
 

 
 
GoFast® Floating-Point Library User’s Guide 

 
November 11, 2009 

 
by Harry Ohlson 

 
 
 
1 What Is GoFast? ................................................................................................... 1 

1.1 A Floating-Point Library............................................................................. 1 
1.2 A Fast One .................................................................................................. 1 
1.3 How About Emulation? .............................................................................. 2 
1.4 Definitions................................................................................................... 3 
1.5 Notations ..................................................................................................... 3 

2 Included Functions................................................................................................ 4 
2.1 Intrinsic Functions ...................................................................................... 4 
2.2 User Functions ............................................................................................ 6 

3 Module Structure .................................................................................................. 8 
4 Testing.................................................................................................................... 9 

4.1 GFTEST...................................................................................................... 9 
4.2 BENCH..................................................................................................... 11 

5 Technical Considerations ................................................................................... 12 
5.1 Exception Handling .................................................................................. 12 
5.2 Precision.................................................................................................... 12 
5.3 Special Values........................................................................................... 12 
5.4 Accuracy in Calculations .......................................................................... 13 

6 16-Bit Processors................................................................................................. 17 
6.1 Motorola 68HC16 ..................................................................................... 17 

7 32-Bit Processors................................................................................................. 18 
7.1 Altera Nios II ............................................................................................ 18 
7.2 ARM ......................................................................................................... 18 
7.3 ColdFire .................................................................................................... 23 
7.4 Hitachi SH Family .................................................................................... 25 
7.5 Intel x86 .................................................................................................... 26 
7.6 MIPS32 ..................................................................................................... 26 
7.7 Motorola 68000 Family ............................................................................ 28 
7.8 NEC V830/V850 Families........................................................................ 29 
7.9 PowerPC ................................................................................................... 30 
7.10 SPARC...................................................................................................... 31 

8 References............................................................................................................ 32 
 
 

 



 

 
 
 
 

© Copyright 1983-2009 Lantronix Inc 
© Copyright 2005-2009 Micro Digital Inc 

 
Now maintained and extended by 

Micro Digital Associates Inc. 
2900 Bristol Street, #G204 

Costa Mesa, CA 92626 
(714) 437-7333 

support@smxrtos.com 
www.smxrtos.com 

 
All rights reserved.

 



GoFast Floating-Point Library User’s Guide 

1 What Is GoFast? 
 

1.1 A Floating-Point Library 
 
GoFast is a floating-point library for ANSI C. It is a soft library, for processors that do 
not offer floating-point support in hardware. It is complete: no other floating-point 
routines are needed. It complies with the appropriate IEEE 754 and ANSI C standards. 
However, the exception handling has been simplified a little (see section 5.1), mostly to 
make the product simple to use in embedded systems. GoFast goes to great pains to 
provide good precision, and to give mathematically correct answers even when the 
standards are silent. GoFast is portable: it is easily adopted for new processors and new 
compilers. GoFast is maintainable: it is computer-generated. It will run in flash 
memory: data and code are separate, there’s no modification of code or constants, and 
there’s no run-time initialization. It is re-entrant, storing nothing into static variables and 
using very little stack space. It is well-tested (there’s an automated test suite) and stable 
(the algorithms haven’t changed in years). 

There’s even a simplified GoFast library for some old 8-bit processors: 8051, 8096, Z80. 
These are not covered in this manual because they differ in several ways from the “real” 
(computer-generated) GoFast. The old 8-bit compilers are not ANSI C, maybe not even 
close. (Some 8-bit GoFast users actually code in assembly language.) The available 
memory would not take a full library. In most cases, the routines are not naturally re-
entrant. 

 

1.2 A Fast One 
 
Most importantly, GoFast is fast. Replacing the native floating-point library with GoFast 
might cut timings by 20% for simple functions such as add or multiply, by 75% in 
transcendentals such as the tangent. You could even see an occasional 90%, but there 
would be something wrong with the original routine then. (For instance, some C libraries 
have no single-precision functions.)  

How can we make claims like these? Surely the people who supply the compiler do their 
best to produce a good floating-point library? Yes they do – their practical best. The 
floating-point routines are typically written in C and operate on floating-point variables. 
These algorithms are relatively simple, easily found on the Web or in books, and efficient 
in a floating-point unit. They get heavy when all floating-point is simulated. Not all 
compilers do it this way of course: the old Borland library, hand-written in assembly 
code, is about as fast as GoFast. But today’s compilers, such as the GNU C, typically 
support so many different CPU varieties that hand-written assembly code is out of the 
question. 

GoFast performs all calculations using integers. The first thing done is the separation of 
the exponent and the mantissa; the last is their recombination. This method might do an 
in-line polynomial evaluation (double-precision) in 25 machine instructions per term – no 
subroutine calls, no simulation, 25 cycles or so in a RISC. Because the mantissa has 64 

1 



GoFast Floating-Point Library User’s Guide 

bits, good precision comes as a bonus. The algorithms can get intricate – and you don’t 
find them on the Web – but they have been thoroughly tested over the years.  

GoFast also takes advantage of some machine instructions that normally aren’t 
available in C. It will use full divide (64/32  32) and full multiply (32*32  64) if 
these are available. It will happily employ such strange (and useful) functions as the 
PowerPC “rotate and mask”. It understands all kinds of status flag strategies, and will 
optimize out unneeded compares. 

 

1.3 How About Emulation? 
 

The GoFast library will work if the compiler generates library calls for floating-point 
operations. For a simple addition “f1 += f2;” the produced (hypothetical) assembly code 
might be something like 

 
move d0,r4 
move d1,r5 
call dpadd 
move r4,d0  

 
Some compilers will however assume floating-point support in hardware, and produce 
something (again hypothetical) like this: 

 
fload f0,r4 
fload f1,r5 
fadd  f0,f1 
fstore r4,f0 

 
If there’s no floating-point unit present, these instructions will cause a CPU exception, 
which then has to be handled by a floating-point emulator.  The emulator is typically 
installed as part of the operating system. Different processors will most likely require 
totally different emulators. An emulator library is also needed, for those ANSI C 
functions that are not in the floating-point unit.  

Emulation makes sense in personal computers and workstations. As a general rule, it is 
misplaced in an embedded system. Three of our GoFast library targets have a floating-
point emulator (several in some cases): the Intel x86, the PowerPC, and the SPARC. 
Emulation in the last two is optional and up to the user; do it when there’s a clear reason. 
The Intel x86 compilers will almost always force you into emulation. There is actually a 
full GoFast library for the Microsoft and the Borland compilers, but to use it, you have to 
do all floating-point operations with subroutine calls.  

The x86 emulation is covered in a different manual because the subject is quite complex 
and has little in common with the ANSI C math library, the subject of this document. 
Nevertheless, the emulators do share the name GoFast. 

2 



GoFast Floating-Point Library User’s Guide 

1.4 Definitions 
 
Floating point is a method of representing numeric values (integers and non-integers) in 
a computer. It uses three fields for this: 
 

• The sign tells whether the number is positive or negative. 
• The exponent tells where the decimal point goes.  
• The mantissa (also called the significand) gives the digits. 

 
To get the actual value of the number, you raise 2 to the power of the exponent and 
multiply this with the mantissa. (For details such as bias and scaling, see the IEEE 754 
document.) 
 
In the IEEE 754 standard, single-precision numbers take up 32 bits, double-precision 
numbers twice that. The useful range for singles is approximately 10-38 to 1038, for 
doubles 10-308 to 10308. The relative precision (typical rounding error in one arithmetic 
operation) is of the order of 10-7 for singles, 10-16 for doubles. 
 

1.5 Notations 
 
In the following text, these symbols denote different kinds of variables: 

 
  d1, d2, d3 double-precision number 
  f1, f2, f3 single-precision number 
  si  standard integer (16 or 32 bits usually) 
  li  long integer (32 bits) 
  ul  unsigned long integer (32 bits) 
  ll  64-bit integer 
  ull  unsigned 64-bit integer 
  NaN  not-a-number, an invalid floating-point value 
  INF  infinity, an overflowed floating-point value 
 
 

3 



GoFast Floating-Point Library User’s Guide 

2 Included Functions      
 

2.1 Intrinsic Functions 
 
These are functions called by the C compiler to handle simple floating-point operations 
such as add or compare. The names of the intrinsics depend on the compiler in question, 
and there’s even some (small) variation in what exact functions are needed. All these 
functions also have a private GoFast name, for testing and documentation purposes. The 
following tables give the GoFast name. 

 
 
function type operation generated call notes 
double arithmetic d3 = d1 + d2 d3 = dpadd(d1,d2)  

 d3 = d1 + 1 d3 = dpinc(d1) rare 

 d3 = d1 – d2 d3 = dpsub(d1,d2)  

 d3 = d1 – 1 d3 = dpdec(d1) rare 

 d3 = -d1 d3 = negdf2(d1)  

 d3 = d1 * d2 d3 = dpmul(d1,d2)  

 d3 = d1 / d2 d3 = dpdiv(d1,d2)  

single arithmetic f3 = f1 + f2 f3 = fpadd(f1,f2)  

 f3 = f1 + 1 f3 = fpinc(f1) rare 

 f3 = f1 – f2 f3 = fpsub(f1,f2)  

 f3 = f1 – 1 f3 = fpdec(f1) rare 

 f3 = -f1 f3 = negsf2(f1)  

 f3 = f1 * f2 f3 = fpmul(f1,f2)  

 f3 = f1 / f2 f3 = fpdiv(f1,f2)  

conversion   d1 = f1 d1 = fptodp(f1); float to double 

  f1 = d1 f1 = dptofp(d1); double to float 

  d1 = li d1 = litodp(li); long to double 

  li = d1 li = dptoli(d1); double to long 

  d1 = ul d1 = ultodp(ul); uns. long to double

  ul = d1 ul = dptoul(d1); double to uns. long

  f1 = li f1 = litofp(li); long to float 

  li = f1 li = fptoli(f1); float to long 

  f1 = ul f1 = ultofp(ul); uns. long to float 

  ul = f1 ul = fptoul(f1); float to uns. long 

 
 

Some old compilers do the unsigned integer conversions either improperly or not at all. 
There’s quite a bit of variation in how NaN and overflow show up in an integer answer. 
GoFast will return 0x7FFFFFFF (assuming 32 bits) for positive overflow, 0x80000000 
for negative overflow and for NaN.  

 

4 



GoFast Floating-Point Library User’s Guide 

 
 

function type operation generated call return value 
64-bit conversion ull = f1 ull = fptoull(f1)  

 ll = f1 ll = fptoll(f1)  

 ull = d1 ull = dptoull(d1)  

 ll = d1 ll = dptoll(d1)  

 fp = ll fp = lltofp(ll)  

 dp = ll dp = lltodp(ll)  

 fp = ull fp = ulltofp(ull)  

 dp = ull dp = ulltodp(ull)  

comparison d1 :: d2 si = dpcmp(d1,d2) -2 -1 0 1 

 d1 == d2 si = _d_feq(d1,d2) true or false 

 d1 != d2 si = _d_fne(d1,d2) true or false 

 d1 > d2 si = _d_fgt(d1,d2) true or false 

 d1 >= d2 si = _d_fge(d1,d2) true or false 

 d1 <= d2 si = _d_fle(d1,d2) true or false 

 d1 < d2 si = _d_flt(d1,d2) true or false 

 f1 :: f2 si = fpcmp(f1,f2) -2 -1 0 1 

 f1 == f2 si = _f_feq(f1,f2) true or false 

 f1 != f2 si = _f_fne(f1,f2) true or false 

 f1 > f2 si = _f_fgt(f1,f2) true or false 

 f1 >= f2 si = _f_fge(f1,f2) true or false 

 f1 <= f2 si = _f_fle(f1,f2) true or false 

 f1 < f2 si = _f_flt(f1,f2) true or false 
 

The dpcmp and fpcmp returns are: 
     -2     no meaningful comparison (few compilers care) 
     -1 argument 1 < argument 2 
     0 arguments equal 
     +1 argument 1 > argument 2 
 
Usually a C compiler generates either the dpcmp/fpcmp calls (with its own names and 
return values), or it uses the relational routines, again with different names, maybe even 
swapping true and false. However, some GNU C compilers adopt a compromise: the 
relational routines are just synonyms for dpcmp/fpcmp; they all return -1, 0 or +1, the 
same value for the same arguments. Some GNU’s use real relational calls and some use 
fake ones, and this can really confuse the unwary. 

  

5 



GoFast Floating-Point Library User’s Guide 

2.2 User Functions 
 
This group comprises the ANSI C math functions. The names of the user-level functions 
are of course fixed (sin, atan2 and so on), but the compiler often adds something to this, 
perhaps an underscore or two. 

 
 

function type user call function performed 
double, simple d2 = fabs(d1) d2 = absolute value of d1 
 d2 = ceil(d1) d2 = smallest integer not smaller than d1
 d2 = floor(d1) d2 = largest integer not larger than d1 
 d3 = fmod(d1,d2) d3 = remainder of d1/d2 
 d3 = modf(d1,&d2) d3 = fraction of d1, d2 = integer of d1 
 d2 = frexp(d1,&si) d2 = mantissa of d1, li = exponent of d1 
 d2 = ldexp(d1,si) d2 = d1 * (2 ^ si) 
 d2 = sqrt(d1) d2 = square-root of d1 
single, simple f2 = fabsf(f1) f2 = absolute value of f1 
 f2 = ceilf(f1) f2 = smallest integer not smaller than f1 
 f2 = floorf(f1) f2 = largest integer not larger than f1 
 f3 = fmodf(f1,f2) f3 = remainder of f1/f2 
 f3 = modff(f1,&f2) f3 = fraction of f1, f2 = integer of f1 
 f2 = frexpf(f1,&si) f2 = mantissa of f1, si = exponent of f1 
 f2 = ldexpf(f1,si) f2 = f1 * (2 ^ si) 
 f2 = sqrtf(f1) f2 = square-root of f1 
double, transc. d2 = asin(d1) d2 = arcsine of d1 
 d2 = acos(d1) d2 = arccosine of d1 
 d2 = atan(d1) d2 = arctangent of d1 
 d3 = atan2(d1,d2) d3 = atan(d1/d2)  range -π to π 
 d2 = cos(d1) d2 = cosine of d1 
 d2 = cosh(d1) d2 = hyperbolic cosine of d1 
 d2 = exp(d1) d2 = e to the power d1 
 d2 = log(d1) d2 = natural logarithm of d1 
 d2 = log10(d1) d2 = base 10 logarithm of d1 
 d3 = pow(d1,d2) d3 = d1 to power d2 
 d2 = sin(d1) d2 = sine of d1 
 d2 = sinh(d1) d2 = hyperbolic sine of d1 
 d2 = tan(d1) d2 = tangent of d1 
 d2 = tanh(d1) d2 = hyperbolic tangent of d1 
single, transc. f2 = asinf(f1) f2 = arcsine of f1 
 f2 = acosf(f1) f2 = arccosine of f1 
 f2 = atanf(f1) f2 = arctangent of f1 
 f3 = atan2f(f1,f2) f3 = atanf(f1/f2)  range –π to π 
 f2 = cosf(f1) f2 = cosine of f1 
 f2 = coshf(f1) f2 = hyperbolic cosine of f1 

6 



GoFast Floating-Point Library User’s Guide 

 f2 = expf(f1) f2 = e to the power f1 
 f2 = logf(f1) f2 = natural logarithm of f1 
 f2 = log10f(f1) f2 = base 10 logarithm of f1 
 f3 = powf(f1,f2) f3 = f1 to power f2 
 f2 = sinf(f1) f2 = sine of f1 
 f2 = sinhf(f1) f2 = hyperbolic sine of f1 
 f2 = tanf(f1) f2 = tangent of f1 
 f2 = tanhf(f1) f2 = hyperbolic tangent of f1 

7 



GoFast Floating-Point Library User’s Guide 

3 Module Structure 
 
In some special cases (linking problems, perhaps) it might be useful to know how the 
library is packaged. The table below shows where the functions reside. "NN" indicates 
the processor word size (i.e. 16, 32, or 64-bit). The usual extensions are "s" for source 
and "o" for object. 

 
module contents 
arcNN atan atan2 asin acos 

ceilNN ceil 
dpNN dptoli dptoul litodp fptodp dptofp dpsub dpadd 

dpmul dpdiv dpcmp dpinc dpdec 
dpcmp eqdf2 nedf2 gtdf2 gedf2 ledf2 ltdf2 
expNN exp 
floorNN floor 
fpNN fptoli fptoul litofp ultofp fpsub fpadd  

fpmul fpdiv fpcmp  
fpcmp eqsf2 nesf2 gtsf2 gesf2 lesf2 ltsf2 
fparcNN atanf atan2f asinf acosf 
fpceilNN ceilf 
fpexpNN expf 
fpflooNN floorf 
fphypNN sinhf coshf tanhf 
fpllNN fptoull fptoll lltofp ulltofp 
fplogNN logf log10f 
fpmodNN fmodf frexpf ldexpf modff 
fppowNN powf 
fpsqrtNN sqrtf 
fptrigNN sinf cosf tanf 
funcNN internal functions 
hypNN sinh cosh tanh 
llNN dptoull dptoll lltodp ulltodp 
logNN log log10 
modNN fmod frexp ldexp modf 
powNN pow 
sqrtNN sqrt 
trigNN sin cos tan 
 

8 



GoFast Floating-Point Library User’s Guide 

4 Testing 
 

4.1 GFTEST 
 

GFTEST serves as a desktop calculator and as a test script validator. Both these functions 
require support for keyboard input and display output. The validation also needs the 
capability to read from a file, either directly or through some kind of redirection. 
Unfortunately not all embedded test boards offer the required software support. (That’s 
perhaps the chicken-and-the-egg dilemma: no software if no sales – but who would use a 
CPU with poor support.) Still, most will handle character input and output, so you can 
almost certainly run the desktop calculator, and check the GoFast functions by hand. 

If you compile GFTEST with the option –DOS (define variable OS), it will use ANSI C 
functions for input and output. If this doesn’t work, leave out the option, and link in your 
own versions of routines putchr and getchr. (You can probably forget about the file 
input in this case.) 

GFTEST has a 4-element stack.  Any number you enter gets pushed on the stack.  
Initially you work in double-precision mode; you can flip the precision with the 
command M.  (The following examples assume double precision.)  The number can be 
given in different forms: 

  
n.d             number with optional sign and decimals 
  examples:  1 
         23.776 
         -12 
 n.dEm exponential representation 
  examples:  1e-100 
           -5.6e8 
           123e-7 
hxxxxxxxxx hexadecimal representation 
  missing trailing digits become 0 
  examples:  h3ff8  =  1.5 
           h7ff0 =  +INF 
          hfff8  =  NAN 

 
You can also enter operators and function names.  A two-argument function will perform 
the operation: 

  pop stack into op2 
  pop stack into op1 
  push FUNC(op1, op2) 
 

This uses the arguments in the order in which you entered them, removing them from the 
stack.  For instance the input “1 2 /” will place the value 1/2 on the stack. (As this 
example shows, you can enter several parameters on one command line.) A one-argument 

9 



GoFast Floating-Point Library User’s Guide 

function will just replace top-of-stack with the result, for instance “6.25 sqrt” will place 
6.25 on the stack and then replace it with 2.5. 

Below is a list of the GFTEST functions.  In this, x means top of stack; y means the 
second from the top. The commands are not case-sensitive. 

Q      quit 
 +      x = x + y    
            -      x = x - y 
      *      x = x * y              
      /      x = x / y 

_ x = y - x             
      \\     x = y / x  
 ?      x = -1 if x < y, 0 if x == y, 1 if x > y 

=      compare x and y, quit if not equal 
 INT    convert x to integer and back to real 
 UINT   convert x to unsigned integer and back to real 

func   any C function:  x = func(x) or func(x,y) 
 M      change mode between single and double precision 
 R      roll stack  
 X      exchange x and y  
 D      convert single x to double  
 S      convert double x to single  
 Pn     put x into register n (0-31) 
 Gn     get x from register n (0-31) 

B f    start reading input file f 
 

In validation mode, GFTEST reads a test script, performs the defined calculations, and 
compares the result to the given value.  If there’s a mistake, it displays a message and 
stops. You can start the scripted test from the command line; just give the name of the 
script file as a parameter. If there’s no command line, you can get the script going with 
the “B f” command. The script files are: 

 
file name tests 
DPCNVT.TST double-precision conversions
DPFNCS.TST double-precision functions 
DPOPNS.TST double-precision operations 
FPCNVT.TST single-precision conversions
FPFNCS.TST single-precision functions 
FPOPNS.TST single-precision operations 
LLCNVT.TST 64-bit conversions 

 
If you can’t get file input to work, should you run all the scripts through GFTEST by 
hand? No, but check every function at least once, paying particular attention to compare 
and to divide. How to get test values: print the scripts and borrow from them.  

 
 

10 



GoFast Floating-Point Library User’s Guide 

4.2 BENCH 
 
BENCH measures the speed of some floating-point operations, producing a table like 
this:  

 
Function Double Single
add 3.6 2.3
subtract 6.8 2.8
multiply 9.0 3.0
divide 18.2 6.6
sqrt 24.0 10.1
exp 43.4 10.2
log 80.2 13.4
log10 73.7 14.2
sin 39.8 9.2
cos 34.2 13.6
tan 63.6 13.8
asin 94.6 32.4
acos 122.5 33.5
atan 44.5 13.6
atan2 67.8 18.9
pow 118.1 25.7

 
The numbers are microseconds. (This example is for an old R3000 board.) BENCH calls 
routine clock to get the elapsed time, and putchar to display the results. The clock 
frequency is set as CLOCKS_PER_SEC, which normally comes from the system header 
file time.h. (In an embedded environment, you may have to use different methods for the 
timing.) BENCH calculates the overhead separately for the timing loops, so the results 
should be fairly accurate.  

11 



GoFast Floating-Point Library User’s Guide 

5 Technical Considerations 
 

5.1 Exception Handling 
 

GoFast makes no distinction between quiet and signaling not-a-numbers (NaNs).  In an 
invalid operation, the answer is always a standard quiet NaN, 0xFFF8000000000000 in 
double precision and 0xFFC00000 in single precision. 

The GoFast routines support the IEEE 754 masked exception handling for overflows and 
invalid operations.  An overflow is returned as the special value infinity, and an invalid 
operation is returned as the special value NaN. 

In ANSI C, the error code is stored into the variable errno.  In the interests of simplifying 
reentrancy, GoFast does not do this. No unmasked exceptions are supported; there are no 
exception interrupts.  Underflow and loss of precision are not reported.  Division by zero 
is treated as an invalid operation. 

 

5.2 Precision 
 

The basic operations (add, subtract, multiply, divide, square root) and the conversions all 
use the IEEE 754 "round to nearest or even" rounding exactly.  No other rounding modes 
are supported.  These operations are IEEE exact. 

The transcendental functions (which are not defined in IEEE 754) are correct to within 
two mantissa units.  However, the trigonometric functions SIN, COS and TAN can lose 
precision in the argument reduction.  For π, GoFast uses 64 bits in single precision and 66 
bits in double precision (chosen so that an ordinary PC can be used to verify the results), 
which is enough for any argument up to about 1000π.  Above that, exact multiples of π/4 
start losing precision, until eventually none remains. 

Software or hardware that uses fewer than 66 bits of π will give less accurate answers.  In 
most applications this makes no difference, because the arguments stay below 2π. 

 

5.3 Special Values 
 

An overflow returns +INF or -INF, an underflow returns +0 or -0.  If an argument is not-
a-number (NaN), the result is NaN.  The table below gives the GoFast result for some 
other special situations.  It does not include cases that should not cause any confusion. 

 
 -            INF-INF = NaN 
 *            0*INF = NaN 
 /            0/0 = NaN 
                   INF/INF = NaN 

12 



GoFast Floating-Point Library User’s Guide 

 sqrt       sqrt(-0) = -0  
                   sqrt(x<0) = NaN 
 fmod     fmod(INF,y) = NaN 
                   fmod(x,0) = NaN 
                   fmod(x,INF) = x 
      frexp     frexp(INF,x) = NaN 
 modf     modf(INF,x) = NaN 
 log/log10    -INF if x=0 
                   NaN if x<0 
      sin/cos/tan  NaN if |x| >= 262π 
 acos/asin    NaN if |x| > 1 
      atan2        atan2(0,0) = NaN 
 tanh         tanh(+INF) = 1 
              tanh(-INF) = -1 
      pow          pow(0,0) = NaN 
   pow(x<0, y not integer) = NaN 
   pow(0,INF) = pow(INF,0) = NaN 
 
Most likely, these pathological cases will be of no interest to anyone. It is not at all 
unusual to find a C library that returns questionable values for one or more. You may also 
meet someone who proceeds to prove that pow(0,0) is zero, or one, or anything. (The 
proofs will all be correct – that’s why it’s called NaN.) 

 

5.4 Accuracy in Calculations 
 

Floating-point calculations are in practice always inexact.  This is easy to forget because 
just about everything else in programming is exact, and because the precision seldom 
becomes a problem.  But you forget at your own peril. 

There is nothing mysterious about the loss of precision; it's simply the nature of the thing.  
The following illustrates different faces of the inaccuracy. 

 

5.4.1 Rounding 
A floating-point number contains a fixed number of digits.  Unless there are a lot of 
trailing zeroes, an arithmetic operation will very likely produce too many digits to fit in 
the same space.  This of course happens even in normal decimal calculations, for 
instance: 

  1234.567 
          +     12.34567
             1246.91267   1246.913 
 
Rounding errors as such are unlikely to become noticeable, but they can be enhanced by 
other effects.  Some algorithms are notoriously prone to lose precision. 

13 



GoFast Floating-Point Library User’s Guide 

 

5.4.2 Base Conversion 
Changing the base of a fractional number generally requires approximations.  Any 
application that uses decimal input, decimal constants or decimal output has to perform 
base conversions.  Consider the example 

  float f1; 
  f1 = 1.1; 
  printf("%.12f\n", f1); 
 
This program will display the value 1.100000023842, not the exact 1.1.  What happened? 

The root of the problem is that 1 1/10 in base 2 is 1.0001100(1100), i.e. can't be 
represented exactly.  The compiler creates a constant 1.1 with 24 bits: 

  1.000 1100 1100 1100 1100 1101 
 
This value is obviously larger than 1.1 because we rounded up at bit 24.  Printing the 
value with too many decimals (anything more than 7 in this case) will show the 
difference. 

 

5.4.3 Difference between Large Numbers 
Let's try the program 

 float f1, f2, f3; 
 f1 = 1234.0; 
 f2 = 1233.1; 
 f3 = f1 - f2; 
 printf("%lf\n", f3); 

 
The result is 0.900024: off by quite a bit.  The basic effect is the same as explained 
above: the required base conversion.  But the relative error got enlarged in the subtraction 
of two almost equal numbers: 

 1234.0 = 1001 1010 0100 0000 0000 0000 
   - 1233.1 = 1001 1010 0010 0011 0011 0011 
                  0.9 =                            1100 1100 1101 
 

5.4.4 Irrational Numbers 
Values such as sqrt(2) or sin(0.5) have no exact representation in any base.  These can 
still be calculated “exactly” to the value that is mathematically correct considering the 
rounding rules.  IEEE specifically requires an exact square-root, but says nothing about 
other functions.  The GoFast square-root is of course exact. 

You probably won’t find an “exact” implementation of the transcendentals anywhere.  
The additional error should be of the same order as the rounding error.   

14 



GoFast Floating-Point Library User’s Guide 

 

5.4.5 Special Functions 
As a rule, the relative error of a function is different than the relative error of the 
argument.  In some cases this becomes important.  Take the following code: 

  double d1, d2; 
  d1 = 1.1; 
  d3 = exp(100*d1); 
 
The result will differ from exp(110) by quite a bit.  This does not mean that exp(x) is 
inaccurate; it means that the original inaccuracy of x got magnified.  An important special 
case is 

  z = xy = ey*log(x)

 
This formula – definitely not from GoFast – is a bad way to calculate x to the power y. 

A point where a function approaches zero for a non-zero argument is especially tricky.  
As an example, log(0.999998) is close to twice log(0.999999).  If your argument is only a 
little inexact, say due to rounding, the answer may be so wrong as to be meaningless.  
Again we need to remember that log(x) as such is not the culprit, it is not inaccurate.   

The same warning applies whenever significant argument reduction is needed, such as 
the trigonometric functions for arguments much larger than π.  Worst of all are cases 
where these two situations coincide: sin(1000π) for instance. 

 

5.4.6 Conversion to Integer 
ANSI C specifies that a floating-point number is converted to an integer using truncation: 
the decimals are discarded.  This innocuous rule can cause surprises.  Consider the 
program 

  int i1, i2; 
  i1 = 256; 
  i2 = (float)i1 / 2.56; 
  printf("%d\n", i2); 
 
Certainly the correct answer is 100, but you can't count on this; the program as written is 
unstable.  In some cases, the answer will keep jumping between 99 and 100, depending 
on the compilation options and the exact code used. 

The root reason for the instability is not hard to see.  The value 2.56 has to be rounded 
when it is converted to base 2.  If this rounding is up, the division will give a value that is 
slightly less than 100.  According to ANSI C rules, this becomes 99.  If again 2.56 in base 
2 is rounded down, the division will give slightly over 100, and truncates to 100. 

IEEE 754 is a very rigorous standard; whether 2.56 is rounded up or down, surely it 
should be rounded the same way every time. How is it possible that two standard 

15 



GoFast Floating-Point Library User’s Guide 

implementations give completely different results? Well, it really isn’t. This is an 
interesting example of what happens when a standard meets an optimizing compiler. 
How the rounding is done depends on the number of bits in the constant. ANSI C says 
that a floating-point constant is double, and IEEE 754 rules this to have 53 binary digits. 
Unfortunately 

 
1 Some compilers use float constants in float expressions. This difference may be 

enough to change the direction of the rounding. 
2 Some compilers optimize out all divisions by a constant, using instead a 

multiplication with the inverse value. What happens to the rounding is anybody’s 
guess. 

 
 

5.4.7 Financial Calculations 
You want to make absolutely sure your broker isn’t cheating you, so you write a little 
program to check the commission. The first trade looks fine. The second trade looks fine. 
The third trade – caught him! Overcharged by a penny! 
 
Well, not really. Financial rounding follows law and custom, knowing (and caring) 
nothing about IEEE 754 rounding. In some special cases, you have to round up. Even the 
usual “bank rounding” isn’t quite the same as the IEEE default – though you’ll have to 
look hard to catch the difference. 
 
None of this means that there’s a problem. Financial institutions just don’t use floating-
point math. 
 

16 



GoFast Floating-Point Library User’s Guide 

6 16-Bit Processors  
 

6.1 Motorola 68HC16 
 

6.1.1 Compilers 
There are three GoFast versions for the Motorola 68HC16, for three different C 
compilers:  

• Archimedes/Hi-Cross 
• Introl 
• Whitesmith 

 
The instruction set is of course the same, but the assembly controls differ, and so do the 
calling conventions. The library links right in, and works with all memory models. (HC16 
libraries are not always model-independent, but GoFast qualifies because no function 
uses more than one pointer as argument, so no pointers are fetched from the stack.) 

 

6.1.2 Test Environment 
The libraries have been tested on the Motorola 68HC16 evaluation board. The product 
includes instructions on how to set up and use the board. There are also various files that 
might be useful in testing the GoFast library. 

 

6.1.3 Timings 
The following table shows the timings (in microseconds) for a few functions on the 16.78 
MHz evaluation board. 

 
Function GoFast Whitesmith C Introl C
divide 226 688 844
sqrt 171 3284 4386
exp 1348 2343 4354
log 1177 3015 5437
sin 963 1437 3708

 
 
 
 

 
 
 

17 



GoFast Floating-Point Library User’s Guide 

7 32-Bit Processors 
 

7.1 Altera Nios II 
 

7.1.1 Compiler 
This GoFast library is for the GNU C compiler.  There are two versions:  one that uses 
multiply and divide instructions (NIOSII), and one that uses neither (NIOSIIX). 

 
7.1.2 Timings 
The following table shows some times (in microseconds) for the Altera Nios II 1C12 
“standard” evaluation board, using no multiply or divide in hardware.  

 
 

 

 Double-Precision Single-Precision 
Function GoFast GNU GoFast GNU 
add          0.7    2.1    0.3    1.1 
subtract     0.7    2.1    0.3    1.1 
multiply     3.2   10.9    0.9    3.0 
divide       3.4    7.6    1.0    1.5 
sqrt         6.3    7.4    3.2    1.7 
exp         21.6  117.1    5.6   37.6 
log         18.2  182.4    4.0   54.1 
log10       20.4  199.8    4.8   60.8 
sin         18.0  105.0    4.0   32.1 
cos         16.0  120.9    4.0   38.4 
tan         22.0  220.6    5.6   67.1 
asin        32.4  213.1    8.8   64.1 
acos        32.2  201.5    9.6   59.6 
atan        18.8  209.5    4.9   61.4 
atan2       21.9  223.4    5.8   64.4 
pow         42.5  542.0   10.6  163.6 

 

7.2 ARM 
 
GoFast for ARM is offered for the ARM and Thumb-2 instruction sets, not Thumb. Each 
is sold separately. 
 

7.2.1 Compiler 
GoFast for ARM supports the following C compilers: 

• IAR EWARM 
• Keil ARM 
• Rowley CrossWorks ARM 

 

18 



GoFast Floating-Point Library User’s Guide 

7.2.2 Timings for IAR EWARM (ARM and Thumb-2) 
The following table shows all times (in microseconds) for the indicated processor and 
evaluation board. The basic operations (add, subtract, multiply, divide, conversions, and 
comparisons) in the IAR library are hand-coded in assembly and faster than those in 
GoFast, so the IAR versions are used instead. (If you only need these basic operations, 
you don’t need GoFast.) Thus, the routines linked are a mixture of both libraries, as 
indicated in bold below. 

 
ARM7:  LPC2468, 48 MHz, Code Int SRAM, Data Ext SDRAM 

 
 Double-Precision Single-Precision 
Function GoFast IAR GoFast IAR 
add           1.8 1.2 1.3 0.8 
subtract      1.9 1.3 1.3 0.8 
multiply      1.8 1.4 1.2 0.7 
divide        9.2 6.6 4.8 1.6 
sqrt          17.8 29.1 9.4 7.7 
exp           8.7 29.9 2.7 17.8 
log           19.2 29.1 8.0 9.3 
log10         19.6 33.0 8.2 11.1 
sin           7.2 21.0 2.7 7.9 
cos           7.1 20.8 2.7 7.8 
tan           16.7 27.6 6.7 9.3 
asin          15.8 66.9 20.0 18.6 
acos          16.2 67.0 22.5 18.7 
atan          20.5 32.5 8.6 9.5 
atan2         29.2 38.0 12.5 11.0 
pow             27.6  83.2  11.6  39.7 
tanh          17.3 35.3 9.9 19.0 
sinh          17.0 37.4 7.0 21.2 
cosh          16.9 36.3 6.5 20.6 
modf          2.5 3.4 1.5 2.1 
fmod          6.3 75.3 4.8 48.1 
fabs          0.4 1.0 0.3 0.9 
floor         0.9 2.4 0.6 1.8 
ceil          0.9 2.4 0.6 1.8 
ldexp         0.9 2.2 0.8 1.8 
frexp         0.8 1.0 0.7 0.9 
cmp           1.1 0.8 0.8 0.7 
fp to long    0.7 0.5 0.5 0.5 
fp to ulong   0.7 0.4 0.5 0.4 
long to fp    0.9 1.1 0.8 0.5 
ulong to fp   0.8 1.2 0.6 0.5 
sgl to dbl  0.7 0.5 — — 
dbl to sgl  0.8 0.5 — — 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Times were measured on Embedded Artists LPC2468 OEM board with IAR v5.20. 

 
 
 
 
 

19 



GoFast Floating-Point Library User’s Guide 

 
Cortex-M3:  LM3S8962, 50 MHz, Int SRAM 

 
 Double-Precision Single-Precision 
Function GoFast IAR GoFast IAR 
add           2.6 1.8 1.8 1.2 
subtract      2.7 1.9 1.9 1.2 
multiply      2.6 2.1 1.6 1.0 
divide        7.3 12.4 3.9 1.6 
sqrt          13.7 53.4 7.6 11.3 
exp           12.8 49.5 4.2 32.7 
log           19.9 50.1 9.1 16.6 
log10         20.9 56.8 9.3 20.0 
sin           10.5 35.1 4.1 15.0 
cos           10.3 34.7 4.1 14.8 
tan           17.7 47.8 6.9 16.5 
asin          17.9 123.6 15.9 29.6 
acos          18.2 123.8 17.8 29.9 
atan          19.3 59.3 8.0 15.2 
atan2         25.5 69.5 10.8 17.2 
pow             32.5 136.3   13.6  67.1 
tanh          18.3 61.0 9.0 34.3 
sinh          17.8 63.8 7.1 37.9 
cosh          17.5 62.6 6.9 36.8 
modf          3.8 3.7 2.4 2.4 
fmod          10.4 104.6 7.5 71.6 
fabs          0.4 1.3 0.3 0.9 
floor         1.1 3.3 0.7 2.3 
ceil          1.2 3.2 0.8 2.3 
ldexp         1.1 2.2 0.9 1.9 
frexp         1.0 1.1 0.8 0.9 
cmp           1.4 0.9 0.8 0.8 
fp to long    0.8 0.8 0.5 0.5 
fp to ulong   0.9 0.5 0.5 0.3 
long to fp    1.2 0.6 1.1 0.6 
ulong to fp   1.0 0.4 0.8 0.4 
sgl to dbl  0.8 0.5 — — 
dbl to sgl  1.1 0.7 — — 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Times were measured on Texas Instruments (Luminary Micro) LM3S8962-EK board with IAR 
v5.20. 
 

20 



GoFast Floating-Point Library User’s Guide 

7.2.3 Timings for Keil ARM 
The following table shows all times (in microseconds) for the indicated processor and 
evaluation board. The basic operations (add, subtract, multiply, divide, conversions, and 
comparisons) in the Keil library are hand-coded in assembly and faster than those in 
GoFast, so the Keil versions are used instead. (If you only need these basic operations, 
you don’t need GoFast.) Thus, the routines linked are a mixture of both libraries, as 
indicated in bold below. 

ARM7:  LPC2468, 48 MHz, Code Int SRAM, Data Ext SDRAM 
 

 Double-Precision Single-Precision 
Function GoFast Keil GoFast Keil 
add           1.7 1.0 1.2 0.6 
subtract      1.8 1.0 1.3 0.7 
multiply      1.8 1.5 1.1 0.7 
divide        9.2 3.6 4.8 1.1 
sqrt          17.8 7.7 9.4 3.4 
exp           8.7 26.7 2.6 21.0 
log           19.3 28.8 7.9 20.4 
log10         19.5 32.8 8.1 20.7 
sin           7.2 22.8 2.7 14.4 
cos           7.1 22.9 2.7 14.4 
tan           16.6 45.8 6.6 15.1 
asin          15.8 33.9 20.0 18.8 
acos          16.2 31.4 22.5 19.7 
atan          20.5 28.2 8.6 15.3 
atan2         28.5 36.1 12.4 16.0 
pow             27.5 105.3  11.5  99.6 
tanh          17.2 42.1 9.9 20.7 
sinh          17.0 44.2 6.9 19.5 
cosh          16.9 30.6 6.6 19.4 
modf          2.3 2.5 1.4 0.9 
fmod          6.2 8.1 4.7 7.3 
fabs          0.3 0.3 0.3 0.3 
floor         0.8 1.7 0.6 1.1 
ceil          0.9 1.7 0.6 1.1 
ldexp         0.9 2.0 0.7 1.1 
frexp         0.8 0.8 0.6 0.7 
cmp           1.0 0.7 0.8 0.7 
fp to long    0.7 0.5 0.5 0.4 
fp to ulong   0.6 0.5 0.4 0.4 
long to fp    0.9 0.5 0.7 0.5 
ulong to fp   0.8 0.5 0.5 0.5 
sgl to dbl  0.6 0.4 — — 
dbl to sgl  0.7 0.5 — — 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Times were measured on Embedded Artists LPC2468 OEM board with Keil v3.85. 
 

21 



GoFast Floating-Point Library User’s Guide 

7.2.4 Timings for Rowley CrossWorks ARM 
The following table shows all times (in microseconds) for the indicated processor and 
evaluation board. The basic operations (add, subtract, multiply, divide, conversions, and 
comparisons) in the CrossWorks library are hand-coded in assembly and faster than those 
in GoFast, so the CrossWorks versions are used instead. (If you only need these basic 
operations, you don’t need GoFast.) Thus, the routines linked are a mixture of both 
libraries, as indicated in bold below. 

 
ARM7:  AT91SAM7X256-EK, 48 MHz, RAM 

 
 Double-Precision Single-Precision 
Function GoFast CWK GoFast CWK 
add           2.5 1.6 1.6 1.0 
subtract      3.0 2.0 1.9 1.4 
multiply      2.7 2.2 1.6 1.0 
divide        16.5 9.2 8.3 2.3 
sqrt          32.3 46.6 16.7 15.3 
exp           13.1 46.6 4.3 32.4 
log           27.2 60.2 11.3 28.9 
log10         28.3 62.4 11.6 30.0 
sin           11.6 41.9 4.0 21.0 
cos           10.6 53.1 4.0 25.2 
tan           28.2 59.9 11.3 28.5 
asin          45.1 109.2 34.8 48.2 
acos          43.8 107.6 42.2 46.8 
atan          27.1 64.4 11.6 30.2 
atan2         42.8 75.5 19.2 34.6 
pow              40.5   112.9   16.7   65.8 
tanh          30.7 62.5 19.2 40.1 
sinh          30.4 65.0 12.1 39.0 
cosh          29.8 63.9 11.6 40.6 
modf          1.4 1.9 1.1 1.3 
fmod          1.6 16.5 1.0 8.0 
fabs          0.5 0.5 0.3 0.3 
floor         1.1 1.9 0.7 1.2 
ceil          1.2 1.9 0.7 1.2 
ldexp         2.2 2.3 1.4 1.6 
frexp         1.3 1.8 0.8 1.3 
cmp           1.7 1.0 1.2 0.8 
fp to long    1.0 0.6 0.7 0.5 
fp to ulong   1.0 0.5 0.7 0.5 
long to fp    4.6 0.8 4.3 0.7 
ulong to fp   4.5 0.7 4.2 0.7 
sgl to dbl  0.9 0.5 — — 
dbl to sgl  1.1 0.6 — — 

 
 

 
 
 
 
 
 

22 



GoFast Floating-Point Library User’s Guide 

7.3 ColdFire 
 

7.3.1 Compiler 
This GoFast library is for the Freescale CodeWarrior C/C++ compiler. 

This version of GoFast uses the ColdFire DIV instruction, which first appeared on the 
5206e. If you are using an older processor, we can supply an older library we created for 
Diab that we tested on 5204. 
 

7.3.2 Timings for Freescale CodeWarrior 
The following table shows all times (in microseconds) for the indicated processor and 
evaluation board. The basic operations (add, subtract, multiply, divide, conversions, and 
comparisons) in the CodeWarrior library are hand-coded in assembly and some are faster 
than those in GoFast, so the CodeWarrior versions are used instead. (If you only need 
these basic operations, you don’t need GoFast.) Thus, the routines linked are a mixture of 
both libraries, as indicated in bold below. 

23 



GoFast Floating-Point Library User’s Guide 

M5275EVB, 150MHz, External SDRAM 
 

 Double-Precision Single-Precision 
Function GoFast CW GoFast CW 
add           14.54 12.50 8.81 8.91 
subtract      15.42 12.35 9.27 9.41 
multiply      18.16 19.29 9.29 10.74 
divide        28.3 20.61 13.75 10.36 
sqrt          49.30 148.52 26.95 158.78 
exp           92.48 357.79 21.93 376.37 
log           110.17 383.32 36.56 406.54 
log10         116.96 469.26 38.21 477.85 
pow           206.19 1257.25 61.17 1321.70 
sin           68.98 366.36 22.38 375.83 
cos           69.02 374.61 22.16 383.00 
tan           116.54 662.16 29.97 656.48 
asin          143.08 494.11 55.67 501.04 
acos          160.84 439.00 61.81 448.61 
atan          91.73 423.69 31.03 423.63 
atan2         112.69 486.46 39.69 506.11 
sinh          112.08 565.64 31.73 592.64 
cosh          110.15 406.27 29.29 431.53 
tanh          110.33 546.20 36.16 575.13 
modf          16.50 17.26 10.20 28.78 
fmod          34.95 109.36 29.43 121.83 
fabs          4.58 3.18 3.44 11.90 
floor         7.08 22.36 5.44 29.71 
ceil          7.18 22.21 5.46 29.62 
ldexp         7.19 18.08 5.76 24.13 
frexp         6.14 6.84 5.06 15.89 
cmp           7.78 7.12 5.67 4.66 
feq/gt/lt... 7.57 6.91 5.63 4.64 
fp to long    5.59 5.24 4.75 3.82 
fp to ulong   5.61 4.46 4.59 3.05 
long to fp    6.73 4.95 5.86 5.47 
ulong to fp   9.00 6.77 7.78 6.88 
fp to llong   7.13 941.82 6.36 883.37 
fp to ullong  7.11 578.60 6.08 549.23 
llong to fp   12.88 697.78 13.73 753.11 
ullong to fp  13.69 722.47 12.15 676.72 
sgl to dbl  6.00 4.00 — — 
dbl to sgl  6.72 6.00 — — 

 
 
 

24 



GoFast Floating-Point Library User’s Guide 

7.4 Hitachi SH Family 
 

7.4.1 Compilers 
There’s a GoFast version for SH1, SH2, and SH3 that is compatible with GNU C. In 
addition, there’s an SH3 version for the Hitachi C compiler. 

7.4.2 Timings 
The following table gives the timing, in microseconds, of some floating-point operations 
for the SH2. The test used a 6.144 MHz E7000 emulator; the data and the instruction 
cache were enabled. 

function double single
add 57.3 36.0
subtract 61.5 38.3
multiply 62.0 33.9
divide 84.5 44.6
sqrt 225.1 76.2
exp 314.7 75.7
log 380.2 91.1
log10 390.8 94.3
sin 273.5 66.6
cos 272.0 65.3
tan 373.0 77.5
asin 520.6 195.4
acos 586.0 216.0
atan 341.9 109.4
atan2 400.2 139.7
pow 577.6 179.7

 
These times, in microseconds again, measure speed using a 7708 processor running at 60 
MHz on a 15 MHz board. 

 
 GNU + GoFast HITACHI + GoFast 

function double single double single double single double single
add 54.8 36.4 18.2 12.7 19.6 10.6 17.5 10.8
subtract 60.8 39.6 20.8 13.9 23.1 10.9 19.8 12.4
multiply 170.2 60.2 18.6 11.2 26.1 9.9 17.9 9.7
divide 158.7 63.4 29.8 16.6 79.9 13.8 29.7 15.4
sqrt 240.9 120.6 45.7 27.3 167.5 57.5 44.7 25.9
exp 2126.8 984.6 73.2 19.3 642.5 310.4 65.4 18.1
log 3159.9 1358.8 97.7 27.6 563.9 270.5 88.0 26.4
log10 3508.0 1535.7 101.0 28.6 588.1 286.0 94.7 27.4
sin 1723.7 714.1 70.8 19.4 359.2 169.3 62.0 18.1
cos 2152.9 950.0 65.3 19.6 335.3 157.1 58.0 18.4
tan 3654.6 1538.3 91.0 25.9 476.6 212.5 83.8 24.7
asin 3931.7 1765.6 113.3 58.1 912.5 385.6 106.1 57.1
acos 3623.0 1569.7 107.3 66.4 934.5 401.5 98.6 65.6
atan 3593.8 1589.7 95.7 29.7 560.6 234.4 88.1 28.8
atan2 3871.3 1731.0 118.9 39.7 685.2 265.5 113.5 38.1
pow 10172.7 4498.1 153.0 50.2 1268.4 605.1 146.1 48.8

25 



GoFast Floating-Point Library User’s Guide 

7.5 Intel x86 
 
GoFast for the Intel x86 processors mostly means emulation, because that is what the 
compilers require. There is actually a drop-in GoFast library for I386 that works just fine 
with the Microsoft or the Borland compiler. But there’s a catch: you’ll have to do all 
floating-point operations using function calls. As this is not a practical idea, the library 
only serves as part of a test suite. 

However, there is a compiler that will generate emulation-free code for the I386: GNU. 
Naturally there’s also an I386 GoFast library for GNU, the real thing, faster than any 
emulation. 

See the separate GoFast x86 User’s Guide. 
 
 

7.6 MIPS32 
 
GoFast for MIPS32 replaces the old GoFast R3000 version. Improvements have been 
made. GoFast R4000 (for MIPS64) has been discontinued because there are very few 
64-bit cores and the few that exist have a built-in FPU, we are told. 

GoFast for MIPS32 runs on all MIPS32 rev1 and rev2 cores. We attempted to create a 
faster version for rev2 using the new instructions, but there was no benefit. Some 
functions were slightly faster and others slightly slower. 

7.6.1 Compilers 
GoFast for MIPS32 supports the following C compilers: 

• MIPS SDE (GNU) 
 
The GNU library does not provide single precision versions of most functions, but 
GoFast does. 

 

26 



GoFast Floating-Point Library User’s Guide 

7.6.2 Timings 
The following table shows all times (in microseconds) for the indicated processor and 
evaluation board. 

 
MIPS32:  PIC32 Starter Kit (PIC32MX360F512L), 80 MHz, RAM 

 
 Double-Precision Single-Precision 
Function GoFast GNU GoFast GNU 
add           0.93 1.53 0.75 0.84 
subtract      0.92 1.60 0.70 0.82 
multiply      0.97 1.60 0.60 0.77 
divide        2.38 7.84 1.12 1.77 
sqrt          3.93 8.95 1.67 1.69 
exp           4.15 42.22 1.30 — 
log           6.05 48.08 2.13 — 
log10         6.48 49.64 2.24 — 
pow           10.40 135.30 3.66 — 
sin           3.77 29.32 1.46 — 
cos           3.71 30.05 1.45 — 
tan           6.40 59.46 2.10 — 
asin          5.33 77.31 4.02 — 
acos          5.16 76.13 4.54 — 
atan          6.74 48.59 2.35 — 
atan2         8.76 67.37 3.16 — 
sinh          5.92 70.57 2.06 — 
cosh          5.81 54.03 1.96 — 
tanh          6.04 70.10 2.53 — 
modf          0.55 1.10 0.44 — 
fmod          4.83 80.09 2.68 — 
fabs          0.14 0.15 0.11 0.11 
floor         0.35 6.51 0.23 — 
ceil          0.46 5.91 0.24 — 
ldexp         0.31 0.80 0.29 0.51 
frexp         0.21 0.47 0.19 — 
cmp           0.69 0.73 0.56 0.52 
fp to long    0.20 0.32 0.18 0.22 
fp to ulong   0.20 1.14 0.18 0.75 
long to fp    0.24 0.29 0.21 0.67 
ulong to fp   0.28 0.40 0.29 0.77 
sgl to dbl  0.20 0.24 — — 
dbl to sgl  0.27 0.44 — — 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

27 



GoFast Floating-Point Library User’s Guide 

7.7 Motorola 68000 Family 
 

7.7.1 Compiler 
GoFast supports the following Motorola 68k C compilers:  

• GNU 
• Intermetrics 
• Microtec Research 

 
The instruction set is the same, but the calling conventions and the assembly controls 
differ. There are two versions for each compiler; one supports full 32-bit multiply and 
divide (68020), the other only 16-bit multiply and divide (68000). 

 

7.7.2 Timings 
The following table shows some times (in microseconds) for the 25 MHz 68360 
processor using the Microtec compiler. 

 
 Single-Precision Double-Precision 
function Microtec GoFast Microtec GoFast
add 25 28 51 48
multiply 32 30 73 51
divide 32 28 152 51
sqrt 250 50 712 62
exp 487 62 1550 225
pow 1025 137 3112 437
log 450 62 1587 200
log10 487 62 1650 225
sin 287 62 1187 175
cos 487 75 1675 162
tan 275 62 1212 250
asin 612 100 2337 262
acos 575 100 2237 287
atan 425 75 1737 175

 
 

28 



GoFast Floating-Point Library User’s Guide 

7.8 NEC V830/V850 Families 
 

7.8.1 Compiler Support 
The GoFast routines are a direct replacement for the Green Hills C library. There’s one 
version for the V830 family and one for the V850 family. 

7.8.2 Timings 
The following timings are from a NEC V830 processor running at 33 MHz on an  
RTE-V830-PC board. The test used the Green Hills compiler version 1.8.8. 

 
function double single
add 8.3 5.0
subtract 10.5 6.1
multiply 7.6 13.2
divide 14.4 6.3
sqrt 24.7 13.7
exp 34.4 13.3
log 52.7 16.6
log10 56.1 18.6
sin 32.3 14.5
cos 31.4 13.9
tan 46.9 16.7
asin 68.5 33.6
acos 74.2 37.3
atan 46.9 18.2
atan2 55.0 26.2
pow 78.3 36.2

 
The next timings apply to a NEC V851 with a 6.6 MHz external crystal and 33 MHz 
phase-lock loop on an RTE-V851-PC board. The Green Hills compiler version was 1.8.8. 

 
 Single-Precision Double-Precision 
function GH GoFast GH GoFast
add 58.0 24.0 99.0 36.0
subtract 82.0 28.0 137.0 45.0
multiply 692.0 126.0 632.0 104.0
divide 564.0 157.0 2076.0 322.0
sqrt 1432.0 344.0 8255.0 683.0
exp 1121.0 210.0 8260.0 923.0
log 2145.0 285.0 10392.0 1015.0
log10 2324.0 306.0 11075.0 1081.0
sin 942.0 169.0 7409.0 669.0
cos 1015.0 151.0 7489.0 669.0
tan 2385.0 317.0 10850.0 1312.0
asin 4993.0 762.0 24382.0 1846.0
acos 4912.0 911.0 18789.0 2179.0
atan 1984.0 283.0 13130.0 847.0
atan2 2680.0 424.0 15428.0 1169.0
pow 3732.0 542.0 19839.0 2003.0

29 



GoFast Floating-Point Library User’s Guide 

7.9 PowerPC 
 

7.9.1 Compilers 
GoFast for PowerPC offers drop-in libraries for the following C compilers: 

• Diab Data 
• GNU 
• Metaware 
• Motorola 

 
There’s also an emulator interface, used by the IBM compiler. GoFast for PowerPC 
provides two emulators, for different CPU variants, with some sample code for installing 
them. Emulation is never a totally painless option in embedded systems; fortunately you 
are much more likely to need a drop-in library than an emulator. 

 

7.9.2 Timings 
The following timings are for the GoFast EABI interface from a PPC860T processor 
running at 50 MHz (25 MHZ bus), caching disabled. The benchmark program was built 
with the Diab Data C compiler. 

 
 

 GoFast Diab Data 
function double single double single 
add 32.6 23.4 97.0 32.6
subtract 38.0 26.1 132.2 39.4
multiply 36.9 22.6 63.5 30.9
divide 61.2 30.0 413.1 131.9
sqrt 110.4 54.7 374.4 98.3
exp 221.3 68.9 1376.0 544.3
log 252.3 59.2 1475.1 585.9
log10 264.9 61.9 1537.1 616.8
sin 177.1 58.4 614.9 439.6
cos 174.3 57.7 732.4 474.4
tan 283.1 66.5 1090.8 507.9
asin 329.7 105.6 1174.0 572.7
acos 394.0 126.8 1303.3 610.0
atan 209.7 61.2 1383.7 622.7
atan2 259.1 80.0 1988.0 842.7
pow 469.9 138.3 8575.7 3166.7

 

30 



GoFast Floating-Point Library User’s Guide 

7.10 SPARC 
 
There’s a drop-in GoFast library for the V7/V8 (32-bit divide), the SPARClite (1-bit 
divide), and the Fujitsu MB86934 (1-bit divide, scan). These work with the following 
compilers: 

• GNU 
• Microtec 
• Sun Microsystems 

 
There’s also a floating-point emulator for SPARC. This will allow the same binary 
program to run both in the V7 and in the V8 reasonably efficiently. The following table 
gives some times (in microseconds) for emulated floating-point instructions. The 
platform was the 49 MHz Fujitsu SPARClite evaluation board with static RAM. The 
measurements were done with and without the cache. 

 
 single double 

instruction SRAM cache SRAM cache 
branch, not taken 1.60 0.85 2.55 0.85 
branch, taken 1.75 0.90 2.70 0.90 
load 2.70 1.30 2.65 1.35 
store 2.55 1.30 2.95 1.55 
add 6.80 3.30 7.90 4.25 
subtract 6.80 3.30 9.05 4.45 
multiply 6.60 3.25 8.20 4.30 
divide 8.35 4.75 12.10 6.10 
compare 4.75 2.35 4.65 2.25 
integer to real 4.40 2.10 4.50 2.25 
real to integer 4.75 2.35 5.40 4.15 
double to single 5.45 2.95  
single to double 4.15 2.30 
square-root 12.95 7.30 22.60 13.05 

31 



GoFast Floating-Point Library User’s Guide 

8 References 
 
ANSI/IEEE Standard 754-1985: Binary Floating-Point Arithmetic 
 
ANSI Document X3J11/88-159: Draft Proposed American National Standard for 
Information Systems – Programming Language C 
 
W. Cody, W. Waite: Software Manual for the Elementary Functions, Prentice-Hall, 1980 
 

32 


	What Is GoFast?
	A Floating-Point Library
	A Fast One
	How About Emulation?
	Definitions
	Notations

	Included Functions
	Intrinsic Functions
	User Functions

	Module Structure
	Testing
	GFTEST
	BENCH

	Technical Considerations
	Exception Handling
	Precision
	Special Values
	Accuracy in Calculations
	Rounding
	Base Conversion
	Difference between Large Numbers
	Irrational Numbers
	Special Functions
	Conversion to Integer
	Financial Calculations


	16-Bit Processors
	Motorola 68HC16
	Compilers
	Test Environment
	Timings


	32-Bit Processors
	Altera Nios II
	Compiler
	Timings

	ARM
	Compiler
	Timings for IAR EWARM (ARM and Thumb-2)
	Timings for Keil ARM
	Timings for Rowley CrossWorks ARM

	ColdFire
	Compiler
	Timings for Freescale CodeWarrior

	Hitachi SH Family
	Compilers
	Timings

	Intel x86
	MIPS32
	Compilers
	Timings

	Motorola 68000 Family
	Compiler
	Timings

	NEC V830/V850 Families
	Compiler Support
	Timings

	PowerPC
	Compilers
	Timings

	SPARC

	References

