

unDOS / unWin
DOS and Win32 Emulators

Developer’s Guide

Version 4.0

October 2010

by
Alan Moore

© Copyright 1998-2010

Micro Digital, Inc.
2900 Bristol Street #G204

Costa Mesa, CA 92626
(714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved

smx is a registered trademark of Micro Digital, Inc.
pmEasy, smx++, smxFile, smxFS, unDOS, and unWin are trademarks of Micro Digital, Inc.

Other brand and product names are trademarks of their respective companies.

Table of Contents

Overview __1

Summary of unDOS Services__2
Interrupt 10h Services (BIOS) __ 2
Interrupt 21h Services (DOS)___ 2

Summary of unWin Services __4
Win32 API emulation functions supported__ 4

Structure of unDOS and unWin ___6
Source Files ___ 6
Include Files ___ 6
Summary ___ 7

unDOS and unWin Services by Category____________________________________8
File I/O ___ 8

C library routines__ 8
DOS int 21H subfunctions supported __ 9
Win32 API functions___ 9

Date & Time__ 10
C library routines___ 10
DOS int 21H subfunctions supported ___ 10
Win32API functions __ 10

Process Control (PSP and TIB) __ 11
C library routines___ 11
DOS int 21H subfunctions supported ___ 11
Win32 API functions__ 11

Interrupt Vector Management___ 13
C library routines___ 13
DOS int 21H subfunctions supported ___ 13
Win32 API functions__ 13

Internationalization__ 13
DOS int 21H subfunctions supported ___ 13

Memory Management__ 14
C library routines___ 14
DOS int 21H subfunctions supported ___ 14
Win32 API functions__ 14

Miscellaneous___ 15
DOS int 21H subfunctions supported ___ 15
Win32 API functions__ 15

Video BIOS Services ___ 16
BIOS int 10H subfunctions supported___ 16

Unsupported Functions___ 17
Method 1 (logging) ___ 17
Method 2 (break on unsupported call)___ 17

Method 3 (unstubbed Win32 call)__ 17
Method 4 (unsupported interrupt) __ 18

Glossary __19

Index___21

Overview

unDOS is a simple DOS and BIOS API emulation package. It emulates many of the common
DOS int 21h and other services and some of the BIOS int 10h video services as well. Similarly,
unWin is a simple Win32 API emulation package. It emulates a small set of Win32 functions.
These were individual products in the past but now they are included with smx86 releases. The
files are in BSP\X86.

unDOS and unWin provide support for DOS- and Win32-based libraries to run in a real-time,
multitasking SMX environment, with little or no modification. The first goal was to support the
basic functions of the C run-time library. Another goal was to support graphics libraries that were
developed to run in protected mode requiring a DOS extender. Each call to the VGA BIOS or
DOS had a high overhead as the DOS extender switched from protected mode to real mode and
back. It also would have required writing interrupt handlers for both real mode and protected
mode. Using unDOS, this was avoided since the needed services were implemented using its own
code and SMX services that run in protected mode, so no switching was needed1. This cuts down
the typical interrupt latency time dramatically and makes for a simpler system to develop and
debug. Still another goal was to support legacy user code that was written for DOS so it would
run without DOS and even in protected mode with little modification. The DOStap TSR is
provided to help assess the DOS dependency of an existing application while it runs, which is
especially important when source code was not available for portions of the code, such as 3rd
party libraries.

unWin provides limited Win32 API emulation, enough to provide basic support for the C run-
time libraries.

Both provide the option of logging unsupported BIOS, DOS, and Win32 calls made by your
program. Contact Micro Digital regarding these unsupported functions.

Note: Information for real mode, 16-bit protected mode, and MetaWINDOW has been removed
from this manual. Please refer to a pre-v4 revision for this information.

1 The one exception is the BIOS int 10h video initialization function, which relies on DPMI 300h.
Unfortunately, all graphics cards require different initialization, and the only way to avoid writing a driver
for each specific card is to rely on the ROM code resident on the card, which runs in real mode. To run this
code, the special DPMI 300h function is used to switch to real mode. Note that this is only an initialization
call made once at system startup, not during normal system operation.

1

Summary of unDOS Services

The following services are supported by unDOS. The 32-bit DOS functions use extended
registers for their parameters. Since there is no known standard for these, we have done our best
to use an intuitively apparent approach to decide how parameters should be passed in 32-bit
registers. This is similar to the format used by DOS extenders such as Borland’s PowerPack.

Note that file I/O services are mapped onto smxFile, which is an older file system that is no
longer supported. In a future release, it will be mapped it onto smxFS.

Interrupt 10h Services (BIOS)
00h Set Graphics Mode (by switching to real mode using DPMI 300h)
02h Set Cursor Position
0Fh Read Current Video State
10:00h Set Individual Palette Registers (EGA/VGA)
11h Character generation has been stubbed out; forces graphics packages to use its own fonts.
12:00h Return Video Information (EGA/VGA)
1A:00 Read Display Combination Code (VGA)

Interrupt 21h Services (DOS)
0Eh Set Default Drive
19h Get Default Drive
1Ah Set DTA address
25h Set Interrupt Vector
2Ah Get Date
2Bh Set Date
2Ch Get Time
2Dh Set Time
2Fh Get DTA address
30h Get Version Number (6.20)
35h Get Interrupt Vector
38h Get Country information (Set not supported)
39h Create Directory
3Ah Remove Directory
3Bh Change Current Directory
3Ch Create File with Handle (volume label not supported)
3Dh Open File with Handle
3Eh Close File with Handle
3Fh Read File
40h Write File
41h Delete File
42h Move File Pointer
43:00h Get File Attributes
44:00h Get Device Data (for files only, no DOS devices supported)
47h Get Current Directory
48h Allocate Memory
49h Free Allocated Memory
4Ah Set Memory Block Size (stub)
4Ch End Program
4Eh Find First File
4Fh Find Next File
50h Set PSP Address
51h Get PSP Address

2

56h Rename File
57h Get/Set File Date and Time
5Bh Create New File
62h Get PSP Address
66:01h Get Global Code Page (Returns US code 437)

3

Summary of unWin Services

In addition to the unDOS services listed above, unWin adds the following emulation functions.

Win32 API emulation functions supported
The Win32 API is partially supported. Below is a list of the functions which are supported or
partially implemented.

General limitations and notes (other limitations are noted beside each function)

1. The file I/O functions support only disk files and not console I/O or pipes.
2. Only single byte character set support is currently provided.
3. A TIB (Thread Information Block) is provided to facilitate emulation of Win32 although

not all fields are functional. For more information, see the source code (unwin32b.c).
4. Many additional functions are stubbed. These stubs print an error to the screen or trap in

the debugger to alert you if they are called.

CloseHandle
CreateFileA security attributes, template files, and handles to directories not supported
DeleteCriticalSection
DeleteFileA
EnterCriticalSection
FileTimeToLocalFileTime not truly implemented; file time reported is same as file time
FileTimeToSystemTime
FindClose
FindFirstFileA
FindNextFileA
FlushFileBuffers
GetACP returns US code page; can be changed to return other country code page
GetCPInfo returns US code page; can be changed to return other country code page
GetCurrentDirectoryA
GetCurrentProcess returns NULL since SMX does not support processes
GetFileAttributesA
GetFileType
GetFullPathNameA
GetLastError
GetLocalTime
GetStartupInfoA not truly implemented; just returns NULL for file handle info fields, to

support Borland RTL
GetStdHandle user must first use SetStdHandle since no standard handles built in
GetTimeZoneInformation
GetVersionExA minimal implementation
GetVolumeInformationA returns fixed volume name, not actual disk volume name
HeapAlloc
HeapCreate
HeapDestroy
HeapFree

4

InitializeCriticalSection
LCMapStringA upper and lower case ASCII only
LeaveCriticalSection
MulDiv
RaiseException reports exception condition only
ReadFile
SetFilePointer
SetHandleCount
SetLastError
SetLocalTime
SetStdHandle
SetTimeZoneInformation
TerminateCurrentProcess returns NULL since SMX does not support processes
TlsAlloc
TlsFree
TlsGetValue
TlsSetValue
VirtualQuery partial support; returns min address of own stack
WriteFile

5

Structure of unDOS and unWin

unDOS is composed of several C, assembly, and include files which are organized by function
and processor mode. The organization of the files is important since you may need to make
specific modifications or additions to unDOS/unWin in order to support your application. The
files are grouped into the following categories: RTL support, DOS services (int 21h),
VideoBIOS services, and Win32 API functions.

Source Files
RTL support is truly spread throughout all of the files. However, the bulk of the RTL-specific
support is to be found in urtl.c. This file also serves as a catch-all file to hold code which does not
obviously belong in one of the other files. This includes initialization, exit, and logging functions.
Much of the code in this file is customized for various compilers so you will find many
conditional compile statements.

DOS service support is broken up into a portable C file, emu.c, and a processor mode specific
assembly file dosemu32.asm. It contains the actual interrupt handler for int 21h, the vector table
for the DOS subfunctions, and the assembly code to handle the subfunctions. Generally, the
assembly code calls a C function in emu.c which will performs the meat of the operation or calls
smxFile.

Video BIOS services are emulated by vgabio32.asm. It contains the actual video BIOS interrupt
handler for int 10h, the subfunction vector jump table, and the subfunction emulation code. All
code for video BIOS emulation is written in assembly language.

Win32 API emulation code is contained in the unwin32_.c files. uwin32a.c is provided with smx
and stubs off a number of routines needed so our products link successfully and run. uwin32b.c
contains most of the Win32 functions, many of which are supported functions. There are also
many stubs in this file. All are written in C code and are intended to replace Windows DLLs.

Some other files are present in the directory that are modified versions of files supplied with the
particular compiler’s RTL.

Include Files
There are two primary include files provided for the unDOS user. undos.h is a general include file
which can be used by any unDOS user. It includes useful prototypes and constants. Much of this
is also available in the standard compiler vendor include files such as dos.h and stdio.h. We
recommend using undos.h instead, although the others should work just as well.

unwin32.h is a greatly reduced Win32 include file which has all of the prototypes and
declarations needed to use the Win32 API functions supported by unWin. We strongly
recommend the use of this include file rather than the Windows include files since it is much
smaller, and it is specifically designed to be compatible with SMX include files. SMX include
files are not generally compatible with the standard Windows include files.

6

Summary
dosemu32.asm 32-bit assembly source interrupt handler for DOS int 21h

emu.c C source to implement int 21h services.

undos.h DOS services emulation include file for user.

unwin32.asm Win32 API import address table, required by Microsoft C++.

unwin32a.c Win32 API emulation routines provided with smx.

unwin32b.c Win32 API emulation routines provided with unWin.

unwin32.h Win32 API emulation include file for user.

urtl.c C source code specific to compiler vendor RTL support.

vgabio32.asm 32-bit protected mode assembly source, handler for video int 10h.

7

unDOS and unWin Services by Category

In this section, unDOS/unWin services are broken down by category and discussed in more
detail. References are made to C Standard Run Time Library (RTL) functions which are
supported by unDOS/unWin. Although the implementation of these functions varies for each
compiler vendor, they generally use this same basic set of DOS and Win32 services.

The RTL functions listed here are in no way intended to represent a complete list of functions
supported. You will find that much of your compiler’s RTL or your 3rd party library is supported
by unDOS/unWin.

File I/O
A primary purpose of unDOS/unWin is to emulate the standard DOS and Win32 File I/O
functions. This allows the user to open, close, read, write, and find files on disk from an SMX
application. As an incidental benefit, the unDOS functions are performed more quickly than DOS
which must often negotiate a long chain of interrupt handlers for the simplest of operations.

unDOS/unWin does not currently support the standard devices: stdin, stdout, stderr, stdaux, and
stdprn. As a result, console I/O is not supported.

unDOS/unWin map onto smxFile services. Thus, it shares the same limitations and capabilities as
smxFile. For example, only binary mode is supported. Text mode is not properly supported so
routines depending on text mode such as fgets() and fputs() may not work properly in certain
situations. A future release will map onto smxFS.

C library routines
The following ANSI C standard buffered file I/O routines may work under unDOS.
getc()
fclose()
feof()
ferror()
fflush()
fgetc()
fgetpos()
fopen()

fputc()
fread()
fseek()
fsetpos()
ftell()
fwrite()
isatty()
putc()

remove()
rename()
rewind()
setbuf()
setvbuf()
ungetc()

The following UNIX-style standard C library unbuffered or low-level file I/O routines may also
work under unDOS:
chdir()
close()
creat()
fileno()

fstat()
getcwd()
lseek()
open()

read()
stat()
unlink()
write()

The following routines are not part of any formal standard but may work under unDOS:
_dos_findfirst()
_dos_findnext()
getdisk()

isatty()
mkdir()
rmdir()

setdisk()

Many of your compiler’s file I/O C library functions will work under unDOS/unWin since they
use the basic DOS/Win32 functions that unDOS/unWin provides. Don’t be afraid to experiment!

8

DOS int 21H subfunctions supported
0Eh Set Default Drive
19h Get Default Drive
1Ah Set DTA address
2Fh Get DTA address
39h Create Directory
3Ah Remove Directory
3Bh Change Current Directory
3Ch Create File with Handle (volume label not supported)
3Dh Open File with Handle
3Eh Close File with Handle
3Fh Read File
40h Write File
41h Delete File
42h Move File Pointer
43:00h Get File Attributes
44:00h Get Device Data (for files only, no DOS devices supported)
47h Get Current Directory
4Eh Find First File
4Fh Find Next File
56h Rename File
57h Get/Set File Date and Time
5Bh Create New File

Win32 API functions
CloseHandle
CreateFileA
DeleteFileA
FindClose
FindFirstFileA
FindNextFileA
FlushFileBuffers
GetCurrentDirectoryA
GetFileAttributesA
GetFileType
GetFullPathNameA
GetStdHandle
GetVolumeInformationA
ReadFile
SetFilePointer
SetHandleCount
SetStdHandle
WriteFile

9

Date & Time
These routines allow the user to set and retrieve the date and time. The user is able to initialize the
date and time which is updated by smx. The time is stored in the smx global variable stime which
maintains the current time and date in the standard ANSI/UNIX format: the number of seconds
elapsed since 00:00:00 Jan 1, 1980. The user must set the date and time, reading the hardware
clock if one is available.

The ANSI C routines time() and clock() have been replaced with simpler functions which directly
access corresponding smx global variables.

C library routines
The following ANSI C standard time and date routines may work under unDOS:
asctime()
clock()
ctime()

difftime()
gmtime()
localtime()

mktime()
time()

The following routines are not part of any formal standard but may work under unDOS:
_dos_getdate()
_dos_gettime()

_dos_setdate()
_dos_settime()

Most of your compiler’s time and date C library functions will work under unDOS since they use
the basic DOS functions which unDOS provides. The only ones which won’t work are the ones
which use the BIOS time interrupt such as Borland's biostime().

DOS int 21H subfunctions supported
2Ah Get Date
2Bh Set Date
2Ch Get Time
2Dh Set Time

Win32API functions
FileTimeToLocalFileTime
FileTimeToSystemTime
GetLocalTime
GetTimeZoneInformation
SetLocalTime
SetTimeZoneInformation

10

Process Control (PSP and TIB)
Many of the ANSI C standard Process Control functions are supported by unDOS. This includes
the various types of application exit routines: exit(), abort(), and the atexit() function stack.. The
End Program DOS subfunction (4Ch) is also supported.

Most of the UNIX and OS/2 standard process control routines such as cwait(), wait(), raise(),
signal(), exec() and spawn() are not supported by unDOS. Many of these are specific to the way
DOS and UNIX handle processes and are not relevant to the SMX multitasking environment. For
task control you should use the smx API directly.

The Program Segment Prefix (PSP) is passed by DOS to every executable when it is loaded and
executed by DOS. Many DOS-compatible libraries expect to have access to the PSP in order to
access the DOS environment variables. unDOS provides a PSP which is currently non-reentrant;
i.e. there is only one PSP block which is shared by all tasks accessing unDOS. In the PSP there is
provided an environment string in standard DOS format. The environment is initialized in the
unDOS source code and the user may modify it according to the needs of their application.

The user may access environment variables by using the standard C routine getenv() or by
accessing the PSP via DOS interrupts. The user may also create his own PSP and change the PSP
pointer. This could be a means of making unDOS reentrant much as DOS is made reentrant for
multitasking operating systems such as OS/2 and Windows.

The standard routine put_env() has been supplied to allow the user to dynamically alter the
environment. The routines put_env() and get_env() work together on their own copy of the
environment. Changes made to the environment via put_env() will not be reflected in the copy of
the environment which can be accessed via the PSP. The environment string pointed to by the
PSP is a copy of the original environment string which was compiled into the program.

The other fields of the PSP are not currently supported by unDOS.

C library routines
The following ANSI C standard process control routines have been provided by unDOS to
replace the routines in your C library.
abort()
atexit()

exit()
getenv()

putenv()

DOS int 21H subfunctions supported
4Ch End Program
50h Set PSP Address
51h Get PSP Address
62h Get PSP Address

Win32 API functions
Win32 does not support the PSP. Instead, Win32 has something called a TIB (Thread Information
Block) which is allocated for each thread. unWin treats the entire SMX application as a single
thread and provides a single TIB which it uses to emulate Win32’s TIB. Not all fields of the TIB
are initialized, see unwin32b.c for details.

unWin supports the Win32 critical section construct using smx semaphores. This is used by
multi-thread libraries to make their functions reentrant:

11

DeleteCriticalSection
EnterCriticalSection
InitializeCriticalSection
LeaveCriticalSection

Currently, unWin supports use of the Borland 32-bit multi-thread RTL (CW32MT.LIB) and will
soon support the Microsoft 32-bit multi-thread RTL (LIBCMT.LIB) . Linking the multithread
library is enabled by uncommenting the "mt" macro in pro.mak.

The advantage of the multi-thread library is that it uses these critical section locks so that it is
reentrant. In other words, the multithread RTL has been modified expressly for a preemptive
multi-tasking environment such as SMX. There is no need for the application code to test a
semaphore prior to making C library calls when this library is used, as is needed for other non-
multi-thread libraries.

12

Interrupt Vector Management
unDOS supports the get and set interrupt vector management functions. unDOS also provides
replacements for the commonly used interrupt generation functions int86(), int86x(), and
int386(). Currently these functions only handle the interrupt numbers 10h and 21h (video and
DOS).

C library routines
The following routines are not part of any formal standard, but they may work under unDOS:
_dos_getvect()
_dos_setvect()

int86()
int86x()

int386()

Most of your compiler’s interrupt vector management C library functions will work under unDOS
since they use the basic DOS functions which unDOS provides.

DOS int 21H subfunctions supported
25h Set Interrupt Vector
35h Get Interrupt Vector

Win32 API functions
It is not possible to interact with interrupt vectors through the standard Win32 API.

Internationalization
unDOS provides basic support for the internationalization features of DOS. The information is
initialized to United States settings and can be changed in the source code to whatever country
the user desires. The more advanced features which allow changes to the fonts used and such are
not supported at this time. We recommend use of graphics interfaces such as MGL to provide
fonts for other languages.

DOS int 21H subfunctions supported
38h Get Country information (Set not supported)
66:01h Get Global Code Page (Returns US code 437)

13

Memory Management
unDOS/unWin provides basic DOS like memory management using the smx heap. Set Memory
Block Size is generally used by startup code to free up memory for the heap by cutting down the
amount of memory allocated for the executable program. This does not apply to the SMX
environment so this function has been stubbed off; it returns an error code to the caller.

smx provides a generous supply of heap management routines including many of the ANSI C
standard routines. Most applications or libraries will access the heap through these routines and
will never use the DOS subfunctions.

C library routines
The following ANSI C standard memory management routines are supported by smx and
unDOS:
calloc()
free()

malloc()
realloc()

Most of your compiler’s memory management C library functions work under smx/unDOS.

DOS int 21H subfunctions supported
48h Allocate Memory
49h Free Allocated Memory
4Ah Set Memory Block Size (stub)

Win32 API functions
Three types of memory are commonly utilized by libraries: Heap, Thread Local Storage, and
virtual memory. unDOS does not properly support Virtual Memory; it only passes back the
address of the stack in VirtualQuery — specifically to support Borland’s Multi-Thread 32-bit
library. Thread Local Storage is emulated more thoroughly although there is only one set of local
storage for the entire application, which again is considered a single Win32 thread.
HeapAlloc
HeapCreate
HeapDestroy
HeapFree
TlsAlloc
TlsFree
TlsGetValue
TlsSetValue
VirtualQuery

14

Miscellaneous
These miscellaneous DOS functions are provided primarily for compatibility with DOS-
dependent libraries and applications that might use them.

unDOS emulates the DOS version function, returning version 6.20 as the current version.

DOS int 21H subfunctions supported
30h Get Version Number (6.20)

Win32 API functions
GetCPInfo
GetCurrentProcess
GetVersionExA
LCMapStringA
MulDiv
RaiseException
TerminateProcess

The last error is tracked by unWin internally. Standard Win32 error codes are used.
GetStartupInfo simply sets file handles field to NULL which is needed by Borland’s Multi-
Threaded RTL.
GetLastError
GetStartupInfoA
SetLastError

15

Video BIOS Services
unDOS provides some basic Video BIOS int 10h services. These are provided because the video
BIOS is not accessible in protected mode. These services assume the presence of a standard VGA
interface to a video card. The video card must have a standard VGA BIOS present and it must
have been initialized already. The initialization of the VGA BIOS is generally done during the
boot sequence of your computer.

These routines utilize the BIOS system RAM variables stored at absolute address 400h to 500h.

Some of these functions are considered to be “setup” functions which are very dependent on the
video card such as set graphics mode. The VGA BIOS Emulator switches to virtual 86 mode,
turns off interrupts and then calls upon the standard VGA BIOS to perform the function. This
could mean that interrupts will be turned off for a long time so these functions should only be
called at the beginning and end of the application, rarely and at non-critical times.

Alternatively, we provide two small DOS programs which will switch the system into and out of
video mode. Grafmode.exe may be executed before pmEasy to set your video into VGA mode.
Textmode.exe may be executed after exiting pmEasy to restore your video to standard text mode.

The functions supported here are attuned to what is required by graphics mode interface packages
such as MetaWINDOW and MGL which are supported by unDOS. Features specific to text mode
features are not generally supported.

BIOS int 10H subfunctions supported
00h Set Graphics Mode (by switching to real mode using DPMI 300h)
02h Set Cursor Position
0Fh Read Current Video State
10:00h Set Individual Palette Registers (EGA/VGA)
11h Character generation has been stubbed out; forces graphics packages to use its own fonts.
12:00h Return Video Information (EGA/VGA)
1A:00 Read Display Combination Code (VGA)

16

Unsupported Functions
In this section we discuss the functions which are not emulated by unDOS. The first thing to do is
determine what functions are being called which are not supported by unDOS. After this, simply
stub out or support the functions in question. Contact Micro Digital for help in this regard;
possibly the functions you need have been supported by the time you need them. Otherwise, the
helpful people at Micro Digital may be willing to do the work for you or at least point you in the
right direction.

The following methods are suggested as ways to determine which unsupported function is being
called:

Method 1 (logging)
Simply turn on the unDOS/unWin logging option in undos.h and recompile your application. You
may select from 3 options:

1. LOGOPTION 0: No special action is taken when an unsupported function is called. Usually,
a general error code will be returned by unDOS/unWin depending on the function called.

2. LOGOPTION 1: A message will be written to the display. This is especially useful when
running in text mode. These messages are sometimes lost in the shuffle during a change to
graphics video mode. The message may also be lost if a crash occurs.

3. LOGOPTION 2: A message is written to the display and each time a call occurs a message is
appended to the logfile (“dos.log” as declared in urtl.c). This is more reliable if file I/O is
working properly. This is not especially helpful if the call in question is being made before
the file system is initialized. The primary benefit here is a list of the calls which your
application is making that are not currently supported by unDOS. Currently, only DOS
functions are logged, not Win32.

This is by far the most gracious method and should cover most cases.

Method 2 (break on unsupported call)
If the logging approach does not work, then you should run your application under your
debugger. Set breakpoints on the following unDOS functions:

• Unsupp_DOS

• Unsupp_Win32

If you reach one of these breakpoints, simply step through the routine to return to the function
that called it to determine what DOS or Win32 function is being called and who is calling it in
your application.

For unsupported Win32 functions, you may wish to leave HALT_OPTION set to 1 in undos.h
during development, which will automatically stop the debugger in the stubbed Win32 routine if
one is called.

Method 3 (unstubbed Win32 call)
If you are in 32-bit protected mode and you are experiencing a GPF and none of the above steps
were effective then your application is probably making a call to the Win32 API to a function
which has not been stubbed out in unwin32_.c. This may happen if you are linking the Win32
import library or using a compiler which automatically links the DLL import information in so

17

that non-stubbed calls do not create link errors. In the former case, do not link import libraries. In
the latter, there are two approaches which may be used:

1. Laboriously step through your code with a debugger until you can track down the call to
Win32 which is causing the GPF.

2. Search through your source code for your application and libraries to determine which Win32
calls are being used and compare this list of calls to the functions supported and stubbed off
in the unwin32_.c files.

Method 4 (unsupported interrupt)
It is possible that your application will attempt to call BIOS and other specialized interrupt
handlers which are completely unsupported by unDOS (i.e. those other than int 10h or int 21h).
In this case, you will most likely see a message from pmEasy indicating that an unsupported
interrupt has been called.

18

Glossary

DPMI Short for “DOS Protected Mode Interface”. This is a standardized user interface for DOS
programs running in protected mode and is generally supported by DOS extenders.
unDOS combined with pmEasy provides support for the most commonly used DPMI
functions. See the pmEasy documentation for more details about the DPMI server.

GUI Short for “Graphical User Interface”. These are much friendlier interfaces and are
becoming more and more popular even in the traditionally user unfriendly world of
embedded, real time systems. The need for GUI support on the SMX platform has
provided inspiration for the development of unDOS.

RTL Short for “Run Time Library”. This is the library generally supplied by your C/C++
compiler vendor which supports the standard C run time library functions. A major goal
of unDOS and unWin is to support the functions in these libraries so that the SMX user
may use standard functions.

3rd Party Libraries These are C/C++ libraries which are sold as separate products from the
C/C++ compiler, i.e. a “third party” vendor. These libraries generally represent a great
deal of labor and can save a developer man years of development effort. They are
generally written to run on platforms which are widely used such as DOS, Windows, and
Win32. One of the most useful products in this category is a GUI.

19

Index

3

32-bit DOS functions .. 2
32-bit protected mode ... 1
3rd party libraries... 19
3rd party library ... 8

A

abort .. 11
atexit ... 11

B

BIOS emulation .. 1
BIOS services ... 2
Borland 32-bit multi-thread library......................... 14
break on unsupported functions 17

C

console i/o... 8
critical section... 11
cw32mt.lib .. 12
cwait ... 11

D

date & time routines.. 10
date & time, DOS ... 10
date & time, Win32... 10
DOS .. 9
DOS emulation ... 1
DOS services .. 2
dos.log... 17
dosemu32.asm .. 6, 7
DOStap ... 1
DPMI .. 19

E

emu.c .. 6, 7
emulation .. 1
exec... 11
exit .. 6, 11

F

file i/o ..8
file i/o, DOS ..9
file i/o, Win32 ...9
files..6
fonts...13

G

get_env..11
GetStartupInfo...15
GPF ...17
Graphical User Interface ...19
graphics ...16
graphics mode ...2
GUI ...19

H

heap...14

I

include files ...6
initialization ..6
int 10h ...1, 6, 7, 16
int 21h ...1, 6, 7, 9
int386 ..13
int86 ..13
int86x ..13
internationalization..13
internationalization, DOS..13
interrupt vector management...................................13
interrupt vector, DOS..13
interrupt vector, Win32 ...13

L

last error ..15
libcmt.lib ...12
logging unsupported functions17
LOGOPTION..17

M

memory management ..14
memory management, DOS14

21

memory management, Win32................................. 14
MetaWINDOW... 16
MGL ... 13, 16
multi-thread libraries... 11

O

OS/2.. 11

P

pmEasy ... 19
PowerPack (Borland) .. 2
process control, DOS .. 11
process control, Win32 ... 11
Program Segment Prefix ... 11
PSP ... 11
put_env ... 11

R

raise... 11
reentrant RTL ... 11
RTL... 19
RTL Source... 6
Run Time Library ... 6, 8, 19

S

signal... 11
source files .. 6
spawn.. 11
stdaux.. 8
stderr ... 8
stdin .. 8
stdout .. 8
stdprn .. 8
stimex.. 10
structure .. 6
stubs .. 4, 6

T

text mode file i/o ...8
third party libraries..19
thread...11
Thread Information Block..........................4, 11
thread local storage ...14
TIB ..4, 11
time & date routines ..10
time & date, DOS..10
time & date, Win32 ...10

U

unDOS services...2
undos.h ..6, 7
UNIX...8, 10, 11
Unsupp_DOS ..17
Unsupp_Win32 ...17
unsupported functions1, 17, 18
unsupported functions, break on17
unsupported functions, logging17
unWin services ..4
unwin32.asm ...7
unwin32.h..6, 7
unwin32_.c..17
unwin32a.c ..6, 7
unwin32b.c..6, 7, 11
urtl.c ..7

V

VGA BIOS..16
VGA BIOS functions ..16
vgabio32.asm ..6, 7
Video BIOS...6, 16
virtual 86 mode ...16
virtual memory..14
VirtualQuery ...14

W

wait..11
Win32 API ..4
Win32 emulation...1

22

	Overview
	Summary of unDOS Services
	Interrupt 10h Services (BIOS)
	Interrupt 21h Services (DOS)

	Summary of unWin Services
	Win32 API emulation functions supported

	Structure of unDOS and unWin
	Source Files
	Include Files
	Summary

	unDOS and unWin Services by Category
	File I/O
	C library routines
	DOS int 21H subfunctions supported
	Win32 API functions

	Date & Time
	C library routines
	DOS int 21H subfunctions supported
	Win32API functions

	Process Control (PSP and TIB)
	C library routines
	DOS int 21H subfunctions supported
	Win32 API functions

	Interrupt Vector Management
	C library routines
	DOS int 21H subfunctions supported
	Win32 API functions

	Internationalization
	DOS int 21H subfunctions supported

	Memory Management
	C library routines
	DOS int 21H subfunctions supported
	Win32 API functions

	Miscellaneous
	DOS int 21H subfunctions supported
	Win32 API functions

	Video BIOS Services
	BIOS int 10H subfunctions supported

	Unsupported Functions
	Method 1 (logging)
	Method 2 (break on unsupported call)
	Method 3 (unstubbed Win32 call)
	Method 4 (unsupported interrupt)

	Glossary
	Index

