

GoFast® 8096 and Z80 Floating-Point Library

User’s Guide

October 21, 2009

by Harry Ohlson

1 What Is GoFast? ... 1

1.1 A Floating-Point Library... 1
1.2 A Fast One .. 1
1.3 Definitions... 2
1.4 Notations ... 2

2 Included Functions.. 3
2.1 Intrinsic Functions .. 3
2.2 User Functions .. 3

3 Testing.. 5
3.1 GFTEST.. 5
3.2 FPTEST, DPTEST.. 5

4 Technical Considerations ... 6
4.1 Exception Handling .. 6
4.2 Precision.. 6
4.3 Special Values... 6
4.4 Accuracy in Calculations .. 7

4.4.1 Rounding... 7
4.4.2 Base Conversion ... 7
4.4.3 Difference between Large Numbers ... 8
4.4.4 Irrational Numbers .. 8
4.4.5 Special Functions .. 8
4.4.6 Conversion to Integer.. 9
4.4.7 Financial Calculations... 9

5 Processor Version Details... 11
5.1 Intel 8096/80196 ... 11
5.2 Z80/Z180/64180 ... 11

5.2.1 Compiler ... 11
5.2.2 Test Environment.. 11
5.2.3 Timings ... 12

6 References.. 13

© Copyright 1983-2009 Lantronix Inc

Now maintained by
Micro Digital Associates Inc.
2900 Bristol Street, #G204

Costa Mesa, CA 92626
(714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved.

GoFast 8096 and Z80 Floating-Point Library User’s Guide

1 What Is GoFast?

1.1 A Floating-Point Library

GoFast is a floating-point library. It is a soft library, for processors that do not offer
floating-point support in hardware. It is complete: no other floating-point routines are
needed. It complies with the IEEE 754 standard. However, the exception handling has
been simplified a little (see section 4.1), mostly to make the product simple to use in
embedded systems. GoFast goes to great pains to provide good precision, and to give
mathematically correct answers even when the standards are silent. GoFast will run in
flash memory: data and code are separate, there’s no modification of code or constants,
and there’s no run-time initialization. It uses very little stack space.

This manual covers the versions of GoFast that were hand-written for pre-ANSI C
compilers. (The main branch of the GoFast line is computer-generated and strictly ANSI,
as documented in the GoFast Floating Point Library User’s Guide.) These old compilers,
mostly for 8-bit processors, provide only a limited set of math functions, and no double-
precision at all. GoFast supplies the routines that were originally included, and adds the
double-precision support.

To achieve reentrancy, the multitasker has to save and restore a few bytes (the floating-
point accumulator) at each task switch.

Please see the readme files in the source code for detailed information related to the tools
and other notes.

1.2 A Fast One

Most importantly, GoFast is fast. Replacing the native floating-point library with GoFast
might cut timings by 20% for simple functions such as add or multiply, and by 75% in
transcendentals such as the tangent. You could even see an occasional 90%, but there
would be something wrong with the original routine then.

How can we make claims like these? Surely the people who supply the compiler do their
best to produce a good floating-point library? Yes they do – their practical best. The
floating-point routines are typically written in C and operate on floating-point variables.
These algorithms are relatively simple, easily found on the Web or in books, and efficient
in a floating-point unit. They get heavy when all floating-point is simulated.

GoFast performs all calculations using integers. The first thing done is the separation of
the exponent and the mantissa; the last is their recombination. Because the mantissa has
64 bits, good precision comes as a bonus. The algorithms can get intricate – and you
don’t find them on the Web – but they have been thoroughly tested over the years.

1

GoFast 8096 and Z80 Floating-Point Library User’s Guide

1.3 Definitions

Floating point is a method of representing numeric values (integers and non-integers) in
a computer. It uses three fields for this:

• The sign tells whether the number is positive or negative.
• The exponent tells where the decimal point goes.
• The mantissa (also called the significand) gives the digits.

To get the actual value of the number, you raise 2 to the power of the exponent and
multiply this with the mantissa. (For details such as bias and scaling, see the IEEE 754
document.)

In the IEEE 754 standard, single-precision numbers take up 32 bits, double-precision
numbers twice that. The useful range for singles is approximately 10-38 to 1038, for
doubles 10-308 to 10308. The relative precision (typical rounding error in one arithmetic
operation) is of the order of 10-7 for singles, 10-16 for doubles.

1.4 Notations

In the following text, these symbols denote different kinds of variables:

 d1, d2, d3 double-precision number
 f1, f2, f3 single-precision number
 si standard integer (16 or 32 bits usually)
 li long integer (32 bits)
 ul unsigned long integer (32 bits)
 NaN not-a-number, an invalid floating-point value
 INF infinity, an overflowed floating-point value

2

GoFast 8096 and Z80 Floating-Point Library User’s Guide

2 Included Functions

2.1 Intrinsic Functions

These are functions called by the C compiler to handle simple floating-point operations
such as add or compare. The names of the intrinsics depend on the compiler in question,
and there’s even some (small) variation in what exact functions are needed. All these
functions also have a private GoFast name, for testing and documentation purposes. The
following tables give the GoFast name.

function type operation generated call notes
double arithmetic d1 = d1 + d2 d1 = dpadd(d1,d2)

 d1 = d1 – d2 d1 = dpsub(d1,d2)

 d1 = d1 * d2 d1 = dpmul(d1,d2)

 d1 = d1 / d2 d1 = dpdiv(d1,d2)

single arithmetic f1 = f1 + f2 f1 = fpadd(f1,f2)

 f1 = f1 – f2 f1 = fpsub(f1,f2)

 f1 = f1 * f2 f1 = fpmul(f1,f2)

 f1 = f1 / f2 f1 = fpdiv(f1,f2)

conversion d1 = f1 d1 = double(f1); float to double

 f1 = d1 f1 = single(d1); double to float

 d1 = si d1 = dfloat(si); integer to double

 si = d1 si = dfix(d1); double to integer

 f1 = si f1 = float(si); integer to float

 si = f1 si = fix(f1); float to integer

comparison d1 :: d2 si = dpcmp(d1, d2) 0x80 0xff 0 1

 f1 :: f2 si = fpcmp(f1, f2) 0x80 0xff 0 1

The dpcmp and fpcmp returns are:

 0x80 no meaningful comparison (few compilers care)
 0xff argument 1 < argument 2
 0 arguments equal
 1 argument 1 > argument 2

2.2 User Functions

This group comprises the math functions. The names of the user-level functions are of
course fixed (sin, sqrt and so on), but the compiler often adds something to this, perhaps
an underscore or two.

3

GoFast 8096 and Z80 Floating-Point Library User’s Guide

function type user call function performed
double, simple d1 = dpsqrt(d1) square-root
single, simple f1 = fpsqrt(f1) square-root
double, transc. d1 = dpatn(d1) arctangent
 d1 = dpcos(d1) cosine
 d1 = dpexp(d1) e to the power d1
 d1 = dpln(d1) natural logarithm
 d1 = dplog(d1) base 10 logarithm
 d1 = dpsin(d1) sine
 d1 = dptan(d1) tangent
 d1 = dpxtoi(d1, si) d1 to the power si
single, transc. f1 = fpatn(f1) arctangent
 f1 = fpcos(f1) cosine
 f1 = fpexp(f1) e to the power f1
 f1 = fpln(f1) natural logarithm
 f1 = fplog(f1) base 10 logarithm
 f1 = fpsin(f1) sine
 f1 = fptan(f1) tangent
 f1 = fpxtoi(f1, si) f1 to the power si

4

GoFast 8096 and Z80 Floating-Point Library User’s Guide

3 Testing

Different versions of GoFast offer different ways of testing the library. Please see the text
files included with the product for details.

3.1 GFTEST

GFTEST will repeatedly prompt for a value and then display the results of various
calculations.

3.2 FPTEST, DPTEST

These programs (the first for single precision, the second for double) are stack-based
calculators. The allowed operations are:

value Push the value entered onto the stack
+ Add the top-of-stack item to the next-on-stack item
- Subtract the top-of-stack item from the next-on-stack item
_ Subtract the next-on-stack item from the top-of-stack item
* Multiply the top-of-stack item by the next-on-stack item
/ Divide the next-on-stack item by the top-of-stack item
\ Divide the top-of-stack item by the next-on-stack item
? Compare the top-of-stack item with the next-on-stack item
A Perform the AINT operation to the top-of-stack item
C Display the top-of-stack item using the binary-to-ASCII routine
Cnnn Convert the value to floating point number using the ASCII-to-binary routine
FA Arc-tangent of the top-of-stack item
FC Cosine of the top-of-stack item
FE e raised to the top-of-stack item power
FL Common logarithm (base 10) of the top-of-stack item
FN Natural logarithm (base e) of the top-of-stack item
FR Square root of the top-of-stack item
FS Sine of the top-of-stack item
FT Tangent of the top-of-stack item
F^nn Raise the top-of-stack item to the integer power given
Fnn The integer given is floated to become the top-of-stack item
Gn Get the number from register n (n = 1..9)
Hhh The hexadecimal number become the top-of-stack item
I Display the INT function of the top-of-stack item
M Change precision mode (single/double)
Q Exit to the operating system
R Roll the four stack items upward
Sn Store the top-of-stack number in register n (n = 1..9)
X Exchange the top-of-stack item with the next-on-stack item

5

GoFast 8096 and Z80 Floating-Point Library User’s Guide

4 Technical Considerations

4.1 Exception Handling

GoFast makes no distinction between quiet and signaling not-a-numbers (NaNs). In an
invalid operation, the answer is always a quiet NaN, 0x001FFFFFFFFF in double
precision and 0x007FFFFF in single precision.

The GoFast routines support the IEEE 754 masked exception handling for overflows and
invalid operations. An overflow is returned as the special value infinity, and an invalid
operation is returned as the special value NaN.

No unmasked exceptions are supported; there are no exception interrupts. GoFast stores
an error code into the byte variable FPERR. The values are: 3 for not-a-number, 2 for
overflow and 1 for underflow.

4.2 Precision

The basic operations (add, subtract, multiply, divide, square root) and the conversions all
use the IEEE 754 "round to nearest or even" rounding exactly. No other rounding modes
are supported. These operations are IEEE exact.

The transcendental functions (which are not defined in IEEE 754) are correct to within
two mantissa units. However, the trigonometric functions SIN, COS and TAN will lose
precision in the argument reduction if the argument exceeds π/2.

4.3 Special Values

An overflow returns +INF or -INF, an underflow returns +0 or -0. If an argument is not-
a-number (NaN), the result is NaN. The table below gives the GoFast result for some
other special situations. It does not include cases that should not cause any confusion.

 - INF-INF = NaN
 * 0*INF = NaN
 / 0/0 = NaN
 INF/INF = NaN
 sqrt sqrt(-0) = -0
 sqrt(x<0) = NaN
 ln/log -INF if x=0
 NaN if x<0
 sin/cos/tan NaN if |x| >= 65536

6

GoFast 8096 and Z80 Floating-Point Library User’s Guide

Most likely, these pathological cases will be of no interest to anyone. It is not at all
unusual to find a C library that returns questionable values for one or more.

4.4 Accuracy in Calculations

Floating-point calculations are in practice always inexact. This is easy to forget because
just about everything else in programming is exact, and because the precision seldom
becomes a problem. But you forget at your own peril.

There is nothing mysterious about the loss of precision; it’s simply the nature of the
thing. The following illustrates different faces of the inaccuracy.

4.4.1 Rounding
A floating-point number contains a fixed number of digits. Unless there are a lot of
trailing zeroes, an arithmetic operation will very likely produce too many digits to fit in
the same space. This of course happens even in normal decimal calculations, for
instance:

 1234.567
 + 12.34567
 1246.91267 1246.913

Rounding errors as such are unlikely to become noticeable, but they can be enhanced by
other effects. Some algorithms are notoriously prone to lose precision.

4.4.2 Base Conversion
Changing the base of a fractional number generally requires approximations. Any
application that uses decimal input, decimal constants or decimal output has to perform
base conversions. Consider the example

 float f1;
 f1 = 1.1;
 printf("%.12f\n", f1);

This program will display the value 1.100000023842, not the exact 1.1. What happened?

The root of the problem is that 1 1/10 in base 2 is 1.0001100(1100), i.e. can't be
represented exactly. The compiler creates a constant 1.1 with 24 bits:

 1.000 1100 1100 1100 1100 1101

This value is obviously larger than 1.1 because we rounded up at bit 24. Printing the
value with too many decimals (anything more that 7 in this case) will show the
difference.

7

GoFast 8096 and Z80 Floating-Point Library User’s Guide

4.4.3 Difference between Large Numbers
Let's try the program

 float f1, f2, f3;
 f1 = 1234.0;
 f2 = 1233.1;
 f3 = f1 - f2;
 printf("%lf\n", f3);

The result is 0.900024: off by quite a bit. The basic effect is the same as explained
above: the required base conversion. But the relative error got enlarged in the subtraction
of two almost equal numbers:

 1234.0 = 1001 1010 0100 0000 0000 0000
 - 1233.1 = 1001 1010 0010 0011 0011 0011
 0.9 = 1100 1100 1101

4.4.4 Irrational Numbers
Values such as sqrt(2) or sin(0.5) have no exact representation in any base. These can
still be calculated “exactly” to the value that is mathematically correct considering the
rounding rules. IEEE specifically requires an exact square-root, but says nothing about
other functions. The GoFast square-root is of course exact.

You probably won’t find an “exact” implementation of the transcendentals anywhere.
The additional error should be of the same order as the rounding error.

4.4.5 Special Functions
As a rule, the relative error of a function is different than the relative error of the
argument. In some cases this becomes important. Take the following code:

 double d1, d2;
 d1 = 1.1;
 d3 = exp(100*d1);

The result will differ from exp(110) by quite a bit. This does not mean that exp(x) is
inaccurate; it means that the original inaccuracy of x got magnified.

A point where a function approaches zero for a non-zero argument is especially tricky.
As an example, log(0.999998) is close to twice log(0.999999). If your argument is only a
little inexact, say due to rounding, the answer may be so wrong as to be meaningless.
Again we need to remember that log(x) as such is not the culprit, it is not inaccurate.

The same warning applies whenever significant argument reduction is needed, such as
the trigonometric functions for arguments much larger than π. Worst of all are cases
where these two situations coincide: sin(1000π) for instance.

8

GoFast 8096 and Z80 Floating-Point Library User’s Guide

4.4.6 Conversion to Integer
ANSI C specifies that a floating-point number is converted to an integer using truncation:
the decimals are discarded. This innocuous rule can cause surprises. Consider the
program

 int i1, i2;
 i1 = 256;
 i2 = (float)i1 / 2.56;
 printf("%d\n", i2);

Certainly the correct answer is 100, but you can't count on this; the program as written is
unstable. In some cases, the answer will keep jumping between 99 and 100, depending
on the compilation options and the exact code used.

The root reason for the instability is not hard to see. The value 2.56 has to be rounded
when it is converted to base 2. If this rounding is up, the division will give a value that is
slightly less than 100. According to ANSI C rules, this becomes 99. If again 2.56 in base
2 is rounded down, the division will give slightly over 100, and truncates to 100.

IEEE 754 is a very rigorous standard; whether 2.56 is rounded up or down, surely it
should be rounded the same way every time. How is it possible that two standard
implementations give completely different results? Well, it really isn’t. This is an
interesting example of what happens when a standard meets an optimizing compiler.
How the rounding is done depends on the number of bits in the constant. ANSI C says
that a floating-point constant is double, and IEEE 754 rules this to have 53 binary digits.
Unfortunately

1 Some compilers use float constants in float expressions. This difference may be

enough to change the direction of the rounding.
2 Some compilers optimize out all divisions by a constant, using instead a

multiplication with the inverse value. What happens to the rounding is anybody’s
guess.

4.4.7 Financial Calculations
You want to make absolutely sure your broker isn’t cheating you, so you write a little
program to check the commission. The first trade looks fine. The second trade looks fine.
The third trade – caught him! Overcharged by a penny!

Well, not really. Financial rounding follows law and custom, knowing (and caring)
nothing about IEEE 754 rounding. In some special cases, you have to round up. Even the
usual “bank rounding” isn’t quite the same as the IEEE default – though you’ll have to
look hard to catch the difference.

9

GoFast 8096 and Z80 Floating-Point Library User’s Guide

None of this means that there’s a problem. Financial institutions just don’t use floating-
point math.

10

GoFast 8096 and Z80 Floating-Point Library User’s Guide

5 Processor Version Details

5.1 Intel 8096/80196

The GoFast library works with the Intel IC96 compiler. The native library has no double-
precision routines, and the compiler will not generate any calls to such routines. When
you install GoFast, you can start using double-precision, but you’ll have to write the
function calls explicitly. You’ll find examples of this in the GoFast test files.

The native library lacks asin, acos, atan2 and all the hyperbolics. Instead of pow, there’s
a function that raises a number to an integer power. GoFast will not add these missing
functions. The implementation is compatible with the IEEE 754 standard, but it isn’t
really ANSI C, nor could it be.

GoFast for 80196 implements a floating-point accumulator (FAC) in read-write memory,
so it isn’t naturally reentrant. However, you get reentrancy by saving and restoring FAC
(and a few other temporaries) in a context switch. A note included with the product gives
the details.

5.2 Z80/Z180/64180

5.2.1 Compiler
This GoFast library is for the Archimedes/IAR C compiler. The native library has no
double-precision routines, and the compiler will not generate any calls to such routines.
When you install GoFast, you can start using double-precision, but you’ll have to write
the function calls explicitly. You’ll find examples of this in the GoFast files.

The native library lacks asin, acos, atan2 and all the hyperbolics. Instead of pow, there’s
a function that raises a number to an integer power. GoFast will not add these missing
functions. The implementation is compatible with the IEEE 754 standard, but it isn’t
really ANSI C, nor could it be.

GoFast for the Z80 family implements a floating-point accumulator (FAC) in read-write
memory, so it isn’t naturally reentrant. However, you get reentrancy by saving and
restoring FAC (and a few other temporaries) in a context switch. A note included with the
product gives the details.

5.2.2 Test Environment
The product is shipped with instructions on how to test using the PatchLan HD64180 test
system.

11

GoFast 8096 and Z80 Floating-Point Library User’s Guide

5.2.3 Timings
The following table shows the timings (in microseconds) for a few functions on the 6
MHz Z80. The given range is from a typical value to a maximum value.

Function Single Double
add 163 - 227 550 - 950
multiply 693 – 817 3350 - 3567
divide 905 - 1267 5583 - 8000
sin/cos 6667 42667
log 7167 37000
sqrt 2500 20333

12

GoFast 8096 and Z80 Floating-Point Library User’s Guide

6 References

ANSI/IEEE Standard 754-1985: Binary Floating-Point Arithmetic

W. Cody, W. Waite: Software Manual for the Elementary Functions, Prentice-Hall, 1980

13

	What Is GoFast?
	A Floating-Point Library
	A Fast One
	Definitions
	Notations

	Included Functions
	Intrinsic Functions
	User Functions

	Testing
	GFTEST
	FPTEST, DPTEST

	Technical Considerations
	Exception Handling
	Precision
	Special Values
	Accuracy in Calculations
	Rounding
	Base Conversion
	Difference between Large Numbers
	Irrational Numbers
	Special Functions
	Conversion to Integer
	Financial Calculations

	Processor Version Details
	Intel 8096/80196
	Z80/Z180/64180
	Compiler
	Test Environment
	Timings

	References

