

smx++

Developer’s Guide

Version 4.4

July 2020

by
Alan Moore

and
Ralph Moore

© Copyright 1993-2020

Micro Digital Associates, Inc.
2900 Bristol Street, #G204

Costa Mesa, CA 92626
(714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved.

Revisions

 date ver comments

 4/93 3.0 first release
 5/96 3.3 preliminary v3.3. Major revision including documentation of new features
 2/98 3.3 final v3.3. Additional changes.
 7/01 3.5 update for v3.5
 5/04 3.6 update for v3.6
 5/05 3.7.0 update for v3.7
 11/05 3.7.1 changes to smx_Task class, addition of smx_Mutex, and minor changes
 11/10 4.0 update for v4.0
 4/13 4.1.1 update for v4.1.1
 4/14 4.2.1 update for v4.2.1
 5/15 4.3 update for v4.3.0
 7/20 4.4 update for v4.4.0

smx++ is a Trademark of Micro Digital, Inc.

smx is a Registered Trademark of Micro Digital, Inc.

Contents

Table of Contents

Introduction .. 1
Overview ... 1
About This Manual .. 2

General Concepts ... 3
smx++ Classes ... 3
smx Control Blocks ... 3
Inline Methods ... 4
Error Handling ... 4
Constructor Errors ... 4
Task Queues .. 4

smx++ Class Reference ... 5
Format of the Class Descriptions .. 5
Format of Methods Sections ... 5
Terminology .. 6
smx_Object Class .. 7
smx_Block Class ... 10
smx_EventGroup Class ... 13
smx_EventQueue Class ... 18
smx_Msg Class ... 21
smx_MsgXchg Class ... 28
smx_Mutex Class .. 32
smx_Pipe Class.. 37
smx_Pool Class ... 47
smx_Sem Class ... 50
smx_Task Class ... 54
smx_Timer Class ... 69

Contents

Appendix A: smx++ Memory Management ... 75
Local Objects ... 75
Global Objects ... 76
Global new and delete Operators .. 76
Operator and Function Descriptions ... 77

Appendix B: smx++ Error List Additions .. 79

Appendix C: smx++ Limitations .. 79
smx Functions Not Implemented .. 79

Appendix D: Additional References .. 80

Introduction

1

Introduction

Overview

smx++ is an abstraction layer over smx, which allows C++ programmers to create complex
application software with minimal understanding of the underlying smx RTOS kernel. It supports
object-oriented programming and provides a simpler smx API for C++ programmers. smx++ offers
the following classes:

smx_Object
smx_Block
smx_EventGroup
smx_EventQueue
smx_Msg
smx_MsgXchg
smx_Mutex
smx_Pipe
smx_Pool
smx_Sem
smx_Task
smx_Timer

These are meant to serve as base classes for derived application classes and for member objects of
application classes. Each class, except smx_Object offers a full set of methods corresponding to
underlying smx services.

smx++ fosters dual-language implementations where C++ and C programmers can work together
on the same project. It is thought that smx++ will be used primarily for data processing, user
interfaces, communication with the Cloud, and other high-level software, which benefits from
object-oriented design. It is expected that low-level functions such as ISRs, LSRs, BSP code, and
basic tasks will be written in C or assembly. However, nothing prevents using C++ classes and
methods for low-level operations, if preferred.

smx++ is augmented by the very fast smx heap and by stack sharing between one-shot tasks. These
make complex object-oriented applications practical on modest embedded systems with limited
memory and processor power. For more discussion of this, see Appendix A.

smx++ is compatible with Embedded C++ and has been developed with the same goals of speed
and austere memory usage in mind. smx++ is intended to provide the power and modularity of
object oriented programming while being small and fast enough to work effectively in a small
embedded environment.

Introduction

2

About This Manual

Novice C++ programmers who are experienced C programmers will find smx++ helpful to learn
C++ programming. Only a basic knowledge of C++ is necessary to use smx+. It does not employ
advanced C++ features. This manual is written to help the novice learn to use C++ and thus
determine if it is useful for his or her project. Reading class and method descriptions and studying
the examples should help to accomplish this. Also, reading Appendix A is important to understand
how memory space for objects is allocated.

Most smx++ methods are thin wrappers around smx services. In the interest of making smx++ easy
to use, method descriptions are intentionally brief and do not specify all errors and side-effects that
may occur. If this information is needed, refer to the smx Reference Manual for the underlying smx
service.

It is recommended that the smx User’s Guide be read, at least in part. Many concepts explained
therein carry over to smx++.

General Concepts

3

General Concepts

smx++ Classes

smx++ is comprised of 11 classes that are derived from the smx_Object class. The primary purpose
of the smx_Object class is to provide space for smx++ objects. Since application objects will be
derived from smx++ objects, it also provides space for them. In the smx_Object class, the new
operator is overridden with sb_BlockGet(), which gets a block from the Global Pool. This pool is
automatically created from the user configuration constants PP_OBJ_SIZE and PP_OBJ_NUM in
acfg.h. A size of 8 bytes is adequate for all smx++ objects.

If a derived object requires a larger block, smx_HeapMalloc() is called to get the block from the
smx heap. As compared to a standard C compiler heap, the smx heap is thread-safe and offers many
features intended for embedded systems. It also is very fast. smx_Object also provides a delete
operator to release blocks back to GlobalPool or to the heap, when objects are destroyed.

Because smx++ classes and methods are based upon smx, they may not be used in ISRs. However,
they can be used in LSRs, provided that no wait times are specified.

smx Control Blocks

Each smx++ object contains a protected data member which links to the underlying smx control
block. Information in the smx control block is accessed via this link and is not repeated in the
smx++ object. Hence, fields in a control block are technically protected members of the smx++
object.

It should not be necessary to access smx control blocks directly. Peek() and other methods are
provided to get necessary information. It is important not to access smx control blocks directly for
the following reasons:

 (1) Isolation from the internal workings of smx.

 (2) Independence from the structure of smx control blocks.

 (3) Added layer of security by preventing unintentional modification of critical data.

If you need to access a control block directly, you should create your own methods in a derived
class to access what you need. For example:

 class MyTask : public smx_Task
 {
 CB_PTR GetForwardLink(void) { return TaskCBP->fl; }
 ...
 }

General Concepts

4

Inline Methods

Since most smx++ methods are small, they are declared to be inline. This generally results in faster
operation and reduces code space if the overhead for a function call exceeds the size of the method.
These methods are defined in .hpp header files after the class definition. Larger methods are put in
corresponding .cpp files.

Error Handling

smx++ error handling is an extension of smx error handling and uses the smx error manager,
smx_EM in xem.c. Since most methods utilize underlying smx functions, most errors for smx++ are
actually smx errors. Some new errors have been created for smx++ — see Appendix A for a list.
smx++ errors are identified as smx errors — e.g. SMXE_NOT_HOLDING. See xdef.h for the list
of all smx and smx++ errors.

Constructor Errors
Most smx++ constructors attempt to get an smx control block. If this should fail, the instance is still
constructed, but the control block pointer is set to NULL. For most classes, this is an indication to
its methods that the smx object could not be created. Such methods will abort, report
SMXE_OBJ_NOT_CREATED, and return 0 or FALSE. Normally an smx or smxBase error
message will precede, explaining the reason for the object not being created — e.g.
SMXE_OUT_OF_TCBS.

Objects of the smx_Msg and smx_Timer classes can be either holding or non-holding meaning that
they have an underlying smx control block or not. The methods of these classes deal with both
cases.

Task Queues

All task queues are prioritized. The first task in a task queue is the highest priority and longest-
waiting task at that priority.

Class Reference

5

smx++ Class Reference

This section is provided as a reference to all smx++ classes, methods, and data members. It is
organized alphabetically by class name.

Format of the Class Descriptions

file Indicates the name of the C++ file containing the source code for the class.

#include The name of the C++ include file containing the definition of the class structure.

derived from If the class has been derived from another smx++ class then this is the name of that
class.

 Following the “derived from:” field is a brief description of the class, its uses,
things to watch out for, etc.

Example These are intended to demonstrate how the class might be used in an embedded
application.

Data Members Description of all public and protected data members and how they can be used.

Constructors and Destructor Declarations for all constructors and destructor.

Methods Declarations for all public and protected methods.

Following the Methods field are sections describing each of the constructors followed by
descriptions of each method in the class.

Format of Methods Sections

First is the prototype declaration for the method complete with return and parameter types. For
example: smx_EventQueue::smx_EventQueue(const char *name).

A brief synopsis of the method is given along with important notes, warnings, and things to look out
for. This is followed by several fields:

smx functions called Indicates what smx functions may be called by this method. It is often useful
to look up these functions in the smx Reference Manual to learn more about what
the method is doing and what errors it might report. Many methods are wrappers
for standard smx calls.

Returns Describes possible values returned by the method, if any. Generally, a return value
of 0, FALSE, or NULL indicates that the method failed for some reason, possibly
due to an error condition or timeout.

Class Reference

6

par Stop methods do not return a value. Instead they pass value as the parameter of the
task main function, when it restarts.

Errors If present, lists smx++ errors. Errors for smx functions called are not listed. Please
see the smx Reference Manual call descriptions for those.

Example These briefly illustrate the common uses of methods.

Terminology

Object References to “block”, “event queue” mean an object of that type. The word
“object” is generally omitted.

Bare function is an ordinary function. The term bare is used to emphasize that it is not an smx
service routine (SSR). Hence, it is not preemption-safe and should not be used
from tasks unless otherwise protected (e.g. disabling interrupts).

smx_Object

7

smx_Object Class
file xsmx.cpp

#include xsmx.hpp

derived from none

smx_Object class is a pure virtual base class used for all smx++ objects.

Public Data Member
static PCB_PTR * GlobalPool;

Since it is static, this is effectively a global variable which is used by all derived classes.

Constructors and Destructor
None

Operators & Methods
void operator delete(void * ptr);
void * operator new(size_t size);
u32 EtimeGet(void);
u32 StimeGet(void);
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_OBJ

void * operator smx_Object::new(size_t size)

This new() operator is used to allocate objects for smx++ and its derived classes. If size is less than
or equal to PP_OBJ_SIZE in acfg.h, then the object is allocated from the GlobalPool. Otherwise,
the object is allocated from the smx heap. The object is also allocated from the smx heap if
GlobalPool is empty.

GlobalPool is automatically initialized and its base pool is created the first time an smx++ or an
smx++ derived object is constructed. User configuration constants PP_OBJ_NUM and
PP_OBJ_SIZE in acfg.h control the size of the pool and the size of the blocks that it contains.
smx++ objects require only 8 bytes. However, the minimum heap block is 16 bytes, so
PP_OBJ_SIZE is currently set to 12. This allows for somewhat larger derived objects, before going
to the heap.

The new smx heap is fast, so it should work well for smx++ derived objects. If not,
smx_Object::new() can be modified to use multiple base pools. If you prefer to use smx heap for
all objects, set PP_OBJ_NUM and PP_OBJ_SIZE to 0 in acfg.h or modify smx_Object::new().

smx functions called sb_BlockGet(), smx_HeapMalloc(), and sb_BlockPoolCreateDAR(),

Returns block pointer if block allocated
 0 block not available.

smx_Object

8

Errors none

Example smx_Task *TaskAP = new smx_Task(HI, 200, SMX_FL_NONE, "TaskA");

 Constructs TaskA pointed to by TaskAP. TaskA is an object of the smx_Task class.

Here the smx_Object new operator overrides the new operator provided by the
compiler.

void operator smx_Object::delete(void * ptr)

This delete() is used to free objects allocated with the smx_Object::new operator. If ptr points
within GlobalPool, it calls sb_BlockRel() to release the block back to GlobalPool. Otherwise, it
calls smx_HeapFree() to release the block back to the heap.

smx functions called sb_BlockRel() or smx_HeapFree()

Returns none

Errors none

Example delete (TaskAP);

 Deletes the TaskA object created above. Here the smx_Object delete operator

overrides the delete operator provided by the compiler.

u32 smx_Object::EtimeGet(void)

Returns etime, in ticks. See smx Users Guide section on Timing, etime, and stime. This provides a
method to get etime within any smx++ or smx++ derived object.

smx functions called none

Returns smx_etime

Errors none

Example
 u32 time;

 time = EtimeGet();

smx_Object

9

u32 smx_Object::StimeGet(void)

Returns stime, in seconds. See smx Users Guide section on Timing, etime, and stime. This provides
a method to get stime within any smx++ or smx++ derived object.

smx functions called none

Returns smx_stime

Errors none

Example u32 time = StimeGet();

smx_Block

10

smx_Block Class
file xblk.cpp

#include xblk.hpp

derived from smx_Object class

The smx_Block class gets its memory from the heap or from a DAR. Blocks are discussed in more
detail in the smx Reference Manual. The smx_Block class provides a convenient C++ interface to
the smx BCB.

Protected Data Members
u32 ObjectFlags;
BCB_PTR BlockCBP;

Constructors and Destructor
smx_Block(smx_Pool &pool, u32 clrsz = 0);
smx_Block(u8 *bp);
smx_Block(BCB_PTR p);
virtual ~smx_Block();

Methods
u32 Peek(SMX_PK_PARM par);
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_BLK

smx_Block::smx_Block(smx_Pool &pool, u32 clrsz)

The constructor will get a block from the pool and clear clrsz bytes.

smx functions called smx_BlockGet()

Returns none

Example smx_Block * bp = new smx_Block(pool);

 This example gets a block from pool and returns a pointer to it. Since clrsz is not

specified, it defaults to 0 and no bytes will be cleared.

smx_Block

11

smx_Block::smx_Block(u8 *bp)

This constructor takes a pointer to an existing block of memory and creates an smx_Block with it.

smx functions called smx_BlockMake()

Returns none

Example u8 * bp = smx_HeapMalloc(100);
 smx_Block * blkp = new smx_Block(bp);

 Get 100 bytes from the heap and create a block using it. blkp points at the block.

smx_Block::smx_Block(BCB_PTR p)

The conversion constructor creates an smx_Block from an existing smx block.

smx functions called none

Returns none

Example PCB_PTR pool;
 …
 BCB_PTR p = smx_BlockGet(poolA, NULL, 0);
 smx_Block * blkp = new smx_Block(p);

 Get an smx block from poolA and construct a block from it. blkp points at the block.

smx_Block::~smx_Block()

The destructor will release the data block back to its base pool, if it came from a base pool. Also
releases the BlockCBP’s BCB back to its pool.

smx functions called smx_BlockRel()

Returns none

smx_Block

12

u32 smx_Block::Peek()(SMX_PK_PARM par)

Returns the value of the specified parameter for this block. See smx_BlockPeek() in the smx
Reference Manual for a list of block parameters.

smx functions called smx_BlockPeek()

Returns value Value for par.
 0 Value, unless error.

Example smx_Block * blkp = new smx_Block(pool);
 u8 *bp = (u8*)blkp->Peek(SMX_PK_BP);
 *bp = 0x55;

 In this example, we obtain a pointer, bp, to the data for the block, blk, and then load

0x55 into the first byte of the data area.
.

smx_EventGroup

13

smx_EventGroup Class
file xeg.cpp

#include xeg.hpp

derived from smx_Object class

The smx_EventGroup class is used to allow tasks to wait on a specific event or logical combination
of events. Please refer to the smx User’s Guide for more information on smx Event Groups.

Protected Data Members
u32 ObjectFlags;
EGCB_PTR EventFP;

Constructors and Destructor
smx_EventGroup(u32 mask = 0, const char *name = NULL);
virtual ~smx_EventGroup();

Methods
BOOLEAN Clear(u16 init_mask = 0);
u32 Peek(SMX_PK_PARM par);
BOOLEAN FlagsPulse(u16 set_mask);
BOOLEAN FlagsSet(u16 set_mask, u16 clear_mask = 0);
u32 FlagsTest(u32 test_mask, u16 clear_mask = 0, u32 timeout = INF);
void FlagsTestStop(u32 test_mask, u16 clear_mask = 0, u32 timeout = INF);
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_EG

Example
#define SIGPWR 0x01

class PowerMgr : public smx_Task
 {
 public:
 PowerMgr() : smx_Task(PRI_MAX, 0, SMX_FL_NONE, name) { }
 ~PowerMgr() { if (eg) delete eg; }

 void SigPwr() { eg->FlagsSet(SIGPWR); }

 void Main(u32 par)
 {
 eg = new smx_EventGroup();
 while (eg->FlagsTest(SIGPWR, 0))
 {
 // Handle power loss.
 }
 }
 private:
 smx_EventGroup *eg;
};

PowerMgr PowerLossTask();

smx_EventGroup

14

This example simulates a Linux-style signal to a task. The idea here is to create a task with an
integrated event group that, when receiving a SIGPWR power-loss signal, will wake up and handle
the power loss event. This is achieved by deriving the PowerMgr class from smx_Task and
including a private smx_EventGroup member.

PowerLossTask is created as a top priority task so that it will preempt any normal task and deal with
the power loss, immediately. Its Main() method creates the eg object and then waits for the
SIGPWR flag to be set. The public SigPwr() method provides a means for another task to set the
SIGPWR flag in eg, as follows:
 PowerLossTask.SigPwr;
which wakes up PowerLossTask. Other flags could also be declared and tested in this object in
addition to the SIGPWR flag.

Note: PowerLossTask will be created in compiler startup code before C main() is called. That
means that the PowerMgr constructor will be called before the smx environment has been
initialized. To deal with this, smx objects have been designed to be dynamically self-initializing.
Hence, when the first smx_Task constructor calls smx_TaskCreate(), it will create the TCB pool
and get a TCB, create the stack pool so the scheduler can allocate a stack (note that stack size == 0,
above), and intialize PowerLossTask.

smx_EventGroup::smx_EventGroup(u32 init_mask = 0 , const char *name = NULL)

Constructs an event group with its flags set to init_mask.

smx functions called smx_EventGroupCreate()

Returns none

Example See smx_EventGroup class example

smx_EventGroup::~smx_EventGroup()

Resumes all waiting tasks with FALSE return values, deletes the underlying smx event group, then
destroys this event group.

smx functions called smx_EventGroupDelete()

Returns none

Example smx_EventGroup class example

smx_EventGroup

15

BOOLEAN smx_EventGroup::Clear(u16 init_mask = 0)

Resumes all waiting tasks with 0 return values and sets the event group flags to init_mask.

smx functions called smx_EventGroupClear()

Returns TRUE event group cleared
 FALSE event group not cleared due to an error

Example #define TXRDY 0x60
 smx_EventGroup Modem; // global object with flags cleared

 Xmit::Stop()
 {
 Modem.Clear(TXRDY);
 }

 This example clears Modem and sets its transmit ready flag.

u32 smx_EventGroup::Peek(SMX_PK_PARM par)

Returns the value of the specified parameter for this event group. See smx_EventGroupPeek() in the
smx Reference Manual for a list of event group parameters.

smx functions called smx_EventGroupPeek()

Returns value Value for par.
 0 Value, unless error.

Example
 smx_EventGroup *egp;
 u32 num_tasks;
 TCB_PTR first_task;

 ModemP = new smx_EventGroup();
 ...
 num_tasks = egp->Peek(SMX_PK_TASK);
 if (num_tasks > 0)
 first_task = (TCB_PTR)egp->Peek(SMX_PK_FIRST);
 else
 first_task= NULL;

smx_EventGroup

16

BOOLEAN smx_EventGroup::FlagsPulse(u16 set_mask)

Like FlagsSet() except that it leave only flags set that were already set. Note: if any tasks are
resumed, some initially set flags may be reset — see FlagsTest().

smx functions called smx_EventGroupPulse()

Returns TRUE flags pulsed
 FALSE flags not pulsed due to error.

Example
 #define F2 0x2
 #define F1 0x1
 smx_EventGroup eg(F1); // global eg with F1 set.

 void taskA::Main(u32 par)
 {
 ...
 eg.FlagsPulse(F2);
 }

 Resumes tasks waiting for F2 or for F2&F1, since F1 is already set. F2 is not left set,

but F1 is left set (unless a resumed task resets it).

BOOLEAN smx_EventGroup::FlagsSet(u16 set_mask, u16 pre_clear_mask = 0)

Clears flags selected by 1’s in pre_clear_mask, then sets flags selected by 1's in set_mask. Then
resumes tasks with flag matches. See smx_EventFlagsSet in the smx Reference Manual for details.

smx functions called smx_EventGroupSet()

Returns TRUE flags changed
 FALSE flags not changed

Example smx_EventGroup *ModemP; // global pointer

 Sys_Init()
 {
 ...
 ModemP = new smx_EventGroup();
 }

 Xmit::Start()
 {
 ...
 ModemP->FlagsSet(TXRDY, RXRDY);
 }

 This example clears the RXRDY flag, then sets the TXRDY flag. These are mutually

exclusive flags, which must not be simultaneously true. Note that ModemP is
constructed during initialization and is globally accessible via its global pointer.

smx_EventGroup

17

u32 smx_EventGroup::FlagsTest(u32 test_mask, u16 post_clear_mask = 0, u32 timeout = INF)

Tests for a match between event group flags and test_mask. If found, the current task is continued,
and the flags causing the match are returned. Also clears event group flags selected by the
post_clear_mask. Suspends current task if no match is found and timeout > 0. If a match does not
occur before the timeout occurs, the task is resumed with a 0 return. See smx_EventFlagsTest in the
smx Reference Manual for details.

smx functions called smx_EventFlagsTest()

Returns flags flags causing match
 0 no match, timeout, or error

Example See smx_EventGroup class example

void smx_EventGroup::FlagsTestStop(u32 test_mask, u16 post_clear_mask = 0, u32 timeout = INF)

This method works like FlagsTest(), but it first stops the current task. As soon as the proper flag
condition is met the task is restarted.

smx functions called smx_EventFlagsTestStop()

Returns none

par flags flags causing match
 0 no match, timeout, or error.

Example #define AND 0x8000
 #define TXRDY 0x60
 #define DSR 0x20
 #define CTS 0x10

 smx_EventGroup * ModemP;

 Sys_Init()
 {
 ...
 ModemP = new smx_EventGroup();
 }

 Transmit::Main(u32 par)
 {
 // prepare and send message
 ModemP->FlagsTestStop(AND | TXRDY | DSR | CTS);
 }

 In this example, the Task is stopped and then restarted when all flags are set. Every

time the Transmit task is started it prepares and sends a new message.

smx_EventQueue

18

smx_EventQueue Class
file xeq.cpp

#include xeq.hpp

derived from smx_Object class

The smx_EventQueue class is used to count the number of times an event occurs. This is most
commonly used as a delay mechanism for tasks. See the “Event Queues” chapter in the smx Users
Guide for more information.

Protected Data Members
u32 ObjectFlags;
EQCB_PTR EventQueueCBP;

Constructors and Destructor
smx_EventQueue(const char *name = NULL);
virtual ~smx_EventQueue();

Methods
BOOLEAN Count(u32 count, u32 timeout = INF);
void CountStop(u32 count, u32 timeout = INF);
BOOLEAN Clear();
BOOLEAN Signal();
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_EQ

Example
class EventDemo : public smx_Task
{
public:
 EventDemo(const char *name = NULL) :
 smx_Task(PRI_NORM, 0, SMX_FL_NONE, name), counter(0) {}
 virtual void Main(u32 par);
 void Signal() { ec.Signal(); }
protected:
 smx_EventQueue ec;
 u32 counter;
};

EventDemo ECT(“EventDemo”);

void EventDemo::Main(u32 par)
{
 while (1)
 {
 ec.Count(2);
 counter++;
 }
}

smx_EventQueue

19

In this example the technique of combining a task object with an integrated smx_EventQueue object
is demonstrated. The EventDemo class is derived from smx_Task so that it inherits all of the
capabilities of a task. For simplicity, the class EventDemo is created with a simplified constructor. It
has an integrated Main() method which will wait for 2 signals to it’s event counter. The Signal()
method is brought out to the EventDemo class, this is to be signaled by another task on a given
event. The EventDemo will simply loop around counting how many times it gets woken up. Data
protection is demonstrated here by making both the smx_EventQueue object ec a protected
member, as well as the counter member.

smx_EventQueue::smx_EventQueue(const char *name = NULL)

Constructs an event queue.

smx functions called smx_ EventQueueCreate()

Returns none

Example smx_EventQueue * ecp = new smx_EventQueue(“MyEvent”);

smx_EventQueue::~smx_EventQueue()

The destructor resumes all waiting tasks with FALSE return values then destroys this event queue.
and deletes the underlying smx event queue.

smx functions called smx_EventQueueDelete()

Returns none

Errors none

Example {
 smx_EventQueue *ecp = new smx_EventQueue();
 // ...
 delete ecp;
 }

smx_EventQueue

20

BOOLEAN smx_EventQueue::Count(u32 count, u32 timeout = INF)

Suspends the current task on this event queue for count signals. timeout is the number of ticks the
task will wait for the count to complete. The default timeout is infinite. If the count is not completed
before the timeout occurs, the task is resumed with a FALSE return.

smx functions called smx_EventQueueCount()

Returns TRUE count completed.
 FALSE error, 0 count or timeout, or timed out.

Example ecp->Count(10);

void smx_EventQueue::CountStop(u32 count, u32 timeout = INF)

Works like Count() except that the calling Task is first stopped. Then operation is similar to Count,
except that the task restarts instead of resuming and par is the parameter passed to the task main
function.

smx functions called smx_EventQueueCountStop()

par TRUE count completed.
 FALSE error, 0 count or timeout, or timed out.

Example ecp->CountStop(10);

BOOLEAN smx_EventQueue::Clear(void)

Resumes all waiting tasks with FALSE returns, then clears the event queue. See the smx Reference
Manual for an example.

smx functions called smx_EventQueueClear()

Returns TRUE queue cleared
 FALSE error

smx_Msg

21

smx_Msg Class
file xmsg.cpp

#include xmsg.hpp

derived from smx_Object class

smx_Msg objects (messages) are said to be either holding or non-holding. Holding means that it has
an actual smx message; non-holding means that it does not. A non-holding message is necessary for
receiving from an exchange. A holding message is necessary for sending to an exchange. After
sending, the message becomes non-holding. Constructors are provided to create both types of
messages.

Protected Data Members.
u32 ObjectFlags;
MCB_PTR MsgCBP;

Constructors and Destructor
smx_Msg();
smx_Msg(u32 size);
smx_Msg(MCB_PTR msg);
smx_Msg(smx_Pool &pool, u16 clrsz = 0);
virtual ~smx_Msg();

Methods
BOOLEAN Bump(u8 pri);
BOOLEAN Holding();
BOOLEAN Make(u32 size);
BOOLEAN Make(smx_Pool *pool, u32 clrsz = 0);
u32 Peek(SMX_PK_PARM par);
BOOLEAN Rel(u16 clrsz = 0);
BOOLEAN Reply(smx_Msg *msg = NULL);
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_MSG
friend class smx_MsgXchg;

smx_Msg

22

smx_Msg::smx_Msg()

Constructs a non-holding message that is ready to receive an smx message from an exchange.

smx functions called none

Returns none

Example TaskA::Main(u32 par)
 {
 smx_Msg MyMsg;
 }

 This example creates a message that is not holding. Its scope is within TaskA.

smx_Msg::smx_Msg(u32 bsize)

Create a holding message by getting a data block from the smx heap, making it into an smx
message, and constructing this message. This message can then be filled with data and sent to an
exchange.

smx functions called smx_HeapMalloc() and smx_MsgMake()

Returns none

Example const u32 MSIZE = 5;
 smx_MsgXchg errorX; // global error exchange

 void TaskA::Main(u32 par)
 {
 void * dp;
 char * sp = “Err9”;
 BOOLEAN eflag; // error flag

 // process data. set eflag if an error occurs.

 if(eflag)
 {
 smx_Msg emsg(MSIZE);
 dp = (void *)emsg.Peek(SMX_PK_BP);
 memcpy(dp, sp, MSIZE);
 errorX->Send(&emsg);
 }
 }

 This example shows creating a holding error message, emsg, which exists only within

the scope of the if statement. emsg is loaded with the error number and sent to errorX,
the global error exchange. After the send, emsg is non-holding; it is automatically
destroyed when it goes out of scope.

smx_Msg

23

smx_Msg::smx_Msg(MCB_PTR msg)

Constructs a message from an existing smx message. This is useful when interfacing to smx code. It
is protected so that it can only be used within a class derived from smx_Msg. or in a friend class or
friend function. Since an existing message is used, no clrsz is specified.

smx functions called none

Returns none

Example smx_Msg *cp_msg;
 MCB_PTR c_msg;

 App::Init()
 {
 u8* bp = (u8 *)smx_HeapMalloc(100);
 c_msg = smx_MsgMake(NULL, bp);
 ...
 }

 TaskA::Main(u32 par)
 {
 cp_msg smx_Msg(c_msg);
 while (1)
 {
 // use cp_msg
 }
 }

 In this example an smx message, c_msg, of 100 bytes is created, during initialization

with a message block from the heap. It is made into an smx++ message, cp_msg,
when TaskA starts and used within the TaskA main loop. cp_msg is deleted if TaskA
is exited.

smx_Msg::~smx_Msg()

Destroys this message and deletes the underlying smx message, if holding and not converted from
an smx message. If this message was converted from an smx message, then the smx message can be
deleted only by smx.

smx functions called smx_MsgUnmake(), smx_HeapFree(), smx_MsgRel()

smx_Msg

24

BOOLEAN smx_Msg::Bump(u8 pri)

This method is used to change a message’s priority. If already in a queue, it is requeued after other
messages of the new priority pri.

smx functions called smx_MsgBump()

Returns TRUE message priority changed
 FALSE message priority not changed due to an error

Errors SMXE_NOT_HOLDING

Example TaskA::Main(u32 par)
 {
 MyMsgP->Bump(MyMsgP->Peek(SMX_PK_PRI)+1);
 }

 In this example the priority of MyMsgP is incremented by 1.

BOOLEAN smx_Msg::Holding()

Reports if this message is holding.

smx functions called none

Returns TRUE holding
 FALSE not holding

Example See example for smx_MsgXchg::Receive() method.

BOOLEAN smx_Msg::Make(u32 bsize)

Makes a non-holding message into a holding message by getting a data block from the heap,
making it into an smx message, and linking the smx message to this message. This message can
then be filled and sent to an exchange. This make is useful for messages of varying sizes.

smx functions called smx_HeapMalloc() and smx_MsgMake()

Returns TRUE this message is now holding
 FALSE operation not competed due to an error

Errors SMXE_HOLDING

Example smx_MsgXchg xchgA; // global message exchange

smx_Msg

25

 TaskA::Main(u32 par)
 {
 u8* dp;
 smx_Msg MyMsg; // create a non-holding msg

 if(MyMsg.Make(50))
 {
 dp = (u8*)MyMsg.Peek(SMX_PK_BP);
 // load data into Msg using dp
 xchgA.Send(MyMsg);
 }
 else
 // ... handle error
 }

 Initially, MyMsg is not holding a message. Make() gets a message from the heap for it

to hold. Then, MyMsg is filled with data and sent to the global exchange, xchgA. At
this point, MyMsg becomes non-holding, and the process repeats.

BOOLEAN smx_Msg::Make(smx_Pool *pool, u32 clrsz = 0)

Makes a non-holding message into a holding message by getting a data block from a block pool,
making it into an smx message, and linking the smx message to this message. This message can
then be filled and sent to an exchange. This make is useful for a messages of the size. Getting
Messages from a pool is generally faster and more deterministic than from the heap.

smx functions called smx_MsgGet()

Returns TRUE this message is now holding
 FALSE operation not competed due to an error

Errors SMXE_HOLDING

Example smx_MsgXchg xchgA; // global message exchange
 smx_Pool mypool(10, 50); // global block pool

 TaskA::Main(u32 par)
 {
 u8* dp;
 smx_Msg MyMsg; // create a non-holding msg

 if(MyMsg.Make(mypool))
 {
 dp = (u8*)MyMsg.Peek(SMX_PK_BP);
 // load data into Msg using dp
 xchgA.Send(MyMsg);
 }
 else
 // ... handle error
 }

smx_Msg

26

 Initially, MyMsg is not holding a message. Make() gets a message from mypool for it
to hold. Then, MyMsg is filled with data and sent to the global exchange, xchgA. At
this point, MyMsg becomes non-holding, and the process repeats.

u32 smx_Msg::Peek(SMX_PK_PARM par)

Returns the value of the specified parameter for this message. See smx_MsgPeek() in the smx
Reference Manual for a list of message parameters.

smx functions called smx_MsgPeek()

Returns value Value of par.
 0 No value, if error, or 0 value if not.

Errors SMXE_NOT_HOLDING

Example smx_Msg msg(200);
 u8 *bp = (u8*)msg.Peek(SMX_PK_BP);

BOOLEAN smx_Msg::Rel(u32 clrsz = 0)

Makes this message into a non-holding message by releasing its smx message either to its block
pool or to the heap depending on where it came from. This can be used for a message which was
obtained through either holding constructor or through either make().

smx functions called smx_MsgPeek(), smx_MsgUnmake(), smx_HeapFree(), and smx_MsgRel()

Returns TRUE message successfully released
 FALSE error

Errors SMXE_NOT_HOLDING

Example MyTask::Main(u32 par)
 {
 smx_Msg msg(100); // local message
 //…
 msg.Rel();
 }

smx_Msg

27

BOOLEAN smx_Msg::Reply()

If this message is non-holding, reports error and returns FALSE. If this message is holding and its
reply field is an exchange, attempts to send this message to it. If not, returns FALSE. If send is
successful, message becomes non-holding and returns TRUE. Otherwise, FALSE is returned.

smx functions called smx_MsgSend(), smx_SysWhatIs()

Returns TRUE message successfully sent
 FALSE message not sent due to error or not holding

Errors SMXE_NOT_HOLDING

Example smx_MsgXchg *data_xchg = new smx_MsgXchg();

 MyTask::Main(u32 par)
 {
 u8 * dp;
 smx_Msg *mp;

 while (mp = data_xchg->Receive())
 {
 dp = (u8*)msg->Peek(SMX_PK_BP);
 if (process_msg(dp))
 *dp = ACK;
 else
 *dp = NAK;
 mp->Reply();
 }
 }

In this example, MyTask waits at data_xchg for incoming messages. When a message
is received, it gets a pointer to its data block and calls process_msg(dp) to extract the
data from the message and process it. It then reuses the message to send NAK or ACK
to a reply exchange. Normally, the original sender would be waiting at this exchange
to either resend the message or to send a new message.

smx_MsgXchg

28

smx_MsgXchg Class
file xmsgx.cpp

#include xmsgx.hpp

derived from smx_Object class

Exchanges provide a means whereby information may be transferred between tasks. The
smx_MsgXchg class can be created as either a normal, pass, or broadcast type.

Protected Data Members
u32 ObjectFlags;
XCB_PTR XchgCBP;

Constructors and Destructor
smx_MsgXchg(SMX_XCHG_MODE mode = SMX_XCHG_NORM, const char *name =

NULL);
virtual ~smx_ MsgXchg ()

Methods
BOOLEAN Clear();
smx_Msg * Receive(u32 timeout = INF);
void ReceiveStop(u32 TimeOut);
BOOLEAN Send(smx_Msg &msg, u8 pri = 0, smx_MsgXchg *reply = NULL);
friend class smx_Msg;
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_XCHG

smx_ MsgXchg::smx_ MsgXchg (SMX_XCHG_MODE mode = SMX_XCHG_NORM,
 const char *name = NULL)

Constructs a message exchange, which operates in the selected mode, as follows:

mode exchange
SMX_XCHG_NORM Normal
SMX_XCHG_PASS Pass
SMX_XCHG_BCST Broadcast

smx functions called smx_MsgXchgCreate()

smx_MsgXchg

29

smx_ MsgXchg::~smx_ MsgXchg ()

Resumes all waiting tasks with 0 return values or releases all waiting messages. Then deletes the
underlying smx message exchange and destroys this message exchange.

smx functions called smx_MsgXchgDelete()

Errors SMX_OBJ_NOT_CREATED

BOOLEAN smx_MsgXchg::Clear()

Resumes all waiting tasks with 0 return values or releases all waiting messages. Then clears
appropriate fields in the underlying smx message exchange.

smx functions called smx_MsgXchgClear()

Returns TRUE exchange cleared or already clear
 FALSE error

Errors SMX_OBJ_NOT_CREATED

smx_Msg *smx_MsgXchg::Receive(u32 timeout = INF)

Returns a holding message from this exchange. If the exchange has no messages waiting, suspends
the current task for timeout ticks. Will return to the current task with 0 if timeout elapses before a
message arrives or if there is an error.

In order to get a message, first receives an smx message from the underlying smx exchange, then
creates a new message using the smx_Msg conversion constructor. To do this, smx_MsgXchg must
be a friend class to the smx_Msg class.

smx functions called smx_MsgReceive()

Returns smx_Msg* message pointer
 NULL timeout or error

Errors SMX_OBJ_NOT_CREATED

Example
 class MyTask : public smx_Task
 {
 smx_MsgXchg in_xchg;
 smx_Msg* msgp;

smx_MsgXchg

30

 void Main(u32 par)
 {
 while (msgp = in_xchg.Receive(INF))
 {
 /* process msg */
 delete msgp;
 }
 }
}

This example defines a new task class which receives messages, processes them, then deletes them.

smx_Msg *smx_MsgXchg::ReceiveStop(u32 timeout = INF)

This method works like Receive(), but it first stops the current task. As soon as a message is
received from this exchange, the task is restarted.

smx functions called smx_ReceiveStop()

Returns none

par handle Message handle received.
 NULL Error or timeout.

Errors SMX_OBJ_NOT_CREATED

Example
 class MyTask : public smx_Task
 {
 smx_MsgXchg in_xchg;

 void Main(u32 par)
 {
 if (par > 0)
 {

 smx_Msg *msgp = new smx_Msg((MCB_PTR)par);
 // process msg */
 delete msgp;
 }

 in_xchg.ReceiveStop(INF)
 }
}

This example does the same thing as the previous example. MyTask is started the first
time with par = 0, so it goes immediately to receive stop from in_xchg. When it
receives a message, it starts again and constructs an smx++ message from the message
handle passed in to its main function. It then processes the message, deletes it, and
wait stops for the next message.

smx_MsgXchg

31

BOOLEAN smx_MsgXchg::Send(smx_Msg *mp, u8 pri = 0, smx_MsgXchg *reply = NULL)

Sends a holding message to this exchange with priority pri. On successful send returns TRUE. See
the smx Reference Manual section on smx_MsgSendPR() for more details.

smx functions called smx_MsgSendPR()

Returns TRUE message sent
 FALSE error

Errors SMX_OBJ_NOT_CREATED, SMXE_NULL_PTR_REF, SMXE_NOT_HOLDING

Example
 typedef struct
 {
 u32 hdr;
 u8 data[16];
 } *MB_PTR;

 smx_Pool free_msgs = smx_Pool(10, 20);
 smx_Msg msg = smx_Msg();
 smx_MsgXchg xchg = smx_MsgXchg();

 BOOLEAN SendMsg(void)
 {
 MB_PTR dp;

 mp->Make(free_msgs);
 dp = (MB_PTR)mp.Peek(SMX_PK_BP);
 dp->hdr = TEST;
 for (i = 0; i < 16; i++)
 dp->data[i] = i;
 return xchg.Send(mp);
 }

 In this example, free _msgs is a pool of 10 message blocks of 20 bytes, each. msg is a
non-holding message and xchg is a normal message exchange. SendMsg() makes msg
into a holding message from free_msgs, fills it with a test pattern, and sends it to xchg.
The priority and reply of msg are 0. SendMsg() returns TRUE, if a message is sent,
FALSE otherwise.

smx_Mutex

32

smx_Mutex Class
file xmtx.cpp

#include xmtx.hpp

derived from smx_Object class

The smx_Mutex class is used to create a mutex, possibly with priority inheritance enabled, and/or
ceiling priority.

Protected Data Members
u32 ObjectFlags;
MUCB_PTR MutexCBP;

Constructors and Destructor
smx_Mutex(u8 pi, u8 ceiling, const char *name = NULL);
virtual ~smx_Mutex();

Methods
BOOLEAN Clear();
BOOLEAN Free();
BOOLEAN Get(u32 timeout = INF);
void GetStop(u32 timeout = INF);
BOOLEAN Rel();
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_MTX

Example
 class ConIO : public smx_Mutex
 {
 public:
 ConIO() : smx_Mutex(1, 0) { };

 void write(char *str)
 {
 if (Get())
 {
 sb_ConWriteStringUnp(0, DEMO_ROW + 2, SB_CLR_LIGHTBLUE,
 SB_CLR_BLACK, !SB_CON_BLINK, str);
 Rel();
 }
 }
 } IOM;

This example demonstrates how to make a shared resource object which is controlled
by an smx_Mutex object. Here we are ensuring that only one task will write to the
console at a time. This object is derived from smx_Mutex so it inherits all of the
features of a Mutex object. We have added a public write() method which gets access
through the mutex, writes to the console, and then releases it. The object instance,
IOM, will be constructed and destroyed by compiler startup and exit code since it is a
globally defined object. The ConIO objects will all have priority inheritance enabled
and ceiling priority disabled. The IOM object is used as follows:

smx_Mutex

33

 IOM.write(“Hello world!”);

smx_Mutex::smx_Mutex(u8 pi, u8 ceiling, const char *name = NULL)

Constructs a mutex with priority inheritance if pi > 0 and with ceiling priority if ceiling > 0.

smx functions called smx_MutexCreate()

Example
 smx_Mutex * MutexA = new smx_Mutex(1, 0, “MutexA”);

 MutexA is created with priority inheritance enabled and ceiling disabled.

smx_Mutex::~smx_Mutex()

Resumes all waiting tasks with FALSE, deletes the underlying smx mutex, and destroys this mutex.
See smx_MutexDelete in the smx Reference manual for more details.

smx functions called smx_MutexDelete().

Example
 smx_Mutex * MutexA = new smx_Mutex(1, 0, “MutexA”);
 …
 delete MutexA;

BOOLEAN smx_Mutex::Clear()

Removes this mutex from the current owner’s mutex queue and adjusts the priority of the current
owner to its highest owned-mutex priority or to its normal priority, if none. Clears the task queue of
this mutex by resuming all tasks in it with FALSE returns. Then puts this mutex in its cleared state.
Operations are performed regardless of mutex owner and nesting count. This method is normally
used for recovery purposes.

smx functions called smx_MutexClear()

Returns TRUE mutex cleared
 FALSE error

Errors SMX_OBJ_NOT_CREATED

Example

smx_Mutex

34

 smx_Mutex MutexA = new smx_Mutex(1, 0, “MutexA”);

 void SysRecover(void)
 {
 …
 MutexA->Clear();
 ...
 }

 In this example, one of the things that the system recovery routine does is to clear the

global MutexA, in order to put the system back into its ground state.

BOOLEAN smx_Mutex::Free()

Removes this mutex from the current owner task’s mutex queue, adjusts the priority of the task to
its highest owned-mutex priority or to its normal priority, if none, and resumes the task with
FALSE. Then makes the next waiting task the new owner or puts this mutex into the free state, if no
task is waiting. Differs from Rel() in that the task calling this method need not be the owner of this
mutex. Differs from Clear() in that it does not clear the task wait queue.

smx functions called smx_MutexFree()

Returns TRUE mutex freed
 FALSE error

Errors SMX_OBJ_NOT_CREATED

Example
 smx_Mutex *MutexA = new smx_Mutex(1, 0, “MutexA”);

 TaskA::Main(u32 par)
 {
 MutexA->Get()
 …
 MutexA->Free();
 }

BOOLEAN smx_Mutex::Get(u32 timeout = INF)

Gets this mutex, if free, and returns TRUE. Otherwise waits until this mutex becomes available or
timeout occurs. If current task already owns this mutex, increments its nesting counter and returns
TRUE.

smx functions called smx_MutexGet()

Returns TRUE mutex obtained or already owned.

smx_Mutex

35

 FALSE error or timeout.

Errors SMX_OBJ_NOT_CREATED

Example See smx_Mutex example.

void smx_Mutex::GetStop(u32 timeout = INF)

Same as Get() method, except that the current task is stopped and then restarted instead of resumed.

smx functions called smx_MutexGetStop()

Returns none

par TRUE mutex obtained or already owned.
 FALSE error or timeout.

Errors SMX_OBJ_NOT_CREATED

Example
 smx_Mutex MtxA = new smx_Mutex(1, 0);

 void TaskA_Main(par ok)
 {
 if (ok)
 {
 // access protected resource
 MtxA->Rel();
 }
 MtxA->GetStop(10);
 }

 The first time TaskA is started, par == 0, so it will try to get MtxA. If it is not free,

TaskA will wait for it, with no stack. When TaskA gets mtxA, it is restarted and the
result of GetStop() is passed as par to its main function. If par == TRUE, TaskA will
access the resource, then release MtxA. Then it will try again.

smx_Mutex

36

BOOLEAN smx_Mutex::Rel()

Releases this mutex, if owned by the current task and the nesting count == 1. If owned, but the
nesting count is > 1, decrements it and returns TRUE. If not owned, fails and returns FALSE.
In the first case, removes this mutex from the current task’s mutex list, adjusts the priority of the
task to its highest owned-mutex priority or to its normal priority, if none, and resumes the task with
TRUE. Then the next waiting task becomes the new owner.

smx functions called smx_MutexRel()

Returns TRUE mutex released
 FALSE error

Errors SMX_OBJ_NOT_CREATED

Example See example above.

smx_Pipe

37

smx_Pipe Class
file xpipe.cpp

#include xpipe.hpp

derived from smx_Object class

The smx_Pipe class is used in the same manner as an smx pipe. Pipes are used for I/O or for
communication between tasks. Data packets can be any width from 1 to 255 bytes. Pipes are good
for low-speed data transfers.

Protected Data Members
u32 ObjectFlags;
PICB_PTR PipeCBP;

Constructors and Destructor
smx_Pipe(u8 width, u16 length, const char *name = NULL);
virtual ~smx_Pipe();

Methods
BOOLEAN Clear();
BOOLEAN Get(void *pdst);
BOOLEAN Get8(u8 *bp);
BOOLEAN GetWait(void *pdst, u32 timeout = INF);
void GetWaitStop(void *pdst, u32 timeout = INF);

BOOLEAN Put(void *psrc);
BOOLEAN Put8(u8 byte);
BOOLEAN PutWait(void *psrc, u32 timeout = INF);
void PutWaitStop(void *psrc, u32 timeout = INF);

BOOLEAN Resume();
u32 Status(PSS *ppss);
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_PIPE

smx_Pipe::smx_Pipe(u8 width, u16 length, const char *name = NULL)

Constructs a pipe of the specified width and length from the heap.

smx functions called smx_HeapMalloc() and smx_PipeCreate()

Returns none

smx_Pipe

38

Example
 smx_Pipe *MyPipeP;

 void App_Init(void)
 {
 ...
 MyPipeP = new smx_Pipe(4, 25, “MyPipe”);
 ...
 }

 In this example, the application initialization function creates MyPipe with 25 cells of

4-byte width. The new operator uses the smx_Pipe constructor and returns a pointer to
MyPipe. The pipe buffer is obtained from the heap and the pipe object is obtained
from the object pool.

smx_Pipe::~smx_Pipe()

Resumes all waiting tasks with FALSE return values, deletes the underlying smx pipe and frees its
packet space back to the heap, then destroys this pipe.

smx functions called smx_PipeDelete() and smx_HeapFree()

Returns none

Example
 void App_Exit(void)
 {
 ...
 delete MyPipeP;
 ...
 }

 In this example, the application exit function deletes MyPipe. Since this pipe was

created with the new operator, it must be explicitly deleted. delete calls the destructor
for MyPipe. The pipe buffer is returned to the heap and the pipe object is returned to
the object pool.

BOOLEAN smx_Pipe::Clear()

Resumes all tasks waiting on this pipe with FALSE, then put the pipe in its initial state.

smx functions called smx_PipeClear()

Returns TRUE Pipe cleared.
 FALSE Error.

smx_Pipe

39

Errors SMX_OBJ_NOT_CREATED

Example
 void App_Recovery(void)
 {
 ...
 MyPipeP->Clear();
 ...
 }

 In this example, the application recovery function clears MyPipe in order to start over.

BOOLEAN smx_Pipe::Get(void *pdst)

Gets the next packet from this pipe and loads it into the buffer at pdst. Does not wait if the pipe is
empty, just returns immediately with FALSE. Intended for I/O transfers between tasks and ISRs or
LSRs. Does not wake up a task waiting to put a packet into this pipe. See the smx Reference
Manual for operational details.

smx functions called smx_PipeGet() — bare function.

Returns TRUE Packet transferred.
 FALSE Packet not transferred due to error.

Errors SMX_OBJ_NOT_CREATED

Example
 class TaskA : public smx_Task
 {
 ...
 virtual void Main(u32 par)
 {
 u32 mb[16];
 u32 i;

 for (i = 0; i < 16; i++)
 {
 MyPipeP->Get(mb++))
 {
 // process mb
 }
 };

The Main method of TaskA gets 16 words from MyPipe and puts them into mb. It
then processes the data in mb and stops. MyPipe is a global object filled by another
task or LSR. When the pipe has at least 16 words in it, TaskA is restarted (not shown)
to get and process them.

smx_Pipe

40

BOOLEAN smx_Pipe::Get8(u8 *bp)

Gets the next byte from this pipe and loads it at bp. Does not wait if the pipe is empty, just returns
immediately with FALSE. Intended for I/O transfers between tasks and ISRs or LSRs. Does not
wake up a task waiting to put a byte into this pipe. See the smx Reference Manual for operational
details. This is the fast version of Get() for byte use.

smx functions called smx_PipeGet8() — bare function

Returns TRUE byte transferred.
 FALSE byte not transferred.

Errors SMX_OBJ_NOT_CREATED

Example
 smx_Pipe *MyPipeP = new smx_Pipe(1, 64);

 class TaskA : public smx_Task
 {

 virtual void Main(u32 par)
 {
 u8 mb[16];
 u32 i;

 for (i = 0; i < 16; i++)
 {
 MyPipeP->Get(mb++))
 {
 // process mb
 }
 };

This is similar to the previous example, except that a byte-wide pipe is used and only
one byte, at a time, is transferred to mb.

BOOLEAN smx_Pipe::GetWait(void *pdst, u32 timeout = INF)

If this pipe is not empty, transfers the oldest packet from it to the buffer at pdst and returns TRUE.
If this pipe is empty, waits up to timeout ticks for a packet, then returns FALSE, if none arrive.
Intended for task to task communication. Will wake up a task waiting to put a packet into a full
pipe. See the smx Reference Manual for operational details. Can be used from LSRs, but they
cannot wait on pipes.

smx functions called smx_PipeGetWait()

Returns TRUE Packet transferred.
 FALSE Packet not transferred.

smx_Pipe

41

Errors SMX_OBJ_NOT_CREATED

Example
 smx_Pipe *in_pipeP = new smx_Pipe(PSIZE, 10);

 class TaskA : public smx_Task
 {
 ...
 virtual void Main(u32 par)
 {
 u8 pkt[PSIZE];

 while (in_pipeP->GetWait(pkt))
 {
 // process pkt
 }
 }
 };

The Main method of TaskA waits on in_pipe for a packet. When a packet is received,
it is put into pkt and processed. Then TaskA waits for the next packet. It will wait
indefinitely. This creates synchronization between TaskA and whatever task is putting
packets into in_pipe. Note that in_pipe is global, so both tasks can access it.

void smx_Pipe::GetWaitStop(void *pdst, u32 timeout = INF)

Same as GetWait() method, except that the current task is stopped and then restarted instead of
resumed. Can be used from a task, but not from an LSR.

smx functions called smx_PipeGetWaitStop()

par TRUE Packet transferred.
 FALSE Packet not transferred.

Errors SMX_OBJ_NOT_CREATED

Example
 class KeyTask : public smx_Task
 {
 public:

 KeyTask() : smx_Task(2)
 {
 is_starting = TRUE;
 key_pipe = new smx_Pipe(1, 40); /* byte wide pipe */
 }

smx_Pipe

42

 void Put8(u8 ch)
 {
 key_pipe->Put8(ch);
 }

 virtual void Main(u32 got_key)
 {
 if (!is_starting)
 {
 if (got_key)
 process_key(key_buf);
 else
 report_problem();
 }
 else
 is_starting = FALSE; /* wait for first key */
 key_pipe->GetWaitStop((void *)key_buf, 100);
 }

 private:
 BOOLEAN is_starting;
 u8 key_buf[40];
 smx_Pipe *key_pipe;

 void process_key(u8 *bp) { /* … */ }
 void report_problem() { /* .. */ }
 } key_task;

 void key_LSR(u32 par)
 {
 key_task.Put8((u8)par);
 }

The Main method of KeyTask waits for a key on its key_pipe. Note that the is_starting
flag is used to skip processing on the initial startup. Since we are using GetWaitStop(),
TRUE will be passed as the got_key parameter to Main() if a key was successfully
placed into the key buffer (key_buf). got_key will be false if 100 ticks have passed
without a key or if there was an error, in which case report_problem() is called.

This demonstrates the value of smx++’s support for dual API programming. In this
case the LSR (and ISR) are written in C code, while the key processing task is written
with smx++. Note how the KeyTask offers a public Put() method which anybody can
use to put a character into the key_pipe. The key_LSR can be invoked from an ISR
where the key is passed as a parameter.

WARNING: It is never a good idea to call any scheduling method in the constructor
of a task such as Stop, Start, Suspend, etc. This will most likely cause an error since
the task is still “under construction”.

smx_Pipe

43

BOOLEAN smx_Pipe::Put(void *psrc)

Puts the packet from the buffer at psrc into pipe. Does not wait if the pipe is full, just returns
immediately with FALSE. Intended for I/O transfers between ISRs or LSRs and tasks. Does not
wake up a task waiting to get a packet from this pipe. See the smx Reference Manual for
operational details.

smx functions called smx_PipePut() — bare function.

Returns TRUE Packet transferred.
 FALSE Packet not transferred.

Errors SMX_OBJ_NOT_CREATED

Example
 smx_Pipe * MyPipeP = new smx_Pipe(4, 20);
 u32 packet;

 TaskA::Main(u32 par)
 {
 // …
 MyPipeP->Put(&packet); /* does not wait */
 // …
 }

BOOLEAN smx_Pipe::Put8(u8 byte)

Puts byte into this pipe. Does not wait if the pipe is full, just returns immediately with FALSE.
Intended for I/O transfers between ISRs or LSRs and tasks. Does not wake up a task waiting to get a
byte from this pipe. See the smx Reference Manual for operational details. This is the fast version of
Put() for byte use.

smx functions called smx_PipePut() — bare function

Returns TRUE byte put into pipe.
 FALSE byte not put into pipe.

Errors SMX_OBJ_NOT_CREATED

Example See example for GetWaitStop()

smx_Pipe

44

BOOLEAN smx_Pipe::PutWait(void *psrc, u32 timeout = INF)

If this pipe is not full, transfers the packet at psrc to it and returns TRUE. If this pipe is full, waits up
to timeout ticks for an empty slot, then returns FALSE, if none appears. Intended for task to task
communication. Will wake up a task waiting to get a packet from an empty pipe. See the smx
Reference Manual for operational details. Can be used from LSRs, but they cannot wait on pipes.

smx functions called smx_PipePutWait()

Returns TRUE Packet transferred.
 FALSE Packet not transferred.

Errors SMX_OBJ_NOT_CREATED

Example
 TaskA::Main(u32 par)
 {
 ...
 while (MyPipeP->PutWait(&packet))
 {
 // prepare another packet.
 }
 }

 Puts a 4-byte packet into MyPipe. Waits indefinitely if this pipe is full.

void smx_Pipe::PutWaitStop(void *psrc, u32 timeout = INF)

Same as PutWait() method, except that the current task is stopped and then restarted instead of
resumed. Can be used from a task, but not from an LSR.

smx functions called smx_PipePutWaitStop()

par TRUE Packet transferred.
 FALSE Packet not transferred.

Errors SMX_OBJ_NOT_CREATED

Example
 class CrtTask : public smx_Task
 {
 public:
 CrtTask() : smx_Task(2); { crt_pipe = new smx_Pipe(4, 10); }

 void Main(u32 par)
 {
 // create packet @ pktp
 crt_pipep->PutWaitStop(pktp);
 }

smx_Pipe

45

 BOOLEAN GetPkt { crt_pipep->GetWait(); }

 private:
 smx_Pipe *crt_pipep;
 u8 pktp[4];
 } crt_task;

crt_task is constructed with a priority of 2 and its private member pipe, crt_pipe, is
constructed with its data buffer from the heap. The crt_task main function creates a
packet, loads it into crt_pipe, then stops and restarts. It will wait to restart if the pipe is
full. A public method, GetPk() is provided to get packets out of crt_pipe. It will wait if
crt_pipe is empty.

BOOLEAN smx_Pipe::Resume()

Resumes each task waiting on this pipe, for which its put or get condition is TRUE. This method is
used in combination with non-SSR methods such as Get8() and Put8().

smx functions called smx_PipeResume()

Returns TRUE Operation performed.
 FALSE Operation not performed because of invalid pipe.

Errors SMX_OBJ_NOT_CREATED

Example
 smx_Pipe MyPipe(1, 80); // byte wide, 80 character length

 void key_LSR(void)

{
 MyPipe.Resume();
}

void key_ISR(u8 key_port)
{

 u8 ch;
 ch = input_key(key_port);
 MyPipe.Put8(ch);
 smx_LSR_INVOKE(key_LSR, 0);

}

 In this example, key_ISR is loading MyPipe, a character at a time, then invoking
key_LSR to wake up the task, which is waiting to process keys. This is done by
calling MyPipe.Resume(). Note that key_LSR does not need to know what task is
waiting, if any.

smx_Pipe

46

u32 smx_Pipe::Status(PSS *ppss)

Returns the number of packets in pipe and pipe status information.

smx functions called smx_PipeStatus()

Returns N Number of packets in pipe.
 0 No packets in pipe or invalid pipe.

Errors SMX_OBJ_NOT_CREATED

Example smx_PipeP MyPipe;

 TaskA::Main(u32 par)
 {
 PSS MP_Info;
 u32 MP_Num;

 MP_Num = MyPipe->Status(&MP_Info);
 ...
 }

 In this example the number of packets in the pipe is put into MP_Num and other pipe

status information is put into MP_Info.

smx_Pool

47

smx_Pool Class
file xpool.cpp

#include xpool.hpp

derived from smx_Object class

The smx_Pool class provides a C++ interface to an smx block pool, which can be obtained from the
heap or a DAR. smx block pools are discussed in more detail in the smx Reference Manual.

Protected Data Members

u32 ObjectFlags;
PCB_PTR PoolCBP;

Constructors and Destructor
smx_Pool(u32 numblks, u32 blksize, const char * name = NULL);
smx_Pool(SB_DCB_PTR dar, u32 numblks, u32 blksize,
 u16 align = SB_CACHE_LINE, const char * name = NULL);
virtual ~smx_Pool();

Methods
u32 Peek(SMX_PK_PARM par);
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_POOL

Example

class WorkAreas : smx_Pool, smx_BLock;
{
public:
 WorkAreas() smx_Pool(10, 40, "workareas") {};

 ~WorkAreas() ~smx_Pool();

 BCB_PTR Get() { return(new smx_Block())
} wa;

BCB_PTR wa.Get();

 In this example, a WorkAreas class is defined which includes a protected pool that is
created by the constructor and can be deleted by the destructor. A single method, Get()
is provided to get a work area using the smx_Block constructor.

smx_Pool

48

smx_Pool::smx_Pool(u32 NumBlks, u32 BlkSize, const char *name = NULL)

Constructs a block pool of NumBlks of BlkSize bytes from the heap.

smx functions called smx_HeapMalloc() and smx_BlockPoolCreate()

Returns none

Example
 smx_Pool * MyPoolP = new smx_Pool(10, 100, “MyPool”);

 Creates MyPool consisting of 10 blocks of 100 bytes each from the heap.

smx_Pool::smx_Pool(SB_DCB_PTR dar, u32 NumBlks, u32 BlkSize, u16 align, const char

*name = NULL)

Creates a block pool of NumBlks of BlkSize from dar aligned on an align-byte boundary.

smx functions called smx_BlockPoolCreateDAR()

Returns none

Example
 smx_Pool *MyPoolP = new smx_Pool(sb_adar, 10, 100, 16, “MyPool”);

 Creates MyPool consisting of 10 blocks of 100 bytes, each, from ADAR with 16-byte

alignment.

smx_Pool::~smx_Pool()

Releases all the memory used by this pool back to the heap or to the dar from which it came, then
destroys this pool, unless one or more blocks are in use.

smx functions called smx_BlockPoolDelete()

Returns none

Errors SMXE_OBJ_IN_USE

Example
 smx_Pool * MyPoolP = new smx_Pool(10, 100, “MyPool”);
 // use MyPool
 delete MyPool;

smx_Pool

49

u32 smx_Pool::Peek(SMX_PK_PARM par)

Returns the value of the specified parameter for this pool. See smx_BlockPoolPeek() in the smx
Reference Manual for a list of pool parameters.

smx functions called smx_BlockPoolPeek()

Returns value Value for par.
 0 Value, unless error.

Errors SMX_OBJ_NOT_CREATED

Example
 u32 num_blocks = MyPoolP->Peek(SMX_PK_NUM);

 This example shows how to find out how many blocks are in MyPool.

smx_Sem

50

smx_Sem Class
file xsem.cpp

#include xsem.hpp

derived from smx_Object class

The smx_Sem class is used to create a semaphore with a specified threshold and one or more task
priority levels. Semaphores are used to regulate the flow of tasks. smx_Sem is capable of operating
in one of 6 modes: binary resource, multiple resource (counting semaphore), binary event, multiple
event, threshold, and gate. For more information about these semaphore modes please refer to the
Semaphores Chapter of the smx Users Guide.

Protected Data Members
u32 ObjectFlags;
SCB_PTR SemCBP;

Constructors and Destructor
smx_Sem(SMX_SEM_MODE mode, u32 lim = 1L, const char *name = NULL);
virtual ~smx_Sem();

Methods
BOOLEAN Clear();
u32 Peek(SMX_PK_PARM par);
BOOLEAN Signal();
BOOLEAN Test(u32 timeout = INF);
void TestStop(u32 timeout = INF);
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_SEM

smx_Sem::smx_Sem(SMX_SEM_MODE mode, u32 lim = 1, const char *name = NULL)

Constructs a semaphore with mode and limit as specified:

mode lim Semaphore Mode
SMX_SEM_RSRC 1 Binary resource
SMX_SEM_RSRC >1 Multiple resource (counting semaphore)
SMX_SEM_EVENT 1 Binary event
SMX_SEM_EVENT 0 Multiple event
SMX_SEM_THRES t Threshold

 SMX_SEM_GATE 1 Gate

smx functions called smx_SemCreate()

smx_Sem

51

Example
 smx_Sem *PrintP = new smx_Sem(SMX_SEM_RSRC, 1, “Print”);

 Constructs a binary resource semaphore, Print, which is used to limit one task, at a

time, access to a printer.

smx_Sem::~smx_Sem()

Resumes all tasks waiting at this semaphore, with FALSE return values, then deletes the underlying
smx semaphore, and destroys this semaphore.

smx functions called smx_SemDelete()

Example
 PrintP->delete()

 Destroys the Print semaphore above.

BOOLEAN smx_Sem::Clear()

Resumes all tasks waiting at sem with FALSE return values. Then resets the internal count to its
initial value (lim). Useful in recovery situations.

smx functions called smx_SemClear()

Returns TRUE semaphore cleared
 FALSE error

Errors SMX_OBJ_NOT_CREATED

Example
 PrintP->Clear();

Clears the Print semaphore above.

u32 smx_Sem::Peek(SMX_PK_PARM par)

Returns the value of the specified parameter for this semaphore. See smx_SemPeek() in the smx
Reference Manual for a list of semaphore parameters.

smx functions called smx_SemPeek()

smx_Sem

52

Returns value value for par.
 0 value unless error.

Errors SMX_OBJ_NOT_CREATED

Example
 SMX_SEM_MODE mode = (SMX_SEM_MODE)PrintP->Peek(SMX_PK_MODE);

 Returns the mode of the Print semaphore.

BOOLEAN smx_Sem::Signal()

Signals this semaphore that an event has occurred. Operation will depend on this semaphore mode
and its internal count. For more discussion of how the various semaphore modes operate, refer to
the smx Users Guide.

smx functions called smx_SemSignal()

Returns TRUE signal sent
 FALSE error

Errors SMX_OBJ_NOT_CREATED

Example
 smx_Sem *BinSemP = new smx_Sem(SMX_SEM_RSRC, 1, "bin_sem");

 TaskA::Main(u32 par)
 {
 while (1)
 {
 if (PrintP->Test(60))
 {
 // print report
 PrintP->Signal();
 }
 else
 // report printer busy
 }
 }

In this example TaskA waits for an external signal before using the printer. If the
signal does not arrive within 60 ticks, TaskA reports that the printer is busy, then waits
again. When Print does pass, TaskA prints its report, then signals Print, so that another
task can use the printer.

smx_Sem

53

BOOLEAN smx_Sem::Test(u32 timeout = INF)

Test if this semaphore has a pass condition. If so, decreases its internal counter and continues
execution of the current task. If the timeout elapses before a pass condition occurs, a waiting task is
resumed with a FALSE. See smx_SemTest() in the smx Reference Manual for discussion of how
the semaphore modes effect the pass condition.

smx functions called smx_SemTest()

Returns TRUE pass
 FALSE error or timeout

Errors SMX_OBJ_NOT_CREATED

Example See smx_Sem::Signal() example.

void smx_Sem::TestStop(u32 timeout = INF)

Same as Test() method, except that the current task is stopped and then restarted instead of resumed.
Can be used from a task, but not from an LSR.

smx functions called smx_SemTestStop()

Returns none

par TRUE pass
 FALSE error or timeout

Errors SMX_OBJ_NOT_CREATED

Example
 TaskA::Main(u32 ready)
 {
 if(ready)
 {
 // print report
 PrintP->Signal();
 }
 else
 {
 // report printer busy
 }
 PrintP->TestStop(60);
 }

 This example does the same thing as the example for Signal(), except that

TaskA waits in the stopped condition. This allows giving up its stack so it can be
shared by other tasks.

smx_Task

54

smx_Task Class
file xtask.cpp

#include xtask.hpp

derived from smx_Object class

The task class is different from other smx++ classes, because application task classes derived from
it will do most of the work. Normally, each derived task class will have its own main() function.
The task Main() method is a pure virtual method since it must always be overridden in a derived
task class. It basically determines what the task does. The HookEntry() and HookExit() methods are
virtual methods, which must also be overridden, if they are used.

When dispatching a task, if the this pointer in its TCB is non-zero, the smx scheduler will call the
task main wrapper, with the this pointer and the TCB return value, rv, as its parameters:

 void smx_TaskMainWrapper(smx_Task *Task, u32 par)

This results in calling Main(par) for the task. The parameter, par, is the return value from Stop()
methods described elsewhere in this manual. The parameter does not have to be used if not needed.

When suspending a task, if the this pointer in its TCB is non-zero, the smx scheduler will call the
hook exit wrapper, with the this pointer as its parameter:

 void smx_TaskHookExitWrapper(smx_Task *Task)

This results in automatically calling HookExit() for the task when it is suspended.

When resuming a task, if the this pointer in its TCB is non-zero, the smx scheduler will call the
hook entry wrapper, with the this pointer as its parameter:

 void smx_TaskHookEntryWrapper(smx_Task *Task)

This results in automatically calling HookEntry() for the task when it is resumed.

The above wrappers are defined in ptask.cpp.

Protected Data Members
u32 ObjectFlags;
TCB_PTR TaskCBP;

Constructors and Destructor
smx_Task(u8 pri, u32 stksz = 0, u32 flags = SMX_FL_NONE, const char *name = NULL);
virtual ~smx_Task();

Methods
BOOLEAN Bump(u8 pri);
BOOLEAN Hook();
virtual void HookEntry();
virtual void HookExit();
void * Locate();

smx_Task

55

virtual void Main(u32 par);
u32 Peek(SMX_PK_PARM par);
u32 RelAllBlocks();
u32 RelAllMsgs();
BOOLEAN Resume();
BOOLEAN StackCheckOff();
BOOLEAN StackCheckOn();
BOOLEAN Start();
BOOLEAN Start(u32 par);
BOOLEAN Stop(u32 timeout = INF);
BOOLEAN Suspend(u32 timeout = INF);
BOOLEAN UnHook();
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_TASK

Protected Methods
BOOLEAN Lock();
BOOLEAN LockClear();
BOOLEAN Sleep(u32 stime);
void SleepStop(u32 stime);
BOOLEAN UnLock();
BOOLEAN UnLockQuick();

These methods can be called only for the current task and hence they are protected.

Example
 class Sleeper : public smx_Task
 {
 public:
 Sleeper(u8 pri) : smx_Task(pri), WakeUpTimer(NULL) { };
 BOOLEAN StopTimer(u32 timeout = INF);
 static void WakeUpLSR(u32);

 protected:
 virtual void Main(u32 par); // Override inherited main method
 PTimer WakeUpTimer; // Timer used to activate task at regular intervals.
 };

 Sleeper SleeperT((u8)PRI_NORM); /* Sleeper task object */

 // This LSR is associated with the smx_Timer object. It will be activated at regular
 // intervals to restart the Sleeper task with a parameter of TRUE.

 void Sleeper::WakeUpLSR(u32)
 {
 SleeperT.Start((u32)TRUE); // Restart task at regular intervals.
 }

smx_Task

56

 // This task demonstrates how to make a task periodically wake up.
 // Uses WakeUpTimer and WakeUpLSR to wake up every 5 seconds.
 // Set parameter DelayOk to TRUE unless you want to start the timer.

 void Sleeper::Main(u32 DelayOk)
 {
 UnLock();
 if (DelayOk)
 sb_ConWriteString(24, 9, LIGHTCYAN,BLACK,!SB_CON_BLINK,
 "WAKEUP");
 else
 {
 sb_ConWriteString(24,9,LIGHTCYAN,BLACK,!SB_CON_BLINK, "INIT ");
 if (WakeUpTimer == NULL)

 WakeUpTimer = new smx_Timer((LSR_PTR)&Sleeper::WakeUpLSR,
 0, 0, 5*smx_cf.sec, “WakeUpTimer”);

 }
 }

 // Enhance smx_Task::Stop to stop the timer as well.

 BOOLEAN Sleeper::StopTimer(u32 timeout)
 {
 if (WakeUpTimer)
 {
 delete WakeUpTimer;
 WakeUpTimer = NULL;
 }
 return smx_Task::Stop(timeout);
 }

 App::Init()
 {
 SleeperT.Start((u32) FALSE); // Pass parameter of FALSE.
 }

 App::ShutDown()
 {
 SleeperT.Stop();
 }

The above example starts the task SleeperT at regular intervals, each 5 seconds. The
static method, WakeUpLSR, is the LSR invoked by the timer, WakeUpTimer. The
LSR must be static because the smx scheduler does not setup the this pointer for
LSRs. The parameter to the LSR is not utilized by this example. The Timer is started
by the Sleeper::Main method which is passed a FALSE parameter and stopped by the
virtual method Sleeper::Stop.

smx_Task

57

smx_Task::smx_Task(u8 pri, u32 stksz = 0, u32 flags = SMX_FL_NONE,
const char *name = NULL)

Constructs a task with the priority pri and specified flags set. If stksz is non-zero, a stack is obtained
from the heap and bound to this task. Otherwise that task will receive a stack from the stack pool
when it is dispatched.

smx functions called smx_TaskCreate()

Example
 class PreemptorC : public smx_Task
 {
 PreemptorC(u8 pri, u32 stksz, u32 flags, cons char *name) : smx_Task(pri, stksz,
 flags, name) {};
 void Main(u32 par);
 }

 PreemptorC::Main(u32 par)
 {
 /* PreemptorC main code goes here */
 }

 PreemptorP = new PreemptorC(PRI_HI, 0, SMX_FL_NONE, “MyTask”);

 In this example, the PreemptorC class is derived from the smx_Task class and creates

its own Main method, PreemptorC::Main(). The Preemptor constructor loads tcb.fun
with the address of the C wrapper function that will call the PreemptorC main method
and also loads tcb.thisptr with PreemptorP.

 This is the typical procedure to create new tasks: derive a new task class from

smx_Task, define its main method, then construct a task object. Task-specific hook
entry and exit routines may also be defined. In some cases, multiple tasks may share a
single derived task class.

BOOLEAN smx_Task::Bump(u8 pri)

Changes this task’s priority and requeues it, if it is in a queue.

smx functions called smx_TaskBump()

Returns TRUE task priority changed
 FALSE error

Errors SMX_OBJ_NOT_CREATED

smx_Task

58

Example
 class RoundRobin : public smx_Task
 {
 public:
 RoundRobin(u8 pri) : smx_Task(pri) { };

 protected:
 virtual void Main(u32 par);
 }

 void RoundRobin::Main(u32 par)
 {
 u8 pri = Priority();

 do
 {
 // perform operation

 } while(Bump(pri));
 }

 RoundRobin TaskR(PRI_NORM);

 In this example, a round-robin task class is derived from smx_Task and TaskR is

defined using it. TaskR performs an operation, then bumps itself to the end of its
priority level in the ready queue. This effectively creates a round-robin scheduling
scheme.

BOOLEAN smx_Task::Hook()

Hooks the smx_Task::HookEntry() and smx_Task::HookExit() methods to this task. These must be
defined for this task class since they are virtual no-ops in smx_Task..

smx functions called smx_TaskHook()

Returns none

Errors SMXE_OBJ_NOT_CREATED, SMXE_OP_NOT_ALLOWED

smx_Task

59

Example
 class PreemptorC : public smx_Task
 {
 PreemptorC(u8 pri, u32 stksz, u32 flags, cons char *name) : smx_Task(pri, stksz,
 flags, name) {};
 virtual void HookEntry();
 virtual void HookExit();
 virtual void Main(u32 par);
 }

 PreemptorC::Main(u32 par)
 {
 Hook();

 while(1)
 {
 // do main task function
 }
 }

 PreemptorC::HookEntry()
 {
 /* smx_Task entry code goes here */
 }

 PreemptorC::HookExit()
 {
 /* smx_Task exit code goes here */
 }

 Preemptor PreTask(2, 200, NO_FLAGS, "PreTask");

 In this example, the PreemptorC class has been derived from the smx_Task class.

PreTask is constructed from the PreemptorC class. When it first starts, it hooks the
Preemptor HookExit() and HookEntry() methods. Thereafter, the scheduler will call
these functions whenever PreTask is suspended or resumed, respectively.

virtual void smx_Task::HookEntry()

Entry routine called by the scheduler each time it resumes a hooked task. This is an empty stub,
which must be overridden with an actual entry routine when a task class is derived from
smx_Task().

smx functions called none

Returns none

See Also smx_Task::HookExit() and smx_Task::Hook()

Example See example for smx_Task::Hook().

smx_Task

60

virtual void smx_Task::HookExit()

Exit routine called by the scheduler each time it suspends a hooked task. This is an empty stub,
which must be overridden with an actual exit routine when a task class is derived from smx_Task().

smx functions called none

Returns none

See Also smx_Task::HookEntry() and smx_Task::Hook()

Example See example for smx_Task::Hook().

void * smx_Task::Locate()

Locates the queue which this task is in and returns a pointer to it.

smx functions called smx_TaskBump()

Returns handle pointer to queue this task is in
 0 task is not in a queue or error

Errors SMX_OBJ_NOT_CREATED

Example
 ReportC :: Main()
 {
 void *qp = PreTask::Locate();
 switch (smx_SysWhatIs(qp))
 {
 case SMX_CB_NULL:
 ConIOManager.Print("MyTask is not in a queue");
 break;
 case SMX_CB_RQ:
 ConIOManager.Print("MyTask is in the ready queue");
 break;
 ...
 }
 }

 This example shows locating PreTask, defined above, then using the

smx_SysWhatIs() service to determine what kind of queue MyTask is in and report it.

smx_Task

61

BOOLEAN smx_Task::Lock()

This method locks this task to prevent it from being preempted. This method is protected so that the
current task can only be locked by itself.

smx functions called smx_TaskLock()

Returns TRUE ct locked.
 FALSE ct is locked, but lock counter was not incremented.

Errors SMXE_OBJ_NOT_CREATED

Example See example for smx_Task::UnLock() method.

BOOLEAN smx_Task::LockClear()

Clears the lock nesting counter for this task thus permitting it to be preempted. This method is
protected so that the current task can only be unlocked by itself.

smx functions called smx_TaskLockClear()

Returns TRUE ct is unlocked and its lock nesting counter is cleared.
 FALSE ct is unlocked, but lock nesting counter was not 1.

Errors SMXE_OBJ_NOT_CREATED

Example
 class HourTask : public smx_Task
 {
 public:
 u32 hour;
 virtual void Main(u32)
 {
 Lock();
 hour++;
 LockClear();
 }
 };

 In this example, other tasks are blocked from accessing hour while it is being updated.

Using lock clear to unlock assures that the task will be unlocked even if there were
more locks than unlocks.

smx_Task

62

virtual void smx_Task::Main(u32 par)

This is an empty stub, which must be overridden when a task class is derived from smx_Task. Note
that Main is a pure virtual method, which means that you will get a compiler error if you attempt to
derive your own class from smx_Task without overriding Main().

smx functions called none

Returns none

Example See the example for smx_Task::Hook().

u32 smx_Task::Peek(SMX_PK_PARM par)

Returns the value of the specified parameter for this task. See smx_TaskPeek() in the smx
Reference Manual for a list of semaphore parameters.

smx functions called smx_TaskPeek()

Returns value value for par.
 0 value unless error.

Errors SMX_OBJ_NOT_CREATED

Example
 u32 priority = TaskA.Peek(SMX_PK_PRI);

 Returns the priority of TaskA.

u32 smx_Task::RelAllBlocks()

Releases all blocks owned by this task and returns the number released. May be useful if this task is
being stopped or restarted. Note: called automatically if this task is being deleted.

smx functions called smx_BlockRelAll()

Returns u32 Number of blocks released

Errors SMXE_OBJ_NOT_CREATED

Example u32 num = TaskA.RelAllBlocks();

smx_Task

63

u32 smx_Task::RelAllMsgs()

Releases all messages owned by this task. and returns the number released. May be useful if this
task is being stopped or restarted. Note: called automatically if this task is being deleted.

smx functions called smx_MsgRelAll()

Returns u32 number of messages released

Errors SMXE_OBJ_NOT_CREATED

Example u32 num = TaskA.RelAllMsgs();

BOOLEAN smx_Task::Resume()

Removes this task from whatever queue it may be in and puts it into the ready queue at the end of
its priority level. Does the equivalent of PipeResume() if this task is waiting at a pipe. Otherwise,
does the equivalent of a timeout, unless this is the current task. If not the current task and it is now
the top task and the current task is not locked, resumes it, if it was suspended or restarts it, if it was
stopped. If the current task resumes itself, it is bumped to the end of its rq level and unlocked. If it is
still the top task, it will continue, but it will be unlocked.

smx functions called smx_TaskResume()

Returns TRUE task resumed
 FALSE error

Errors SMXE_OBJ_NOT_CREATED

Example
 class MyTaskC : public smx_Task
 {
 virtual void Main();
 } MyTask

 MyTaskC::Main()
 {
 do {
 Lock();
 // main task function
 } while(MyTask->Resume());
 }

 This task resumes itself in order to implement round-robin scheduling. After doing its

main function, it is requeued at the end of its priority level in rq, thus allowing the next
equal-priority task in rq to run. Note that when this task resumes itself, it is unlocked,
even if it continues immediately. Hence, if the main function is supposed to be locked,
then Lock() must be called.

smx_Task

64

BOOLEAN smx_Task::Sleep(u32 stime)

Puts this task to sleep until the specified system time, stime. If stime < smx_stime the operation is
aborted and returns FALSE. This method is protected so that only the current task can put itself to
sleep.

smx functions called smx_TaskSleep()

Returns TRUE ct has been delayed
 FALSE no delay due to invalid time

Errors SMXE_OBJ_NOT_CREATED

Example
 class Sleeper : public smx_Task
 {
 Sleeper() : smx_Task((u8)PRI_NORM) { };
 void Main(u32);
 } SleepT;

 Sleeper::Main(u32)
 {
 while (1)
 {
 // do main function
 Sleep(StimeGet() + 5);
 }
 }

 AppInit()
 {
 ...
 SleepT.Start();
 ...
 }

 In this example, the Sleeper class is derived from smx_Task class with its own main

method. SleepT is an instance of this class, which is started by AppInit(). SleepT
performs its main function, then sleeps for 5 seconds, wakes up, and repeats

void smx_Task::SleepStop(u32 stime)

Same as Sleep() method, except that the current task is stopped and then restarted instead of
resumed.

smx functions called smx_TaskSleepStop()

Returns none

smx_Task

65

par TRUE current task has been delayed
 FALSE no delay due to invalid time

Example class Sleeper : public smx_Task
 {
 Sleeper() : smx_Task((u8) PRI_NORM) { };
 virtual void Main(u32);
 } SleepT;

 Sleeper::Main(u32)
 {
 // do main function
 SleepStop(StimeGet() + 5);
 }

 AppInit()
 {
 ...
 SleepT.Start();
 ...
 }

 This example does the same thing as the previous example, except that SleepT stops

after each iteration, then restarts when awakened. (Note that there is no while loop.)
The advantage of this is that it releases its stack so other tasks can use it.

BOOLEAN smx_Task::Set (SMX_ST_PARM par, u32 val)

Provides task control.

smx functions called smx_TaskSet()

Returns TRUE success
 FALSE error

Errors SMXE_OBJ_NOT_CREATED

Example Atask::Main()
 {
 ...
 Set(SMX_ST_STK_CK, OFF);
 // call function which changes stacks
 Set (SMX_ST_STK_CK, ON);
 ...
 }

smx_Task

66

BOOLEAN smx_Task::Start()
BOOLEAN smx_Task::Start(u32 par)

Starts this task with or without a parameter by putting it into the ready queue at the end of its
priority level. If this task is not currently stopped it will be stopped, then restarted. Either way, it
will start from the beginning of its main function when it is dispatched. Also, it is given a stack
from the smx stack pool.

smx functions called smx_TaskStart() or smx_TaskStartPar()

Returns TRUE task started
 FALSE task not started due to error.

Errors SMXE_OBJ_NOT_CREATED

Example See smx_Task example.

BOOLEAN smx_Task::Stop(u32 tmo = INF)

Removes this task from any queue it may be in, stops it, and sets its timeout to tmo, which if not
INF will result in this task restarting after tmo ticks. A task can stop itself, even if locked. A task
becomes dormant if tmo = INF. In this state it will run again only if it is restarted by another task.

smx functions called smx_TaskStop()

Returns TRUE task stopped (not possible if task is stopping itself)
 FALSE task not stopped due to error.

par/rv not affected

Errors SMXE_OBJ_NOT_CREATED

Example
 class MyTaskC : public smx_Task
 {
 MyTaskC(u8 pri) : smx_Task(pri) {};
 void Main(u32 par);
 } MyTask(PRI_NORM);

 MyTaskC::Main(u32 par)
 {
 // do main function
 Stop(10);
 }

 In this example MyTask performs its main function then stops for 10 ticks, after which

it is restarted and repeats. While stopped, MyTask releases its stack for use by other
tasks. MyTask can be stopped by another task with: MyTask.Stop(tmo);

smx_Task

67

BOOLEAN smx_Task::Suspend(u32 tmo = INF)

Removes this task from any queue it may be in, suspends it, and sets its timeout to tmo, which, if
not INF, will result in this task resuming after tmo ticks. This task can suspend itself, even if locked,
in which case, it will resume after tmo ticks and it will be unlocked. A task can suspend another task
for tmo ticks. See smx_TaskSuspend() in the smx Reference Manual for details.

smx functions called smx_TaskSuspend()

Returns TRUE task suspended
 FALSE task not suspended due to error.

Errors SMXE_OBJ_NOT_CREATED

Example class MyTaskC : public smx_Task
 {
 MyTaskC(u8 pri) : smx_Task(pri) {};
 void Main(u32 par);
 BOOLEAN WorkToDo;
 } MyTask(PRI_NORM);

 MyTaskC::Main()
 {
 while(1)
 {
 // perform main function
 Suspend(10);
 }
 }

 This example does the same thing as the previous Stop() example, except that MyTask

is suspended rather than stopped. As a consequence, it keeps its stack. This would be
useful if its stack contained information necessary to perform its main function.

BOOLEAN smx_Task::UnHook(void)

Unhooks the entry and exit routines from this task.

smx functions called smx_TaskUnhook()

Returns TRUE task unhooked
 FALSE task not unhooked due to error.

Errors SMXE_OBJ_NOT_CREATED

Example See example for smx_Task::Hook()

smx_Task

68

BOOLEAN smx_Task::UnLock()

Decrements the lock counter. If it becomes 0, unlocks this task and tests for preemption. This
method is protected so that current task can only be unlocked by itself.

smx functions called smx_TaskUnlock()

Returns TRUE task unlocked.
 FALSE ct was already unlocked.

Example See example for smx_Task::Lock().

BOOLEAN smx_Task::UnLockQuick()

Decrements lock counter. If it becomes 0, unlocks this task but does not test for preemption. This
method is protected so that current task can only be unlocked by itself.

smx functions called smx_TaskUnlockQuick()

Returns TRUE ct unlocked.
 FALSE ct was already unlocked.

Example See example for Lock()

smx_Timer

69

smx_Timer Class
file xtmr.cpp

#include xtmr.hpp

derived from smx_Object class

The smx_Timer class provides an interface to smx timers, which provide one-shot, cyclic, and pulse
timers. An smx++ timer is initially created non-holding. When it is started, an smx timer is created,
started, and linked to the smx++ timer. If an smx one-shot timer times out or is stopped, the smx++
timer becomes non-holding again.

Protected Data Members.
u32 ObjectFlags;
TMCB_PTR TimerCBP;

Constructors and Destructor
smx_Timer();
smx_Timer(smx_Timer *tmra, const char *name = NULL);
virtual ~smx_Timer();

Methods
u32 Peek(SMX_PK_PARM par);
BOOLEAN Reset(u32 & tml);
BOOLEAN SetLSR(SMX_TMR_OPT opt, u32 par = 0, LSR_PTR lsr = NO_CHG);
BOOLEAN SetPulse(u32 period, u32 width);
BOOLEAN Start(u32 delay, u32 period, LSR_PTR lsr, const char *name = NULL);
BOOLEAN StartAbs(u32 time, u32 period, LSR_PTR lsr, const char *name = NULL);
BOOLEAN Stop(u32 & tml);
virtual SPP_CLTYPE WhatIs(void); // returns SPP_CL_TIMER

smx_Timer::smx_Timer()

Constructs a non-holding timer, which must then be started.

smx functions called none

Returns none

Example smx_Timer *tmrap = new smx_Timer();

 Constructs a non-holding timer, tmra .

smx_Timer

70

smx_Timer::smx_Timer(smx_Timer *tmra, const char *name = NULL))

Constructs a duplicate of tmra. If tmra is holding, its smx timer is duplicated and the new smx timer
is enqueued after it. This timer will time out with tmra. If tmra is non-holding, tmrb will be also.
See smx_TimerDup() for details concerning duplicate timers.

smx functions called smx_TimerDup()

Returns none

Example smx_Timer tmrb(tmrap, "tmrb");

 tmrb is constructed from tmra. If tmra is non-holding, so will be tmrb and the name

"tmrb" is not used.

smx_Timer::~smx_Timer()

If this timer is holding, the underlying smx timer is stopped and deleted. Then this timer is
destroyed.

smx functions called smx_TimerStop()

Returns none

Example delete tmrap;

 Deletes the non-holding tmra constructed above.

u32 smx_Timer::Peek(SMX_PK_PARM par)

Returns the value of the specified parameter for this timer. See smx_TimerPeek() in the smx
Reference Manual for a list of timer parameters..

smx functions called smx_TimerPeek()

Returns value value of par
 0 value unless error

Example u32 time_left

 time_left = tmrc::Peek(SMX_PK_TIME_LEFT);

 This will return the time left for tmrc, assuming that it is holding. If not holding, 0 will

be returned, indicating that the timer has timed out, unless it was never started.

smx_Timer

71

BOOLEAN smx_Timer::Reset(u32 & tml)

If this timer is holding, stops it and loads the time left of its current delay into tml. Then restarts this
timer with its current delay and returns TRUE. If not holding loads 0 into tml and returns FALSE.
The current delay is the length of the current interval, in ticks. Reset() is normally used with one-
shot timers that put time limits on expected events. If the event occurs within the time limit, the
timer is reset. See smx_TimerReset() in the smx Reference Manual for a more information.

smx functions called smx_TimerReset()

Returns TRUE timer reset
 FALSE timer not reset due to not holding or error

Example u32 tml;

 if (!tmrc.Reset(tml) && !SMX_ERR)
 // timer has expired

 In this example, tmrc is reset and its time left is stored in tml. If Reset() fails and no

smx error has occurred, then tmrc has expired (assuming it was started). This may
indicate a problem or that its delay needs to be increased.

BOOLEAN smx_Timer::SetLSR(LSR_PTR lsr, SMX_TMR_OPT opt, u32 par)

If this timer is holding, changes its LSR, LSR option, and LSR parameter. The possible options are:

 SMX_TMR_PAR par stored in TMCB.
 SMX_TMR_STATE pulse state (LO/HI).
 SMX_TMR_TIME etime at timeout.
 SMX_TMR_COUNT number of timeouts since start

The parameter is the value returns for the SMX_TMR_PAR option. When a timer is started, the
LSR option defaults to SMX_TMR_PAR and the LSR parameter defaults to 0.

smx functions called smx_TimerSetLSR()

Returns TRUE timer changed
 FALSE timer not changed due to not holding or error

Example
 tmrc.SetLSR(SMX_TMR_STATE);

 In this example, the LSR option of tmrc is changed to return the pulse state, which is

more useful for the LSR, if tmrc is a pulse timer.

smx_Timer

72

BOOLEAN smx_Timer::SetPulse(u32 period, u32 width)

If this timer is holding, changes its period and pulse width. Converts this timer from a cyclic timer
to a pulse timer when first used with width > 0. Thereafter, simultaneously changing period and
width allows various modulation schemes.

smx functions called smx_TimerSetPulse()

Returns TRUE timer changed
 FALSE timer not changed due to not holding or error

Example
 tmrc.SetPulse(100, 10);

 In this example, tmrc is changed to a pulse timer with period 100 ticks and width 10

ticks. If being used for pulse width modulation (PWM), pulse width could be
increased a little with:

 tmrc.SetPulse(100, 11);

 This change will not task effect until the current period has completed. This assures

smooth operation with no spikes.

BOOLEAN smx_Timer::Start(u32 delay, u32 period, LSR_PTR lsr, const char *name = NULL)

Makes a non-holding timer into a holding timer by creating an smx timer with the above parameters
enqueueing it in the timer queue, and linking to this timer. If this timer is already holding, restarts
the smx timer with the above parameters. When a timer is started, the LSR option defaults to
SMX_TMR_PAR and the LSR parameter defaults to 0.

smx functions called smx_TimerStart()

Returns TRUE timer is holding and has been started or restarted
 FALSE timer not changed due to error

Example void lsrA(u32 state);
 smx_Timer tmrc();

 tmrc.Start(10, 100, lsrC, "tmrc");
 tmrc.SetLSR(SMX_TMR_STATE);
 tmrc.Pulse(100, 20);

 void lsrC(32 state)
 {
 if (state == ON)
 // turn on output 1
 else
 // turn off output 1
 }

smx_Timer

73

 In this example, tmrc is constructed as an non-holding timer. It then is started as a

cyclic timer with a delay of 10, a period of 100, and lsrC as its LSR. Then its LSR
option is change to the timer state and it is changed to a pulse timer with period 100
and pulse width 20. When lsrC runs, its state parameter indicates if the pulse is ON or
OFF. In this case, lsrC simply toggles output 1, accordingly.

BOOLEAN smx_Timer::StartAbs(u32 time, u32 period, LSR_PTR lsr,

 const char *name = NULL)

Operates exactly like Start(), except that time is the time from system start (i.e. smx_etime == 0).

smx functions called smx_TimerStart()

Returns TRUE timer is holding and has been started or restarted
 FALSE timer not changed due to error

Example void lsrA(u32 state);
 smx_Timer tmrc();

 tmrc.StartAbs(100, 100, lsrC, "tmrc");
 tmrc.SetLSR(SMX_TMR_STATE);
 tmrc.Pulse(100, 20);

 void lsrC(32 state)
 {
 if (state == ON)
 // turn on output 1
 else
 // turn off output 1
 }

 Operates like the previous example, except that tmrc does not start until etime == 100.

smx_Timer

74

BOOLEAN smx_Timer::Stop(u32 & tml)

Allows stopping this timer without destroying it. If this timer is holding, stops the smx timer, loads
the time left of its current delay into tml, and returns TRUE. If not holding, loads 0 into tml and
returns TRUE. If this timer is not holding, then it has either stopped or never been started. smx++
cannot distinguish between these alternatives.

smx functions called smx_TimerReset()

Returns TRUE timer stopped or was already stopped
 FALSE timer not reset due an error

Example u32 tml;

 tmrc.Stop(tml);

 In this example, tmrc is stopped and its time left is stored in tml.

Appendix

75

Appendix A: smx++ Memory Management

There are three ways that memory space is allocated for C++ objects. These are discussed below.

Local Objects
C++ objects need not be created by explicit calls to the new operator. It is possible to declare a C++
object as a local variable, in which case it is referred to as a local object or local instance. In this
case, the compiler allocates the memory for the object from the current stack and automatically calls
the appropriate constructor when the object comes into scope. The destructor is called when the
object leaves scope. A Local Object can be convenient for objects that are only needed within a
block of code. For example:
 void MsgFill(void)
 {
 smx_Msg msgA(80);
 ...
 }

This creates a message of 80 bytes for use within MsgFill(). When it returns, msg is destroyed.
Before then, it probably will have been sent to an exchange and thus be a non-holding message
when destroyed.

Space for local objects is allocated from the current stack, when the function in which they are
defined, is called. This is very fast. Space is released when the function returns, which is also very
fast. Inside of the function, local objects are easy to use and have minimal overhead. Hence, they
seem very attractive.

The downside for using local objects in a multitasking system, is that space for a class must be
provided in the stack of every task using its objects. Since only one task can run at a time, this
results in wasted storage. If deep nesting of many functions using many objects occurs, task stacks
can become quite large. The net result could be forcing task stacks out of local memory into much
slower external memory. If this happens, performance will take a serious hit.

This problem can be ameliorated by using one-shot smx tasks, which share stacks from a stack pool.
A shared stack is given to a task only when it runs. In a typical system, higher-level tasks may tend
to run in sequence and not have tight deadlines. Such tasks may be idle most of the time and may
not need to carry information over from one run to the next. Hence, it is practical to share a few
stacks among many such tasks. As a result, there can many fewer stacks and space for objects in
them becomes less of a problem. For further discussion of one-shot tasks, see the smx User’s Guide.

Appendix

76

Global Objects

A global object is an instance of a class declared outside of any block, such as:
smx_Msg msgB(80);

Unlike msgA, msgB is not defined within any scope. Hence, it is a global object. Space for a global
object, is statically allocated from memory, by the compiler. But since it is an object, its constructor
must be called to initialize it before it can be used. To do this the compiler inserts calls to the
constructors of all global objects into a table of constructor pointers. The startup code steps through
this table and executes all constructors found therein. This is done before reaching main().

Global objects must also be destroyed at the end of the application by calling their destructors. The
destructors are similarly placed into a table and exit code steps through this table and executes all
destructors found therein.

There is no guarantee of order of execution of either constructors or destructors. If this is important
for your application do not use global objects. Instead, use global pointers and create your objects
using the global new operator, as discussed next.

Global new and delete Operators

The new and delete global operators are used to dynamically allocate and free memory for C++
objects, as follows:
 char * bp = new char[1000];
 ...
 delete[] bp;

In this example, a buffer of 1000 bytes is allocated from the heap. bp is a static pointer, which
points to it. When no longer needed, the buffer is released back to the heap by calling delete[].
However, the bp pointer survives the delete operation.

smx replaces the standard C++ global new(), new()[], delete(), and delete()[] operators with
operators that make smx heap calls instead of compiler heap calls. smx heap calls are safer for
multitasking environments and offer other advantages over compiler heap calls. Replacement is
done in heap.c and xapi.h.

Note: If the object is of a class derived from smx_Object, then the latter’s new and delete operators
will be used instead of the global operators. :: can be used to force use of global operators, for
example:

char * bp = ::new char[1000];
 ...
 ::delete[] bp;

The biggest advantage of using new and delete is that memory is dynamically allocated as objects
are needed, then released as they are deleted. This can result in significant memory savings vs.
using the local or global objects, discussed above. On the other hand, static objects do not have
allocation and deallocation overhead. So the best choice depends upon the size of an object and how
frequently it is constructed and destructed.

A significant problem with using new is that delete is not automatically called when an object
created with new goes out of scope. delete must be called for the object, else a memory leak will
occur.

Appendix

77

Operator and Function Descriptions
void operator delete(void * block)

This overrides the global delete operator used to free space used by C++ objects. It releases the
memory block to the smx heap. This should only be used on objects allocated via the global
operator new().

smx functions called smx_HeapFree()

void operator delete[](void * block)

This version of the global delete operator is used to free memory allocated via the global operator
new[]. The implementation is identical to delete().

smx functions called smx_HeapFree()

void * operator new(size_t s)

This overrides the global new operator used to allocate memory for C++ objects. It allocates s bytes
from the smx heap.

smx functions called smx_HeapMalloc()

See Also newx()

Example ExitxTp = ::new smx_Task(smx_ExitTask);

 Notice that the global version of new must be called out specifically (i.e. ::new()

instead of just new()) if we want to use it to create an smx++ object.

void * operator new[](size_t s)

This operator is to be used for allocating an array of objects.

smx functions called smx_HeapMalloc()

See Also newx()

Example char * Buffer = new char[26];

 Creates an array of 26 characters.

Appendix

78

void * newx(size_t s)

This internal routine is called by the new operator, above. It calls smx_HeapMalloc() to allocate s
bytes from the smx heap. If the allocation succeeds, the address of the allocated block is returned. If
it fails, a check is made to see if a new_handler has been installed. If not, NULL is returned. If so, it
is called allocate s bytes. If the new_handler returns a non-zero value, the allocation is retried, else it
returns NULL. Initially there is no new_handler installed.

smx functions called smx_HeapMalloc()

See Also new()

inline PNHX set_new_handler(PNHX new_handler)

set_new_handler sets the function to be called if the global new operator fails to allocate the
requested memory. The argument is the address of a user defined function which is to handle such
cases where memory can not be allocated from the heap. It must have the following format:

 typedef int (* PNHX)(size_t);

The size_t argument to the new_handler function is the size of the object being created. If the
new_handler can make memory available in the heap, then it may return a non-NULL value to
cause the allocation to be retried. Otherwise, it should return NULL, which will cause new() to fail
and the object will not be created.

Note that
 BOOLEAN smx_HeapRecover(u32 sz, u32 num)
or
 BOOLEAN smx_HeapExtend(u32 xsz, u8* xp)

could be used to implement this.

smx functions called none

See Also newx()

Example int new_handle(size_t sz)
 {
 return ((int)smx_HeapRecover((u32)sz, INF));
 }

 This will run through the entire heap attempting to find adjacent free blocks to form a

big-enough chunk. Higher priority tasks could be blocked from running for a long
time. Hence, it is probably better to call HeapRecover() repetitively with num equal to
a smaller value. However, this may still block the current task and tasks of equal or
lower priority for too long. smx_HeapExtend() might be the better solution if more
memory is available.

Appendix

79

Appendix B: smx++ Error List Additions

This appendix describes the new errors that were added for smx++. They were added to clarify the
dynamic nature of this new version.

SMXE_HOLDING An smx_Msg object is already holding a message and cannot receive another
one.

SMXE_NOT_HOLDING An smx_Msg object is not holding a message, so the Send, Put, or other
operation cannot be performed.

SMXE_OBJ_IN_USE This error occurs when the destructor is called on an object which is still in
use, an smx_Pool whose blocks are still being used for example.

SMXE_OBJ_NOT_CREATED Indicates that an object was not created successfully because it
could not get an smx control block. If the control block pointer is NULL then this
error is reported.

Appendix C: smx++ Limitations

smx Functions Not Implemented

The following is a list of smx API functions that were not implemented in smx++.

smx_TaskLocate()
For the locate functions to be meaningful in smx++, they would have to return the class instance
that the message or task was in. We can no longer use the control block since the user does not have
access to it in smx++.

Appendix

80

Appendix D: Additional References

1. smx++ datasheet: Overview of smx++.

2. smx Users Guide: Discusses the workings of smx.

3. smx Reference Manual: Details of smx API services and glossary of all terms.

4. Effective C++ Third Edition by Scott Meyers: A great book on C++ programming.

	Introduction
	Overview
	About This Manual

	General Concepts
	smx++ Classes
	smx Control Blocks
	Inline Methods
	Error Handling
	Constructor Errors
	Task Queues

	smx++ Class Reference
	Format of the Class Descriptions
	Format of Methods Sections
	Terminology
	smx_Object Class
	Public Data Member
	Constructors and Destructor
	Operators & Methods

	smx_Block Class
	Protected Data Members
	Constructors and Destructor
	Methods

	smx_EventGroup Class
	Protected Data Members
	Constructors and Destructor
	Methods
	Example

	smx_EventQueue Class
	Protected Data Members
	Constructors and Destructor
	Methods
	Example

	smx_Msg Class
	Protected Data Members.
	Constructors and Destructor
	Methods

	smx_MsgXchg Class
	Protected Data Members
	Constructors and Destructor
	Methods

	smx_Mutex Class
	Protected Data Members
	Constructors and Destructor
	Methods
	Example

	smx_Pipe Class
	Protected Data Members
	Constructors and Destructor
	Methods

	smx_Pool Class
	Protected Data Members
	Constructors and Destructor
	Methods

	smx_Sem Class
	Protected Data Members
	Constructors and Destructor
	Methods

	smx_Task Class
	Protected Data Members
	Constructors and Destructor
	Methods
	Protected Methods
	Example

	smx_Timer Class
	Protected Data Members.
	Constructors and Destructor
	Methods

	Appendix A: smx++ Memory Management
	Local Objects
	Global Objects
	Global new and delete Operators
	Operator and Function Descriptions

	Appendix B: smx++ Error List Additions
	Appendix C: smx++ Limitations
	smx Functions Not Implemented
	smx_TaskLocate()

	Appendix D: Additional References

