routine are in a WATCOM format library. There are
two versions: USEMU.LIB for flat addressing, and USEMUSEG.LIB for segmented
addressing. (The standard versions of the WATCOM library and linker only support flat
addressing, but segmented versions for embedded systems exist, see WATCOM for
details.)

GoFast/WCC is a true emulator: it uses the “coprocessor not present” interrupt. The
emulator will use a 387 if one is present, unless the DOS environment variable “NO87” is
set.

To link in GoFast, you just need to link in the library:

wc1386 prog.c usemu.lib

The GoFast installation routine is for the Pharlap DOS extender. Installing interrupts in
protected mode can be tricky, and the provided method might not work under some other
extender or under a multitasking executive. We are including the source for a couple of
different installation routines; see README.TXT for details.

The following table gives the timing of some floating-point operations, both with and
without GoFast. The times, given in microseconds, were measured using a 16 MHz
386SX.

Operation WCC GoFast
add 238 132
subtract 244 135
multiply 242 148
divide 265 156
sqrt 361 295
exp 1683 1447
log 900 770
sin 880 477
cos 857 457
tan 1487 657
atan 1117 493

These times include the C overhead, which varies from case to case, and is often
substantial.

GoFast is reentrant in the same way as the floating-point chip. As with the coprocessor, a
task switch is done by using an FSAVE to save floating point status, and by using an
FRSTOR to restore it.

GoFast is fully rommable: it does not change any data in the code segment, it does not
assume any initial value in the data segment, and it does not need DOS to run.

16

GoFast x86 Floating-Point Emulators User’s Guide

The modified C startup code will automatically initialize the emulator. In cases where
this is not done, you can perform the installation with a call to inite387.

GoFast uses interrupt 2 for unmasked exceptions. To change this, store the new number
into the publicly defined byte ex_ir.

The GoFast 32-bit emulator uses a maximum of 160 bytes on the stack.

GoFast/WCC uses the following segments:

where name class use
initialize _TEXT CODE code
emulator hwseg

emuseg
DATA
CODE

scratch
code

17

GoFast x86 Floating-Point Emulators User’s Guide

2.6 GoFast / AT

GoFast/AT is a free-standing floating-point emulator for the 80188, 80186, 80286, 386
and i486SX processors. It is installed as a resident program (TSR), not linked with the
application. GoFast/AT fools the application into believing there is a coprocessor, and
will therefore work even for programs that have been written to require a coprocessor.

There are two versions of GoFast/AT. The 16-bit version EMUL16 will work in all the
processors listed above. The 32-bit version EMUL32 is faster, but requires either a 386
or an i486. GoFast/AT will run under MS/DOS in real mode or in virtual 8086 mode.

To install the emulator, just run the corresponding program:

emul16 install 16-bit version
emul32 install 32-bit version
emul16 off remove any old version
emul32 off

If either of these is already installed, the installation command just removes the old
version, and you’ll have to repeat it. (We don’t automatically re-install the emulator,
because this would make freeing the memory quite difficult.)

The following table gives the timing of some floating-point operations, first for the
Microsoft emulator, and then for GoFast/AT16 and GoFast/AT32. The times, given in
microseconds, were measured using a 16 MHz 386SX.

Operation MSC AT16 AT32
add 165 135 124
subtract 172 143 123
multiply 220 181 143
divide 247 205 150
sqrt 608 529 454
exp 2,527 2,763 1,977
log 2,067 1,337 897
sin 2,840 1,100 790
cos 2,800 1,117 787
tan 2,197 1,977 1,353
atan 2,217 1,317 970

These times include the C overhead, which varies from case to case, and is often
substantial. The times were derived using standard Microsoft libraries.

GoFast/AT is re-entrant in the same way as the floating-point chip: FSAVE saves the
status of the emulator, FRSTOR restores it. GoFast/AT is not meant for embedded
systems.

GoFast/AT gets control through interrupt 7: coprocessor not present. Unfortunately there
are programs that use this interrupt vector improperly; one of these is the Microsoft
CodeView. Trying to CodeView a program that needs the interrupt 7 vector results in an

18

GoFast x86 Floating-Point Emulators User’s Guide

immediate crash. Please note that the Borland development tools have no such
difficulties.

The GoFast installation code has to enable interrupt 7. This can cause problems if you
are using protected mode: a DOS extender or a memory manager. Some of these, such as
the Quarterdeck QEMM, recognize changing the emulation mode as legitimate, others,
such as the Microsoft Windows, do not. Future changes to the DOS extender standard
will probably solve this problem.

One of the biggest problems in DOS extenders is what they can do to interrupt overhead.
In some extreme cases any kind of floating-point emulation becomes basically
impossible. Fortunately some memory managers (QEMM for one) are not nearly this
bad.

There are two common methods for determining if a coprocessor is present. Some
programs just try out floating-point instructions to see if they work. Because GoFast has
set the automatic emulation mode, the code will work exactly as if a chip were present.
Some programs use the BIOS configuration query INT 11. GoFast intercepts this call
and turns on the coprocessor bit.

Using GoFast/AT in a 188/186 requires the relocation register to be configured for
interrupt 7. This should be done either by the ROM initialization, or by a simple startup
program. GoFast has no way of finding out where the relocation register is. There are
very few PC’s built around an 188/186.

Even though GoFast/AT32 uses 32-bit registers, it is not a true 32-bit emulator. There is
not practical way to support all the different 80x86 modes in one emulator.

19

GoFast x86 Floating-Point Emulators User’s Guide

3 Using the General Versions

3.1 GoFast/EMU

GoFast/EMU is a floating-point emulator for the Intel 80x86 processors. It also includes
an interface for the elementary functions SQRT, SIN, COS, TAN, ATAN, ATAN2,
ASIN, ACOS, LOG, LOG10, EXP and POW.

GoFast/EMU supports real and virtual 8086 mode only: it will not run in protected mode
in 286/386/486.

GoFast/EMU is intended for those situations which the drop-in versions do not cover. It
comes with several different installation routines in source format; one of them may or
may not fit your particular need.

The installation routine will install the calling interface either to the emulator, or to code
that uses a coprocessor. Whether a coprocessor is used depends of course on whether one
is present, and possibly also on an environment variable, such as “NO87=1”. An
embedded application will usually not worry about the configuration; this will after all be
pretty much fixed for good.

For software emulation, you need to install one or more of the following interrupt
handlers:

emu87 emulation using interrupt 7
emuwait fwait interrupt
emua emulation with software interrupts, Microsoft 34-3B or

Intel D8-DF
emub segment override interrupts, Intel 34-37, Microsoft/Borland 3C
emuc library functions for Borland interrupt 3E

To use a coprocessor with software interrupts (not with interrupt 7), you need to install
interrupt handlers that take advantage of it. GoFast comes with sample versions for
these:

emuwah fwait interrupt
emuah emulation with software interrupts, Microsoft 34-3B or

Intel D8-DF
emubh segment override interrupts, Intel 34-37, Microsoft/Borland 3C
emuch library functions for Borland interrupt 3E

Interrupt 7 emulation requires the installation of the emu87 routine, also emuc/emuch if
Borland/Microsoft library functions are used.

After the interrupt vectors have been installed, the emulator should be initialized with an
FNINIT instruction.

20

GoFast x86 Floating-Point Emulators User’s Guide

GoFast/EMU contains the emulator in object format in two versions, one for the Intel
linker, and one for the other linkers. All other files are in source format; see the included
README.TXT file for inventory.

You have to consider the included function interfaces as samples only, because no
commonly accepted argument interface exists. Also, they contain code for ANSI C error
handling.

The sample installation code sets up interrupt 2 as the unmasked exception; this is what
most PC’s use. You can change the value by changing EXIRNO in the parameter file
EMU.INC.

The GoFast emulator uses a maximum of 110 bytes on the stack.

To use USEMUIR7 in a 188/186, you must store the value of the relocation register into
the publicly defined location rel_reg before calling the initialization for the first time.
The power-up value is 20FF, but this is often changed in the board initialization.

The emulator itself uses one code segment (name emuseg, class CODE) and two scratch
segments (names hwseg and xseg, class BSS).

21

GoFast x86 Floating-Point Emulators User’s Guide

3.2 GoFast/PROT

GoFast/PROT is a floating-point emulator for the 386 and i486SX 32-bit protected mode.
It is distributed in source format, to support a wide variety of environments.

GoFast/AT is re-entrant in the same way as the floating-point chip: FSAVE saves the
status of the emulator, FRSTOR restores it.

GoFast is fully rommable: it does not change any data in the code segment, it does not
assume any initial value in the data segment, and it does not need DOS to run.

GoFast/PROT gets control through interrupt 7: coprocessor not present. The GoFast
installation code generally has to perform the following functions:

1. Check if there is a coprocessor, skip steps 2 and 3 if yes

2. Install an interrupt descriptor for interrupt 7.

3. Enable the emulation interrupt.

4. Initialize the emulator or the coprocessor.

GoFast/PROT contains a make file, the emulator source, and a sample initialization
module. There are two versions of the main level: one for the flat model and one for the
segmented model. The source was written for the Pharlap assembler; using some other
386 assembler will probably present few if any problems. See the included
README.TXT for an inventory.

The sample installation code sets up interrupt 2 as the unmasked exception; this is what
most PC’s use. You can change the value by changing EXIRNO in the parameter file
EMU.INC.

The GoFast 32-bit emulator uses a maximum of 160 bytes on the stack.

The emulator uses one code segment (name emuseg, class CODE), and one scratch
segment (name hwseg, class BSS).

22

GoFast x86 Floating-Point Emulators User’s Guide

4 Technical Background

4.1 Emulation Interface

Several different emulation interfaces are in use. These are the most common:

1. Emulation with hardware. The Intel 80186, 80188, 80286, 386 and i486SX
processors can be configured so that a floating-point instruction causes an
interrupt 7 when there is no coprocessor. The NEC V33/V53 causes an
interrupt 130 when there is no coprocessor.

2. The Intel IC86 emulation. Interrupts D8-DF are used for the ESCO-ESC7
instructions. Interrupts D4-D7 signify segment overrides.

3. The Intel PL/M emulation. Interrupts 18-1F are used for the ESCO-ESC7
instructions, 14-17 for segment overrides. This will not work in a PC

4. The Microsoft emulation. Interrupts 34-3B are used for ESCO-ESC7.
Interrupt 3C is used for segment overrides, and 3D for the fwait instruction.
The Borland variation also uses 3E for library functions.

In the first of these, the emulated code consists of floating-point instructions as such, with
nothing added. In the others, the compiler has to add an extra byte to each instruction.
At link time, the instruction is fixed to be either an interrupt or an actual floating-point
instruction.

We’ll give an example on how the fixing works. We start from the instruction

FPREM = D9 F8

The compiler actually generates

extrn FPFIX: abs
dw FPFIX+d990h
db 0F8h

Now, if FPFIX has the value 003D, the sequence will become CD D9 F8, that is an INT
D9 followed by the second instruction byte. If FPFIX is given the value 0, we get 90 D9
F8, that is a no-operation followed by an FPREM. The exact details vary, but the idea is
to let the same object code serve both an emulator and a coprocessor.

Often it is not enough that the same object code can be linked either for emulation or for
a coprocessor. There are two different ways of supporting completely dynamic
reconfiguring, where the same load file can run with or without a coprocessor. In the first
of these, the program originally uses software interrupts for floating-point instructions. If
there is a coprocessor, the interrupt routine will alter the interrupted instruction to a real
coprocessor instruction, and re-execute it. The resulting code is fairly efficient (at least if
there are plenty of loops), but will definitely not work in a ROM.

23

GoFast x86 Floating-Point Emulators User’s Guide

The second method depends on the “coprocessor not present” interrupt, which is more
efficient and will work even in ROM. However, it can’t be used in the Intel 8088/8086,
or the NEC V series except for V33/V53.

GoFast offers both of the above options; Microsoft and Borland only the first; Intel IC86
neither.

24

GoFast x86 Floating-Point Emulators User’s Guide

4.2 Floating-Point Exceptions

The requirements for floating-point exceptions are really the same as for any exceptions.
Errors should be detected, and treated in a reasonable way. Let’s start from a simple
example:

int i1, i2, i3;
i3 = (100 * i1) / i2;

This piece of integer arithmetic has two exceptions: divide by zero and overflow. In a
typical case, dividing by zero crashes the program but never happens, overflow is ignored
and even intentional sometimes.

Exceptions for the floating-point counterpart

float f1, f2, f3;
f3 = (100. * f1) / f2;

should, if anything, be less of a concern, because overflows don’t happen easily in
floating-point numbers. You should be very much concerned about detecting the errors,
but not about sophisticated treatment of them, such as can be found in the IEEE standard.
Any system that pushes through invalid data is still in testing; the objective should be to
fix the code, not to try to get right results from wrong data.

The IEEE 754 standard contains three basic mechanisms for detecting errors. Masked
exceptions set a sticky bit in a status word, and you can at your discretion test the bits. A
masked exception causes a special value to be returned from the operation. Unmasked
exceptions cause an immediate interrupt. There are six different exception types; each
can be configured as masked or unmasked.

ANSI C is, unlike IEEE 754, a very flexible standard. All kinds of error handling
schemes are in use; most neither defined nor prohibited in the standard. These are the
most common:

1. The IEEE 754 exception handling is available in most 80x86 C compilers. The
drawback is that the code may not be portable, also some C libraries are written
so that IEEE exceptions are not always raised

2. ANSI C requires that the intrinsic math routines (SQRT, SIN etc.) return an
error code errno. Unfortunately errors from user code are not detected this
way. For instance: f1 = pow(0, -1) causes an error, f1 = 1/0 does not.

3. Most C compilers support use of the matherr routine. This is the unmasked
counterpart of the errno system: matherr gets called whenever errno is set. The
method has therefore all the drawbacks of the errno method, it also tends to
cause problems in embedded systems.

Matherr is not standard ANSI C.

25

GoFast x86 Floating-Point Emulators User’s Guide

Exception handling in C tends to suffer from the following problems:

- not all errors are detected
- code becomes non-portable
- error handling is not re-entrant
- program needs DOS to run

GoFast can’t solve all these problems, but it helps because it is fully IEEE-compatible.
The simplest scheme might be something like this:

- Unmask the serious exceptions, that is invalid operation, zero divide,
overflow. (In some tightly controlled applications, you could unmask even
underflow and denormal.)

- Install routine “catastrophic error”, whatever that means in your case, as
interrupt 2 handler.

- Weed out improper data in application code, so that there will be no
improper operations

26

GoFast x86 Floating-Point Emulators User’s Guide

4.3 Accuracy in Floating-Point Calculations

Floating-point calculations are in practice always inexact. This is easy to forget because
just about everything else in programming is exact, and because the precision seldom
becomes a problem. But you forget only at your own peril.

There is nothing mysterious about the loss of precision, it’s simply the nature of the
thing. The rest of this chapter illustrates different faces of the inaccuracy.

Rounding

A floating-point number contains a fixed number of digits. Unless there are a lot of
trailing zeroes, an arithmetic operation will very likely produce too many digits to fit in
the same space. This of course happens even in normal decimal calculations, for
instance:

1234.567
+ 12.34567

1246.91267 => 1246.913

Rounding errors as such are unlikely to become noticeable, but they can be enhanced by
other effects. Some algorithms are notoriously prone to lose precision.

Base Conversion

Changing the base of a fractional number generally requires approximations. Any
application that uses decimal input, decimal constants or decimal output has to perform
base conversions. Consider the example

float f1;
f1 = 1.1;
printf (“%.12; f\n”, f1);

This program will display the value 1.100000023842, not the exact 1.1. What happened?

The root of the problem is that 1 1/10 in base 2 is 1.0001100 (1100), i.e. can’t be
represented exactly. The compiler creates a constant 1.1 with 24 bits:

1.000 1100 1100 1100 1100 1101

This value is obviously larger that 1.1 because we rounded up at bit 24. Printing the
value with too many decimals (anything more that 7 in this case) will show the
difference.

Difference Between Large Numbers

Let’s try the program

float f1, f2, f3;
f1 =1234.0;
f2 = 1233.1;
f3 = f1 - f2;

27

GoFast x86 Floating-Point Emulators User’s Guide

printf(“%1f\n”,f3);

The result is 0.900024, i.e. off by quite a bit. The basic effect is the same as explained
above: the required base conversion. But the relative error got enlarged in the subtraction
of two almost equal numbers:

 1234.0 = 1001 1010 010.0 0000 0000 0000
- 1233.1 = 1001 1010 001.0 0011 0011 0011

 0.1 1100 1100 1101

Irrational Numbers

Values such as sqrt(2) or sin(0.5) have no exact representation in any base. These can
still be calculated “exactly” to the value that is mathematically correct considering the
rounding rules. IEEE specifically requires an exact square-root, but says nothing about
other functions. The GoFast square-root is of course exact.

You probably won’t find an “exact” implementation of the transcendentals anywhere.
The additional error should be of the same order as the rounding error. The Intel
coprocessor (and consequently GoFast) calculates the transcendentals to 64 bits of
precision, and rounding this to float or double will of course produce an exactly correct
result most of the time.

Special Functions

As a rule, the relative error of a function is different than the relative error of the
argument. In some cases this becomes important. Take the following code:

double d1, d2;
d1 = 1.1;
d3 = exp(100 * d1);

The result will differ from exp(110) by quite a bit. This does not mean that exp(x) is
inaccurate; it means that the original inaccuracy of x got magnified. An important special
case is

z = x ^ y = e ^ (y * log(x))

This formula is not a satisfactory way of calculating pow(x,y). (GoFast of course uses
better methods.)

A point where a function approaches zero for a non-zero argument is especially tricky.
As an example, log(0.999998) is close to twice log(0.999999). If your argument is only a
little inexact, say due to rounding, the answer may be so wrong as to be meaningless.
Again we need to remember that log(x) as such is not the culprit, it is not inaccurate.

The same warning applies whenever significant argument reduction is needed, such as
the trigonometric functions for arguments much larger than pi. Worst of all are cases
where these two situations coincide: sin(1000 * pi) for instance.

28

GoFast x86 Floating-Point Emulators User’s Guide

Conversion to Integer

ANSI C specifies that a floating-point number is converted to an integer using
truncation: the decimals are discarded. This innocuous rule can cause surprises.
Consider the program

int i1, i2;
i1 = 256;
i2 = (float) i1/2.56;
printf(“%d\n”,i2);

Certainly the correct answer is 100, but you can’t count on this; the program as written is
unstable. On many systems, the answer will keep jumping between 99 and 100,
depending on the compilation options and the exact code used.

The root reason for the instability is not hard to see. The value 2.56 has to be rounded
when it is converted to base 2. If this rounding is up, the division will give a value that is
slightly less than 100. According to ANSI C rules, this becomes 99. If again 2.56 in base
2 is rounded down, the division will give slightly over 100, and truncates to 100.

IEEE 754 is a very rigorous standard, and whether 2.56 is rounded up or down, surely it
should be rounded the same way every time. How is it possible that two standard
implementations give different results?

Well, it really isn’t. This is an interesting example of what happens when a standard
meets reality. Let’s look at the rounding first.

How the rounding is done depends on the number of bits in the constant. ANSI C says
that a floating-point constant is double, and IEEE 754 rules this to have 53 binary digits.
Unfortunately:

1. Some compilers use float constants in float expressions. This difference may
be enough to change the direction of the actual rounding

2. Some compilers optimize out all divisions by a constant, using instead a
multiplication with the inverse value. What happens to the rounding is
anybody’s guess.

In the 80x86, the most common reason for these discrepancies is the fact that the
coprocessor uses 64-bit internal precision. Here are two possible ways to compile the
above program:

1. fild i1 ; i1 to internal FP format
fdiv 2.56 ; divide FP stack by 2.56
fstp w1 ; resulting float to temp
fld w1 ; result again to FP stack
call toint ; simple routine to truncate
fistp i2 ; final result

29

GoFast x86 Floating-Point Emulators User’s Guide

2. fild i1 ; i1 to internal FP format
fdiv 2.56 ; divide FP stack by 2.56
call toint ; simple routine to truncate
fistp i2 ; final result

These two sequences are not equivalent, because the internal floating-point registers hold
64 bits, and the temporary variable only 24. Moving the internal register into a single-
precision variable requires rounding. This could quite possibly bring the value slightly
over, or slightly under, an integer value.

Is it legal to change floating-point precision internally? Nobody seems to really know.
(The Intel coprocessors have a constant-precision mode, but nobody is using this.) The
answer may not matter that much really, because ANSI C anyway allows for variation in
the order in which operations in an expression are performed. At the level where
rounding becomes important, the value of an expression generally depends on the exact
order of calculations.

30

GoFast x86 Floating-Point Emulators User’s Guide

5 References

ANSI/IEEE Standard 754-1985: Binary Floating-Point Arithmetic

ANSI Document X3J11/88-159: Draft Proposed American National Standard for
Information Systems – Programming Language C

387 DX User’s Manual, Intel Corporation #231917-002, 1989

W. Cody, W. Waite: Software Manual for the Elementary Functions, Prentice-Hall, 1980

31

	Introduction
	Using the Drop-In Versions
	GoFast / BCC
	GoFast / IC86
	GoFast / MSC
	GoFast / HIGHC
	GoFast / WCC
	GoFast / AT

	Using the General Versions
	GoFast/EMU
	GoFast/PROT

	Technical Background
	Emulation Interface
	Floating-Point Exceptions
	Accuracy in Floating-Point Calculations

	References

