

SMX® RTOS

Target Guide

Version 5.2
February 2024

by
David Moore

© Copyright 2004-2024

Micro Digital Associates, Inc.
 (714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved.

smx is a Registered Trademark of Micro Digital, Inc.
smx is protected by patents listed at www.smxrtos.com/patents.htm and patents pending.

http://www.smxrtos.com/patents.htm

Table of Contents

COMMON NOTES ...1

Introduction .. 1

Porting .. 1

BSP .. 2
BSP Notes ... 2
BSP Configuration .. 2

Protosystem .. 2
Files .. 2

Target Defines .. 3

Coding Notes ... 4
ISRs .. 4
Inline Assembly in C .. 5

Misc Notes ... 6
Configuration .. 6
Project Files .. 6
C Run-Time Library ... 6
Minimizing RAM Usage ... 7
Profiling .. 8

SMX Utilities ... 8
FlashImage .. 8
MIBTOC ... 8
MpuMapper .. 8
MpuPacker .. 8
NSBLDPG .. 8
PREFRMT .. 8
TestComm ... 9
TestSocket... 9
usbdfu ... 9

Tips .. 9
Debugging .. 9

ARM ..11

Architectural Notes .. 11
ISRs .. 11
Thumb Code ... 15
Alignment of Memory Access .. 15
Semihosting .. 16

Porting to a New ARM or Board ... 16

BSP Files ... 17

BSP API Extensions .. 18

IAR Embedded Workbench ARM (IAR.ARM and IAR.AM) ... 18
Version ... 18
Project Files .. 18
Build Targets .. 19
Preinclude Files .. 19
Relative Paths ... 19
Predefined Symbols .. 20
Startup Sequence .. 20
Assembler ... 20
Linker Command Files (.icf) ... 20
Link Map .. 20
Binary Files ... 21
Debugger (C-SPY) .. 21
Flash Loader ... 21
Using IAR EWARM ... 22
Debugging with C-SPY .. 22
Tips ... 23
Troubleshooting .. 23

GNU ARM ... 23
Distributions ... 23

GNU / CrossWorks ARM (GCW.ARM) ... 24
Installation .. 24
Project Files .. 24
Build Targets .. 25
Preinclude Files .. 25
Startup Sequence .. 26
Optimization ... 26
C++ ... 26
Assembler ... 27
Linker.. 27
Debugger .. 27
Flash Loader ... 28
Thumb Support ... 28
Using CrossWorks .. 28
Tips ... 29
Troubleshooting .. 29

Tools .. 30
JTAG Units ... 30
IAR I-jet .. 30
IAR (Segger) J-Link/J-Trace ... 30
Lauterbach TRACE32 .. 30

Drivers ... 30
Disk ... 30
Ethernet ... 30
LED .. 30
UART and Terminal ... 31
Video (Graphics) .. 31
Video (Terminal) .. 31

Other Notes .. 31

Tips .. 31

ARM-M (CORTEX-M) ...33

Architectural Notes .. 33
Overview ... 33
ISRs .. 34
ISR Priority Level ... 34
Nested Vectored Interrupt Controller (NVIC) .. 35
Stacks .. 35
Files .. 35
ARMM Conditionals .. 35
Peripheral Initialization .. 36
Flash Locking ... 36
Floating Point (CM4 and CM7 FPU) ... 36

Porting to a New ARM-M or Board .. 37

BSP Files ... 37

BSP API Extensions .. 38

Troubleshooting ... 39

INDEX ...41

Common Notes

1

Common Notes

This section contains notes that are common to all processor versions of smx.

Introduction

This manual is a collection of target-related information, including tips about compilers and
tools. There are different issues for each CPU and each tool suite, but the manual is organized as
consistently as possible. Targets and tools are continually changing, so please consult the release
notes in the DOC directory for additional and corrected information.

This manual is targeted to those using the smx multitasking kernel (rather than standalone
releases of our middleware). However, some information about processor architecture and tools
is useful to everyone.

Porting

Your release is most likely already ported to the hardware and tools you plan to use, in which
case you can skip this section.

The smx multitasking kernel supports multiple CPUs and several compilers. However if you
need to port to one that is not supported, the following is a summary of where to find the
information you need:

New CPU architecture:
smx Porting Guide.

New CPU of an architecture already supported (e.g. ARM, ARM-M):
Appropriate CPU section in this manual (e.g. ARM/ Porting to a New ARM or Board).

New compiler:
smx Porting Guide. Primarily what is relevant is information about the porting macros.
These macros are quite compiler-dependent. Some compilers do not allow certain operations
to be done in inline assembly, such as manipulating the stack pointer, so for them, such
macros must be written as assembly routines in a separate file. Compilers can also differ in
whether they create a stack frame pointer in function prologs. Because of differences such as
these, it is necessary to create a section for your compiler in the smx CPU header file (e.g.
xarm.h, xarmm.h). Copy the section that you think is closest and edit it for your compiler.

Common Notes

2

When you try to compile the scheduler, the compiler will complain about any remaining
problems in these macros.

The smxBase User’s Guide covers porting SMX modules (middleware products) to different
CPUs and tools.

BSP

BSP Notes
PDF files in the DOC directory summarize important information about SMX support for various
boards. These show memory layout, peripherals supported, and other details and tips about the
board. One of these is provided in the DOC directory for the BSP you ordered. We recommend
you print it and keep it close for reference.

BSP Configuration
The main configuration for the BSP is in bsp.h, bsp.inc, and bsp.c. See the beginning of the BSP
API section in this manual for more details.

Protosystem

Files
These files are stored in the APP and XBASE directories. Note that BSP files are also built and
linked into the Protosystem. See the BSP Files section for your processor architecture for
descriptions of the key BSP files.

 1 acfg.h
acfg.h has application-related configuration of smx, such as numbers of objects and
memory area sizes such as main heap and stack pool. (xcfg.h has smx kernel configuration.)
Set the number of tasks, priority levels, stack size, etc. here. These settings directly affect
memory requirements so keep these values small, but large enough for some growth in
requirements.

 2 app.c
Sample application file. Replace this with your main application file. The two hook
routines are appl_init() and appl_exit(). You must implement these.

 3 smxmain.c
Contains main(), which calls smx_Go(). smx_Go() initializes smx, creates several smx
objects, and starts idle, which is the first task. idle runs ainit() as its main function to
perform application initialization. At the end of ainit(), idle’s main function is changed to
smx_IdleMain(). ainit() must not call SSRs that suspend. Also, interrupts should be
masked during initialization. Generally, the startup code should mask all interrupts.
main() ensures they are masked before calling smx_Go(), in case there is some reason you

Common Notes

3

had to enable some interrupts. ainit() restores this mask. See smx Startup and Scheduler
Operation in the SMX Quick Start for more discussion of these points. aexit() is used to
exit. It can be made to infinite loop or do whatever is appropriate for your system on exit.

 4 smxmain.h
This file provides function prototypes and declarations for the Protosystem.

 5 smxmods.c
This file contains init and exit code needed for some SMX modules (products). It is divided
into sections for each module. It has 2 top-level routines, smx_modules_init() and
smx_modules_exit() which call each module initialization and exit routine in turn. These 2
routines are called from ainit().

 6 smxaware.c
Initialization file for smxAware. smxaware_init() is called by ainit().

 7 XXX.YYY Subdirectory (e.g. IAR.ARM)
Build directory. Project files, locator config files, debug macro files, etc are stored here.

BSP directory

 1 bsp.c, bsp.h
Implements the BSP API routines documented in the APIs section of this manual. There is
typically one of these for each board, stored in the subdirectory named for the board. For
ARM-M, there is just one file, BSP\ARM\bspm.c.

 2 startup code (file names vary)
The startup code performs some register and memory initialization, then calls main() in
smxmain.c. See the Protosystem section in the CPU section for a list of startup files for
your CPU.

Target Defines

The project files pass several target-related defines to the compiler and assembler to control
conditional compilation/assembly of the code. These are in preinclude files in the CFG directory
or in the project itself, in the case where the IDE does not support preinclude files. It is common
for IDEs to support them for C files but not assembly. These are where key SB_BRD (board) and
SB_CPU (processor) symbols are defined. See the Preinclude Files subsection in the section for
your tools in this manual, for more information.

Common Notes

4

Coding Notes

ISRs
The Architectural Notes section for each processor in this manual has a subsection about ISRs
specific to that processor. Here are some general tips for writing ISRs.

Some processors such as ARM have a single interrupt flag to enable or disable interrupts. Others,
such as ColdFire have multiple bits that indicate an interrupt priority level for which interrupts
are enabled. For the first case, use sb_INT_DISABLE()/sb_INT_ENABLE() to disable/enable
interrupts. For the second case, use sb_IntStateSaveDisable() and sb_IntStateRestore(), which
save and restore the interrupt priority level, unless you want to enable all interrupts at the end of
the critical section.

smx ISRs must increment the smx global srnest before interrupts are enabled. This requires use
of ISR enter/exit macros and often assembly shells to do the ISR prolog/epilog instead of using
the compiler’s interrupt keyword or other method to write an interrupt function.

On entry to ISRs, interrupts are disabled or disabled for lower and same priority levels,
depending upon the processor. In the second case, if higher priority ISRs must be prevented from
nesting in a critical section, use sb_IntStateSaveDisable() and sb_IntStateRestore(). If this must
be prevented from the first statement of the ISR, it may be necessary for you to modify the
assembly shell to disable all interrupts in the first instruction. Again, see the information about
writing ISRs for your processor, in this manual.

To allow nesting, you must enable interrupts. However, before doing this, you should do at least
the minimum operations necessary to service the interrupt:

 //…
 sb_IRQClear(IRQ_NUM);
 /* read/write any peripheral controller registers that need to be handled,
 or full body of ISR. */
 sb_IRQEnd(IRQ_NUM);
 sb_INT_ENABLE();
 //…

sb_IRQClear() acknowledges it so the same interrupt does not continue to be generated.
sb_IRQEnd() tells the interrupt controller that processing is done and it is ok to generate the
interrupt again. If you want to enable it sooner, use sb_IRQMask() to mask it before
sb_INT_ENABLE() and unmask it with sb_IRQUnmask() before exiting the ISR.

The sequence of calls to hook an interrupt is as follows.

 sb_IRQVectSet(IRQ_NUM, MyISR);
 sb_IRQConfig(IRQ_NUM);
 sb_IRQUnmask(IRQ_NUM);

Common Notes

5

Instead of calling sb_IRQVectSet(), the ISR can be statically initialized in the vector table in the
BSP, if there is one e.g. vectors.c (ARM-M) or vectors.s (ColdFire) or in the IRQ dispatcher
irqdispatch.c (ARM). Some processors such as ARM that do hardware vectoring have registers to
store the ISR addresses, so this cannot be done.

Alternatively, these functions can be used.

 sb_ISRInstall(IRQ_NUM, par, MyISR, “Name”);
 sb_IRQUnmask(IRQ_NUM);

sb_ISRInstall() is used by SMX middleware and is very convenient because it automatically
assigns an ISR shell of the right type for the processor architecture, and it also allows passing a
parameter to the ISR core function. This is usually used to pass an index to indicate which
controller has interrupted, when there are multiple controllers of a type, such as USB host. This
avoids having to duplicate the ISR function for each. It also automatically creates a pseudohandle
for the ISR, giving it the specified name, so it is tracked in the SMX Event Buffer displayed by
smxAware. It also calls sb_IRQConfig() to configure the IRQ. It saves the vector that was
previously installed, so it can be later restored by sb_ISRRestore(), if desired. The ISR shell does
smx_ISR_ENTER/EXIT() and calls the dispatcher, sb_ISR(), passing the parameter to it.
sb_ISR() calls smx_EVB_LOG_ISR/RET(), sb_IRQClear(), sb_IRQEnd(), and the ISR function,
passing the parameter to it. The ISR function is then just a normal C function, as all of the smx-
related operations have been done by the shell and sb_ISR().

For more information about the foregoing functions, please see the API section of the smxBase
User’s Guide.

Important: smx ISRs (those that use smx_ISR_ENTER() and smx_ISR_EXIT()) must not run
during initialization, since smx structures such as the LSR queue have not been created or
initialized. Do not enable such ISRs until after interrupts are unmasked in ainit(). C++ users,
keep in mind that static initializers run during the startup code before main().

Inline Assembly in C
C compilers generally support some degree of inline assembly within C files, but the syntax and
rules vary for each compiler. We use inline assembly in smx scheduler porting macros to save the
overhead of a function call and return. However, limitations of the tools have often forced us to
write them as assembly functions. Some compilers do not allow changing certain registers, such
as the stack pointer, from inline assembly. Newer versions have become more restrictive about
this.

Another problem is register usage in inline assembly. The question is whether the compiler
assumes the register will be unchanged following the inline assembly section or if it is expected
to be preserved. Often the compiler documentation does not discuss this, and experimentation
may not prove that something will always be ok, and at all optimization levels. Taking the safe
approach and saving/restoring registers requires two memory references for each register, which
may be more costly than the function call/return. Compilers do not expect volatile registers to be
preserved across a function call, so implementing a porting macro as an assembly function rather
than inline guarantees you can use those registers without needing to save/restore them.

As a result of the limitations, we have re-implemented many of the smx porting macros as
assembly functions in an assembly file.

Common Notes

6

Misc Notes

Configuration
The CFG directory contains preinclude files that pass settings and defines to the compiler and
assembler to specify the target CPU, board, etc. Some tools may use a different name for them.
They are documented here in the sections for each CPU.

APP\acfg.h in the Protosystem is where to specify the maximum number of various smx objects
to allocate, such as tasks, stack pool stacks, and control blocks. The settings here are used in
XSMX files.

XSMX\xcfg.h has kernel configuration settings. Most reduce the size of the kernel by removing
features. These should usually be left alone, unless memory is very tight or performance needs to
be improved.

Main SMX modules each have their own configuration file. Examples:

smxFS: XFS\fcfg.h
smxNS: XNS\include\nscfg.h
smxUSBH: XUSBH\ucfg.h

As part of building your release, we configure these files for the drivers or add-on modules you
purchased. Other tuning can be done to them as well. See the SMX Quick Start for more
discussion of the SMX Modules and the files involved.

Project Files
We recommend that you start with the project files we provide. If you prefer to create your own
or create a makefile, be sure to use all the switches we do. If you are in doubt about the need for
a switch or setting, please ask. Unfortunately, IDEs make it hard to see what we have set, since
settings are scattered across multiple setting tabs, and comparing each to a default project is
tedious. Consult the section in this manual for the compiler you are using for any notes about
necessary settings. Also see if you can get the pure Protosystem (as shipped) to build and run
using your build files.

Project files often do not handle product modularity well (i.e. the ability for us to release a
custom configuration of SMX modules per your order), so the Protosystem project file is set for
the products you ordered. If you order more in the future, it is necessary for you to add other
modules. This consists of adding its library and adding one or more defines to be passed to the
compiler and assembler. These are listed in the SMX Quick Start, in section Global Concepts/
Module Defines.

C Run-Time Library
The following are issues to consider when using functions in the C run-time library.

Common Notes

7

reentrancy

Consult your compiler documentation to determine which functions in the C library are reentrant
and which are not.

Calls to functions that are not reentrant need to be protected by a semaphore. That is, test it
before the call and signal it after. If having only one semaphore causes a bottleneck, replace it
with a semaphore per group of C library functions. Grouping is dictated by shared, non-reentrant
subroutines or use of a common global variable — study the C library source code to determine
this.

stack usage

Some C library functions use a lot of stack. The printf() family of functions, for example,
allocates large buffers on the stack — 1500 bytes or more. They can cause stack overflows that
go undetected because the stack pointer jumps a large amount, possibly past the pad. Tasks that
use such functions need larger stacks. smx stack usage checking and padding are a big help in
catching stack overflows such as this. When possible, use simpler functions; in this case, use
itoa() instead of sprintf(). Alternatively, you can create a simpler, custom version of such
functions, starting from the source code provided with the compiler.

Minimizing RAM Usage

stacks

Task stacks probably account for the largest RAM usage in a multitasking system, so it is
desirable to have as few as possible. The smx stack pool is helpful since it allows minimizing the
number of stacks required by allowing tasks to share stacks. When a task completes its work (i.e.
it stops), it releases its stack for other tasks to use. Stacks are needed only for the tasks active
simultaneously.

Also, you want to minimize the size of stacks in the stack pool as much as possible. The stack
size used in the Protosystem, as shipped, is fairly large. When you get your system working, you
may want to try to tune that size down.

Tip: Tune stack size when your application is working. Then, verify that it still works after
reducing the stack size.

Use bound stacks for unusually large or small stacks, as stack pool stacks are intended to be sized
for the typical task in your system. Bound stacks are allocated by simply specifying a non-zero
stack size parameter to smx_TaskCreate(). They are allocated from the heap. Bound tasks keep
their stacks even when stopped. The memory is freed only when the task is deleted.

Heap size

Heap size is controlled in acfg.h or the linker command file. See the Heap chapter in the smx
User’s Guide for more information.

control blocks

Control blocks are small, to minimize memory usage. Most are 12 to 36 bytes in 32-bit versions.
The TCB is larger, currently about 100 bytes. See the control block definitions in xtypes.h to see
their sizes and what fields they contain. The settings in acfg.h dictate how many control blocks of

Common Notes

8

each type are allocated. You should tune this for your application, but set them generously
initially for development to avoid SMXE_OUT_OF_ and SMXE_INSUFF_ errors.

Profiling
See the Precise Profiling chapter in the smx User’s Guide.

SMX Utilities

The following is a summary of the utilities provided with SMX. Only the utilities appropriate for
your release are included in it.

FlashImage
Creates a flash disk image for NAND or NOR flash. It is supplied with the NAND and NOR
drivers. See the readme.txt in this directory for details and syntax.

MIBTOC
MIB to C translator for smxNS SNMP Agent. It is supplied with the smxNS SNMP Agent
option.

Syntax: mibtoc <infile> [outfile]

MpuMapper
Modifies map file to have symbols in address order, interleaved in placement summary section.
See SecureSMX User’s Guide.

MpuPacker
Helps order sections in linker command file to minimize memory waste. See SecureSMX User’s
Guide.

NSBLDPG
Converts HTML pages to C to add to the application, for the smxNS web server.

Syntax: nsbldpg <cfgfile>

cfgfile is the full path and name of the .cfg input file. Enclose it in quotes if it contains spaces.

PREFRMT
Converts dial scripts to C for use with smxNS PPP and SLIP. Supplied with smxNS.

Syntax: prefrmt <in.scr> <out.scr> <down.scr> {usrN.scr}

Common Notes

9

TestComm
Windows program used to test the smxUSBD serial driver. Supplied with it.

TestSocket
Windows program used to test the smxUSBD Remote NDIS (RNDIS) driver. Supplied with it.

usbdfu
Windows console program used to test smxUSBD Device Firmware Upgrade. Supplied with it.

Tips

Debugging
1. If smx does not seem to be running correctly, set a breakpoint on smx_EMHook() in

smxmain.c. If this breakpoint is ever hit, an smx error has occurred. You can inspect smx_ct
and the call stack to see who caused it. If the error is SMXE_OUT_OF_ or
SMXE_INSUFF_, increase the appropriate setting in APP\acfg.h.

2. The Diagnostic window in smxAware shows a list of the errors that occurred, in order. If you
don’t have smxAware, you can look at the global smx_errno, which indicates the number of
the most recent smx kernel error. 0 means no error has occurred. See xdef.h for the error
numbers. To see the error buffer (without smxAware), inspect *smx_ebi to *smx_ebn
(smx_ebi[0] is the first error).

ARM

11

ARM

See section ARM-M for information about Cortex-M. This section is for traditional ARM
processors (ARM7, 9, etc). Since the same tools are used for both, tool information is presented
only in this section.

Architectural Notes

ISRs
See the section ISRs in the Common Notes/ Coding Notes section at the beginning of this manual
for general information about writing and hooking ISRs.

The interrupt controller on ARM chips varies because this is not part of the ARM core. The
ARM architecture only specifies the format of the Exception Vector Table and that there is only
one IRQ vector in it.

ARM chips all seem to use one of two ways of dealing with this. Some hook a single, master ISR
to that one IRQ vector that prioritizes and dispatches the user’s ISR, in software. For some
ARMs, this involves a fair bit of code that runs for each interrupt, which hurts performance.
Many newer ARMs of this type improve on it by doing prioritization in hardware so only the
dispatch must be done in software. Other ARM chips implement their own internal vector table
and do the prioritization in hardware. These are discussed in turn. Fortunately, the newer ARMs
seem to have either a vectored interrupt controller or at least do prioritization in hardware so only
a simple dispatcher is needed.

For ARMs that require software vectoring, a dispatcher routine is needed to call the appropriate
ISR function. For smx, we encapsulate this with code that does the equivalent of
smx_ISR_ENTER() and smx_ISR_EXIT(). Only this one master routine uses these macros; user
ISRs are normal C functions.

XSMX\xarm_*.s implements this master ISR, called smx_irq_handler. At a high level, it looks
like this:

ISR enter code
call dispatcher to run appropriate user ISR
ISR exit code

Since the ISR enter and ISR exit code is done in this single hardware ISR, your ISRs are to be
written as simple C functions that are called by the dispatcher. In your functions:

1. Do not use the interrupt keyword (or __irq, etc).
2. Do not use smx_ISR_ENTER() or smx_ISR_EXIT().

ARM

12

You may call smx_LSR_INVOKE() from your ISR function, as usual. Also, the usual rule about
not calling SSRs from ISRs still applies. For these ARM chips, a user ISR looks like this:

void MyISR(void)
{
 //...
 smx_LSR_INVOKE(my_lsr);
 //...
}

Notice that it is a normal function and does not use smx_ISR_ENTER() or smx_ISR_EXIT().

The dispatcher can be complicated or simple depending upon the processor. It is complicated and
slow if the prioritization must be done in software. In this case, hopefully the processor vendor
supplies this routine. This is true for the LH7A400 for example (not the LH7A404).

The dispatcher is simple for ARMs that have a register that indicates the IRQ number of the
highest priority pending interrupt. In this case, we maintain a vector table in software and simply
call into it using the register value as the index. This is true for the DragonBall MX1/MXL and
STMicro STR7, for example.

ARMs that do hardware vectoring, such as the Atmel AT91 family, use a clever technique: The
interrupt controller on these processors has an internal vector table that is set when you hook
your ISR, and they have a register with the address of the highest priority ISR that should run.
The single ARM IRQ slot is programmed with an instruction that does an indirect branch via the
chip’s register that holds the address of the highest priority ISR. In this case, ISRs are written as
is typical of other smx versions: Each is hooked to its own vector and uses smx_ISR_ENTER
and smx_ISR_EXIT. They cannot be fully coded in C, however. Instead, the outer shell that uses
smx_ISR_ENTER and smx_ISR_EXIT must be written in assembly, and it calls the C function
to do the real work. The smx_ISR_ENTER and smx_ISR_EXIT macros in XSMX\xarm_*.inc
are the same macros used in the dispatcher in xarm_*.s.

For ARMs that do hardware vectoring, an ISR looks like this:

; file.s

IMPORT MyISR
EXPORT MyISRShell

MyISRShell
 smx_ISR_ENTER
 BL MyISR
 smx_ISR_EXIT

/* file.c */

void MyISR(void)
{
 //...
 smx_LSR_INVOKE(my_lsr);
 //...
}

Notice that the C function is a normal function, and that smx_ISR_ENTER() and
smx_ISR_EXIT() are done for each ISR, in assembly.

ARM

13

The following files are provided for interrupt handling.

Software Vectoring:

XSMX
xarm_ads.s: single ISR calling dispatcher; ARM DS/RealView/MDK assembler
xarm_gcc.s: single ISR calling dispatcher; GNU C preprocessor then assembler
xarm_gnu.s: single ISR calling dispatcher; GNU assembler (maybe via compiler)
xarm_iar.s: single ISR calling dispatcher; IAR assembler

Hardware Vectoring:

XSMX
xarm_ads.inc: smx_ISR_ENTER/EXIT macros; ARM DS/RealView/MDK assembler
xarm_gcc.inc: smx_ISR_ENTER/EXIT macros; GNU C preprocessor then assembler
xarm_gnu.inc: smx_ISR_ENTER/EXIT macros; GNU assembler (maybe via compiler)
xarm_iar.inc: smx_ISR_ENTER/EXIT macros; IAR assembler

BSP\ARM
isrshells_ads.s: ISR shells that use macros (add your shells); ARM DS/RealView/MDK assembler
isrshells_gcc.s: ISR shells that use macros (add your shells); GNU C preprocessor then assembler
isrshells_gnu.s: ISR shells that use macros (add your shells); GNU assembler (maybe via compiler)
isrshells_iar.s: ISR shells that use macros (add your shells); IAR assembler

The code for smx_ISR_ENTER/EXIT() is fairly complicated because it must switch out of IRQ
mode back to the task’s mode (i.e. Supervisor Mode (SVC)) and check whether to branch to the
LSR and task schedulers. The following diagrams summarize operation of this code:

ARM

14

Prefetch Abort

Prefetch Abort

0C

0C

Reset

Reset

00

00

Data Abort

Data Abort

…

IRQ_Addr DCD smx_irq_handler

10

10

Undef. Instr.

Undef. Instr.

04

04

-

-

CPU reg isr

smx_irq_handler

ISR_ENTER

ISR_ENTER

Body

Dispatcher

ISR_EXIT

ISR_EXIT

Scheduler

Scheduler

Body
[reg]

return

Hardware Vectoring

Software Vectoring

return

14

14

IRQ

IRQ

18

18

FIQ

FIQ

1C

1C

SWI

SWI

08

08

EVT

EVT

Notice that in the case of software vectoring, the branch is done via the literal pool (table of
addresses) following the EVT, but in the case of hardware vectoring the branch is done via a
register in the CPU’s interrupt controller. The key point is that the CPU register can change
(to be the address of the next ISR to run). In the software vectoring diagram, [reg] means a
possible branch through a CPU register; i.e. prioritization is done by the CPU’s interrupt
controller, not in software.

ARM

15

Operation of smx_ISR_ENTER and smx_ISR_EXIT is shown below. Note that these show the
main steps and omit complexities such as switching to the system stack and calling the pre-
scheduler code.

ISR_ENTER

srnest++

switch mode and
stack from IRQ
to SVC (task)

push volatile
regs r0-r3, r12,

r14

ISR_EXIT

RunLSRs()

RunTasks()

pop r4-r11

srnest - -

push non-volatile
regs r4-r11

pop r0-r3,r12,r14
and return

srnest == 1
?

Y

Y

Y

N

N

N

lqctr == 0
?

sched == 0
?

Thumb Code
We have seen no interest in Thumb support for traditional ARM, so we have not worked with it
in many years. In the past, we tested that the smx library, smxNS library, and Protosystem can be
compiled and run in Thumb mode. A few changes were necessary, mainly to force ISR-related
functions to be compiled for ARM mode. Changes were made to other SMX modules too, but
these have not yet been tested in Thumb mode. SMX also supports linking other Thumb code,
such as yours or in other libraries.

Alignment of Memory Access
Traditional ARM processors do not support unaligned accesses to memory. It is necessary to
access a 32-bit value on a 4-byte boundary. Attempting to read or write at a byte or halfword
address results in the access being done at the next lower aligned address, producing wrong data.

ARM

16

ARMv7-A adds support for unaligned data access. CP15 c1 SCTLR U bit is always 1. Setting the
A bit of this register to 1 enables alignment fault checking so the processor will fault on any
unaligned access. However, our experience on the TI AM335x and AM35x, Renesas RZ, and
Freescale Vybrid VFxx processors is that even with alignment checking off (A bit set to 0), it
still generates the fault for an unaligned access. Unfortunately, IAR EWARM generates code for
this architecture assuming unaligned accesses are ok, so this causes faults. We had to add the
switch --no_unaligned_access to all project files for these processors. Apparently, it is needed for
all ARM-A processors.

Semihosting
Semihosting uses a software interrupt to interact with the host PC, such as to direct console
output to a debugger window. Although it can be convenient for debugging, it can cause
problems due to inhibiting interrupts awhile, causing your system to run differently than
expected. For example, IAR EWARM v6.50 implements the time() function to make a
semihosting call to get the time from the PCs clock, but this causes a long period where
interrupts are blocked, and a customer spent a couple days to find out why their regularly
occurring interrupt would sometimes occur much later than expected. As a result of this
experience, we disabled semihosting in all IAR projects starting in SMX v4.1.1. If you have a
problem with interrupts like this, you should verify this setting is disabled, since it is possible we
could have created a new project by copying an old one from before the fix, by mistake.

Porting to a New ARM or Board

If you are using an ARM processor that we do not support, please follow this guide to adapt one
of our existing BSPs to your particular ARM. Also refer to the Protosystem section, which
follows. Only refer to the smx Porting Guide if you are porting to a new compiler or CPU
architecture that is not yet supported by smx. See the section Common Notes/ Porting in this
manual for an overview of porting.

1. Build the Protosystem project even if you don’t have the board that our BSP targets, to
ensure the tools are set up ok. See the appropriate Getting Started section in the SMX Quick
Start for directions, if you have not done this already.

2. BSP\ARM\<cpu>\<board> contains BSP code, including some code from the board vendor.
Replace that directory with your own, for your CPU and board. bsp.* and led.* are our files.
Create new versions for your board. The main work is bsp.c — it is the implementation of
the smx BSP API. Some routines will map onto the BSP code supplied with your board. See
the section APIs/ BSP API in this manual, or comments in XBASE\bbsp.h if you are unclear
about the purpose of a function.

3. CFG directory:

a. IAR Embedded Workbench: Create a new board preinclude file similar to the .h file
provided (e.g. stm32746geval.h). Modify iararm.h to include it.

b. CrossWorks: Create a new board preinclude file similar to the .h file provided. Modify
gcwarm.h to include it.

ARM

17

4. Create a new build directory for your board, under APP\IAR.ARM, or similar. Copy the
project files and other build files to the new directory and rename them for your target. Then
modify the project in the IDE to build your BSP files instead of the BSP files we provided.

BSP Files

 1 armdefs.h, armdefs.inc (“_ads”, “_gcc”, “_gnu”, “_iar” versions)
Master include file to include the appropriate BSP header files for the target. armdefs.inc is
for assembly files. It has only a small subset of what is in armdefs.h.

 2 bsp.c
Implements the BSP API routines documented in the APIs section of this manual. Some
that are the same for most targets are implemented in XBASE\bbsp.c instead.

 3 bsp.h
BSP-specific defines, types, prototypes, and configuration settings.

 4 isrshells.s (“_ads”, “_gcc”, “_gnu”, “_iar” versions)
These do ISR enter and exit. This is discussed at length in ARM/ Architectural Notes/
ISRs, in this manual. Please read that.

 5 lcd.c, lcd.h
Simple API for writing messages to LCD. Used by lcddemo.c.

 6 lcddemo.c
Simple test/demo for text LCD for boards that have one.

 7 led.c, led.h
Simple API for writing LEDs. Used by LED_task and LED_LSR in app.c.

 8 term.c
Terminal I/O routines for message output and keyboard input. Interfaces to UART driver.

 9 uart.c, uarti.c
Polled and interrupt-driven low-level routines. The latter are used by high-level interrupt-
driven UART driver.

10 AM, AT91, LPC, … (subdirectories)
Subdirectories containing BSP files for the indicated board or family.

Evaluation boards provided by ARM vendors typically come with board support code (i.e.
drivers). In some BSPs, we have interfaced our BSP layer (bsp.c) to the code they provide. Since
smx requires only a few services, such as a timer, interrupt masking, unmasking, and hooking,
and a UART for console output, much of the code they provide is unused. We often have copied
only the files we needed to subdirectories under BSP\ARM, and we have made any necessary
changes to them. Add any others that are useful or their whole BSP, and transfer our changes to
the new files. They are tagged with MDI: comments.

ARM

18

It is typical for the code to assume compilation with a C compiler not a C++ compiler, so you
may need to wrap each file with extern “C” { }, to avoid name mangling so the linker can resolve
references from assembly files. This is necessary if you compile with a C++ compiler. See the
BSP files we used to see how we did this, if necessary.

BSP API Extensions

BOOLEAN sb_IRQTableEntryWrite() — parameters vary

Changes an entry dynamically in sb_irq_table[]. Generally, sb_irq_table should be initialized
statically and left alone, but this function is provided in case there is a need to change it
dynamically. After calling this, call sb_IRQConfig() to make the change in the interrupt
controller. The parameters vary because the fields in sb_irq_table vary depending on the
interrupt controller for a particular processor.

This function is primarily provided for assembly access, since it may not be possible to
access a C structure in assembly. Even for C, it is better style to call this function rather than
modifying the structure directly.

IAR Embedded Workbench ARM (IAR.ARM and IAR.AM)

Last updated for IAR v9.10.This information applies to ARM and ARM-M, and is not repeated in
the ARM-M architecture section.

Version
Use the version of IAR EWARM indicated by the readme.txt file in the root of your release or by
the suffix of the project files. For example, _iar910 in the name of the project files means v9.10.
We may have provided project files for multiple versions, in which case you have a choice. The
suffix is necessary because changes in the IDE from version to vesion require it to convert the
project files, but once converted the changes cannot be reversed. It is often possible to use a
newer version, but there could be build problems, so save a copy of the project files in case you
need to revert.

Beginning in v5, the tools moved from IAR’s proprietary UBROF object file format to the
industry-standard ARM EABI 2.0 ELF/Dwarf object format. This was a major change to the
tools, particularly the linker and assembler.

Project Files
Project settings are saved in several files. The .ewp and .eww files are the key project files. They
should never be deleted. .ewd stores debug settings. If it is deleted it will be regenerated, but you
have to reconfigure all the debug settings such as the path to the startup macro file you are using
and the JTAG device selection and settings). Other project files, such as .dep and the whole
settings directory can be deleted. The settings files hold less-important information such as
window sizes and placement, positions in files, etc.

ARM

19

In this manual we refer to these files generally as project files, even though technically, the .ewp
file is the project file. When we say to open the project, we mean to open the workspace file,
.eww, using File | Open | Workspace, which opens the project file(s) it contains.

Build Targets
The project files have the standard 3 build targets (Debug, Release, and ROM). The Debug and
Release targets are linked with the _ram version of the linker command file (.icf); the ROM
target is linked with the _rom version. For SoCs that have no external memory interface and only
a small on-chip SRAM, there are only Debug and ROM targets, and both use the _rom linker
command file.

Preinclude Files
Preinclude files are header files that are included by the IDE ahead of every source file. We use
them to define settings that should be used across all projects (libraries and application). Mostly,
they define preprocessor symbols to indicate the processor, board, etc., and they have defines to
indicate which SMX module libraries and demos to link. The following is a summary:

C/C++

iararm.h Master preinclude file. Selection of SMX modules and demos is done here.
<board>.h Board preinclude files; included by iararm.h.

Assembly

none

Only the compiler supports preinclude files, so for assembly, the defines are specified in the
IDE, on the Preprocessor tab of the Assembler settings for each build target.

How this works: In the project options, select C/C++ Compiler in the left pane. In the right pane,
select the Preprocessor tab. The line Preinclude file points to CFG\iararm.h and it includes the
board header file that is uncommented in it (also in CFG).

Note that the reason for using preinclude files even though we can put all defines into the IDE is
that this makes it easy to use the same defines in all projects. This makes it easy for us to switch
from one board to another and avoids the need for us to repeat the same defines in every build
target of every project — and maintain them.

Relative Paths
In order to allow you to install SMX to any disk and directory, it is necessary that the project use
relative paths to locate the source code and other files in the project. EWARM does not have a
checkbox to enable this as many other IDEs do. However, it provides “argument variables” that
can be used to specify the paths relative to the project, compiler, etc. directory. We use the
variable $PROJ_DIR$ in many of the paths we specify. For a full list of these variables, see the
Embedded Workbench User Guide, Part 7: Reference Information/ IAR Embedded Workbench
IDE Reference/ Menus/ Project Menu/ Argument Variables Summary.

ARM

20

Predefined Symbols
The IAR compiler and assembler define quite a few symbols that can be used in the code. These
are clearly documented in the respective manuals. For the compiler, see the C Compiler
Reference, Part 2: Compiler Reference/ The Preprocessor/ Predefined Symbols. We use the
following:

 __IAR_SYSTEMS_ICC__ Used for sections we assume are the same for all IAR
compilers regardless of target processor.

 __ICCARM__ Used for sections that are ARM-specific.

Startup Sequence
assembly startup code -> ?main -> main() -> …

?main is the routine in the IAR runtime library (DLIB) that clears .bss, copies initialized data
from ROM to RAM, runs C++ initializers, etc and then branches to main(). Following main() is
the standard sequence shown in the SMX Quick Start, in section SMX Startup and Scheduler
Operation.

Assembler
In order to make it easier to assemble code you have already written for another assembler, the
IAR assembler can be set to be more flexible about syntax. From the Language tab of the
Assembler settings panel in the IDE, check “Allow alternative register names, mnemonics and
operands” or use command line switch –j. We have not tried this switch. See the IAR ARM
Assembler Reference Guide.

Linker Command Files (.icf)
We created our linker files based on the samples provided by IAR.

Note that we typically located the System Stack after some other data so it would not be at the
start of a region of memory. A stack overflow into non-existent memory is likely to cause a
processor fault, which would halt the system, while overflow into other data may not be
catastrophic, especially if there is unused space at the end.

Also note that only the IRQ and SVC stacks are used. These are arranged so that the unused
stacks are before the SVC stack (used as the smx System Stack), so that any overflow would go
into these unused stacks.

Link Map
Generation of a link map is controlled in project Options. Select Linker and then the List tab. It
can be enabled or disabled. The link map produced is short and easy to navigate. SecureSMX
includes our MpuMapper utility which makes some modifications to the map file to make it more
helpful for partitioning code for security. See the SecureSMX User’s Guide about it.

ARM

21

Binary Files
Some flash programmers require that the program be a simple binary image. The project Options
specify what to create. Select Output Converter, and on the Output tab, check Generate
additional output. Then select the output format from the drop list.

Debugger (C-SPY)

JTAG Units

C-SPY supports a wide variety of JTAG units. We successfully use and recommend IAR I-jet or
J-Link.

See the Embedded Workbench Debugging Guide, Part 4: Additional Reference Information/
Reference Information on the C-SPY Hardware Debugger Drivers for directions to set up your
debug hardware.

Breakpoints

When running from ROM/Flash, breakpoints can be severely limited, sometimes to 2, and some
options in IAR use breakpoints. If you try to set multiple breakpoints and IAR’s Debug Log
window reports “Failed to set breakpoint: Driver error.” it probably means you have exceeded
the number supported.

To see all breakpoints in use during a debug session, select from the menu: I-jet | Breakpoint
Usage (or in place of I-jet, the debug probe you are using). In addition to any breakpoints you
have set, you may also see these:

“Stack window trigger”
“C-SPY Terminal I/O & libsupport module”.

The “Stack window trigger” breakpoint is associated with Project | Options | Debugger | Plugins |
Stack. Turning this off frees a breakpoint, and the Stack view becomes unavailable. (The Call
Stack view is still available.)

The “C-SPY Terminal I/O & libsupport module” breakpoint is needed for the feature to direct
printf() to a terminal window in the debugger, and it may disable other support associated with C
library exception conditions. We don’t know how to disable it.

Flash Loader
EWARM has a built-in flash loader interface and includes pre-made flash loaders for many
specific processors. They provide the source code for these and directions how to create a new
loader for your processor. This is documented in the C-SPY Debugging Guide, Part 3: Advanced
Debugging/ Flash Loaders/ Using Flash Loaders. Information about writing your own flash
loader is given in a separate PDF file in the IAR arm\doc\FlashLoaderGuide.pdf.

The flash loader is part of the debugger. There is no menu choice to run it. To download an app
into flash you initiate a debug session just like when debugging to RAM. EWARM automatically
loads the flash loader into RAM on the board and then runs it to download a binary version of
your application. When it is done you can either debug the application in flash or kill the debug

ARM

22

session and run free-standing. (For that, power off the board, disconnect the JTAG unit, power
the board on, and the application will start running.)

The EWARM documentation does a good job describing how to set up for flash loading, but here
is some additional guidance:

1. Project setup: The ROM target of SMX project files should already be set up properly.
However, ensure the checkboxes are set for Verify download and Use flash loader(s) in the
project options Debugger settings | Download tab. The project is automatically set to use the
correct flash loader based on the selected processor, if a flash loader for it is provided.

2. Failure to Program Flash: If you get verify errors, try resetting or cycling power to the board
and try again.

Using IAR EWARM
1. The Protosystem project files are located in the board directories under APP\IAR.AM, or

similar. For example, the workspace file for STMicro STM32H753I-EVAL is here:

APP\IAR.AM\STM32\App_stm32h753i_iar830.eww

Open the project file for the eval board you are using, do a Make, and then press the Debug
button to download it to the board and debug. It should run as shipped. If not, contact us for
help.

2. The Protosystem project files are set for C++ in the Compiler Language setting to support
features we use such as default parameters.

3. Files are added to a project with by right-clicking the top node or a group/folder node and
selecting Add | Add Files….

4. File Organization: The organization of file nodes in an IDE project has no relation to their
location on disk. This gives you the flexibility to add new groups and drag files into them in
the IDE without any worry about what directories they are in on the disk.

If you do want to move a file on disk, the IDE will not be able to find it. You can either
remove the node from the project and re-add it or manually edit the project file since it is in
text format (XML).

5. Excluded Files and Groups: If a file or group in the project has a gray icon next to it, it is
excluded from the build. To change this, right click it and select Options, and uncheck
Exclude from build in the upper-left corner of the dialog. This is a convenient way for us to
exclude optional files so they may be re-enabled easily without having to browse to add them
back to the project. Each build target (Debug, Release, and ROM) sets this independently.

Debugging with C-SPY
1. Some targets require initialization steps to be performed before the debugger is able to

download code to RAM on the board. This can be handled with a C-SPY .mac file. If one is
necessary for one of our BSPs, we provide the .mac file in the same directory as the project
files, and the project file points to it (and runs it each time you initiate a debug session). In
the C-SPY Debugging Guide, see Part 3: Advanced Debugging/ C-SPY Macros for
documentation about the macros that are available. Also, see the subsection Reference

ARM

23

Informationon Reserved Setup Macro Function Names to learn which macros the debugger
calls and when during the setup process.

2. By default, the debugger runs through the startup code automatically and stops at main(). If
you want to debug the assembly startup code, open the project settings and select Debugger
in the left pane. In the right pane, check the Run to box and enter main in the text input box
under it. Alternatively, set a breakpoint in the startup code.

3. smxAware, included with smx, is a DLL that plugs into C-SPY to display smx objects and
graphs. The graphical displays show event timelines, stack usages, profiling, and memory
usage and layout. See the smxAware User’s Guide for full information.

Tips
1. The Multi-file Compilation option can be used to reduce code space. We found when used

for the smx kernel, it reduced code size by about 4KB. When enabled, the IDE does not show
compiling each file; instead there is a long pause while it compiles all files in the project. It
may appear the IDE is hung, so be patient. To enable it, right-click the top node of the
project and select Options, then click the Multi-file Compilation checkbox in the C/C++
Compiler settings.

2. The compiler switch --no_const_align can be used for files that have string literals, such as
XSMX\xem.c to reduce ROM usage, since it causes each string to start on a byte boundary,
instead of a word boundary. There is no checkbox in the IDE; it is necessary to enter this on
the Extra Options tab of the C/C++ Compiler settings in project options.

3. The compiler switch --no_unaligned_access is needed for ARM-A processors. See section
ARM/ Architectural Notes/ Alignment of Memory Access.

Troubleshooting
—

GNU ARM

Distributions
Despite sharing a common name, all distributions of the GNU C/C++ compiler are different.
Some replace components with proprietary tools, such as the IDE and debugger. Some may
change the interface to the underlying tool. For example, assembly files may be run through the
C preprocessor rather than the assembler’s preprocessor, requiring use of #ifdef rather than
assembler preprocessor directives, or there may be other syntax differences, such that a different
version of each assembly file must be created. A bigger problem is that there is forking among
the releases, so they have different sets of switches. To make things more confusing, some
distributions supply documentation from another distribution that does not exactly match their
own, so that it documents switches that don’t exist, or the usage differs. Veteran GNU users
undoubtedly know all this, but if you are new to it, please expect these frustrations, if you have to
do some work to port our release to your particular GNU tools.

ARM

24

We have done occasional projects with chip vendor tools, but the GNU tool we’ve spent the most
time with is Rowley CrossWorks. Information for it is is below. If you are using different tools,
you will need to create the project files or makefiles, linker config files, etc. and possibly make
syntax changes to the code. We cannot provide much support for this. In GNU releases, we
provide all GNU files for all versions of GNU we support, so you can use the files that are
closest to what your tools require. You should simplify your release by deleting the files you
don’t need.

We recommend that you study the CrossWorks project files (.hzp) carefully in your text editor
and note all options such as defines, include paths, and other settings, and then make similar
settings in yours.

GNU / CrossWorks ARM (GCW.ARM)

Last updated for CrossWorks v2.1.1.

Please read the GNU ARM section first for an overview of our GNU support.

SMX supports CrossWorks ARM from Rowley Associates (www.rowley.co.uk).

The nicest thing about CrossWorks is that the Windows version of the tools is natively hosted on
Windows and does not require Cygwin. It has a nice IDE and debugger built in. These are
proprietary, not Eclipse-based.

GCW: We use this in the name of the build directory. The G is for GNU and is useful to keep all
of them sorted together.

Installation
Follow the directions in the CrossWorks documentation. Then download the ARM Support
Package for your hardware using Tools | Install Packages… in the IDE or from
www.rowleydownload.co.uk/arm/packages.

Project Files
Project settings are saved in two files. The .hzp file is the key project file. It should never be
deleted. .hzs stores session settings such as open files, breakpoints, watches, etc. It can be
deleted, and clean one will be automatically generated when you open the project.

Important Notes:

1. See Build Targets below for explanation of what CrossWorks calls Configurations.

2. The list of options displayed changes depending on which node you have selected in the
Project Explorer window. For example, the File Type setting only appears when you select
an individual source file (not a folder nor a higher-level node).

3. Difficulty finding settings: Select the Common target (from the drop list in the Properties
Window) to see many global settings. Also, due to the hierarchy of the project, you may need
to click on the top level Solution node or the project node under it. The IDE does not show
some inherited settings, such as Additional Compiler Options and User Include Directories.

http://www.rowley.co.uk/
http://www.rowleydownload.co.uk/arm/packages

ARM

25

For example, Release is based on Common, but if you have the Release target selected, you
do not see the Common settings. Sometimes you may prefer to just look at the .hzp file in
your text editor, as we often do.

4. If you have any problems with options not taking effect, open the project file (.hzp) in your
editor and study it. It could be that conflicting settings are being put at different nodes of the
hierarchy. We had some trouble with this early in our work. The project file format is so
simple, it is easiest to make some changes by editing it. Also, when you temporarily make a
setting and then reverse it, remnants get left behind which can clutter the file. You may want
to periodically review the project file in your editor and clean it up so any important
overrides are more easily seen.

Build Targets
CrossWorks calls these “Configurations”. The project files have our standard 3 build targets
(Debug, Release, and ROM), which can be selected in the IDE from the drop list at the top of the
Project Explorer window. In the drop list in the Properties Window, it lists the others that these
are built from: ARM, Common, and Flash. See Build | Build Configurations in the menu. These
configurations are built-into CrossWorks. Debug, Release, and ROM are targets we created.

In general, the application Debug and Release targets use linker settings to locate the code for
RAM; the ROM target has different settings for ROM/Flash. The Debug target locates to
ROM/Flash for small SOCs that have only a small internal SRAM and do not support external
RAM.

Preinclude Files
Preinclude files are header files that are included ahead of every source file. We use them to
define settings that should be used across all projects. Mostly, they define preprocessor symbols
to indicate the processor and board, and they have defines to indicate which SMX modules and
demos to link. The following is a summary:

C/C++

gcwarm.h Master preinclude file. Selection of SMX modules and demos is done here.
<board>.h Board preinclude files; included by gcwarm.h.

Assembly

same files

How this works: The project setting Additional C/C++ Compiler Options that specifies the
-include switch and points to CFG\gcwarm.h. It includes the board header file that is
uncommented in it (also in CFG). The reason this works for the assembler too is because
assembly files also go through the C preprocessor. To see this setting in v2, select the Project
node in the Project Explorer window, and then look at the Compiler Options in the Properties
Window.

Note that the reason for using preinclude files even though we can put all defines into the IDE is
that this makes it easy to use the same defines in all projects. This makes it easy for us to switch
from one board to another and avoids the need for us to repeat the same defines in every build
target of every project — and maintain them.

ARM

26

Note: If you are using some version of GNU other than CrossWorks, you can use these same
preinclude files, if your tools support them, or else copy the defines into your project files or
makefiles.

Startup Sequence
assembly startup code -> main() -> …

In the assembly startup code, we copied the needed code from the CrossWorks startup code,
crt0.s that clears BSS, copies initialized data from ROM to RAM, runs C++ initializers, and then
branches to main(). Following main() is the standard sequence shown in the SMX Quick Start, in
section SMX Startup and Scheduler Operation.

Usually, we use the compiler’s startup code (we call it from the end of ours), but in this case, the
CrossWorks code has some overlap with ours and also does things we don’t need, so we decided
it was simplest to just copy what we needed into ours.

Optimization
Probably, you can use any optimization level for your code and ours, except for the smx
scheduler. As of CrossWorks v1.7 Build 13, it is still necessary to compile the smx scheduler
at Level 1 or None. (Note: This should be re-tested with the latest CrossWorks v2.x and smx
v4.1.) This is done by explicit project settings just for xsched.c (look at the .hzp file). We have
not studied the cause of failure when using other optimization levels for the scheduler. Most
likely it is due to some optimization and the nature of the scheduler. Switching stacks is not
expected by the compiler and is the main cause of difficulty, as well as inline assembly. Of
course, if you have run-time problems, try lowering the optimization level.

By default, our project files set the optimization level of Debug targets to None and of Release
and ROM targets to Optimize For Size. In our brief testing, we found that the performance of
Optimize For Size is only slightly lower than Level 3 (maximum optimization), but code savings
is substantial.

Note that the optimization levels offered by the IDE are actually groups of compiler
optimizations. There are many optimizations that are not in these groups. Please refer to section
3.10 Options That Control Optimization in the CrossWorks online help for details about these
switches.

C++
There seems to be no switch or pragma that can be used to globally force a C++ compile in the
CrossWorks IDE. GNU compilers have traditionally compiled as C or C++ based on the filename
extension. More recently, the –x switch was added to the gcc.exe interface driver but not to the
compiler itself, and the CrossWorks IDE bypasses that and calls the compiler directly. It seems
the only solution to force a C++ compile for a .c file in the IDE is to set the file type as C++ for
each file in the project properties:

Right-click on the file and select Properties. In the dialog box, find the File Options settings and
set File Type to C++.

ARM

27

Other compilers we have supported have a switch or pragma to set it globally, so we just compile
everything for C++.

Exception Handling

To enable exception handling, select the Common target in the Properties Window. Find the
Code Generation Options and set Enable Exception Support to Yes.

It is also necessary to set Use GCC Libraries to Yes in the Library Options.

Assembler
CrossWorks first runs assembly files through a C preprocessor, so it is necessary to use C-style
preprocessor directives (#if rathe than .if), so we had to create a new variant of our assembly files
for this case. These are suffixed with _gcc.

Linker
The linker uses a Memory Map File and a Section Placement File to control where code and data
are located. These are XML files in the Protosystem build directory. CrossWorks creates a linker
command file (.ld) from these files and puts it in the build directory along with the object files.
This is the actual input to the linker. If you get a build error in the .ld file, look at this file, and
then correct the problem in the map or placement file.

The Memory Map File and Section Placement Files come from or were derived from files in the
ARM Support Packages you can download via Tools | Install Packages… in the IDE or from
Rowley’s website (www.rowleydownload.co.uk/arm/packages). They are specified in the Linker
Options in the project properties. The files to use are specified independently for each build
target. The Memory Map file is in the System Files folder shown in Project Explorer. This file is
target-specific and specifies the addresses for the start of each segment.

We copied these files from the CrossWorks release (targets directory) to our build directory
under APP\GCW.ARM and set our project files to use them. This way they are included with
SMX releases, and the project continues to build with these same files regardless of whether
CrossWorks modifies their files.

Debugger
The debugger built into the IDE is good. It supports various target connection types, but we’ve
only used it with the J-Link JTAG unit.

We provide threads.js in APP\GCW.ARM to support the Threads window (Debug | Debug
Windows | Threads). The Protosystem project points to this file. This is the best kernel awareness
that is possible; CrossWorks does not support kernel-aware DLLs such as smxAware. The fields
in the Threads window are controlled by the IDE; we can only supply the data. The IDE can
display thread registers, but we did not support this because it is not useful. The registers at the
time of a task suspend would be what they were when saved by the tail of the ISR or in the
scheduler, not what they were on the last statement that executed from the task code itself. Even
if they were, it is questionable how useful that would be.

Tips for setting up and using the debugger:

http://www.rowleydownload.co.uk/arm/packages

ARM

28

1. First set up the JTAG connection. Here are the steps for J-Link: Target | Targets, then select
Segger J-Link in the scroll list. In the Properties Window, on the line J-Link DLL File, click
the button “…” and browse to the location of JLinkARM.dll. This assumes you have already
installed the J-Link driver that you got with your J-Link or downloaded from Segger. Close
the Targets window.

2. Connect to the JTAG unit. Steps for J-Link: Target | Connect Segger J-Link.

3. Press the Start Debugging button to download the program and run to main(). Or press the
Step Into button to stop at the first line of the assembly startup code.

4. Mixed C/Assembly and Disassembly window: Debug | Disassembly. This opens a new
window. For interleaved source display, click the down arrow at the right of its local toolbar
and select Show Source in Disassembly.

5. Locals, Globals, Threads, etc: Debug | Debug Windows | …

Flash Loader
CrossWorks provides the LIBMEM PRC Loader (with source code), which can program the
image into flash. It is included in the ARM Support Packages, which you can download from
www.rowleydownload.co.uk/arm/packages/.

To use the flash loader, go into Project Properties for the ROM target and scroll down to the
Target Options section. Make these settings:

Loader File Path: Set to the path of the LIBMEM RPC Loader file in the targets directory.

Loader File Type: Set to “LIBMEM RPC Loader”

In Target Script Options:

Reset Script: Point to a script file that does “FlashReset()” to reset the board.

Thumb Support
You can select ARM or Thumb in the IDE project properties. In the Code Generation Options
section, change the “Instruction Set” setting, and in the Library Options section, change Library
Instruction Set to Thumb. Or you can manually edit the project file (.hzp) and set all occurrences
of “arm_instruction_set” and “arm_library_instruction_set” to “ARM” or “Thumb”.

It seems the compiler has no #pragma to allow forcing specific functions to be compiled for
ARM as some other compilers have; it is necessary to compile the whole file for ARM. We
compile the smx scheduler, xsched.c, for ARM because some functions in it need to be in ARM
mode.

Using CrossWorks
1. The Protosystem project files are located in the board directories under APP\GCW.ARM.

2. See the Debugger section above for tips for using it.

http://www.rowleydownload.co.uk/arm/packages/

ARM

29

3. Creating a new project file for your board: Copy our Protosystem project file (.hzp)
and rename it as appropriate. It is often easiest to edit it with a text editor rather than
in the IDE:

a. Replace the solution name, project Name, and Targets with the correct processor.
b. Set the RAMEND address, which is used in boot_gcw.s to set stacks. It is the end

of RAM.
c. Change the file name and select the correct memory map file for the processor.
d. Add preprocessor defines in the Assembler settings for symbols defined in the

board preinclude (.h) file (see step 2).
e. Add your BSP source code to the project file.

4. Assembly Listings: Right click on the file and select Compile. Then right click and

select Disassemble. This opens a mixed source/disassembly listing window. You can
save it to a file. If you just want to generate the assembly code, look under Compiler
Options in project properties, set Keep Assembly Source to Yes.

5. The link map is specified by a section placement file and a memory map file. The

placement files are in the build directory (APP\GCW.ARM and the memory map files
are one level down in the directory for your board. The tools automatically create the
linker command file (.ld) from these, which is put in the directory with the object
files. The placement files are intended to be general and shared by multiple targets
(boards). They are provided by CrossWorks in the targets directory but we copied
them so they are part of the SMX release.

Tips
1. HTML help files: Open <cwdir>\html\index.htm in your browser. The left pane has the

contents links to all sections. It is fully expanded if your browser is set to block active
content. Look for the bar at the top of the browser window to allow blocked content and
allow it. Then the tree will collapse. It is very hard to use when fully expanded.

Troubleshooting
1. Problem: You are unable to expand any smx global data structures (e.g. smx_cf, smx_ct,

etc), and CrossWorks complains it doesn’t know the type of the variable.

 Cause: Probably there is no symbolic information for them.

 Solution: If the smx kernel is being built as a separate library, in the Release target, ensure
that debug symbolics are enabled for xglob.c or the whole library.

ARM

30

Tools

JTAG Units
You need a JTAG unit to connect to your target board for debugging. These range from high-end
units that do tracing and have other advanced features to low-cost wigglers that provide minimal
support. They connect to the board with a standard header, and to the PC via USB, Ethernet, or
serial. Some use the RDI protocol defined by ARM, which is supported by most tools.

IAR I-jet
I-jet is a low-cost JTAG unit that is integrated well with IAR Embedded Workbench. I-jet Trace
is a higher-cost model that supports the ETM (Embedded Trace Macrocell), to store an execution
trace.

IAR (Segger) J-Link/J-Trace
J-Link is a low-cost JTAG unit that is integrated well with IAR Embedded Workbench. J-Trace
is a higher-cost model that supports the ETM (Embedded Trace Macrocell), to store an execution
trace.

Lauterbach TRACE32
TRACE32 is a fairly expensive JTAG RDI unit with advanced capabilities. At least a few SMX
customers use it and praise it. Lauterbach added smx kernel awareness to it themselves. This is
one to investigate if you are in the market for a JTAG unit. We have never used this unit
ourselves.

Drivers

Disk
See smxFS documentation.

Ethernet
See smxNS documentation.

LED
Simple LED routines are provided in led.c in the board directory in the BSP (e.g.
BSP\ARM\STM32\STM32H7xx\STM32H753I-EVAL\led.c). See APIs/ LED API at the end of
this manual.

ARM

31

UART and Terminal
We provide the UART drivers supplied by the board/processor vendor, with any modifications
needed to integrate them with smx. These are in the subdirectories under BSP\ARM. Each
vendor’s driver is different, so we cannot document them all here. Please study the source code
to see how to use them.

If you wish to connect a terminal to one of these for input and output, ensure XBASE\bcfg.h is
set so that:

#define SB_CON_IN 1
#define SB_CON_OUT 1

Specify the port for each in bsp.h as follows:

#define SB_CON_IN_PORT 1 /* 1 or 2 */
#define SB_CON_OUT_PORT 1 /* 1 or 2 */

These settings are independent. Input or output can be individually enabled and the port can be
different for each.

term.c in the BSP directory interfaces to the UART driver to do terminal i/o. Also,
sb_PeripheralsInit() in bsp.c calls the driver initialization routine.

By default, the drivers are configured for 115200-8-N-1. Turn off flow control in your terminal
or terminal emulator.

Video (Graphics)
See PEG or C/PEG documentation.

Video (Terminal)
sb_ConWriteString(), and other functions in XBASE\bcon.c are mapped onto the UART driver
API so text output goes out the serial port to a terminal. See the section APIs/ Video API at the
end of this manual.

Other Notes

—

Tips

—

ARM-M

33

ARM-M (Cortex-M)

Architectural Notes

Overview
The ARM-M architecture is significantly different from the traditional ARM architecture used
for ARM7, ARM9, etc. Despite the fact that it is called “ARM” and is supported by ARM tools,
you should consider it a different processor architecture.

“Cortex” does not mean this newer architecture; it is the “M” that matters. The Cortex-A and
Cortex-R (ARM-A and ARM-R architecture) processors have the traditional ARM architecture.
To summarize:

 ARM-M:
 Cortex-M0, M1, M3, M4, M7, M23, M33

 Traditional ARM:
 ARM7, ARM9, ARM11, StrongARM, XScale, etc
 Cortex-A8, Cortex-R4

Architecture vs. Implementation: What has been confusing in the ARM world is that ARM
numbered both the architecture and the implementation. The little “v” was how you could tell
them apart. For example, ARM7 and ARM9 are based on the ARMv4 architecture. The name
“Cortex” was introduced to break this pattern. Cortex-M4, M3, and M0 are implementations
based on the ARMv7 architecture. Cortex-M1 is based on the ARMv6 architecture.

The key point is that ARM-M is basically a new processor, and as such, we assigned a different
processor ID to it and created a separate set of build directories for it (xxx.AM instead of
xxx.ARM). We have taken the more general view of calling it ARM-M rather than Cortex-M, in
the hopes that it will support whatever future ARM-M processors are introduced, which could be
named something other than Cortex.

ARM-M was designed for embedded systems, unlike ARM, and fixes the annoyances in ARM
and goes further to offer new useful features. It is also simpler in some regards.

Since the same tools are used for ARM-M and ARM, we do not repeat tool information here.
Instead, please refer to the tool section in the ARM section of this manual. Any additional
notes for each tool are presented in sections here.

For information about the ARM-M architecture, we recommend the book “The Definitive Guide
to the ARM Cortex-M3 and Cortex-M4 Processors,” Joseph Yiu, ISBN 978-0124080829, and the
ARMv7-M manuals from ARM.

ARM-M

34

ISRs
See the section ISRs in the Common Notes/ Coding Notes section at the beginning of this manual
for general information about writing and hooking ISRs.

For ARM-M, ISRs are simple C functions that require no interrupt keyword. For smx, you must
wrap ISRs with smx_ISR_ENTER() and smx_ISR_EXIT(). No assembly shells are required, in
contrast to traditional ARM, which required complex shells for smx. (The complexity for ARM
is necessary due to the way mode switching works. It was necessary to switch out of IRQ mode
immediately before allowing nested interrupts to occur.)

A difference from other processor versions of smx is that it is not necessary to increment srnest
in smx_ISR_ENTER(), thanks to the RETTOBASE flag in the NVIC.

A C ISR simply looks like this:

void MyISR(void)
{
 smx_ISR_ENTER();
 //...
 smx_LSR_INVOKE(my_lsr, par); /* optional */
 //...
 smx_ISR_EXIT();
}

Assembly macros are not provided and may never be, unless there is demand to write assembly
ISRs. If there were some need to write an ISR in assembly, one could create a simple ISR shell in
C and use the compiler to generate an assembly listing to start from.

ISR Priority Level
Basics:

1. Lower number is higher priority.

2. Priorities are generally not 0, 1, 2… but 0x00, 0x20, 0x40,… or similar. This is controlled by
the number of priority bits, which are the high bits of the priority byte. For a processor that
uses 3 bits, they are 0x20 apart. For 4 bits, they are 0x10 apart. Consult an ARM-M reference
for more discussion.

3. The BASEPRI register allows disabling interrupts at a certain threshold and lower priority.
PRIMASK and FAULTMASK disable all priorities.

If SB_ARMM_DISABLE_WITH_BASEPRI (barmm.h) is set to 0, PRIMASK will be used to
disable interrupts instead of BASEPRI, and then there are no reserved priority levels, so all can
be used for smx ISRs.

If SB_ARMM_DISABLE_WITH_BASEPRI (barmm.h) is set to 1, the highest priority level
(lowest value) you should use for your smx ISRs is SB_ARMM_BASEPRI_VALUE
(defined in XBASE\barmm.h and barmm*.inc). (smx ISRs are those that use
smx_ISR_ENTER/smx_ISR_EXIT, so they may run the scheduler upon completion.) Higher
levels (lower numbers) are non-maskable and reserved for short non-smx ISRs, since they will
run even during critical sections of code where we use sb_INT_DISABLE(). Such an ISR must
not invoke an LSR or access any kernel data. Reserved priority level(s) are needed for ISRs that

ARM-M

35

must run with no latency (no jitter) for things such as stepper motor control or collection of data
at precise intervals.

Starting with v4.2, use of PRIMASK is the default, because using BASEPRI without the user
being aware often led to run-time problems. Often, users set the priority of an ISR above the
threshold, not realizing this made it non-maskable. This caused various kinds of strange behavior
which could waste days to resolve. Now the user must knowingly enable the more sophisticated
feature.

Nested Vectored Interrupt Controller (NVIC)
The interrupt controller is built into the ARM-M core, unlike traditional ARMs, so it is the same
for all processors, even from different vendors. In the BSP, vectors.c and irqtable.c contain the
default vectors and configuration table.

Stacks
smx takes advantage of the dual stack model of ARM-M. Prior to smx v4.1, this was the only
processor architecture for which smx could have a system stack for ISRs, LSRs, and the
scheduler to use. For other processors, ISRs, LSRs, and the scheduler all had to run on the
current task’s stack, which meant the worst-case overhead had to be added to all task stack sizes.

Because of the way ARM-M was designed, smx can run ISRs, LSRs, and the scheduler using the
Main Stack (MSP) and tasks using the Process Stack (PSP) . (There is a process stack for each
task.) This way, only the main stack needs to be large enough for maximum interrupt and LSR
nesting.

Files
Because ARM-M is significantly different from traditional ARM, most of the porting files are
separate and named “armm” not “arm”. However, some files are shared, such as the Protosystem
files and the top-level preinclude file (e.g. iararm.h). We created a new build directory with
extension .AM for ARM-M (e.g. IAR.AM; we keep extensions to three or fewer characters).

ARMM Conditionals
The ARMM conditional is used around code specifically for ARM-M processors. Note that
ARM is also defined, so those conditionals apply too. (The compiler defines ARM or arm or
similar, so there is no choice whether it is defined.) It is necessary to check ARMM first (before
ARM) for sections that are only for ARM-M.

Because ARM-M is significantly different than other processors we have supported, the
scheduler porting layer was not sufficient, and it was necessary to add ARMM conditionals in
the code. There is not a lot of porting code, but it is more subtle than it might appear at first. If
you are studying the code, you need to consider:

1. What stack is being used by the code that is running, and which stack is being modified
(MSP or PSP)? Remember that unlike some processors, the return address of a function call
is stored in a register, not on the stack.

ARM-M

36

2. The scheduler runs in an exception (the PendSV handler), which is a significant difference
from other processor versions, which run at the task level.

Peripheral Initialization
Cortex-M processors are concerned with minimizing power usage, so power to peripherals is
disabled at startup. In order to use a peripheral it is necessary to enable the clock to each
peripherals you want to use before accessing any of its registers. Otherwise you will get a Bus
Fault. This is true even to access GPIOs. Even GPIO ports have to be enabled. The vendor-
supplied BSP code provides a function to do this.

Flash Locking
Some processos have the ability to lock the flash for security. Unfortunately this sometimes
happens by accident and prevents you from downloading code to it. See if the vendor provides a
flash programming utility. If so, look for an option to erase and unlock it.

Floating Point (CM4 and CM7 FPU)
The Cortex-M4 and M7 floating point units have the ability to auto save registers on an
exception. smx supports this hardware mechanism to save the floating point registers on a task
switch. The processor does this if bit ASPEN = 1 in FPU->FPCCR. Unfortunately, this saves
only the first half of the registers, s0-s15. If the compiler uses s16-s31, those must be saved in
software, using smx hooked task exit/entry routines. APP\DEMO\fpudemo.c demonstrates three
methods of saving the registers: software saves s0-s31; hardware saves s0-s15; and hardware
saves s0-15 and software saves s16-s31. Currently, IAR EWARM does not have a switch to
control which registers are used, so it may not be safe to save only s0-s15.

If you save all registers, you should compare performance of saving all in software or half and
half. Note that with the hardware mechanism, once a task uses floating point, it will forever save
the registers on a task switch, adding significantly to task switching time. Using the software
method of smx hooked exit/entry routines, you can limit this to sections of the code that use
floating point by hooking at the start of the section and unhooking at the end.

Lazy stacking is a special feature of the hardware mechanism that only reserves space to store the
registers and doesn’t actually write them to the stack, until it becomes necessary to do so (i.e.
when the interrupting code executes a floating point instruction), thus eliminating unnecessary
overhead. However, it appears to have been designed more with ISRs in mind than tasks, and it
appears to be difficult to support for multitasking, so smx currently does not support it. A line in
startup.c sets bit LSPEN = 0 in FPU-> FPCCR to disable it.

ARM-M

37

Porting to a New ARM-M or Board

Information is the same as for traditional ARM. See that section.

BSP Files

 1 armdefs.h, armdefs.inc
Master include file to include the appropriate BSP header files for the target. armdefs.inc is
for assembly files. It has only a small subset of what is in armdefs.h.

 2 bspm.c
Implements the BSP API routines documented in the APIs section of this manual. This file
is shared by all ARM-M processors and located in the BSP\ARM root directory, because
all are so similar. This is unlike BSPs for traditional ARMs which each have their own
copy of bsp.c. See the notes below.

 3 bsp.h
BSP-specific defines, types, prototypes, and configuration settings. This file is in the BSP
directories, but it may be shared by several related BSPs.

 4 irqtable.c
Contains just sb_irq_table[] which defines the priority and any other properties for all
interrupt vectors. In other BSPs (e.g. traditional ARM), this is in each bsp.c, but since
bspm.c is shared for all ARM-M processors, this had to be split out. It is one of the few
differences for each processor.

 5 lcd.c, lcd.h, oled.c, oled.h
Simple API for writing LCDs and OLEDs. Used by lcddemo_task_main() and
oleddemo_task_main().

 6 lcddemo.c, oleddemo.c
LCD and OLED demos.

 7 led.c, led.h
Simple API for writing LEDs. Used by LED_task and LED_LSR in app.c.

 8 startup.c
Contains startup code. For IAR, it holds __low_level_init(), which is called by the compiler
startup code to do any hardware init. Add any early init code that is necessary for your
hardware. Use sb_PeripheralsInit() in bsp.c later init code.

 9 term.c
Terminal I/O routines for message output and keyboard input. Interfaces to UART driver.

10 uart.c, uarti.c
Polled and interrupt-driven low-level routines. The latter are used by high-level interrupt-
driven UART driver.

ARM-M

38

11 vectors.c
Exception Vector Table and default handlers. The BSP provides routines for dynamically
hooking vectors, but you could statically hook your by modifying this table.

12 AT91\SAM3, EFM32, LPC17, STM32, … (subdirectories)
Subdirectories containing BSP files for the indicated family.

We wrote the code that is common for all ARM-M processors, and it does direct register
accesses. Code for specific chips mostly calls the chip vendor’s library functions. In some BSPs,
we brought over only the files we needed. You probably want to use more of the library, so you
may want to copy their whole library tree somewhere in your project and change the project to
use those files instead of the files in our BSP directory. When doing this or updating to their
newer BSP files, search the files in our BSP for “MDI:” tags before you replace them and
transfer those changes to the new files.

It is common for the chip vendor’s code to assume compilation with a C compiler not a C++
compiler, so you may need to wrap each file with extern “C” { }, unless you change our project
to compile for C. This is necessary to avoid name mangling so the linker can resolve references
from assembly files. See the BSP files we used, to see how we did this, if necessary.

BSP files are organized by how hardware-specific they are. The more deeply nested in the
directory structure, the more hardware-specific they are. From general to specific, directory
nesting is: ARM common, vendor processor family, specific processor, specific board. Normally
bsp.c is kept in the specific processor directory, but since most of what it handles is common to
all ARM-M processors, even from different vendors, it is kept in the most general directory,
BSP\ARM and it is named bspm.c, with the “m” to designate ARM-M. Similarly, bsp.h is at a
higher level than the board directory. Sharing these files avoids duplicating the code many times,
which is error-prone. Doing this requires using some conditionals, though, so it is a balance
between duplication of code and simplicity.

BSP API Extensions

BOOLEAN sb_IRQTableEntryWrite() — parameters vary

Changes an entry dynamically in sb_irq_table[]. Generally, sb_irq_table should be initialized
statically and left alone, but this function is provided in case there is a need to change it
while running. After calling this, call sb_IRQConfig() to make the actual change in the
interrupt controller. The parameters vary because the fields in sb_irq_table vary depending
on the interrupt controller for a particular processor.

This function is primarily provided for assembly access, since it may not be possible to
access a C structure in assembly. Even for C, it is better style to call this function rather than
to modify the structure directly.

ARM-M

39

Troubleshooting

1. Problem: Bus Fault when you run your application.

 Cause: You may have forgotten to enable a peripheral you are using, by enabling its
clock. This is especially likely for ARM-M processors.

 Solution: Use the chip vendor BSP routine to enable the peripheral.

2. Problem: Run-time failure related to LSRs or ISRs, or that is difficult to diagnose.

 Cause: You may have hooked an smx ISR (one using smx_ISR_ENTER() and
smx_ISR_EXIT() to one of the reserved top priority level(s). These are non-
maskable when BASEPRI is used to disable interrupts in the
sb_INT_DISABLE() macro. The smx scheduler depends on
sb_INT_DISABLE() blocking all smx ISRs.

 Solution: First look at the priorities in sb_irq_table[], in irqtable.c in the BSP, but since
your application may configure interrupts elsewhere, you could try changing the
smx config setting to use PRIMASK instead, since it masks all interrupts. Setting
SB_ARMM_DISABLE_WITH_BASEPRI to 0 in XBASE\barmm.h and
barmm*.inc. See the section ARM-M/ Architectural Notes/ ISR Priority Level
for more discussion about BASEPRI and PRIMASK.

3. Problem: The debugger is unable to download code to the board anymore.

 Cause: On-chip flash may have become locked accidentally.

 Solution: Look on the vendor’s website for a flash programming utility. Install it and look
for an option to erase flash and clear the lock.

Index

41

Index

acfg.h, 2, 6
ainit(), 2
APP directory, 2
app.c, 2
ARM, 11

alignment, 15
architectural notes, 11
JTAG, 30
porting, 16
semihosting, 16
Thumb, 15
tools, 30

armdefs.h, 17, 37
armdefs.inc, 17, 37
ARM-M, 33

architectural notes, 33
ARMM conditionals, 35
assembler

CrossWorks ARM, 27
IAR ARM, 20

BASEPRI, 34
binary files

IAR ARM, 21
bound stacks, 7
Breakpoints

IAR ARM, 21
BSP API

ARM, 18
ARM-M/Cortex-M, 38

BSP configuration, 2
BSP directory, 3
BSP files

ARM, 17
ARM-M/Cortex-M, 37

BSP notes, 2
bsp.c, 3, 17, 37
bsp.h, 3, 17, 37
bspm.c, 37
build targets

CrossWorks ARM, 25
IAR ARM, 19

C run-time library, 6
C++

CrossWorks ARM, 26
CFG directory, 6
configuration, 6

CrossWorks ARM, 25
IAR ARM, 19

configurations, CrossWorks ARM, 25
control blocks

memory usage, 7
Cortex-M, 33

architectural notes, 33
CrossWorks ARM, 24, 28

installation, 24
C-SPY (IAR ARM), 21, 22

debugger

CrossWorks ARM, 27
IAR ARM, 21

debugging
CrossWorks ARM (GCW.ARM), 27
C-SPY (IAR ARM), 21, 22
tips, 9

defines
target, 3

DOC directory, 1
drivers

ARM, 30

error buffer, 9
error display by smxAware, 9

FAULTMASK, 34
fcfg.h, 6
flash loader

CrossWorks ARM, 28
IAR ARM, 21

Flash Locking, 36
FlashImage utility, 8
Floating Point CM4/CM7, 36
FPU, 36

Index

42

gcwarm.h, 25
GNU ARM, 23

hardware vectoring (ARM interrupts), 13
heap

memory usage, 7

IAR

ARM, 18, 22
IAR J-Link/J-Trace, 30
iararm.h, 19
IDE, 6
inline assembly, 5
interrupt

dispatching, 11
prioritization, 11

interrupt handling, 4
ARM, 11
ARM-M/Cortex-M, 34

interrupts
ARM, 11
ARM-M/Cortex-M, 34

IRQ mode (ARM), 13
irqtable.c, 37
ISR

priority level, ARM-M/Cortex-M, 34
ISRs, 4

ARM, 11
ARM-M/Cortex-M, 34

isrshells.s, 13, 17

J-Link, 21
J-Link/J-Trace, 30
JTAG

ARM, 30
JTAG units, 21

Lauterbach TRACE32, 30
lcd.c, 17, 37
lcd.h, 17, 37
lcddemo.c, 17, 37
LED driver

ARM, 30
led.c, 17, 37
led.h, 17, 37
link map

IAR ARM, 20
linker

CrossWorks ARM, 27
linker command files

IAR ARM, 20

main(), 2

memory access alignment
ARM, 15

MIBTOC utility, 8
MSP

ARM-M/Cortex-M, 35

NSBLDPG utility, 8
nscfg.h, 6
NVIC, 35

oled.c, 37
oled.h, 37
oleddemo.h, 37
optimization

CrossWorks ARM, 26

PDF files, 2
Peripheral Init, 36
porting, 1

ARM, 16
ARM-M/Cortex-M, 37

predefined symbols
IAR ARM, 20

PREFRMT utility, 8
preinclude files, 19, 25
PRIMASK, 34
printf(), 7
profiling, 8
project file, 6

adding SMX modules, 6
project files

CrossWorks ARM, 24
IAR ARM, 18

Protosystem, 2
files, 2

PSP
ARM-M/Cortex-M, 35

RAM usage

minimizing, 7
reentrancy

C run-time library, 7
relative paths

IAR ARM, 19
release notes, 1
ROM target

IAR ARM, 21
Rowley Associates, 24
run-time library, 6, 7

semihosting, 16
shared stacks, 7
smx error, 9
SMX modules, 6

Index

43

smx_EMHook(), 9
smx_Go(), 2
smx_IdleMain(), 2
smxAware, 23
smxaware.c, 3
smxmain.c, 2
smxmain.h, 3
smxmods.c, 3
software vectoring (ARM interrupts), 13
sprintf(), 7
stack pool, 7
stack usage of C library functions, 7
stacks

ARM-M/Cortex-M, 35
bound, 7
dual, 35
memory usage, 7
shared, 7

startup code, 3
startup sequence

CrossWorks ARM, 26
IAR ARM, 20

startup.c, 37
SVC mode (ARM), 13

target defines, 3
term.c, 17, 37
terminal

ARM, 31
TestComm utility, 9
TestSocket utility, 9
Thumb code (ARM), 15
Thumb support

CrossWorks ARM, 28
tips

ARM, 31
common, 9
CrossWorks ARM, 29
debugging, 9

tools
ARM, 30

TRACE32, 30
troubleshooting

ARM-M/Cortex-M, 39
CrossWorks ARM, 29
IAR ARM, 23

UART driver

ARM, 31
uart.c, 17, 37
uarti.c, 17, 37
ucfg.h, 6
usbdfu utility, 9

vectors.c, 38
version

IAR ARM, 18
via files, 6
video driver

ARM, 31

xarm.inc, 13
xarm.s, 12, 13
XBASE directory, 2

	Common Notes
	Introduction
	Porting
	BSP
	BSP Notes
	BSP Configuration

	Protosystem
	Files

	Target Defines
	Coding Notes
	ISRs
	Inline Assembly in C

	Misc Notes
	Configuration
	Project Files
	C Run-Time Library
	Minimizing RAM Usage
	Profiling

	SMX Utilities
	FlashImage
	MIBTOC
	MpuMapper
	MpuPacker
	NSBLDPG
	PREFRMT
	TestComm
	TestSocket
	usbdfu

	Tips
	Debugging

	ARM
	Architectural Notes
	ISRs
	Thumb Code
	Alignment of Memory Access
	Semihosting

	Porting to a New ARM or Board
	BSP Files
	BSP API Extensions
	IAR Embedded Workbench ARM (IAR.ARM and IAR.AM)
	Version
	Project Files
	Build Targets
	Preinclude Files
	Relative Paths
	Predefined Symbols
	Startup Sequence
	Assembler
	Linker Command Files (.icf)
	Link Map
	Binary Files
	Debugger (C-SPY)
	Flash Loader
	Using IAR EWARM
	Debugging with C-SPY
	Tips
	Troubleshooting

	GNU ARM
	Distributions

	GNU / CrossWorks ARM (GCW.ARM)
	Installation
	Project Files
	Build Targets
	Preinclude Files
	Startup Sequence
	Optimization
	C++
	Assembler
	Linker
	Debugger
	Flash Loader
	Thumb Support
	Using CrossWorks
	Tips
	Troubleshooting

	Tools
	JTAG Units
	IAR I-jet
	IAR (Segger) J-Link/J-Trace
	Lauterbach TRACE32

	Drivers
	Disk
	Ethernet
	LED
	UART and Terminal
	Video (Graphics)
	Video (Terminal)

	Other Notes
	Tips

	ARM-M (Cortex-M)
	Architectural Notes
	Overview
	ISRs
	ISR Priority Level
	Nested Vectored Interrupt Controller (NVIC)
	Stacks
	Files
	ARMM Conditionals
	Peripheral Initialization
	Flash Locking
	Floating Point (CM4 and CM7 FPU)

	Porting to a New ARM-M or Board
	BSP Files
	BSP API Extensions
	Troubleshooting

	Index

