
USLink 

Embedded Linker/Locator

User’s Guide

Revision 2.15
December 1999

www.ussw.com

ii USLink User’s Guide

Copyright and Trademark Information

Copyright 1996-2000 United States Software Corporation. All rights
reserved. No part of this publication may be reproduced, translated
into another language, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of United
States Software Corporation.

U S Software, USNET, USFiles, USLink, SuperTask!,
MultiTask!, NetPeer, TronTask!, Soft-Scope, and GOFAST
are trademarks of United States Software Corporation. Other brands
and names are marked with an asterisk (*) and are the property of
their respective owners.

United States Software Corporation makes no warranty of any kind
with regard to this material, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose.
United States Software Corporation assumes no responsibility for any
errors that may appear in this document. United States Software
Corporation makes no commitment to update or to keep current the
information contained in this document.

United States Software Corporation
7175 NW Evergreen Parkway, Suite 100

Hillsboro, OR 97124
(503) 844-6614

Fax (503) 844-6480
E-mail: support@ussw.com

USLink User’s Guide iii

1

2

3

A

I

Quick Contents

1. INTRODUCTION ... 1-1

2. 32-BIT PROTECTED-MODE APPLICATIONS 2-1

3. COMMAND REFERENCE ... 3-1

A. ERROR AND WARNING MESSAGESA-1

INDEX ... INDEX-1

iv USLink User’s Guide

Documentation Conventions

Computer output and code examples: Courier, usually in a
separate paragraph.

Function names and command names: Bold italic, usually
followed by parentheses, as in main() function.

Variables: Courier 11 italic (the variable filename).

File names: Times bold (the file usrclk.asm), in lower case.

Key names: Initial capital, in angle brackets, as in press
<Enter>.

Menu names and selections, dialog box names, screen titles,
window titles: Times bold, as in File menu.

Notes: Indicate important information.

Cautions: Indicate potential damage to hardware or data.

Warnings: Indicate potential injury to users.

Revision History

Revision Number History Date

1.0 Original issue 12/96

1.1 Reorganized and reformatted 11/97

2.15 Revised content 12/99

USLink User’s Guide v

Contents
1. INTRODUCTION ... 1-1
Manual Organization ... 1-2
Linker Overview ... 1-3
The Location Process .. 1-4

Linking/Locating .. 1-4
Native versus Embedded Development .. 1-4
Location Units .. 1-4
Know Where Your RAM and ROM Are ... 1-5
Default Location Order .. 1-6

Features ... 1-7
What the Linker Does ... 1-7
Supported Compilers .. 1-7
Protected-Mode Structures ... 1-7
Initialized RAM Data ... 1-8
Other Support Macros .. 1-8

Input and Output ... 1-9
Possible Output Formats ... 1-9

Example Map File .. 1-10
Toolchains and Memory Segmentation Models 1-15

Table 1-1: 32-bit Protected-Mode Applications 1-15
Troubleshooting Location Problems ... 1-16

2. 32-BIT PROTECTED-MODE APPLICATIONS 2-1
Overview .. 2-2
32-bit Protected-Mode Example ... 2-3

Step 1—Compile Using Microsoft Tools 2-3
 Example Command File csamp.cmd 2-4

Step 2—Create a Command File .. 2-4
Step 3—Invoke the Linker.. 2-7

Example Map File .. 2-8

vi USLink User’s Guide

Borland Tools .. 2-10
Borland C/C++ Compiler ... 2-10
Borland Turbo Assembler ... 2-10

MetaWare Tools .. 2-11
MetaWare Compiler.. 2-11

Microsoft Tools .. 2-12
Microsoft C/C++ Compiler .. 2-12
Microsoft ML ... 2-13

Watcom Tools .. 2-14
Watcom C/C++ ... 2-14
Watcom WASM .. 2-14

3. COMMAND REFERENCE ... 3-1
Overview .. 3-3
The .CMD Command File ... 3-4

Command File Organization .. 3-6
Recommended Ordering of Commands 3-6
Grouping Guidelines .. 3-6

Command Syntax ... 3-9
Table 3-1: Command Syntax Elements ... 3-9
Table 3-2: Keywords Used in Linker Commands 3-12

Command Syntax Summary ... 3-13
Italicized Syntax Elements ... 3-15

Command Reference .. 3-16
ABS386, ABS286, and ABS86 ... 3-18
ALIAS... 3-19
ATTRIBUTE ... 3-20
BASE .. 3-22
BC5LIB ... 3-23
BINARY .. 3-24
CALL286 and CALL386.. 3-25

Table 3-3: Gate Attributes for CALL286 and CALL386 3-25

USLink User’s Guide vii

CPU... 3-27
CREATE ... 3-28
DEBUG ... 3-29
ENTRY ... 3-30
FIXUP ... 3-31
FLAT ... 3-33
GDT .. 3-34
HEX86 and HEX386 .. 3-35
IDT .. 3-36
INIT16R, INIT16P, and INIT32R .. 3-37
INT286 and INT386 ... 3-40
INTEGRITY ... 3-41
LDT... 3-42
LIBRARY ... 3-43
LOCATE ... 3-44
OBJECT .. 3-46
PAGEDIRECTORY .. 3-47
PAGETABLE .. 3-48
PMODE... 3-50
PRINT ... 3-52
RAM.. 3-53
RMODE .. 3-54
ROMBASE.. 3-55
ROMMOVE .. 3-56
TASKGATE .. 3-57

Table 3-4: Gate Attributes for TASKGATE................................. 3-57
TRAP286 and TRAP386 .. 3-59
TSS286 and TSS386 ... 3-60
VERBOSE .. 3-64

viii USLink User’s Guide

A. ERROR AND WARNING MESSAGESA-1
Overview ..A-2
Internal Error and Error Messages ..A-3
Warning Messages ..A-16

INDEX ... INDEX-1

USLink User’s Guide 1-1

1
1. Introduction

Chapter Contents

Manual Organization ... 1-2
Linker Overview ... 1-3
The Location Process .. 1-4

Linking/Locating .. 1-4
Native versus Embedded Development .. 1-4
Location Units .. 1-4
Know Where Your RAM and ROM Are ... 1-5
Default Location Order .. 1-6

Features ... 1-7
What the Linker Does ... 1-7
Supported Compilers .. 1-7
Protected-Mode Structures ... 1-7
Initialized RAM Data ... 1-8
Other Support Macros .. 1-8

Input and Output ... 1-9
Possible Output Formats ... 1-9

Example Map File .. 1-10
Toolchains and Memory Segmentation Models 1-15

Table 1-1: 32-bit Protected-Mode Applications 1-15
Troubleshooting Location Problems ... 1-16

1-2 USLink User’s Guide

Manual Organization

The USLink User’s Guide contains the following chapters:

1. Introduction
Describes the location process, explains features of and how to
use the linker, and gives troubleshooting guidance.

2. 32-bit Protected-Mode Applications
Look in this chapter to find a worked-out example of locating
in ROM (and RAM) a 32-bit protected-mode application.

3. Command Reference
The linker .cmd command file helps make locating
applications easy and fast. This chapter describes command
files in detail and also provides a detailed explanation of each
of the commands that can go into them.

A. Error and Warning Messages
Explains the error and warning messages that the linker
generates.

1. IntroductionManual Organization

USLink User’s Guide 1-3

1

Linker Overview

The LINKER links and locates real-mode, protected-mode, and mixed-mode
applications by performing commands that you give to it in a command file.

Since many programmers are new to the location process, we provide a
general description of this important process starting on the next page. Then
we provide an overview of the capabilities of the linker in the next section of
this chapter, highlighting its distinctive features. This is followed by a
general discussion of the input the linker requires and the output it produces.
A map file is a sort of listing file always generated by the linker and that file
type is discussed next. The next topic is toolchains that the linker supports.
The final section of this chapter provides troubleshooting assistance.

1. Introduction Linker Overview

1-4 USLink User’s Guide

The Location Process

Linking/Locating

The simple story of the linking-locating process is that linkers order
and link program segments together, while locators assign addresses
to them. Linkers in fact do more than that and locators similarly
have historically taken on more duties than just address assignment.
We will assume that you have a general familiarity with what goes on
in the linking process, but we will take a closer look at the location
process here.

Native versus Embedded Development

Native-development environments today shield the user almost
entirely from the locating process because native applications are
practically always relocatable. Embedded-system developers,
however, need to know about locating because their applications must
usually be absolutely located. The primary difference between
relocatable and absolutely located applications is that the latter have
fixed addresses.

Location Units

When building an absolutely located application, you work with the
following three basic structures:

SegmentsProtected-mode 32-bit segments can be as large as 4GB.
Of the three possible 80x86-family type of segments
(namely data, code, and system), applications
programmers create and work primarily with the data and

1. IntroductionThe Location Process

USLink User’s Guide 1-5

1

code segments. The embedded linker can be used to set up
system segments (e.g., those containing tables for the
GDT, IDT, LDT, TSS, and the various trap and interrupt
gates), as well as to define code and data segments at
location time that don’t exist until then, but are used by the
user’s application.

Classes Classes are collections of segments, either grouped
together according to user specifications or classed
together by the linker to organize modules. For example,
all of the segments in one class might contain initialized
data, and all the segments in another class might contain
initialization code or code written in assembly language.

Groups Groups are also collections of segments, but each of the
segments in a group has the same segment base. So, the
entire group must be within the segment-size limit defined
by the processor mode, which is 4GB for 32-bit protected
mode.

Know Where Your RAM and ROM Are

Consider the following when locating these structures in memory:

● You need to know the starting addresses and sizes of RAM and
ROM chips on your target board.

● Segments that don’t have load-image data (for example, the Stack
and BSS segments) can be located, but their contents will be
undefined because no load-image data is present. If you use
LOCATE to specify that the data images of such segments be
written to the target, those data images will be set to zero. Also,
zero-length segments are not placed in the output .abs, .hex, or
.bin files.

1. Introduction The Location Process

1-6 USLink User’s Guide

Default Location Order

All segments not explicitly located using commands are located in the
order the segments are defined in object and library files, or the order
in which they are created with the linker command CREATE.

Typically you will want to locate code in ROM and data in RAM.
The examples worked out in Chapter 3 should help you get a feel for
using the linker and for the location process generally.

1. IntroductionThe Location Process

USLink User’s Guide 1-7

1

Features

What the Linker Does

The linker links object and library files, then orders and absolutely
locates in memory the segments, classes, and groups that constitute
the 80x86-family (aka Intel Architecture), creating code that can be
loaded into RAM using a debugger or burned into ROM to create an
embedded application.

Supported Compilers

The linker supports applications built with toolchains (that is,
assemblers and C/C++ compilers) from the following vendors:

● Borland

● MetaWare

● Microsoft

● Watcom

Protected-Mode Structures

The linker can construct 32-bit protected-mode CPU structures,
including the GDT, IDT, LDT , gates, page tables, and TSSs, and it
supports multiple-mode or mixed-mode applications.

1. Introduction Features

1-8 USLink User’s Guide

Initialized RAM Data

If your application has initialized data that you want to reside in
RAM, the linker can pack the segments containing it for storage into
ROM, and then at boot-up time your application’s startup code can
unpack the data and copy it into RAM by using a macro supplied with
the linker. This unpack-and-copy macro is named raminit_32p (32-
bit protected), and can be found in the file link.inc.

Other Support Macros

Here is a list of other support macros (and what they do) that can also
be found in the file link.inc :

def_alias Defines alias segments.

def_gate Defines CALL/TASK/TRAP/Interrupt gates.

def_noentrygateDefines gate without default entry point.

def_init Defines RAM init table segment.

def_tbl Defines GDT, IDT, LDT, and page tables.

def_tss Defines TSS segments.

sup_defseg Supports def_xxx macros.

sup_init32 Supports raminit_xxx macros.

1. IntroductionFeatures

USLink User’s Guide 1-9

1

Input and Output

Possible Output Formats

To make the linker easy to use, all commands and options are read
from a sequential command file (see the first two sections of Chapter
3 for a detailed discussion of the .cmd command file), and the user
controls the ultimate output format.

Possible output formats of your located application are:

● Intel OMF86 absolute
● Intel OMF286 absolute
● Intel OMF386 absolute
● Intel extended 86 hex
● Intel 32-bit hex
● Binary

Default extensions for output files are:

absolute .abs
hex .hex
binary .bin

A type of listing file, called a map file (with .map extension), is
always generated by the linker; a example annotated .map file begins
on the next page.

1. Introduction Input and Output

1-10 USLink User’s Guide

Example Map File

Command file listing:

——————————————————————————————————
Processing command file:
——————————————————————————————————

[1] object csistart.obj
[2] object cmain.obj cutils.obj io.obj
[3] cpu 386ex
[4] abs386
[5] map csamp.map
[6] flat
[7] debug
[8] create GDTSYS
[9] create IDTSYS
[10] create tss386_sys
[11] create raminit
[12] locate group FLAT_DATA segment _STACK :: 40000P
[13] locate init_text :: 50000p
[14] locate raminit :: 60000p
[15] init32p raminit :: GROUP FLAT_DATA
[16] fixup selector start_data = group FLAT_DATA
[17] fixup far32 start_code = _main
[18] fixup far32 start_stack = start_tos
[19] fixup far32 start_init = segment raminit
[20] gdt GDTSYS[3..64] :: reserve
[21] idt IDTSYS[0..64] :: reserve
[22] tss386 tss386_sys :: cs:eip=_boot ss:esp=start_tos
[23] gdt GDTSYS :: *

No unresolved symbols found in application:

0 unresolved symbols

1. IntroductionExample Map File

USLink User’s Guide 1-11

1

Segment map:

——

Segment map

 Sel:Offset Length Address Name Class Group Mem

——

0210:00040000 00000000 00040000P _DATA DATA FLAT_DATA ROM

0210:00040000 00000000 00040000P _BSS BSS FLAT_DATA ROM

0210:00040000 00000066 00040000P .DATA DATA FLAT_DATA RAM

0210:00040070 00000004 00040070P .BSS UDATA FLAT_DATA RAM

0210:00040080 00000009 0040080P .UDATA DATA FLAT_DATA RAM

0218:00040090 00001000 0040090P _STACK STACK ROM

0008:00000000 00000230 00041090P GDTSYS ROM

0010:00000000 00000208 000412c0P IDTSYS ROM

0220:00000000 00000068 000414c8P TSS386_SYS ROM

0208:00050000 000000d3 00050000P INIT_TEXT CODE FLAT_CODE ROM

0208:000500d4 00000000 000500d4P _TEXT CODE FLAT_CODE ROM

0208:000500e0 00000312 000500e0P .TEXT CODE FLAT_CODE ROM

0228:00000000 000000bc 00060000P RAMINIT ROM

1. Introduction Example Map File

1-12 USLink User’s Guide

Global descriptor table information (partial):

——

GDT[0..69] GDTSYS at 00041090P

Entry Sel:Offset Name Class Group

——

GDT[0] 0000 Empty 00000000L Lim=00000H DPL=0 gbp av

GDT[1] 0008 Data WR 00041090L Lim=0022fH DPL=0 gbP av

:00000000 GDTSYS

GDT[2] 0010 Data WR 000412c0L Lim=00207H DPL=0 gbP av

:00000000 IDTSYS

GDT[3] 0018 Reserved

.

.

.

GDT[65] 0208 Code RD 00000000L Lim=fffffH DPL=0 GBP av

:00050000 INIT_TEXT CODE FLAT_CODE

:000500d4 _TEXT CODE FLAT_CODE

:000500e0 .TEXT CODE FLAT_CODE

GDT[66] 0210 Data WR 00000000L Lim=fffffH DPL=0 GBP av

:00040000 _DATA DATA FLAT_DATA

:00040000 _BSS BSS FLAT_DATA

:00040000 .DATA DATA FLAT_DATA

:00040070 .BSS UDATA FLAT_DATA

:00040080 .UDATA DATA FLAT_DATA

GDT[67] 0218 Data WR 00000000L Lim=fffffH DPL=0 GBP av

:00040090 _STACK STACK

GDT[68] 0220 Avail 386 TSS 000414c8L Lim=00067H DPL=0 gBP av

:00000000 TSS386_SYS

GDT[69] 0228 Data WR 00060000L Lim=000bbH DPL=0 gbP av

:00000000 RAMINIT

1. IntroductionSample Map File

USLink User’s Guide 1-13

1

Interrupt descriptor table (partial):

——

IDT[0..64] IDTSYS at 000412c0P

——

IDT[0] 00 Reserved

IDT[1] 01 Reserved

IDT[2] 02 Reserved

IDT[3] 03 Reserved

 .

 .

 .

IDT[64] 40 Reserved

TSS information:

——

Initial TSS386: TSS386_SYS

——

gdt[68] 0220 Avail 386 TSS 000414c8L Lim=00067H DPL=0 gBP av

EAX=00000000 EBX=00000000 ECX=00000000 EDX=00000000

ESI=00000000 EDI=00000000 EBP=00000000

DS=0000 ES=0000 FS=0000 GS=0000

LDTR=0000 LINK=0000

CS:EIP=0208:00050014

SS:ESP=0218:00041090

SS0:ESP0=0000:00000000

SS1:ESP1=0000:00000000

SS2:ESP2=0000:00000000

EFL=00000000 [ac vm rf nt IOPL=0 of df if tf sf zf af pf cf]

CR3=00000000 [PDBR=0 pcd pwt]

IO_MAP=0000

TRAP=0

———

Files created specified here.
———

1. Introduction Sample Map File

1-14 USLink User’s Guide

Public symbol information summary:

Translating debug symbolics

Debug Symbolics Translation Complete:

Modules. 4

Procedures 8

Public Symbols . . 21

Source Lines . . . 184

Total Symbols. . . 51

Types. 552

Linking complete, No errors or warnings.

End of map file.

1. IntroductionSample Map File

USLink User’s Guide 1-15

1

Toolchains and Memory
Segmentation Models

Table 1-1: 32-bit Protected-Mode Applications

Compiler Assembler Memory Model(s)
for Applications

Borland 32-bit C/C++ Borland TASM Flat

MetaWare High C Microsoft MASM Flat or Segmented

Microsoft 32-bit
C/C++

Microsoft MASM Flat

Watcom 386 C/C++ Watcom WASM or
Microsoft MASM

Flat or Segmented

1. Introduction Tool Chains and Memory
Segmentation Models

1-16 USLink User’s Guide

Troubleshooting Location Problems

1. Assembly language segments located incorrectly
If a segment defined in assembly language gets located a few bytes
beyond where you specify with the LOCATE command in a .cmd
file, define the segment as paragraph-aligned in your assembly code
to prevent such dislocation.

2. Truncated segments
If the linker undesirably truncates a segment or segments that have
been padded with zero-bytes (or padded in some other way), use the
INTEGRITY command (defined in Chapter 3) to direct the linker to
preserve those padded bytes and not truncate those segments.

1. IntroductionTool Chains and Memory
Segmentation Models

USLink User’s Guide 2-1

2

2. 32-bit Protected-Mode
Applications

Chapter Contents

Overview .. 2-2
32-bit Protected-Mode Example ... 2-3

Step 1—Compile Using Microsoft Tools 2-3
 Example Command File csamp.cmd 2-4

Step 2—Create a Command File .. 2-4
Step 3—Invoke the Linker.. 2-7

Example Map File .. 2-8
Borland Tools .. 2-10

Borland C/C++ Compiler ... 2-10
Borland Turbo Assembler ... 2-10

MetaWare Tools .. 2-11
MetaWare Compiler.. 2-11

Microsoft Tools .. 2-12
Microsoft C/C++ Compiler .. 2-12
Microsoft ML ... 2-13

Watcom Tools .. 2-14
Watcom C/C++ ... 2-14
Watcom WASM .. 2-14

2-2 USLink User’s Guide

Overview

This chapter covers preparing and locating 32-bit protected-mode
applications. There are four examples of such applications supplied with the
linker and they can be found in the following subdirectories:

samp\bcc32p (Borland)

samp\hc32p (MetaWare)

samp\msc32p (Microsoft)

samp\wcc32p (Watcom)

This chapter will discuss the example in samp\msc32p to illustrate how
you can prepare and link your own 32-bit protected-mode application.

2. 32-bit Protected-Mode ApplicationsOverview

USLink User’s Guide 2-3

2

32-bit Protected-Mode Example

Step 1—Compile Using Microsoft Tools

See also: For other tool chains, see the Tools section of this chapter.

We have used makefiles to create the sample programs included in all
samp subdirectories. For the sake of illustration in this chapter, we
will discuss the program found in samp\msc32p.

The makefile can produce two applications. The ABSOLUTE
makefile flag determines which application is generated. One is an
application which can be downloaded by a debugger for debugging.
It assumes there is already a monitor on the target board and that the
monitor is already in protected mode.

The second application creates a 32-bit hex file for writing into flash.
It runs from the restart address on the Intel 386EX evaluation board.

The example command file described in this chapter is for a
ROMmable application which will start executing at the restart
address. This command file is shown below.

2. 32-bit Protected-Mode Applications 32-bit Protected-Mode Example

2-4 USLink User’s Guide

 Example Command File csamp.cmd

// Command file for building sample program hex file

object start.obj unpack.obj
object cmain.obj cutils.obj io.obj
hex386
flat
cpu 386ex
debug
create SYS_GDT
create raminit
gdt SYS_GDT::group FLAT_CODE group FLAT_DATA _BOOT RAMINIT *
init32p raminit :: group FLAT_DATA
entry cs:eip = _startup
attribute class CODE :: use32 er
attribute segment _BOOT :: use16 er
attribute segment raminit :: USE32 er
attribute group FLAT_DATA :: USE32 rw
locate segment _BOOT :: 0F0000P
locate group FLAT_DATA :: 00010000P
locate segment .TEXT SYS_GDT :: 0080000P
locate segment raminit :: 0091000P
fixup physical link_gdt = segment SYS_GDT

Step 2—Create a Command File

Use an ASCII text editor to create a .cmd command file with the
commands that direct the linker to locate your application. The
command file illustrated above is generated by the makefile in
samp\msc32p. We will begin to explain it in detail in numbered
paragraphs just below. The full story of the linker's commands and
how to construct command files with them is in Chapter 5.

1. Note that comments begin with double slashes and end with a
carriage return.

2. 32-bit Protected-Mode Applications32-bit Protected-Mode Example

USLink User’s Guide 2-5

2

2. The order in which commands occur in the command file is
significant. You can think of the linker as though it is an
interpreter that processes each command as it reads it in. To help
you get started with ordering commands, we provide general
guidelines for command ordering in .cmd files under the
Command File Organization section of Chapter 5. In general,
place I/O commands first (the first three commands in the
previous example are I/O commands) and location and table-
construction commands last.

3. OBJECT identifies the object files which make up your
application. You may specify more than one object file per
OBJECT command by separating object filenames with commas
or spaces. The linker will process the object files in the order they
are specified in the command file.

4. HEX386 directs the linker to generate an Intel 32-bit hex file. By
default the name of the hex file is the same as the .cmd file.

5. FLAT specifies that the input files have been compiled to generate
flat code. Except for special segments such as GDT, IDT , etc., all
segments are based at 0P and their limit is the processor’s highest
address.

6. CPU specifies the target CPU to the linker. A list of possible
values in the 80x86 family is given in Chapter 5 under CPU. This
value is used by the linker to produce optimal output.

7. DEBUG directs the linker to output symbolic debugging
information that is essential for a debugger. The symbolics are
placed in the actual absolute output file.

8. CREATE creates a segment. It is useful for creating segments for
protected-mode structures (TSS, GDT, IDT, and LDT), RAM-
initialization code (RAMINIT), and for alias segments that are
used to accommodate preexisting segments.

9. GDT is used to fill in the Global Descriptor Table (GDT). The
command assumes that a segment to hold the GDT (sysgdt in this
case) has already been created. For this example, the segment was
created by a use of the linker’s CREATE command, though it is

2. 32-bit Protected-Mode Applications 32-bit Protected-Mode Example

2-6 USLink User’s Guide

equally possible to explicitly create the segment with a directive in
an assembly file (see the Features section of Chapter 1).

In this example the command starts GDT slots at slot 3. Group
FLAT_CODE is assigned GDT[3] , group FLAT_DATA is assigned
GDT[4] and so on. Other segments not explicitly specified are
assigned following RAMINIT and are indicated by the asterisk in
the list.

Other sample applications provided will reserve slots in the GDT
for an application such as a monitor which may be already on the
target board.

10. The INIT32P seg_name :: seg_list command specifies
that the linker will pack data from the segments in seg_list into
segment seg_name . This is useful for read-write data that you
want to be initialized at boot-up time. If you don’t have some
place to store initialized data in ROM and then copy it into RAM,
all RAM-based data in your program will be zeroed out. There
are macros provided with the linker, in the file link.inc , that
unpack and copy data from ROM to RAM. For more details on
these macros, see the Features section of Chapter 1.

11.ENTRY specifies the entry point for the application.

12.ATTRIBUTE alters the attributes of a protected-mode segment.

13.LOCATE plays perhaps the most crucial role among all the linker
commands, for obvious reasons. This command tells the linker
explicitly to absolutely locate one or more segments, which in
turn may cause other segments to be located. This kind of ripple
location effect results from the linker's relative ordering of
segments: Once the first segment in an ordered collection of
segments is located, all subsequent segments as determined by the
linking process fall into place.

You may find it useful to first locate all segments at a starting
memory location (e.g., LOCATE * :: 8000P). The map file
produced by the linker can be used to see the names of the
segments and the default ordering of segments.

2. 32-bit Protected-Mode Applications32-bit Protected-Mode Example

USLink User’s Guide 2-7

2

In this example the startup code found in segment _BOOT is
located at F0000P . Data segments are located at 10000P while
segments TEXT and SYS_GDT are located beginning at 80000P .
Finally, segment RAMINIT is located at 91000P .

14.FIXUP provides a way for you to modify data found in segments.
The example here installs an address of SYS_GDT in link_gdt .

Step 3—Invoke the Linker

To create a located application, use the following syntax at the DOS
prompt or in a makefile:

LINK filename

where filename is the command file (with default extension .cmd)
that contains the linker commands, as in the following example:

link csamp

If the linker links and locates your application as specified without
error, the output file(s) that you request with the commands ABS86,
ABS386, BINARY, HEX86, and HEX386 are created, and a map file
filename.map is also produced. If the linker encounters any errors
while trying to locate your application, the only output file is the
.map file, which shows all warning and error messages generated
during linking. Parts of the .map file produced for our example 32-
bit protected-mode application here are given below, with
annotations. There is a more complete .map file in Chapter 1.

2. 32-bit Protected-Mode Applications 32-bit Protected-Mode Example

2-8 USLink User’s Guide

Example Map File

[In CSAMP.MAP] Segment map that shows located segment addresses

———

Segment map

 Sel:Offset Length Address Name Class Group Mem

———

0020:0001000000000066 00010000P .DATA DATA FLAT_DATA RAM

0020:0001007000000004 00010070P .BSS UDATA FLAT_DATA RAM

0020:0001008000000009 00010080P .UDATA DATA FLAT_DATA RAM

0018:00080000000003e1 00080000P .TEXT CODE FLAT_CODE ROM

0008:0000000000000038 000803e1P SYS_GDT ROM

0030:00000000000000bc 00091000P RAMINIT ROM

0028:0000000000000303 000f0000P _BOOT BOOT ROM

[In CSAMP.MAP] Initial GDT

———

GDT[0..6] SYS_GDT at 000803e1P

Entry Sel:Offset Name Class Group

———

GDT[0] 0000 Empty 00000000L Lim=00000H DPL=0 gbp av

GDT[1] 0008 Data WR000803e1L Lim=00037H DPL=0 gbP av

:00000000 SYS_GDT

GDT[2] 0010 Empty 00000000L Lim=00000H DPL=0 gbp av

GDT[3] 0018 Code RD00000000L Lim=fffffH DPL=0 GBP av

:00080000 .TEXT CODE FLAT_CODE

GDT[4] 0020 Data WR00000000L Lim=fffffH DPL=0 GBP av

:00010000 .DATA DATA FLAT_DATA

:00010070 .BSS UDATA FLAT_DATA

:00010080 .UDATA DATA FLAT_DATA

2. 32-bit Protected-Mode Applications32-bit Protected-Mode Example

USLink User’s Guide 2-9

2

GDT[5] 0028 Code RD000f0000L Lim=00302H DPL=0 gbP av

:00000000 _BOOT BOOT

GDT[6] 0030 Code RD00091000L Lim=000bbH DPL=0 gBP av

:00000000 RAMINIT

2. 32-bit Protected-Mode Applications 32-bit Protected-Mode Example

2-10 USLink User’s Guide

Borland Tools

Here are the controls to use when preparing your 32-bit protected-
mode application with Borland tools and the linker.

Borland C/C++ Compiler

Use these controls with the Borland compiler:

-v Debug information.

-3 Generate 32-bit 80386 protected-mode instructions.

-O- Disable optimization. You may remove this switch when the
module has been debugged.

-c Don’t link.

Example invocation:

bcc -v -3 -O- -c cmain.c

Borland Turbo Assembler

Use these controls with the Borland assembler:

/Zi Provide debug information.

/mx or ml Treat symbols as case sensitive.

Example invocation:

tasm32 /Zi /mx b32fpbcc.asm

2. 32-bit Protected-Mode ApplicationsBorland Tools

USLink User’s Guide 2-11

2

MetaWare Tools

Here are the controls to use when preparing your 32-bit protected-
mode application with MetaWare tools and the linker.

MetaWare Compiler

Use these controls with the MetaWare compiler:

-debug Provide debug information

-pro Define a profile file

The file cv.pro is a MetaWare profile file that contains compiler
controls that ensure that the proper symbolics for your debugger are
produced. An example copy of this file is located in the samp/hc32p
subdirectory where you installed the linker.

Example invocation:

hcdx86 cmain.c -mm large -debug -pro cv.pro

Use these controls for versions 3.0 or greater:

-g Provide debug information

-Hpro=cv.pro Define a profile file

Example invocation:

hc386 -g -c -Hpro=cv.pro cmain.c

2. 32-bit Protected-Mode Applications MetaWare Tools

2-12 USLink User’s Guide

Microsoft Tools

Here are the controls to use when preparing your 32-bit protected-
mode application with Microsoft tools and the linker.

Microsoft C/C++ Compiler

Use these controls with the Microsoft compiler:

/Zi Include symbolic information. Versions 8 and the Visual C++
compiler versions use /Z7 to perform this function.

/Od Disable optimization. You may remove this switch when the
module has been debugged. It is even possible to leave this
switch out, but we recommend you do this only after you are
comfortable using your debugger.

/c Compile only—do not link.

/Gs Remove run-time stack probes.

Example invocation:

cl /Zi /Od /c cmain.c

2. 32-bit Protected-Mode ApplicationsMicrosoft Tools

USLink User’s Guide 2-13

2

Microsoft ML

Use these controls with the Microsoft assembler:

/Zd Include line number information in object file.

/Zi Generate Codeview symbolics in object file.

/Cp Make all symbols case sensitive.

/c Compile only—do not link.

Example invocation:

ml /Zd /Zi /Cp /c b32fpmsc.asm

2. 32-bit Protected-Mode Applications Microsoft Tools

2-14 USLink User’s Guide

Watcom Tools

Here are the controls to use when preparing your 32-bit protected-
mode application with Watcom tools and the linker.

Watcom C/C++

Use these controls with the Watcom compiler:

/s Remove stack overflow checking.

/d2 Create debug information.

/hc Create Codeview-compatible debug information.

Example invocation:

wcc386 /hc /s /d2 cmain.c

Watcom WASM

Use this control with the Watcom assembler:

-d1 Create debug information.

Example invocation:

wasm -d1 b32pwcc.asm

2. 32-bit Protected-Mode ApplicationsWatcom Tools

USLink User’s Guide 3-1

3

3. Command Reference

Chapter Contents

Overview .. 3-3
The .CMD Command File ... 3-4

Command File Organization .. 3-6
Recommended Ordering of Commands 3-6
Grouping Guidelines .. 3-6

Command Syntax ... 3-9
Table 3-1: Command Syntax Elements 3-9
Table 3-2: Keywords Used in Linker Commands 3-12

Command Syntax Summary ... 3-13
Italicized Syntax Elements ... 3-15

Command Reference .. 3-16
ABS386, ABS286, and ABS86 ... 3-18
ALIAS... 3-19
ATTRIBUTE ... 3-20
BASE .. 3-22
BC5LIB ... 3-23
BINARY .. 3-24
CALL286 and CALL386.. 3-25

Table 3-3: Gate Attributes for CALL286 and CALL386.......... 3-25
CPU... 3-27
CREATE ... 3-28
DEBUG ... 3-29
ENTRY ... 3-30
FIXUP ... 3-31
FLAT ... 3-33
GDT .. 3-34

3-2 USLink User’s Guide

HEX86 and HEX386 .. 3-35
IDT .. 3-36
INIT16R, INIT16P, and INIT32R .. 3-37
INT286 and INT386 ... 3-40
INTEGRITY ... 3-41
LDT... 3-42
LIBRARY ... 3-43
LOCATE ... 3-44
OBJECT .. 3-46
PAGEDIRECTORY .. 3-47
PAGETABLE .. 3-48
PMODE... 3-50
PRINT ... 3-52
RAM.. 3-53
RMODE .. 3-54
ROMBASE.. 3-55
ROMMOVE .. 3-56
TASKGATE .. 3-57

Table 3-4: Gate Attributes for TASKGATE 3-57
TRAP286 and TRAP386 .. 3-59
TSS286 and TSS386 ... 3-60
VERBOSE .. 3-64

3. Command Reference

USLink User’s Guide 3-3

3

Overview

This chapter describes the linker's commands and how you can use them to
link and locate your application in precisely the way that you want it
located.

The chapter begins with a description of the .cmd command file that you
build to contain commands that the linker follows to locate your application.
Then there is a set of command-ordering guidelines that are intended to
assist you in organizing the commands in your .cmd command file. They
are more heuristic in nature than they are hard-and-fast rules.

Then you will find a summary of the syntax elements in commands,
followed by a summary list of the linker's commands. The remainder of the
chapter consists of an alphabetically ordered command-reference section
containing a detailed explanation of each command.

3. Command Reference Overview

3-4 USLink User’s Guide

The .CMD Command File

The linker uses a sequential command file to control processing
action. Here are some of its general characteristics:

● The default command-file extension is cmd.

● The VERBOSE command, which is used to provide extra
information to you about what the linker is doing, can occur
anywhere in the command file. Turn on verbose mode by adding
the keyword ON to the command, and off by adding OFF. Below
is a part of a .map file that exemplifies the sort of messages that
you receive in verbose mode:

[13] verbose on
[14] create SYS_GDT
 >>> Created segment: SYS_GDT.
[15] create raminit
 >>> Created segment: RAMINIT.
[16] gdt SYS_GDT[1..2] :: reserve
 >>> Defining SYS_GDT as a gdt
[17] gdt SYS_GDT::_TEXT group DGROUP _BOOT RAMINIT *
 >>> FLAT_CODE assigned GDT[3]
 >>> DGROUP assigned GDT[4]
 >>> _BOOT assigned GDT[5]
 >>> RAMINIT assigned GDT[6]
 >>> FLAT assigned GDT[7]
 >>> SYS_GDT assigned GDT[1]
[18] init32p raminit :: _data _bss
 >>> Defining RAMINIT as a 32-bit protected-mode

RAM init table
 >>> _DATA placed into table.
 >>> _BSS placed into table.

● Commands that locate classes locate the entire class contiguously
according to the linker’s default ordering of segments within the
class. If you want to locate a segment separately from the rest of
its class, you must place locating commands for that segment

3. Command ReferenceThe .CMD Command File

USLink User’s Guide 3-5

3

before commands that locate the rest of the class or use the
EXCEPT keyword.

● With the exception of public symbol names, whose characters
must exactly match in case the names used to declare them in
application files, all names, identifiers, prefixes, and suffixes in
command files are not case sensitive. Thus, the following
examples are equivalent:

CREATE MY_DATA :: LIMIT=0X50
create my_data :: limit=0x50

This may cause problems if you have symbols that differ only in
case and you compile with a case-sensitivity switch on.

● Blank lines and other white spaces are ignored and can be used
however you want.

● Maximum command-line length is 222 characters.

● Commands may span multiple lines. To continue a command on
subsequent lines, use a plus sign (+) as the first character on each
continuation line:

tss386 tss_xxx :: cs:eip=main, ds=data_seg,
+ fl.if=0x1

● Comments can be placed anywhere in the command file. Use
double slashes to start a comment; a comment ends at the end of
the line that it starts on:

// This is a sample comment line
cpu 386 //This is another sample comment,

//which spans two lines

 ● Command files should be structured according to the command-
grouping guidelines given in the next section of this chapter.
These guidelines are not hard and fast rules for command-file
construction, as some of the example command files in earlier
chapters testify to. In learning to use the linker's 44 commands,
you can use the guidelines to provide order to an otherwise
seemingly random command-file construction process.

3. Command Reference The .CMD Command File

3-6 USLink User’s Guide

Command File Organization

Recommended Ordering of Commands

We recommend that you order the commands in the .cmd command
file according to the following groupings. Place commands in
Group-1 first, then place commands in Group-N+1 after commands
in Group-N. Commands within the same group can be ordered in any
way you want.

Though these are just recommended guidelines, we strongly urge that
you learn to build your own linker command files by following them.
Don’t be surprised if you notice that the example command files
discussed in Chapters 2–4 don’t follow these guidelines strictly. They
abide by the essential rules, but may diverge for less important ones.

Only commands in Group-1 absolutely must be placed before
commands in Group-3 and above, and Group-6 commands should
occur last. The Group-0 command (VERBOSE) can occur freely
throughout the command file.

See also: For more on the VERBOSE command, see the VERBOSE
section of this chapter.

Grouping Guidelines

Follow these grouping guidelines when you build your command file:

Group-0 (Linker Debug Information)
VERBOSE

Group-1 (Input)
BC5LIB
CPU
LIBRARY
OBJECT

3. Command ReferenceThe .CMD Command File

USLink User’s Guide 3-7

3

Group-2 (Output)
ABS86
ABS286
ABS386
BINARY
DEBUG
ENTRY
HEX86
HEX386
PRINT

Group-3 (Segment Creation, Definition, and Alteration)
ALIAS
ATTRIBUTE
CREATE
FLAT
FIXUP
INIT16P
INIT16R
INIT32P
PAGEDIRECTORY
PMODE
RAM
RMODE

Group-4 (Segment Location)
BASE
INTEGRITY
LOCATE
ROMBASE
ROMMOVE

3. Command Reference The .CMD Command File

3-8 USLink User’s Guide

Group-5 (Protected-Mode Structures)
CALL286
CALL386
INT286
INT386
TASKGATE
TRAP286
TRAP386
TSS286
TSS386

Group-6 (Table Constructors)
GDT
IDT
LDT
PAGETABLE

3. Command ReferenceThe .CMD Command File

USLink User’s Guide 3-9

3

Command Syntax

Table 3-1: Command Syntax Elements

Table continued on next page.

Element Meaning

* Signifies all other segments that have not already been
explicitly located, modified, etc.

| Separates mutually exclusive alternatives.

() Enclose alternative entries (separated by “|”), as in the
following example:
 CS=(number | seg_name | pub_sym)

is equivalent to,
 CS=number | CS=seg_name | CS=pub_sym

[] Enclose optional entries.

addressL hex_numL {linear address}

addressP hex_numP {physical address}

asn_expr GROUP gname [:offset] [(+|-) adjust]
SEGMENT sname [:offset] [(+|-) adjust]
GROUPOF pubsym [:offset] [(+|-) adjust]
SEGMENTOF pubsym [:offset] [(+|-) adjust]
pubsym [(+|-) adjust]
constant [:offset] [(+|-) adjust]

assign field=ptr_value

assign_list See Tables 5.9 and 5.10 under TSS286/TSS386.

3. Command Reference The .CMD Command File

3-10 USLink User’s Guide

Table 3-1: Command Syntax Elements (continued)

Table continued on next page.

Element Meaning

attribute_list See Table 5.3 under ATTRIBUTE in this chapter.

class_name Character string that identifies a class.

cpu_name See Table 5.5 under CPU in this chapter.

dec_num Decimal number.

dir_name Name of segment where page-table directory is located.

entry_list See Table 5.6 under ENTRY in this chapter.

file_list filename [[,] filename]*

filename DOS filename with optional extension.

gate_options DPL=number | COUNT=number |
(PRESENT|NOTPRESENT) | ENTRY=ptr_value

group_name Character string that identifies a group.

hex_num Hex number. Must have prefix 0x (or 0X) or suffix H (or
h). Numbers that begin with a letter (a.. f) must have a
zero (0) prefix. If more than eight numbers are given, the
eight least significant digits are used.

kind See Table 5.7 under FIXUP in this chapter.

num_value (OFFSETOF pub_sym) | number

range [number1[..number2]]

Beginning and ending brackets are required. If number2 is
omitted, range has length 1 starting at number1 .

3. Command ReferenceThe .CMD Command File

USLink User’s Guide 3-11

3

Table 3-1: Command Syntax Elements (continued)

Element Meaning

seg_list Segment list containing segments, classes, and groups,
arranged in any order and used as many times as you
want. Specify elements in any of the following ways
(optional commas can be used to separate entries, as in
first line below) :
seg_name_opt [[,] seg_name_opt]*
GROUP group_name [EXCEPT seg_name_opt
 [seg_name_opt]*]
CLASS class_name [EXCEPT seg_name_opt
 [seg_name_opt]*]
* [EXCEPT seg_name_opt [seg_name_opt]*]

seg_name Character string that identifies a segment.

seg_name_opt [SEGMENT] seg_name

seg_value SEGMENTOF pub_sym
 GROUP group_name
 seg_name_opt

selector:offset A logical address consisting of two hex numbers
separated by a colon. Hex-number suffix or prefix is not
required, that is, any number before or after a colon is
automatically interpreted as a hex number.

3. Command Reference The .CMD Command File

3-12 USLink User’s Guide

Table 3-2: Keywords Used in Linker Commands

Keyword Meaning

CLASS Indicates following name is a class name

COUNT Gate-descriptor word count

DPL Gate-descriptor privilege level

ENTRY Gate entry point

EXCEPT Indicates exclusion of following segment(s), class(es), or group(s)

GROUP Indicates following name is a group name

LENGTH Indicates following number is the number of bytes after the
public symbol that PMODE or RMODE applies to

NOTPRESENTSignifies gate-descriptor present flag is false

OFF Signifies end of verbose mode

OFFSETOF Indicates offset of following public symbol

ON Signifies start of verbose mode

PRESENT Signifies gate-descriptor present flag is true

RESERVE Indicates descriptor-table entries are reserved

SEGMENT Indicates following name is a segment name

SEGMENTOF Indicates segment of following public symbol

3. Command ReferenceThe .CMD Command File

USLink User’s Guide 3-13

3

Command Syntax Summary

ABS86 [filename]
ABS286 [filename]
ABS386 [filename]

ALIAS seg_name_opt1 :: (seg_name_opt2 |
 (GROUP group_name))

ATTRIBUTE seg_list :: attribute_list

BASE seg_list :: addressL

BC5LIB

BIN[ARY] [filename]

CALL286 seg_name :: gate_options

CALL386 seg_name :: gate_options

CPU cpu_name

CREATE seg_name [:: attribute_list]

DEBUG

ENTRY entry_list

FIXUP kind pubsym [+ offset] = asn_expr

FLAT

GDT seg_name [range] [:: (RESERVE | seg_list)]

HEX [filename]

IDT seg_name [range] [:: (RESERVE | seg_list)]

INIT16P seg_name :: seg_list

INIT16R seg_name :: seg_list

INIT32P seg_name :: seg_list

INT286 seg_list :: gate_options

3. Command Reference The .CMD Command File

3-14 USLink User’s Guide

INT386 seg_list :: gate_options

INTEGRITYseg_list

LDT seg_name [range] [:: (RESERVE | seg_list)]

LIBRARY * l file_list

LOCATE seg_list :: (addressL | addressP)

OBJECT file_list

PAGEDIRECTORY dir_name [range] :: seg_list

PAGETABLE dir_name :: seg_list

PMODE seg_list |
 pub_sym1 [[to pub_sym2] | [LENGTH number]]

PRINT

RAM seg_list

RMODE seg_list |

 pub_sym1 [[to pub_sym2] | [LENGTH number]]

ROMBASE seg_list :: addressP

ROMMOVE seg_list :: addressP

TASKGATE seg_list :: gate_options

TRAP286 seg_list :: gate_options

TRAP386 seg_list :: gate_options

TSS286 seg_list :: assign_list

TSS386 seg_list :: assign_list

VERBOSE ON | OFF

3. Command ReferenceThe .CMD Command File

USLink User’s Guide 3-15

3

Italicized Syntax Elements

For an explanation of the italicized syntax elements (e.g., seg_list),
refer to Table 3-1 Command Syntax Elements.

3. Command Reference The .CMD Command File

3-16 USLink User’s Guide

Command Reference

These commands are described in this section:

ABS386, ABS286, and ABS86Create an .abs output file and/or
change the file’s name.

ALIAS Creates protected-mode aliases.

ATTRIBUTE Changes the attributes of a protected-mode segment.

BASE Changes the descriptor base for a segment or group to a
linear address.

BC5LIB Informs the linker that Borland v5.0 libraries are being
linked.

BIN Creates a binary output file and/or changes the name of
the file.

CALL286, CALL386 Set segments as call-gate descriptors.

CPU Specifies the processor.

CREATE Creates a segment.

DEBUG Generates symbolic information.

ENTRY Sets initial register values.

FIXUP Modifies your application.

FLAT Makes segments have a base of zero and a limit of the
maximum processor address.

GDT Builds the protected-mode GDT table.

HEX86 and HEX386 Create a hex output file and/or rename the file.

IDT Builds the protected-mode IDT table.

INIT16P, INIT16R, INIT32P Pack data from RAM segments into
ROM segments.

3. Command ReferenceCommand Reference

USLink User’s Guide 3-17

3

INT286, INT386 Set up interrupt-gate descriptors.

INTEGRITY Forces the linker to locate and include any empty
spaces or padding within a segment.

LDT Builds the protected-mode LDT table.

LIBRARY Specifies library files to be linked.

LOCATE Locates segments, classes, or groups in ROM or RAM.

OBJECT Specifies object files to be linked.

PAGEDIRECTORY Defines segments as page directories and page
tables.

PAGETABLE Specifies segments to be mapped through the page
directory.

PMODE Builds mixed-mode applications.

PRINT Prints public symbol information in the map file.

RAM Specifies segments to not be placed in the output file.

RMODE Builds mixed-mode applications.

ROMBASE Sets the base address of ROM.

ROMMOVE Increases hex-record addresses.

TASKGATE Sets up task-gate descriptors.

TRAP286 , TRAP386 Set up trap-gate descriptors.

TSS286, TSS386 Set segments and specify TSS fields.

VERBOSE Prints additional information to the map file.

3. Command Reference Command Reference

3-18 USLink User’s Guide

ABS386, ABS286, and ABS86

Create an .abs output file and/or change the file’s name.

ABS386 [filename]

ABS286 [filename]

ABS86 [filename]

This command creates an .abs output file and can also be used to
change the file’s name, which by default is the same as the .cmd
command file input to the linker.

● By default, no absolute, binary, or hex file is output. You must
specify an output command to generate output.

● Output commands can be used one at a time, all together, or in
any combination. Each command will generate one output file.

Examples
abs86 csamp.abs

abs386

abs286 my_file .out

3. Command ReferenceCommand Reference

USLink User’s Guide 3-19

3

ALIAS

Creates protected-mode aliases.

ALIAS [SEGMENT] seg_name1 ::
 (([SEGMENT] seg_name2) |
 (GROUP group_name))

This command makes seg_name1 a protected-mode alias of
seg_name2 or group_name .

● seg_name1 ’s base and limit are set to the base and limit of
seg_name2 .

● seg_name1 can have its own attributes and selector.

● Any data previously located in seg_name1 is lost.

● This command can be used to write into a code segment.

● The attributes of an alias segment are RW (read/write).

Example
create ldt_alias :: limit=0ffffh

alias ldt_alias :: sys_ldt0

ldt sys_ldt0[1] :: ldt_alias

3. Command Reference Command Reference

3-20 USLink User’s Guide

ATTRIBUTE

Changes the attributes of a protected-mode segment.

ATTRIBUTE seg_list :: attribute_list

Use this command is used to alter the attributes of a protected-mode
segment.

● Only the attributes in attribute_list are changed. All other
descriptor fields are left intact.

● Use the items in Segment Attributes on the next page to create an
attribute_list . Items may be used repeatedly and in any
order. Separate entries with commas or spaces.

Segment-type Abbreviations
RO Read only, data segment

RW Read/Write, data segment

ROED Read only/Expand down, data segment

RWED Read/Write/Expand down, data segment

EO Execute only, code segment

ER Execute/Read, code segment

CEO Execute only/Conforming, code segment

CER Execute/Read/Conforming, code segment

NOTE: You cannot use the LIMIT attribute to decrease the
size of a segment that is created by your application.

3. Command ReferenceCommand Reference

USLink User’s Guide 3-21

3

Segment Attributes

Attribute Descriptor Correspondence

DPL=number Set the privilege level in descriptor for
segment

LIMIT= number Set segment limit

LIMIT+= number Increase current limit

BYTEGRAIN | PAGEGRAIN Byte or page granularity used for
limit in descriptor

PRESENT | NOTPRESENT
Present bit in descriptor

AVAILABLE | NOTAVAILABLE
Available bit in descriptor

USE32 | USE16 16- or 32-bit segment

RO | RW | ROED | RWED | EO | ER | CEO | CER
Set segment type in descriptor

PAGE.PRESENT | PAGE.NOTPRESENT
Page-present bit

PAGE.RO | PAGE.RW Read only or Read Write page

PAGE.USER | PAGE.SUPER
User or supervisor protection level

PAGE.ACCESSED | PAGE.NOTACCESSED
Page accessed bit

PAGE.DIRTY | PAGE.NOTDIRTY
Page dirty bit

Examples
attribute init_text :: limit=1000H,
+ dpl=0,
+ present
attribute group cgroup :: use32

3. Command Reference Command Reference

3-22 USLink User’s Guide

BASE

Changes the descriptor base for a segment or group to a linear address.

BASE seg_list :: addressL

This command forces the descriptor base for a segment or group to be
the linear address given.

● The segment’s physical and linear addresses are not affected, but
the offset of its logical address is shifted.

● This is typically used with flat-model applications to make the
offset into a segment match its physical address.

Example
base init_text :: 4000L

3. Command ReferenceCommand Reference

USLink User’s Guide 3-23

3

BC5LIB

Informs the linker that Borland v5.0 libraries are being linked.

BC5LIB

This command is used to inform the linker that Borland v5.0 libraries
are being linked by the linker. Borland v5.0 libraries contain extra
fields which must be processed. Unfortunately, there are no fields
prior to the extra fields to distinguish the Borland library from other
compilers’ libraries.

Specify this command prior to any LIBRARY commands containing
Borland v5.0 libraries. If you are linking libraries from other
compilers, specify those libraries prior to the BC5LIB command.

Example
BC5LIB

3. Command Reference Command Reference

3-24 USLink User’s Guide

BINARY

Creates a binary output file and/or changes the name of the file.

BINARY [filename]

This command creates a .bin binary output file and can also be used
to change the name of the file, which by default is the same name as
the .cmd file that is the linker's input command file.

The binary (.bin) file produced by this command is a raw dump of the
application from the lowest address in the application to the highest
address in the application. Any gaps in this memory range not used
by the application are filled with 0xFF . There are no header records
in the file, just the data.

● By default, no absolute, binary, or hex file is output. You must
specify an output command to generate output.

● Output commands can be used one at a time, all together, or in
any combination. Each command will generate one output file.

Examples
binary test_app.bin

binary

binary csamp.bnr

3. Command ReferenceCommand Reference

USLink User’s Guide 3-25

3

CALL286 and CALL386

Set segments as call-gate descriptors.

CALL286 seg_name :: gate_options
CALL386 seg_name :: gate_options

These commands set segments seg_name as a call-gate descriptor.

● Use the items in Table 3-3 below to form your gate_options .
Items may be used in any order and may be repeated, separated by
a space or comma.

● DPL and COUNT both default to zero.

● PRESENT | NOTPRESENT defaults to PRESENT.

● ENTRY defaults to the address stored at offset 0 within segment
seg_name . You can use support macros to predefine these values
in your assembly module. See the macro file link.inc, which is
located in the directory where you installed the linker (see
Features in Chapter 1 for a list of the macros).

● If the macros are not used, the segment created must be at least 16
bytes long.

● COUNT is the number of DWords which will be copied from the
caller's stack to the stack of the called procedure.

Table 3-3: Gate Attributes for CALL286 and CALL386

Gate Attributes Descriptor Correspondence

DPL=number DPL bits

COUNT=number Word count

PRESENT | NOTPRESENT Present bit

ENTRY=ptr_value Code location the gate vectors to

3. Command Reference Command Reference

3-26 USLink User’s Guide

Example
Place the following gate definition in your assembly file. The 0
parameter indicates the procedure has no parameters.

def_gate system, 2, 0 ;in assembly invoke macro

Place the following C code in one of your source files:

void far system_gate (void)
procx ()
}

.

.

.
system_gate () // Only the selector is used.

// Descriptor contains
// address for system_entry.
.
.
.

}
system_entry ()
{
}

The command syntax for the command file would be:

call386 system // no options since options
 // defined in macro

NOTE: The C code above assumes you are using a segmented
memory model. In flat memory model, the C compiler
will only generate near calls and the current selector
value is assumed. To work around this limitation,
"call" the system_gate from assembly language
where you have more control of the object code
generated.

3. Command ReferenceCommand Reference

USLink User’s Guide 3-27

3

CPU

Specifies the processor.

CPU cpu_name

This command is used to specify the exact processor of the target.

● This command must be placed near the beginning of the
command file, before any segment location or manipulation
commands.

● If this command is omitted, the linker defaults to a 386DX.

● Use the terms under CPU Names below to specify cpu_name.

CPU Names

Pentium
486 486SX 486DX
386 386SX 386DX386EX
376
286
188 C188 188EA 188EB 188EC 188XL
186 C186 186EA 186EB 186EC 186XL
88
86
V20 V30 V40 V50

Examples
cpu pentium

cpu C186

3. Command Reference Command Reference

3-28 USLink User’s Guide

CREATE

Creates a segment.

CREATE seg_name [:: attribute_list]

This command creates a segment with the given name and optional
attributes.

● Seg_name must not conflict with any name of a segment already
defined by the application.

● Attribute_list may contain any of the attributes in Segment
Attributes under ATTRIBUTE in this chapter.

● Segments are placed in memory in the order in which they are
created unless they are explicitly located otherwise by the user.

Example
create monitor_rom :: limit=2000H

3. Command ReferenceCommand Reference

USLink User’s Guide 3-29

3

DEBUG

Generates symbolic information.

DEBUG

DEBUG controls the generation of symbolic information. It has the
following characteristics:

● If you want symbolics, you must use this command. By default,
the linker does not generate symbolics.

● Symbolics are placed in the absolute output file produced by the
linker. If no absolute file is requested, no debug information is
processed.

Examples
debug

3. Command Reference Command Reference

3-30 USLink User’s Guide

ENTRY

Sets initial register values.

ENTRY entry_list

This command sets initial register values. This command is useful if
your application does not contain a TSS structure where you have
specified the application start address and stack. The HEX86 and
HEX386 commands need a starting address.

The fields listed below may be used with the ENTRY command.

ENTRY fields

CS:IP=(number : number | seg_name | pub_sym)
CS=(number | seg_name | pub_sym)
IP= number

CS:EIP=(number : number | seg_name | pub_sym)
CS=(number | seg_name | pub_sym)
EIP= number

SS:SP=(number : number | seg_name | pub_sym)
SS=(number | seg_name | pub_sym)
SP=number

SS:ESP=(number : number | seg_name | pub_sym)
SS=(number | seg_name | pub_sym)
ESP=number

Example
ENTRY cs:eip=main

3. Command ReferenceCommand Reference

USLink User’s Guide 3-31

3

FIXUP

Modifies your application.

FIXUP kind pubsym [+ offset] = asn.expr

This command allows you to make simple modifications to your
application while using the linker.

● When using the startup code supplied for use with your debugger,
the label cs_dgroup must be zeroed for your application to
build. Use the following to change the value of cs_dgroup :

fixup word cs_dgroup = group dgroup

● If you are not using your debugger's startup code, use FIXUP to
change the values of the symbols to set up your stack.

● Use the information below for values for kind ..

Fixup Kinds and their Byte Sizes
Kind #Bytes Description

BYTE 1 8-bit integer
DWORD 4 32-bit integer
FAR16 4 16-bit offset, 16-bit selector; pointer
FAR32 6 32-bit offset, 16-bit selector; pointer
LIMIT16 2 16-bit segment limit
LIMIT32 4 32-bit segment limit
LINEAR 4 32-bit linear address
NEAR16 2 16-bit offset only; pointer
NEAR32 4 32-bit offset only; pointer
PHYSICAL 4 32-bit physical address
SELECTOR 2 16-bit selector
TABLE 6 16-bit limit, 32-bit base
WORD 2 16-bit integer

3. Command Reference Command Reference

3-32 USLink User’s Guide

Example
The following example assigns the physical address of SYS_GDT to a
public symbol, link_gdt . This allows the application to copy the
contents of the GDT created by the linker from ROM to RAM.

fixup physical link_gdt = segment SYS_GDT

3. Command ReferenceCommand Reference

USLink User’s Guide 3-33

3

FLAT

Makes segments have a base of zero and a limit of the maximum
processor address.

FLAT

This command is used to make all segments in the application which
are code or data have a base of zero and a limit of the maximum
processor address. Segments which have special uses such as the GDT
table or TSS structures are not affected by this command.

This command is useful if you have compiled your application using
the flat memory model.

If you are only concerned with the start of the segment in relationship
to the descriptor, use the BASE command.

Example
FLAT

3. Command Reference Command Reference

3-34 USLink User’s Guide

GDT

Builds the protected-mode GDT table.

GDT seg_name [range] [:: (RESERVE | seg_list)]

This command is used to build the protected-mode GDT table.

● seg_name is where the table will be placed, and must be defined
in your application (one way to do this is to use the macro def_tbl,
mentioned in Chapter 1 under Features, in your startup code) or
created with the linker command CREATE.

If the only parameter used is seg_name , an empty table is created
except for the default null and alias slots.

● range specifies the starting and optional ending index. The
example below uses range to reserve slots for a monitor:

gdt sys_gdt[3..64] :: reserve

● RESERVE reserves the specified slots for system, monitor, or
other uses. These slots are set to zero.

● When a range is not specified for the GDT command, the default
starting slot is 3. GDT[0] is null, GDT[1] is the GDT alias, and
GDT[2] is the IDT alias.

● Not all gates can be placed in all tables. Only the following can
be placed in the GDT table:

286/386 call gates
Task gates

Example
The following example places the first segment found in the
application at slot 5 of tmp_gdt . All other segments are placed in
default order starting at slot 6.

gdt tmp_gdt[5] :: *

3. Command ReferenceCommand Reference

USLink User’s Guide 3-35

3

HEX86 and HEX386

Create a hex output file and/or rename the file.

HEX86 [filename]

HEX386 [filename]

This command creates a .hex output file and can also be used to
change the name of the file, which by default is the same name as the
.cmd file that is the linker's input command file.

● By default, no absolute, binary, or hex file is output. You must
specify an output command to generate output.

● Output commands can be used one at a time, all together, or in
any combination. Each command will generate one output file.

Examples
hex prom.hex

hex c:\newapp\eprom.hex

3. Command Reference Command Reference

3-36 USLink User’s Guide

IDT

Builds the protected-mode IDT table.

IDT seg_name [range] [:: (RESERVE | seg_list)]

This command is used to build the protected-mode IDT table.

● seg_name is where the table will be placed, and must be defined
in your application (one way to do this is to use the macro
def_tbl, mentioned in Chapter 1 under Features, in your startup
code) or created with the linker CREATE command.

● range specifies the starting and optional ending index. The
example below uses range to reserve slots for a monitor:

idt sys_idt[0..40] :: reserve

● RESERVE reserves the specified slots for system, monitor, or
other uses. These slots are set to zero.

● GDT[2] is the IDT alias.
● Not all gates can be placed in all tables. The following are the

gates that can be put in the IDT table:

286/386 trap gates
286/386 interrupt gates
Task gates

● When a range is not specified for the IDT command, the default
starting slot is IDT[0] .

Example
create int_114

int386 int_114 :: entry=timer_interrupt, DPL=0

IDT sys_idt[41] :: int_114

3. Command ReferenceCommand Reference

USLink User’s Guide 3-37

3

INIT16R, INIT16P, and INIT32R

Pack data from RAM segments into ROM segments.

INIT16R seg_name :: seg_list

INIT16P seg_name :: seg_list

INIT32P seg_name :: seg_list

These commands pack data from the segments in seg_list , which
are to be located in RAM, and store the packed data in the ROM
segment seg_name . Use these commands when you have constants
or data that you want located in RAM and that need to be initialized
at boot-up time.

● INIT16R applies to 16-bit real-mode applications.

● INIT16P applies to 16-bit protected-mode applications.

● INIT32P applies to 32-bit protected-mode applications.

● The data is stored in a packed form in ROM.
● The macros raminit_16r, raminit_16p, and raminit_32p, which

can be found in the file link.inc , unpack the data and copy it into
the RAM segments in seg_list .

Example
The following example packs the data in all of the segments in class
data and the segment const and stores the packed data in the
segment ram_init . You can use the macros that are mentioned just
above (in the last bulleted item) in your startup code to unpack and
copy the data back to class data and segment const .

init16r ram_init :: class data segment const

3. Command Reference Command Reference

3-38 USLink User’s Guide

Format of Data in ROM Segment
The list below shows the record types used to store RAM data in the
ROM initialization segment:

Type Description

00 End of table
11 Confirm real 16-bit table
12 Confirm protected 16-bit table
14 Confirm protected 32-bit table
20 offset16/32 segment Load data pointer
30 offset16/32 Load data offset
40 Reserved
50-6F Increment offset 1 to 32 bytes
70 count16/32 Zero fill
80-ff Enumerated data block (1 to 128 bytes)

The linker will generate records in the order listed below for each
segment in seg_list .

11 | 12 | 14 Initial record indicating the type of table.
20 Starting location in RAM of packed data.

70 Initialize RAM for count bytes to zero. The count
is the length of the segment.

For the data stored in the segment:

30 | 50 Adjust offset to start of data block in RAM

80-ff Block of data—blocks of more than 4 bytes of zeros
are not stored in ROM segment. Records 30 and 50
are used to adjust the offset to the next place in RAM
where a data block is to be written. The record type
(80-ff) indicates length of block written.

NOTE: Additional offset adjustment records and enumerated
data records are written to account for the “fixup” of
pointers in data to located segment and offset values.

3. Command ReferenceCommand Reference

USLink User’s Guide 3-39

3

After all segments in seg_list . have been processed, an end of
table record (00) is written to the ROM segment.

The macros raminit_16r, raminit_16p, and raminit_32p read the
above records doing the above actions described to read the data
stored in ROM and write it into RAM.

The macro raminit_32p should only be called from 32-bit USE32
code.

3. Command Reference Command Reference

3-40 USLink User’s Guide

INT286 and INT386

Set up interrupt-gate descriptors.

INT286 seg_list :: gate_options
INT386 seg_list :: gate_options

These commands set up interrupt-gate descriptors and operate like the
CALL commands shown in this chapter, with the following
exceptions:

● The option COUNT is not used.

● When you define a interrupt gate using INT286 or INT386, you
must include a command to place the gate in the IDT. If the
def-gate macro is not used, the segment created must be at least
16 bytes long.

Example
The following example creates a segment, defines it as a interrupt
gate, then places it in slot 50 of the IDT (this assumes that the
segment idtsys has already been created):

create int_gt
int286 int_gt :: dpl=1 present
+ entry=init_text
idt idtsys[50] :: int_gt

3. Command ReferenceCommand Reference

USLink User’s Guide 3-41

3

INTEGRITY

Forces the linker to locate and include any empty spaces or padding within
a segment.

INTEGRITY seg_list

This command forces the linker to locate and include as part of your
application any empty spaces or padding within a segment. This is
quite helpful if your compiler writes extraneous data into segments
that the linker isn’t otherwise aware of.

● The effect of this command is to preserve any existing “padding”
in segments.

● If you don’t use this command, there are cases in which the linker
suppresses a certain amount of padding when locating a segment.

● Empty space can occur, for example, in the segments that you
declare for the GDT and IDT ; use of this command would
preserve all of that space.

Example
integrity *

3. Command Reference Command Reference

3-42 USLink User’s Guide

LDT

Builds the protected-mode LDT table.

LDT seg_name [range] [:: (RESERVE | seg_list)]

This command is used to build the protected-mode LDT table.

● seg_name is where the table will be placed, and must be defined
in your application (one way to do this is to use the macro def_tbl,
mentioned in Chapter 1 under Features, in your startup code) or
created with the linker command CREATE.

● range specifies the starting and optional ending index. The
example below uses range to reserve the first ten slots:

ldt sys_ldt[0..9] :: reserve

● RESERVE reserves the specified slots for system, monitor, or
other uses. These slots are set to zero.

● When a range is not specified for the LDT command, the default
starting slot is LDT[1] .

● Not all gates can be placed in all tables. The following are the
gates that can be put in the LDT table:

task gates
286/386 call gates

Example
The following example places class code in ldt_1 starting at slot
2, then places all segments except those in class code into ldt_2 ,
starting at slot 1:

ldt ldt_1[2] :: class code
ldt ldt_2 :: * except class code

3. Command ReferenceCommand Reference

USLink User’s Guide 3-43

3

LIBRARY

Specifies library files to be linked.

LIBRARY * | file_list

This command is used to specify library files to be linked by the
linker. One or many files may be specified with this command.
Separate library filenames with a space or comma. The linker will
link libraries produced by the librarians provided with the Borland,
MetaWare, Microsoft, and Watcom compilers.

The linker will only include modules from specified libraries to
resolve symbols not resolved in previously listed object files. Place
the LIBRARY command following all object files which might
contain symbols which would be resolved by the libraries specified in
the LIBRARY command.

Use the asterisk to specify that default libraries should be searched.
By default, the default libraries are not searched. Default libraries are
specified in object files.

Examples
LIBRARY *

LIBRARY mt.lib

3. Command Reference Command Reference

3-44 USLink User’s Guide

LOCATE

Locates segments, classes, or groups in ROM or RAM.

LOCATE seg_list :: (addressL | addressP)

This command locates segments, classes, or groups in ROM or RAM,
beginning at the given address.

● LOCATE assigns an address to the first segment in seg_list . If
a class is given, the address is assigned to the first segment in the
class.

● Once a segment is located, its location is permanent.
● Multiple instances of this command can be used in a command

file, locating different segments, groups, or classes.
● Individual segments in groups cannot be located without the rest

of the group.
● Individual segments in classes can be located by themselves.
● addressL is a linear address and must have an “L” suffix;

linear LOCATE locates groups at specific addresses and maintains
segments at adjacent linear addresses.

● addressP is a physical address and must have a “P” suffix;
physical LOCATE places segments and allows nonadjacent
addresses for same-group segments.

Examples
The following example first locates segment seg1 , which let us
assume is in class a_class , at 50000P, then locates the remaining
segments in the a_class , and finally locates the segments in
d_class :

locate seg1 class a_class class d_class :: 50000P

The next example uses the EXCEPT keyword to prevent seg1 from
being located with the rest of its class. A separate LOCATE

3. Command ReferenceCommand Reference

USLink User’s Guide 3-45

3

command or some other linker command would be needed to locate
seg1 .

locate class a_class except seg1 :: 50000P

NOTE: If a segment defined in assembly language gets located
a few bytes beyond where you specify with the
LOCATE command in a .cmd file, define the segment
as paragraph-aligned in your assembly code to prevent
such dislocation.

3. Command Reference Command Reference

3-46 USLink User’s Guide

OBJECT

Specifies object files to be linked.

OBJECT file_list

This command is used to specify object files to be linked by the
linker. One or many files may be specified with this command.
Separate object filenames with a space or comma. The default
extension is .obj.

The order of object files and the segments contained in those object
files provides a default order for segments. The order and location of
segments can be changed using the LOCATE command.

Examples
OBJECT test.obj

OBJECT usstart.obj, unpkrom.obj

3. Command ReferenceCommand Reference

USLink User’s Guide 3-47

3

PAGEDIRECTORY

Defines segments as page directories and page tables.

PAGEDIRECTORY dir_name [range] :: seg_list

This command defines the given segment dir_name as a page
directory and the segments in seg_list as page tables.

● You must create the segment dir_name with the CREATE
command or in your startup code (see Chapter 1 under Features
for the mention of a macro that can be used to create this
segment) before you use this command.

● It allocates the exact position of each page table within the page
directory.

● The full range of linear addresses used by the application must be
accounted for.

For more information, see PAGETABLE in this chapter.

Example
pagedirectory dir_name[0] :: page_table

3. Command Reference Command Reference

3-48 USLink User’s Guide

PAGETABLE

Specifies segments to be mapped through the page directory.

PAGETABLE dir_name :: seg_list

This command specifies that the segments in seg_list are to be
mapped through the page directory dir_name .

The PAGEDIRECTORY range parameter defines the pagetable
range, as in table[1] , table[2] , table[3] ..., and is useful when
you want to split your application into separate pieces, or if your
application is large.

This is because the page table and the linear address of a segment are
directly related—given a certain linear address, the physical address
associated with a segment will be placed in a specific page table. The
CPU controls this, and the linker cannot alter it.

However, by controlling where a segment is located you can control
to some extent which page table it is associated with. This is
important because the linker commands PAGEDIRECTORY and
PAGETABLE set up the page tables, and if they do not set up a table
that one of your segments is associated with, a fatal error will occur.

For those segments you do not locate explicitly, their location depends
on the order in which they were created. So, if one of your segments
ends up in the wrong table, you can put it in another table without
explicitly locating it by creating it earlier in your application.

Examples
The first example below takes advantage of this feature. The range
specified in the PAGEDIRECTORY command is [0], and as long as
the page tables needed are consecutive, the linker sets them up.
However, if you locate your segments so that you have segments
associated with table[0] , then skip table[1] and have segments
associated with table[2] , table[2] will not be set up.

3. Command ReferenceCommand Reference

USLink User’s Guide 3-49

3

In the second example below, if some of the segments are located at
linear addresses 0f0000000L through 0f00000003L , then we need
page table[960] .

pagedirectory dir_name[0] :: page_table
pagedirectory dir_name[960] :: page_table1

3. Command Reference Command Reference

3-50 USLink User’s Guide

PMODE

Builds mixed-mode applications.

PMODE seg_list |
 pub_sym1 [[to pub_sym2] | [LENGTH number]]

PMODE and RMODE allow mixed-mode applications to be built
properly. Use them to change the assumed mode of segments or parts
of segments.

• Use PMODE seg_list to mark an entire segment as protected
mode.

• Any segment or segment portion marked as protected mode will
reference segments using their protected-mode selectors.

● All public symbols used in this command (as code boundaries for
specific purposes) must be in the same segment.

Examples
Given the following segments

DSEG — real-mode segment
PSEG — protected-mode segment
CODE_REAL — real-mode segment

with the following real-mode assembly code,

public prot_start
public prot_end

CODE_REAL segment eo;
mov ax, RSEG
xor ax, 2

prot_start:
mov bx, PSEG
mov cx, bx

prot_end:
inc bx

end CODE_REAL

3. Command ReferenceCommand Reference

USLink User’s Guide 3-51

3

The example below causes the instructions mov bx, PSEG and mov
cx, bx to have a protected-mode fixup:

pmode prot_start to prot_end

An alternate method is to use one public symbol to mark the
beginning of the section and then to use the LENGTH keyword to
specify how long it is. The following marks 10 bytes:

pmode prot_start length 10

3. Command Reference Command Reference

3-52 USLink User’s Guide

PRINT

Prints public symbol information in the map file.

PRINT

The PRINT command tells the linker to print public symbol
information in the map file.

● The name and location of each public symbol are listed module
by module. Public symbols include symbols declared PUBLIC in
assembly files, static C variables, global variables, and names of
procedures from user modules and libraries.

● By default, no public symbolic information is put in the map file.

Example
print

3. Command ReferenceCommand Reference

USLink User’s Guide 3-53

3

RAM

Specifies segments to not be placed in the output file.

RAM seg_list

Use this command to specify segments that you do not want placed in
the output file. This implies that the contents of the segments will be
in RAM and contain uninitialized data.

● All segments not specified with this command will be put in the
output files requested by the ABS86, ABS286, ABS386, HEX86,
HEX386, and BINARY commands.

Example
Given the following segments:

data_seg, code_seg, stack_seg, temp

The following example places all but data_seg and temp in the
output file:

ram data_seg temp

3. Command Reference Command Reference

3-54 USLink User’s Guide

RMODE

Builds mixed-mode applications.

RMODE seg_list |
 pub_sym1 [[to pub_sym2] | [LENGTH number]]

RMODE and PMODE allow mixed-mode applications to be built
properly. Use them to change the assumed mode of segments or parts
of segments.

● Use RMODE seg_list to mark an entire segment as real-mode.

● Any segment or segment portion marked as real-mode will
reference segments using their real-mode selectors.

● All public symbols used in this command must be in the same
segment.

See also: PMODE in this chapter for an example use of PMODE.

3. Command ReferenceCommand Reference

USLink User’s Guide 3-55

3

ROMBASE

Sets the base address of ROM.

ROMBASE seg_list :: addressP

This command allows you to decrease hex-record addresses to set the
base address of ROM.

● Use this command if you are burning your application into ROM
and your ROM programmer doesn’t allow you to set the ROM
base address.

Example
rombase init_text :: 4000P

3. Command Reference Command Reference

3-56 USLink User’s Guide

ROMMOVE

Increases hex-record addresses.

ROMMOVE seg_list :: addressP

Use this command if you want to locate records out of RAM in ROM
or locate records to a higher address entirely within RAM or ROM.

Example
rommove init_tex :: 2000P

3. Command ReferenceCommand Reference

USLink User’s Guide 3-57

3

TASKGATE

Sets up task-gate descriptors.

TASKGATE seg_list :: gate_options

This command sets up task-gate descriptors and operates like the
CALL commands defined in this chapter, with the following
exceptions:

This command sets segments in seg_list as task-gate descriptors.

● The entry point must be a segment previously defined as a TSS.
● The option COUNT is not used.
● If the def_noentrygate macro is not used, the segment created

must be at least 16 bytes long.
● Use the items in Table 3-4 below to form your gate_options .

Items may be used in any order and may be repeated, separated by
a space or comma.

● DPL defaults to zero.
● PRESENT | NOTPRESENT defaults to PRESENT.
● ENTRY defaults to the address stored at offset 0 within segment

seg_name . You can use support macros to predefine these values
in your assembly module. See the macro file link.inc, which is
located in the directory where you installed the linker (see
Chapter 1 under Features for a list of the macros).

Table 3-4: Gate Attributes for TASKGATE

Gate Attributes Descriptor Correspondence

DPL=number DPL bits

PRESENT | NOTPRESENT Present bit

ENTRY=ptr_value Code location the gate vectors to

3. Command Reference Command Reference

3-58 USLink User’s Guide

Example
The assembly startup code should contain the following, which is a
macro invocation:

; using def_noentrygate macro because entry must be a
; segment rather than a public symbol
def_noentrygate taskx,2,0 ; in assembly invoke macro

; last parm isn’t used
; with taskgate

The C code would look like:

void far taskx_gate (void);
.
.
.
procx() {
.
.
.
taskx_gate(); // control will now switch to taskx
.
.
.
}

The linker command file would have the following line in it:

// tssx is defined as a TSS
taskgate taskx::entry=segment tssx present

3. Command ReferenceCommand Reference

USLink User’s Guide 3-59

3

TRAP286 and TRAP386

Set up trap-gate descriptors.

TRAP286 seg_list :: gate_options
TRAP386 seg_list :: gate_options

These commands set up trap-gate descriptors and operate like the
CALL commands shown in this chapter, with the following exception:

● The option COUNT is not used.
● When you define a trap gate using TRAP286 or TRAP386, you

must include a command to place the gate in the IDT.
● If the def_gate macro is not used, the segment created must be at

least 16 bytes long.

Example
The following example creates a segment, defines it as a trap gate,
then places it in slot 50 of the IDT (this assumes that the segment
idtsys has already been created):

create trap_gt

trap286 trap_gt :: dpl=1 present

+ entry=init_text

idt idtsys[50] :: trap_gt

3. Command Reference Command Reference

3-60 USLink User’s Guide

TSS286 and TSS386

Set segments and specify TSS fields.

TSS286 seg_list :: assign_list
TSS386 seg_list :: assign_list

These commands set segments in seg_list as TSS segments and allow
you to specify TSS fields using assign_list .

● 16-bit segments may be defined in your application. 32-bit segments
must be created with the CREATE command.

● An initial TSS is created only for protected-mode applications, and
only when one of the commands above is used. The first TSS
defined in the command file is the initial TSS .

● All fields not explicitly set are left intact.
● Use the SEGMENTOF and OFFSETOF keywords to specify what

part of a public symbol’s address to use.

See also: Command Syntax Elements in this chapter for a list of
command syntax elements

NOTE: TSS descriptors can only be placed in the GDT.
Attempting to place them in the IDT or LDT results in
an error.

Examples
The following example builds a TSS called tss_new . CS:EIP,
DS, and FL.IF are explicitly set, while all other fields are left
unchanged (note the use of the line-continuation character at the
beginning of the second line):

tss386 tss_new :: cs:eip=main, ds=data_seg,
+ fl.if=0x1

3. Command ReferenceCommand Reference

USLink User’s Guide 3-61

3

The next example builds an initial TSS, sets the CS:EIP , and sets
fields in two other TSS segments as well:

tss386 tss_init :: cs:eip=init_code
tss386 task_1 :: ax=2
tss386 task_2 :: efl.if=1

See TSS286 Fields and TSS386 Fields below for applicable TSS
fields.

TSS286 Fields

AX=number BX= number CX= number DX= number

SI= number DI= number BP= number

DS=(number | seg_name | pub_sym)

ES=(number | seg_name | pub_sym)

CS:IP=(number : number | seg_name | pub_sym)
CS=(number | seg_name | pub_sym)
IP= number

SS:SP=(number : number | seg_name | pub_sym)
SS=(number | seg_name | pub_sym)
SP=number

SS0:SP0=(number : number | seg_name | pub_sym)
SS0=(number | seg_name | pub_sym)
SP0=number

SS1:SP1=(number : number | seg_name | pub_sym)
SS1=(number | seg_name | pub_sym)
SP1=number

SS2:SP2=(number : number | seg_name | pub_sym)
SS2=(number | seg_name | pub_sym)
SP2=number

LDTR=(number | seg_name | pub_sym)

LINK=(number | seg_name | pub_sym)

3. Command Reference Command Reference

3-62 USLink User’s Guide

FL=number
FL.NT= number FL.IOPL= number
FL.OF= number FL.DF= number FL.IF= number
FL.TF= number FL.SF= number FL.ZF= number
FL.AF= number FL.PF= number FL.CF= number

TSS386 Fields
EAX=number EBX= number ECX= number EDX= number

ESI= number EDI= number EBP= number

DS=(number | seg_name | pub_sym)

ES=(number | seg_name | pub_sym)

FG=(number | seg_name | pub_sym)

GS=(number | seg_name | pub_sym)

CS:EIP=(number : number | seg_name | pub_sym)
CS=(number | seg_name | pub_sym)
EIP= number

SS:ESP=(number : number | seg_name | pub_sym)
SS=(number | seg_name | pub_sym)
ESP=number

SS0:ESP0=(number : number | seg_name | pub_sym)
SS0=(number | seg_name | pub_sym)
ESP0=number

SS1:ESP1=(number : number | seg_name | pub_sym)
SS1=(number | seg_name | pub_sym)
ESP1=number

SS2:ESP2=(number : number | seg_name | pub_sym)
SS2=(number | seg_name | pub_sym)
ESP2=number

LDTR=(number | seg_name | pub_sym)

LINK=(number | seg_name | pub_sym)

3. Command ReferenceCommand Reference

USLink User’s Guide 3-63

3

EFL=number
EFL.NT= number EFL.IOPL= number
 EFL.OF= number EFL.DF= number EFL.IF= number
 EFL.TF= number EFL.SF= number EFL.ZF= number
 EFL.AF= number EFL.PF= number EFL.CF= number
 EFL.RF= number EFL. VM=number EFL.CF= number

CR3=number
CR3.PDBR=number CR3.PCD= number

CR3.PWT=number

IO_MAP=number TRAP= number

3. Command Reference Command Reference

3-64 USLink User’s Guide

VERBOSE

Prints additional information to the map file.

VERBOSE ON | OFF

You can use this command to print additional information to the map
file.

● The default is VERBOSE OFF.

● When ON, the linker prints detailed information to the map file as
each command executes. The information printed depends on the
command. For example, if the command just executed impacts
segment location, detailed information about where and how the
segment was located is placed in the map file.

● VERBOSE can be used anywhere in the command file, and can
be turned on or off as often as you wish in the same file.

Example
The following exemplifies the sort of output provided by VERBOSE
ON:

[13] verbose on

[14] create SYS_GDT
 >>> Created segment: SYS_GDT.

[15] create raminit
 >>> Created segment: RAMINIT.

[16] gdt SYS_GDT[1..2] :: reserve
 >>> Defining SYS_GDT as a gdt

[17] gdt SYS_GDT::_TEXT group DGROUP _BOOT RAMINIT *
 >>> FLAT_CODE assigned GDT[3]
 >>> DGROUP assigned GDT[4]
 >>> _BOOT assigned GDT[5]
 >>> RAMINIT assigned GDT[6]

3. Command ReferenceCommand Reference

USLink User’s Guide 3-65

3

 >>> FLAT assigned GDT[7]
 >>> SYS_GDT assigned GDT[1]

[18] init32p raminit :: _data _bss
 >>> Defining RAMINIT as a 32-bit protected mode RAM
init table
 >>> _DATA placed into table.
 >> > _BSS placed into table.

3. Command Reference Command Reference

3-66 USLink User’s Guide

USLink User’s Guide A-1

A

A. Error and Warning
Messages

Chapter Contents

Overview ..A-2
Internal Error and Error Messages ..A-3
Warning Messages ..A-16

A-2 USLink User’s Guide

Overview

The linker generates messages when it cannot execute a command or
process your application as specified.

There are three kinds of messages, organized in this chapter as
follows:

1. Internal errors Processing halts immediately—no output
files are generated.

2. Errors Processing continues—no output files are
generated.

3. Warnings Processing continues until completed—
output files are generated.

Where possible, messages are listed in the following format:

1. *** message or <message>

2. Explanation that describes why the message was displayed

3. What to do to eliminate the problem here or avoid it in the future

A. Error and Warning MessagesOverview

USLink User’s Guide A-3

A

Internal Error and Error Messages

< Internal error [- message] >

The linker has encountered either data or a situation that was thought to never
occur but has in this particular case.

Please report this error to your vendor (see title page for contact information),
along with as much information as possible on why this error might have
occurred.

*** ERROR: <name> is not valid for <command>: <value>

The segment <value> has been marked as a special segment of type <name>. This
special segment cannot be used with <command>.

*** ERROR: <name> is <value> — Not permitted in <table>

The selector <name> has been labeled as a special type of selector (<value>). This
selector is not permitted in <table>. Refer to your processor reference manual for
more information on which selectors are valid in which processor tables.

*** ERROR: <name> was already assigned to LDT[<index>]

The given <name> was already assigned an entry in a local descriptor table.

*** ERROR: <name> was already assigned to GDT[<index>]

The given <name> was already assigned an entry in the global descriptor table.

A. Error and Warning Messages Internal Error and Error Messages

A-4 USLink User’s Guide

*** ERROR: <table> <name>[<index>] is already used

*** ERROR: <table> <name>[<index>] is already reserved

An attempt was made to assign a group to a <table> selector which has already
been reserved.

*** ERROR: Alias segment was previously located: <name>

Since the segment <name> has already been located, it is not possible for <name>
to be an alias.

*** ERROR: Bad fixup generated in RAMINIT segment

A fixup for the initialization table is out of range of the table.

*** ERROR: Cannot create <kind> — <name> is part of a group

Special segments must be in their own unique selector. Therefore, they cannot be
contained in a group.

*** ERROR: Cannot initialize a RAM init table: <name>

The <name> specified is a RAM initialization segment. A packed RAM
initialization segment cannot be nested inside another RAM initialization segment.

*** ERROR: Cannot place <kind> into <table>: <name>

Certain processor structures can only contain certain special selectors. The selector
<name> is not an appropriate type for <table>.

*** ERROR: Can’t alias <kind>: <name>

The segment <name> is a special segment of type <kind> which cannot be aliased.

A. Error and Warning MessagesInternal Error and Error Messages

USLink User’s Guide A-5

A

*** ERROR: Class <name> specified twice

The class <name> has already been specified in the command.

*** ERROR: Command file not found: <filename>

The linker could not find a file with the specified filename. Recheck the spelling of
your command filename.

*** ERROR: Command specified twice: <value>

The command entered has already been specified in the command file and cannot
be specified more than once.

*** ERROR: COUNT option only valid for call gates

The COUNT option is not valid with task gates, trap gates or interrupt gates.

*** ERROR: CPU not defined

A CPU has not been defined as the target for this application. Please add the CPU
command to your command file.

*** ERROR: EXCEPT specified multiple times

You have specified the EXCEPT keyword multiple times within a command. Once
you use the EXCEPT keyword, all segments, classes, and groups which follow are
not processed by the command (e.g. LOCATE).

*** ERROR: Expected a ‘::’ separator

The linker was expecting to find a “::” separator next in parsing the command file.

A. Error and Warning Messages Internal Error and Error Messages

A-6 USLink User’s Guide

*** ERROR: Expected ‘=’ after <name>

The linker was parsing an assignment and expected to find an ‘=’ following
<name>.

*** ERROR: Expected class name after CLASS

The CLASS keyword was specified but the token following is not a valid class
name.

*** ERROR: Expected decimal number after <token>

The linker recognized <token> and was expecting to find a decimal number next in
parsing the command file.

*** ERROR: Expected entry field name

The linker was expecting to find the name of an entry field. Refer to Chapter 5 for
a list of ENTRY fields.

*** ERROR: Expected fixup field type

The linker was expecting to find the kind of fixup you wish to apply. Refer to
Chapter 5 for a list of FIXUP kinds.

*** ERROR: Expected group name after ‘<value>’

The linker expected to find the name of a group following <value>.

*** ERROR: Expected locate address after ‘::’

The linker was attempting to parse an address but the value after the separator
(‘::’) is not a valid address. An address is either a physical or linear address. A
linear address has an ‘L’ suffix while a physical address has a ‘P’ suffix.

A. Error and Warning MessagesInternal Error and Error Messages

USLink User’s Guide A-7

A

*** ERROR: Expected new segment name after ‘<value>’

The name of a new segment was expected after <value>.

*** ERROR: Expected number in range 0..3 for DPL

The number entered is not a valid number for the descriptor privilege level.

*** ERROR: Expected number in range 0..31 for COUNT

The number entered is not in the range listed. The COUNT field in the 32-bit call
gate descriptor is only five bits long.

*** ERROR: Expected ON or OFF switch after <name>

The linker was expecting ‘ON’ or ‘OFF’ following <name>.

*** ERROR: Expected processor name after ‘<value>’

The linker was expecting a processor name to follow <value>. Please refer to the
syntax for the command for more information.

*** ERROR: Expecting public symbol after ‘<value>’

The linker was parsing a command and was expecting to find a public symbol next
in the command file.

*** ERROR: Expected segment list

The EXCEPT keyword was given but it does not follow a list of segments, classes,
or groups. Specify a list of segments, classes or groups and then use the EXCEPT
keyword to list segments, classes, or groups which you don’t want processed.

A. Error and Warning Messages Internal Error and Error Messages

A-8 USLink User’s Guide

*** ERROR: Expected segment name after ‘SEGMENT’

The linker recognized the SEGMENT keyword and was expecting to find a
segment name next in parsing the command file.

*** ERROR: Expected segment name after ‘<value>’

The linker was expecting to find a segment name following <value>.

*** ERROR: Expected TSS field name

The linker was expecting to find the name of a TSS field. See Chapter 5 for a list of
valid TSS fields.

*** ERROR: Expected value after ‘<name>’

The linker was expecting a value after <name>. The value could be a numeric or a
symbolic such as the name of a public symbol or segment name.

*** ERROR: Expecting group name after ‘<value>’

A group name was expected to follow <value>.

*** ERROR: Expecting LIMIT= or LIMIT+=

The syntax specified for the LIMIT attribute is invalid. Use either LIMIT= or
LIMIT+=.

*** ERROR: Expecting offset after <value>

The linker was parsing a logical address and was expecting to find an offset
following <value>.

A. Error and Warning MessagesInternal Error and Error Messages

USLink User’s Guide A-9

A

*** ERROR: Expecting object filename

The linker recognized the OBJECT keyword and was expecting to find a filename
next in parsing the command file.

*** ERROR: Expecting right closing bracket

The linker was expecting to parse a right bracket (“]”) but found something else.
Review the syntax for the command.

*** ERROR: File already specified: <filename>

A module in a library has been detected to be a <filename> which is already part
of the application.

*** ERROR: <filename> already specified

The filename you specified with one of the output commands (e.g., ABS386) has
already been specified as an output filename or you are trying to use an input
filename as an output filename as well.

*** ERROR: Fixup value (<value>) too large for field size (2
bytes).

Fixup was to be applied at offset <offset> in
segment <segname>.
Module is <modname>.

This will occur if the linker attempts to assign address which is too large for the
field which is to hold the address. For example, 11000P is too large of an address
to be the target of a 16-bit near jump.

*** ERROR: GDT[<index>] already used

The <index> in the GDT is already in use and cannot be reserved.

A. Error and Warning Messages Internal Error and Error Messages

A-10 USLink User’s Guide

*** ERROR: GDT was previously defined

A GDT has already been created for your application. Only one GDT can be
specified. The line following this message lists the line number in the command
file where the GDT was previously defined.

*** ERROR: Group already located: <value>

The group specified was located with another LOCATE command. The group
cannot be located twice.

*** ERROR: Group <name> specified twice

The group <name> has already been specified in this command.

*** ERROR: Incompatible types

An assignment was specified between field in the TSS and a value but the types are
not compatible.

*** ERROR: Incompatible types <name> = <value>

An assignment was specified between <name> and <value> but the types are not
compatible.

*** ERROR: Index out of range <low>..<high>: <value>

The <value> specified is not within a valid range for the processor structure.

*** ERROR: Init table cannot initialize self: <name>

The <name> specified is also the name of the initialization segment. The linker
cannot pack the segment which will contain packed segments.

A. Error and Warning MessagesInternal Error and Error Messages

USLink User’s Guide A-11

A

*** ERROR: Init table too large by <value> bytes.
Segment <name> is a fixed size

*** ERROR: Init table too large by %lu bytes.
Segment %s is limited to 64K

The segment for the initialization table is not large enough to hold the table.

*** ERROR: Invalid attribute option: <name>

The <name> specified is not an option for the ATTRIBUTE command.

*** ERROR: Invalid command: <value>

The <value> found is not recognized as a valid linker command.

*** ERROR: Invalid ENTRY field name: <value>

The <value> specified is not a valid ENTRY field name. Refer to Chapter 5 for
ENTRY field names.

*** ERROR: Invalid fixup field type: <value>

The <value> specified is not a valid fixup kind. Refer to Chapter 5 for FIXUP
kinds.

*** ERROR: Invalid gate option: <value>

The <value> entered was not recognized as a valid gate option.

*** ERROR: Invalid initial code address

The address specified as the starting code address has an invalid code selector or
an offset which isn't within the range of a known selector. Use the ENTRY
command or TSS386 command to specify the starting address for your application.

A. Error and Warning Messages Internal Error and Error Messages

A-12 USLink User’s Guide

*** ERROR: Invalid number: <value>

The <value> specified is not valid for this command. Review the syntax for the
command.

*** ERROR: Invalid processor name: <name>
Default is 80386

The <name> specified was not recognized as a valid processor. Please refer to
Chapter 5 for a list of valid CPU names.

*** ERROR: Invalid range: <value1>..<value2>

The number you specified for <value2> is smaller than <value1>. Specify the low
value of the range first followed by the high value.

*** ERROR: Invalid TSS field name: <name>

The linker was expecting to find the name of a TSS field. See Chapter 5 for a list of
valid TSS fields.

*** ERROR: Location to fix (<value>) is outside module
<module>’s contribution to segment <name>”

The module containing the public symbol does not have a range over the segment
which includes the fix location.

*** ERROR: Memory allocation error

The linker was attempting to allocate memory for processing an object file and was
unable to allocate necessary memory.

A. Error and Warning MessagesInternal Error and Error Messages

USLink User’s Guide A-13

A

*** ERROR: Module <name> symbol <value> already defined

The public symbol has already been defined in this module. The compiler may
have generated incorrect public symbol information for this module.

*** ERROR: No output specified

The linker was ready to generate one or more output files but no command was
specified for output. Specify ABS86, ABS286, ABS386, HEX86, HEX386 or
BINARY to generate an output file.

*** ERROR: No room in <table> <name1>[<low>..<high>] for
<name2>

Too many segments needed to be assigned selectors in <table> than there was
room for in the range specified.

*** ERROR: Object has no real-mode address: <name>

The segment <name> has no address within the real-mode address space.

*** ERROR: RESERVE specified without range

The linker was expecting a range to follow the RESERVE keyword. Review the
syntax for the command you are trying to specify.

*** ERROR: Segment already exists: <value>

The segment specified already exists as a segment in the application.

*** ERROR: Segment already located: <value>

The segment specified has already been located by the linker.

A. Error and Warning Messages Internal Error and Error Messages

A-14 USLink User’s Guide

*** ERROR: Segments cannot be reduced in size

Segment limits may be increased but the linker does not allow them to be
decreased.

*** ERROR: Segment <name> cannot alias itself

Segments are not allowed alias themselves.

*** ERROR: Segment <name> specified twice

The segment <name> has already been specified in the command.

*** ERROR: Segment <segname> is <segsize1> in module <modname>
but is <segsize2> in module <modname>

In one module segment <segname> was defined as USE16. In another module the
segment was defined as USE32. Addressing problems will result if this problem is
not resolved. The same segment cannot be USE16 in one file and USE32 in another
file.

*** ERROR: Task gate entry requires a selector: <value>

The <value> found for the entry point of a task gate must be a segment previously
defined as a TSS.

*** ERROR: Unexpected characters at end of command: ‘<value>’

The linker thought that parsing was complete for the command but additional
characters were found at the end of the command.

*** ERROR: Unknown class <name>

The linker could not find a class with the given name.

A. Error and Warning MessagesInternal Error and Error Messages

USLink User’s Guide A-15

A

*** ERROR: Unknown group <name>

*** ERROR: Unknown group ‘<name>’ after ‘<value>’

The linker could not find a group with the given name.

*** ERROR: Unknown public symbol <name> after <value>

The public symbol, <name>, was not found in the linker’s list of public symbols.

*** ERROR: Unknown segment name: <name>

*** ERROR: Unknown segment ‘<name>’ after ‘<value>’

The segment, <name>, is not a valid segment name.

*** ERROR: Unsupported object format: <filename>

The linker did not recognize the object format found in <filename>. The linker
supports object files created by Microsoft, Borland, Watcom and MetaWare tools.

*** ERROR: Use INIT16R, INIT16P, or INIT32P for INIT command

The syntax specified is not valid for the linker.

A. Error and Warning Messages Internal Error and Error Messages

A-16 USLink User’s Guide

Warning Messages

*** WARNING: <name> is undefined

The given symbol name is undefined in the application.

*** WARNING: <message> in :<name>,
NULL type used

*** WARNING: <message>,
NULL type used

The linker was attempting to translate type information and found a problem
given by <message>.

*** WARNING: <name> is <value> bytes long

The given processor table (<name>) has a length of zero or the length is not a
multiple of eight.

*** WARNING: Cannot open library <libpath>

The specified library file could not be found.

*** WARNING: Constants not supported,
:<module>.<symbol> discarded

The linker does not support constant symbols.

*** WARNING: Creating binary file over 1 Meg

The linker was attempting to translate type information and found a problem
given by <message>.

A. Error and Warning MessagesWarning Messages

USLink User’s Guide A-17

A

*** WARNING: Line :<name>#<value> specified multiple times
Record ignored

When an object file defines a line number multiple times, the linker ignores the
second definition.

*** WARNING: No Absolute file specified, no debug information
generated

Debug information is only stored in an absolute file. Binary and hex files contain
no debug information.

*** WARNING: Segment <name1> overlaps <name2>

The two segments are attempting to share the same memory space. Look at where
you have specified the segments should be located in your command file and
compare this information to the Segment Map in the map file.

*** WARNING: Segment <segment> assigned to group <group1> in
module <module1>

Reassignment to group <group2> in module <module2>
ignored

The segment <segment> was found in <module1> to be assigned to <group1>. In
another module, the segment was reassigned to a different group. NULL group
means no group was assigned in the module. The linker will use the first
assignment and ignore the second group. This warning may be a problem if the
segment is a data segment.

*** WARNING: Symbol <name> assigned to register

The symbol name has been flagged by the compiler as being assigned to a register
by the optimizer. It therefore cannot be evaluated.

A. Error and Warning Messages Warning Messages

A-18 USLink User’s Guide

*** WARNING: Symbolic name <name1> too long,
truncated to ‘<name2>’

The maximum length of symbol names is 160 characters.

*** WARNING: Symbols section corrupted for :<name>

The linker has found the symbols section module <name> does not end as
expected.

*** WARNING: Unknown fixup kind: <value> module = <name>

The fixup generated by the compiler is not recognized by the linker.

*** WARNING: Unknown procedure model <value>,
far 16-bit assumed

The model for the return value of a procedure was not recognized by the linker.

*** WARNING: Unknown register for :<module><procedure>.<name>,
symbol discarded

The linker was attempting to processor a register variable but the register specified
to contain the variable is not known.

*** WARNING: Unknown segment <name>, segment ignored

The segment name specified is not recognized as a valid segment. Verify that it
has the correct spelling.

*** WARNING: Unresolved symbol: <name>

The symbol name was not resolved by the object files and library files specified in
the command file.

A. Error and Warning MessagesWarning Messages

USLink User’s Guide A-19

A

*** WARNING: Unknown symbols format in <name>, data ignored

The linker did not recognize the format of symbols in module <name>.

*** WARNING: Unknown types format in <name>, data ignored

The linker has detected a type definition record in module <name> which it does
not recognize.

*** WARNING: Unsupported language encountered: <value>

The linker read the compiler record in the symbol information and the value read
was not recognized by the linker.

*** WARNING: Unsupported symbol encountered: <value>

The linker has detected a symbol which it does not support. The <value> is the
symbolic record type.

*** WARNING: ‘With Start’ record encountered in :<name>

The linker has detected a symbolic record which it does not support.

A. Error and Warning Messages Warning Messages

A-20 USLink User’s Guide

This page contains only this line of text.

A. Error and Warning MessagesWarning Messages

USLink User’s Guide Index-1

I

Index

Symbols

32-bit applications
protected-mode example

Borland 2-10
Microsoft 2-3, 2-12
Watcom 2-14

386DX 3-27
80386 (generate instructions) 2-10

A

ABS command
output file 1-9, 3-18

ABS286 command 3-18, 3-53
ABS386 command 2-7, 3-18, 3-53
ABS86 command 2-7, 3-18, 3-53
absolute file 3-29
absolute locating 1-4, 1-7, 2-6
ALIAS command

description 3-19
applications

32-bit 1-2, 1-4, 1-5, 1-7, 1-8, 1-
9, 1-15, 2-3

absolutely located 1-4, 1-7
large 3-48
mixed-mode 1-7, 3-50, 3-54
protected-mode 1-3, 1-4

ROMmable 2-3
real-mode 1-3
split 3-48

assembler 1-7
Borland 2-10
Microsoft 2-13
Watcom 2-14

assembly language 1-5, 1-16, 3-26
segments 1-16, 3-45

assign addresses 1-4, 3-32, 3-44
ATTRIBUTE command 2-6, 3-28

description 3-20
ATTRIBUTE table 3-21
AVAILABLE segment attribute 3-21

B

base address of ROM 3-55
BASE command 3-33

description 3-22
BC5LIB command, description 3-23
BIN binary output file 1-5, 1-9, 3-24
BINARY command 2-7, 3-53

description 3-24
blank lines in command file 3-5
boot-up 1-8, 2-6, 3-37
Borland

assembler example 2-10
compiler example 2-10

BSS 1-5
burned into ROM 1-7, 3-55
BYTEGRAIN segment attribute 3-21

C

C/C++ compilers 1-7
call-gate 3-42

descriptor 3-25
CALL286, CALL386 commands, descrip-

tion 3-25
case sensitive symbols 2-10, 2-13, 3-5
CEO segment attribute 3-21
CER segment attribute 3-21

Index

Index-2 USLink User’s Guide

Index

class 1-5, 1-7, 3-4, 3-37, 3-44
CLASS keyword 3-12
CMD command file 1-9, 2-4, 3-6, 3-18
code

in ROM 1-6
segments 1-5, 3-19, 3-33

Codeview symbolics 2-13
command file 3-4

construction process 3-5
command groups 3-6
command line length 3-5
command syntax summary 3-13
command table construction 2-5
commands

ALIAS 3-19
ATTRIBUTE 3-20
BASE 3-22
BC5LIB 3-23
BINARY 3-24
CALL286, CALL386 3-25
CPU 3-27
CREATE 3-28
DEBUG 3-29
ENTRY 3-30
FIXUP 3-31
FLAT 3-33
GDT 3-34
HEX86, HEX386 3-35
IDT 3-36
INIT16R, INIT16P, INIT32P 3-37
INT286, INT386 3-40
INTEGRITY 3-41
LDT 3-42
LIBRARY 3-43
LOCATE 3-44
OBJECT 3-46

ordering 2-5, 3-6
output 3-24
PAGEDIRECTORY 3-47
PAGETABLE 3-48
PMODE 3-50
PRINT 3-52
RAM 3-53
RMODE 3-54
ROMBASE 3-55
ROMMOVE 3-56
TASKGATE 3-57
TRAP286, TRAP386 3-59
TSS286, TSS386 3-60
VERBOSE 3-64

comments in command file 2-4, 3-5
compiler

Borland 2-10
MetaWare 2-11
Microsoft 2-12
Watcom 2-14

compilers supported 1-7
controls

Borland 2-10
MetaWare 2-11
Microsoft 2-12
Watcom 2-14

copying data from ROM to RAM 2-6
copying into RAM 1-8, 2-6
CPU command 2-5, A-5

description 3-27
CPU structures 1-7
CREATE command 1-6,2-5, 3-34, 3-

36, 3-42, 3-47, 3-60
description 3-28

USLink User’s Guide Index-3

I

Index

D

data
in RAM 1-6, 2-6
segments 1-5, 2-7

DEBUG command 2-5
description 3-29

debug information
Borland assembler 2-10
Borland compiler 2-10
MetaWare compiler 2-11
Watcom assembler 2-14
Watcom compiler 2-14

default extension 1-9, 2-7
default location order 1-6, 2-6
disabling optimization

Borland 2-10
Microsoft 2-12

DPL segment attribute 3-21

E

embedded applications 1-7
ENTRY command 2-6

description 3-30
EO attribute 3-21
ER segment attribute 3-21
error messages 2-7

explained A-3
examples

applications 2-6
programs 2-3

F

features of the linker 1-7
file extensions 1-9
fixed addresses 1-4
FIXUP command 2-7

description 3-31
FLAT command 2-5

description 3-33
flat memory model 3-26, 3-33
flat-model applications 3-22

G

GDT 1-5, 1-7, 2-5, 3-33, 3-34, 3-
41, 3-42

GDT command 2-5
description 3-34

Global Descriptor Table (see GDT)
group 1-5, 2-6, 3-6, 3-22, 3-44
grouping guidelines 3-5, 3-6

H

HEX output file 1-5, 1-9
HEX386 command 2-5, 2-7, 3-30, 3-53

description 3-35
HEX86 command 2-7, 3-30, 3-53

description 3-35

I

I/O commands 2-5
IDT 1-7, 2-5, 3-40, 3-59
IDT command

description 3-36
INIT16P command

description 3-37

Index-4 USLink User’s Guide

Index

INIT16R command
description 3-37

INIT32P command 2-6
description 3-37

initialization code 1-5
RAM 2-5

initializing
data 1-5, 1-8, 2-6
RAM 1-8

INT286, INT386 commands, description
3-40

INTEGRITY command 1-16
description 3-41

Intel
32-bit hex file 2-3, 2-5
386 evaluation board 2-3

Intel architecture 1-7
invoking the linker 2-7

L

LDT 1-7
LDT command

description 3-42
libraries

Borland 3-23, 3-43
MetaWare 3-43
Microsoft 3-43
Watcom 3-43

LIBRARY command 3-23
description 3-43

LIMIT segment attribute 3-20, 3-21
line numbers, Microsoft 2-13
linker, invoking 2-7
linking and locating 1-4, 2-7
load-image data 1-5

LOCATE command 1-5,1-16, 2-6
description 3-44

locating
absolute segments 2-6
applications 2-4, 2-7
data to higher address in RAM or ROM

3-56
location process 1-4, 1-6
location units 1-4

M

macros 1-8, 2-6, 3-25, 3-37, 3-39, 3-57
map file 1-9, 2-6, 2-7
memory segmentation model 1-15
MetaWare

compiler
32-bit protected-mode example 2-11

Microsoft 2-3
assembler

32-bit protected-mode example 2-13
compiler

32-bit protected-mode example 2-12
mixed-mode 1-7, 3-50, 3-54
multiple lines in command file 3-5
multiple mode (see mixed-mode)

N

native applications 1-4
native vs. embedded development 1-4
NOTAVAILABLE segment attribute 3-21
NOTPRESENT segment attribute 3-21

USLink User’s Guide Index-5

I

Index

O

OBJECT command 2-5
description 3-46

OMF286 1-9
OMF386 1-9
OMF86 1-9
optimization switches

Borland compiler 2-10
Microsoft compiler 2-12

ordering segments 2-6
output commands 3-18, 3-24, 3-35
output file format 1-9

P

packing ROM data 1-8, 2-6, 3-37
padding, to preserve empty spaces 3-41
Page table 1-7, 3-47, 3-48
PAGE.ACCESSED segment attribute 3-

21
PAGE.DIRTY segment attribute 3-21
PAGE.NOTACCESSED segment attribute

3-21
PAGE.NOTDIRTY segment attribute 3-

21
PAGE.NOTPRESENT segment attribute

3-21
PAGE.PRESENT segment attribute 3-21
PAGE.RO segment attribute 3-21
PAGE.RW segment attribute 3-21
PAGE.SUPER segment attribute 3-21
PAGE.USER segment attribute 3-21
PAGEDIRECTORY command

description 3-47
PAGEGRAIN segment attribute 3-21
PAGETABLE command

description 3-48

paragraph aligned 1-16
PMODE command

description 3-50
PRESENT segment attribute 3-21
PRINT command

description 3-52
processor address 3-33
processor mode 1-5
program segments 1-4
protected-mode 2-7

example
Borland 2-10
MetaWare 2-11
Microsoft 2-3, 2-12
Watcom 2-14

protected-mode segments 2-6, 3-50
protected-mode structures 2-5, 3-8
public symbols 3-5, 3-32, 3-50, 3-54

in map file 3-52

R

RAM 1-5, 2-5, 3-32, 3-37, 3-44, 3-56
RAM command

description 3-53
RAMINIT segment 2-5, 2-6, 2-7
real-mode segments 3-54
relocatable 1-4
RESERVE descriptor table slots 3-34, 3-

36, 3-42
RMODE command

description 3-54
RO segment attribute 3-21
ROED segment attribute 3-21
ROM 1-5, 1-6, 2-6, 3-32, 3-44
ROM segment 3-38
ROMBASE command

Index-6 USLink User’s Guide

Index

description 3-55
ROMMOVE command

description 3-56
RW segment attribute 3-21
RWED segment attribute 3-21

S

segments 2-5, 3-22, 3-48
base 1-5
creating 2-5, 3-59
description 1-4
locating 2-6, 3-7, 3-44
modifying 2-7
names 2-6
no load-image 1-5
size limit 1-4, 3-25, 3-40
size of 3-57, 3-59
type abbreviations 3-20
zero-length 1-5

stack 1-5
overflow checking using Watcom

compiler 2-14
starting address 1-5
starting memory location 2-6
startup code 1-8, 2-7, 3-31, 3-34, 3-

36, 3-37, 3-42, 3-47, 3-58
symbolic information 2-5, 3-29

Codeview 2-13
MetaWare compiler 2-11
Microsoft compiler 2-12

syntax
elements of 3-9

T

table constructor 3-8
target board 1-5, 2-3, 2-6
target CPU

specifying 2-5
TASKGATE command

description 3-57
TEXT segment 2-7
toolchains 1-7
trap gate 3-59
TRAP286, TRAP386 commands

description 3-59
troubleshooting location problems 1-16
truncated segment 1-16
TSS 1-7, 2-5, 3-30, 3-57

setup 2-5
structures 3-33

TSS286 command
description 3-60

TSS386 command, description 3-60
Turbo assembler 2-10

U

unpack-and-copy macros 1-8
unpacking ROM data 1-8, 2-6, 3-37
USE16 segment attribute 3-21
USE32 segment attribute 3-21

V

VERBOSE command 3-4, 3-64
description 3-64

USLink User’s Guide Index-7

I

Index

W

warning messages 2-7
explained A-16

Watcom
assembler

32-bit protected-mode example 2-14
compiler

32-bit protected-mode example 2-14
white space in command file 3-5

Z

zero-length segments 1-5

Index-8 USLink User’s Guide

Index

	1. Introduction
	2. 32-bit Protected-Mode Applications
	3. Command Reference
	A. Error and Warning Messages
	Index
	1. Introduction
	Manual Organization
	Linker Overview
	The Location Process
	Linking/Locating
	Native versus Embedded Development
	Location Units
	Know Where Your RAM and ROM Are
	Default Location Order
	Features
	What the Linker Does
	Supported Compilers
	Protected-Mode Structures
	Initialized RAM Data
	Other Support Macros
	Input and Output
	Possible Output Formats
	Example Map File
	Toolchains and Memory Segmentation Models
	Table 1-1: 32-bit Protected-Mode Applications
	Troubleshooting Location Problems
	2. 32-bit Protected-Mode Applications
	Overview
	32-bit Protected-Mode Example
	Step 1-Compile Using Microsoft Tools
	 Example Command File csamp.cmd
	Step 2-Create a Command File
	Step 3-Invoke the Linker
	Example Map File
	Borland Tools
	Borland C/C++ Compiler
	Borland Turbo Assembler
	MetaWare Tools
	MetaWare Compiler
	Microsoft Tools
	Microsoft C/C++ Compiler
	Microsoft ML
	Watcom Tools
	Watcom C/C++
	Watcom WASM
	3. Command Reference
	Overview
	The .CMD Command File
	Command File Organization
	Recommended Ordering of Commands
	Grouping Guidelines
	Command Syntax
	Table 3-1: Command Syntax Elements
	Table 3-2: Keywords Used in Linker Commands
	Command Syntax Summary
	Italicized Syntax Elements
	Command Reference
	ABS386, ABS286, and ABS86
	ALIAS
	ATTRIBUTE
	BASE
	BC5LIB
	BINARY
	CALL286 and CALL386
	Table 3-3: Gate Attributes for CALL286 and CALL386
	CPU
	CREATE
	DEBUG
	ENTRY
	FIXUP
	FLAT
	GDT
	HEX86 and HEX386
	IDT
	INIT16R, INIT16P, and INIT32R
	INT286 and INT386
	INTEGRITY
	LDT
	LIBRARY
	LOCATE
	OBJECT
	PAGEDIRECTORY
	PAGETABLE
	PMODE
	PRINT
	RAM
	RMODE
	ROMBASE
	ROMMOVE
	TASKGATE
	Table 3-4: Gate Attributes for TASKGATE
	TRAP286 and TRAP386
	TSS286 and TSS386
	VERBOSE
	A. Error and Warning Messages
	Overview
	Internal Error and Error Messages
	Warning Messages
	Index
	
	Manual Organization
	Linker Overview
	The Location Process
	Linking/Locating
	Native versus Embedded Development
	Location Units
	Know Where Your RAM and ROM Are
	Default Location Order
	Features
	What the Linker Does
	Supported Compilers
	Protected-Mode Structures
	Initialized RAM Data
	Other Support Macros
	Input and Output
	Possible Output Formats
	Example Map File
	Toolchains and Memory Segmentation Models
	Table 1-1: 32-bit Protected-Mode Applications
	Troubleshooting Location Problems
	
	Overview
	32-bit Protected-Mode Example
	Step 1-Compile Using Microsoft Tools
	 Example Command File csamp.cmd
	Step 2-Create a Command File
	Step 3-Invoke the Linker
	Example Map File
	Borland Tools
	Borland C/C++ Compiler
	Borland Turbo Assembler
	MetaWare Tools
	MetaWare Compiler
	Microsoft Tools
	Microsoft C/C++ Compiler
	Microsoft ML
	Watcom Tools
	Watcom C/C++
	Watcom WASM
	
	Overview
	The .CMD Command File
	Command File Organization
	Recommended Ordering of Commands
	Grouping Guidelines
	Command Syntax
	Table 3-1: Command Syntax Elements
	Table 3-2: Keywords Used in Linker Commands
	Command Syntax Summary
	Italicized Syntax Elements
	Command Reference
	ABS386, ABS286, and ABS86
	ALIAS
	ATTRIBUTE
	BASE
	BC5LIB
	BINARY
	CALL286 and CALL386
	Table 3-3: Gate Attributes for CALL286 and CALL386
	CPU
	CREATE
	DEBUG
	ENTRY
	FIXUP
	FLAT
	GDT
	HEX86 and HEX386
	IDT
	INIT16R, INIT16P, and INIT32R
	INT286 and INT386
	INTEGRITY
	LDT
	LIBRARY
	LOCATE
	OBJECT
	PAGEDIRECTORY
	PAGETABLE
	PMODE
	PRINT
	RAM
	RMODE
	ROMBASE
	ROMMOVE
	TASKGATE
	Table 3-4: Gate Attributes for TASKGATE
	TRAP286 and TRAP386
	TSS286 and TSS386
	VERBOSE
	Overview
	Internal Error and Error Messages
	Warning Messages

