

smxUSBOTM User’s Guide

USB OTG Add-on

Version 1.10
August 8, 2011

by Yingbo Hu

1. Overview...1

2. Files ...3
2.1 Directory Structure ...3
2.2 Files ..3

3. smxUSBO Library and Demos...5
3.1 smxUSBO Configuration..5
3.2 Building the Library ...6
3.3 Building and Running the Demos...6
3.4 Initialization..7

4. OTG Application Interface...8

5. Writing a New OTG Controller Driver ...12
5.1 OTG Controller Operation Interface...12
5.2 Set State Machine Status and Input Value..14

6. Hardware Porting Notes ...18
6.1 uoport.h...18
6.2 uoport.c ...18

Appendix A. Porting smxUSBO to Another OS ...19

Appendix B. Memory Usage...20
B.1 Code Size ...20
B.2 Data Size (RAM Requirement) ..20

Appendix C. Specification Reference...21
C.1 USB Specifications ..21
C.2 OTG Controller Specifications ..21
C.3 PCI Specification ...21

© Copyright 2006-2011

Micro Digital Associates, Inc.
2900 Bristol Street, #G204

Costa Mesa, CA 92626
(714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved.

smxUSBO is a Trademark of Micro Digital, Inc.
smx is a Registered Trademark of Micro Digital, Inc.

1. Overview
smxUSBOTM adds On-The-Go capability to smxUSBH and smxUSBD for the SMX® RTOS. It is
written in C and can be easily ported to another RTOS (see Appendix A. Porting smxUSBO to
Another OS). It allows embedded system developers to easily add USB OTG capabilities to their
projects. Normally this is done to enable the device to be a dual-role device.

An OTG device is a dual-role device that can function both as a limited-capability host and as a
USB peripheral. The targeted peripherals can be any combination of other OTG devices and
peripheral-only devices. smxUSBO requires smxUSBH and/or smxUSBD; it only adds OTG
capability to them.

Note: The purpose of OTG is to switch the role of not only the local device but also the
connected (peer) device. You cannot switch the role of a PC, thumb drive, or other device.
The only case where OTG is needed is if the peer device is OTG. There is a lot of
confusion here because many processors have OTG controllers. In most cases customers’
needs are satisfied using just the smxUSBH and smxUSBD stacks, and maybe a little
cable detection logic if the port on the board is a mini-AB or micro-AB connector. Please
discuss your needs with Micro Digital for advice.

The reader should be familiar with the USB 2.0 specification and OTG 1.0a supplement. All
USB specifications can be found at http://www.usb.org/.

smxUSBO has three layers:

1. OTG Core Layer: Provides the common OTG SRP and HNP state machine and APIs used
by the application to switch between Host and Device stack for the dual-role device.

2. OTG Controller Driver (OCD) Layer: Provides a unique interface for different USB OTG
controllers such as ISP1362, ISP1761, and LPC3180.

3. Porting Layer: Provides functions related to the hardware, operating system, and compiler.

 1

http://www.usb.org/

I

SRP an

Bus Request (S

USB

Application

OTG Core
d HNP state machine

Bus API
tart or stop Host stack or SRP)

Porting Layer
Timer, Mutex,
hardware I/O

OTG Controller Driver
SP1362, ISP1761, LPC3180

 OTG hardware

 Figure1 smxUSBO Structure

2

2. Files
Like other SMX® RTOS products, all source code for smxUSBO is stored in its own directory,
named “XUSBO”, under the main SMX directory. Here is a summary of the directory structure.

2.1 Directory Structure

SMX
 APP
 DEMO usbodemo.c (for SMX)
 NORTOS Build directory for standalone (non-SMX) releases. Has demo too.
 XUSBO Configuration and porting layer files
 XX.YY Build directory for SMX releases
 Core OTG core layer support
 OCD All OTG controller drivers

2.2 Files

2.2.1 Main Files

FILE DESCRIPTION
smxusbo.h smxUSBO API header file. Use in application files.
uocfg.h smxUSBO configuration file. Allows enabling/disabling

main components of smxUSBO.
uoinit.h
uoinit.c

Initialization of smxUSBO, including the selected OTG
controller.

uointern.h Main internal header file. Included by smxUSBO files
rather than including individual header files, to ensure files
are included in the proper order.

2.2.2 Porting Layer

FILE DESCRIPTION
uoport.h
uoport.c

Porting functions. OS- and compiler-related functions are
based on smxBase.

 3

2.2.3 OTG Core

FILE DESCRIPTION
uoapi.h
uoapi.c

APIs used by the application for bus requests of Host and
Device stacks.

uodrv.h
uodrv.c

USB OTG state machine.

2.2.4 OTG Controller Driver

FILE DESCRIPTION
uo1362.h
uo1362.c

NXP/Philips ISP1362 OTG controller driver.

uo1761.h
uo1761.c

NXP/Philips ISP1761 OTG controller driver.

uolpc2.h
uolpc2.c

NXP/Philips LPC2468 built-in OTG controller driver.

uolpc3.h
uolpc3.c

NXP/Philips LPC3180 built-in OTG controller driver.

 4

3. smxUSBO Library and Demos
This section documents details of configuring and building the library and demos.

3.1 smxUSBO Configuration

3.1.1 uocfg.h
smxUSBO can be configured so that it includes support for specific USB OTG controllers, thus
saving code space. The following sections describe the settings.

SUO_ISP1362

Set to “1” to include support for an NXP/Philips ISP1362 OTG controller. Set to “0” to
exclude support.

SUO_ISP1761

Set to “1” to include support for an NXP/Philips ISP1761 OTG controller. Set to “0” to
exclude support.

SUO_LPC3180

Set to “1” to include support for an NXP/Philips LPC3180 built-in OTG controller. Set to
“0” to exclude support.

SUO_LPC2468

Set to “1” to include support for an NXP/Philips LPC2468 built-in OTG controller. Set to
“0” to exclude support.

Note: Please only set ONE OTG controller macro to “1”. smxUSBO does not currently
support the use of multiple types of OTG controller at the same time.

SUO_ONCHIP_CP

Set to “1” to use on-chip charge pump. Set to “0” to disable. On-chip charge pump can
only provide up to 8-mA current.

SUO_SUPPORT_HNP

Set to “1” if your OTG device support dual-role mode. Set to “0” if it only works as
peripheral.

SUO_DEBUG_LEVEL

Specifies the debug level. The following values are supported:

0 disables all debug output and debug statements are null macros

 5

1 only output fatal error information

2 output additional warning information

3 output additional status information

4 output additional device change information

5 output additional data transfer information

6 output interrupt information

3.1.2 uoport.h
The general interrupt-related porting interface is defined in smxBase. Please see the smxBase
User’s Guide for detailed information. The following are smxUSBO-specific hardware-related
configuration settings. In addition to these, it may be necessary to re-implement the functions in
uoport.c for your hardware.

SUO_ISP1362_BASE, SUO_ISP1362_IRQ

Set to the base address and IRQ number for your device controller. These do not need to
be set for x86 PCI systems because this information is retrieved from the PCI BIOS.

3.2 Building the Library
After configuring uocfg.h (see 3.1.1 uocfg.h), build the library with the makefile or project file
supplied in the build directory (e.g. MC.P3). It is built just like all other SMX module libraries,
as documented in the SMX Quick Start. If a makefile is provided, run the mak.bat file to invoke
it. Run it without arguments for syntax.

3.3 Building and Running the Demos
For SMX releases, the demos are stored in \SMX\APP\DEMO. For this product it is:

 usbodemo.c main demo file

The demo file is integrated with the smx Protosystem. It is enabled just like all other SMX
module demos, as documented in the SMX Quick Start. For makefile builds, simply uncomment
the macros susbo in pro.mak and susbodm in demodefs.mki. You also need to enable the
smxUSBH and smxUSBD libraries and demos by uncommenting the macros susb and susbd in
pro.mak and susbdm and susbddm in demodefs.mki.

You need two USB OTG (dual-role) devices to run the demo to show how a dual-role device can
work as a Host and then later switch to a Peripheral, without needing to change the cable. You
also need a special OTG cable. For this cable, one plug is mini-A and the other is mini-B.

The following is a summary of what the demo does:

 6

1. Connect the two devices with an OTG cable. A-Device or B-Device is determined by the
plug type for the OTG cable. If mini-A is plugged into a Device then it is the A-Device by
default, otherwise, it is the B-Device.

2. After the demo runs, both devices are in idle mode. On the A-Device, the demo shows status
“A-Device Host Idle” and on the B-Device, it shows status “B-Device Peripheral Idle”. On
the A-Device, press the 'R' key to make it work as USB Host, and B-Device will become
USB Peripheral. At that time the demo on A-Device shows “A-Device Host Busy” and B-
Device it shows “B-Device Peripheral Busy”. Press 'D' key on A-Device to stop it from
working as USB Host, and both A-Device and B-Device will go to idle mode.

3. On the B-Device, in idle mode, press the 'R' key to make B-Device work as the USB Host
(the demo shows “B-Device Host Busy”), and A-Device will be switched to USB Peripheral
(the demo shows “A-Device Peripheral Busy”). Press the 'D' key to switch the B-Device
back to Peripheral (the demo will show “B-Device Peripheral Busy”), and A-Device will
return back to Host (the demo shows “A-Device Host Busy”).

3.4 Initialization
smxUSBO is automatically initialized by an SMX application, if SMXUSBO is defined by the
application makefile or project file. This is done by smxusbo_init() which is called by
smx_modules_init(), called by ainit(). For non-SMX applications, call suo_Initialize() from your
initialization code.

 7

4. OTG Application Interface
This section describes the APIs are called by application to enable and switch the role of USB
OTG port.

The application interface is defined in uoapi.h. This interface includes:

int suo_ARequestHost();
int suo_AGoIdle();
int suo_BRequestHost();
int suo_BReturnDevice();

int suo_GetDeviceType();
int suo_GetStackType();
int suo_GetIdleType();

int suo_ARequestHost ()

Summary Switch the A-Device from a_idle state to a_host state.

Details The A-Device is initialized to a_idle state by default. This function starts the OTG

port as a USB host port, and then smxUSBH will begin its work to enumerate the
USB device on the B-Device plug of the OTG cable. Call this function only when it
is an A-Device and the bus is idle.

Parameters none

Returns 1 A-Device is working as a Host.
 0 Failed.

See Also suo_AGoIdle(), suo_GetDeviceType(), suo_GetIdleType()

 8

int suo_AGoIdle ()

Summary Switch the A-Device back to a_idle state.

Details When the A-Device is working as a USB Host (a_host), call this function to make it

switch back to idle mode (a_idle). This device will not use USB and suspends the
bus. Call this function only when it is an A-Device and the bus is busy. Also do not
call any smxUSBH APIs after this function call.

Parameters none

Returns 1 A-Device has switched back to idle mode.
 0 Failed.

See Also suo_ARequestHost(), suo_GetDeviceType(), suo_GetIdleType()

int suo_BRequestHost ()

Summary Switch the B-Device from b_idle state to b_host state.

Details The B-Device is initialized to b_idle state by default. This function starts the OTG

port as the USB host port, and then smxUSBH will begin its work on the B-Device
to enumerate the USB device on the A-Device plug of the OTG cable. Call this
function only when it is a B-Device and the bus is idle.

Parameters none.

Returns 1 B-Device has switched to Host mode.
 0 Failed.

See Also suo_BReturnDevice(), suo_GetDeviceType(), suo_GetIdleType()

 9

int suo_BReturnDevice ()

Summary Switch the B-Device back to b_peripheral state.

Details When the B-Device is working as a USB Host (b_host), call this function to make it

switch back to Peripheral mode (b_peripheral). At the same time, the A-Device will
return back to Host mode and continues using the USB. The A-Device must call
suo_AGoIdle() to suspend the USB completely. Call this function only when it is a
B-Device and the bus is busy.

Parameters none

Returns 1 B-Device has switched back to Peripheral mode.
 0 Failed.

See Also suo_BRequestHost(), suo_GetDeviceType(), suo_GetIdleType()

int suo_GetDeviceType ()

Summary Get current device type, A or B Device.

Details Call this function to get the current device type. Device type is determined by the

plug types of the OTG cable. If mini-A is plugged into the device then it is an A-
Device by default; otherwise, it is a B-Device.

Parameters none

Returns SUO_A_DEVICE A-Device.
 SUO_B_DEVICE B-Device.

See Also suo_GetStackType(), suo_GetIdleType()

 10

int suo_GetStackType ()

Summary Get current stack type (Host or Device) that is controlling this port.

Details Call this function to determine which stack is controlling this port. Because an OTG

device is a dual-role device, either a Host stack or a Device stack can control the
OTG port, based on the application request.

Parameters none

Returns SUO_HOST USB Host stack is controlling the OTG port.
 SUO_DEVICE USB Device stack is controlling the OTG port.

See Also suo_GetIdleType(), suo_GetDeviceType()

int suo_GetIdleType ()

Summary Get current bus status, idle (bus suspended) or busy.

Details Call this function to get the current bus status. If a Host stack or a Device stack is

using the bus then it returns SUO_BUSY. Otherwise, if the host stack suspends the
bus, it returns SUO_IDLE.

Parameters none

Returns SUO_IDLE USB Host stack suspended the bus.
 SUO_BUSY USB Host and Device stack are using the USB bus.

See Also suo_GetDeviceType(), suo_GetStackType()

 11

5. Writing a New OTG Controller Driver
This section describes how to write a new smxUSBO OTG controller driver.

The USB OTG controller drivers are a sub-module of smxUSBO. You do not need to know the
details about the other parts such as the smxUSBO core layer.

To add a new USB OTG driver, the only thing you need to do is implement an OTG Controller
operation interface and then register it with the smxUSBO core layer in uoinit.c, by calling
suo_RegisterOCD(). This function should be called after any other smxUSBO initialization
function calls.

Micro Digital does not recommend that you write an OTG controller driver yourself.
Please discuss this with Micro Digital before you decide to do it.

5.1 OTG Controller Operation Interface
The device controller operation interface is defined in uodrv.h as:

typedef struct
{
 void (*OCInit) (void);
 void (*OCRelease) (void);
 void (*OCPullDown) (uint bTrue);
 void (*OCPullUp) (uint bTrue);
 void (*OCSOF) (uint bTrue);
 void (*OCVbusPowerUp) (uint bTrue);
 void (*OCVbusSessionReq) (uint bTrue);
 void (*OCVbusDischarge) (uint bTrue);
 void (*OCHCDCSelect) (uint bTrue);
 void (*OCEnableDetSRP) (uint bTrue);
 void (*OCEnableRemoteDisconnect) (uint bTrue);
 void (*OCEnableRemoteSE0) (uint bTrue);
 void (*OCStartTimer) (u32 uTimerout);
 void (*OCStopTimer) (void);
 void (*OCStatus) (SUO_Otg_Hangle_T *);
 void (*OCClearIRQ) (u16 wIRQ);
 void (*OCSelectVbus) (uint iOnChip);
 void (*OCEnableDCIRQ) (uint bEnable);
 void (*OCIntHandler) (SUO_Otg_Hangle_T *);
}SUO_OC_OPERATION_T;

5.1.1 OCInit()
The smxUSBO core layer calls this function first to do any necessary OTG Controller
initialization.

 12

5.1.2 OCRelease()
The smxUSBO core layer calls this function before it shuts down, to do any necessary OTG
Controller cleanup.

5.1.3 OCPullDown()
The smxUSBO core layer calls this function to enable/disable the pull down resistor of the DM
pin.

5.1.4 OCPullUp()
The smxUSBO core layer calls this function to enable/disable the pull up resistor of the DP pin.

5.1.5 OCSOF()
The smxUSBO core layer calls this function to enable/disable host Start of Frame of this port.
Disabling the SOF will suspend the bus after 3 ms.

5.1.6 OCVbusPowerUp()
The smxUSBO core layer calls this function to enable/disable the Vbus power.

5.1.7 OCVbusSessionReq()
The smxUSBO core layer calls this function to start/stop charging the Vbus.

5.1.8 OCVbusDischarge()
The smxUSBO core layer calls this function to start/stop discharging the Vbus.

5.1.9 OCHCDCSelect()
The smxUSBO core layer calls this function to select HC or DC to control this OTG port.

5.1.10 OCEnableDetSRP()
The smxUSBO core layer calls this function to enable/disable SRP detection for A-Device.

5.1.11 OCEnableRemoteDisconnect()
The smxUSBO core layer calls this function enable/disable remote disconnect detection.

5.1.12 OCEnableRemoteSE0()
The smxUSBO core layer calls this function to enable/disable remote SE0 status detection.

 13

5.1.13 OCStartTimer()
The smxUSBO core layer calls this function to start a timer.

5.1.14 OCStopTimer()
The smxUSBO core layer calls this function to stop a timer.

5.1.15 OCStatus()
The smxUSBO core layer calls this function to get the current OTG status. You may need to
translate the register bitmap to the OTG internal data structure.

5.1.16 OCClearIRQ()
The smxUSBO core layer calls this function to clear the OTG interrupt.

5.1.17 OCSelectVbus()
The smxUSBO core layer calls this function to set whether to use on-chip or external charge
pump.

5.1.18 OCEnableDCIRQ()
The smxUSBO core layer calls this function to enable/disable the device controller interrupt.

5.1.19 OCIntHandler()
The smxUSBO core layer calls this function when an OTG interrupt occurs to handle that
interrupt.

5.2 Set State Machine Status and Input Value
In the ISR of your OTG driver, it is necessary to set some OTG state machine status and input
values. They are defined in SUO_OTG_HANDLE in uodrv.h, and are documented below:

u8 id: 1;

The ID pin status of the USB OTG port. Set it by reading the OTG status register in OCStatus().
You may also need to update it in the ISR if there is an ID pin interrupt.

 14

A-Device

u8 a_vbus_vld: 1;

The VBUS Valid status of the A-device. Set it by reading the OTG status register in OCStatus().
You may also need to update it in the ISR if there is a VBUS Valid interrupt. 1 if VBUS is
higher than VA_VBUS_VLD.

u8 a_sess_vld: 1;

The SESSION Valid status of the A-device. Set it by reading the OTG status register in
OCStatus(). You may also need to update it in the ISR if there is Session Valid interrupt. 1 if
VBUS is higher than VA_SESS_VLD.

u8 a_srp_det: 1;

Flag showing if A-device has detected SRP. You may need to update it in the ISR if there is SRP
detect interrupt, or set it according to the session valid status.

u8 b_conn: 1;

Remote B-device connection status. See the OTG specification section 6.6.1.12 b_conn to
understand how to set it.

u8 b_bus_suspend: 1;

Flag showing if the bus is suspended for the remote B-device. Normally there is an interrupt in
the device controller or OTG controller for this. Set it in the ISR or by reading the OTG status
register.

u8 b_bus_resume: 1;

Flag showing if the bus is resumed for the remote B-device. Normally there is an interrupt in the
device controller or OTG controller for this. Set it in the ISR or by reading the OTG status
register.

u8 b_hnp_support: 1;

Flag for remote B-device. It is an external input. The host stack will check the OTG descriptor
to find if the remote B-device supports HNP, and then it calls suo_SetBDevAttributes() to set
this flag. This is not related the OTG controller so you don't need to set it in the OCD.

 15

u8 b_srp_support: 1;

Flag for remote B-device. It is an external input. The host stack will check the OTG descriptor
to find if the remote B-device supports SRP, and then it calls suo_SetBDevAttributes() to set this
flag. This is not related the OTG controller so you don't need to set it in the OCD.

u8 a_set_b_hnp_en: 1;

Flag for A-device. The host stack will set this bit in suo_AEnableBHost() to enable the remote
B-device to start HNP after the A-device finishes its role. It is not related to the OTG controller
so you don't need to set it in the OCD.

u8 a_suspend_req: 1;

Flag for A-device. The application requests to suspend the bus. Not used yet.

u8 a_host_done: 1;

Flag for A-device. The A-Device is still using the bus. It is not related to the OTG controller so
you don't need to set it in the OCD.

B-Device

u8 b_sess_end: 1;

The SESSION End status of the B-device. Set it by reading the OTG register in OCStatus(). You
may also need to update it in the ISR if there is a Session End interrupt. 1 if VBUS is less than
VA_SESS_END.

u8 b_sess_vld: 1;

The SESSION Valid status of the B-device. Set it by reading the OTG register in OCStatus().
You may also need to update it in the ISR if there is a Session Valid interrupt. Set it to 1 if
VBUS is higher than VB_SESS_VLD.

u8 b_se0_srp: 1;

Flag bit is set to 1, when the B-device is in the SUO_B_IDLE state, and the line has been at SE0
for more than the minimum time (2ms) before generating SRP (TB_SE0_SRP).

u8 a_conn: 1;

Remote A-device connection status. See the OTG specification section 6.6.1.5 a_conn to
understand how to set it.

 16

u8 a_bus_suspend: 1;

Flag showing if the bus is suspended by the remote A-device. Normally there is an interrupt in
the device controller or OTG controller for this. Set it in the ISR or by reading the OTG status
register.

u8 a_bus_resume: 1;

Flag showing if the bus is resumed by the remote A-device. Normally there is an interrupt in the
device controller or OTG controller for this. Set it in the ISR or by reading the OTG status
register.

u8 a_bus_reset: 1;

Flag showing if the bus is reset by the remote A-device. Normally there is an interrupt in the
device controller or OTG controller for this. Set it in the ISR or by reading the OTG status
register.

u8 b_srp_done: 1;

Flag showing if the B-device has finished its SRP procedure.

u8 b_hnp_en: 1;

Flag showing if the remote A-device used SET_FEATURE request to enable HNP. It is not
related to the OTG controller so you don't need to set it in the OCD.

u8 a_hnp_support: 1;

Not used.

u8 a_alt_hnp_support:1;

Not used.

Both A-Device and B-Device

u8 bus_req: 1;

Flag showing if the device wants to use the bus. It is not related to the OTG controller so you
don't need to set it in the OCD.

u8 bus_drop: 1;

Flag showing if the device wants to drop the bus (i.e. finish using the bus). It is not related to
the OTG controller so you don't need to set it in the OCD.

 17

6. Hardware Porting Notes
The general interrupt-related hardware porting interface is done through smxBase. The hardware
porting layer which is smxUSBO-specific consists of uoport.h and uoport.c. These files contain
definitions, macros, and functions to port smxUSBO to particular target hardware.

6.1 uoport.h
smxBase takes care of defining most of the hardware porting defines.

A. SUO_BUS_INVERTED: Set this to 1 if you have a big endian CPU and you inverted the

connection of the device controller to the data bus. (If you are designing your own hardware,
it is recommended to do this for better performance, so there is no need to invert data i/o to
OTG controller registers in smxUSBO.)

B. Driver BASE and IRQ settings: Set these to the proper addresses for your OTG controller.

6.2 uoport.c
Some of the functions in uoport.c may need to be adapted for your target.

suo_HdwInit()

This function is called first when initializing smxUSBO. It does the following:

Initializes the hardware platform’s OTG subsystem. For example, it enables the USB
OTG controller, sets up the clock, and finds the PCI BIOS.

Determines the OTG Controller’s I/O base, memory base, and IRQ number.

Initializes other hardware required by smxUSBO. For example, it opens a serial port and
sets up the parameters for the suo_DebugL() function to output debug information.

suo_HdwRelease()

Disables the USB OTG subsystem of the hardware.

suo_ISP1362Read32(), suo_ISP1362Read16(), suo_ISP1362Write32(),
suo_ISP1362Write16()

These functions are used when the smxUSBO NXP/Philips ISP1362 OTG controller
driver accesses I/O registers. You may need to tune the implementation of these
functions to meet the timing requirement of ISP1362 according to your hardware
implementation.

 18

Appendix A. Porting smxUSBO to Another OS
smxUSBO’s porting layer maps onto smxBase services. Please see the smxBase User’s Guide
for detailed information to port it to another OS.

 19

Appendix B. Memory Usage

B.1 Code Size
Code size will vary widely depending upon CPU, compiler, and optimization level. The figures
below are intended as an example.

Component ARM9

IAR v4.31

CF

CodeWarrior v5.0

X86

VC++ v6.0

Core 5 KB 5 KB 4.5 KB

NXP/Philips ISP1362 2 KB 2 KB 1.7 KB

NXP/Philips ISP1761 2 KB 2 KB 1.8 KB

NXP/Philips LPC2468 3 KB N/A N/A

NXP/Philips LPC3180 3 KB N/A N/A

B.2 Data Size (RAM Requirement)
smxUSBO needs less than 128 bytes for global data. It does not need to allocate dynamic
memory.

 20

Appendix C. Specification Reference
smxUSBO is based on the following specifications. USB related documents are available at
www.usb.org

C.1 USB Specifications
Universal Serial Bus Specification, Revision 2.0
On-The-Go Supplement to the USB 2.0 Specification, Revision 1.0a

C.2 OTG Controller Specifications
ISP1362 Single-chip Universal Serial Bus On-The-Go controller, Rev. 04
ISP1761 Hi-Speed Universal Serial Bus On-The-Go controller, Rev. 02
LPC3180 User Manual, Rev. 01, 1 June 2006
ISP1306 Universal Serial Bus On-The-Go Transceiver, Rev. 02, 04 January 2005
LPC2468 User Manual, Rev. 01, 18 December 2006

C.3 PCI Specification
PCI Local Bus Specification, Revision 2.1

 21

	1. Overview
	2. Files
	2.1 Directory Structure
	2.2 Files
	2.2.1 Main Files
	2.2.2 Porting Layer
	2.2.3 OTG Core
	2.2.4 OTG Controller Driver

	3. smxUSBO Library and Demos
	3.1 smxUSBO Configuration
	3.1.1 uocfg.h
	3.1.2 uoport.h

	3.2 Building the Library
	3.3 Building and Running the Demos
	3.4 Initialization

	4. OTG Application Interface
	5. Writing a New OTG Controller Driver
	5.1 OTG Controller Operation Interface
	5.1.1 OCInit()
	5.1.2 OCRelease()
	5.1.3 OCPullDown()
	5.1.4 OCPullUp()
	5.1.5 OCSOF()
	5.1.6 OCVbusPowerUp()
	5.1.7 OCVbusSessionReq()
	5.1.8 OCVbusDischarge()
	5.1.9 OCHCDCSelect()
	5.1.10 OCEnableDetSRP()
	5.1.11 OCEnableRemoteDisconnect()
	5.1.12 OCEnableRemoteSE0()
	5.1.13 OCStartTimer()
	5.1.14 OCStopTimer()
	5.1.15 OCStatus()
	5.1.16 OCClearIRQ()
	5.1.17 OCSelectVbus()
	5.1.18 OCEnableDCIRQ()
	5.1.19 OCIntHandler()

	5.2 Set State Machine Status and Input Value

	6. Hardware Porting Notes
	6.1 uoport.h
	6.2 uoport.c

	Appendix A. Porting smxUSBO to Another OS
	Appendix B. Memory Usage
	B.1 Code Size
	B.2 Data Size (RAM Requirement)

	Appendix C. Specification Reference
	C.1 USB Specifications
	C.2 OTG Controller Specifications
	C.3 PCI Specification

