
 

 

 

smxNSTM 
User’s Manual 

 

 

 

 

Version 3.10 
 

February 2024 
 

 

 

 

 

 

 

 

 

 
 

 



Copyright and Trademark Information 

Copyright 2006-2024 Micro Digital Associates Inc. for all new material written for SMX. 
www.smxrtos.com   support@smxrtos.com 

Copyright 1996-2006 Lantronix Inc.  All rights reserved.  No part of this publication may be 
reproduced, translated into another language, stored in a retrieval system, or transmitted in any form 
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior 
written consent of Lantronix Inc. 

Lantronix Inc. makes no warranty of any kind with regard to this material, including but not limited to 
the implied warranties of merchantability and fitness for a particular purpose.  Lantronix Inc. assumes 
no responsibility for any errors that may appear in this document.  Lantronix Inc. makes no 
commitment to update or to keep current the information contained in this document. 

Lantronix®, US Software®, and USNet® are trademarks of Lantronix, Inc.  smxNS is a trademark of 
Micro Digital Inc. Other brands and names are the property of their respective owners. 

For support contact Micro Digital. 

Documentation Conventions 

Computer output and code examples:  Courier, usually in a separate paragraph. 
Function names and command names:  Bold italic, usually followed by parentheses, as in main() function. 
Variables:  Courier italic (mt_busy).   
File names:  Times bold (the file usrclk.asm), usually in lower case. 
Key names:  Initial capital, in angle brackets, as in press <Enter>. 
Menu names and selections, dialog box names, screen titles, window titles:  Times bold, as in File menu.   
Notes:  Indicate important information. 
Cautions:  Indicate potential damage to hardware or data. 

Revision History 

Revision Date  Notes  

   2.58 April 2006 Based on USNet 2.52.1 June 2005. 
   2.58 January 2007 Updated for new features. 
   2.59 July 2007 Added PPP, SNMP, and Web Server sections. 
   2.59 September 2007 Updated information about add-ons and demos. 
   2.59 February 2008 Added RTOS porting information. 
   2.60 July 2008 Updated naming, described Telnet debug. 
   2.63 October 2009 Updated naming, APIs, debug information. 
   2.63 July 2010 Updated naming, APIs. 
   2.70 October 2010 Changed porting layer to use smxBase. 
   2.70 August 2011 Updates, corrections, and new sections. 
   2.80 December 2013 Updates and addition of IPv6, mDNS Responder, and others. 
   2.81 July 2014 Added notes to DHCP server, DNS client, MTU. 
   2.90 July 2015 Updates for DPI error codes, CGI, SNMP and misc clarifications. 
   2.90 October 2015 Corrections and updates. 
   2.91 February 2017 Corrections and updates. 
   2.92 February 2018 Adds NC-SI, updates SNMP, misc updates. 
   2.92 September 2018 Portconfig() options, web server functions, AJAX/jQuery, misc 
   3.10 February 2024 Porting information removed. 



 

i 

Contents 

 

1.  Introduction .................................................................................... 1 

Overview ....................................................................................................................... 1 

What is Supplied .......................................................................................................... 2 

smxNS Design Considerations..................................................................................... 3 
Size ............................................................................................................................ 3 
Clarity ....................................................................................................................... 3 
External Support ....................................................................................................... 4 
Packaging .................................................................................................................. 4 
Reentrancy ................................................................................................................ 4 
ROM Residence ........................................................................................................ 4 
Device Drivers .......................................................................................................... 4 
Modularity ................................................................................................................. 4 

Recommended Reading ............................................................................................... 5 
Books ........................................................................................................................ 5 
RFCs Supported ........................................................................................................ 6 

Your Experience ........................................................................................................... 8 

Overview of the Development Process ....................................................................... 8 
Analyzing the Design Problem ................................................................................. 9 
Obtaining Design Tools and Verifying Your System ............................................... 9 

2.  Quick Start ................................................................................... 10 
Directory Structure .................................................................................................. 10 
Version .................................................................................................................... 10 
Documentation ........................................................................................................ 10 

Configuration .............................................................................................................. 10 
Building the smxNS Code....................................................................................... 11 

Running the Main Test Programs ............................................................................ 11 
Guidelines for Testing ............................................................................................. 11 
nsdemo .................................................................................................................... 11 

3.  Beginning Your Application ....................................................... 17 

Developing a Simple Application .............................................................................. 17 
Include Files ............................................................................................................ 19 
Initializing smxNS .................................................................................................. 19 
Establishing a Connection ....................................................................................... 20 
Terminating smxNS ................................................................................................ 22 
Compiling Your Application .................................................................................. 24 
Code Listings .......................................................................................................... 24 



 

ii 

Developing Your Application .................................................................................... 31 

4.  Configuration ............................................................................... 33 

Overview ..................................................................................................................... 33 

Configuring the Build Settings (nscfg.h) .................................................................. 34 

Configuring Local Parameters (nscfg.h) .................................................................. 34 
SNS_MIN_RAM Macro ......................................................................................... 35 
SNS_HW_RX_CHECKSUM Macro ..................................................................... 35 
SNS_HW_TX_CHECKSUM Macro ...................................................................... 35 
SNS_CPU_CACHE_DATA Macro ....................................................................... 35 
SNS_BUFFS_IN_SRAM Macro ............................................................................ 35 
NCONNS Macro ..................................................................................................... 36 
NBUFFS Macro ...................................................................................................... 36 
MTU Macro ............................................................................................................ 36 
MAX_REASSEM Macro ....................................................................................... 36 
USSBUFALIGN Macro .......................................................................................... 36 
FRAGMENTATION Macro ................................................................................... 37 
IPOPTIONS Macro ................................................................................................. 37 
USS_IP_MC_LEVEL Macro ................................................................................. 37 
IP_MC_DFLT_NETNO Macro .............................................................................. 37 
KEEPALIVETIME Macro ..................................................................................... 38 
RELAYING Macro ................................................................................................. 38 
chksum_INASM Macro .......................................................................................... 38 
DNS Macro ............................................................................................................. 38 
NDNSS Macro ........................................................................................................ 38 
TCP_SACK Macro ................................................................................................. 39 
LOCALHOSTNAME Macro .................................................................................. 39 
USERID Macro & PASSWD Macro ...................................................................... 39 
USS_PROXYARP Macro....................................................................................... 39 
FILE_SUPPORT Macro ......................................................................................... 39 
SNS_DEBUG_LEVEL Macro ............................................................................... 40 
NNETS Macro ........................................................................................................ 40 
NNETISRS Macro .................................................................................................. 40 

Selecting Protocols ..................................................................................................... 40 

Selecting Drivers ......................................................................................................... 41 

5.  Dynamic Protocol Interface ........................................................ 43 

Overview ..................................................................................................................... 43 

Blocking Versus Non-Blocking Operation ............................................................... 44 

Include Files ................................................................................................................ 44 

Initialization and Termination .................................................................................. 44 
Ninit ........................................................................................................................ 44 
Nterm ...................................................................................................................... 45 
Portcreate ................................................................................................................ 45 
Portconfig ................................................................................................................ 46 



 

iii 

Portinit..................................................................................................................... 49 
Portstate................................................................................................................... 50 
Portterm................................................................................................................... 51 

Connections ................................................................................................................. 51 
Open, Close, Read, and Write ................................................................................. 52 
Nopen ...................................................................................................................... 54 
Nclose ..................................................................................................................... 56 
Nread ....................................................................................................................... 57 
Nwrite ..................................................................................................................... 58 
Dynamic Protocol Interface Macros ....................................................................... 59 
SOCKET_NOBLOCK ............................................................................................ 60 
SOCKET_BLOCK ................................................................................................. 60 
SOCKET_ISOPEN ................................................................................................. 60 
SOCKET_HASDATA ............................................................................................ 60 
SOCKET_CANSEND ............................................................................................ 61 
SOCKET_ISSENDING .......................................................................................... 61 
SOCKET_TESTFIN ............................................................................................... 61 
SOCKET_ISFATAL ............................................................................................... 61 
SOCKET_MAXDAT ............................................................................................. 62 
SOCKET_RXTOUT ............................................................................................... 62 
SOCKET_REMADDR ........................................................................................... 62 
SOCKET_LOCADDR ............................................................................................ 62 
SOCKET_REMPORT ............................................................................................ 63 
SOCKET_LOCPORT ............................................................................................. 63 
SOCKET_PUSH ..................................................................................................... 63 
SOCKET_FIN ......................................................................................................... 63 
SOCKET_FAMILY ................................................................................................ 63 
SOCKET_HASMYADDR6 ................................................................................... 64 
SOCKET_LOCSITEADDR6 ................................................................................. 64 
SOCKET_REMADDR6 ......................................................................................... 64 
SOCKET_LOCLINKADDR6 ................................................................................ 64 

Multicast API (DPI) ................................................................................................... 65 
ussHostGroupJoin ................................................................................................... 65 
ussHostGroupLeave ................................................................................................ 65 

Error Handling ........................................................................................................... 66 

Examples ..................................................................................................................... 66 
Broadcasting Examples ........................................................................................... 67 
TCP File Transfer Example .................................................................................... 67 
Non-Blocking Operations Examples ...................................................................... 68 

6.  BSD Socket Interface ................................................................... 71 

About BSD Sockets .................................................................................................... 71 

Structures and Definitions ......................................................................................... 72 

BSD Socket Interface Functions ............................................................................... 72 
accept ...................................................................................................................... 75 
bind ......................................................................................................................... 76 
closesocket .............................................................................................................. 77 



 

iv 

connect .................................................................................................................... 78 
fcntlsocket ............................................................................................................... 79 
freeaddrinfo ............................................................................................................. 79 
gai_strerror .............................................................................................................. 80 
getaddrinfo .............................................................................................................. 81 
getpeername ............................................................................................................ 83 
getsockname ............................................................................................................ 84 
getsockopt, setsockopt ............................................................................................ 85 
inet_ntop ................................................................................................................. 87 
inet_pton ................................................................................................................. 88 
ioctlsocket ............................................................................................................... 89 
listen ........................................................................................................................ 90 
readsocket ............................................................................................................... 91 
recv .......................................................................................................................... 92 
recvfrom .................................................................................................................. 94 
recvmsg ................................................................................................................... 95 
selectsocket ............................................................................................................. 96 
send ......................................................................................................................... 98 
sendmsg................................................................................................................. 100 
sendto .................................................................................................................... 101 
shutdown ............................................................................................................... 102 
socket .................................................................................................................... 103 
writesocket ............................................................................................................ 104 

Multicast API (BSD) ................................................................................................ 105 

7.  Network Applications and Protocols ....................................... 107 

Overview ................................................................................................................... 107 

ARP............................................................................................................................ 108 
Proxy ARP ............................................................................................................ 108 

DHCP ........................................................................................................................ 109 
DHCP Client Configuration .................................................................................. 109 
DHCP Server Configuration ................................................................................. 111 
DHCP Server Operation Restrictions ................................................................... 112 
DHCP Testing ....................................................................................................... 113 

DNS ............................................................................................................................ 116 
SetDNS() ............................................................................................................... 116 
DNSresolve() ........................................................................................................ 116 

FTP and TFTP .......................................................................................................... 117 
Start Server ............................................................................................................ 117 
Send File ............................................................................................................... 118 
Receive File .......................................................................................................... 118 

HTTP Client ............................................................................................................. 119 
Retrieve a Web Page ............................................................................................. 120 
Web Page Callback Function ................................................................................ 120 

IGMP / Multicast ...................................................................................................... 120 

iperf............................................................................................................................ 121 



 

v 

IPv6 ............................................................................................................................ 121 

mDNS Responder ..................................................................................................... 122 

NAT ........................................................................................................................... 126 
NAT Configuration ............................................................................................... 126 

NC-SI ......................................................................................................................... 128 

PPPoE ........................................................................................................................ 129 
PPPoE Configuration ............................................................................................ 129 

SLIP ........................................................................................................................... 131 
Using SLIP with Windows Computers ................................................................. 131 

SMTP ......................................................................................................................... 132 

SNTP.......................................................................................................................... 134 
Get Time using SNTP ........................................................................................... 134 

Telnet ......................................................................................................................... 135 

8.  Point To Point Protocol (PPP) .................................................. 137 

Overview ................................................................................................................... 137 

PPP in Theory ........................................................................................................... 137 
LCP Phase ............................................................................................................. 138 
Authentication Phase (PAP/CHAP) ...................................................................... 138 
NCP Phase ............................................................................................................ 138 

PPP in Practice ......................................................................................................... 139 
Usage..................................................................................................................... 139 
Configuration ........................................................................................................ 140 
Scripting ................................................................................................................ 143 
Notes on Special Cases ......................................................................................... 146 

PPP ioctl Routines .................................................................................................... 154 
Description ............................................................................................................ 154 
Option Listing ....................................................................................................... 154 
Using PPP ioctl() routines ..................................................................................... 156 

PPP dialapi Routines ................................................................................................ 160 
Description ............................................................................................................ 160 
Definitions of API ................................................................................................. 160 
Dynamically Configuring smxNS PPP Dial Scripts ............................................. 161 

PPP pppsig Routines ................................................................................................ 162 
Description ............................................................................................................ 162 
Definition of Signals Available............................................................................. 162 
Using PPP Signaling Routines .............................................................................. 163 

9.  Simple Network Management Protocol (SNMP) .................... 165 

Introduction .............................................................................................................. 165 
SNMP Overview ................................................................................................... 165 
Design of smxNS SNMP ...................................................................................... 166 



 

vi 

Building an Application ........................................................................................... 167 
Build-time Configuration ...................................................................................... 167 
Agent Use of Build-time Constants ...................................................................... 171 
Application Interface............................................................................................. 172 

Customizing the Agent ............................................................................................. 180 
Configuring the Agent MIB .................................................................................. 180 
Adding New MIBs ................................................................................................ 185 
Configuring the Transport Mapping ..................................................................... 193 
Exercising the Agent ............................................................................................. 195 

10.  Web Server ............................................................................... 197 

Web Server Overview .............................................................................................. 197 
Web Server Requirements .................................................................................... 198 

Example Web Server ............................................................................................... 198 
Building the Example Web Server for Your Target ............................................. 198 
Connecting to the Example Web Server ............................................................... 199 
Adding Web Pages Using a File System............................................................... 199 

Using the Web Server .............................................................................................. 200 
User Server Functions ........................................................................................... 200 

HTTP Server Request Structure ............................................................................ 204 
Modules and Handlers .......................................................................................... 206 

Module Function Descriptions ................................................................................ 207 
MODchkaccess() ................................................................................................... 207 
MODchkauth() ...................................................................................................... 208 
MODchkloc() ........................................................................................................ 209 
MODchktype() ...................................................................................................... 209 
MODgetuser() ....................................................................................................... 210 
MODlog() ............................................................................................................. 211 
MODtranslate() ..................................................................................................... 211 

Request Structure ..................................................................................................... 212 
Using nsbldpg ....................................................................................................... 213 
Server Configuration File...................................................................................... 213 
MIME Information ................................................................................................ 219 
AddType Command .............................................................................................. 220 
Page Configuration File ........................................................................................ 221 
Variable Configuration File .................................................................................. 223 
Access Configuration File ..................................................................................... 224 

CGI Function Programming Interface .................................................................. 225 
System Support Routines ...................................................................................... 226 
CGI Routines ........................................................................................................ 231 
CGI Environment Variables.................................................................................. 237 

USMETA Programming Interface ......................................................................... 240 
#echo ..................................................................................................................... 241 
#exec ..................................................................................................................... 242 
#include ................................................................................................................. 243 
#memory ............................................................................................................... 244 



 

vii 

#system ................................................................................................................. 244 

AJAX and jQuery .................................................................................................... 245 

11.  Device Drivers .......................................................................... 247 

Overview ................................................................................................................... 247 

Data Structures ......................................................................................................... 247 
Messh (MESSH) Structure.................................................................................... 248 
Net (NET) Structure .............................................................................................. 249 

Support Functions .................................................................................................... 250 
Disable and Enable Interrupts ............................................................................... 250 
Install Interrupt Vector .......................................................................................... 251 
Restore Interrupt Vector........................................................................................ 251 
Map I/O Address ................................................................................................... 251 
Adding Messages to a Queue ................................................................................ 251 
Removing Messages from a Queue ...................................................................... 253 
Interrupt Handling ................................................................................................. 254 
Interacting with an Ethernet PHY ......................................................................... 254 

Configuring a New Processor .................................................................................. 255 

Error Codes .............................................................................................................. 255 

Writing a Device Driver ........................................................................................... 255 

Character Drivers .................................................................................................... 255 
Interrupt Handler ................................................................................................... 257 
Transmit Routine .................................................................................................. 258 
Open Connection .................................................................................................. 259 
Close Connection .................................................................................................. 260 
Configure and Start Up ......................................................................................... 260 
Shut Down ............................................................................................................ 261 
Network Protocol Table ........................................................................................ 262 

Block Drivers ............................................................................................................ 263 
Interrupt Handler ................................................................................................... 264 
Transmit Routine .................................................................................................. 267 
Configure and Start Up ......................................................................................... 270 
PHY Support Functions ........................................................................................ 271 
Polling ................................................................................................................... 273 
Shut Down ............................................................................................................ 274 
Protocol Table ....................................................................................................... 275 

12.  Technical Background ............................................................. 277 

Overview ................................................................................................................... 277 

TCP Retransmission ................................................................................................ 277 

Sliding Window ........................................................................................................ 278 

TCP Delayed ACK ................................................................................................... 280 

Congestion Control .................................................................................................. 280 



 

viii 

Silly Window Syndrome .......................................................................................... 281 

TCP Window Probe ................................................................................................. 281 

Address Conflict Detection ...................................................................................... 281 

ARP Caching ............................................................................................................ 282 

A.  Terminology ............................................................................... 283 

B.  Debugging Techniques .............................................................. 285 

Overview ................................................................................................................... 285 

Displaying Trace Data ............................................................................................. 285 

Debug over Telnet .................................................................................................... 287 
arpstat: Dump the ARP Table ............................................................................... 287 
bufstat: Display Details for Frame Buffers ........................................................... 288 
ifstat: Display Network Interface State ................................................................. 289 
logdump: Display smxNS Log .............................................................................. 290 
memdump: Display Memory ................................................................................ 290 
netstat: Display Connection Status ....................................................................... 290 
nqstat: Show the State of Connections .................................................................. 291 
routestat: Display Routing Information ................................................................ 292 
Other Commands .................................................................................................. 292 

Network Analyzers ................................................................................................... 292 

Windows Utilities ..................................................................................................... 293 

Web Servers .............................................................................................................. 293 

Verification Testing .................................................................................................. 293 

C.  Dynamic Configuration ............................................................ 295 

Overview ................................................................................................................... 295 

Configuration Functions .......................................................................................... 295 
SetDefaultRouter ................................................................................................... 295 

D.  Driver-Specific Information ..................................................... 297 

ACT10100 ................................................................................................................. 297 

AT91 .......................................................................................................................... 297 

CFFEC ...................................................................................................................... 298 

DC21140 .................................................................................................................... 298 

EP93XX ..................................................................................................................... 300 

I8255X ....................................................................................................................... 301 

LAN91CXXX ............................................................................................................ 302 



 

ix 

LM3S ......................................................................................................................... 303 

LPC2XXX ................................................................................................................. 304 

NE2000 ...................................................................................................................... 304 

RTL8139.................................................................................................................... 306 

STRXXX ................................................................................................................... 306 

USBD ......................................................................................................................... 307 

USBH ......................................................................................................................... 307 

WiFi ........................................................................................................................... 308 

E.  Serialized MAC Addresses ....................................................... 310 

F.  Memory Usage and Performance ............................................ 311 

Memory Usage (KB) ................................................................................................ 311 

Performance .............................................................................................................. 312 

Index ................................................................................................. 313 
 





Introduction 

1 

1.  Introduction 
 

 

Overview 
smxNSTM began from USNet® v2.58. Much has been changed, and improvements continue to be 
made. 

smxNS is a set of software routines that support TCP/IP protocols and runs on SMX RTOS. It 
supports the TCP/IP protocols shown in Table 1-1. 

 

Table 1-1:  smxNS Supported Protocols 

 

Protocol Description
TCP Transmission Control Protocol:  Transport layer with

connections, flow control and error correction

UDP User Datagram Protocol:  Simple connectionless
transport layer

IP Internet Protocol:  The network layer.

ICMP Internet Control Message Protocol:  Part of IP for
practical purposes

ARP Address Resolution Protocol:  Retrieves a host’s netwo
controller’s hardware address, given the host’s Internet
address

Both IPv4 and IPv6 are supported.

 



Chapter 1 

2 

The logical relationships between the protocols are illustrated in the figure below: 

 

  

 Application 
 

TCP/UDP 
 

IP/ICMP 
 

Link Layer 

 

Device 

 

Network 

 

Device Driver 

 

Figure 1-1: Protocol Stack 

smxNS’s TCP/IP protocol suite allows diverse systems to communicate with each other. It 
implements a dual IPv4/IPv6 stack.  IPv4 support and IPv6 support can be enabled individually or 
together.  More information about IPv6 is presented in the IPv6 section of Chapter 7, Network 
Applications and Protocols. 

Typically, smxNS software is used in a target embedded system that communicates to a server.  The 
target application interfaces with the outside world, performing some form of data collection.  When 
necessary, the target application opens a connection to the server and transmits the data.  smxNS takes 
on the responsibility of providing a reliable connection and reliable data transport when using TCP/IP. 

smxNS offers 2 API’s: 

1. Dynamic Protocol Interface (DPI) — Simple, proprietary API. See Chapter 5. 

2. Berkeley Sockets (BSD) — Standard API. See Chapter 6. 

Please refer to Appendix A, Terminology for the definition of terms you are unfamiliar with. 

What is Supplied 
smxNS includes full source code and sample application protocols and test programs that are useful 
when building networking into your application. 

nsdemo.c includes support for the following protocols: 

• FTP client 

• FTP server 

• Loopback test (exercises core stack protocols) 

• DHCP server 

• mDNS Responder 

• Ping client 



Introduction 

3 

• POP email retrieval 

• SMTP email sending 

• SMTP email server 

• SNMP agent 

• Telnet server 

• TFTP client (like FTP file transfer, but using UDP) 

• TFTP server 

• Web server 

Support for these protocols can be turned on and off using switches at the top of the file. 

nstels.c is a simpler application that includes support for a Telnet server. 

smxNS Design Considerations 
The smxNS design considers many of the special requirements of the embedded world, such as:  

• Size 

• Clarity 

• External support 

• Packaging 

• Reentrancy 

• ROM residence 

• Device drivers 

• Modularity 

Size 
The complete TCP/IP protocol, including all needed subroutines but excluding the application level, 
totals about 25 kilobytes of code.  The protocols can be individually configured, so the minimum 
system is even smaller than this.  The fixed RAM requirement is typically less than 1 kilobyte.  Each 
active connection needs buffer space, which is dynamically allocated with the buffer space 
requirements depending on the application. Stack usage is kept to a minimum by avoiding deep 
function nesting and excessive autovariables. 

Clarity  
The main code does not contain any conditional controls for different compilers or processors.  Only 
some of the porting files have code of this form: 

#ifdef COMPILER_SOSO 
do it so-so 
#else 



Chapter 1 

4 

do it right 
#endif  

All the support for different byte ordering or word size is invisible to the user. 

External Support 
The package, as delivered, uses only a few basic ANSI C services. 

Packaging 
smxNS is supplied and configured in source code.  The applications are packaged as C subroutines.  
There are only about 30 external routines, with names not likely to conflict with any other names. 

Reentrancy 
The code is reentrant and can be used with preemptive multitasking and nested interrupts. 

ROM Residence 

The code is ROMable in a wide sense of the word:  All initialized data is type “const,” and there 
are no attempts to change code or constants. 

Device Drivers 
smxNS considers drivers as extensions to hardware, and uses a separate data link layer.  In other 
words, the device drivers and link layers are designed as separate modules.  This results in short and 
simple drivers independent of the link layer, and allows new drivers to be added without requiring 
recoding of the link layer.  The link layer processes the link-level protocol such as Ethernet, SLIP, or 
PPP. 

Modularity 
In addition to the main stack, smxNS offers various add-on modules, such as a web server, NAT 
support, mDNS responder, and SNMP. By separating these from the main stack, you are saved cost 
and memory space by omitting them if they are not needed. 



Introduction 

5 

Recommended Reading 
This manual documents smxNS only. It assumes you are already familiar with TCP/IP. If you are new 
to TCP/IP, please read one or more of the books listed below. Also, this manual does not go into 
detail about TCP/IP standards. These are documented fully in the RFC’s. See the Internet references 
below.  

Books 
TCP/IP Illustrated 
Volume 1:  The Protocols 
W. Richard Stevens 
ISBN 0-201-63346-9 

TCP/IP Illustrated 
Volume 2:  The Implementation 
Gary R. Wright 
W. Richard Stevens 
ISBN: 0-201-63354-X 

Internetworking with TCP/IP 
Volume 1:  Principles, Protocols, and Architecture 
Douglas E. Comer 
Second Edition 
ISBN 0-13-468505-9 

Internetworking with TCP/IP 
Volume 2:  Design, Implementation, and Internals 
Douglas E. Comer 
Second Edition 
ISBN 0-13-125527-4 

Troubleshooting TCP/IP 
Analyzing the Protocols of the Internet 
Mark A. Miller P.E. 
ISBN 1-55851-268-3 

The Simple Book 
An Introduction to Internet Management 
Second Edition 
Marshall T. Rose 
ISBN 0-13-177254-6 

SNMP, SNMPv2, SNMPv3, and RMON 1 and 2 
Practical Network Management 
William Stallings 
ISBN 0-201-48534-6 

UNIX Network Programming 
W. Richard Stevens 
ISBN 0-13-949876-1 

Foundations of WWW Programming with HTML & CGI 
IDG Books 
ISBN 1-56884-703-3 



Chapter 1 

6 

CGI Programming in C and Perl 
Thomas Boutell 
Addison Wesly 
ISBN 0-201-42219-0 

CGI Developers Guide 
Eugene Eric Kim 
Sams Net 
ISBN 1-57521-087-8 

Zero Configuration Networking 
The Defnitive Guide 
Stuart Cheshire & Daniel H. Steinberg 
O’Reilly 
ISBN 0-596-10100-7 

 

There are many books on web page design.  This one is very good for low-level protocols, and has 
cross-references to RFCs: 

Internet Protocols Handbook 
Dave Roberts 
Coriolis Group Books 
ISBN 1-883577-88-8 

RFCs Supported 
RFCs (requests for comment) are a series of documents that represent the TCP/IP standards as they 
continue to evolve.  All RFCs are available over the Internet by searching with a web browser.  The 
most important ones for smxNS are: 

 RFC 768 UDP 

 RFC 791 IP 

 RFC 792 ICMP 

 RFC 793 TCP 

 RFC 821 SMTP 

 RFC 822 SMTP 

 RFC 959 File Transfer Protocol 

 RFC 1034 DNS 

 RFC 1035 Domain Names - Implementation and Specification 

 RFC 1101 DNS 

 RFC 1112 Host Extensions for IP Multicasting 

 RFC 1122 Explanations and clarifications of all the above, plus additions and corrections 

 RFC 1144 Compressing TCP/IP Headers for Low-Speed Serial Links 

 RFC 1157 Simple Network Management Protocol (SNMP) 

 RFC 1213 SNMP MIB-II 

 RFC 1320 The MD4 Message-Digest Algorithm 



Introduction 

7 

 RFC 1321 The MD5 Message-Digest Algorithm 

 RFC 1332 The PPP Internet Protocol Control Protocol (IPCP) 

 RFC 1334 PPP Authentication Protocols 

 RFC 1661 The Point-to-Point Protocol (PPP) 

 RFC 1662 PPP in HDLC-like Framing 

 RFC 1725 POP 

 RFC 1867 Form-based File Upload in HTML 

 RFC 1869 SMTP 

 RFC 1876 DNS 

 RFC 1982 DNS 

 RFC 1989 PPP Link Quality Monitoring 

 RFC 1990 The PPP Multilink Protocol (MP) 

 RFC 1994 PPP Challenge Handshake Authentication Protocol (CHAP) 

 RFC 2018 TCP Selective Acknowledgment Options 

 RFC 2045 MIME: Format of Internet Message Bodies 

 RFC 2046 MIME 

 RFC 2047 MIME 

 RFC 2048 MIME 

 RFC 2049 MIME 

 RFC 2065 DNS 

 RFC 2068 HTTP 

 RFC 2131 Dynamic Host Configuration Protocol 

 RFC 2132 DHCP Options and BOOTP Vendor Extensions 

 RFC 2236 Internet Group Management Protocol, Version 2 

 RFC 2433 Microsoft PPP CHAP Extensions 

 RFC 2461 Neighbor Discovery for IPv6 

 RFC 2462 IPv6 Stateless Address Autoconfiguration 

 RFC 2463 ICMPv6 

 RFC 2516 A Method for Transmitting PPP Over Ethernet (PPPoE) 

 RFC 2663 IP Network Address Tranlator (NAT) Terminology and Considerations 

 RFC 2863 The Interfaces Group MIB 

 RFC 3411 An Architecture for Describing SNMP Management Frameworks 

 RFC 3414 User-based Security Model for SNMPv3 



Chapter 1 

8 

 RFC 3174 Secure Hash Algorithm 1 (SHA1) 

 RFC 3826 The AES Cipher Algorithm in the SNMP User-based Security Model 

 RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses 

 RFC 4022 Management Information Base for TCP 

 RFC 4292 IP Forwarding Table MIB 

 RFC 4293 Management Information Base for IP 

 RFC 5227 IPv4 Address Conflict Detection 

 RFC 5322 Internet Message Format 

 RFC 5681 TCP Congestion Control 

 RFC 6056 Recommendations for Transport-Protocol Port Randomization 

 RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF) 

 RFC 6762 Multicast DNS 

 RFC 6763 DNS-Based Service Discovery 

Your Experience 
This manual assumes you are familiar with TCP/IP and related protocols, C programming, your 
compiler toolsuite, and your target hardware. For help learning TCP/IP, see the previous section, 
Recommended Reading. It is likely that you will need to become familiar with the assembly language 
of your target processor. 

If your hardware is not supported, you will need to develop several low-level interface routines.  For 
this reason, you should know how to perform device-level programming for your target hardware, 
e.g., serial ports, timers, interrupts, etc.   

Overview of the Development Process 
The following text provides an overview of the typical process used to develop embedded networking 
applications using smxNS. 

These are the main steps in the development process: 

1. Analyze the design problem and its constraints. 

2. Obtain and install all of the development tools and verify their operation. 

3. Install your SMX release, which includes smxNS. 

4. Verify that the Network Controller hardware, network servers, and network cables are functional. 

5. Add XNS files and paths to the application project if not already there. 

6. Build and run the SMX Protosystem with the smxNS demo enabled (\SMX\APP\DEMO\nsdemo.c). 

7. Develop and debug your application. 



Introduction 

9 

8. Generate your production code.  Set the macro SNS_DEBUG_LEVEL in nscfg.h to 0 (to 
optimize code space).  Configure Ethernet interfaces with the ENA option so that each device 
uses a unique MAC address. 

Steps 1 and 2 are covered in the remainder of this chapter.  The remaining steps are discussed in the 
following chapters. 

Analyzing the Design Problem 
Proper configuration of smxNS and its dependencies is crucial to the success of your application.  For 
example, you must select a target processor that can handle all of the tasks required by the application.  
When analyzing the application, you might want to ascertain the minimum network throughput and 
response time requirements.  You should know such things as what ROM/RAM resources are 
available to the application and whether there is enough room for the target application.  It might be 
necessary to compile smxNS and SMX to know how much code space it will use, or to do a timing 
and resource analysis to ensure adequate load and resource headroom.  Be sure to allow room for 
additional protocols or client/server applications that you might decide to use later. 

Obtaining Design Tools and Verifying Your System 
If possible, compile and load some simple test programs on the target hardware.  Verify that you can 
use your debugger or ICE tools while executing your test program on the target. 



Chapter 2 

10 

2.  Quick Start 
 

 

Directory Structure 
smxNS is organized in a hierarchical directory structure under \SMX\XNS, as shown:  

 doc Additional documentation 
 drvsrc Drivers and CPU support 
      <cpu> CPU-specific files 
 include smxNS header files 
 netsrc Core smxNS source code 
 supsrc Low-level code common across other products in this family 

Other directories may be present if you have purchased smxNS add-on packages. 

 ipv6src smxNS Internet Protocol version 6 
      pppsrc smxNS PPP support package 
 snmpsrc smxNS SNMP package 
 websrc smxNS Web Server package 

Version 
The smxNS version number is indicated by SNS_VERSION in \SMX\XNS\include\smxns.h. 

Documentation 
Manuals are supplied in PDF format at www.smxrtos.com/doc. Also see the text files in the 
SMX\XNS\doc directory for important additional information. 

Release notes are supplied in the \SMX\DOC and \SMX\XNS\doc directories. Please take time to 
review these files. 

Configuration 
It should be possible to run the packaged smxNS demo program with few or no changes.  The IP 
address of the system running smxNS is set with the LOCALIP macro at the top of the nsdemo.c file 
in the \SMX\APP\DEMO directory. 

If LOCALIP is set to 0.0.0.0, then smxNS will retrieve an IP address from a DHCP server, or you 
could set this to an appropriate fixed address for your network.  Other commonly adjusted settings are 
collected at the top of  nsdemo.c.  There is a series of macros that specify which clients and servers 
the test program will launch.  There are also test specific settings such as the IP address of a test FTP 
server, and account information for logging in to the test FTP server. 

Other smxNS configuration options are documented in Chapter 4, Configuration. 



Quick Start 

11 

Building the smxNS Code 
Add the XNS source files and paths to the application project, if not already in it. 

One source code file might require modification in order to run smxNS’s test programs. nscfg.h, 
resides in the include directory and is used to define how smxNS is configured for the application.  
The number of physical connections, buffers, and other TCP/IP options are set here.  For testing 
purposes under the conditions assumed, neither file should need to be modified.  File nscfg.h and its 
parameters are described in section Configuring Local Parameters of Chapter 4, Configuration. 

Running the Main Test Programs 
Test programs which were separate in USNet have been combined into a single demo file nsdemo.c 
in the \SMX\APP\DEMO directory.  

Guidelines for Testing 
• Test using the smxNS trace output. (See Appendix B, Displaying Trace Data.) 

• Do not start with untested hardware.  If you don’t have any diagnostics available, get a 
commercial board that is reasonably close to your own and run smxNS in that board.  Then move 
to your own hardware. 

• As much as possible, make sure that all the network cabling is verified before you start testing. 

• If you make experimental changes to the test program, always keep the last test that worked as a 
fallback position.  Whenever a test fails, go back to what works and retry that.  (A cable may have 
become loose!)  Then try a different, smaller step. 

• Set SNS_DEBUG_LEVEL = 3 in nscfg.h to help report error conditions in the stack.  Do a grep 
or search on “DEBUG_MSG” in the stack modules to locate error traps. 

• The header file net.h contains error return number translations and meanings. 

• Use the function Nprintf() or Nputstr() in your test programs as a trace output tool. 

• Use a LAN analyzer to capture and troubleshoot your test programs’ data traffic during stack 
communications. 

nsdemo 
nsdemo.c combines several test programs and example servers  into one demo. The specific tests are 
controlled by a series of #define switches at the top of the file, and these are summarized below.  

 

TEST_CRYPTO Run a test to confirm cryptographic functions. 

TEST_DHCP_SERVER Start a DHCP server. 

TEST_FTP_CLIENT Run an FTP client that continuously uploads and downloads a test 
file. 

TEST_FTP_SERVER Start an FTP server. 



Chapter 2 

12 

TEST_LOOPBACK Test the core of the TCP/IP stack. 

TEST_MDNS_RESP Start an mDNS Responder. 

TEST_PING_CLIENT Run a Ping client. 

TEST_POP_RECEIVE Retrieve an email message from a POP server. 

TEST_SMTP_SEND Send an email message using an SMTP server. 

TEST_SMTP_SERVER Start an SMTP email server. 

TEST_SNMP_AGENT Start an SNMP agent so that the smxNS system will respond to 
queries from an SNMP manager. 

TEST_SNTP_CLIENT Run the SNTP client that will retrieve the current time from a time 
server. 

TEST_SSL_SERVER Start a version of the Web Server that uses the Secure Sockets Layer. 

TEST_TELNET_SERVER Start a Telnet server.  The Telnet server provides a simple command 
line that allows the state of the network stack to be displayed. 

TEST_TTCP_SERVER Run the TTCP server so that network performance can be measured. 

TEST_WEB_SERVER Start a Web server that will respond with canned web pages. 

 

See Chapter 7 Network Applications and Protocols for information about these. The sections below 
give details about these tests.  

To run nsdemo, add it to the SMX Protosystem project. Also add compiler command line defines for 
SMXNS and SMXNS_DEMO. 

The nsdemo application and the smxNS stack provide feedback by logging messages with the 
DEBUG_MSG() macro.  For example, this line appears in nsdemo.c: 

DEBUG_MSG2_PAR0("smxNS Portinit for enet Failed\n"); 

These log messages are sent to both the debug terminal and the smxAware print buffer.  The debug 
terminal output is usually sent to an RS232 port on your target. 

The debug macro is of the form DEBUG_MSGd_PARp, where d is the debug level from 1 to 6, and p 
is the number of parameters in the format string from 0 to 10. 

When running under an IDE, the strings directed to the smxAware print buffer can be reviewed by 
opening the smxAware text display window and expanding the Print node in the object list.  Viewing 
the log messages this way allows you to see all of the most recent trace messages, and is more useful 
for debugging. 

FTP Client Test Overview 

The FTP client test sets up the system under test to act as an FTP client.  The system writes a file to an 
FTP server, and then reads it back and verifies that the data has been transferred correctly.  This test 
will run in a continuous loop until the Escape key on the keyboard is pressed. 

If you don’t already have an FTP server in the local network, the following are freely available and 
relatively easy to set up: 

• FileZilla Server, available at http://sourceforge.net/projects/filezilla/ 



Quick Start 

13 

• War FTP Daemon, available at http://www.warftp.org/ 

The following definitions in nsdemo.c should be reviewed before running the FTP client.  You will 
likely need to adjust these definitions and perhaps set up a user account under your FTP server in 
order for the FTP client test to run successfully. 

FTPSERVER IP address or DNS name for the FTP server. 

FTPUSERID User name for the FTP account. 

FTPPASSWD Password for the FTP account. 

FTP Client Pass Indicator 

If all is going well, you should see status report messages similar to the following. 

9 FTtest OK 

This indicates that the test program has completed 9 passes in which the test file has been uploaded to 
the FTP server and then downloaded and compared.  Additional information may be available from 
the log messages or from the FTP server’s user interface. 

If the test is not successful, you could verify that the FTP user account settings are working by playing 
the role of the test program and logging into the server from a command line.  For more detailed 
debugging, you could increase the setting of SNS_DEBUG_LEVEL in XNS\include\nscfg.h for more 
verbose logging, and you could review network activity using a network sniffer. 

FTP Server Test Overview 

The FTP server demonstrates the use of ftp_session_main() function to implement an FTP server.  
The ftp_session_main() function handles all aspects of an FTP session with a client once the control 
connection has been established.  File system support may be provided either through the minimal 
RAM based file system, or through traditional file system support such as smxFS. 

Loopback Test Overview 

The loopback test uses a wrap driver while executing read/write tests on your target. It sets up a TCP 
connection through a loopback device driver, so that all communication takes place within the unit 
under test.  It exercises a number of features of the TCP layer by forcing unusual but valid behavior in 
the outgoing TCP segments. These behaviors are introduced by writing directly to internal data 
structures, which may create some issues for future maintenance, but this method is simple and allows 
important features to be easily tested. 

The loopback test sends trace update messages during execution, and if the test is successful it will 
display about 30 lines of trace data with “No errors in LTEST” at the end of the trace.  If you 
don’t have trace capability, you can use your debugger to verify execution results by setting various 
breakpoints in ltest(). 

In order to set up the loopback test, follow these steps. 

1. Edit APP\DEMO\nsdemo.c so that just TEST_BASE_NETWORK and TEST_LOOPBACK are 
enabled 

2. Compile and download the top level project 

3. Start execution and allow it to run for about 20 seconds 

http://www.warftp.org/


Chapter 2 

14 

Loopback Test Pass Indicators 

The Loopback test will display the following trace output if the test passed.   

This concise listing was created with the SNS_DEBUG_LEVEL constant set to 3 in nscfg.h. 

ARP 767676767676 -> 192.9.202.1 
ARP 767676767676 -> 192.9.202.1 
***SEND AND RECEIVE 20 MESSAGES 
—20 MESSAGES OK 
***FRAGMENTATION 
***FRAGMENTATION WITH RETRANSMIT 
reTX1 14900 C1/204 ST1 SQ2669 MS741 
—FRAGMENTATION OK 
***SEQUENCE NUMBER ROLLOVER 
—ROLLOVER OK 
***OVERLAPPING MESSAGES 
—OVERLAP OK 
***OUT OF ORDER MESSAGES 
—OUT OF ORDER OK 
***DUPLICATE MESSAGES 
—DUPLICATE OK 
***RETRANSMISSION 
reTX1 45399 C1/204 ST2 SQ77c MS298 
—RETRANSMISSION OK 
no errors in LTEST 

Potential Sources of Failure for the Loopback Test 

Here are some sample problems that would cause LTEST to fail.  Since LTEST doesn’t use any target 
resources other than the CPU, RAM, and ROM, most problems are due to errors in environment 
initialization. 

• Target stack space is too small. 

• Target memory RAM/ROM control registers are not set up properly.  

POP Email Retrieval Test Overview 

The POP email retrieval test will call the POPreceive() function to retrieve an email message from an 
email server.  The following items should be configured for this test. 

TEST_POP_RECEIVE Set to 1 to launch the test. 

TEST_POP_SERVER The IP address or URL of the POP server. 

TEST_POP_USER The user name for the account on the POP server. 

TEST_POP_PASSWORD The password for the account on the POP server. 



Quick Start 

15 

SMTP Email Send Test Overview 

The SMTP send test will call the SMTPsend() function to send a canned email message to an SMTP 
server.  The following items should be configured for this test. 

TEST_SMTP_SEND Set to 1 to perform test. 

TEST_EMAIL_ADDRESS The email address to which the test message will be sent.  This 
address is parsed in order to determine the SMTP server that is 
used when sending the message. 

TEST_SMTP_FLAGS Normally set to 0.  Set to SMTP_USE_SSL to use SMTP over 
SSL.  This requires an SSL library. 

MULTIPART Set to 1 to send a multipart message. 

SMTP Server Test Overview 

An SMTP server may be launched as part of nsdemo.  Log messages will be written as email 
messages are received. 

SNMP Agent Test Overview 

The SNMP agent may be started as one of the tasks run in nsdemo.  The SNMP agent acts as a server 
and provides network status information in response to requests sent by a Network Manager 
application.  The SNMP agent is discussed further in Chapter 9. 

Telnet Server Test Overview 

A Telnet server may be launched as part of nsdemo.  telnetd_task_main() sets up connections, and 
sns_TelnetCli() interprets command lines and provides a response. 

The Telnet session function sns_TelnetSessionMain() provides the following functions. 

• It exchanges some basic control information with the client. 

• It provides simple editing by allowing the backspace key to remove the last character typed from 
the command line, and then redisplays the line. 

• It reads command lines, and calls the routine sns_TelnetCli() for each.  The example in nsdemo.c 
passes the command to sns_DebugCli() so that the command can be processed by the debug 
interpreter.  If the optional HTTP client module is configured (SNS_PROTO_HTTPC = 1), then 
instead of running the command through the debug interpreter, the command string is interpreted 
as a URL, and the HTTP client function attempts to retrieve the web page at that location. 
nstels.c also implements a Telnet client, and if this version is built rather than nsdemo.c, then the 
Telnet command processor simply echoes back the command that was received. 

• If sns_TelnetCli() returns 0, then the telnet session will continue supplying command lines.  If 
sns_TelnetCli() returns –1, the session will be closed.  The example in nsdemo.c returns –1 when 
it is called with the string “quit”. 

The command interpreter in nsdemo.c or nstels.c could serve as a starting place for a full featured 
command line interface for the system running smxNS. 



Chapter 2 

16 

Web Server Test Overview  

The Web server may be launched as part of nsdemo.  The following configuration items may be 
useful. 

TEST_WEB_SERVER Set to 1 to enable the Web server. 

LOCALIP The Web server will be accessible at this address. 

NUM_WEBS_TASKS This specifies how many tasks will be launched to fulfill individual 
requests to retrieve a resource.  Setting this to 0 will fulfill a request in 
the context of the main Web server task. 

 

When the Web server is running correctly, you should be able to enter the IP address of the system 
running smxNS as the URL in a web browser, and a default web page should be displayed.  More 
information on the Web server is presented in Chapter 10.



Beginning Your Application 

17 

3.  Beginning Your Application 
 

 

Developing a Simple Application 
Before developing your full application, it is instructive to develop a small simple first application.  
Many of the problems encountered during development are eliminated by first working through the 
test programs and creating a simple application.  This section describes the rudimentary design of an 
application consisting of a server program and a client program.  The server will wait for the client to 
establish a connection, then will wait for the client to send a request for data.  Once the client has 
established the connection to the server, it will send a request for some number of bytes of data.  The 
server then begins sending a buffer of data for a predefined number of times, while the client reads the 
data, checks the data’s integrity, and sends a confirmation message. 

The code presented in this section is intended to illustrate smxNS’s Dynamic Protocol Interface (DPI) 
as simply as possible; therefore, some of the code might seem inefficient.  Refer to Chapter 5 in this 
manual for more information on the DPI.  If the application requires BSD sockets, also consult this 
manual for information about smxNS’s BSD interface. 

NOTE:   The choice between TCP and UDP must be thought through properly.  A common 
misconception is that data transferred via TCP arrives in packets.  Data transferred by 
TCP should be thought of as a stream.  If an application calls the write function three 
times, each time writing 20 bytes of TCP data, the local stack may combine this 
information into a single TCP segment with a 60-byte data payload.  The remote side 
read will then receive one 60-byte data chunk.  The application-layer protocol is 
responsible for parsing the data into useful information. 

The first question to answer about a first application is “What is the data to be exchanged?”  Most of 
smxNS’s test programs send a buffer of sequential numbers that can be easily checked by the remote 
host. 

If the numbers in the received buffer do not match up, an error is generated.  This type of data is 
probably the easiest to generate and check quickly.  An application can construct such a buffer of data 
with this code: 

#define DATA_SIZE 100 /* Number of bytes in buffer */ 
 . 
 . 
 . 
u16 count;   /* Index counter */ 
u8 junk[DATA_SIZE]  /* Buffer */ 
 . 
 . 
 . 

for(count=0;count<DATA_SIZE;count) 
 junk[count] = count%256;   /* Number is 0 -> 255 */ 
 . 



Chapter 3 

18 

 . 
 . 

Once the data has been received, the buffer can be checked by a similar section of code: 

 . 
 . 
 . 

/* 
**  Data received and stored in junk[] 
*/ 
for(count=0;count<DATA_SIZE;count){ 
 if (junk[count] != count%256 )  
 DEBUG_MSG2_PAR0(“ BAD DATA “); 
} 
 . 
 . 
 . 

The next question that needs to be addressed is “What roles do the server and client play?”  Do they 
exchange data?  Does one side control the other?  What protocols should be used in the exchange?  
The server’s role in the application outlined above is very basic.  It will control the transfer of a buffer 
as outlined above, to the client via a TCP connection.  The client’s role is to receive the buffer from 
the server, then check the data’s integrity.  This type of transfer could be used to send control 
information from a server to a factory floor or to a remote sensing station. 

Once the crucial design questions have been answered, the server and client need to be defined.  Since 
both the server and client will be running an image built from the smxNS source code, some small 
differences need to be established so that one system will act as the server and the other as the client.  

The server will be running the server application that listens for a network connection and the client 
will be running the client application that establishes the connection and makes requests of the server.  
This can be accomplished by using files specific to these network applications when building the top 
level project.  These files will also establish IP addresses and port numbers for the server and client.  
In this example, one application file is called nsserver.c and the other is nsclient.c. 

 Since the application is going to be using TCP, port numbers must be assigned to both sides of the 
connection.  Port numbers must be consistent between the server and client.  Because the server is 
going to perform a passive open, it will listen on its local port for incoming messages from any remote 
site’s port.  The client side must receive and send to the same server port.  The following section of 
code defines the server- and client-specific information: 

  . 
  . 
  . 
#define CLIENT_IP      “10.1.1.2”  /* Client IP address */ 
#define SERVER_IP      “10.1.1.3”  /* Server IP address */ 
#define CLIENT_MAC “00:01:02:03:04:05” /* Client hardware addr */ 
#define SERVER_MAC “00:01:02:03:04:06” /* Server hardware addr */ 
#define LOCALMASK “255.255.255.0”  /* Set subnet mask here */ 
#define SERVER_PORT         1500   /* Server port number */ 
#define DATA_SIZE            200   /* Data buffer size in bytes */  
#define ITERATIONS            10   /* Number of passes */ 
  . 
  . 
  . 



Beginning Your Application 

19 

This information must be included in both the server and client programs.  For the outlined sample 
application, this information is stored in file nscs.h.  A listing of nscs.h is included at the end of this 
section.  Port numbers below 1024 have conventions regarding their use, so for general applications 
select port numbers greater than 1024.   

The server and client programs will be very similar.  There will be two differences between the two 
programs:  First, the client will have a complimentary set of Nread() and Nwrite() functions to that of 
the server.  Second, the client will check the integrity of the incoming data.  Other than these two 
differences, the overall design considerations are the same.  The design of the server will be presented 
first, then the client design will be shown but without the detailed explanations. 

The server program will have the name nsserver.c and the client, nsclient.c.  Both these files must 
reside in the demo directory.  Any program using smxNS requires four main features:  

• Include files 

• Initialization 

• The establishment of a connection 

• Termination 

Include Files 
One smxNS header file must be included at the top of nsserver.c.  The file is: 

 . 
 . 
 . 
#include “smxns.h”     /* Prototypes and definitions */ 
 
/* 
**  Include application-specific information 
*/ 
#include “nscs.h” 
 . 
 . 
 . 

The file smxns.h in turn #includes the files nscfg.h, net.h, mtmacro.h, support.h, and socket.h.  The 
file nscfg.h contains smxNS’s configuration, such as the number of physical connections, buffers, and 
options.  The file net.h contains the function prototype information and type definitions. The file 
mtmacro.h contains definitions associated with the multitasking environment.  The file support.h 
contains prototypes of internal support functions.  Finally, the file socket.h specifies the BSD sockets 
API.  If the application requires any application-specific information stored in a header file, that file 
should also be included. 

Initializing smxNS 
Two functions are required to initialize smxNS.  The first, Ninit(), will zero all data structures, move 
the netdata[] table from ROM to RAM, and initialize the stack.  This is called by SMX module 
initialization and doesn’t need to be included in the network application.  The second initialization 
function, Portinit(), initializes a network interface driver and prepares it for sending and receiving 
network frames. 



Chapter 3 

20 

In smxNS, the call to Ninit() is integrated with the rest of the system start up.  The calling sequence is 
as follows. 

ainit() [implemented in main.c] 

 Calls smx_modules_init() [implemented in smxmods.c] 

  Calls smxns_init() [implemented in smxmods.c] 

and smxns_init() calls Ninit().  If there is a fatal error in networking initialization, system start up will 
fail.  Otherwise, ainit() continues to launch applications. 

ainit() [implemented in main.c] 

 Calls appl_init() [implemented in app.c] 

  Calls nsdemo_init() [implemented in nsdemo.c] 

and nsdemo_init() launches the test program tasks. 

When shutting down, a similar process occurs.  Here the chain is exitx_main() calls 
smx_modules_exit() calls smxns_exit() calls Nterm(). 

From the perspective of the application developer, the network application code can be considered to 
start with a function modeled on nsdemo_init(), which typically launches one or more tasks that create 
and use network sockets. 

Let’s say that the server task is named server_task_main().  Here is some sample code that shows 
typical start up of a network application task.  

void server_task_main(uint_dummy){ 
   int error_code; 
   . 
   . 
   . 
   error_code = Portinit(“enet”, “”); 
   if( error_code < 0 ) return; 
   . 
   . 
   . 

Function Ninit() does not take any parameters.  Function Portinit() takes two parameters defining the 
physical connection to be initialized and any special parameters for the initialization. 

Establishing a Connection 
Once the initialization is complete, the server can open a connection via the Nopen() function.  Since 
the server is going to be doing a passive open, it will remain in the Nopen() function until the client 
establishes a connection.  If the connection was successfully established, Nopen() will return a 
connection number; otherwise, it will return a negative number indicating an error.  The connection 
number is used by the Nread() and Nwrite() functions to indicate on which connection the operation 
is to be performed.   

The following code will create a passive open in the server: 

  . 
  . 
  . 
 /* 



Beginning Your Application 

21 

 ** Perform a passive open on port SERVER_PORT 
 */ 
 conno = Nopen(“*”, ”TCP/IP”, SERVER_PORT, 0, 0); 
 if( conno < 0 ) return; 
  . 
  . 
  . 

Function Nopen() takes five parameters: 

Parameter Description 

first Specifies the name of the remote host. * indicates the server should accept a connection 
from any host.  To do an active open to a client, the “*” could be replaced with a string 
containing the IP address of the client.   

second  Tells smxNS what protocol will be used in the connection.  Other valid options are 
“UDP/IP” or “ICMP/IP”.   

third  Tells smxNS which port the local host will be using.   

fourth  Indicates which port the remote site will be using.  Since the server is doing a passive 
open, the fourth parameter is zero to indicate the server should accept a connection from 
any port at a remote host.   

fifth A flag that can instruct smxNS to do a non-blocking open if set to S_NOWA. 

If Nopen() returns with a connection number, the client has established a connection.  Now the server 
will wait for the client’s request, then begin transferring the data through the established connection 
by using the Nwrite() function to send the data.  An Nread() function receives confirmation from the 
client if the data was intact.  Both functions return the number of bytes written or read if successful; 
otherwise, they return a negative error number.  To write the buffer of sequenced data and check for 
the client response, add this code to nsserver.c: 

 . 
 . 
 . 
/* Call to Nopen() returns conno here */ 
 . 
 . 
 . 
/* Build junk[] data here */ 
 . 
 . 
 . 
/* 
**  Loop through data transfer.  ITERATIONS  
**   defined previously in code. 
*/ 
for(i = 0; i<ITERATIONS;i++){ 
 /* 
 **  Wait for request for number of bytes to send 
 */ 
 error_code = Nread(conno, data_size, sizeof(data_size); 
 if( error_code < 0 ) return; 
  . 
  . 
  . 
 /* 



Chapter 3 

22 

 ** Convert data_req buffer to integer data_requested here 
 */ 
  . 
  . 
  . 
 /* 
 **  Write data 
 */ 
 error_code = Nwrite(conno, junk, data_request); 
 if( error_code < 0 ) return; 
  
  

 /* 
 **  Read client response 
 */ 
 error_code = Nread(conno, status, sizeof(status)); 
 if( error_code < 0 ) return; 
} 
 . 
 . 
 . 

Both the Nwrite() and Nread() functions take three parameters.  The first is the connection number, 
which specifies the connection that will be used for the transfer.  In the example above, the connection 
number, conno, was returned by the Nopen() performed earlier.  The second parameter for Nwrite() 
is the buffer containing the data to send, and for Nread() the buffer is the storage place to receive the 
data.  The final variable is the maximum length of the buffer for Nread() and the data length to write 
for Nwrite().  The length is specified in bytes. 

Terminating smxNS 
After the data exchange is complete, both sides of the application are ready to terminate smxNS.  
Each function in the termination sequence is a reciprocal function to those called to establish a 
connection.  Therefore, the first thing to do is close the connection by calling Nclose().  Finally, 
smxNS is terminated by calling Nterm(), which actually calls the Portterm() function to shut down 
the physical connections.  It is common for a system to run its networking functions at all times, so 
the call to Nterm() may be omitted.  Add the following code to nsserver.c: 

  . 
  . 
  . 
 /* 
 **  Terminate smxNS 
 */ 
 Nclose(conno);      /* close the connection */ 
 return; 
}        /* End of main */ 

Function Nclose() takes a single parameter, the connection number, conno, returned by Nopen().  
For every open connection, a call to Nclose() is required.  Function Portterm() also takes a single 
parameter, the physical connection that needs to be shut down.  In the defined application, Portterm() 
could take the parameter “enet” since the local host has a single physical connection defined in the 
netdata[] table.  The parameter “*” indicates all connections should be shut down.  Finally, 
Nterm() does not take any parameters. 



Beginning Your Application 

23 

A source code listing of nsserver.c is included at the end of this section.  The code listed is slightly 
more complete than the code included above.  It also contains comments describing what each section 
of code is doing. 

For nsclient.c, the overall structure in the program is the same, with two differences between the 
smxNS calls themselves.  The include files, defined constants, and the call to Ninit() are the same as 
in nsserver.c.  The first difference is in the call to Nopen().  Program nsclient.c will do an active 
open to the server and the TCP port on the server.  The following code should be in nsclient.c: 

 . 
 . 
 . 
conno=Nopen(SERVER_IP, “TCP/IP”, Nportno(), SERVER_PORT, 0); 
 . 
 . 
 . 

When the system running nsclient calls this Nopen(), it will begin to actively establish the connection 
to the server.  In this call to Nopen(), the client does not need a well-defined local port number, so a 
call to Nportno() is used.  Function Nportno() returns a random port number greater than 1024.   

The second difference is in the calls to Nwrite() and Nread().  Since the client will be doing the 
complimentary operations of the server, its data collection loop will be: 

... 
/* 
**  Loop through data transfer 
*/ 
 for(i = 0; i<ITERATIONS;i++){ 
  /* 
  **  Generate random number between 1 and DATA_SIZE 
  **  then convert to a buffer “char data_req[2].” 
  **  Send request to server 
  */ 
  error_code = Nwrite(conno, data_req, sizeof(data_req)); 
  if( error_code < 0 ) return (error_code); 
 
  /* 
  **  Read the data from the server 
  */ 
  error_code = Nread(conno, junk, sizeof(junk)); 
  if( error_code <= 0 ) return (error_code); 
   . 
   . 
   . 
  /* 
  **  This is where the data’s integrity would  
  **  be checked. 
  */ 
   . 
   . 
   . 
  /* 
  **  Write out status 
  */ 
  error_code = Nwrite(conno, “All Done”, 8); 
  if( error_code < 0 ) return (error_code); 
 } 



Chapter 3 

24 

One can see that these operations are the compliments of the server side.  Finally, the termination is 
the same as in nsserver.c. 

A source code listing of nsclient.c, with comments, is included following the listing of nsserver.c. 

Compiling Your Application 
The IDE project files delivered with smxNS are designed to handle building an application without 
major modifications.  Make a copy of the smx Protosystem directory to work in and create your 
application files there. In this example, make two copies of the Protosystem and create nsclient.c in 
one and nsserver.c in the other. Add each to the project file in its directory, in place of nsdemo.c. 

Run the make and check for compiler errors and warnings.  Address any that crop up before running 
either program.  Once both programs are built, they are ready to run by doing the following: 

1. Ensure that the server and client are connected via Ethernet. 

2. Run the nsserver executable on the server. 

3. Run the nsclient executable on the client. 

The program server will print out a few messages, and then wait until the connection is made.  Once 
the client begins, trace messages should appear on both machines. 

Code Listings 
This section includes listings of nscs.h, nsserver.c, and nsclient.c. 

Listing of nscs.h 
/* 
**  Copyright 1997  U S Software Corp. 
** 
**  nscs.h — Header file used by nsserver.c and nsclient.c 
*/ 
 
/* 
**  Check to see if this has been included previously 
*/ 
#ifndef _NSCS_H 
#define _NSCS_H 
 
 
/* 
**  Useful constants. These should be included in nsserver.c and nsclient.c. 
*/ 
#define CLIENT_IP      “10.1.1.2”  /* Client IP address */ 
#define SERVER_IP      “10.1.1.3”  /* Server IP address */ 
#define CLIENT_MAC “00:01:02:03:04:05” /* Client hardware addr */ 
#define SERVER_MAC “00:01:02:03:04:06” /* Server hardware addr */ 
#define LOCALMASK “255.255.255.0” /* Set subnet mask here */ 
#define SERVER_PORT         1500  /* Server listens at this TCP port */ 
#define DATA_SIZE            200  /* Size of data buffer in bytes */ 
#define ITERATIONS            10  /* Number of times to send data buffer*/ 
 
#endif     /* _NSCS_H */ 



Beginning Your Application 

25 

Listing of nsserver.c 
/* 
* nsserver.c                                                Version 2.70 
* 
* smxNS simple server test application.  To be used 
* in conjunction with nsclient.c 
* 
* New code and modifications: 
* Copyright (c) 2006-2011 Micro Digital Inc. 
* All rights reserved. www.smxrtos.com 
* 
* USNet sample code: 
* Copyright (c) 1997 United States Software Corporation 
* 
* This software is confidential and proprietary to Micro Digital Inc. 
* It has been furnished under a license and may be used, copied, or 
* disclosed only in accordance with the terms of that license and with 
* the inclusion of this header. No title to nor ownership of this 
* software is hereby transferred. 
* 
* Author: Richard Ames 
* 
* Portable to any ANSI compliant C compiler. 
* 
****************************************************************************/ 
 
#ifdef SMXNS_DEMO 
 
/* 
**  Include at least the following files for an application  
**  using the Dynamic Protocol Interface. 
*/ 
#include “smxns.h” 
/* 
**  Useful constants.  This is where any application-specific  
**  information would be included. 
*/ 
#include “nscs.h” 

/* 
**  Server starts here. 
*/ 
 
#define MAIN_STACK_SIZE 1200 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
void nsdemo_init(void); 
void nsdemo_exit(void); 
#ifdef __cplusplus 
} 
#endif 
 
static TCB_PTR server_task; 
 
void server_task_main(uint dummy) 
{ 
   int error_code;        /* Error codes returned by interface */ 
   int conno;             /* Connection to remote client */ 
   uint count;            /* Count index in junk[] */ 
   uint pass;             /* Number of times data sent to client */ 

http://www.smxrtos.com/


Chapter 3 

26 

   uint data_request;     /* Number of bytes client requested */ 
   char junk[DATA_SIZE];  /* Sample junk data */ 
   char data_size[2];     /* Buffer of number of bytes client wants */ 
   char status[10];       /* Client status */ 
   (void)dummy; 
 
   /* 
   ** Attempt to initialize the physical connections on this 
   ** host. 
   */ 
   DEBUG_MSG3_PAR0("Server attempting a Portinit()\n"); 
   Portcreate(“enet”); 
   Portconfig(“enet”, “IP”, SERVER_IP); 
   Portconfig(“enet”, “MASK”, LOCAL_MASK); 
   Portconfig(“enet”, “MAC”, SERVER_MAC); 
   Portconfig(“enet”, “LINK”, “Ethernet”); 
   Portconfig(“enet”, “DRIVER”, “ETHCTRL”); 
   error_code = Portinit("enet", “”); 
   if ( error_code < 0 ) 
   { 
      DEBUG_MSG1_PAR1( 
        "Failed to initialize ports due to code %d\n", error_code); 
      Nterm(); /* Terminate smxNS */ 
      return; 
   } 
   /* 
   ** Build the data buffer. The buffer is just numbers 
   ** from 0 to 255. 
   */ 
   for(count=0;count<DATA_SIZE;count++) 
      junk[count]=count%256; 
   /* 
   ** Open a server connection. The server will enter the 
   ** LISTEN state and wait for the client to establish the 
   ** connection. Nopen() returns the connection number. 
   ** If conno<0 an error occurred. 
   */ 
   DEBUG_MSG3_PAR1("Server doing an Nopen() on %d\n",SERVER_PORT); 
   conno = Nopen("*", "TCP/IP", SERVER_PORT, 0, 0); 
   if ( conno < 0 ) 
   { 
      DEBUG_MSG1_PAR1("Failed to open connection due to code %d\n",conno); 
      Nterm(); /* Terminate smxNS */ 
      return; 
   } 
   /* 
   ** Connection has been established. Begin writing buffer 
   ** the number of times specified by ITERATIONS. 
   */ 
   DEBUG_MSG3_PAR1("Server writing data to client %d times\n", ITERATIONS); 
   for(pass=0;pass<ITERATIONS;pass++) 
   { 
      /* 
      ** Read the client’s request for the number of bytes to send. 
      */ 
      data_request = 0; 
      error_code = Nread(conno, data_size, sizeof(data_size)); 
      if( error_code <= 0 ) 
      { 
         DEBUG_MSG1_PAR1("Failed on data request due to code %d\n", 
                         error_code); 
         Nclose(conno); 
         Nterm(); 



Beginning Your Application 

27 

         return; 
      } 
      data_request = (0xff00 & (data_size[0]<<8)) | /* convert to number */ 
                     (0x00ff & data_size[1]); 
      DEBUG_MSG3_PAR1("Received request for %u\n", data_request); 
      /* 
      ** Write out the junk data to connection conno. 
      */ 
      error_code = Nwrite(conno, junk, data_request); 
      if( error_code < 0 ) 
      { 
         DEBUG_MSG1_PAR1("Failed on writing data due to code %d\n", 
                         error_code); 
         Nclose(conno); 
         Nterm(); 
         return; 
      } 
      /* 
      ** Read status from client to see if it has finished 
      ** reading. In this test we don’t care what the client 
      ** wrote as long as the reading of the data was OK. 
      ** The client will check the integrity of the data. 
      ** If the data was received OK, then the client will send 
      ** a small packet. Therefore we do not check status. 
      */ 
      error_code = Nread(conno, status, sizeof(status)); 
      if( error_code < 0 ) 
      { 
         DEBUG_MSG1_PAR1("Failed on reading data due to code %d\n",error_code); 
         Nclose(conno); 
         Nterm(); 
         return; 
      } 
      /* 
      ** Got this far? If so, we had a successful pass. 
      */ 
      DEBUG_MSG3_PAR1(" Pass %d complete\n", pass+1); 
   } 
   DEBUG_MSG3_PAR0("Server program completed successfully\n"); 
   /* Close down the connection */ 
   Nclose(conno); 
   return; 
} 
 
 
/********************************************************************* 
* DEMO INITIALIZATION / CLEANUP 
**********************************************************************/ 
void nsdemo_init(void) 
{ 
   DEBUG_MSG3_PAR0("Server Start\n"); 

   server_task = smx_TaskCreate(server_task_main, PRI_NORM, MAIN_STACK_SIZE, 0,  
       "server_task"); 
} 
 
 
void nsdemo_exit(void) 
{ 
} 
 
#endif /* SMXNS_DEMO */ 



Chapter 3 

28 

Listing of nsclient.c 
/* 
* nsclient.c                                                Version 2.70 
* 
* smxNS simple client test application.  To be used in conjunction with 
* nsserver.c. 
* 
* New code and modifications: 
* Copyright (c) 2006-2011 Micro Digital Inc. 
* All rights reserved. www.smxrtos.com 
* 
* USNet sample code: 
* Copyright (c) 1997 United States Software Corporation 
* 
* This software is confidential and proprietary to Micro Digital Inc. 
* It has been furnished under a license and may be used, copied, or 
* disclosed only in accordance with the terms of that license and with 
* the inclusion of this header. No title to nor ownership of this 
* software is hereby transferred. 
* 
* Author: Richard Ames 
* 
* Portable to any ANSI compliant C compiler. 
* 
****************************************************************************/ 
 
#ifdef SMXNS_DEMO 
 
/* 
**  Include at least the following files for an application 
**  using the Dynamic Protocol Interface. 
*/ 
#include "smxns.h" 
 

/* 
**  Useful constants.  This is where the application specific 
**  information would be included. 
*/ 
#include "nscs.h" 
 
/* 
**  Client starts here. 
*/ 
 
#define MAIN_STACK_SIZE 1200 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
void nsdemo_init(void); 
void nsdemo_exit(void); 
#ifdef __cplusplus 
} 
#endif 
 
static TCB_PTR client_task; 
 

 

http://www.smxrtos.com/


Beginning Your Application 

29 

void client_task_main(uint dummy) 
{ 
   int error_code;        /* Error codes from function calls */ 
   int conno;             /* Physical connection number */ 
   uint count;            /* Count index in junk[] buffer */ 
   uint pass;             /* Number of times server sent data */ 
   uint client_port;      /* Client-side port number */ 
   uint data_request;     /* Number of bytes requested by client */ 
   int data_read;         /* Number of bytes read by client */ 
   char junk[DATA_SIZE];  /* junk buffer */ 
   char data_size[2];     /* Request sent to server */ 
   (void)dummy; 
 
   /* 
   ** Attempt to initialize the physical connections on 
   ** this host. 
   */ 
   DEBUG_MSG3_PAR0("Client attempting a Portinit()\n"); 
   Portcreate(“enet”); 
   Portconfig(“enet”, “IP”, CLIENT_IP); 
   Portconfig(“enet”, “MASK”, LOCAL_MASK); 
   Portconfig(“enet”, “MAC”, CLIENT_MAC); 
   Portconfig(“enet”, “LINK”, “Ethernet”); 
   Portconfig(“enet”, “DRIVER”, “ETHCTRL”); 
   error_code = Portinit("enet", “”); 
 
   if ( error_code < 0 ) 
   { 
      DEBUG_MSG1_PAR1( 
        "Failed to initialize ports due to code %d\n",error_code); 
   } 
   /* 
   ** Open a client connection. The client will establish 
   ** the connection because the server is in the LISTEN 
   ** state. Nopen() returns the connection number. 
   ** If conno<0 an error occurred. 
   */ 
   client_port = Nportno(); 
   DEBUG_MSG3_PAR2("Calling Nopen() local port %d remote port %d\n", 
            client_port, SERVER_PORT); 
   conno = Nopen(SERVER_IP, "TCP/IP", client_port, SERVER_PORT, 0); 
   if ( conno < 0 ) 
   { 
      DEBUG_MSG1_PAR1(" Failed to open connection due to code %d\n", conno); 
      return; 
   } 
   /* 
   ** Connection has been established. Begin writing buffer 
   ** the number of times specified by ITERATIONS. 
   */ 
   DEBUG_MSG3_PAR1("Client reading data from server %d times\n",ITERATIONS); 
   for(pass=0;pass<ITERATIONS;pass++) 
   { 
      /* 
      ** Zero out the buffer to ensure we do not check the 
      ** previously sent data. 
      */ 
      memset(junk, 0, DATA_SIZE); 
      /* 
      ** Generate a request for data. Number of bytes range from 
      ** 1 to DATA_SIZE. Then send data request to the server. 
      */ 
      data_request = TimeMS()%DATA_SIZE + 1;  /* TimeMS returns ms count */ 



Chapter 3 

30 

      data_size[0] = data_request>>8;         /* Store number in buffer */ 
      data_size[1] = 0x00ff & data_request;   /* Finish storing number */ 
      DEBUG_MSG3_PAR1("Sending request for %u bytes\n",data_request); 
      error_code = Nwrite(conno, data_size, sizeof(data_size)); 
      if( error_code < 0 ) 
      { 
         DEBUG_MSG1_PAR1( 
           "Failed on send data request due to code %d\n",error_code); 
         Nclose(conno); 
         return; 
      } 
      /* 
      ** Read the requested number of bytes of junk data 
      ** from connection conno. DATA_SIZE the maximum 
      ** buffer size. Nread() will return the number of 
      ** actual bytes read in error_code. 
      */ 
      data_read = Nread(conno, junk, DATA_SIZE); 
      if( data_read < 0 ) 
      { 
         DEBUG_MSG1_PAR1("Failed on reading data due to code %d\n",error_code); 
         Nclose(conno); 
         return; 
      } 
      /* 
      ** Check the integrity of the data. The buffer 
      ** received is supposed to contain numbers from 0 
      ** to 255 in order. This section reads through junk[] 
      ** and checks the values against expected values. 
      */ 
      for(count=0; count<data_read; count++) 
      { 
         if( junk[count] != count%256 ) 
         { 
            DEBUG_MSG1_PAR0("Bad Data Received:\n"); 
            DEBUG_MSG1_PAR1(" Byte number %d ",count); 
            DEBUG_MSG1_PAR1("is %d ",junk[count]); 
            DEBUG_MSG1_PAR1("but should be %d\n", count%0x256); 
            Nclose(conno); 
            return; 
         } 
      } 
      /* 
      ** Send the status to the server to indicate that the 
      ** client successfully read the data. 
      */ 
      DEBUG_MSG3_PAR1(" Data was intact. Read %u bytes\n",data_read); 
      error_code = Nwrite(conno, "All Done", 8); 
      if( error_code < 0 ) 
      { 
         DEBUG_MSG1_PAR1("Failed on writing data due to code %d\n",error_code); 
         Nclose(conno); 
         return; 
      } 
      /* 
      ** Got this far? If so, we had a successful pass. 
      */ 
      DEBUG_MSG3_PAR1(" Pass %d complete\n",pass+1); 
   } 
   DEBUG_MSG3_PAR0("Client program completed successfully\n"); 
   Nclose(conno);  /* Close the connection */ 
   return; 
} 



Beginning Your Application 

31 

 
 
/********************************************************************* 
* DEMO INITIALIZATION / CLEANUP 
**********************************************************************/ 
void nsdemo_init(void) 
{ 
   DEBUG_MSG3_PAR0("Client Start\n"); 
   client_task = sb_TaskCreate(client_task_main, PRI_NORM, MAIN_STACK_SIZE, 0  
       "client_task"); 
} 
 
 
void nsdemo_exit(void) 
{ 
} 
 
#endif /* SMXNS_DEMO */ 

Developing Your Application 
Congratulations on your success with your integration efforts!  Now that you are ready to start 
developing your application, there are a few points to keep in mind: 

• Set SNS_DEBUG_LEVEL = 3 in nscfg.h to help report error conditions in the stack.  Do a 
grep or search on DEBUG_MSG in the stack modules to locate error traps.   

• The header file net.h contains error number translation. 

• Use DEBUG_MSG() in your application as a trace tool. 

• Use a LAN analyzer to capture data traffic during stack communications. 

• Use an incremental development approach when adding new functionality to your application.  
Unit test each feature before integrating new features. 

When you have finished developing your application, set SNS_DEBUG_LEVEL = 0 in nscfg.h.  
This will remove the once-useful debug code from your final application build.





Configuration 

33 

4.  Configuration 
 

 

Overview 
This section provides an in-depth look at the configuration of smxNS. 

The following table summarizes the modules that contain configuration parameters.  The text below 
the table briefly describes the purpose of each module. 

Table 4-1:  Configuration Files 

Configuration File(s) Location 

Build Settings nscfg.h  <root>\XNS\include\nscfg.h 

Local Parameters nscfg.h <root>\XNS\include\nscfg.h 

Protocol Selection nscfg.h <root>\XNS\include\nscfg.h 

SSL Support nscfg.h <root>\CFG\iararm.h 

 

Notes for Table 4-1: 
       <root>  = \SMX 
       <xxx.yyy>  = Build directory, as standard for SMX. xxx is compiler; yyy is CPU, such as 

IAR.ARM. 
 
Build Setting configuration:  nscfg.h specifies macros to enable smxNS add-ons. The project file 

compiles all files.  

Local parameter configuration:  nscfg.h contains site-dependent definitions, such as read/write 
buffer sizes, packet size, and other parameters. 

Protocol selection:  You can remove the protocols that you will not use in the header file nscfg.h. 

SSL Support:  CSL_USSL should be defined as 1 to enable HTTPS or SMTP over SSL. 

 

 



Chapter 4 

34 

Configuring the Build Settings (nscfg.h) 
nscfg.h contains various configuration settings. Add-on selection is done in this file too. 

 

Configuring Local Parameters (nscfg.h) 
smxNS is configured mainly by editing file nscfg.h in the include directory.  Other files are also 
configurable, but do not have the scope of nscfg.h.  These are the macros in the order they appear in 
the file. Following this summary is more detailed information for each macro, except the first three 
which are simple. 

SNS_PROTO_ selects which application and mid-level protocols to enable.  The stack can 
be configured to use IPv4, IPv6, or both (dual-stack) for the network layer. 

SNS_DRV_ selects which Ethernet driver to enable. 

SNS_CRYPTO_ selects which cryptography functions to enable. 

SNS_MIN_RAM selects options to minimize RAM usage. 

SNS_HW_RX_CHECKSUM enables inbound hardware checksum calculation.  

SNS_HW_TX_CHECKSUM enables outbound hardware checksum calculation.  

SNS_CPU_CACHE_DATA locates Ethernet receive buffers in non-cacheable memory. 

SNS_BUFFS_IN_SRAM locates network message buffers in SRAM. 

NSDAR_SPACE amount of memory to reserve for web server. 

NCONNS sets the maximum number of open logical connections in one host. 

NBUFFS sets the number of message buffers. 

MTU sets the Maxiumim Transmission Unit size.  

USSBUFALIGN sets the alignment boundary for the message buffer array. 

FRAGMENTATION sets whether the code to fragment and reassemble IP packets is included. 

IPOPTIONS is the IP option support.  

USS_IP_MC_LEVEL sets the level of support for IP multicast. 

IP_MC_DFLT_NETNO sets the default interface for IP multicast. 

KEEPALIVETIME is the BSD socket keepalive time. 

RELAYING defines whether or not host is to relay. 

chksum_INASM  tells smxNS that the checksum routine will be performed in assembly so the 
routine in support.c will not be needed.  Not all the CPUs supported by 
smxNS have the checksum routine Nchksum() in assembly.  

DHCP configures support for DHCP client functions.  

DNS configures support for DNS client functions.  

NDNSS Number of DNS servers. 



Configuration 

35 

TCP_SACK enables selective ACK for TCP. 

LOCALHOSTNAME  obtains smxNS’s host name. 

USERID identifies a user for a PPP session. 

PASSWD authenticates a user for a PPP session.  

USS_PROXYARP enables proxy ARP feature. 

FILE_SUPPORT configures file system support. 

SNS_DEBUG_LEVEL sets the amount of debug output. 

NNETS sets the maximum number of network controllers in one host. 

NNETISRS specifies the number of interrupt vectors used by the network interfaces. 

SNS_MIN_RAM Macro 
This option selects a “minimum RAM” configuration.  It influences the default settings of other 
options and a few sections in the code.  A default setting based on the processor type is already set up, 
but can be changed depending on the system needs. 

SNS_HW_RX_CHECKSUM Macro 
This option enables hardware checksum calculations for inbound traffic by the Ethernet controller.  
Checksums in the IP, TCP and UDP headers are calculated.  If the checksum is incorrect, the 
incoming frame is dropped.  SNMP statistics are not maintained for frames that are dropped this way.  
The Ethernet controller and driver must support hardware checksums.  Enabling this setting decreases 
host processing for incoming frames and should increase network thoughput. 

SNS_HW_TX_CHECKSUM Macro 
This option enables hardware checksum calculations for outbound traffic by the Ethernet controller.  
Checksums in the IP, TCP and UDP headers are calculated.  The Ethernet controller and driver must 
support hardware checksums.  Enabling this setting decreases host processing for building outgoing 
headers and should increase network throughput. 

SNS_CPU_CACHE_DATA Macro 
This option is used to locate buffers that store incoming Ethernet frames in non-cached memory.  This 
is intended to avoid inconsistent memory values due to the cache controller not recognizing data 
written via DMA by the Ethernet controller.  In practice, turning on this setting has been useful even 
in situations where special handling of the Ethernet frame buffers doesn’t appear to be necessary. 

SNS_BUFFS_IN_SRAM Macro 
This setting specifies that Ethernet frame buffers should be located in SRAM.  This may desirable for 
reasons of cache consistency, or for performance reasons. This is typically enabled if 
SNS_CPU_CACHE_DATA is enabled since internal SRAM is not cached. 



Chapter 4 

36 

NCONNS Macro 
This is the maximum number of open logical connections (“sockets”) in one host.  When Nopen() 
establishes a connection, it returns a value from 0 to (NCONNS-1).  Enough memory is set aside to 
handle these connections based on the value set. When estimating your need, consider that a TCP 
close leaves the connection block reserved for about a minute. 

When using the Sockets API, the diagnostic counter sns_TcpSynDrops will count the number of times 
an incoming TCP connection attempt is dropped due to insufficient connections.  This count can be 
displayed using a source level debugger or by using the Telnet debug interface and entering the netstat 
command.  You can use this information to help tune the setting of NCONNS. 

NBUFFS Macro 
This is the number of working message buffers available to smxNS.  When smxNS passes packets up 
and down the stack, it uses these buffers.  These buffers are also used for internal purposes.  smxNS 
contains a large number of dynamic queues, so there is no exact formula for NBUFFS.  Too few 
buffers will hurt performance.   The rule of thumb is five buffers per possible active connection. 

MTU Macro 
Maximum Transmission Unit size, in bytes, for the system.  This sets the size of the largest 
unfragmented IP datagram that can be sent or received.  The MTU directly affects the size of the 
frame buffers. 

Ethernet supports an MTU of 1500 bytes, but it can be set to 576 bytes to conserve memory,  SLIP 
interfaces are typically set to 576 bytes and PPP interfaces are typically 1500 bytes. 

The MTU for the system should be the largest of any of the desired network interface MTUs.  When 
the system is configured to forward between interfaces and at least one interface is Ethernet, the MTU 
should be set to 1500 bytes, since hosts on the Ethernet network won't be aware that smxNS could be 
running with a reduced MTU. 

MAX_REASSEM Macro 
Maximum size IP datagram that can be reassembled.  If the system should be able to reassemble 
datagrams larger than the MTU, change this value to the largest datagram size.  All hosts are required 
to reassemble a datagram of at least 576 bytes in size (per RFC 791). 

Note that a typical setting for MAX_REASSEM is simply equal to the MTU, and the system normally 
doesn’t need to reassemble fragmented datagrams.  If the MAX_REASSEM size is adjusted to be 
larger than the MTU, make sure the MTU is 1500 bytes. 

USSBUFALIGN Macro 
This value specifies the alignment boundary for the start of the array of message buffers, and also the 
alignment for the data area within a message buffer.  The setting will depend on the memory access 
characteristics for the host processor and the network controller.  Changes to this setting should be 
carefully reviewed. 



Configuration 

37 

FRAGMENTATION Macro 
This value specifies whether or not to support fragmentation at the IP layer. Do not fragment packets 
if you can avoid it. TCP and UDP can handle much larger data packets than Ethernet can, so the IP 
layer will chop up or assemble large packets depending on this switch. 

The largest IP datagram that can be reassembled depends on the size of the frame buffers, which is set 
with the MAXBUF macro.  The largest datagram size is MAXBUF – MESSH_SZ – LHDRSZ bytes, 
which is typically MAXBUF – 46.  Fragmented datagrams are not common, and typically are created 
to accommodate link layers with unusually small frame sizes.  Under most conditions, the default 
setting for MAXBUF will be fine for use with fragmentation support enabled. 

 

0 Do not do any type of fragmentation. Code is removed at compile time. 

1 Reassemble incoming large data packets. 

3 Reassemble incoming large data packets and fragment outgoing large packets. 

 

IPOPTIONS Macro 
This macro enables RFC IP option support, chiefly the source routing options.  This is required in the 
standard, but little used and perhaps obsolete.  Uses up 90 bytes extra per connection block.  

USS_IP_MC_LEVEL Macro 
This specifies the level of support to include for IP multicasting. The IP multicast feature allows for 
efficient communication with a group of hosts. 

The value is taken from RFC 1112, which defines the following IP multicast conformance levels: 

Level 0 no support 

Level 1 support sending multicast IP datagrams 

Level 2 support sending and receiving multicast IP datagrams 

 

The default setting is 0, which is fine for any system that makes no use of multicast IP datagrams. 

Note that in order to receive multicast datagrams through an Ethernet interface, the device driver for 
the interface must also include support for receiving multicast frames. 

IP_MC_DFLT_NETNO Macro 
This specifies the default network interface for IP multicasting. Multicast frames will be sent on this 
interface unless the application changes the setting. 



Chapter 4 

38 

KEEPALIVETIME Macro 
This is the time to keep a BSD socket connection open, in milliseconds.  Default is 2 hours but 
inactive, as required by the standard.  To use, uncomment the line and change the value as needed. 

RELAYING Macro 
This specifies whether smxNS should relay packets.  The TCP/IP standard requires relaying to be off 
by default. 

1 Relay packets to another host 

2 Do not relay 

 

chksum_INASM Macro 

This specifies whether the checksum routine is written in assembly or not.  Define it if checksum is 
in assembly.  Some platforms that smxNS supports do not have an assembly routine, such as 
PowerPC, so this should be undefined. 

DNS Macro 
This value specifies if DNS support code should be included, and if it should be automatically called 
when looking up the remote end of a network connection. 

The following settings are defined: 

undefined No DNS support code will be included. 

1 DNS support code will be included, but not called automatically.  It will be left to the 
application to make a call to DNSresolve() when a domain name needs to be looked 
up. 

2 DNS support code will be included, and DNSresolve() will be called as part of 
Nopen() or gethostbyname(). 

 

The default setting for DNS is undefined. 

Note that a DNS server must be known to the system in order for DNSresolve() to succeed.  This 
information can be directly specified using the SetDNS() function, or it can be retrieved automatically 
when the DHCPget() function is called. 

NDNSS Macro 
This is the number of DNS servers available for DNS look ups.  The default value is 2.  The DNS 
server IP addresses may be specified by calling SetDNS() or retrieved automatically through 
mechanisms such as DHCP.  



Configuration 

39 

TCP_SACK Macro 
Define this macro to enable the selective ACK feature for TCP.  The selective ACK feature can 
improve throughput for TCP connections that suffer datagram loss for reasons other than congestion.  

LOCALHOSTNAME Macro 

smxNS must know its own host name, in several places such as PPP when negotiating a CHAP 
session.   The host name is specified with this macro. 

For embedded targets, the supplied LOCALHOSTNAME() loads a fixed name.  You will want to 
keep the host names unique within a network, as you would on any network to avoid ambiguities.  
There is no absolute rule against duplicate names; however, there may be consequences.  For instance, 
host XXX cannot open by name another host called XXX, or if a network had a host YYY and two 
hosts XXX, YYY would communicate with the XXX listed first in the network configuration table 
and the second XXX could not be reached in this manner.  All XXX hosts, however, could still talk to 
host YYY.  Unless you have some special needs, it is best to keep your hostnames unique. 

If you have a network with a large number of identical hosts, you may want to supply your own 
LOCALHOSTNAME() macro.  This could get the name from an EPROM or a similar source.  It 
could also read an identification off a network controller and match this to a table.  This method of 
course requires that all hosts have an identical hardware configuration. 

USERID Macro & PASSWD Macro 

These specify the user name smxNS should use when connecting to a remote site, or the name smxNS 
expects when someone connects to smxNS.  These are used in PPP, and Dial-up connections. They 
are used for establishing a PPP connection using PAP and/or CHAP.  

USS_PROXYARP Macro 
Define this macro in order to allow the system running smxNS to respond to ARP requests on behalf 
of other hosts.  This can be useful, for example, when the system running smxNS should perform 
bridge-like functions, relaying network frames to hosts on one network while making it appear that 
the hosts are part of another network.  

FILE_SUPPORT Macro 
This specifies file system support.  Since smxNS may be paired with a number of file systems, with 
differing APIs, this macro is used to specify the particular interface.  The following file systems have 
been defined. 

0 Minimal RAMdisk.  Supplied by smxNS. 

1 smxFS 

2 smxFFS 

3 POSIX API 



Chapter 4 

40 

SNS_DEBUG_LEVEL Macro 
This specifies the amount of information that is generated for use in debugging.  The value set 
between 0 and 6.  When set to 0, no information is generated, and when set to 6, all debug messages 
are written.  The meaning of the levels is as follows: 

0: Disables all debug output and debug statements are null macros 

1: Only output fatal error information 

2: Output additional warning information 

3: Output additional status information 

4: Output additional device change information 

5: Output additional data transfer information 

6: Output interrupt information 

NNETS Macro 
 This is the number of physical network connections associated with a host.  If a host has two serial 
connections and an Ethernet connection, set NNETS to at least three. 

NNETISRS Macro 
 This is the number of ISRs associated with network interfaces.  For processors with built in Ethernet 
controllers, a value appropriate for the on board controllers is defined.  For systems with external 
network interfaces, the value will depend on the particular drivers and the number of interfaces. 

Selecting Protocols 
Any network protocols that you do not need can be configured out of the build by defining the 
protocol as 0 in the local configuration file nscfg.h.  The following is an example of how this is done: 

#define SNS_PROTO_UDP 0          /* User Datagram Protocol */ 

Several of smxNS's high level protocols are only supported with TCP and not UDP.  Therefore the 
following smxNS high level protocols will not run under a UDP-only build of smxNS: 

ftp*.c File Transfer Protocol 

The following smxNS high level protocols do use UDP only and will therefore run: 

dhcp*.c Dynamic Host Configuration Protocol 

dns*.c Dynamic Name Service 

tftp.c Trivial File Transfer Protocol 

The stack can be configured to use IPv4, IPv6, or both (dual-stack) for the network layer.  To 
configure the network layer, set SNS_PROTO_IPV4, SNS_PROTO_IPV6 or both to 1. 

Systems that have only a serial interface and use a protocol such as PPP or SLIP can undefine ARP 
and Ethernet. 



Configuration 

41 

Selecting Drivers 
Drivers for the network interfaces can be configured out of the build similar to the way that this is 
done for network protocols. Certain drivers will not compile for certain architectures.  In order to 
allow one project file containing a number of possible drivers to be used across a family of 
processors, a facility is included that allows individual drivers to be turned on or off.  If a driver is not 
selected, a stub file will be generated when compiling that driver. 

The significant point here is to make sure that the driver for the network interface used in your system 
is enabled.  If it is not, you should receive a link error when you build the final project.  Also, if an 
unneeded driver is causing compiler errors when building the network code, the driver can easily be 
disabled using this facility. 

The list of drivers follows the list of protocols in the file nscfg.h.  Here is an example showing the 
selection of the CF5485 Fast Ethernet Controller, and not the CF5282 controller. 

#define SNS_DRV_CF5282  0  /* ColdFire FEC used on most ColdFires */ 
#define SNS_DRV_CF5485  1  /* ColdFire FEC used on 5485/75 */ 





Dynamic Protocol Interface 

43 

5.  Dynamic Protocol Interface 
 

 

Overview 
This chapter details the usage of smxNS’s Dynamic Protocol Interface.  The Dynamic Protocol 
Interface provides a simple and efficient interface to the smxNS stack.  It is an alternative to the BSD 
Sockets Interface (Chapter 6). 

The Dynamic Protocol Interface contains some functions that are used to initialize or shut down the 
network system.  These functions are Ninit(), Portcreate(), Portconfig(), Portinit(), Nterm() and 
Portterm().  Systems that implement their network applications using the BSD Sockets API will still 
use these DPI functions for system start up.  

The Dynamic Protocol Interface is recommended for 

• Applications with individual read and write sizes smaller than the MTU.  Note, for example, that 
an MTU of 1500 bytes typically allows a buffer of 1460 bytes to be written or read at the 
application level. 

• Simple code 

• Developers looking to minimize the learning curve 

The BSD Sockets API is recommended for 

• Developers already familiar with this API 

• Ports from existing applications or new development that should share common network code 
across systems 

• Applications where it is desirable to be able to pass an arbitrarily sized buffer in the read and 
write calls.  With the BSD Sockets API, the underlying layers will take care of dividing up the 
transfers if needed. 

The following issues are covered in this chapter: 

• Blocking versus non-blocking operation 
• Include files 
• Initialization and termination 
• Connections 
• Open, read, write, and close functions 
• Macros for setting and obtaining control information on connections 
• Multicast API 
• Error Handling 
• Examples 



Chapter 5 

44 

Blocking Versus Non-Blocking Operation 
There are two modes of operation that affect how your application deals with network events in a non-
multitasking system:  Blocking and non-blocking.   

Blocking is the default mode.  This mode will halt processing while waiting for a network event to 
complete or timeout.  An example of this would be a wait for a return from a TCP open.  Blocking 
mode would halt processing until the open returned a connection number or timed out.  This behavior 
is usually unsatisfactory for most embedded systems.   

Non-blocking allows processing to continue while polling the status of the network event.  Non-
blocking is desirable in a non-multitasking system because it makes efficient use of CPU time while 
waiting for network events to complete. 

In a multitasking system, blocking is the recommended mode of operation because blocking does not 
actually block processing as it does in a non-multitasking system. 

Non-blocking issues are addressed in the appropriate sections in this chapter.  An example of non-
blocking is also given at the end of this chapter. 

Include Files 
All programs that call smxNS routines need to contain the following include statement: 

#include “smxns.h” 

Initialization and Termination 
Ninit() performs general initialization, such as initialization of tables and buffers.  It must be the first 
network function called and can’t be called again unless the function Nterm() has been called first.  
Ninit() is called as part of smx_modules_init(), so the network application doesn’t call Ninit() 
directly. 

Portinit() and Portterm() are used to initialize and shut down the system’s network interfaces. 

Detailed descriptions of these functions follow. 

 

Ninit 

Performs general network initialization. 

int Ninit(void); 

Ninit() takes no parameters. 

See also:   Nterm, Portinit, Portterm 

Return Value 
0 Success. 

All error conditions are < 0 



Dynamic Protocol Interface 

45 

NE_CFGERR Configuration error.  Check log for details. 

Example 
main() 
{ 
   /* initialize all connections */ 
   if (Ninit() < 0)       
       /* process error */ 
} 

 

Nterm 

Shuts down networking. 

int Nterm(void); 

Nterm() takes no parameters.  Any open network interfaces will be shut down, so Portterm() does not 
need to be called before Nterm().  Network support can be restarted by making a call to Ninit(). 

See also:   Ninit, Portinit, Portterm 

Return Value 
0 Always returns 0. 

Example 
/* shut down all network connections */ 
Nterm(); 

 

Portcreate 

Creates a network interface. 

int Portcreate(const char *ifname); 

ifname The name to be associated with the network interface that is created.  The maximum 
size of the interface name is set by the struct NET definition in support.h.  The 
current limit is 11 characters.  If a longer string is specified, it will truncated to the 
maximum length. 

See also:   Ninit(), Nterm(), Portconfig(), Portinit(), Portterm() 

Return Value 
>= 0 Interface created.  Value is interface index. 

All errors are < 0 

NE_CFGERR Configuration error.  No room for creating an interface.  Room for 
more interfaces can be made by increasing the value of NNETS. 



Chapter 5 

46 

Example 
 
Portcreate(“enet”); 

 

Portconfig 

Configures a network interface. 

int Portconfig(const char *name, const char *key, const char *value); 

name The name of the interface. 

key A string that identifies the parameter to be configured.  The string is not case 
sensitive, and only the first four characters of the string are evaluated. 

value A string containing the value to be configured. 

Portconfig() configures a network interface.  When a network interface is created, its properties are 
initialized to 0.  Portconfig() can be called repeatedly to assign values as needed. 

Summary of parameters: 

IP IP address, expressed as a dotted decimal 

MASK Mask for IP address, dotted decimal 

IPV6 IPv6 address for static configuration 

LINK Link layer 

DRIV Driver name 

MAC MAC address 

FBIP Fallback IP address, dotted decimal 

FBMK Mask for fallback IP address, dotted decimal 

FBCO Fallback count, switch to fallback IP after FBCO attempts 

IP2 Alias IP, dotted decimal 

MK2 Mask for alias IP, dotted decimal 

NAT Enable Network Address Translation on interface 

DIAL Enable serial dial out on interface 

PEER IP address of peer in PPP link 

PCP Priority Code Point for VLAN tag 

VID VLAN ID for VLAN tag 

 



Dynamic Protocol Interface 

47 

Details on parameters 

IP: This is the primary IP address associated with the interface.  If an address has already been 
assigned to the interface, calling Portconfig() to set an IP address will also kick off address conflict 
detection for the new address to qualify it for use. 

Special values can be assigned as follows 

“0.0.0.0”- Use DHCP to obtain an IP address 

“169.254.x.x” - Use a link local IP address.  This address range is also known as the Auto-IP address 
range.  The initial setting for this address will be tested for an address collision.  If there is no 
collision, then that address will be adopted.  If there is a collision, then another randomly generated 
address in the link local address range of 169.254.1.0 to 169.254.254.255 will be tried until a free 
address is found.  Note that other address conflicts can lead to the system adopting the fallback IP 
address, so if you want to just use a local IP address, you should set both IP and FBIP to this range. 

Any other address – The address will be used, provided there are no other systems on the local 
network using this address. 

IPV6: This configuration option can be used to assign a static IPv6 address to the system.  The string 
that provides the address should be in hexadecimal with groups of four digits separated by colons.  
Leading zeros may be omitted, and a double colon can be used to represent one or more groups of 
zeros, for example “2001:db8:85a3::8a2e:370:7334”. 

Link layer: Should be one of "Ethernet", "PPP" or "SLIP". 

Driver name: The driver is identified based on a string in the NPTABLE structure for the driver.  
Most wired Ethernet drivers can use "ETHCTRL". 

Fallback IP: Fallback IP address to use if the primary IP address cannot be used.  If the primary IP 
address is set for DHCP, the fallback address is used if the attempt to obtain an address from a DHCP 
server fails.  If the primary IP address is a static address, the fallback address is used if a conflict is 
detected when probing for a duplicate of the primary address.  If the first attempt to establish the 
fallback address is not successful, it will continue to be retried. 

Fallback Count: Number of times to retry establishing the primary IP address before switching to the 
fallback IP address. 

Alias IP: If a non-zero Alias IP is specified, the network interface will accept traffic for this address as 
well as the primary address. 

NAT: Enable Network Address Translation on interface.  The string that indicates the state should be 
either “ENABLE” or “DISABLE”.  There are more notes on NAT configuration in Chapter 7. 

DIAL: Enable serial dial out on interface.  The string that indicates the state should be either 
“ENABLE” or “DISABLE”.  There are notes on using a modem with serial communication in 
Chapter 8. 

PEER: IPv4 address of peer in PPP link.  The IP address should be supplied in dotted decimal format.  
This setting is optional for a PPP link. 

PCP: The Priority Code Point specifies the frame priority for a VLAN tagged frame.  The priority 
level range is 0 to 7. 

VID: The VLAN ID is a 12-bit value.  When a VLAN ID is defined, outgoing frames will include a 
VLAN tag.  The string containing the VID should be in hexadecimal and of the form “0x123”.  If a 
VLAN tag is defined for an interface, the tag will be included in all frames sent on the interface. 

See also:   Ninit(), Nterm(), Portcreate(), Portinit(), Portterm() 



Chapter 5 

48 

Return Value 
0 Value stored. 

All errors are < 0 

NE_PARAM Run-time parameter error.  The named interface was not found, key not 
found, or invalid value.  See log for details. 

NE_CFGERR Configuration error.  See log for details. 

Examples 
 
The following code is typical for a static IP address.  It sets an address of 10.1.1.20. 

Portcreate(“enet”); 
Portconfig(“enet”, “IP”, “10.1.1.20”); 
Portconfig(“enet”, “MASK”, “255.255.255.0”); 
Portconfig(“enet”, “MAC”, “00:01:02:03:04:05”); 
Portconfig(“enet”, “LINK”, “Ethernet”); 
Portconfig(“enet”, “DRIVER”, “ETHCTRL”); 
if (Portinit(“enet”, “”) < 0) 
{ 
   DEBUG_MSG1_PAR0(“smxNS Portinit for enet failed\n”); 
} 

Here’s a more involved example that starts with an address obtained via DHCP and then transitions to 
a static IP address. 

Note that it is possible to leave the interface active while changing the type of IP address that is used, 
i.e. one doesn’t need to go through the Portterm(), Portinit() sequence again in order to change to a 
new local IP address.  All application level connections should be shut down before changing the 
address though. 

Portcreate(“enet”); 
Portconfig(“enet”, “MAC”, “00:01:02:03:04:05”); 
Portconfig(“enet”, “LINK”, “Ethernet”); 
Portconfig(“enet”, “DRIVER”, “ETHCTRL”); 
if (Portinit(“enet”, “”) < 0) 
{ 
   DEBUG_MSG1_PAR0(“smxNS Portinit for enet failed\n”); 
} 
 
while (Portstate(“enet”) != NETIF_READY) 
   smx_DelayMsec(500); 
 
/* System is now using address from DHCP server */ 
 
Portconfig(“enet”, “FBIP”, “10.1.1.100”); 
Portconfig(“enet”, “FBMK”, “255.255.255.0”); 
DHCPrelease(GetPortIndex(“enet”)); 
 
while (Portstate(“enet”) != NETIF_READY) 
   smx_DelayMsec(500); 
 
/* System is now using address 10.1.1.100 */ 



Dynamic Protocol Interface 

49 

The first time the interface is set up, no IP address is defined, so the default value 0.0.0.0 will be in 
place and the DHCP client will be started to obtain an IP address.  After the port is initialized, the 
loop that calls Portstate() will continue looping until an address is established. 

In order to transition to a static IP address, the new address and mask should be stored in the fallback 
IP and fallback mask slots, and the DHCP leased address should be released.  This way, the DHCP 
server is informed that the leased address is no longer in use, and the DHCP client state machine will 
pick up the fallback address after the leased address is turned in. 

If the call to DHCPrelease() were immediately followed by a call to Portinit() to set the IP address 
directly there is a chance that the DHCP client state machine would restart before the static IP address 
was in place. 

 

Portinit 

Initializes a network interface. 

int Portinit(const char *ifname, const char *initstring); 

ifname The name associated with the network interface to be initialized. 

initstring A string that can contain additional initialization information.  Device drivers may 
obtain information from this string. 

Portinit() initializes a network interface.  The initialization routine will prepare the device driver to 
transmit and receive network frames, and will install and enable the interrupt service routine for the 
network device driver.  Note that Ethernet interfaces with 10/100 PHYs may take around 6 seconds to 
negotiate link parameters. 

Although the call to Portinit() may immediately return successfully, there may be a delay before 
frames can be sent or received.  An attempt to establish an active connection will fail if the network 
interface has not come up yet.  The nsdemo.c file contains code that will wait until at least one 
network interface is up.  This code appears in the example below. 

See also:   Ninit(), Nterm(), Portterm() 

Return Value 
0 Initialization successful. 

All errors are < 0 

NE_PARAM Parameter error.  ifname not found, interface already initialized, error in 
initialization string or hardware error. 

NE_CFGERR Configuration error.  Link or driver layer not defined, insufficient 
resources configured. 

NE_HWERR Hardware error.  Hardware behavior was not as expected. 

NE_NOBUFS Not enough memory resources to initialize. 

Additional details on error conditions are available in the log. 

Example 
 
Portcreate(“enet”); 



Chapter 5 

50 

Portconfig(“enet”, “IP”, “10.1.1.20”); 
Portconfig(“enet”, “MASK”, “255.255.255.0”); 
Portconfig(“enet”, “MAC”, "00:01:02:03:04:05"); 
Portconfig(“enet”, “LINK”, “Ethernet”); 
Portconfig(“enet”, “DRIVER”, “ETHCTRL”); 
if (Portinit(“enet”, “”) < 0) 
{ 
   DEBUG_MSG1_PAR0(“smxNS Portinit for enet failed\n”); 
} 
while (Portstate("*") != NETIF_READY) 
   smx_DelayMsec(500); 

 

Portstate 

Checks the state of one or more network interfaces. 

int Portstate(const char *name); 

name If “*”, then all network interfaces are checked; otherwise, this should be a network 
interface name specified in a call to Portcreate(). 

Checks the state of a network interface.  This is useful for determining when an interface has reached 
the NETIF_READY state so that one can be sure connections can be actively establilshed and 
network traffic can be sent. 

All interfaces can be checked at once, in which case the state of the network that is closest to or at 
"NETIF_READY" is reported. 

Return Value 
NETIF_UNITIALIZED Network interface not initialized. 

NETIF_NOLINK No link established for interface (often cable disconnected) 

NETIF_NEGOTIATING Interface is linked but IP address not yet established 

NETIF_READY Interface is ready to transmit 

All errors are < 0 

NE_PARAM Parameter error.  name not found 

See also:   Ninit(), Nterm(), Portinit() 
 

Examples 
while (Portstate("*") != NETIF_READY) 
   smx_DelayMsec(500); 

 



Dynamic Protocol Interface 

51 

Portterm 

Shuts down one or more network interfaces. 

int Portterm(const char *name); 

name If “*”, then all network interfaces for this host will be shut down; otherwise, this 
should be a network interface name specified in a call to Portcreate(). 

Shuts down the specified network interfaces.  Note that all interfaces can be shut down at once, or 
individually.  The shut down routine will put the network controller into an idle state, and restore the 
interrupt vector associated with the network device driver to its original state.  Any network 
connections associated with the interface are marked as fatal.  The shutdown is reversible:  Just make 
another call to Portinit().  A call to Portterm() can be omitted prior to calling Nterm(), because 
Nterm() automatically calls Portterm(). 

See also:   Ninit(), Nterm(), Portinit() 

Return Value 
0 Always returns 0. 

Examples 
/* shut down all network connections */ 
Portterm(“*”); 

/* shut down a specific network connection */ 
Portterm(“serial”); 

Connections 
Connections behave very much like files:  You can open and close a connection, you can read data 
from it, and write data to it.  The main difference is that a connection has a user at each end, and a file 
has only one user.  The data you read is the data the other user wrote, and vice versa. 

smxNS offers the user two basic kinds of connections:  TCP and UDP.  There are two primary 
differences: 

• TCP performs error correction and flow control, and UDP does not.  You can read TCP like a 
local disk file:  You want to check for errors, but they should not occur and if they do you quit.  
Doing this with UDP would be difficult, and writing applications using UDP is quite cumbersome.  
It is best to leave UDP for pre-written applications, such as TFTP. 

• UDP is a packet protocol, and TCP is a byte-stream protocol.  With TCP, you can’t predict with 
certainty how many bytes a read will return, or how many reads you’ll need for a given amount of 
data. 

Port numbers are used to match the two ends of the connection.  If your local port number is my 
remote port and vice versa, then we have a connection. 

Normally one end performs an active open and the other a passive open.  The system performing a 
passive open is typically running a server application.  This system will wait until it receives an 
indication from a client application performing an active open. 

 



Chapter 5 

52 

Open, Close, Read, and Write 
These four routines (plus the startup and shutdown) are the only user-level network functions required 
to write an application using smxNS.  This might surprise you, especially if you have seen network 
packages that go something like: 

call TCPwrite 
call Ipwrite 
call DRIVERwrite 
... 

smxNS uses a table-driven protocol stack structure.  Each protocol level has only one public symbol:  
The name of the protocol table.  smxNS performs all necessary calls through these protocol tables.  
The user only has to call a general high-level function that is the same for all protocol configurations. 

The open function specifies which protocols, and in which order, are to be used.  There are no 
restrictions on the protocol stack as such, but of course not all combinations make sense. 

Beginning with smxNS v2.90, the error codes returned from Nopen(), Nclose(), Nread() and Nwrite() 
no longer include overlapping POSIX error codes, i.e. EBADF, ECONNABORTED, etc.  Instead, 
smxNS specific error codes are used as appear in the table below. 

 

smxNS v2.8 and earlier smxNS v2.9 and later 

EBADF NE_BADF 

ECONNABORTED NE_CONNABORTED 

EHOSTUNREACH NE_HOSTUNREACH 

ENETUNREACH NE_NETUNREACH 

EMSGSIZE NE_MSGSIZE 

EWOULDBLOCK NE_WOULDBLOCK 

ENOBUFS NE_NOBUFS 

ETIMEDOUT NE_TIMEDOUT 

 

smxNS creates definitions for the POSIX error codes if they are not present using negative values 
using code like the following from support..h. 

#ifndef EHOSTUNREACH 
#define EHOSTUNREACH -10 
#endif 

If the error code is defined, then the existing definition is retained.  In some build environments, these 
error codes have positive value, which is not compatible with the convention that DPI functions return 
a negative value on error.  For this reason, the new error code definitions were introduced in smxNS 
version 2.90. 

Network applications that use the DPI functions may need to be adjusted if they include error 
handling that uses the old error codes.  In order to update the code, one should substitute the new error 
code name.  Here is an example: 



Dynamic Protocol Interface 

53 

Change: 

rc = Nread(s, buf, buflen); 
if (rc == ETIMEDOUT) 
{ 
   ... 

To: 

rc = Nread(s, buf, buflen); 
if (rc == NE_TIMEDOUT) 
{ 
   ... 

 



Chapter 5 

54 

Nopen 

Opens a connection. 

int Nopen(const char *to, const char *protoc, 
          int lp, int rp, int flags); 

to String specifying the name of the remote system.  This can take one of the following 
forms: 

 “host”  Remote host, shortest route. 

 “host%ifname” Remote host, using named  
   interface. 

 “*”   Any host, used for passive  
   open or broadcast. 

 “*%ifname”  Any host, using named  
   interface. 

 “n1.n2.n3.n4” IP address of remote system in IPv4 format. 

 “x:x:x:x:x:x:x:x” IP address of remote system in IPv6 format, as 
specified in RFC 4291, section 2.2. “Text Repre-
sentation of Addresses”.  It is a series of eight 16-bit 
address segments separated by colons.  Leading zeros 
may be omitted.  Sequences of  one or more groups 
of zeros may be abbreviated as ::, but only once. 

protoc String specifying the transport and network layer protocols, separated by a slash.  
Typical values would be “TCP/IP”, “UDP/IP” or “ICMP/IP”.  If a 
listening connection specifies IP as the bottom half of the protocol, IPv4 and IPv6 
clients are accepted. If IPv6 is specified, only IPv6 clients are accepted. 

lp Local port number.  For an active open, this is often an ephemeral port, and a 
suitable random value can be obtained using the utility function Nportno().  For a 
passive open, the well-known port number should be used. 

rp Remote port number.  For an active open, this should be the well-known port for the 
service used in the connection.  For a passive open, this value should be specified as 
0, and any remote port will be accepted for the connection. 

flags Normally 0, but for a non-blocking open, you can specify the flag S_NOWA, and 
the call will return without blocking.  In order to determine if the connection is 
established, use the macro SOCKET_ISOPEN().  Also, for UDP connections, you 
can use the value S_NOCON to cause the connection to behave in a connectionless 
manner.  When you specify S_NOCON, the connection will accept all UDP 
messages directed to the local port, regardless of the originating IP address or UDP 
port.  This information is stored so that a call to Nread() followed by a call to 
Nwrite() will respond to the source of the message that was just read. 

Nopen() is used for both active and passive opens.  The behavior is determined by the parameters 
supplied to the function.  Several examples follow to further illustrate the use of the function. A 
passive open will wait indefinitely.  An active open for TCP will return when the connection has been 
made, but it times out in a couple of minutes if there is no answer. 



Dynamic Protocol Interface 

55 

See also:   Nclose(), Nread(), Nwrite() 

Return Value 
conno A return value >= 0 is a connection number.  This is the handle for 

further communication on the connection. 

All errors are < 0 

NE_PARAM Run-time parameter error.  Protocol not recognized. 

NE_CFGERR Out of connection blocks. 

NE_HOSTUNREACH No route to host. 

NE_CONNABORTED Remote host sent RST when opening connection. 

NE_NOBUFS No frame buffers available when opening connection. 

NE_TIMEDOUT Time out trying to create connection 

Examples 
/* An active open from host1 that causes TCP to send out open requests 
to port 1000.  The local port number is dynamically and randomly 
assigned with the function Nportno().  */ 

/* host1 */ 
int conno, myport;  /* connection and port number */ 
myport = Nportno(); 
conno = Nopen(“host2”, “TCP/IP”, myport, 1000, 0); 
if (conno < 0) 
    /* process error */ 

/* A passive open at host2 that waits for and accepts calls from anyone 
who asks for port number 1000.  This type of open would be done by a 
server */ 

/* host2 */  
int conno;      /* connection number */ 
conno = Nopen(“*”, “TCP/IP”, 1000, 0, 0); 
if (conno < 0) 
    /* process error */ 

/* A UDP open at host1 for hostA through port serial1 would look like 
this: */ 

/* host1 */  
conno = Nopen(“hostA%serial1”, “UDP/IP”, 1000, 1010, 0); 

/* The specification of “serial1” indicates a specific network 
interface on host1, and is not referring to hostA’s network interfaces.  
This form of open may be needed if there are two connections between 
host1 and hostA.  In this manner, “serial1” serves to identify which 
local network interface is being used. */ 

/* To send and receive ICMP messages, you can use the form: */ 

/* host1 */ 
conno = Nopen(“host2”, “ICMP/IP”, 1000, 1010, 0); 

/* This is a special situation. */ 



Chapter 5 

56 

/* Perform a non-blocking OPEN and do some processing while polling for 
the OPEN connection.  */ 

conno = Nopen(“*”, “TCP/IP”, 1000, 0, S_NOWA); 
if (conno < 0 ) 
    /* handle error condition */ 
while ( !SOCKET_ISOPEN(conno)) 
    /* perform other processing */ 

 

 

Nclose 

Closes a connection. 

int Nclose(int conno); 

conno The connection number previously returned from a call to Nopen(). 

Nclose closes a connection, possibly waiting for a complete close handshake.  In no case should the 
application retry the close.  In some cases (as with TCP), the connection block will actually be freed 
after a minute or so, but this is automatic, and the application should not touch the connection after 
the close. 

See also:   Nopen(), Nread(), Nwrite() 

Return Value 
0 Normal close. 

-1 Error occurred in attempting to close the connections.  Possible reasons 
are an invalid connection number or a protocol problem. 

Example 
int error;   /* error code        */ 
int conno;   /* connection number */ 
error = Nclose(conno);   /* close the connection */ 
if (error < 0)  /* process error */ 



Dynamic Protocol Interface 

57 

Nread 

Reads a message from a connection. 

int Nread(int conno, char *buff, int len); 

conno Connection number. 

buff Buffer to store message. 

len Size of the buffer. 

Reads a message from a connection into the specified buffer.  For a blocking socket, the call will 
block until information is available to be read, or until a timeout occurs.  The timeout can be adjusted 
using the SOCKET_RXTOUT() macro. 

For TCP connections, Nread() may return up to the maximum amount of information that will fit in 
one internal message buffer.  This will be less than MAXBUF bytes.  For UDP connections, the data 
from the next UDP message will be returned. 

See also:   Nclose(), Nopen(), Nwrite() 

Return Value 
0 The remote system has closed the connection. 

>0 Indicates the number of bytes read. 

NE_BADF The connection number is not valid. 

NE_WOULDBLOCK Non-blocking connection can’t proceed.  Read would be retried. 

NE_TIMEDOUT Timeout.  Read can be retried. 

NE_CONNABORTED Protocol problem. For example, the peer TCP sent a RST segment.  
Normally the application should close the connection. 

NE_MSGSIZE The message is too long for the supplied buffer.  The incoming TCP 
segment or UDP message is dropped and no data is transferred to buff, 
but the application can continue to use the connection. 

Example 
/* user defined input buffer size */ 

#define MAX_BUFFER_SIZE 80 
int error;                   /* error code */ 
int conno;                   /* connection Number */ 
char buff[MAX_BUFFER_SIZE];  /* data input buffer */ 
/* read data into “buff” from connection number “conno” */ 
error = Nread(conno, buff, sizeof(buff)); 
if (error < 0) 
    /* process error */ 
  

The constant MAX_BUFFER_SIZE could be replaced with the smxNS constant MTU defined in file 
nscfg.h.  A call to Nread() cannot return more than MTU bytes. 



Chapter 5 

58 

Nwrite 

Writes a message to a connection. 

int Nwrite(int conno, const char *buff, int len); 

conno Connection number. 

buff Buffer containing message. 

len Number of bytes to write. 

Nwrite() writes a message to a connection from the specified buffer.  The largest buffer passed to 
Nwrite() should not exceed the value given by the SOCKET_MAXDAT() macro.  For TCP 
connections, this will reflect the maximum segment size that is indicated by the remote TCP when the 
connection is established.  For UDP connections, this value will reflect the MTU imposed by the link 
layer.  These values will generally be at least 256 bytes, so it is reasonable to write out small buffers 
directly. 

By default, when Nwrite() writes a TCP segment, the PSH flag will not be set.  This flag is a hint to 
the receiving TCP that a usable set of information has been sent and that it should be processed by the 
receiving network application.  The PSH flag can be set by using the SOCKET_PUSH() macro prior 
to calling Nwrite().  If the receiving TCP is slow to process incoming information, it may help to set 
this flag. 

See also:   Nclose(), Nopen(), Nread() 
Return Value 

>= 0 Indicates the number of bytes written.  For TCP connections, this 
indicates that the buffer has been written, but not necessarily that the 
remote end has received the information.  Ensuring delivery is handled 
in the background. 

NE_BADF The connection number is not valid. 

NE_TIMEDOUT Timeout.  With TCP in blocking mode, this probably means the other 
end did not send acknowledgments as expected.  It could also mean an 
extremely heavy system load and that a timeout occurred before the 
acknowledgment could be received.  The connection should be closed.  
In non-blocking mode, the write should be retried. 

NE_CONNABORTED Protocol problem.  Normally the application should close the 
connection. 

NE_MSGSIZE The message is too large for the internal buffer. 

NE_WINZERO The peer TCP window is not large enough to accept the data.  This only 
occurs in non-blocking mode.  See the Non-Blocking Operations 
Example section for workarounds. 

Example 
/* user defined output buffer size */ 

#define MAX_BUFFER_SIZE 80 
int error;                  /* error code */ 
int conno;                  /* connection Number */ 
char buff[MAX_BUFFER_SIZE]; /* data output buffer */ 



Dynamic Protocol Interface 

59 

/* write data stored in “buff” to connection number “conno” */ 
error = Nwrite(conno, buff, sizeof(buff)); 
if (error < 0)  
    /* process error */ 

/* dynamically sized write buffer */ 

int error;                  /* error code */ 
int conno;                  /* connection Number */ 
int maxwrite;               /* maximum write size */ 
char buff[MAXBUF];          /* data buffer */ 
/* write data stored in “buff” to connection number “conno” */ 
conno = Nopen(“host”, “TCP/IP”, Nportno(), 1050, 0); 
if (conno < 0) 
    /* process error */ 
maxwrite = SOCKET_MAXDAT(conno); 
error = Nwrite(conno, buff, maxwrite); 
if (error < 0) 
    /* process error */ 

Dynamic Protocol Interface Macros 
The following macros are useful for obtaining additional information or setting control information 
for a connection, and are described in this section: 

SOCKET_NOBLOCK sets the connection for non-blocking operation. 

SOCKET_BLOCK sets the connection for blocking operation. 

SOCKET_ISOPEN checks to see if a connection has entered the ESTABLISHED state. 

SOCKET_HASDATA checks to see if a message is available on a connection. 

SOCKET_CANSEND checks to see if a connection can accept data to be written. 

SOCKET_TESTFIN checks to see if the remote end of the connection has closed. 

SOCKET_ISFATAL checks for an unrecoverable error on the connection. 

SOCKET_MAXDAT provides the maximum size of a buffer than can be written to a 
connection. 

SOCKET_RXTOUT sets the receive timeout for a connection. 

SOCKET_REMADDR provides the IP address of the remote end of a connection. 

SOCKET_LOCADDR provides the IP address of the local end of a connection. 

SOCKET_REMPORT returns the remote port number for a connection 

SOCKET_LOCPORT returns the local port number for a connection 

SOCKET_PUSH sets the PSH flag on the next outgoing TCP segment. 

SOCKET_FIN sets the FIN flag on the next outgoing TCP segment. 

SOCKET_FAMILY returns the address family for a given connection. 

SOCKET_HASMYADDR6 checks if the IPv6 site local address has been allocated. 

SOCKET_LOCSITEADDR6 returns the IPv6 site local address. 



Chapter 5 

60 

SOCKET_REMADDR6 returns the remote host’s IPv6 address. 

SOCKET_LOCLINKADDR6 returns the IPv6 link local address. 

SOCKET_NOBLOCK 

Sets the connection for non-blocking operation. 

SOCKET_NOBLOCK(conno) 

conno The connection for which non-blocking operation should be set. 

When non-blocking operation is set, calls to network functions that normally would need to wait for 
network activity in order to be completed will return the negative value EWOULDBLOCK when such 
a condition is encountered. 

SOCKET_BLOCK 

Sets the connection for blocking operation. 

SOCKET_BLOCK(conno) 

conno The connection for which blocking operation should be set. 

When blocking operation is set, calls to network functions run to completion, or return a timeout error 
if an associated time limit is exceeded.  Blocking operation is the default behavior for network 
functions, and this call will only be needed to return a non-blocking connection to blocking operation. 

SOCKET_ISOPEN 

Checks to see if a connection has entered the ESTABLISHED state. 

SOCKET_ISOPEN(conno) 

conno The connection that should be checked for the ESTABLISHED state. 

This macro will evaluate as 0 if the connection is not in the ESTABLISHED state, and 1 if the 
connection is in the ESTABLISHED state.  This macro is useful for connections that call Nopen() 
with the S_NOWA flag, so that after requesting a connection, the connection can be checked to see if 
it has been established. 

SOCKET_HASDATA 

Checks to see if a message is available on a connection. 

SOCKET_HASDATA(conno) 

conno The connection that should be checked for an available message. 

This macro will evaluate as 0 if no information is available, or non-zero if data is available. 



Dynamic Protocol Interface 

61 

SOCKET_CANSEND 

Checks to see if a connection can accept data to be written. 

SOCKET_CANSEND(conno, len) 

conno The connection that should be checked for room for writing. 

len The amount of data to be written. 

This macro will evaluate as 0 if the amount of data is more than can be written out immediately, or 
non-zero if the data length specified can be written. 

SOCKET_ISSENDING 

Checks to see if all data that has been written by the application has been acknowledged by the peer TCP. 

SOCKET_ISSENDING(conno) 

conno The connection that should be checked for acknowledgment from the remote end. 

This macro will evaluate as non-zero if outgoing data has not yet been acknowledged by the peer 
TCP.  The macro will evaluate as 0 if all outgoing data has been acknowledged, or if there has been 
an unrecoverable error on the connection. 

If the application calls SOCKET_ISSENDING() immediately after calling Nwrite(), it will typically 
return true.  Outgoing data is typically acknowledged within a couple hundred milliseconds. 

This macro may be useful for tracking status of a transfer or in creating recovery mechanisms for 
lengthy transfers.  Note that even though the peer TCP may have acknowledged receiving a TCP 
segment, this does not guarantee that the application running on the peer system has successfully read 
the information.  Closing the connection and checking for success is a more reliable mechanism for 
verifying a complete transfer. 

SOCKET_TESTFIN 

Checks to see if the remote end of the connection has closed. 

SOCKET_TESTFIN(conno) 

conno The connection that should be checked for a close from the remote end. 

This macro will evaluate as 0 if the remote end of the connection has not yet closed, or non-zero if the 
remote system has closed. 

SOCKET_ISFATAL 

Checks for an unrecoverable error on a connection. 

SOCKET_ISFATAL(conno) 

conno The connection that should be checked for errors. 



Chapter 5 

62 

This macro will evaluate as 0 if there are no unrecoverable errors on the connection, or non-zero if an 
unrecoverable error has occurred.  As an example, an unrecoverable error occurs when a peer TCP 
sends a RST segment to the local end of the connection.  The socket should still be closed when this 
condition is detected. 

SOCKET_MAXDAT 

Provides the maximum size of a buffer than can be written to a connection. 

SOCKET_MAXDAT(conno) 

conno The connection for which the maximum buffer size should be determined 

This macro will evaluate to the maximum number of bytes that can be accepted by the connection in a 
call to Nwrite(). 

SOCKET_RXTOUT 

Sets the receive timeout for a connection.  The default timeout is set by TOUT_READ in net.h. 

SOCKET_RXTOUT(conno, tout) 

conno The connection for which the timeout is to be adjusted. 

tout  The new timeout, in milliseconds.  For an infinite timeout, use the value 
SB_TMO_INF. 

SOCKET_REMADDR 

Provides the IP address of the remote end of a connection. 

SOCKET_REMADDR(conno) 

conno The connection for which the remote IP address is to be returned. 

The data type of the result is Iid. 

SOCKET_LOCADDR 

Provides the IP address of the local end of a connection. 

SOCKET_LOCADDR(conno) 

conno The connection for which the local IP address is to be returned. 

The data type of the result is Iid.  This macro is useful for systems that have more than one network 
interface.  The IP address returned will be that of the interface that is used for the connection. 



Dynamic Protocol Interface 

63 

SOCKET_REMPORT 

Provides the TCP or UDP port number of the remote end of a connection. 

SOCKET_REMPORT(conno) 

conno The connection for which the remote port is to be returned. 

The data type of the result is unsigned short. 

SOCKET_LOCPORT 

Provides the TCP or UDP port number of the local end of a connection. 

SOCKET_LOCPORT(conno) 

conno The connection for which the local port is to be returned. 

The data type of the result is unsigned short. 

SOCKET_PUSH 

Sets the PSH flag on the next outgoing TCP segment. 

SOCKET_PUSH(conno) 

conno The connection for which the next outgoing segment should include the PSH flag. 

The next TCP segment to be written following a call to this macro will have the PSH flag set in the 
TCP header.  This is useful for indicating to the TCP on the remote system that all internally buffered 
segments up through this segment should be delivered to the application as soon as possible. 

SOCKET_FIN 

Sets the FIN flag on the next outgoing TCP segment. 

SOCKET_FIN(conno) 

conno The connection for which the next outgoing segment should include the FIN flag. 

The next TCP segment to be written following a call to this macro will have the FIN flag set in the 
TCP header.  This is useful for shutting down a connection at the same time that the last segment is 
sent.  Following the write, call Nclose() to finish closing the connection.  Nclose() will not send a 
FIN segment in this case. 

SOCKET_FAMILY 

Returns the address family for a given connection. 

SOCKET_FAMILY(conno) 

conno The connection for which to return the address family. 



Chapter 5 

64 

For IPv6 connections, returns AF_INET6.  For IPv4 connections, returns AF_INET. 

SOCKET_HASMYADDR6 

Checks if the IPv6 site local address has been allocated. 

SOCKET_HASMYADDR6(conno) 

conno The connection for which the site local address should be checked. 

This macro evaluates as 1 when the IPv6 site local address has been allocated.  The macro evaluates 
as 0 when the address has not be allocated. 

SOCKET_LOCSITEADDR6 

Returns the IPv6 site local address. 

SOCKET_LOCSITEADDR6(conno) 

conno The connection for which the IPv6 site local address should be returned. 

This macro evaluates to data type I6id.  The macro SOCKET_HASMYADDR6(conno) can confirm if 
the IPv6 site local address has been allocated. 

SOCKET_REMADDR6 

Returns the remote host’s IPv6 address. 

SOCKET_REMADDR6(conno) 

conno The connection for which the remote host’s IPv6 address should be returned. 

This macro evaluates to data type I6id. 

SOCKET_LOCLINKADDR6 

Returns the IPv6 link local address. 

SOCKET_LOCLINKADDR6(conno) 

conno The connection for which the IPv6 link local address should be returned. 

This macro evaluates to data type I6id. 

 



Dynamic Protocol Interface 

65 

Multicast API (DPI)  
In order to receive information associated with a multicast host group, join the multicast group using 
the ussHostGroupJoin() function described here, specifying the IP address for the group, and the 
interface that will be used.  Once the group has been joined, datagrams on the local network directed 
to the group will be accepted by the system. 

If there is no longer a need to continue receiving datagrams directed to a certain group, the system can 
stop accepting datagrams directed to the group by using the ussHostGroupLeave() function. 

ussHostGroupJoin 

Joins a multicast host group. 

int ussHostGroupJoin(Iid iid, int netno);  

iid IP address for multicast host group.  

Netno Index for network interface.  

 

The ussHostGroupJoin() function allows a system to receive multicast messages as part of a multicast 
host group. The group is identified by the multicast IP address that is passed to the function. 

The network interface is identified by an index. The first network interface for a system that occurs in 
the netdata[] table is identified as 0, the next is 1, and so on. For systems with just one network 
interface, this value should be 0. 

See also:  ussHostGroupLeave 

Return Value 
0 Success. 

NE_PARAM Invalid group address or interface identifier.  

ENOBUFS Insufficient resources to join another group.  

Example 
#define MCTESTIP "224.1.2.3" 
rc = ussHostGroupJoin(inet_addr(MCTESTIP), 0);  
 

ussHostGroupLeave 

Leaves a multicast host group. 

int ussHostGroupLeave(Iid iid, int netno); 

iid IP address for multicast host group. 

Netno Index for network interface. 

The ussHostGroupLeave() function removes the system from a multicast host group that has 
previously been joined. 



Chapter 5 

66 

The network interface is identified by an index. The first network interface for a system that occurs in 
the netdata[] table is identified as 0, the next is 1, and so on. For systems with just one network 
interface, this value should be 0. 

See also: ussHostGroupJoin 

Return Value 
0 Success. 

NE_PARAM Invalid group address or interface identifier. 

EBADF Multicast group not found. 

Example 
#define MCTESTIP "224.1.2.3" 
rc = ussHostGroupLeave(inet_addr(MCTESTIP), 0); 

Error Handling 
When a DPI call returns ECONNABORTED, no further communication over the connection is 
possible.  If the connection was previously opened successfully, then the application must call 
Nclose() on the connection. Otherwise memory and network data structures might still be assigned to 
it. 

Note that a connection can go from a good state to a failed state at any time.  Consider the case where 
the system at the remote end of a TCP connection unexpectedly goes offline shortly before a client 
running on an smxNS system sends a query using Nwrite().  The call will likely return a positive 
value equal to the number of bytes in the buffer being written.  This may be confusing, but the 
meaning of the return value is that smxNS has taken responsibility for delivery this number of bytes to 
the remote system.  It does not necessarily mean that these bytes have been delivered. 

The TCP specification describes how a segment will be retransmitted if the remote system does not 
send a timely acknowledgement.  smxNS will perform this retransmission in the background.  If these 
attempts fail, the next time the application calls a function involving the connection, the function will 
return ECONNABORTED.  

The macro SOCKET_ISFATAL() can be used at any time to check for a failed connection. 

Examples 
The following text provides examples of: 

• Broadcasting 

• TCP File Transfer 

• Non-Blocking Operations 



Dynamic Protocol Interface 

67 

Broadcasting Examples 

For broadcasting messages to all hosts on the network, use host name “*” in the active open, and 
then, do an Nwrite().  For instance: 

host1: 
conno = Nopen(“*/enet”, “UDP/IP”, 1010, 1000, 0); 
..... 
stat = Nwrite(conno, buf, len); 

In this case, “enet” is the network name, and “*” represents all hosts on that network.  The 
receiving hosts’ open() would generally be a passive open. 

host2: 
conno = Nopen(“*”, “UDP/IP”, 1000, 0, 0); 
.... 
stat = Nread(conno, buf, len); 

The receiving hosts must be listening on the same port number that the broadcasting host is sending to 
(e.g., 1000 in this case). 

Broadcasting should only be used for data links that support it in hardware, such as Ethernet.  It 
should not be done at the TCP level. 

If the broadcasting host connects to several networks, the open call must specify the network name.  
Broadcasting is done to one network only.   

TCP File Transfer Example 
This example might be used to write a file to a remote host.  Flow control and error checking are 
handled by TCP. 

/* Client */ 

int maxwrite;        /* maximum write size */ 
char buf[MAXDAT];    /* data buffer */ 
conno = Nopen(“host1”, “TCP/IP”, Nportno(), 1000, 0); 
if (conno < 0) 
    /* process error */ 
maxwrite = SOCKET_MAXDAT(conno); 
for (;;) 
{ 
     len = fread(ifile, buf, maxwrite); 
     if (len <= 0) 
        break; 
     stat = Nwrite(conno, buf, maxwrite); 
     if (stat < 0) 
        /* process error */ 
} 
stat = Nclose(conno); 
if (stat < 0) 
   /* process error */ 

/* Server */ 

char buf[MAXDAT]; 
conno = Nopen(“*”, “TCP/IP”, 1000, 0, 0); 



Chapter 5 

68 

if (conno < 0)  /* process error */ 
for (;;) 
{ 
     len = Nread(conno, buf, sizeof(buf)); 
     if (len < 0)  /* process error */ 
     if (len == 0) break; 
     stat = fwrite(ofile, buf, len); 
     if (stat < 0)  /* process error */ 
} 
stat = Nclose(conno); 
if (stat < 0)  /* process error */ 

Non-Blocking Operations Examples 
The following example shows how to read using non-blocking operations.  Non-blocking writes will 
complicate an application quite a bit.  A heavy use (perhaps even any use) of non-blocking mode is 
not recommended. 

conno = Nopen(“*”, “TCP/IP”, 1001, 0, S_NOWA); 
if (conno < 0)  /* ERROR */ 
while (!SOCKET_ISOPEN(conno)) 
    /* perform other work */ 

SOCKET_NOBLOCK(conno); 
for (;;) 
{ 
   SNS_YIELD(); 
   len = Nread(conno, buf, sizeof(buf)); 
   if (len < 0) 
      if (len != EWOULDBLOCK) 
         break;  /* error */ 
      else 
         /* perform other work */ 
   else if (len == 0) 
      break;  /* other end closed */ 
   else 
   { 
      /* process message */ 
   } 
} 
stat = Nclose(conno); 
if (stat < 0)  /* ERROR */ 

 

The return code from Nwrite() will be EWINZERO if you are in non-blocking mode and the TCP 
window is not large enough to take your packet. 

So, if you are using non-blocking I/O and there is a possibility that the remote host's window may 
close (this happens when the remote host does not read the received data), then you must use one of 
the following workarounds: 

1) Write less data. The remote window is stored in 

    connblo[conno].window 

Examine the window and resend using a packet size smaller than the remote window. 



Dynamic Protocol Interface 

69 

2) Enable the TCP window probe. To do this, you must revert to blocking mode and rewrite the data. 
The write will block while performing the window probe. 

len = Nwrite(conno, buff, sizeof(buff)) 
if (len == EWINZERO) { 
    SOCKET_BLOCK(conno); 
    len = Nwrite(conno, buff, sizeof(buff)); 
    /* check error, etc */ 
} 

    3) Close the connection. 

    4) Use SOCKET_CANSEND() before you write to evaluate whether the connection can send data. 
This will let you avoid getting into the situation for which you need to test for EWINZERO, but will 
not solve the problem that there is no probe in non-blocking mode. 





BSD Socket Interface 

71 

6.  BSD Socket Interface 
 

 

About BSD Sockets 
The BSD 4.3 sockets are the closest thing there is to a standard user interface to TCP/IP.  However, 
they can only be approximated on a non-UNIX system, because many UNIX functions interact with 
sockets.  The UNIX dependencies come in these forms: 

• The UNIX sockets are really an intertask communication system, not a networking interface.  
They can be used to map to the various UNIX file systems, and they can mix files and sockets and 
even other things in one operation. 

• The use of functions fcntl(), select(), read(), write(), and close() for networking purposes will 
easily cause conflicts.  smxNS changes these names by appending “socket” to them. 

• The UNIX sockets have an interface to the UNIX signals, which again have an interface to just 
about any UNIX function. 

• Some BSD socket features are implicitly not reentrant.  These include function gethostbyname() 
and all use of errno.  This is of course more a multitasking question than a networking question. 

• The BSD use of TCP urgent data is in conflict with the TCP standard.  The smxNS module tcp.c 
contains a source-level variable to select either the standard or the BSD method.  Best policy in all 
cases is not to use the BSD out-of-bound data, or the TCP urgent data. 

For somebody who already knows the BSD sockets interface, writing any new code using them makes 
sense.  (The Dynamic Protocol Interface needs quite a bit less space, but the difference in speed is not 
significant.)  To support these users, we have made the smxNS sockets as similar to 4.3 BSD sockets 
as reasonably possible.  These points may require special attention: 

• Symbolic error codes are not perfectly standardized across different UNIX systems.  smxNS uses 
the Solaris names. 

• The typical UNIX use of errno is not reentrant.  If this becomes critical, use getsockopt() to get 
the last error code. 

• The function gethostbyname() is not reentrant.  Use gethostbyname_r() instead if this is critical. 

• You can’t mix files and sockets.  For instance, you can’t use a selectsocket() to wait for either a 
keyboard character or a network packet. 

• Avoid non-blocking mode if multitasking is used. 



Chapter 6 

72 

Structures and Definitions 
To get in the needed definitions, use: 

     #include “smxns.h” 

Many of the BSD socket routines use a pointer to structure sockaddr, which specifies network 
address information.  The sockaddr structure is a generic structure that can be used with a number 
of different communications protocols.  smxNS only uses the Internet Protocol (IP), and therefore 
only requires the use of the Internet structure sockaddr_in.  Values are assigned to 
sockaddr_in and passed into the socket routine via the sockaddr parameter.  This requires a 
typecast to sockaddr *.  The discussion of the connect() function provides an example.  Here are 
the structure definitions: 

struct sockaddr {          /* generic socket address */ 
   unsigned short sa_family;       /* address family */ 
   char sa_data[14];    /* up to 14 bytes of address */ 
}; 

In practice, this is used almost as a void pointer.  The true Internet address structure is: 

struct in_addr {             /* Internet address */ 
    unsigned long S_addr; 
}; 
struct sockaddr_in {  /* Internet socket address */ 
    short sin_family; 
    unsigned short sin_port; 
    struct in_addr sin_addr; 
    char sin_zero[8]; 
}; 

BSD Socket Interface Functions 
The smxNS BSD Socket Interface provides these function calls: 

accept() accepts a connection on a socket. 
bind() binds a name to a socket. 

closesocket() closes a socket. 

connect() initiates a connection on a socket. 

fcntlsocket() controls socket flags. 

getaddrinfo() returns the IP address that corresponds to a host name. 

getpeername() extracts the remote address information for a socket. 

getsockname() extracts the local address information for a socket. 

getsockopt() gets options on sockets. 

ioctlsocket() sets control parameters for a socket. 

listen() listens for connections. 

readsocket() receives a message from a socket ID. 
recv() receives a message. 

recvfrom() receives a message from a connection. 



BSD Socket Interface 

73 

recvmsg() establishes a connection and receives a message. 

selectsocket() waits for activity on a set of sockets. 

send() sends a message on an established connection. 

sendmsg() sends a message that can be split between buffers. 

sendto() establishes a connection and sends a message. 

setsockopt()  sets options on sockets (described with getsockopt). 
shutdown() shuts down part of a connection. 

socket() creates a socket. 

writesocket() sends a message to a socket. 

 

The typical calling sequences for a connection-oriented client and server are shown below. 

 

readsocket()

writesocket()

readsocket()

writesocket()

readsocket()

Server Client

socket()

bind()

listen()

accept()

closesocket()

socket()

connect()

closesocket()

 

Figure 6-1:  Functions Used in a Connection-Oriented System 



Chapter 6 

74 

For a connectionless protocol, the typical functions used by the server and client are shown in the next 
figure. 

 

Server Client

socket()

bind()

recvfrom()

sendto()

socket()

sendto()

recvfrom()

closesocket()

 

Figure 6-2:  Functions Used in a Connectionless System 

Most functions return a value of -1 in case of an error.  The error code is stored in errno, and can 
also be retrieved using the getsockopt() function, as in the following example: 

 

int errcode, errlen; 
. 
. 
i1 = connect(s, (struct sockaddr *)&socka, sizeof(socka)); 
if (i1 < 0) 
{ 
    i1 = errno; 
    if (getsockopt(s, SOL_SOCKET, SO_ERROR, 
                   &errcode, &errlen) >= 0) 
        i1 = errcode; 
    DEBUG_MSG2_PAR1(“connect: error %d\n”, i1); 
    /* additional error handling */ 
} 

Here the value of errno is saved before calling getsockopt(), in case this call fails and causes 
errno to be overwritten.  The getsockopt() function should be used when possible in multitasking 
systems because errno is not reentrant. 

If a call to socket() returns -1, there is no socket number to refer to when trying to retrieve the error 
code.  In this case, the error code must be retrieved from errno. 

The gethostbyname() functions return a pointer to a host data structure.  If these functions fail, then a 
null pointer is returned. 



BSD Socket Interface 

75 

accept 

Accepts a connection on a socket. 

int accept(int s, struct sockaddr *name, int *namelen); 

s Socket identifier. 

name On return, this provides information about the remote end of the connection. 

namelen On entry, this is a pointer to an integer containing the size of the name structure, and 
on return this pointer points to the size of the returned structure.  This size will not 
change under smxNS. 

The accept() call is used by a server application to perform a passive open for a socket.  The socket 
will remain in the LISTEN state until a client establishes a connection with the port offered by the 
server.  The return value from this function is an identifier for a newly created socket over which 
communication with the remote client can occur.  The original socket remains in the LISTEN state, 
and can be used in a subsequent call to accept() to provide additional connections. 

See also:  socket, bind, listen 

Return Value 
-1 Error. 

>= 0 Socket identifier for the established connection. 

Example 
int s1, s2; 
int socksz; 
struct sockaddr_in socka; 
… 

socksz = sizeof(socka); 
memset(&socka, 0, sizeof(socka)); 
socka.sin_family = AF_INET; 
s2 = accept(s1, (struct sockaddr *)&socka, 
            &socksz); 
if (s2 < 0) 
    DEBUG_MSG2_PAR0(“Error in accept\n”); 



Chapter 6 

76 

bind 

Binds a name to a socket. 

int bind(int s, struct sockaddr *name, int namelen); 

s Socket identifier. 

name Structure that identifies the remote end of the connection.  The sin_family 
member of the structure can be left as 0 to accept connections on any attached 
network interface. 

namelen Size of name. 

A server application uses the bind() function to specify the local Internet address and port number for 
a connection.  The port number is the port that the server will be listening on.  A call to bind() can 
also optionally be called by a client application before calling connect(). 

See also:  socket, listen, accept, closesocket 

Return Value 
-1 Error. 

0 Success.  The Internet address and port number have been associated with the local 
end of the socket. 

Example 
int rc;    /* return code */ 
int s;     /* socket identifier */ 
struct sockaddr_in socka;  /* local port, etc */ 
… 

memset(&socka, 0, sizeof(socka)); 
socka.sin_family = AF_INET; 
socka.sin_port = htons(1100); 
rc = bind(s, (struct sockaddr *)&socka, sizeof(socka)); 

if (rc < 0) 
    DEBUG_MSG2_PAR0(“Error in bind\n”); 

In this example, 1100 is the local port number to be used.  A client performing a connect() to this 
server would also use port number 1100. 



BSD Socket Interface 

77 

closesocket 

Closes a socket. 

int closesocket(int s); 

s Socket identifier. 

The closesocket() function is used to close a socket.  This function is the same as the regular BSD 
Sockets close() function, but it has been renamed to avoid conflicts with the close() function that 
operates on file descriptors. 

There is a special situation that may need to be addressed when using non-blocking sockets.  
Although calling selectsocket() on the write descriptor prior to calling send() will normally take care 
of most error conditions, there is one case where this may fail.  If a lot of data is sent using send() and 
then closesocket() is called immediately also in non-blocking mode, a portion of data may remain 
unsent. The easiest solution is to add an additional call to selectsocket() prior to calling closesocket().  
See the example section. 

See also:  socket 

Return Value 
-1 Error. 
0 Close was successful. 

Example 
void wait_for_write(int sockfd) 
{ 
    fd_set wset; 
    struct timeval tm; 
    do { 
        tm.tv_sec = 10; 
        tm.tv_usec = 0; 
        FD_ZERO(&wset); 
        FD_SET(sockfd, &wset); 
    } while ( ! selectsocket(sockfd + 1, 0, &wset, 0, &tm) ); 
} 
 
void write_data(int sockfd, char *buff, int buffsz) 
{ 
    int len, totlen; 
    int noblock = 1; 
    ioctlsocket(sockfd, FIONBIO, &noblock); 
    do { 
        wait_for_write(sockfd); 
        len = send(sockfd, buff[totlen], buffsz - totlen, 0); 
        if (len < 0) { 
            /* Handle the error condition */ 
                ... 
        } 
        totlen += len; 
    } while (totlen < buffsz); 
    /* This extra call to select avoids lost data */ 
    wait_for_write(sockfd); 
    closesocket(sockfd); 
} 



Chapter 6 

78 

connect 

Initiates a connection on a socket. 

int connect(int s, struct sockaddr *name, int namelen); 

s Socket identifier. 

name Structure that identifies the remote end of the connection. 

namelen Size of name. 

The connect() function performs an active open, allowing a client application to establish a 
connection with a remote server.  The name structure is used to specify the Internet address and port 
number for the remote end of the connection.  The Internet address is usually retrieved using the 
gethostbyname_r() function. 

See also:  closesocket 

Return Value 
-1 Error. 

0 Success.  A connection has been established with the remote server. 

Example 
int rc;                     /* return code */ 
struct sockaddr_in socka;   /* Internet address */ 
                            /* and port number */ 
struct hostent hostent;     /* for retrieving IP */ 
                            /* address from host */ 
unsigned char buff[BUFFLEN + 1]; 
… 
memset(&socka, 0, sizeof(socka)); 
socka.sin_family = AF_INET; 
gethostbyname_r(“host1”, &hostent, buff, 
                sizeof(buff), &rc); 

if (rc < 0) 
    DEBUG_MSG2_PAR0(“Error: gethostbyname_r\n”); 
memcpy((char *)&socka.sin_addr, 
       (char *)hostent.h_addr_list[0], Iid_SZ); 
socka.sin_port = htons(1100); 
rc = connect(s, (struct sockaddr *)&socka, 
             sizeof(socka)); 

if (rc < 0) 
    DEBUG_MSG2_PAR0(“Error connecting to remote server\n”); 

Here you can see that &socka which is of type sockaddr_in * must be cast to a sockaddr 
* since this is what is expected by connect().  This refers back to the previous discussion on 
structures and definitions. 



BSD Socket Interface 

79 

fcntlsocket 

Controls socket flags. 

int fcntlsocket(int s, int cmd, int arg); 

The networking commands are: 

 F_GETFL get flags 

 F_SETFL set flags 

This should of course be fcntl, but we append “socket” to this to avoid naming conflicts. 

The fcntlsocket() function allows a socket to be set to use non-blocking semantics, and also allows the 
current setting to be retrieved.   

Networking uses only one flag:  FNDELAY (or O_NDELAY; both names seem to be in use) for non-
blocking I/O. 

See also: Non-blocking sockets in Chapter 5, Dynamic Protocol Interface. 

Return Value 
The return value is -1 for error, 0 for successful SETFL, the current value of the flags for successful 
GETFL. 

 

freeaddrinfo 

Release the memory allocated for the given addrinfo structure. 

void *freeaddrinfo(struct addrinfo *res)  
 

res (Input) Pointer of the address structure to release 

The linked list acquired with getaddrinfo() is released. 

See also:  getaddrinfo 

Return Value 
none 

Example 
struct addrinfo *ai; 
freeaddrinfo(ai); 

 

 

 

 



Chapter 6 

80 

gai_strerror 

Convert an error code from getaddrinfo() into a character string. 

const char gai_strerror(int errcode); 

errcode (Input) Error code. 

Return Value 
Pointer to the corresponding character string. 

Example 
int errcode; 
char *errorstr; 
errorstr = gai_strerror(errcode); 



BSD Socket Interface 

81 

getaddrinfo 

Obtain address information based on host and port information. 

int getaddrinfo(const char *hostname, const char *servname, const 
struct addrinfo *hints, struct addrinfo **res); 

hostname (Input) Host name or IP address 

servname (Input) Service name or port number string 

hints (Input) Additional optional specifications for the type of address 

res (Output) Address storage area 

hostname specifies the acquired host name or IP address. 

servname specifies the port number as a character string. 

The type and the protocol of the desired socket are specified via the hints parameter. 

The result of the request is provided in the res parameter. 

The memory dynamically allocated uses one message buffer (MESS structure). 

The following ai_flags options in the hints field are supported. 

AI_PASSIVE 

AI_NUMERICHOST 

AI_ADDRCONFIG 

It is necessary to release the allocated memory with freeaddrinfo(). 

See also:  freeaddrinfo() 

Return Value 
0 Success 

!= 0 Check error associated with socket 

EAI_ADDRFAMILY The requested address family for the given hostname is not available 

EAI_FAMILY The requested address family is not available 

EAI_SERVICE The requested service cannot be used by the requested socket type 

EAI_NONAME The requested name is illegal 

EAI_MEMORY Insufficient memory 

EAI_FAIL The name server failed in responding to the request 

EAI_SYSTEM Other system error occurred 



Chapter 6 

82 

Example 
 

struct addrinfo hints; 
char portstr[10]; 
int port = 80; 
char *hostname = “(Ipv6 address)”; 
struct addrinfo *ai; 
memset(&hints, 0, sizeof(hints)); 
hints.ai_family = AF_INET6; 
hints.ai_socktype = SOCK_STREAM; 
hints.ai_protocol = 0; 
hints.ai_flags |= AI_NUMERICSERV; 
sprintf(portstr, “%u”, (int)port); 
if (getaddrinfo(hostname, portstr, &hints, &ai)) != 0) 
   return –1; 



BSD Socket Interface 

83 

getpeername 

Extracts the remote address information for a socket. 

int getpeername(int s, struct sockaddr *name, 
                int *namelen); 

s Socket identifier. 

name Structure into which the remote address information should be stored. 

namelen A pointer to the length of the name structure. 

The getpeername() function retrieves the remote address information and stores it in the supplied 
structure. 

Return Value 
-1 Error. 

0 Remote address was retrieved. 

Example 
struct sockaddr_in socka; 
int rc;    /* return value */ 
int s;     /* socket identifier */ 
… 

s = socket(PF_INET, SOCK_DGRAM, 0); 
… 

rc = getpeername(s, (struct sockaddr *)&socka, 
                 &socksize); 

if (rc < 0) 
    DEBUG_MSG2_PAR0(“Error in getpeername\n”); 



Chapter 6 

84 

getsockname 

Extracts the local address information for a socket. 

int getsockname(int s, struct sockaddr *name, 
                int *namelen); 

s Socket identifier. 

name Structure into which the local address information should be stored. 

namelen A pointer to the length of the name structure. 

The getsockname() function retrieves the local address information and stores it in the supplied 
structure. 

Return Value 
-1 Error. 

0 Local address was retrieved. 

Example 
struct sockaddr_in socka; 
int rc;    /* return value */ 
int s;     /* socket identifier */ 
… 

s = socket(PF_INET, SOCK_DGRAM, 0); 
… 

rc = getsockname(s, (struct sockaddr *)&socka, 
                 &socksize); 

if (rc < 0) 
    DEBUG_MSG2_PAR0(“Error in getsockname\n”); 



BSD Socket Interface 

85 

getsockopt, setsockopt 

Gets and sets options on sockets. 

int getsockopt(int s, int level, int optname,  
    char *optval, int *optlen); 
int setsockopt(int s, int level, int optname,  
    char *optval, int *optlen); 

s Socket handle. 

level See Table 6-1 below. 

optname See Table 6-1 below. 

optval Pointer to option value.  Refer to the table below for the data type. 

optlen Pointer to the size of the data stored in optval. 

The functions in the following table manipulate socket options. 



Chapter 6 

86 

Table 6-1:  Routines that Manipulate Socket Options 
 

level optname Type Description 

IPPROTO_IP IP_ADD_MEMBERSHIP struct ip_mreq Join multicast group 

 IP_DROP_MEMBERSHIP struct ip_mreq Leave multicast group 

 IP_MULTICAST_IF struct in_addr Set multicast interface 

 IP_OPTIONS char Options in IP header 

 IP_TTL unsigned int TTL in IP header 

IPPROTO_TCP TCP_MAXSEG unsigned int Get TCP maximum segment 

 TCP_NODELAY unsigned int Don’t delay send 

SOL_SOCKET SO_BROADCAST unsigned int Permit broadcast 

 SO_DEBUG unsigned int Debug flag 

 SO_DONTROUTE unsigned int No routing 

 SO_ERROR unsigned int Get and clear error code 

 SO_KEEPALIVE unsigned int Keepalive probing 

 SO_LINGER struct linger Linger on close 

 SO_OOBINLINE unsigned int Leave URG data inline 

 SO_RCVBUF unsigned int Receive buffer size 

 SO_REUSEADDR unsigned int Local address reuse 

 SO_SNDBUF unsigned int Send buffer type 

 SO_TYPE unsigned int Get socket type 

 

See also:  fctlsocket, ioctlsocket 

Return Value 
-1 Error. 

0 Success.  The optval pointer points to the option value for getsockopt(); the 
option was set for setsockopt(). 

Example 
rc = setsockopt(s, SOL_SOCKET, SO_KEEPALIVE, 0, 0);  

if (rc < 0) 
    DEBUG_MSG2_PAR0(“Error in setsockopt\n”); 

 

 



BSD Socket Interface 

87 

inet_ntop 

Convert an address structure into a string. 

char *inet_ntop(int af, void *src, void *dst, int cnt); 

af (Input) Address family. 

src (Input) Pointer to the network address structure. 

dst (Output) Area where the result is stored. 

cnt (Input) Size of area where the result is stored. 

The inet_ntop() function converts network address structure src of address family af into a character 
string.  This function copies the string into memory at location dst (length cnt bytes). 

af specifies AF_INET or AF_INET6. 

If the value in af is not supported, errno is set to EAFNOSUPPORT.  If the resulting string would 
occupy more than cnt bytes, errno is set to ENOSPC. 

Return Value 
NULL Error. 

Pointer to dst Success. 

Example 
example 

 



Chapter 6 

88 

inet_pton 

Convert a string into a network address structure. 

int inet_pton(int af, char *src, char *dst); 

af (Input) Address family. 

src (Input) Pointer to the address of the character string. 

dst (Output) Area where the conversion result is stored. 

The inet_pton() function converts the string pointed to by src of the af address family into a network 
address structure, and stores it at address dst (of length cnt bytes). 

af specifies AF_INET or AF_INET6. 

The function returns a negative value and sets errno to EAFNOSUPPORT if the value for af is not 
supported.  When src is not a valid address, the function returns 0. 

Return Value 
> 0 Success 

< 0 The address family is not supported. 

0 The address of the character string is illegal. 

Example 
example 

 



BSD Socket Interface 

89 

ioctlsocket 

Sets control parameters for a socket. 

int ioctlsocket(int s, int request, char *arg); 

s Socket identifier. 

request Request type.  See table below. 

arg Optional argument.  See table below 

The ioctlsocket() function behaves the same as the regular BSD Sockets ioctl() function, except that it 
only accepts socket identifiers.  The optional third argument is used as a pointer for the result.  There 
is some variation in how this function is defined in BSD sockets:  The second argument may be 
“unsigned long”, and of course the variable arguments are treated differently in non-ANSI C. 

request argument type description 

FIONBIO int * Sets non-blocking I/O if arg 
points to an int of non-zero value.  
Sets blocking I/O otherwise. 

FIONREAD int * arg is assigned the number of 
bytes that have not yet been read. 

SIOCATMARK int * arg is assigned 1 if the socket 
read is at the out-of-bound mark, 
0 otherwise. 

 

See also: getsockopt, setsockopt 

Return Value 
-1 Error. 

0 Operation successful. 



Chapter 6 

90 

listen 

Listens for connections. 

int listen(int s, int backlog); 

s Socket identifier. 

backlog Specifies the number of connections that will be held in a queue waiting to be 
accepted.  This value includes connections that are in the SYN_RCVD state and 
connections that are in the ESTABLISHED state that have not yet been accepted by 
the application.  The value of backlog must be greater than 0 for a subsequent call to 
accept() to succeed.  If there are no connections available at the time a SYN 
segment is received, the incoming segment will be dropped and the diagnostic 
counter sns_TcpSynDrops will be incremented.  NCONNS can be adjusted up if 
sns_TcpSynDrops shows dropped SYNs. 

The listen() function is part of the sequence of functions that are called to perform a passive open.  
This call puts the socket into the LISTEN state. 

See also:  socket, bind, accept 

Return Value 
-1 Error. 

0 Success. 

Example 
int rc;    /* return code */ 
int s;     /* socket identifier */ 
… 

rc = listen(s, 5); 
if (rc < 0) 
    DEBUG_MSG2_PAR0(“Error calling listen\n”); 



BSD Socket Interface 

91 

readsocket 

Receives a message from a socket ID. 

int readsocket(int s, char *buf, int len); 

s Socket identifier. 

buf Buffer into which received data will be stored. 

len Maximum number of bytes to be received. 

The readsocket() function behaves the same as the regular BSD Sockets read() function, except that it 
only accepts socket identifiers. 

See also:  recv, recvfrom, recvmsg 

Return Value 
-1 Error. 

> 0 Number of bytes received. 

0 The remote side closed the connection. 



Chapter 6 

92 

recv 

Receives a message. 

int recv(int s, char *buf, int len, int flags); 

s Socket identifier. 

buf Buffer into which received data will be stored. 

len Maximum number of bytes to be received.  For non-stream connections, excess 
bytes will be discarded. 

flags Allows for these options: 
 MSG_OOB returns urgent data. 
 MSG_PEEK returns information, allowing it to  
  be read again on a subsequent call. 

The flag MSG_WAITALL is not supported. 

See also:  recvfrom, recvmsg 

Return Value 
-1 Error. 

> 0 Number of bytes received. 

0 The remote side closed the connection. 

The following error codes could be returned in errno or through getsockopt() if recv() returns 
indicating an error: 

EWOULDBLOCK 
Only returns if the socket is set up as non-blocking.  If this is the case, then a call to 
recv() can check for EWOULDBLOCK and try again later, effectively polling. 

ETIMEDOUT Would only be returned if previously the macro SOCKET_RXTOUT was used to 
adjust the receive timeout of the socket.  The application could call recv() again 
later. 

EOPNOTSUPP 1. The call to recv() asked for out-of-band data (the flags  
 parameter had MSG_OOB set), and none was available. 
 
2.  The call to recv() didn't ask for out-of-band data, and  
 there is some that needs to be received. 

EBADF Invalid socket handle.  No need to close, since that call would return an error as 
well. 

ECONNABORTED  
A definite fatal error.  Usually results from a retransmission timeout or reception of 
a RST segment.  Time to close the socket. 

 

 



BSD Socket Interface 

93 

Example 
int rc;    /* return code */ 
int s1, s2;  /* socket identifiers */ 
unsigned char buff[BUFFLEN]; /* read buffer */ 
… 

s2 = accept(s1, (struct sockaddr *)&socka, 
            &socksize); 
… 

rc = recv(s2, buff, 2, 0); 
if (rc < 0) 
    DEBUG_MSG2_PAR0(“Error receiving data.\n”); 
else if (rc == 2) 
    DEBUG_MSG3_PAR0(“Success: read 2 bytes\n”); 
else 
    DEBUG_MSG2_PAR0(Error: did not retrieve 2 bytes\n”); 

Notice in this example that recv() uses the second socket identifier, the one returned from the 
accept(), not the original socket which is used as an argument to accept(). 



Chapter 6 

94 

recvfrom 

Receives a message from a connection. 

int recvfrom(int s, char *buf, int len, int flags, 
             struct sockaddr *from, int *fromlen); 

s Socket identifier. 

buf Buffer in which information will be stored. 

len Number of bytes to receive.  For non-stream connections, excess bytes will be 
discarded. 

flags Specifies optional behavior: 
 MSG_OOB returns urgent data. 
 MSG_PEEK returns information, allowing it to be  
  read again on a subsequent call. 

from Indicates the remote host from which the information was received. 

fromlen Size of the from data structure. 

The recvfrom() function allows a connection to be made and a message to be read from the 
connection.  The flag MSG_WAITALL is not supported. 

See also:  recv, recvmsg 

Return Value 
-1 Error. 

>= 0 Number of bytes received. 

Example 
The accept() or connect() call is not needed here since recvfrom() establishes the connection before 
reading. 

int s1, s2;     /* socket identifiers */ 
int rc;     /* return code */ 
int socksize; 
unsigned char buff[BUFFLEN]; /* read buffer */ 
struct sockaddr_in socka;  /* remote host address */ 
… 

memset(&socka, 0, sizeof(socka)); 
 
rc = recvfrom(s2, buff, 8, 0, (struct sockaddr *)&socka, &socksize); 

 



BSD Socket Interface 

95 

recvmsg 

Receives a message. 

int recvmsg(int s, msghdr *msg, int flags); 

s Socket identifier. 

msg Pointer to structure that describes how received data should be stored.  This 
structure is shown below. 

flags Specifies optional behavior: 
 MSG_OOB returns urgent data. 
 MSG_PEEK returns information, allowing it to be  
  read again on a subsequent call. 

The recvmsg() function is the most general of the recv functions.  This function allows a connection 
to be established and read with one call.  The flag MSG_WAITALL is not supported. 

Here is the definition of the msghdr structure: 

struct msghdr {            /* Message header for recvmsg */ 
  char *msg_name;          /* optional address */ 
  int msg_namelen;         /* size of address */ 
  struct iovec *msg_iov;   /* scatter/gather arra */ 
  int msg_iovlen;          /* num of elems in msg_iov */ 
  char *msg_accrights;     /* access rights */ 
  int msg_accrightslen; 
}; 

struct iovec {             /* address and length */ 
  char *iov_base;          /* base */ 
  int iov_len;             /* size */ 
}; 

smxNS ignores the access rights field in the msghdr structure. 

See also:  recv, recvfrom 

Return Value 
-1 Error. 

> 0 Number of bytes received. 

0 The remote side closed the connection. 



Chapter 6 

96 

selectsocket 

Waits for activity on a set of sockets. 

int selectsocket(int nfds, fd_set *readfds, fd_set 
    *writefds, fd_set *exceptfds,  
    struct timeval *timeout); 

nfds Number of sockets.  Watch out for “off by one” errors.  For example, if the highest 
value of the descriptors that should be evaluated is n, nfds should be set to n+1. 

readfds Socket identifiers for which selectsocket() should return if data becomes available 
or the state of the socket changes. 

writefds Socket identifiers for which selectsocket() should return if the socket can accept 
more data or if there is an error. 

exceptfds Socket identifiers for which selectsocket() should return if out-of-band data is 
available. 

timeout Specifies time after which selectsocket() will return if none of the specified 
conditions occurs. 

This is a general UNIX routine, but handles sockets as well as files.  The fd_set structures specify 
which sockets (range 0 to nfds-1) are considered. 

These macros can be used to manipulate fd_set: 

 FD_ZERO(&fd_set)  clears the socket list 

 FD_SET(s, &fd_set)  adds socket s 

 FD_CLR(s, &fd_set)  removes socket s 

 FD_ISSET(s, &fd_set) non-zero if s included 

When selectsocket() returns, there are bits in the fd-set structures only for those sockets that 
satisfied the condition. 

Structure timeval gives the timeout value: 

struct timeval {      /* Time-out format for select() */ 
    long tv_sec;      /* seconds */ 
    long tv_usec;     /* microseconds */ 
}; 

A NULL pointer means an infinite timeout.  If the structure contains the value 0, then the descriptors 
will be checked once and the call to selectsocket() will return without delay.  This is useful for 
application-level polling. 

smxNS uses the SIG_SEL signal to support the select operation.  SIG_SEL is raised when traffic 
comes into the stack or maintenance functions run that might change the state of a connection. 



BSD Socket Interface 

97 

Return Value 
 -1 Error.  Note that this should not occur in the current implementation. 

  0 Timeout occurred. 

>0 This number of sockets are ready for the requested operations. 

Example 
int s1, s2, s3;    /* sockets */ 
int rc;            /* return code */ 
fd_set socket_set1, socket_set2; 
… 

FD_ZERO(&socket_set1); 
FD_ZERO(&socket_set2); 
FD_SET(s1, &socket_set1); 
FD_SET(s3, &socket_set1); 
FD_SET(s2, &socket_set2); 
rc = selectsocket(3, &socket_set1, &socket_set2, 0, NULL); 

if (rc < 0) 
    DEBUG_MSG2_PAR0(“Error, no sockets ready.\n”); 
else 
    DEBUG_MSG3_PAR1(“%d sockets ready.\n”, rc); 

if (FD_ISSET(s1, &socket_set1)) 
    DEBUG_MSG3_PAR0(“Socket 1 is ready to be read.\n”); 
else if (FD_ISSET(s2, &socket_set2)) 
    DEBUG_MSG3_PAR0(“Socket 2 is ready to be written\n”); 
else if (FD_ISSET(s3, &socket_set3)) 
    DEBUG_MSG3_PAR0(“Socket 3 is ready to be read.\n”); 
else 
    DEBUG_MSG2_PAR0(“Error.\n”); 



Chapter 6 

98 

send 

Sends a message on an established connection. 

int send(int s, char *buf, int len, int flags); 

s Socket identifier. 

buf Pointer to data to be sent. 

len Number of bytes to send. 

flags Allows for these options: 
 MSG_OOB sends the data as urgent data 
 MSG_DONTROUTE ensures that the message is  
  not sent through a default router. 

The send() function can be used with sockets for which the connection has previously been 
established. 

See also:  sendto, sendmsg 

Return Value 
-1 Error. 

>= 0 Number of bytes sent. 

If send() returns indicating an error, the following error codes could be returned in errno or through 
getsockopt(): 

EBADF The socket descriptor is invalid, or another process is using the socket at the 
moment. 

ESHUTDOWN The application has already requested that the sending side of the socket be shut 
down.  No further data can be sent through this socket. 

ECONNABORTED An error has occured on this socket.  The socket should be closed. 

EMSGSIZE A non-stream socket has been asked to send more information than can be written at 
once through the socket. 

ENOBUFS The system is out of buffers for sending data.  The call to send() can be retried later. 

EWINZERO The receiving TCP window is not large enough to take accept the data.  See the 
examples section for a workaround. 

Example 
int s2;    /* socket identifier */ 
int rc;    /* return code */ 
unsigned char buff[BUFFLEN]; 
… 

rc = send(s2, buff, sizeof(buff), 0); 
if (rc < 0) 
    DEBUG_MSG2_PAR0(“Error sending data\n”); 



BSD Socket Interface 

99 

The errno from send() will be EWINZERO if you are in non-blocking mode and the TCP window is 
not large enough to take your packet.  

If you are using non-blocking I/O and there is a possibility that the remote host's window may close 
(this happens when the remote host does not read the received data). Then you must use a 
workaround.  

You can do one of several options: 

1) Write less data. The remote window is stored in connblo[conno].window 

Examine the window and resend using a packet size smaller than the remote window. 

2) Enable the TCP window probe. To do this, you must revert to blocking mode and rewrite the data. 
The write will block while performing the window probe. 

int noblock = 1;    /* Set to non-blocking mode */ 
ioctlsocket(sockfd, FIONBIO, &noblock); 
... 
len = send(sockfd, buff, sizeof(buff), 0); 
if (len < 0) { 
    int i1, errval, sz; 
    sz = sizeof(val); 
    i1 = getsockopt(sockfd, SOL_SOCKET, SO_ERROR, &errval, &sz); 
    if (errval == EWINZERO) { 
        noblock = 0; 
        ioctlsocket(sockfd, FIONBIO, &noblock); 
        len = send(sockfd, buff, sizeof(buff), 0); 
        if (len > 0) { 
            noblock = 1; 
            ioctlsocket(sockfd, FIONBIO, &noblock); 
            /* Continue normal execution */ 
        } 
    } 
    else if (errval != EWOULDBLOCK) { 
        DEBUG_MSG2_PAR1("Error %d\n", errval); 
        closesocket(sockfd); 
        return -1; 
    } 
} 

3) Close the connection. 

4) Call selectsocket() with a write set enabled to check. This will let you avoid getting into the 
situation for which you need to test for EWINZERO, but will not solve the problem that there is no 
probe in non-blocking mode. 



Chapter 6 

100 

sendmsg 

Sends a message that can be split between buffers. 

int sendmsg(int s, msghdr *msg, int flags); 

s Socket identifier. 

msg Pointer to structure that describes the data to be sent.  This structure is shown 
below. 

 flags Specifies optional behavior: 
 MSG_OOB sends the data as urgent data 
 MSG_DONTROUTE ensures that the message is  
  not sent through a default router. 

The sendmsg() function is a send function that allows the data to be sent from an array of buffers. 

Here is the definition of the msghdr structure: 

struct msghdr {            /* Message header for recvmsg */ 
  char *msg_name;          /* optional address */ 
  int msg_namelen;         /* size of address */ 
  struct iovec *msg_iov;   /* scatter/gather arra */ 
  int msg_iovlen;          /* num of elems in msg_iov */ 
  char *msg_accrights;     /* access rights */ 
  int msg_accrightslen; 
}; 

struct iovec {             /* address and length */ 
  char *iov_base;          /* base */ 
  int iov_len;             /* size */ 
}; 

smxNS ignores the access rights field in the msghdr structure. 

See also:  send, sendto 

Return Value 
-1 Error. 

>= 0 Number of bytes sent 



BSD Socket Interface 

101 

sendto 

Send a message. 

int sendto(int s, char *buf, int len, int flags, 
           struct sockaddr *to, int tolen); 

s Socket identifier. 

buf Buffer from which information will be sent. 

len Number of bytes to send. 

flags Specifies optional behavior: 
 MSG_OOB sends the data as urgent data. 
 MSG_DONTROUTE ensures that the message is  
  not sent through a default router. 

to Specifies the remote host to which the connection should be made. 

tolen Size of the to data structure. 

The sendto() function allows a connection to be made and a message to be written to the connection. 

See also:  send, sendmsg 

Return Value 
-1 Error. 

>= 0 Number of bytes sent. 

Example 
rc = sendto(s, “HIJKLMNO”, 8, 0, 
    (struct sockaddr *)&socka, sizeof(socka)); 

if (rc < 0) 
    DEBUG_MSG2_PAR0(“Error sending\n”); 



Chapter 6 

102 

shutdown 

Shuts down part of a connection. 

int shutdown(int s, int how); 

s Socket identifier. 

how Describes type of shutdown: 
 0 shuts down receive data path 
 1 shuts down send data path, TCP sends FIN 
 2 shuts down send and receive path 

The shutdown() function is useful for fully specifying the limited closure of a connection.  Normally 
the closesocket() function is used to fully close a connection. 

See also:  closesocket 

Return Value 
-1 Error. 

0 Shutdown successful. 



BSD Socket Interface 

103 

socket 

Creates a socket. 

int socket(int domain, int type, int protocol); 

domain For smxNS, this should always be PF_INET. 

type smxNS expects one of three constants for this parameter: 
 SOCK_STREAM stream socket (TCP/IP) 
 SOCK_DGRAM  datagram socket (UDP/IP) 
 SOCK_RAW   raw-protocol interface 

protocol This can be specified as 0. 

A call to socket() will create a socket of the specified type.  A socket must be created before any other 
socket calls are used. 

See also: closesocket 

Return Value 
-1 Error. 

>= 0 The newly created socket can be accessed through this handle. 

If socket() returns with an error indication, the value in errno or obtained through getsockopt() can 
be interpreted as follows: 

EPROTONOSUPPORT 
The requested protocol is not available.  Perhaps SOCK_STREAM was specified, 
but TCP support is not configured for the underlying stack. 

Example 
int s;    /* a socket */ 
… 

s = socket(PF_INET, SOCK_DGRAM, 0); 
if (s < 0) 
    DEBUG_MSG2_PAR0(“Error opening socket\n”); 



Chapter 6 

104 

writesocket 

Sends a message to a socket. 

int writesocket(int s, char *buf, int len); 

s Socket identifier. 

buf Pointer to data to be sent. 

len Number of bytes to send. 

The writesocket() function behaves the same as the regular BSD Sockets write() function, except that 
it only accepts socket identifiers. 

See also:  send, sendto, sendmsg 

Return Value 
-1 Error. 

>= 0 Number of bytes sent. 

 



BSD Socket Interface 

105 

Multicast API (BSD)  
In order to receive information associated with a multicast host group, join the multicast group by 
performing the following steps: 

socket() Use INET protocol family with SOCK_DGRAM. 

setsockopt() Use SO_REUSEADDR with a value of 1. 

bind() Use a well known port (to receive multicasts on). 

setsockopt() Fill out the mreq structure with an appropriate Multicast address and host interface.  
If no host interface is given, the default will be used instead. This is defined by the 
macro, IP_MC_DFLT_NETNO, and is declared in nscfg.h. 

recvfrom() Receive Multicasts as they come in on the port that was bound.





Network Applications and Protocols 

107 

7.  Network Applications 
and Protocols 

 

 

Overview 
smxNS offers support for a number of networking applications, and also special features at the stack 
level.  Some are included and some are extra-cost options. 

ARP maps an IP address to a hardware address. 

DHCP delivers host configuration parameters to a client host. 

DNS allows hosts to be specified by name rather than IP address. 

FTP is a file transfer programs implemented with TCP. 

HTTP transfers web pages.  A simple client is provided. 

IGMP is the multicast protocol 

IPv6 directs datagrams to the destination host using 128-bit IPv6 addresses 

mDNS allows network hosts to discover local services 

NAT is the network address translation. 

PPP connects two hosts over a serial link. 

PPPoE is a protocol typically used with DSL equipment. 

SLIP a minimal protocol for connecting over a serial link. 

SNTP allows hosts to synchronize time information. 

TELNET is the usual TCP/IP method of remote terminal access. 

TFTP is a simple file transfer program implemented with UDP. 

Web Server serves web pages. 

The discussions of PPP and the Web Server are lengthy and are presented in separate chapters which 
follow this one.  



Chapter 7 

108 

ARP 
ARP (Address Resolution Protocol) is used to map an IP address to a hardware address.  The ARP 
client checks its ARP cache first for the IP address of the destination host, to get its hardware address. 
If there is no entry in the cache, it sends a broadcast message to all the hosts on the network segment. 
The host with the desired IP address responds with its hardware address, and the requestor adds it to 
its ARP cache. 

Proxy ARP 
The Proxy ARP feature allows a system running smxNS to answer ARP requests on behalf of another 
system.  This is useful when smxNS acts as a transparent bridge, making it appear that systems that 
are reachable through the system running smxNS are directly connected to an Ethernet network. 

There are three steps to enable the Proxy ARP capability in smxNS: 

1.)  Uncomment the following line in include\nscfg.h: 

#define USS_PROXYARP 

this will enable the proxy ARP feature in arp.c and ip.c. 

2.)  Add the definitions of the Proxy ARP hosts with the PROXYARP flag in the flags field: 

"net186",  "enet1", C, {206,251,94,253}, EA0, PROXYARP, Ethernet, 
AMD961, "IRNO=4 PORT=0x200", 

3.)  You should have at least two interfaces for the local host defined in the netdata[] table.  For 
example, say the local host is named server: 

"server",  "enet0", C, {206,251,94,224}, EA0, 0, Ethernet, NE2000,  
"IRNO=10 PORT=0x0300", 

"server",  "enet1", C, {206,251,94,252}, EA0, 0, Ethernet, CS8900,  
"IRNO=5 PORT=0x0320 BASE=0xC800", 

Note that the port name, which is the second field in the definition, is different for the two interfaces 
defined for the local host and that our proxy ARP host uses the port name of the second interface 
definition.  The order is important. smxNS will take the first subnet address match that it finds when it 
decides where to send its messages. 

We have added logic to ip.c to scan the table for the proxy ARP host and its matching interface 
definition on the local host.  So we need to have the "other" interface specified first in the table so that 
smxNS will find that when it scans for the subnet address match. 

To test this feature, you need two hosts connected to each other on a dedicated network with the host 
doing the proxy ARP also connected to a second network. Use another host on the second network to 
send a ping to the host that is on the dedicated network. 

The host on the dedicated network should respond to the ping that should be indicated by a ping reply 
message.  After the ping has executed, the ARP cache (use arp -a) on the sending host should have a 
new entry with the IP address of the host on the dedicated network and the ethernet address of the 
proxy ARP host. 



Network Applications and Protocols 

109 

DHCP 
DHCP (Dynamic Host Control Protocol) is a method by which a DHCP server can deliver host 
configuration parameters to a client host, typically when the client host boots.  DHCP can be used 
within a subnet, and also across subnets, provided that a DHCP server is available, and the appropriate 
hosts have been set up to forward DHCP messages.  DHCP is based on the BOOTP protocol, and 
provides extensions such as the ability for a server to dynamically assign reusable network addresses. 

In smxNS, DHCP is used to obtain an IP address for the host.  The protocol will be used automatically 
as part of NetTask() and Portterm() based on the setting of the #define SNS_PROTO_DHCPC 
line in nscfg.h. 

The call to obtain an IP address through DHCP is: 

void DHCPget(int netno); 

This function is called automatically from the NetTask() network background task.  

The current state of the DHCP client is visible via the nets[0].DHCPstate variable.  Normally it should 
have the value DHCP_BOUND, meaning that the system is using the IP address acquired from the 
DHCP server. 

The call to release an assigned IP address is: 

int DHCPrelease(int netno); 

The DHCPrelease() return codes are: 

 0    Success 

 ETIMEDOUT  Timeout 

The smxNS DHCP Server follows RFC's 2131 and 2132 with the restrictions noted below. 

• DHCPserv() starts the server. 

• The server should never return. 

DHCP Client Configuration 
To use DHCP for address assignment with smxNS: 

1) Set the primary IP address to 0.0.0.0 like: 

       Portconfig(“enet”, “IP”, “0.0.0.0”);       

2) #define SNS_PROTO_DHCPC 1 in nscfg.h 

3) To adjust the number of times the DHCP client retransmits the DHCPDISCOVER message when 
trying to locate a DHCP server, adjust DHCPC_DISCOVER_MAX_RETRY in dhcp.h.  Setting this 
macro to 0xFFFFFFFF will allow the call to DHCPget() to retry indefinitely waiting for a DHCP 
server to become available. 

4) To get a router from DHCP: 

             #define DHCP_CONFIG = 1 or 2 



Chapter 7 

110 

When DHCP_CONFIG is set to 1, the client will request only an IP address from the DHCP server. 
When DHCP_CONFIG is set to 2, the client will request an IP address, a subnet mask, a router, and a 
DNS server.  

       * * * * * IMPORTANT NOTE * * * * * 

For network environments where the system running smxNS and the DHCP server may be on 
different subnets, the DHCP_CONFIG=2 setting should be the most reliable.  This setting should 
ensure that the DHCP server includes the router option in its response. 

5) Additional configuration options: 

If additional configuration options are desired, then edit dhcp.h and modify the discopts declaration. 
The options with DHCP_CONFIG = 2 are as follows: 

       static const u8 discopts[] =  
           {99, 130, 83, 99, 53, 1, DHCPDISCOVER, 55, 3, 1, 3, 6};        

Option 55 is a parameter request list, 3 is the number of parameters requested, 1 is the subnet mask 
option, 3 is the router option, and 6 is the DNS server option in the example above. Valid option 
codes are given in RFC 2132. To remove options, remove the appropriate one and change the number 
of parameters accordingly.  Do not change any options before or including option 55. 

6) DHCP is automatically called from NetTask() if #define SNS_PROTO_DHCPC 1 is set in nscfg.h. 

When initializing more than one interface using DHCP, they need to be initialized separately. 

Example: 

         Portinit("eth1", “”); /* initializes interface 1 */ 
         Portinit("eth0", “”); /* initialized interface 0 */ 

7) Fallback behavior: 

If the initial attempt to obtain an IP address from the DHCP server fails (perhaps because there is no 
DHCP server on the network), it is possible to have smxNS use an alternate method to obtain an IP 
address.  The alternate method is specified in the FallbackAddr field of the network data structure, 
which is set with Portconfig() using the “FBIP” key. 

If the value here is 0.0.0.0, then smxNS will continue attempting to use DHCP to obtain an IP address.  
Since the network data structure is cleared to zero as part of initialization, this is the default value, so 
by default smxNS will stick to DHCP. 

If FallbackAddr is set to an address in the range 169.254.x.x, then smxNS will generate a link-local 
address (also known as an AutoIP address), which will be a random address in this same range. 

Any other value for FallbackAddr will be considered a fixed IP address, and that address will be 
adopted. 

In order to set a link-local address or fixed IP address as the fallback address, set the value before 
calling Portinit(), as in this example. 

Portconfig(“enet”, “FBIP”, “192.168.1.5”); 
Portinit(“enet”, “”); 

8) Lease renewal: 

smxNS will automatically track the time left on a DHCP lease to renew it. The lease time and the 
renewal time are stored in the smxNS NET structure. 

In order to suggest a lease time to the DHCP server, fill in a value for the SuggestedLease field in the 
nets[] data structure before calling Portinit().  This value is in units of 1 second.  For example 



Network Applications and Protocols 

111 

nets[0].SuggestedLease = 7200;  /* 2 hour lease */ 
Portinit(“enet”, “”); 

DHCP Server Configuration 
1) Server configuration file:  

The name of the server configuration file is defined as CONF_FILE in dhcp.h. The default name is 
"dhcp.con" with no path. This file contains the configuration parameters that the server will give to 
clients. Most entries are self-explanatory. The range entry is the range of IP addresses you wish to 
give your clients.  To configure with no router or domain name server, put 0 for the number of entries, 
with no IP addresses to follow  To configure no domain name or bootfile name enter none. 

This file must have the following format with no lines omitted: 

       netname 
 subnet_mask x.x.x.x 
       range x.x.x.x x.x.x.x 
       router number_of_routers x.x.x.x [x.x.x.x ...] 
       domain_name_server number_of_dns x.x.x.x [x.x.x.x ...] 
       domain_name name 
       bootfile name or none if not needed 

Here is a specific example: 

      enet  
 subnet_mask 255.255.255.0 
       range 192.168.1.150 192.168.1.159 
       router 2 192.168.1.1 192.168.1.3 
       domain_name_server 2 192.168.1.1 192.168.1.3 
       domain_name ussw.com 
       bootfile none 

If the server configuration file does not exist when sns_DHCPServerConfig() is called, a new one will 
be created from the cfgstr string that is passed as a parameter to sns_DHCPServerConfig().  Here is an 
example cfgstr definition from nsdemo.c, 

char cfgstr[] = { 
   "enet\r\n" 
   "subnet_mask 255.255.255.0\r\n" 
   "range 192.168.1.150 192.168.1.159\r\n" 
   "router 2 192.168.1.1 192.168.1.3\r\n" 
   "domain_name_server 2 192.168.1.1 192.168.1.3\r\n" 
   "domain_name ussw.com\r\n" 
   "bootfile none\r\n" 
}; 

The DHCP server can service multiple interfaces.  When configuring the DHCP server for multiple 
interfaces, the configuration information blocks follow one after the other.  Here is an example cfgstr 
definition for two interfaces. (Also, the enet entry has been simplified.) 

char cfgstr[] = { 
   "enet\r\n" 
   "subnet_mask 255.255.255.0\r\n" 
   "range 192.168.1.150 192.168.1.159\r\n" 
   "router 1 192.168.1.1\r\n" 
   "domain_name_server 1 192.168.1.1\r\n" 



Chapter 7 

112 

   "domain_name none\r\n" 
   "bootfile none\r\n" 
   "wifinet\r\n" 
   "subnet_mask 255.255.255.0\r\n" 
   "range 192.168.2.10 192.168.2.19\r\n" 
   "router 1 192.168.2.1\r\n" 
   "domain_name_server 1 192.168.2.1\r\n" 
   "domain_name none\r\n" 
   "bootfile none\r\n" 
}; 

2) Server lease file: 

The name of the server lease file is defined as LEASE_FILE in dhcp.h. The default name is 
"dhcp.lea" with no path.  Create this as an empty file when running the server for the first time. 
Otherwise, do not edit this file. 

3) General configuration:       

  a) dhcp.h contains two configuration switches: 

    i) DHCP_PROBE : defining DHCP_PROBE enables an ICMP echo request probe of each potential 
address before the server gives it out. This enables the server to detect addresses in use and mark them 
as unavailable to give. #undef DHCP_PROBE disables it. 

    ii) DHCP_BROADCAST: The DHCP server will unicast all replies to the client's hardware address 
and to yiaddr (the IP address it is trying to give the client). This behaviour corresponds to #undef 
DHCP_BROADCAST in dhcp.h. If the TCP/IP stack on your client is unable to receive unicast 
messages before the IP address is configured, then #define DHCP_BROADCAST and all messages 
will be broadcast to all clients. Note that a smxNS client can receive unicast messages before the 
client is configured if DHCP is enabled.  

  b) #define DHCP_SERVER "server_name" in dhcp.h      

  c) #define DHCP 2 in nscfg.h 

  d) The DHCP server must be configured with a static IP address. The server IP address must be in 
the same subnet as the client address range set in the CONF_FILE. 

  e) The task stack size must be large, possibly as much as 5000 bytes. 

Please read the information below under File Access for information on how the smxNS DHCP server 
access a filesystem.  

DHCP Server Operation Restrictions 
The smxNS DHCP server is not a complete implementation of RFC 2131.  It is subject to the 
following limitations: 

Options allowed for minimal implementation: 

Option codes are from RFC 2132 

Code Bytes Option 

1 4 Subnet Mask 

3 4n Router 



Network Applications and Protocols 

113 

6 4n DNS Server 

15 n Domain Name 

50 4 Requested IP Address 

51 4 IP Address Lease Time 

—   

53 1 DHCP Message Type 

54 4 Server Identifier 

 

Client requests for options other than the ones above the line will be ignored. 

Restrictions and Requirements: 

1) smxNS's DHCP server will not interact with relay agents. The client must be on the same subnet as 
the server. 

2) smxNS's DHCP server will assume there are no other DHCP servers on the same subnet. 

3) smxNS's DHCP server will not have support for limited lease times. All lease times will be infinite. 

4) smxNS's DHCP server will deliver a boot file name, but will not provide a mechanism for 
delivering the file. 

5) The smxNS DHCP server only allows “dynamic allocation”. This means that addresses are always 
assigned from a pool. The smxNS server does not support the ability to always associate a single 
address with a particular client. 

 File Access: 

The DHCP server uses persistent storage for:  

1) Lease file - record of client bindings and 

2) Configuration file - DHCP server configuration. 

The lease file is accessed with the functions find_lease(), read_lease(), and write_lease(). The 
configuration file is accessed with the function read_conf(). File access is done using the C <stdio.h> 
functions.  These file access functions should be changed to the appropriate methods for accessing 
non-volatile storage on your system.  The include file dhcp.h includes <stdio.h> if EOF is not already 
defined.  This include will also need to be changed if a different method of file access is used. 

DHCP Testing 
The smxNS DHCP client has been tested against the smxNS DHCP server and against the Internet 
Software Consortium DHCP server (www.isc.org). 

The smxNS DHCP server has been tested against the smxNS client, and against Windows 95 and 
Windows 98 DHCP clients. 

The details of the testing procedure are given below. 

smxNS DHCP server testing against smxNS clients: 

All addresses below are 192.168.1.xxx 



Chapter 7 

114 

The address range in dhcp.con is defined as 192.168.1.150 to 192.168.1.160 for this test (unless 
specified otherwise). 

Acquire is performed by configuring client to use DHCP and starting fttest on the client. Release is 
performed by stopping the fttest client with the <ESC> key. For example, client B in test 2 performs: 
fttest 192.168.1.151, starts and acquires an address, then is stopped with <ESC> and address is 
released.  Unless otherwise noted, all tests are performed on 80x86 platform, compiled with Borland 
C compiler v4.5. (Tests also verified for Microsoft C compiler v8.00). Note: fttest was a standalone 
USNet application which has been moved into nsdemo.c. 

Test Client Action(s) (A = Acquire, R = Release address) 

1 A A 151 

2 B A 152 / R 152 

3 B A 152 / R 152 

4 C A 152 (simultaneous) 

 D A 153 

** Reboot Clients C and D without releasing address 

5 C A 152 

 D A 153 

6 B A 154 

** Reboot server and restart it 

7 any A previous address 

** Reboot server, delete lease file, and restart server.  Also, reboot client B. 

8 B A 154 

** Reboot server, reboot all clients.  Delete lease file.  Edit DHCP configuration file to have range of 
one address (151). 

9 A A 151 

10 B Fails in acquiring address 

 

What does each test prove? 

1 Basic ability to acquire address. 

2 Tests release of address. 

3 Re-acquire gives client same address. 

4 a) Client can reclaim unused address 

b) Simultaneous client requests work 

5 Clients get same address back even if they didn't release it. 

6 Client binding of B has address now in use by client C. 



Network Applications and Protocols 

115 

7 Server remembers client bindings through persistent storage 

8 DHCP_PROBE defined: 

Address probe detects addresses in use even though there are not bindings for these 
clients (since we deleted the lease file).  Server gives an address not in use. 

DHCP_PROBE undefined: 

Server will attempt to give an address in use with the address probe disabled.  Client will 
send DHCPDECLINE because it also probes the offered address (and we haven’t 
disabled this probe). 

Server handles DHCPDECLINE, and offers next address until it gets to one which the 
client accepts. 

9 — 

10 Server prints warning message, doesn’t attempt to give address when there are no more 
left. 

 

The smxNS DHCP server passed all the above tests for 4 server configurations: 

DHCP_BROADCAST DHCP_PROBE 

defined defined 

defined undefined 

undefined defined 

undefined undefined 

 

BIG endian vs. LITTLE endian test: 

The smxNS DHCP client was run on the SH3 platform (which is BIG endian). The smxNS server is 
run on 80x86 (LITTLE endian). This tests whether there are any byte ordering problems in how the 
server handles messages.  

smxNS DHCP Server testing against Windows 95 and Windows 98 clients 

Test Client Action(s) 

1 A A 151 / R 151 

2 B A 151 

3 A A 152 

4 B R 151 

 

Windows acquire/release performed with winipcfg, multiple acquire/release, and renew all work. 

 



Chapter 7 

116 

DNS 
DNS, or Domain Name System, is a protocol that allows a system to be located based on its host 
name.  This introduces a useful level of indirection when specifying the end of a connection that can 
allow a system to continue to function even though changes may occur in the way the endpoints are 
attached to the Internet. 

When the DNS macro is set to 2 in nscfg.h, the DNS look up will be invoked automatically for calls 
that accept a string to specify a host name.  For example, Nopen() could use www.smxrtos.com rather 
than a dotted decimal IP address as the first parameter in the function call that specifies the host at the 
remote end of the connection. 

In order for the DNS look up to succeed, at least one DNS server must be available to smxNS.  If the 
smxNS system uses DHCP, then this information can be retrieved automatically as part of that 
process.  Otherwise, the SetDNS() function can be used to manually specify DNS hosts.  Up to 
NDNSS (default 2, set in nscfg.h) DNS servers may be specified.  The DNS server can be located on 
another network, so long as a router is available. 

The DNS resolver can also map from a local host name to an IP address using a legacy mDNS query.  
In this case, a DNS server does not need to be defined.  Details are in the DNSresolve() section below. 

Here is the function that allows a DNS server to be specified. 

SetDNS() 
int SetDNS (char *ip, char *index) 

The function arguments are: 

ip IP address of the DNS server, as a string in dotted decimal format. 

index The index for the DNS server entry.  Any existing entry will be overwritten.  Indices 
0..NDNSS-1 are valid. 

The call returns 0 for success, -1 for failure. 

Applications can also call the DNS resolver directly using the DNSresolve() function (described next). 

DNSresolve() 

Resolves a domain name to an IP address. 

int DNSresolve(const char *fullname, IPaddr *iidp); 

fullname domain name 

iidp pointer to the address of the returned IP address 

DNSresolve() stores the IP address at this location if fullname is non-zero. 

DNSresolve() can start with either a domain name or IP address.  If there’s an @ in the name, 
DNSresolve() tries to find a mail host (IP address).  If the first letter in the name is between 0 and 9, 
it’s a pointer to an IP address, and DNSresolve() tries to find the domain name. 
DNSresolve() can also attempt to obtain an IP address from a local host by sending a legacy mDNS 
query.  In this case, the fullname parameter should end in ".local".  For example, calling DNSresolve() 

http://www.smxrtos.com/


Network Applications and Protocols 

117 

on "myhost.local" will return the IP address of host "myhost" if it is on the local network and running 
an mDNS Responder. 

Return Value 
>= 0 Successful lookup 

-1 IP address could not be obtained from the DNS server(s) 

ENOBUFS Not enough buffers available for query (defined in support.h) 

Example 
IPaddr ipa; 
char *hostname; 

hostname="localhost"; 
stat = DNSresolve(hostname,ipa); 
if (stat<0) 
      ERROR(); 

FTP and TFTP 
FTP and TFTP are file transfer protocols.  FTP is implemented with TCP.  TFTP is implemented with 
UDP so it is smaller but less reliable.  TFTP is less secure and less capable, so it is of limited use. 

The two ends of a file transfer are called a client and a server.  The server is the passive component, 
which sits and waits for requests.  To view the source code, refer to files XNS\netsrc\ftpc.c, 
XNS\netsrc\ftps.c, XNS\netsrc\tftp.c, and APP\DEMO\nsdemo.c. 

The FTP server as shipped is configured for ANSI C support.  In this mode, only the basic file transfer 
functions are available.  You can configure it for the DOS file system by setting the variable 
EXTENDED_C to 1.  

The FTP server supports the internal commands APPE, CDUP, CWD, DELE, EPRT, LIST, MKD, 
MODE, NLST, PASS, PASV, PORT, PWD, RETR, RMD, RNFR, RNTO, STOR, STRU, TYPE, 
USER, QUIT, XCUP, XCWD, XMKD, XPWD and XRMD. 

See Chapter 2 for more information on the FTP server and client test programs in nsdemo.c. 

Start Server 
These calls will start the servers.  If you are using a multitasker, you will want to start these as tasks. 

int FTPserv() 

int TFTPserv() 

The server never returns.  In other words, it sits in an infinite loop. 



Chapter 7 

118 

Send File 
This call sends a file.   

int FTPput (char *host, char *lfile, char *rfile, char *userid, char 
*pw, int mode) 

int TFTPput (char *host, char *lfile, char *rfile, int mode) 

The send file arguments are: 

host Name of the server host.  The form can be host or host/network. 

lfile Name of the local file to be sent.  

rfile Name of the file to be stored on the remote system. 

userid Name of user account on the remote system.  Not needed for TFTP. 

pw Password for the user account on the remote system.  Not needed for TFTP. 

mode ASCII for a text file, IMAGE for a binary file.  

The call returns 0 for success, -1 for failure.  Note that the FTP protocol sends the user ID and 
password information as cleartext. 

FTP & TFTP Examples 

FTPput(“XX”, “t1”, “/usr/aa/t1”, “user”, “password”, IMAGE); 
   /* t1 => host XX target file /usr/aa/t1 */ 

TFTPput(“XX”, “test1”, “test1”, ASCII); /* test1 => host XX */ 

Receive File 
This call receives a file. 

int FTPget(const char *host, const char *lfile, const char *rfile, 
           const char *userid, const char *pw, int mode) 

int TFTPget (char *host, char *lfile, char *rfile,  int mode) 

The receive file arguments are: 

host Name of the server host.  The form can be host or host/network. 

lfile Name of the local file to be saved. 

rfile Name of the file to be retrieved from the remote system. 

userid Name of user account on the remote system.  Not needed for TFTP. 

pw Password for the user account on the remote system.  Not needed for TFTP. 

mode ASCII for a text file, IMAGE for a binary file. 

The call returns 0 for success, -1 for failure.  Note that the FTP protocol sends the user ID and 
password as cleartext. 



Network Applications and Protocols 

119 

FTPget Examples 

FTPget(“XX”, “test1”, “test1”, “user”, “pw”, ASCII); 
   /* test1 <= host XX */ 

FTPget(“XX”, “\tmp\t1”, “t1”, “user”, “pw”, IMAGE); 
   /* \tmp\t1 <= host XX t1 */ 

 

HTTP Client 
Support for retrieving a web page is available via the HTTPget() function in the http.c .  The use of 
this function is demonstrated in the nstels.c application.  This function is not intended for use as a 
general purpose browser, but rather as a mechanism for automated retrieval of information that is 
available via a web page. 

When running nstels, you can log in to the smxNS Telnet server and then retrieve a web page by 
typing in the web server’s host name followed directly by the path to the page.  Here is an example 
session. 

C:>telnet 192.168.2.2 
smxNS skeleton Telnet server 
smxNS Telnet Server 
www.smxrtos.com/ 
Calling HTTPget() for host www.smxrtos.com with path / 
1016 004: HEAD 
1028 005: TITLE 
… 
3000 006: /TABLE 
3006 005: /BODY 
3018 005: /HTML 
0400 000: 

In this example, the default page from www.smxrtos.com is retrieved.  The page contents are 
delivered via the HTTPdisplay() callback function, which parses the information into chunks of one 
HTML tag or word at a time.  The callback function also includes flags and a length field, which are 
the first two values that appear on each line.  In the nstels.c demo, the output is directed to the Telnet 
connection.  An application that needed to extract a specific piece of information from a page could 
simply scan the results for a keyword and throw the rest away.  

In addition to web servers on the Internet, a local server on the LAN should be a practical way to 
develop applications that use this function.  The appendix contains a pointer to a simple web server 
that may be used this way.  Also note that many network devices such as consumer routers provide 
web server based status and configuration, and these may be useful for a quick test of this function. 

http://www.smxrtos.com/


Chapter 7 

120 

Retrieve a Web Page 
This call starts the process to retrieve the contents of a web page. 

int HTTPget (char *host, char *rsrc) 

The arguments are: 

host Name of the server host.  The form can be host or host/network. 

rsrc The path to the web page to be retrieved. 

The call returns 0 for success, < 0 for failure. 

Web Page Callback Function 
This call returns the parsed web page to the application. 

int HTTPdisplay (int flags, u8 *chunk, int len) 

The arguments are: 

flags Flags describing the returned HTML tag or parsed word. 
0x0100  text 
0x0200  precede with space 
0x0400  follow with new line 
0x10xx  html control <something> 
0x20xx  html control off </something> 
0x40xx  special character &something; 

chunk The parsed HTML tag or word from the body text. 

len The length of chunk.  The last element from a page has lenth 0. 

The application should return 0 for success. 

Each time the function is called, either an HTML tag or a word from the body is delivered. 

IGMP / Multicast 
IGMP (Internet Group Management Protocol) allows sending messages to multiple hosts in a group. 

smxNS must be configured to include multicast support code if the application needs to send or 
receive multicast messages. This setting is made with the USS_IP_MC_LEVEL macro in nscfg.h, and 
is described in Chapter 4, Configuration. 

No special application level operations need to be performed when sending information to a multicast 
group. When the IP address of the destination is a multicast host group, then the physical layer frame 
will be built appropriately for delivery to the multicast group, and sent on the default multicast 
interface. The index of the default multicast interface is specified via the constant 
IP_MC_DFLT_NETNO which is defined in nscfg.h. 

The host group addresses range from 224.0.0.0 to 239.255.255.255. 

The smxNS multicast application program interface is based on the recommended interface described 
in RFC 1112. 



Network Applications and Protocols 

121 

See the DPI or BSD chapter for documentation of the multicast API functions. 

iperf 
iperf is a program for measuring network performance.  The smxNS version of iperf is based on iperf 
version 3.0.3.  A repository of iperf code is at http://downloads.es.net/pub/iperf/.  The original iperf 
files were adapted to work with smxNS and are located in the XNS/iperfsrc directory. 

An iperf test is run by running two instances of the iperf program on two hosts that can communicate 
over a network.  To enable the iperf program in the smxNS build, add all .c files in the iperfsrc 
directory to the project, and add an include path to XNS/iperfsrc 

$PROJ_DIR$\..\..\..\XNS\iperfsrc\ 

and set TEST_IPERF_SERVER to 1 in APP/DEMO/nsdemo.c. 

The other host can be a Linux computer.  In order to run that instance, you can follow these steps: 

Download and extract the source code archive 

Move to the top level directory of the archive, build and run iperf using these commands 

$ cd iperf-3.0.10 
$ ./configure 
$ make  (many warnings may be reported) 
$ cd src 
$ ./iperf3 -v (this will show the version and confirm the executable is present) 

To invoke iperf with smxNS running at 192.168.1.100, you can use 

iperf3 -l 1460 -c 192.168.1.100 -V 

iperf3 -l 1460 -R 192.168.1.100 -V 

The first command is for smxNS to send bulk information and the second is for smxNS to receive 
bulk information. 

After the test runs for 10 seconds, a summary of the test results is displayed, for example 

Test Complete. Summary Results: 
[ ID] Interval          Transfer     Bandwidth       Retr 
[  4]  0.00-10.00  sec  12.5 MBytes  10.5 Mbits/sec    0    sender 
[  4]  0.00-10.00  sec  12.5 MBytes  10.5 Mbits/sec         receiver 

 

IPv6 
IPv6 is a network layer that uses 128-bit addresses.  An IPv6 node can assign an IP address 
automatically and does not depend on a DHCP server. 

The smxNS IPv6 implementation does not currently support ICMP redirect, SLIP or PPP. 

When the network interface is initialized (by calling the Portinit() function), the network prefix 
(fe80::/64) for the link local address and the interface ID are combined and the link local address is 
automatically created.  The Interface ID is created based on the MAC address of the Ethernet 
interface. 



Chapter 7 

122 

RFC 2464 specifies a mechanism for generating a link local address based on the MAC address of an 
Ethernet interface.  For example, given a MAC address of 34:56:78:9A:BC:DE, the Interface ID is as 
follows. 

36:56:78:FF:FE:9A:BC:DE 

The byte sequence FF:FE is inserved for the 4th and 5th bytes.  The first byte is exclusive ORed with 
0x02. 

The corresponding link local address becomes 

FE80::3656:78FF:FE9A:BCDE 

If a Router Advertisement is received from a router, an IPv6 address will be created based on the 
Router Advertisement and the Interface ID. 

The IPv6 address is stored in the fourth member of the struct NETDATA6 structure regardless of 
whether the address is statically configured or automatically set up. 

The IPv6 stack should check for a duplicate IPv6 address.  This check should be performed for both 
manually configured and autoconfigured addresses.  The prospective address is a temporary address, 
and cannot be used until the check is completed. 

The Duplicate Address Detection logic is executed once a candidate address has been created.  The 
check typically takes one second. 

The Duplicate Address Detection check is also performed on the link local address.  Thus there is a 
delay following the time the network interface is initialized (by calling the Portinit() function) before 
the link local address can be used. 

Configuration of Duplicate Address Detection is performed in the file XNS\include\nd6.h. 

#define ND6_DAD_COUNT 1  /* DupAddrDetectTransmits */ 

Duplicate Address Detection is performed ND6_DAD_COUNT times every second.  When 
ND6_DAD_COUNT is set to 0, Duplicate Address Detection is disabled, and the IPv6 address can be 
used immediately. 

mDNS Responder  
 The mDNS (Multicast Domain Name Service) Responder allows local hosts on the network to 
discover services running on the smxNS system.  For example, if the smxNS system is running a print 
server, the mDNS Responder can advertise and answer queries from other systems to help them locate 
this service on the network. 

Example code for setting up and starting the mDNS Responder is provided in nsdemo.c.  To enable 
the mDNS Responder: 

• Set TEST_MDNS_RESP to 1 at the top of nsdemo.c. 

• Set SNS_PROTO_IGMP to 1 in XNS\include\nscfg.h. 

• Set USS_IP_MC_LEVEL to 2 in XNS\include\nscfg.h. 

• Add XNS\netsrc\igmp.c to the project. 

The service or services that the mDNS Responder maintains are organized as a set of associated 
records.  The record types are defined as part of the DNS protocol, and this framework is extended in 
the mDNS protocol. 



Network Applications and Protocols 

123 

• A PTR (pointer) record associates a service with an instance name. 

• A SRV(service) record associates an instance with a listening port and a network host name. 

• A TXT (text) record associates an instance with a text string, which may be empty. 

Here is an example of a data structure used to initialize the mDNS Responder: 

GLOBALCONST RR_RECORD dns_rec[] = 
{ 
   {“superprint”, “_printer._tcp”, “paper=A4”, 631, NULL, 0} 
}; 
GLOBALCONST RESPONDER_CONTEXT mdns_rc = 
{ 
    dns_rec, 
    1 
}; 

This structure provides the information used to construct the PTR, SRV and TXT records that are 
used in responses to mDNS queries. 

The fields are used as follows: 

“superprint”: This is the instance name for the service.  It is intended to be a user-friendly name, and 
some implementations may provide a mechanism to allow the end user to configure this name.  A 
service instance name must be unique on the local network.  If the provided name is not unique, the 
mDNS Responder will modify the name by appending an index so that it becomes unique.  This is 
handled as part of the mDNS protocol. 

“_printer._tcp”: This is the service name.  There are well known service names such as _printer._tcp 
and _ftp._tcp, and these are currently registered at the Internet Assigned Numbers Authority. 

“paper=A4”: This is the string used for the TXT record.  In order to configure multiple key/value 
pairs in a text string, use the separator 0x01 between pairs. 

631: This is the port that the service listens on.  This information is used in creating the SRV record. 

NULL, 0: These are empty fields that can be used to define subtypes of the service.  An example 
appears below. 

The RESPONDER_CONTEXT structure contains a pointer to the record initialization data and a 
count of the number of services.  Multiple services can be advertised by placing additional entries in 
the RR_RECORD structure. 

Service name subtypes are useful in some circumstances to allow mDNS queriers to find a subset of 
instances that support a service.  To define one or more subtypes that are associated with a service, 
create a list of subtype strings, and include a pointer to this list in the corresponding RR_RECORD 
definition.  For example 

GLOBALCONST char *subtypes[] = {“_coremote._sub”, “_dbupdate._sub”}; 
GLOBALCONST RR_RECORD dns_rec[] = 
{ 
   {“superprint”, “_http._tcp”, “”, 80, subtypes, 2} 
} 

Here the subtypes _coremote._sub._http._tcp and _dbupdate._sub._http._tcp are subtypes of the 
service _http._tcp.  The value (2) that follows the pointer to the list of subtypes is the number of 
strings in the list. 

ftp://ftp.tcp/


Chapter 7 

124 

To advertise additional services you can simply add another resource record to the list. For example, 
you might add an ftp service with the instance name “helper” which listens on port 23 and has no 
subtypes: 

GLOBALCONST RR_RECORD dns_rec[] = 
{ 
   {“superprint”, “_http._tcp”, “”, 80, subtypes, 2}, 
   {“helper”, “_ftp._tcp”, “”, 23, NULL, 0} 
}; 

GLOBALCONST RESPONDER_CONTEXT mdns_rc = 
{ 
    dns_rec, 
    2 
}; 

In order to run the mDNS Responder, pass the initial configuration using the 
sns_mDNSResponderInit() function, and then repeatedly call the sns_mDNSResponderCheck() 
function. 

void mdns_task_main(uint dummy) 
{ 
   int i1; 
   struct RESPONDER_STATE *mdns_state; 
   int name_established; 
   name_established = 0; 
   i1 = sns_mDNSResponderInit(&mdns_rc); 
   if (i1 >= 0) 
   { 
      do 
      { 
         mdns_state = sns_mDNSResponderCheck(); 
         if ((mdns_state->state == MDNS_RESPONDING) && (name_established == 0)) 
         { 
            DEBUG_MSG3_PAR1(“Instance name is %s\n”, sns_mDNSGetInstance(0)); 
            name_established = 1; 
         } 
      } while (mdns_state->error == 0); 
      sns_mDNSResponderShut(); 
   } 
   return; 
} 

The sns_mDNSResponderCheck() function maintains the state machine and receives and responds to 
mDNS traffic as needed.  The function returns a structure that includes an error indication and the 
state machine state.  If an error occurs, the mDNS Responder should be shut down and restarted.  The 
state information is useful to determine when the instance names have been established.  Once the 
state reaches MDNS_RESPONDING, the names have been established.  Under normal circumstances 
the name will not change, but if there is another host on the local network configured to use the same 
name for a service, then an index will be appended. 

The sns_mDNSGetInstance() function can be used to obtain a pointer to an instance name.  The value 
passed to the function is a 0-based index using the same order as the list of services used to initialize 
the mDNS Responder. 

The sns_mDNSSetUniqueCallback() function can be used to specify a user-defined function to make 
the instance name unique.  This must be called following the call to sns_mDNSResponderInit(). 



Network Applications and Protocols 

125 

The sns_mDNSResponderShut() function sends goodbye messages to time out the advertised services 
and closes the sockets associated with the mDNS Responder. 

The mDNS Responder also maintains an address record (A record) that maps the smxNS host name to 
the network interface IP address.  The smsNS host name may also be modified by the mDNS 
Responder.  The name is established once the state reaches MDNS_RESPONDING. 

The host name may be updated at runtime by calling the function SetHostname(char *) and passing a 
pointer to a host name string.  The current value of the host name string can be retrieved by calling 
GetHostname(), which returns a pointer to the string.  The host name string does not include the 
domain name when used with these functions. 

The mDNS Responder implementation is based on the current Internet-Drafts for Multicast DNS and 
DNS-Based Service Discovery as of April 2013.  The mDNS Responder was exercised using the Mac 
OS X command line dns-sd utility and the Linux command line avahi-browse utility.  Sample 
command lines follow 

> dns-sd –B _printer._tcp 

Browsing for printer.tcp 
Timestamp    A/R    Flags    if    Domain    Service Type    Instance Name 
11:47:27.564 Add        2     4    local.    _printer._tcp   superprint 
 

> avahi-browse –r –t _printer._tcp 

+    eth0 IPv4 superprint    printer 
=    eth0 IPv4 superprint    printer local 
    hostname = [MDI-System.local] 
    address = [192.168.1.12] 
    port = [1234] 
    txt = [] 



Chapter 7 

126 

NAT 
Note:  NAT is available as an extra-cost option for smxNS. 

smxNS currently has support for NAPT (Network Address Port Translation). This form of NAT 
assumes that hosts on the internal LAN will initiate communications with hosts on the external WAN 
through the smxNS NAT router. ICMP, UDP, TCP and other protocols may be used through a smxNS 
NAT router.  Support for the FTP protocol ALG (Application Layer Gateway) is also included. 

The following diagram represents an example NAT router’s network: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This section describes how to build smxNS as a NAT router.  

 

NAT Configuration 
In file include\nscfg.h set RELAYING to 1 to enable smxNS to relay between interfaces: 

Change: 

  #define RELAYING 2 

To: 

  #define RELAYING 1 

Set the NAT flag to each interface that should behave as the router for a private network. The 
following Portconfig() example shows one private (internal or LAN) interface and one public 
(external or WAN) interface. 

 Portconfig(“eth0”, “IP”, “192.168.1.1”); 
   Portconfig(“eth0”, “NAT”, “ENABLE”); 
   Portconfig(“eth1”, “IP”, “206.251.94.210”); 

In file NETSRC\nat.c, several table size definitions exist. 

 TUTABLESZ — TCP/UDP table size 

 
NAT ROUTER 

 
INTERNET 

 
LAN HOST 

(192.168.1.2) 

(192.168.1.1) (206.251.94.210) 



Network Applications and Protocols 

127 

This value represents the number of entries that may concurrently exist within the NAT TCP/UDP 
table. All TCP and UDP communications routed through the NAT router must be entered in the TU 
Table. 

 ICMPTABLESZ — ICMP table size 

This value represents the number of entries that may concurrently exist within the NAT ICMP table. 
Every ICMP message must have a corresponding entry in the ICMP Table. 

 UNTABLESZ — Unknown protocol table size 

This value represents the number of entries that may concurrently exist within the NAT Unknown 
protocol table. Entries in this table include all IP protocols other than TCP, UDP, and ICMP. Every 
transaction taking place via the NAT router must have the protocol registered in the Unknown 
Protocol Table. 

These should be defined to appropriate values for the target networking environment. This is 
determined by examining the requirements of the LAN hosts.  For example, if there are 2 LAN hosts 
and each host will open no more than 5 concurrent UDP/TCP communication channels with hosts on 
the Internet, then a maximum of 10 (2x5) entries may need to be maintained. Therefore, 
TUTABLESZ must be defined to 10 to avoid lost information.  The default value in NETSRC\nat.c is 
10. 

ICMP messages often do not expect replies. This means that only the maximum number of 
simultaneously routed ICMP messages must be accounted for.  As a rule of thumb, this value can be 
set to the number of hosts on the local network. 

The unknown protocol table should include all other Internet communications not using TCP, UDP, 
or ICMP. 

Explanation of table entry replacement: 

A modified LRU algorithm is used when the NAT table is full and a new entry is added. Entries that 
are least used and have the least precedence are replaced first. The precedence is primarily determined 
by the transport protocol in use. The precedence is ICMP, UDP, Unknown, TCP, and TCP-FTP-
control, in order of least to greatest precedence. 

If a TCP or UDP channel is replaced in the NAT table, a new local port number will be generated and 
will disrupt communications using an existing connection. 

The cost of adding new entries is linear on a per-datagram basis. In other words, each datagram 
passed through the NAT router is searched for linearly in the NAT table. As the number of NAT 
entries increases, the amount of CPU time spent searching for those entries also increases. 

As with smxNS in general, the debugging trace level may be used to enable printf() debugging from 
the NAT module.  By default, if SNS_DEBUG_LEVEL is 3 or greater, the following NAT debugging 
information will be generated: 

 Inbound/Outbound IP address mappings (IP.port => IP.port) 

 TCP/UDP port adjustments (TCP/UDP.port => TCP/UDP.port) 

 FTP translations (Sequence number, PORT command) 

If SNS_DEBUG_LEVEL is 5 or greater, NAT will print out: 

 Table additions/removals 

If NAT debugging is to be isolated from the rest of smxNS debugging, set SNS_DEBUG_LEVEL to 
1 (or the appropriate value) and modify netsrc\nat.c as follows: 



Chapter 7 

128 

#include "smxns.h" 

#undef SNS_DEBUG_LEVEL 

#define SNS_DEBUG_LEVEL 5 

 

NC-SI 
Note:  NC-SI is available as an extra-cost option for smxNS. 

NC-SI (Network Controller Sideband Interface) is a protocol that allows a host processor and Ethernet 
controller acting as a BMC (Baseboard Management Controller) to control one or more NICs 
(Network Interface Controllers).  This design allows flexible out-of-band management of the NICs 
and is applied in certain networking equipment. 

The NC-SI feature in smxNS is implemented by replacing the usual direct interface between the 
Ethernet controller and the PHY with one that uses the NC-SI protocol to allow an Ethernet controller 
to communicate with one or more NICs.  With NC-SI, operations such as checking PHY link status 
are performed by calling a function that creates an Ethernet frame that is directed to a NIC, and then 
listening for a response frame from the NIC. 

The smxNS NC-SI implementation provides most of the commands described in the Network 
Controller Sideband Interface Specification and allows AENs (Asynchronous Event Notifications) to 
be received via a callback function. 

The NC-SI feature is driven by the NC-SITask() function that is launched as part of smxNS start up.  
The first steps of the task are to configure the attached NIC including setting the MAC address so that 
it can send and receive Ethernet frames. 

There are approximately 25 NC-SI functions that a network application can call to issue an NC-SI 
command.  All command functions include parameters to specify the NIC package and channel and 
fill in an ncsi_status structure to provide details on how the command executed.  The call to the 
command function blocks while it is executing, and this includes exchanging messages with the NIC.  
If the NIC responds to the command, the function will return 0. 

Here is an example function prototype 

int NCSIGetNCSIStatistics(uint pkg, uint ch, struct ncsi_ncsi_stats 
*ns, struct ncsi_status *s); 

This function returns statistics using the ncsi_ncsi_stats structure.  Here is an example use of the 
function. 

struct ncsi_ncsi_stats ns; 
struct ncsi_status resp; 
int stat; 
uint pkg = 0; 
uint ch = 0; 
stat = NCSIGetNCSIStatistics(pkg, ch, &ns, &resp); 
DEBUG_MSG3_PAR1("Get NC-SI Statistics returns %d\n", stat); 
if (stat == 0) 
{ 
  DEBUG_MSG3_PAR2("  Response 0x%04x Reason 0x%04x\n", 
                  resp.response_code, resp.reason_code); 
  DEBUG_MSG3_PAR1("NC-SI Commands Received %d\n", 
                  ns.ncsi_commands_received); 



Network Applications and Protocols 

129 

  DEBUG_MSG3_PAR1("NC-SI Control Packets Dropped %d\n", 
                  ns.ncsi_control_packets_dropped); 
  DEBUG_MSG3_PAR1("NC-SI Command Type Errors %d\n", 
                  ns.ncsi_command_type_errors); 
  DEBUG_MSG3_PAR1("NC-SI Command Checksum Errors %d\n", 
                  ns.ncsi_command_checksum_errors); 
  DEBUG_MSG3_PAR1("NC-SI Receive Packets %d\n", 
                  ns.ncsi_receive_packets); 
  DEBUG_MSG3_PAR1("NC-SI Transmit Packets %d\n", 
                  ns.ncsi_transmit_packets); 
  DEBUG_MSG3_PAR1("AENs Sent %d\n", ns.aens_sent); 
} 

Definitions for the NC-SI structures are in XNS/include/ncsi.h.  You can review these structures to 
see which fields can be used to pass inbound parameters or retrieve outbound parameters. 

An application can access the information in AEN packets by registering a callback function that is 
called when an AEN is received.  Note that this callback function is executed in the context of 
smxNS’s high priority NetTask(), so it should perform its function promptly.  The AEN information is 
delivered in an ncsi_aen_info structure and includes the channel ID, AEN type and 4 bytes of data 
specific to the AEN.  Here’s an example of the use of an AEN callback. 

/* From XNS/include/ncsi.h */ 
struct ncsi_aen_info { 
  int channel_id; 
  int type; 
  int data; 
}; 

/* Network application code */ 
void callback(struct ncsi_aen_info *p) 
{ 
  Nprintf("AEN status type %d\n", p->type); 
} 
 
NCSIRegisterAENCallback(callback); 

 

PPPoE 
Note:  PPPoE is available as an extra-cost option for smxNS. 

PPPoE (Point-to-Point Protocol Over Ethernet) encapsulates PPP frames in Ethernet frames.  This is 
useful in certain applications, especially in DSL-related equipment that uses PPP features for access 
control and accounting.  smxNS provides support for building both PPPoE Hosts and PPPoE Access 
Concentrators. 

PPPoE Configuration 
Here are the necessary steps to configure and build PPPoE with smxNS. 

1.  Test smxNS on the target without PPPoE integration. Run nsdemo with PPPoE disabled in nscfg.h. 

Note that PPP must be configured even though there may not be a serial interface on the target. 



Chapter 7 

130 

2.  Build the PPPoE version 

If you purchased the PPPoE option, there should be a target defined that will build smxNS with 
PPPoE support. 

3.  Define the target interface 

In configuring the PPPoE interface, change the link layer setting from Ethernet to PPPOE. 

For example: 

Previously, the configuration may have been: 

Portconfig(“eth0”, “LINK”, “Ethernet”);  

 It should then be changed to the following: 

Portconfig(“eth0”, “LINK”, “PPPOE”); 

 If the IP address is defined by the Access Concentrator, define the IP address as 0.0.0.0.  
Additionally, create an entry for the peer host so that PPP can store the remote IP address for later. 

"ac", "pppoe", C, X, EA0, ROUTER, 0, 0, 0, 
"test", "pppoe", C, X, EA0, 0, PPPOE, PCI, 0, 

If smxNS is being run as an Access Concentrator, additional entries in the netdata[] table can be set up 
so that they are distributed to PPPoE hosts.  Here is an example configuration for this 

"host", "tnet", CC, W, EA0, PROXYARP, 0, 0, 0, 
"test", "tnet", CC, X, EA0, 0, PPPOE, NE2000, "IRNO=10 PORT=0x300", 
"test", "enet", CC, Y, EA0, 0, Ethernet, NE2000, "IRNO=5 
PORT=0x320", 
"gw",   "enet", CC, Z, EA0, ROUTER, Ethernet, 0, 0, 

In addition, for use as an Access Concentrator, the following settings are suggested for nscfg.h. 

#define RELAYING 1 
#define USS_PROXYARP 
 

3.  Run nsdemo with PPPoE enabled in nscfg.h. 

4.  Further configuration items specific to the operations of the PPPoE host are contained within 
netsrc\pppoe.c.  Edit the file configuration options as necessary.  The default settings should be a 
reasonable starting point. 

The corresponding file for the Access Concentrator version is netsrc\pppoeac.c.  The following notes 
describe the configurable values at the top of the file. 

#define PPPOE_TIMER_GRANULE 1000 

The PPP timeout function for PPPoE sessions will be called using a period defined by this constant.  
The default value sets a frequency of once per second. 

#define PPPOE_ACNAME "AC-0000" 

This string is delivered in the AC-Name tag when the Access Concentrator sends its PPPoE Active 
Discovery Offer (PADO) packet.  This Access Concentrator name may be useful to the PPPoE host in 
deciding whether or not to set up a PPPoE with this Access Concentrator.  In practice, this 
information is commonly ignored. 

#define MAX_SERVICE_NAME_LEN 16 



Network Applications and Protocols 

131 

This defines the size of the buffer that stores the string associated with the Service-Name tag.  The 
Access Concentrator is set up to use a liberal policy on service names, accepting any name that is 
suggested by the host.  This policy is suggested in the Security Considerations section of RFC 2516. 

Similar buffer length definitions exist for the Host-Uniq, AC-Cookie and Relay-Session-Id tags. 

#define PNETS 2 

This defines the number of physical network interfaces.  State information for PPP sessions is stored 
in the network interface structure nets[].  Typically, each network interface is associated with a 
physical network interface, which may be a serial interface for PPP, or an Ethernet interface for a 
PPPoE host.  A PPPoE Access Concentrator may support multiple PPPoE sessions over the same 
Ethernet interface. 

In order to support this, some interface structures are used as "virtual interfaces".  Interfaces with an 
index between 0 and PNETS - 1 correspond to physical interfaces.  Indices between PNETS and 
NNETS - 1 correspond to virtual interfaces, which are mainly used to store PPP session state. 

Note that NNETS which is defined in nscfg.h needs to be larger than the number of physical 
interfaces.  The default value of 4 happens to provide a little room for this. 

The Access Concentrator will provide up to NNETS – PNETS PPPoE sessions.  Once this limit is 
reached, the Access Concentrator will respond to incoming PPPoE Active Discovery Request (PADR) 
packets with a PPPoE Active Discovery Session-confirmation (PADS) packet that contains an AC-
System-Error tag. 

SLIP 
SLIP is a link layer that connects two hosts over a serial connection.  In order to configure an 
interface to use SLIP, the SLIP protocol table should be specified using the “LINK” keyword when 
calling Portconfig().  An example is provided in the Configuration chapter. 

Using SLIP with Windows Computers 
An smxNS system running SLIP may be connected to a larger network by using a Windows XP 
computer as a gateway.  In order to set up a SLIP connection on Windows XP, follow these steps. 

1. Select Start, then right click on My Network Places and select Properties. 

2. Select "Create a new connection".  Select "Next". 

3. Select "Set up an advanced connection". 

4. Select "Connect directly to another computer". 

5. Select "Guest". 

6. Enter a name for the connection, for example "SLIP". 

7. Select the serial port for the connection. 

8. Select "Finish". 

9. Windows displays a connection window.  Select "Properties". 

10. Select "Configure..." from the "General" tab. 

11. Deselect all checkboxes. 



Chapter 7 

132 

12. Set speed to 115200 bps (this is the smxNS default, adjust as needed). 

13. Select "OK" to close the modem configuration window. 

14. Select the "Options" tab in the SLIP properties window. 

15. Deselect all except "Display progress". 

16. Select the "Networking" tab. 

17. Select "SLIP: Unix Connection". 

18. Under "This connection uses the following items:", select only "Internet Protocol (TCP/IP)" 
and "QoS Packet Scheduler". 

19. Again under "This connection uses the following items:", highlight "Internet Procotol 
(TCP/IP)" and select "Properties". 

20. Select "Use the following IP address:", and enter "192.168.2.1". 

21. Select "Advanced".  Deselect all "Advanced TCP/IP Settings". 

22. Select the "WINS" tab.  Deselect "Enable LMHOSTS lookup" if it is selected.  Select 
"Disable NetBIOS over TCP/IP". 

Please refer to the section on Null Modem Links in the PPP chapter for additional details on direct 
serial links and networking through a Windows system. 

SMTP 
Note:  SMTP is available as an extra-cost option for smxNS. 

SMTP is the Simple Mail Transfer Protocol, used for sending email.  The optional smxNS email 
client package allows an application to send an email message from a host connected to the internet. 

int SMTPsend(struct outgoing_email *request) 

The argument is: 

request Pointer to an outgoing_email structure.  This structure is filled in to describe the email 
that should be sent. 

struct outgoing_email { 
   const char *mailserver; 
   uint port; 
   const char *to; 
   const char *cc; 
   const char *from; 
   const char *subject; 
   const char *username; 
   const char *domain; 
   const char *password; 
   const char *type; 
   uint flags; 
   time_t localtime; 
   uint status; 
}; 

mailserver is a pointer to the name of the mail server that should receive the email. 



Network Applications and Protocols 

133 

port is the UDP port for the SMTP transfer. 

to, cc, from, and subject are the familiar values one sees in email headers. 

The to and cc strings can contain commas to specify multiple addresses. 

The from field can be left blank if the username and domain fields are filled in. 

The username, domain and password fields are also used as part of the authentication exchange if the 
server requests CRAM-MD5, NTLM, LOGIN or PLAIN authentication methods. 

The type string is used to fill in a “Content-type:” email header if it is present. 

The flags field can contain the SMTP_USE_SSL bitflag to direct the email client to set up an SSL 
connection to the email server.  It can also contain the SMTP_MUST_AUTHENTICATE flag to force 
the SMTP transaction to be authenticated.  If the server does not attempt to authenticate and this flag 
is set, the call will fail and no information will be transferred. 

The localtime field can be filled in with the local time in time_t format, or it can be left empty and 
SMTPsend() will call smx_SysStimeGet() to retrieve time information. 

The call returns 0 for success, < 0 for failure. 

More detailed information on error returns can be obtained by examining the status field in the 
outgoing email structure after the function call completes.  The following values may be returned: 
SMTPC_SUCCESS, SMTPC_GENERAL_ERROR, SMTPC_CONNECTION_ERROR, 
SMTPC_AUTHENTICATION_ERROR, SMTPC_PARAMETER_ERROR, 
SMTPC_RCPT_ERROR. 

The body text of the email message comes from a callback function that the email sending application 
needs to implement.  The function prototype looks like this 

int SMTPgetdata(char *buff, int buflen, struct part_info *i); 

The first time SMTPgetdata() is called, buflen will be set to 0.  This is a hint that the application 
should fill in the the part_info structure as a response to this call.  The following call will have a non-
zero value to indicate it is time to pass the content data.  Here’s the part_info structure. 

struct part_info { 
   int passthrough; 
   const char *encoding; 
   const char *type; 
   const char *filename; 
}; 

The part_info structure is cleared before SMTPgetdata() is called, so if no options are needed the 
structure can be left alone.  Here are some notes on the options. 

passthrough is a flag to indicate if the data returned in buff should be returned directly to the SMTP 
server.  If passthrough is left as 0, the outgoing buffer will be terminated with CRLF before passing 
the information to the server, otherwise the data is transferred without modification. 

encoding, type and filename are used to set up headers if needed.  Example values are “base64”, 
“application/octet-stream” and “example.bin” respectively. 

For the initial call in a sequence (where buflen = 0), SMTPgetdata() should return 0 to indicate that a 
text message is about to be returned, and 1 to indicate that a multipart message will be returned. 

After the initial call, the SMTP sending function will provide a buffer to hold the outgoing content 
and will indicate the amount of room in the buffer in buflen.  The SMTPgetdata() implementation 



Chapter 7 

134 

should fill in buff and return the number of bytes transferred as the return value.  When there is no 
more data left to transfer, SMTPgetdata() returns 0. 

For multipart transfers, SMTPgetdata() will continue to be called after the first part is complete.  
When all parts have been transferred, SMTPgetdata() should return –1. 

SNTP 
SNTP stands for Simple Network Time Protocol, and it is a simplified form of NTP, the Network 
Time Protocol.  An NTP server can service both NTP and SNTP clients.  smxNS includes an SNTP 
client function, so that time information can be retrieved from a time server. 

NTP time servers are capable of delivering 64 bits of time information, or better, with a resolution on 
the order of nanoseconds.  For the simplified SNTP version, 64 bits of time information are used, and 
this can be used to correct error in the local time source.  The time returned is based on an epoch of 
January 1, 1900, and this may need to be converted for use with the local time support.  The NTP 
server provides universal time (UTC), and will need to be adjusted for time zone and daylight savings 
time if desired. 

Get Time using SNTP 
The routine will attempt to retrieve the time from the specified NTP server.  The function accepts a 
string for the host name, and this can be either be an IP address or a name that can be looked up via 
DNS. 

Three functions are supplied that work together to retrieve time information from an NTP server and 
adjust the local time. 

s64 sns_SntpGet(char *timeserver) 

The sns_SntpGet() return codes are: 

 != 0   Adjustment for NTP time 

 0     Time request failed 

The 1900 epoch for NTP timestamps may be different from the convention supported by the C library 
or other system software.  For example, a system might use an epoch of January 1, 1970.  The sample 
code in nsdemo.c translates to this epoch by adjusting based on a point in time that is common to both 
systems.  In this case, the calculation uses UTC on January 1, 1972, which is established to be 
2,272,060,800 as an NTP timestamp. 

void sns_LocalNtpTimeAdjust(s64 adj) 

sns_LocalNtpTimeAdjust() adjusts an internally maintained time offset so that a local time reading 
can be combined with the NTP server information to provide an adjusted time. 

u64 sns_LocalNtpTimeGet(void) 

sns_LocalNtpTimeGet() reads the local time using the local time function and combines it with the 
offset provided by the NTP server.  The return value is an unsigned 64-bit value in NTP format.  The 
upper 32 bits represent whole seconds and the lower 32 bits hold fractional seconds.  The epoch for 
NTP is January 1, 1900. 

Here is an example that combines these three functions to update and then retrieve the adjusted 
current time in NTP format, adjusted to include only include the elapsed seconds information. 



Network Applications and Protocols 

135 

u32 ntptime; 
sns_LocalNtpTimeAdjust(sns_SntpGet(SNTPSERVER)); 
ntptime = sns_LocalNtpTimeGet() >> 32; 

The combination of sns_LocalNtpTimeAdjust() and sns_SntpGet() should be called periodically to 
adjust for drift in the local time source.  sns_LocalNtpTimeGet() can be called any time to get the 
current reading of the time adjusted by the offset provided by the NTP server. 

A public pool of time servers has been organized, and is available using the name “pool.ntp.org”.  
More information on this project is available at http://www.pool.ntp.org.  This should be a good 
choice for the timeserver name, so long as DNS support is available. 

The NTP messages are sent over UDP, and there is the chance that they will be lost.  This function 
does not contain retry logic, but this could be implemented at the application level.  The tests we 
conducted show the communication with servers to be reliable, despite the transport protocol. 

Telnet 
Telnet is the usual TCP/IP method of remote terminal access.  The client part of Telnet acts as a 
terminal emulator.  The server part depends quite a bit on the circumstances, but is usually a 
command processor with a remote login.  The figure below shows this relationship. 

 

Telnet
Client

Telnet
Server

Terminal
Driver

Command Shell
 

Figure 7-1:  TCP Remote Terminal Access 

 

smxNS Telnet support is implemented as a server function that handles Telnet sessions.  The function 
takes a connected Telnet connection as an argument, and uses a callback function to submit the 
command line supplied by the user and retrieve a response. 





Point To Point Protocol 

137 

8.  Point To Point Protocol (PPP) 
 

 

Overview 
The Point to Point Protocol  (PPP) is a link layer protocol that connects two hosts over a serial 
connection.  This is commonly used in data acquisition and Internet connectivity.  PPP is commonly 
used to provide TCP/IP networking for end node systems that have at least one serial port, but no 
Ethernet controller. 

For dial-up purposes (that is, using a modem and telephone line), a dialer is included.  It is also an 
option to use a personal or vendor specific dialer in place of our mechanism, though we cannot 
support this.  smxNS dialing does require the use of a precompile-time interpreter, provided in DOS 
executable format with source code.  A compiler/linker for the development OS should not have 
problems turning this into an executable file.  It is written in ANSI C.   

smxNS PPP is based on RFC 1661, and this is the most current specification of PPP at the time of this 
writing.  Related RFCs that were used in the PPP implementation include: 

        1332 IPCP 
        1334 PAP 
        1662 HDLC framing 
        1990 MP 
        1994 CHAP 
        2433 MS-CHAP 

PPP in Theory 
The Point to Point Protocol is not a server/client system.  It is commonly used that way, but only 
because it is convenient to do so.  We will use the following conventions: the side who initiates 
communications is the client and the side who is waiting to be contacted is the server.  The host is the 
side of reference (i.e. “this” side); the peer is the side opposite the reference (i.e. "that" side).  So the 
server can be peer or host and the client can be peer or host (or vice versa for either).  The peer may 
also be called a remote host. 

There are two necessary phases within PPP: Link Control Protocol phase and Network Control 
Protocol phase.  These are referred to as LCP and NCP respectively.  The LCP used by PPP is most 
recently specified in RFC1661.  The NCP phase is specified by the network layer protocols used.  In 
smxNS, the Internet Protocol    (IP) is used in our network layer, so we use the Internet Protocol 
Control Protocol (RFC1332).  A third phase, commonly included at the end of the LCP phase and 
before the NCP phase, is authentication.  Generally, the Password Authentication Protocol (PAP from 
RFC1334) or Challenge Handshake Authentication Protocol   (CHAP from RFC1994 or MS-CHAP 
from RFC2433) is used. 



Chapter 8 
 

138 

LCP Phase 
The LCP phase determines the requirements and capabilities of both sides of a PPP link before actual 
communications begin.  Let us refer to the client as the host and the server as the peer.  Typically, the 
client (host) sends a configure-request packet ("conf-req") to the server (peer) to initiate 
communications.  This packet contains a list of options that the host would prefer to use in the future.  
The peer should respond with either a configure-acknowledge ("conf-ack") or a configure-negative-
acknowledge ("conf-nak") according to its satisfaction with the options within the conf-req.  Also, 
when a peer receives a conf-req, it will send a conf-req back with the options it would like to use, so 
the process is mutual.  If the host receives a conf-nak, then the peer was dissatisfied with the options 
enabled and the host must reconfigure itself and send a new set of options corresponding to the 
wishes/abilities of the peer in a new conf-req.  If the options nak'd (negatively-acknowledged) are 
necessary for correct functioning of the host, the host must terminate the link negotiations. 

If the host received a conf-ack, the host must wait to receive the peer's conf-req.  If the host gets the 
conf-req and the options requested are acceptable, the host must send a conf-ack.  At this point, the 
LCP phase is Open and the next phase should be initiated.  If a timeout occurs before the conf-req is 
received, the host must re-send its conf-req and restart its half of the negotiations. 

Authentication Phase (PAP/CHAP) 
Authentication is used to decide what level of access the authenticatee should have to the 
authenticator.  This is usually a "all- or-nothing" sort of thing.  Using the same pair from LCP as an 
example, we continue on to authentication.  Let us assume that the peer (server) requested PAP in its 
conf-req.  This would require the host (client) to now send an authentication-request ("auth-req").  
This packet includes a user ID and a password.  smxNS does not encrypt these.  If the peer finds the 
user ID and the password acceptable, the host should receive an authentication-acknowledge ("auth-
ack") and authentication would be completed.  If the peer finds the user ID and password 
unacceptable, the host should receive an authentication-negative-acknowledge ("auth-nak") and the 
link should be terminated by the peer (this is not necessarily true, however). 

Let us go back to the end of LCP and assume that the peer had requested CHAP in its conf-req instead 
of PAP.  The peer (server) would then send a challenge (some unique value to be hashed).  The host 
(client) would then tag on its password (secret) to the challenge and hash it with MD5.  It would place 
this hashed value in a response and send it back.  The peer would hash what should be the same thing 
on their side and compare it to the original. If they match, the peer would send a success packet and 
authentication would be concluded; otherwise, it would send a failure packet and the link should 
terminate (although it may continue on).  There are two distinct advantages about CHAP over PAP.  
Primarily, the raw password is never sent over the network (this does mean that both sides must 
maintain a copy of the password).  Secondarily, the authenticator authenticates the authenticatee (i.e. 
sends the first packet) rather than forcing the authenticatee to authenticate itself to the authenticator. 

MS-CHAP is different than CHAP.  It makes use of the MD4 algorithm to hash the password. 

Mutual authentication is appropriate, and often suggested as a means of increasing security, though 
most "servers" will not allow this.  smxNS will allow this, though some work may need to be done for 
its role as an authenticator.  smxNS has no pre-configured mechanism for storing a table of User IDs 
and secrets (passwords) for potential peers, though the structure to access that table is in place. 

NCP Phase 
Once the LCP is finished (and authentication if necessary), the NCP phase(s) must start.  We use 
IPCP, as mentioned earlier.  The behavior is nearly identical to the LCP phase, but its purpose is not 



Point To Point Protocol 

139 

to set up link layer communications but to set up network layer communications for the IP protocol, 
including the IP address. 

Optionally, smxNS allows a host to use Van Jacobson TCP/IP header compression.  It is negotiated 
during IPCP.  Throughput should increase slightly when using this.  

PPP in Practice 
 

Usage 
Set up the network interface to an appropriate state.  Here are examples for use with PPP: 

  Portcreate(“ppp0”); 
Portconfig(“ppp0”, “IP”, “0.0.0.0”); 
Portconfig(“ppp0”, “LINK”, “PPP”); 
Portconfig(“ppp0”, “DRIVER”, “NS16550”); 
Portinit(“ppp0”, “IRNO=3 PORT=0x2F8 CLOCK=115200 BAUD=9600”); 

 "ppp0" — A smxNS host that connects to other hosts through a null modem.  It has no IP 
address assigned statically so it is assumed that the peer will provide one during IPCP. 

  Portcreate(“pppd0”); 
Portconfig(“pppd0”, “IP”, “0.0.0.0”); 
Portconfig(“pppd0”, “LINK”, “PPP”); 
Portconfig(“pppd0”, “DRIVER”, “NS16550”); 
Portconfig(“pppd0”, “DIAL”, “ENABLE”); 
Portinit(“pppd0”, “IRNO=4 PORT=0x3F8 CLOCK=115200 BAUD=9600”); 

 "pppd0" — A smxNS host that connects to other hosts through a modem.  It has no static IP 
address so it is assumed that the peer will assign one during IPCP. The only difference between 
this interface configuration and "ppp0" is the “DIAL” attribute is turned on.  The macro, 
DIALD, needs to be configured to 1 in include\pppconf.h in order to use this entry. 

  Portcreate(“pppd1”); 
Portconfig(“pppd1”, “IP”, “206.251.94.242”); 
Portconfig(“pppd1”, “LINK”, “PPP”); 
Portconfig(“pppd1”, “DRIVER”, “NS16550”); 
Portconfig(“pppd1”, “DIAL”, “ENABLE”); 
Portconfig(“pppd1”, “PEER”, “206.251.94.243”); 
Portinit(“pppd1”, “IRNO=3 PORT=0x2F8 CLOCK=115200 BAUD=9600”); 

 "pppd1" — A smxNS host that connects to other hosts through a modem.  This host has an IP 
address.  If a peer dials into it, this host will be able to assign the peer the IP address from 
"PEER".  The macro, DIALD, will need to be configured to 1 in include\pppconf.h in order to 
use this entry. 

Note that for PPP connections, the PPP peer will act as the default router unless another default router 
is configured. If necessary, the host may have other interfaces to which subnetting still applies.  If 
anything is not in that subnet, the default router, specified by SetDefaultRouter(), will be used. 

The BIN directory contains the file prefrmt.exe.  This is in DOS executable format.  The source code 
for this file is in the BIN\PREFRMT directory under the name prefrmt.c.  If the development machine 
cannot execute DOS applications, prefrmt.c should be compiled for the appropriate OS.  The source 
code's only dependancy is having script.h and script2.h in the include path. If script2.h does not exist, 



Chapter 8 
 

140 

make an empty file in the same directory as script.h called "script2.h" (it is normally generated during 
the standard build process).  Make sure the resulting executable file ends up in the BIN directory. 

If scripted dialing will be used (DIALD == 1), the script files may require modifications to interact 
more correctly with the modem being used. 

 dial-in.scr — This is used to allow a remote host to dial into smxNS.  It uses manual answer mode 
but may be changed to use auto answer. 

 dial-out.scr — This is used to dial out to a remote host over a line.  At least the phone number will 
have to be changed along with any special considerations for flow control or other modem or 
line specific properties. 

 dial-dwn.scr — This is made to de-initialize a modem after a session has ended.  This is not 
absolutely necessary, but it makes it easier to bring the modem up the next time. 

See the "Scripting" section later in this manual for assistance with the function of these files. 

When first starting or if scripts or pppconf.h options are changed, consider turning PPP_DEBUG to 1.  
This will make changes and their effects more readily apparent.  It will also reveal areas that may 
need adjustment. 

Configuration 
All PPP related macro values are defined in include\pppconf.h.  They are quite extensive and some of 
them interact with each other, so it is important to understand what they do when changing them.  In 
the state it is shipped in, PPP should be able to establish a link with most implementations using a null 
modem. 

PPP_DEBUG 

smxNS PPP comes with a module called pppdebug.c which can parse and print out, with 
Nprintf(), the frames that are sent and received by the link.  This macro enables/disables this 
capability.  It is useful to set this macro to 1 while configuring the PPP link.  Once the link is 
behaving appropriately, this can be set to 0 and only warnings and errors will be printed out with 
Nprintf().  SNS_DEBUG_LEVEL takes precedence over this value. 

DIALD 
This specifies whether PPP will use the dialer automatically.  See later sections of this document 
for further information. 

DBUFFER 
PPP starts negotiations when the application forces the link up explicitly or when the first 
datagram is transmitted.  This option tells PPP to buffer datagrams while the link comes up.  By 
default this is on. 

DBUFFER_SZ 
This tells PPP how many buffers to queue up while waiting for the link to become established.  
The default value is NBUFFS/NNETS so that PPP doesn't starve the rest of smxNS out of buffers 
but has enough to effectively perform the function of dial-on-demand. 

IDLE_TOUT 
This value specifies the amount of vacant time in seconds (TimeMS()/1000) in the link before it is 
closed manually.  As delivered, it is disabled with a value of 0. 

ECHO_TOUTMS 
This value specifies the amount of time (in TimeMS() milliseconds) in an open link between echo-
request packets being sent.  This can be used to check the link quality or to check if the peer has 
disappeared (if the peer loses connectivity without warning). 



Point To Point Protocol 

141 

ECHO_RETRIES 
This value specifies the number of echo-request packets sent without a reply before the link is 
deemed bad and is set to close.  Setting ECHO_TOUTMS to a positive non-zero value enables 
this. 

PPP_USERID 
Because the PPP authentication user ID may differ from the application level user ID, we provide 
this value.  It defaults to the application layer user ID.  This value is set in Portinit() and can be 
changed thereafter through the ioctl routine (see the PPP ioctl Routines section). 

PPP_PASSWD 
Because the PPP authentication password may differ from the application level password, we 
provide this value.  It defaults to the application layer password.  This value is set in Portinit() and 
can be changed thereafter through the ioctl routine (see the PPP ioctl Routines section). 

AUTHENT 
We support PAP, CHAP and MS-CHAP authentication.  This macro specifies which of those we 
will allow a peer to use on us.  For client-oriented applications, this will usually be set to allow all 
three.  For server-oriented applications, most people turn this off to save code space.  All three are 
enabled by default. 

USE_NT 
Set this to one to use NT style challenge response.  Set to zero for Lan Manager style challenge 
response.  It is best to leave this on unless the remote host is a Lan Manager or an old Windows 
machine. 

REQAUTH 
This specifies which authentication will be requested by the smxNS host.  For CHAP/MS-CHAP, 
AUTH_ALG must also be set (see below).  For PAP, it is what it is. 

AUTH_ALG 
For MS-CHAP, this value must be set to CHAPalg_MD4; for normal CHAP, the value must be set 
to CHAPalg_MD5. 

TOUTMS 
This is the elapsed time in milliseconds (TimeMS()) before time out.  Our default is 2.5 seconds 
(2500) though RFC 1661 sets the default at three seconds.  It has been noted that race conditions 
occur more frequently with smaller values, though every link is different.  Links that come up 
slowly may need a smaller timeout period.  Links that do not come up at all may require a longer 
timeout period. 

TOUT_GROW 
This specifies whether or not the restart timer should start small and grow to the maximum 
timeout value (TOUTMS) as link quality is assessed to be poor.  It is off by default.  When on, this 
may cause more retransmissions than necessary at the start of negotiations. 

MAXCONF 
This is the value in the restart counter for both LCP and IPCP.  It should default to ten.  The 
configuration packet will be resent this many times without response before the link is set to close. 

MAXTERM 
This is the value in the restart counter for LCP when closing.  It should default to three.  The 
terminate request packet will be resent this many times without acknowledgement before the link 
is forced closed. 

COMPRESSION 
This can be set to request and support protocol field and address/control field compression and/or 
VJ TCP/IP header compression.  It is generally best to leave this at 3 to support both types as this 
will increase your throughput slightly.  If code size is favored, it is best to leave this at either 1 (for 



Chapter 8 
 

142 

address/control/protocol field compression) or 0 (for no compression).  VJ compression requires a 
great deal of code, but the others do not. 

MAXSLOTS 
Maximum slots for TCP/IP (VJ) header compression.  See RFC 1144 for more information or 
leave them at their default values.  They basically correspond to the number of TCP connections 
coexisting on the link. 

PPP_MRU 
Specifies whether or not the host will negotiate the MRU (Maximum Receive Unit) for smxNS.  
This value is equivalent to (MAXBUF - MESSH_SZ - LHDRSZ) in smxNS.  Unless you are 
planning on reducing buffer size, this is not necessary. 

MAGICNUM 
Specifies whether or not the host will use Magic number with LCP.  Unless you really want to 
save on the amount of data sent, leave this on.  It is standard for almost all PPP links. 

ASYNC 
RFC 1662 tells of HDLC framing and the character escaping mechanism.  This option will request 
that the peer use the RACCM value (see below) as its character map when sending to us.  This 
option is enabled by default. 

RACCM 
This is the Remote Asynchronous Control Character Mapping.  This option is only negotiated if 
ASYNC is enabled (see above).  It is a 32-bit field where each bit corresponds to a character < 
0x20.  If the bit is set, PPP HDLC encoding must escape the character.  Therefore, a value of 
0x00000000 increases throughput the most but decreases reliability.  A value of 0xffffffff escapes 
all characters and decreases throughput.  The default value is 0x00000000. 

IPCP_DNS 
RFC 1877 includes extensions for PPP that allow configuration of DNS addresses during IPCP.  
This is not recommended except for dedicated devices with minimal application functionality and 
is disabled by default. 

There are two parts to this option.  The active configuration and the passive configuration.  When 
the active portion is enabled (by setting bit 0 to 1), the host will send a configure-request with the 
current DNSiid.  Typically, this will not have been configured by the application and will be 
0.0.0.0 for both primary and secondary addresses.  When the passive portion is enabled, the host 
will do nothing unless a configure-request is received for either the primary or secondary DNS in 
which case the host will reply with a Nak of the address if it does not match the host's DNSiid as 
configured by the application through SetDNS(). 

MP 
The Multilink Protocol (RFC 1990) is enabled by a new Maximum Reconstructed Receive Unit.  
The endpoint discriminator is negotiated along with the MRRU.  This option is not tested and is 
not considered a supported feature. 

MPBUF 
The number of buffers MP packets can occupy.  Reasonably, no host should fragment any packet 
into more pieces than the number of physical connections. 

AUTH_ACK_REPLY 
When the peer passes authentication, this string is sent.  It does not matter what it is, though the 
peer application may see it. 

AUTH_NAK_REPLY 
When the peer fails authentication, this string is sent.  In MS-CHAP, a result code and retry flag is 
sent instead.  If SNS_DEBUG_LEVEL >= 5 and PPP_DEBUG is on, the Message field of this 
packet will appear as strange characters because of the MS-CHAP result code. 



Point To Point Protocol 

143 

QUALITY 
This allows the peer to use link quality report monitoring.  Very few implementations support this 
so you will want to leave this off.  If you do wish to use this, contact Micro Digital PPP support. 

Scripting 
In order for PPP to function over a modem, there are three non-error cases that must be handled: 

1.  If PPP needs to actively establish a link to a remote host over a modem line, the modem needs 
to dial out to the remote host prior to the initiation of PPP. 

2.  If PPP is waiting for a remote host to establish a link over a phone line, it must configure the 
modem to wait for such an event and perform some actions when the event occurs. 

3.  If either the host or the peer terminates PPP, the modem should be configured to a default state 
to wait for further action. 

In order to facilitate this operation, there are several scripts used by smxNS dial-on-demand: 

1. pppsrc\dial-out.scr — This is written to configure the modem to dial a phone number to a 
remote host for active links.  Once it is completed successfully, PPP is initiated.  It checks the 
condition of the modem, changes it to off-line mode if necessary and dials the phone number.  
If the attempt to connect fails because of a modem error condition (e.g. no dialtone), the script 
will try a few more times.  If the modem is not responding, the script will attempt to bring the 
modem to off-line mode (see dial-dwn.scr below).  The phone number is defined as a global 
variable that can be changed in your application.  There is more information on variables in 
scripts in the "Commands" section following number 3 below. 

2. pppsrc\dial-dwn.scr — This is written to configure the modem to be in terminal mode after 
being in on-line mode.  It hangs up the line.  In order to force a modem to off-line mode, most 
require that the string "+++" be sent surrounded by a guard time of 1 or 2 seconds of silence.  
The default script will successively increase the guard time from 1 to 5 seconds if the modem is 
not responding.  At that point the script will fail.  If the modem returns to terminal mode, the 
script succeeds. 

3. pppsrc\dial-in.scr — This is written to configure the modem to wait for an incoming call and 
answer it when it comes.  PPP will wait passively once the script finishes with success.  With 
the current setup, this script is executed while PPP is down for all links.  If you will only be 
dialing out, an empty file (null script) can be used in its place in order to save a little CPU time.  
The current script should never finish unless an incoming call is received. 

There are three additional scripts for logging into Windows based machines when using a physical 
null modem instead of a conventional modem. 

1. pppsrc\ms-out.scr — This is written to send the string CLIENT to the passive machine.  The 
string, CLIENTSERVER, is expected in response after which the script is successfully 
completed and PPP data can flow. 

2. pppsrc\ms-dwn.scr — This is written to disconnect from a directly connected Windows 
machine.  It sends the string, None, and terminates. 

3. pppsrc\ms-in.scr — This script waits forever for the string, CLIENT.  If received, the string 
CLIENTSERVER is sent followed by some carriage returns and the script completes 
successfully so that PPP data can flow. 

Commands used by scripts: 

FILE name     
# Name the file being used ('name' in this case). 



Chapter 8 
 

144 

GOTO 3      
# Go to tag 3 unconditionally. 

:3      
# This marks the position for tag 3 

CHECK 1 3     
# If the internal status is good 
#    go to tag 1, 
# Else 
#    go to tag 3. 

INIT     
# Make the internal status good. 

%retries 5     
# Set the initial value of %retries to 5.  Future 
#   references to %retries will become an integer value 
#   at run time.  The name is arbitrary (like any 
#   variable name).  Any characters can be in a variable 
#   name except for '\r', '\n' or ' '. 
#      %bad\rvariablename 
#      %bad variable name 
#      %good_variable_name 
#      %bad_variable_name_this_is_just_too_long 
# 
#   The default variable name length is 30 characters. 

-- %retries 
# Decrement the value of %retries by one.  Include a 
#   space between the "--" and the '%'. 

++ %retries     
# Increment the value of %retries by one.  Include a 
#   space between the "--" and the '%'. 

 (%retries < 0) 1 2     
# If the value of %retries is less than 0, 
#   goto 1, 
# Else 
#   goto 2. 
# 
# >, <, >=, <=, == are supported operators. 
# 
# Either of the two comparison values can be an integer 
#   variable or integer value.  Any variables must be 
#   locally defined in a script. 

$USERID test     
# Declare USERID as a pointer to "test".  Future 
#   references to $USERID will become "test".  Note that 
#   USERID is a global that can be referenced by your C 
#   application.  It is a char *.  Don't be afraid to 
#   point it to a new location. 
# 
#   #include "..\pppsrc\script.h" 
#   char *new_string = "new_string"; 
#   void func(void) 



Point To Point Protocol 

145 

#   { 
#       USERID = new_string; 
#   } 

SEND ATD 1 $PHONENUM \r   
# Send 8-bit data string to modem.  This particular 
#   sequence will dial the phone number prefixed with 
#   a 1.  The "\r" is necessary for most modems to 
#   signal the end of a command sequence.  NOTE: a ' ' 
#   (space character) is required between a variable 
#   name and any other form of data.  This makes 
#   variables distinct while parsing the script. 

EXPECT 5 OK     
# If "OK" is not received in 5 seconds, make the internal 
#   status bad and go on. 
# If "OK" is received in 5 seconds or less, just go on. 

PAUSE 5   
# Yield control for five seconds. 

DEBUG 3 Hello, World!   
# If SNS_DEBUG_LEVEL >= 3, 
#   print "Hello, World!" to stdout. 
# Else, 
#   preprocess this command out. 

>logArray 20 
# Create an array of 20 bytes to log with 

LOG >logArray   
# Start putting incoming data into array 

NOLOG      
# Stop saving incoming data 

These scripts may need modification for any particular environment.  The rules for doing so are 
mentioned below.  While going though them, it is recommended that a dial script be at hand to make 
references tangible.  It is important to remember that the script is parsed into a series of arrays at build 
time.  During execution of the application the arrays are stepped through to discover their outcomes. 

Read time rules 

 - Each command must be on its own line. 

 - Anything following '#', the comment character, on a single line will be ignored. 

 - A file line will be truncated after 80 characters. 

 - prefrmt always expects the scripts to be in the order dial in, dial out and dial down. 

Run time rules 

- The status flag is internal.  The status becomes good when INIT is performed.  The status 
becomes bad when an EXPECT or SEND times out (i.e. the expected data is not received or sent 
data never sent).  Until the status flag is reset, SEND and EXPECT operations will be skipped. 

- Except for GOTO, CHECK and the if-else operation, all of which move the script index to the 
appropriate TAG value, the commands are performed in the order of the script. 



Chapter 8 
 

146 

Variable usage 

- Variables must be declared before they are used.  String and log variables have global scope, 
however, so they can be declared in a prior module and used in a later one: 

  dial-in declares ussDialVar 

  dial-out uses ussDialVar without declaring it 

 - Do not define a single variable multiple times.  Remember, string and log variables have global 
scope. 

- Variables must be surrounded by space characters so that they can be differentiated from other 
strings.  Upon transmission or reception, the spaces will be disregarded. 

- For SEND or EXPECT, data is concatenated at run time as if there were no space or tab 
characters.  Carriage returns can be placed in a string by using "\r" or "^M".  These can be used 
without spaces between them and other strings; however, there must be a space between them 
and variable references. 

Suggestions 

- We recommend that SEND and EXPECT are always performed in pairs.  If a DEBUG statement 
or other time consuming command is performed in between, chances are that the EXPECT will 
not be installed early enough to receive the data provided from the modem as a response to the 
SEND information. 

- Loops that may require a significant amount of time should have a SEND, EXPECT, PAUSE or 
DEBUG statement inside of them.  All other commands are concatenated in execution and will 
block.  For example, the following should never be done because it will starve the rest of smxNS. 

  INIT 
  :1 
  %temp 30000 
  (%temp >= 0) 1 2 
  -- %temp 
  :2 

 Adding the following just after tag 1 will remedy the situation. 

  PAUSE 0 

Notes on Special Cases 

Dial On Demand 

Although it is good to be able to send/receive data regardless of the state of the link, our present   
implementation has no direct access to the driver.  This means that certain important functions (like 
checking the wire status) must be performed with timeouts and assumptions. 

A second concern with dial-on-demand is that the link often requires a great deal of time to come up 
(configuring the modem, dialing out, bringing LCP, authentication and NCP up).  If the upper layers 
require timely feed back from the remote host, replies may not arrive quickly enough.  For purposes 
such as forwarding segments periodically over an open connection, it may serve a valuable purpose.  
There is a method to force the link to be either up or down.  See the appendix for details. 



Point To Point Protocol 

147 

One last area of concern is the IP address negotiations used by PPP.  If the dial-up server requires that 
the host change its IP address, the connection may become invalid.  Therefore, make sure that the 
original IP address remains through each demand dial session.  One method of gaining this 
information is through the PPP ioctl() function and the PPP signal functions.  Modify the following 
macro in pppsig.h: 

 extern Iid previous_ip; 
     #define PPPSIG_IPCP_UP(netno) \ 
                do { \ 
                    Iid ip; \ 
                    ussPPPTable.ioctl(&nets[netno], \ 
                        ussPPPHostAddressGetE, &id, 4); \ 
                    if (id.l != previous_ip.l) { \ 
                        PPPSIG_PRINT("Warning: IP address changed!\n", netno); \ 
                        abort_application_connections(); \ 
                    } \ 
                } while (0) 

The PPPSIG_IPCP_UP() macro is chosen because it always procedes the IPCP layer where IP 
addresses are negotiated.  The do { ... } while(0) phrase is used to encapsulate the command as a 
single expression. 

Null Modem Links to Window Machines 

Three special scripts were created to support this operation more efficiently.  They are ms-in.scr, ms-
out.scr, and ms-down.scr in the pppsrc directory. 

Special considerations: 

Windows 95 – This operating system would not behave as a dial-up server so smxNS was always 
the passive host when connecting to Win95 machines. 

Windows 98 – We were not able to install a null modem into the operating system and were 
forced to seek a third party solution.  There was no problem using this operating system with 
conventional telephone modems.  Contact Micro Digital PPP support for information about the 
driver used if the null modem cannot be configured. 

Windows NT – A special null modem cable or adapter was required to allow a physical 
connection between the hosts.  The Microsoft web site has ample information about this issue.  
Otherwise, everything worked as expected. 

Windows 2000 – A null modem cable is required.  Steps for setting up the connection: 

1. Select Start, Settings, Network and Dial-up Connections. 

2. Double click on "Make New Connection". 

3. Both a "Network Connection Wizard" and a "Location Information" dialog box will appear.  
In the "Location Information" dialog box, fill in a dummy value in the "What area code (or 
city code) are you in now?" box, and select "OK". 

4. From the "Phone And Modem Options" dialog box, select "OK". 

5. Now the "Network Connection Wizard" dialog box remains on the screen.  Select "Next>". 

6. Select "Connect directly to another computer". 

7. Select "Guest". 



Chapter 8 
 

148 

8. Select the serial port for the connection. 

9. Select "For all users". 

10. Enter a name for the connection, for example "PPP". 

11. Select "Finish". 

12. Windows displays a connection window.  Select "Properties". 

13. Under the "General" tab, make sure the communication port that you selected earlier is still 
selected. 

14. Select "Configure..." from the "General" tab. 

15. Deselect all checkboxes. 

16. Set speed to 115200 bps (this is the smxNS default, adjust as needed). 

17. Select "OK" to close the modem configuration window. 

18. Select the "Options" tab in the PPP properties window. 

19. Deselect all except "Display progress". 

20. Select the "Networking" tab. 

21. Select "PPP: Windows 95/98/NT4/2000, Internet". 

22. Under "This connection uses the following items:", select only  "Internet Protocol (TCP/IP)". 

23. Again under "This connection uses the following items:", highlight "Internet Procotol 
(TCP/IP)" and select "Properties". 

24. Select "Use the following IP address:", and enter "192.168.2.1". Any unused IP address 
should work, but one that is "next" to the address assigned to the attached PPP port is easier to 
keep track of. 

25. Select "Advanced".  Deselect all "Advanced TCP/IP Settings". 

26. Select the "WINS" tab.  Deselect "Enable LMHOSTS lookup" if it is selected. 

27. Select OK.  You will be asked "This connection has an empty primary WINS address.  Do 
you want to continue?".  Select "Yes". 

28. Select OK two more times to close the configuration dialog boxes. 

Windows XP – A null modem cable is required.  Here are the steps for setting up the connection. 

1. Select Start, then right click on My Network Places and select Properties. 

2. Select "Create a new connection".  Select "Next". 

3. Select "Set up an advanced connection". 

4. Select "Connect directly to another computer". 

5. Select "Guest". 

6. Enter a name for the connection, for example "PPP". 

7. Select the serial port for the connection. 

8. Select "Finish". 



Point To Point Protocol 

149 

9. Windows displays a connection window.  Select "Properties". 

10. Select "Configure..." from the "General" tab. 

11. Deselect all checkboxes. 

12. Set speed to 115200 bps (this is the smxNS default, adjust as needed). 

13. Select "OK" to close the modem configuration window. 

14. Select the "Options" tab in the PPP properties window. 

15. Deselect all except "Display progress". 

16. Select the "Networking" tab. 

17. Select "PPP: Windows 95/98/NT4/2000, Internet". 

18. Under "This connection uses the following items:", select only "Network Monitor Driver", 
"Internet Protocol (TCP/IP)" and  "QoS Packet Scheduler". 

19. Again under "This connection uses the following items:", highlight "Internet Procotol 
(TCP/IP)" and select "Properties". 

20. Select "Use the following IP address:", and enter "192.168.2.1".  Any unused IP address 
should work, but one that is "next" to the address assigned to the attached PPP port is easier to 
keep track of. 

21. Select "Advanced".  Deselect all "Advanced TCP/IP Settings". 

22. Select the "WINS" tab.  Deselect "Enable LMHOSTS lookup" if it is selected.  Select 
"Disable NetBIOS over TCP/IP". 

23. Select OK until all the configuration dialog boxes are closed.  

To enable traffic to flow over this connection, first start the system running smxNS, then bring up the 
Network Connections dialog box by selecting Start | My Network Places | View Network 
Connections.  Now double click on the name of connection that you configured, i.e. “PPP”, and you 
should see the connection status change from “Disconnected” to “Connected”. 

Once the connection has been established, the directly linked XP host computer will be able to contact 
the smxNS system at its IP address.  In order for other systems to establish connections with the 
smxNS system, they must be updated with routing information that indicates that the smxNS system 
is accessible via the linked XP host.  In addition, the XP host must have IP forwarding turned on in 
order for IP datagrams to be forwarded between its LAN connection and the SLIP connection. 

In order to turn on IP forwarding on a Windows XP computer: 

1. Start Registry Editor (regedit.exe). 

2. Open the following registry key: 

3. HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

4. If the value of IPEnableRouter is not 1, change it to 1. 

5. Reboot the computer. 

The Windows route command can be used to install a static route that allows other Windows 
computers on the LAN to reach a system that is connected via SLIP or PPP.  This is best illustrated by 
an example.  An smxNS system is configured to use PPP over an interface with an IP address of 
192.168.2.2.  The computer that is directly connected to the smxNS computer has an Ethernet 
interface with the address 192.168.1.100, and the other computers on the LAN are on the 192.168.1.X 



Chapter 8 
 

150 

network.  The following route command can be used to update a Windows XP routing table so that it 
can access the smxNS system. 

C:>route add 192.168.2.0 mask 255.255.255.0 192.168.1.100 

In the same scenario, if the SLIP connected smxNS system needs to communicate with systems on the 
Internet, the default router should be configured with a static route to the smxNS system.  If the 
default router is consumer device, this configuration may be possible through an advanced LAN 
configuration web page.  The web GUI should take similar parameters. 

To summarize, when a direct serial link connects an smxNS system to a Windows computer: 

1. The smxNS system should be able to communicate with the directly connected Windows 
computer without any special configuration changes. 

2. The smxNS system should be able to communicate with other systems on the LAN once IP 
forwarding is turned on in the directly connected Windows computer, and once the peer computer 
on the LAN has been updated with information on the route to the smxNS system. 

3. The smxNS system should be able to communicate with the Internet once IP forwarding is turned 
on in the directly connected Windows computer, and once the default gateway has been updated 
with information on the route to the smxNS system. 

MS-CHAP Authentication 

This form of authentication is commonly performed when establishing a link with a Microsoft system.  
Note that the domain must be prepended to the user name.  At the time this was implemented, one NT 
server had the domain USSOFTWARE so a person's user ID was "USSOFTWARE\\name".  
Authentication will fail without this.  Of course, if smxNS is the authenticator rather than the 
authenticatee, the user ID is whatever smxNS says it is.  Also, NT supports passwords of up to 256 
Unicode characters, but we recommend that you not make use of this feature and use conventional 
passwords. 

Routing and IP Addresses with PPP Interfaces 

IPCP has the ability to change an interface's IP address.  Many client-oriented interfaces will not 
know either their own IP address, the peer's IP address or both.  The host address is changed if it is 
0.0.0.0 and the remote host can provide a new one. In order to bring about the features mentioned, 
there are two cases to consider.  Each case can be configured using the Portconfig() function. 

 CASE 1: 

If smxNS is a server, an IP address to be assigned to the remote host can be specified by 
calling Portconfig() with the “PEER” attribute.  When the peer suggests that its address 
be 0.0.0.0, smxNS will respond with a hint to use the one statically defined and the peer 
should take the hint. 

 CASE 2: 

If smxNS is running as a client with a PPP interface, it is recommended that (unless the 
host IP address is known to not change) the host address be defined as 0.0.0.0.  The 
subnet mask must be set to a value corresponding to what will be true of the future IPs 
and the rest of the network in general.  This means that some information must be known 
about the remote network.  For those situations where there is only one interface on your 
smxNS host, subnet masks do not matter because the remote host will always be the 
default router.  If you wish to communicate with the peer, you can retrieve the IP address 
using the PPP ioctl() function as described below. 



Point To Point Protocol 

151 

Another way to gain access to the IP addresses is through the PPP ioctl() function.  The following 
options are available: 

  ussPPPHostAddressGetE   — Get the host address 
  ussPPPHostAddressSetE   — Set the host address 
  ussPPPRemoteAddressGetE — Get the remote address 
  ussPPPRemoteAddressSetE — Set the remote address 

Note that the 'Get' ioctl() operations can only yield useful information after IP address negotiations 
(i.e. when PPP is open).  The 'Set' ioclt() operations can only be used prior to link negotiations (i.e. 
when PPP is closed). 

Renegotiation of IP Address 

PPP always negotiates the host and peer IP addresses.  In the case where the host address is unknown, 
PPP will request a 0.0.0.0 address and the peer will reply with a valid one to use instead.  Once PPP is 
established, the new IP address is assigned to the host.  If PPP goes down and then renegotiates a new 
link, the last negotiated host address will be requested.  Usually the peer will assign a new address if 
the requested one is not valid, but it may be the case that the peer cannot handle this address and will 
either abort the link or let network layer operations fail by administering incorrect IP addresses.  For 
cases such as this, the smxNS PPP must be configured to reset the host address to 0.0.0.0 between 
PPP negotiation sequences.  The best way to do this is to assign the host address once LCP completes.  
The macro, PPPSIG_LCP_UP(netno), in pppsig.h can be defined to a value to modify the host IP 
address.  The host address is stored in the nets[netno].haddr field.  Here is an example macro 
definition: 

 #define PPPSIG_LCP_UP(netno) \ 
                do { \ 
                    Iid id; \ 
                    ussPPPTable.ioctl(&nets[netno], \ 
                        ussPPPHostAddressSetE, &id, 4); \ 
                } while (0) 

The PPPSIG_LCP_UP() macro is chosen because it always precedes an IPCP request. 

The do { ... } while(0) phrase is used to encapsulate the command as a single expression. 

Handling Loss of Carrier 

Sometimes modems go off-line or a line breaks without warning.  This situation can be dealt with in a 
variety of ways.  The following cases examine a few examples and their relative advantages and 
disadvantages. 

CASE 1    Application level timeout 

Protocols such as TCP or other application level protocols often have timeout periods for 
expected data.  If the PPP link becomes disestablished, there is a good chance that the 
upper-level protocols will be able to detect this error and restart the application when they 
notice that their data is not arriving in a timely manner. 

  Advantages 

   requires no initial engineering effort 

   requires no extra code 



Chapter 8 
 

152 

  Disadvantages 

requires a lot of time (depending on the application)  to notice that data is not 
arriving. 

CASE 2    PPP echo-request detect loss of link 

PPP has a feature similar to the ping operation of IP level systems called the LCP echo-
request packet.  smxNS PPP can be configured to transmit this echo-request packet 
periodically.  If a certain number of packets are sent in a row without any reply, the link 
is automatically terminated. 

  As an example, define the following in pppconf.h: 

   #define ECHO_TOUTMS 2500 
   #define ECHO_RETRIES 3 

Given the above definitions and a broken link, PPP will recognize the failed link in a 
maximum of ECHO_TOUTMS * (ECHO_RETRIES + 1) milliseconds. 

The application will probably need to be informed of the condition.  The 
PPP_LINK_DOWN(netno) macro from pppsig.h can be used for this purpose. 

  Advantages 

   requires minimal engineering effort 

   relatively quick response time 

  Disadvantages 

   requires a timeout period with retransmission  to detect a physical line break 

   does not detect looped-back condition 

   application must be signalled of link failure 

 CASE 3    PPP echo-request detect modem looped-back 

If a Hayes modem is being used, the modem may enter echo mode automatically when it 
goes off-line.  This feature enables PPP to depend on the magic number within the echo-
request packet to detect a looped-back link.  To use this feature, MAGICNUM, 
CHECK_LOOPED_BACK and ECHO_TOUTMS must all be enabled in pppconf.h.  
Once enabled, PPP will transmit echo-request packets periodically.  It will notice that the 
packets contain the same magic number and will ignore them which will eventually force 
PPP to conclude that the peer is no longer available. 

  As an example, define the following in pppconf.h: 

   #define MAGICNUM 1 
   #define CHECK_LOOP_BACK 1 
   #define ECHO_TOUTMS 2500 
   #define ECHO_RETRIES 3 

The above options will for PPP to send an echo-request packet every 2.5 seconds.  If the 
modem goes off-line it will start echoing back all data.  PPP will ignore the echo-
request/reply packets and will force a link termination after 3 retransmissions of the echo-
request packet.  This will take a maximum of ECHO_TOUTMS * (ECHO_RETRIES + 
1) milliseconds. 

The application will probably need to be informed of the condition.  The 
PPP_LINK_DOWN(netno) macro from pppsig.h can be used for this purpose. 



Point To Point Protocol 

153 

  Advantages 

   requires minimal engineering effort 

   relatively quick response time 

   discovers looped-back condition 

  Disadvantages 

   requires a timeout period with retransmission to detect a physical line break 

   application must be signalled of link failure 

CASE 4    Application detect and handle link break 

If the driver or application software can detect a change in line status corresponding to 
either modem loss of carrier or physical line break, the PPP link can be instantly forced 
shut. 

  Write the following code in a new module: 

    
   #include "smxns.h" 
   #include "ppp.h" 
   #include "dialapi.h" 

                static char ppp_kill_flag[NNETS]; 

                  void LOST_CARRIER_OR_LINE_BREAK_FOR_PPP(int netno) 
   { 
    ppp_kill_flag[netno] = 1; 
   } 

                  void nettask_ifkillflag(int netno) { 
          if (ppp_kill_flag[netno]) { 
    smx_TaskLock(); 
    nets[netno].state = PPPclsd; 
   #if DIALD 
       MODEM_DIALIN(netno); 
   #endif 
     pppDQ(netno); // Make non-static inside ppp.c!!! 
    ppp_kill_flag[netno] = 0; 
    smx_TaskUnlock(); 
           } 
   } 

             In net.c, insert the following: 

   void nettask_ifkillflag(int netno); // New prototype 
   void nettask(...) 
   { 
    ... 
    if (netp->protoc[0] == PPP) { 
    pppTimeout(netno) 
    nettask_ifkillflag(netno);  // New Call 
       } 
    ... 
   } 



Chapter 8 
 

154 

In the event that the application detects loss of carrier or a line break in an ISR, the 
application can call the LOST_CARRIER_OR_LINE_BREAK_FOR_PPP(netno) 
function.  When nettask() runs next (within a second), the PPP link will reset itself to start 
again.  The connection level application will probably need to be informed of the 
condition.  This should be done by the ISR that initiates the transaction. 

  Advantages 

   requires less than a second from detection of loss of 
    carrier to resolution of PPP link. 

   does not need to detect looped-back condition 

             Disadvantages 

   invasive into the stack 

   application must be signalled of link failure 

 

PPP ioctl Routines 
 

Description 
The PPP ioctl() function allows an application to dynamically configure or manage various parts of 
the PPP protocol layer.  The PPP ioctl() operations pertain to specific interfaces on the host and 
therefore each requires a handle to the network interface structure, nets. 

Here is the function prototype. 

            int ussPPPTable.ioctl( 
                void *netp, 
                enum ioctlreq req, 
                void *arg, 
                size_t size); 

If no error occurs, 0 is returned.  Otherwise, applicable errors may be returned.  At this time, only the 
ussErrInval return code is provided for cases when the ioctlreq option is invalid. 

The netp parameter must be a smxNS (struct NET *) data type. 

The arg parameter data type varies from on ioctl option to another. 

Option Listing 
These options are defined in net.h as part of the ioctlreq enumeration. 

i) ussLinkIsUpE 

 Upon return, *(int *)arg will be true if the link is up and false if the link is down. 

ii) ussLinkIsDownE 



Point To Point Protocol 

155 

Upon return, *(int *)arg will be true if the link is down and false if the link is down.  If the dialer 
is enabled, this means that the dialer is in the passive state waiting for an incoming call. 

iii) ussLinkBringUpE 

Attempt to force the link up for the time in seconds specified by the size parameter.  If the link 
becomes established prior to the passage of the full amount of time, the function will return early.  
The value of the arg parameter is ignored in this option. 

iv) ussLinkBringDownE 

Attempt to force the link down for the time in seconds specified by the size parameter.  If the link 
becomes fully disestablished prior to the passage of the full amount of time, the function will 
return early.  The value of the arg paramter is ignored in this option. 

v) ussPPPUserIdSetE 

 Set the host userid to be negotiated by authentication protocols (PAP, CHAP, MS-CHAP). 

 The userid is passed through the (char *)arg parameter. 

Note that the function stores the pointer, not the actual data (NO strcpy()!).  The userid must 
remain allocated for the entire PPP session. 

 The userid must be a null terminated string. 

vi) ussPPPUserIdGetE 

 Get the host userid to be negotiated by authentication protocols (PAP, CHAP, MS-CHAP). 

 The userid is copied into the (char arg[15]) parameter. 

Note that the function copies the actual data into the arg parameter so at least 15 bytes must be 
allocated to accomodate the potential maximum userid size. 

vii) ussPPPPasswordSetE 

 Set the host password to be negotiated by authentication protocols (PAP, CHAP, MS-CHAP). 

 The password is passed through the (char *)arg parameter. 

Note that the function stores the pointer, not the actual data (NO strcpy()!).  The password must 
remain allocated for the entire PPP session. 

 The password must be a null terminated string. 

viii) ussPPPPasswordGetE 

 Get the host password to be negotiated by authentication protocols (PAP, CHAP, MS-CHAP). 

 The password is copied into the (char arg[15]) parameter. 

Note that the function copies the actual data into the arg parameter so at least 15 bytes must be 
allocated to accomodate the potential maximum userid size. 

ix) ussPPPDialEnableE 

 Enable the dialer on the interface. 

 This is only valid if DIALD is defined in pppconf.h. 

x) ussPPPDialDisableE 

 Disable the dialer on the interface. 



Chapter 8 
 

156 

 This is only valid if DIALD is defined in pppconf.h. 

xi) ussPPPHostAddressGetE 

 Get the Host IP address as negotiated by IPCP. 

Before IPCP is completed, this value is the IP address that smxNS PPP will attempt to negotiate 
on the interface.  After IPCP has completed, this value is the actual IP address smxNS is 
communicating as from the PPP interface.  The arg data type is * Iid. 

xii) ussPPPHostAddressSetE 

 Set the Host IP address to negotiate during IPCP. 

This is only valid if it is performed prior to link establishment.  Also, it does not guarantee that the 
IP address specified will be the one chosen because PPP must negotiate addresses.  If the peer 
recommends that a different address be used, then smxNS will use that one instead.  The arg data 
type is * Iid. 

xiii) ussPPPRemoteAddressGetE 

 Get the Peer IP address as negotiated by IPCP. 

Before IPCP is completed, this value is the IP address of the peer host that smxNS PPP was last 
connected to.  After IPCP has completed, this value is the actual IP address of the peer host to 
which smxNS is directly connected to.  The arg data type is * Iid. 

xiv) ussPPPRemoteAddressSetE 

 Set the Peer IP address to negotiate during IPCP. 

This is only valid if it is performed prior to link establishment.  Also, it does not guarantee that the 
IP address specified will be the one chosen because PPP must negotiate addresses.  If the peer 
recommends that a different address be used, then smxNS will use that one instead.  The arg data 
type is * Iid. 

Using PPP ioctl() routines 
In all examples below, it is assumed that Ninit() and Portinit() have been called prior to the 
execution of any ioctl() procedure. 

 i) Forcing the link up 

 If your application requires the link layer to be up at a particular point in time, use the 
following: 

  
 #include "smxns.h" 
    
              void func(int netno) 
              { 
                    struct NET *netp; 
                    int i1; 

                    netp = &nets[netno]; 
                    /* 
                    ** The last parameter to ioctl when using 
                    ** ussLinkBringUpE represents the time in seconds 
                    ** to block while waiting for the condition to 



Point To Point Protocol 

157 

                    ** occur.  The function will return early if the 
                    ** link conclusively fails or succeeds. 
                    */ 
                    ussPPPTable.ioctl(netp, ussLinkBringUpE, 0, 30); 
                    ussPPPTable.ioctl(netp, ussLinkIsUpE, &i1, 0); 
                    if (!i1) 
                        DEBUG_MSG2_PAR0("Error: could not force PPP up!\n"); 
                    else 
                        DEBUG_MSG3_PAR0("PPP is up\n"); 
                } 

ii) Forcing the link down 

 If your application requires the link layer to be down at a particular point in time, use the 
following: 

                 
                #include "smxns.h" 
 
                void func(struct CONNECT *conp) 
                { 
                    struct NET *netp; 
                    int i1; 

                    netp = &nets[conp->netno]; 
                    /* 
                    ** The last parameter to ioctl() when using 
                    ** ussLinkBringDownE represents the time in 
                    ** seconds to block while waiting for the 
                    ** condition to occur.  The function will return 
                    ** early if the link is closed. 
                    */ 
                    ussPPPTable.ioctl(netp, ussLinkBringDownE, 0, 10); 
                    ussPPPTable.ioctl(netp, ussLinkIsDownE, &i1, 0); 
                    if (!i1) 
                        DEBUG_MSG2_PAR0("Error: couldn't force PPP down!\n"); 
                    else 
                        DEBUG_MSG3_PAR0("PPP is down\n"); 
                } 

iii) Capturing the link status 

 If the status of the link must be known, use the following: 

                #include "smxns.h" 
                 
                void func(int netno) 
                { 
                    struct NET *netp; 
                    int i1; 

                    netp = &nets[netno]; 
                    ussPPPTable.ioctl(netp, ussLinkIsUpE, &i1, 0); 
                    if (i1) 
                        DEBUG_MSG3_PAR0("PPP is up\n"); 
                    else { 
                        ussPPPTable.ioctl(netp, ussLinkIsDownE, &i1, 0); 
                        if (i1) 



Chapter 8 
 

158 

                            DEBUG_MSG3_PAR0("PPP is down\n"); 
                        else 
                            DEBUG_MSG3_PAR0("PPP is negotiating\n"); 
                    } 
                } 

iv) Configuring the username and the password 

 If the host user ID or password must be set prior to link negotiations, use the following: 

                #include "smxns.h" 
 
                char *uid = "new userid", *pw = "new password"; 

                void func(int netno) 
                { 
                    struct NET *netp; 
                    char tuid[15], tpw[15]; 

                    netp = &nets[netno]; 
                    ussPPPTable.ioctl(netp, ussPPPUserIdGetE, tuid, 0); 
                    ussPPPTable.ioctl(netp, ussPPPPasswordGetE, tpw, 0); 

                    /* Change userid if unmatched */ 
                    if (!strcmp(tuid, uid)) 
                        ussPPPTable.ioctl(netp, ussPPPUserIdSetE, uid, 0); 

                    /* Change password if unmatched */ 
                    if (!strcmp(tpw, pw)) 
                        ussPPPTable.ioctl(netp, ussPPPPasswordSetE, pw, 0); 
                } 

v) Switching between modem and null modem links 

If the host wants to connect through a null modem and a conventional modem with only one 
interface configured using Portinit(), use the following: 

                 
                #include "nscfg.h" 
                #include "ppp.h" 

                extern int host_using_modem; 

                void func(int netno) 
                { 
                    struct NET *netp; 

                    netp = &nets[netno]; 
                #if DIALD 
                    if (host_using_modem) 
                        ussPPPTable.ioctl(netp, ussPPPDialEnableE, 0, 0); 
                    else 
                        ussPPPTable.ioctl(netp, ussPPPDialDisableE, 0, 0); 
                #else 
                    DEBUG_MSG3_PAR0("No modem configured\n"); 
                #endif 
                } 

 



Point To Point Protocol 

159 

 

vi) Configuring and capturing the host and peer IP addresses 

            #include "nscfg.h" 
 
            static void getIP(Iid *id) 
            { 
                int i1; 
                Nprintf("Enter IP as four single typelings\n    > "); 
                for (i1 = 0; i1 < 4; i1++) { 
                    id->c[i1] = Ngetchr(); 
                    Nprintf(" %02x (%c)", 
                        id->c[i1], id->c[i1] > 0x19 && id->c[i1] < 0x7f ? id->c[i1] : '.'); 
                } 
                Nprintf("\n"); 
            } 
 
            void func(int netno) 
            { 
                int i1; 
                Iid hid, rid; 
                /* Loop waiting for user request */ 
                for ( ; ; ) { 
                    SNS_YIELD(); /* Yield to smxNS and PPP */ 
                    /* Check for user input */ 
                    if (Nchkchr()) { 
                        /* Get user input */ 
                        i1 = Ngetchr(); 
                        if (i1 == 0x1b) { 
                            break;  /* Exit function */ 
                        } 
                        else { 
                            /* 
                            ** Switch on the user request. 
                            **  1 -- Get host address 
                            **  2 -- Set host address 
                            **  3 -- Get peer address 
                            **  4 -- Set peer address 
                            **  ? -- Print addresses 
                            */ 
                            switch (i1) { 
                            case '1': 
                                ussPPPTable.ioctl(&nets[netno], 
                                        ussPPPHostAddressGetE, &hid, 4); 
                            case '2': 
                                if (i1 == '2') 
                                    getIP(&hid); 
                                ussPPPTable.ioctl(&nets[netno], 
                                        ussPPPHostAddressSetE, &hid, 4); 
                            case '3': 
                                ussPPPTable.ioctl(&nets[netno], 
                                        ussPPPRemoteAddressGetE, &rid, 4); 
                            case '4': 
                                if (i1 == '4') 
                                    getIP(&rid); 



Chapter 8 
 

160 

                                ussPPPTable.ioctl(&nets[netno], 
                                       ussPPPRemoteAddressSetE, &rid, 4); 
                                break; 
                            default: 
                                /* Force the link up (non-blocking) */ 
                                ussPPPTable.ioctl(&nets[netno], 
                                        ussLinkBringUpE, 0, 0); 
                                continue; 
                            } 
                            Nprintf(" H %u.%u.%u.%u R %u.%u.%u.%u\n", 
                                    hid.c[0], hid.c[1], hid.c[2], hid.c[3], rid.c[0], rid.c[1], rid.c[2], rid.c[3]); 
                        } 
                    } 
                } 
                Nprintf("User terminated\n"); 
            } 

PPP dialapi Routines 
  

Description 
The dial API routines are defined in include\dialapi.h.  For the most part they are used within the 
PPP core module. In some cases, it may be beneficial to use them from the application to improve 
configurability.  In other cases, it may be useful to modify the dial API to map onto an already 
defined dialing layer for smoother integration with smxNS PPP. 

Definitions of API 
i) MODEM_PROCESS(netno) 

Execute modem operations in a non-blocking fashion for a particular interface. 

ii) IS_MODEM_DONE(netp) 
Boolean condition.  True when the currently executing modem process associated with an 
interface structure is completed. 

iii) IS_MODEM_NONE(netp) 
Boolean condition.  True when the currently executing modem process associated with an 
interface structure is ready for another operation. 

iv) MODEM_DIALIN(netno) 
Install or start the dial-in procedure for a particular interface. 

v) IS_MODEM_DIALIN(netp) 
Boolean condition.  True when the currently executing modem process associated with an 
interface structure is the dial-in process. 

vi) MODEM_SET_DIALIN(name) 
This function is specific to the smxNS PPP implementation.  It is used to define the dial-in            
script. 

vii) MODEM_DIALOUT(netno) 
Install or start the dial-out procedure for a particular interface. 



Point To Point Protocol 

161 

viii) IS_MODEM_DIALOUT(netp) 
Boolean condition.  True when the currently executing modem process associated with an 
interface structure is the dial-out process. 

ix) MODEM_SET_DIALOUT(name) 
 This function is specific to the smxNS PPP implementation.  It is used to define the dial-out 
script. 

x) MODEM_DIALDOWN(netno) 
 Install or start the dial-down procedure for a particular interface. 

xi) IS_MODEM_DIALDOWN(netp) 
Boolean condition.  True when the currently executing modem process associated with an 
interface structure is the dial-down process. 

xii) MODEM_SET_DIALDOWN(name) 
This function is specific to the smxNS PPP implementation.  It is used to define the dial-out 
script. 

Dynamically Configuring smxNS PPP Dial Scripts 
In order to change a dial script without recompiling, a few function calls can be made at run-time.  
At compile-time, the pppsrc\dial.mak file must be configured with the appropriate dial scripts. 

It is not necessary, but is recommended, that PPP be not negotiating at the time of the change.  
This means that the state ought to be closed and the dialer ought to be inactive (dial-in). 

Here is an example function that replaces the dial-in script with the ms-in.scr script already 
provided: 

            void install_ms_in(void) 
            { 
                MODEM_SET_DIALIN(ms_in_scr); 
                MODEM_DIALIN(netno); 
            } 

Here is an example function that replaces both the dial-in and dial-out scripts using the Hayes 
modem type scripts: 

            void install_dial_in_and_dial_out(void) 
            { 
                MODEM_SET_DIALIN(dial_in_scr); 
                MODEM_SET_DIALOUT(dial_out_scr); 
                MODEM_DIALIN(netno); 
            } 

Note in the above case that MODEM_DIALIN() is called after installing the new script.  This 
ensures that no ghost script is left executing. 



Chapter 8 
 

162 

PPP pppsig Routines 
  

Description 
The ppp signalling routines can be used to signal the application layer of events normally hidden 
within the PPP stack without the requirement of OS signal handlers.  These events can be both 
informational and functional.  They are defined in pppsig.h. 

Definition of Signals Available 
PPPSIG_PPP_UP(netno) 
 The entire PPP layer is up on the interface and is ready for network traffic. 

PPPSIG_PPP_DOWN(netno) 
 The PPP layer is completely down on the interface and is ready for configuration or complete 
restart. 

PPPSIG_IPCP_UP(netno) 
The network layer is up (for IP) on the interface and is ready for traffic.  This may also mean 
that IP addresses have been configured for perhaps the host and/or the peer. 

PPPSIG_IPCP_DOWN(netno) 
The network layer is down (for IP) on the interface and can no longer handle network traffic.  
This may also mean that IP addresses are no longer valid. 

PPPSIG_HAUTH_UP(netno) 
 The host is authenticated to the peer on the interface. 

PPPSIG_HAUTH_DOWN(netno) 
 The host failed authentication with the peer on the interface. 

PPPSIG_PAUTH_UP(netno) 
 The peer passed authentication with the host on the interface. 

PPPSIG_PAUTH_DOWN(netno) 
 The peer failed authentication with the host on the interface. 

PPPSIG_LCP_UP(netno) 
The link layer is established and ready for network level configuration and authentication on 
the interface. 

PPPSIG_LCP_DOWN(netno) 
 The link layer is down completely and is ready for restart on the interface. 

PPPSIG_DIALOUT_UP(netno) 
 The dial-out proceedure completed on the interface. 

PPPSIG_DIALOUT_DOWN(netno) 
 The dial-out procedure failed on the interface. 

PPPSIG_DIALIN_UP(netno) 
 The dial-in proceedure completed on the interface. 



Point To Point Protocol 

163 

PPPSIG_DIALIN_DOWN(netno) 
 The dial-in procedure failed on the interface. 

PPPSIG_DIALDOWN_UP(netno) 
 The dial-down proceedure completed on the interface. 

PPPSIG_DIALOUT_DOWN(netno) 
 The dial-down procedure failed on the interface. 

Note that this is not considered an error condition to the PPP layer so it will proceed to set up 
the dial-in procedure. 

PPP_STATE_HOLD(netno) — From ppp.h 
 Stop PPP at the current state on the interface. 

PPP_STATE_RELEASE(netno) — From ppp.h 
 Let PPP continue at the current state on the interfaces 

Using PPP Signaling Routines 
See the section on PPP ioctl Routines for a useful example of these macros. 

It is important to remember that the signalling functions are meant to produce signals.  The code that 
gets executed must not block and ought not to bloat the stack.





SNMP 

165 

9.  Simple Network Management 
Protocol (SNMP) 

 

 

Introduction 
This chapter describes the use of the Simple Network Management Protocol for smxNS.  smxNS 
SNMP provides support for integrating an SNMP agent into a real-time embedded system application.  
It is designed for use with SNMP Version 3 managers; however, it will also respond to Version 1 and 
2 requests. 

The reader ought to have a conceptual knowledge of SNMP in order to understand the terminology in 
this manual.  There are several books available that explain more completely the terminology and 
function of SNMP systems, and some of these are listed in the Recommended Reading section of 
Chapter 1. 

SNMP Overview 
The Simple Network Management Protocol, SNMP, is used widely by industry to manage networks.  
On a network, a client in one host (a SNMP manager) communicates with a server in another host (an 
SNMP agent).  The manager requests the agent to read or write information (objects) in a 
Management Information Base (MIB). 

 

 

 

 

 

Figure 9-1:  SNMP Agent on a network 

 

SNMP
Manager Application

Agent

Transport
layer

Standard
MIB-II

Enterprise
MIB

Network



Chapter 9 

166 

Design of smxNS SNMP 
The smxNS SNMP design includes these features: 

ROMable 

Compact 

User-configurable 

The agent is processor-independent.  Almost any ANSI C compiler will do. 

The agent is not tied to a particular transport layer.  Any networking stack or other data 
communication layer can be used to transfer data to and from the agent. The code is ROMable in that 
all initialized data is type const, and there are no attempts to change code or constants at run-time. 

The agent requires less than 30K code bytes and 12K RAM bytes on a typical compiler without 
optimization.  If security is removed, the agent requires less than 20K code bytes and 4K RAM bytes. 
Actual code requirements also vary somewhat from processor to processor and compiler to compiler. 

smxNS SNMP supports the same application interface and functionality across all processors.  In 
other words, standard C code developed for one processor can be recompiled for another processor 
with minimal effort. 

Custom MIBs can be created using the MIB compiler supplied with the smxNS SNMP agent.  The 
application can add these new MIBs or remove old or unused MIBs with relative ease. 

The following describes known limitations in the SNMPv3 configuration or functionality. 

Version 3 Trap: Version 3 trap messages cannot be generated.  They would require the handling of 
Report messages from management stations and possibly non-authoritative authentication. 

Row creation/deletion: Row creation/deletion is not supported. 

User Management: The usmUserTable cannot be accessed or modified through SNMP, but users can 
be added in application code. 

VACM support: The vacmViewTable cannot be accessed or configured through SNMP, but views 
can be added in application code. 



SNMP 

167 

Building an Application 
 

Build-time Configuration 
The build-time configuration of the agent is performed in the snmp.h, vacm.c and usm.c files in the 
snmpsrc directory.  In the file snmp.h there is a set of definitions used to configure the agent.  These 
symbolic constants may require modification before compiling and linking the product.  The View-
based Access Control Model definitions are declared in vacm.c. 

Constants 

ENTERPRISE Constant 
The ENTERPRISE value refers to the ENTERPRISE ID assigned by ICANN (formerly IANA).  
It is used to partly form the snmpEngineID for the agent.  Information on obtaining a Private 
Enterprise Number (PEN) is available at the time of this writing at http://pen.iana.org/pen/. 

ENTERPRISE = 991 

This default value is an old number for U S Software, and it should be changed for a production 
release. 

System Variable Constants 
The MIB system group used by the agent provides a textual description of the agent and is required by 
SNMP.  These strings can be modified, adding appropriate values for the particular agent application.  
These variables are shown in Table 9-1. 

Table 9-1:  System Variables 

Variable Description 
SYSCONTACT The value is stored in system.sysContact.  

Replace this value with the company name and 
phone number. 

SYSLOCATION The value is stored in system.sysLocation.  
Replace this with the company name and address. 

SYSDESCR The value is stored in system.sysDescr.  
Replace this string with a description for the agent 

 
 
Note that these values should not be greater than 64 bytes each without changing the size of the arrays 
that hold them.  See sysContact, sysLocation, and sysDescr in snmpsrc\agent.c. 

SYSCONTACT = “MDI (714) 437-7333, support@smxrtos.com” 

SYSLOCATION = “MDI  Costa Mesa, CA  USA” 

SYSDESCR = “Embedded controller running smxNS” 



Chapter 9 

168 

ENABLEAUTHENTRAPSVAL Constant 
The ENABLEAUTHENTRAPSVAL specifies the snmpEnableAuthentTrapsVal default 
value.  Use 1 for enabled and 2 for disabled. 

ENABLEAUTHENTRAPSVAL = 2 

MAXOID Constant 
MAXOID defines the maximum length of an object identifier in the MIB.  The object identifier 
(OID) uniquely defines MIB variables.  Be sure this is large enough to accommodate all objects 
within any application MIB. 

MAXOID Example 
#define MAXOID 12  /* maximum length of object ID */ 
static const struct 
  {u8 nlen, name[MAXOID], key[16];} 
  party[]={ 
    {11, {0x2b,6,1,6,3,3,1,3,10,11,12}, {0} }, 
    {11, {0x2b,6,1,6,3,3,1,3,10,11,13}, {0} }, 
    {11, {0x2b,6,1,6,3,3,1,3,10,11,14}, 
    {0x74,0x68,0x69,0x73,0x74,0x68,0x69, 
     0x73,0x74,0x68,0x69,0x73,0x74,0x68,0x69,0x33} }, 
}; 

The name field in the above table stores SNMP object IDs, and MAXOID specifies the maximum 
size for this value.  Note that the OIDs start with the value 0x2b, which is the BER encoding for 
.1.3. 

MAXOID = 15 

MAXKEY Constant 
MAXKEY defines the maximum number of keys allowed.  Keys form the index used to identify a MIB 
table entry.  For example, the tcpConnTable has four keys:  tcpConnLocalAddress, 
tcpConnLocalPort, tcpConnRemAddress, and tcpConnRemPort.  No other table 
in the MIB-II has more than four, so MAXKEY can be set to 4. 

MAXKEY = 4 

MAXKLEN Constant 
MAXKLEN defines the maximum length in bytes for an encoded index.  An index is the encoding of 
the keys used to define a table entry.  These keys may be one or more of nearly any fixed length data 
type such as IpAddress or INTEGER.  For standard MIB-II objects, the largest possible index is 
potentially generated by the tcpConnTable.  Its keys include two IpAddresses each up to 8 
bytes encoded and two 16-bit unsigned integers each up to 3 bytes encoded.  The result is 22 bytes. 

MAXKLEN = 22 



SNMP 

169 

MAXVAR Constant 
MAXVAR specifies the maximum number of variables allowed in a request.  A request is a message 
sent by the manager to the agent for reading or setting values of one or more variables.  MAXVAR sets 
the maximum number of variables that may be accessed in one request.  Note that the number of total 
response variables for a response to a bulk request is limited by the packet size, not this constant. 

MAXVAR = 16 

SNMP_MAXSIZE Constant 
SNMP_MAXSIZE specifies the maximum transport size in bytes.  Note that this value represents the 
size of each of four SNMP message buffers used for the following purposes:  Receiving requests, 
sending replies, sending traps, and performing security operations.  RFC 3411 requires this value be at 
least 484 bytes. 

SNMP_MAXSIZE = 1000 

User-based Security Model Configuration 

The smxNS SNMP Agent can respond to SNMPv1, SNMPv2c and SNMPv3 messages.  These SNMP 
versions have different conventions for qualifying SNMP queries and providing for secure 
communication.  The smxNS SNMP Agent adopts the framework used by SNMPv3 and adapts it so 
that the configuration information can also be applied to SNMPv1 and SNMPv2c. 

SNMPv3 established strong security by adding the concepts of “groups” and “views”. 

Under SNMPv3, access to MIB variables and the way the information is transferred is tied to a group, 
which can also be though of as a class of users.  A view is a portion of a MIB tree that is visible.  The 
view could consist of a collection of entire MIBs, or it may be limited to certain subsections.  A given 
group might also use different contexts to access SNMP information, for example, the “poweruser” 
group may use “normal” context most of the time and “advanced” context for administrative 
operations that involve modifying variable states. 

Security settings are defined at run time before starting the SNMP Agent.  A detailed description of 
the functions follow later in the Application Interface section of this chapter, but for now here’s a 
simple example. 

static const OID sys_oid = {6, {0x2b, 6, 1, 2, 1, 1}}; 

snmpViewAdd(“sys”, 0xffffffff, &sys_oid); 

snmpAccessAdd(“user1”, “normal”, “sys”, 0, noAuthNoPriv); 

snmpUserAdd(“user1”, 0, 0, 0, 0); 

This code sets up a view named “sys” for the MIB-2 System group (given by the pointer to the OID 
&sys_oid).  The second line sets an access policy that group “user1” when operating in context 
“normal” can have read access to the “sys” group with no authentication needed an no encryption of 
the response.  The third line creates a group named “user1” with no authentication or privacy 
passwords.  With this configuration, one could walk the system group using this Net-SNMP command 

$ snmpwalk –u user1 –n normal –l noAuthNoPriv –v 3 10.0.1.100 

SNMPv1 and SNMPv2c use a “community string” to identify the entity making an SNMP query.  If 
the string matches the configured string, access is granted, otherwise the incoming query is ignored. 

For SNMPv1 and SNMPv2c access, you can use the snmpAcessAdd() function with an empty group 
parameter and the context name set to the community string like this. 



Chapter 9 

170 

snmpAccessAdd(“”, “public”, “sys”, 0, noAuthNoPriv); 

Note that this function call builds on the “sys” group that was added with the call to snmpViewAdd() 
we used earlier. 

With this configuration one could use this command to perform a walk with SNMPv1 

$ snmpwalk –c public –v 1 10.0.1.100 

Note that snmpViewAdd() can be called multiple times with the same view name in order to create a 
collection of subtrees that are all included in the view.  For example, here’s how to set up a view that 
includes the MIB-II group (.1.3.6.1.2) and the SNMPv2 group (.1.3.6.1.6). 

static const OID mgmt_oid = {4, {0x2b, 6, 1, 2}}; 
static const OID snmp_oid = {4, {0x2b, 6, 1, 6}}; 

snmpViewAdd(“mib2”, 0xffffffff, &mgmt_oid); 
snmpViewAdd(“mib2”, 0xffffffff, &snmp_oid); 

SNMPv3 defines a method of security known as the User-based Security Model (USM).  The 
definition in RFC 3414 encompasses both authentication and privacy.  Authentication means the 
verification of host identity, usually through a user name and password.  Privacy means the encryption 
of SNMP messages such that unauthorized hosts cannot interpret the data.  The current agent supports 
authPriv (i.e. authentication with privacy), authNoPriv (i.e. authentication without privacy) and 
noAuthNoPriv (i.e. no authentication and no privacy) for security levels.  Future versions may 
add new authentication and privacy protocols. 

It would not be secure to transmit passwords over the network, so the authors of SNMPv3 came up 
with a scheme to hide passwords.  This method is called password localization and is described in 
RFC 3414 in section A.2.  It takes the password and the snmpEngineID as input and outputs a 
digest-specific key.  A SNMP manager uses the key with each SNMP request message to form an 
authentication digest using HMAC-MD5 or HMAC-SHA, and transmits the message plus the new 
digest as an authenticated SNMP message.  The agent checks each digest value with the digest it 
creates in the same fashion on each message.  If the two match, the management station and agent 
must have used the same localized password for the request to be further processed.  Otherwise, the 
request causes the agent to transmit a usmStatsWrongDigests report to the manager. 

The snmpEngineID used by the agent concatenates the ENTERPRISE value and the transport 
layer IP address.  The ENTERPRISE value must always be configured in snmp.h, but the IP address 
is retrieved at run time. 

View-based Access Control Configuration 

SNMPv3 defines a method of access control known as the View-based Access Control Model 
(VACM).  It is defined in RFC 3415 as a means of restricting access to particular subsets of variables 
based on the identity of the manager and securityLevel used in the request. 

A view is a group of MIB variables on the agent.  The agent defines a view for each user based on the 
user identity and securityLevel.  A contextName and a securityName define the 
user identity and the securityLevel is listed directly in each request.  Note that if no security is 
used (i.e. securityLevel == noAuthNoPriv), the securityName can be undefined.  
Also, in order to provide compatibility with version 1 and 2c management stations, the 
contextName in each view entry may refer to either a contextName or a community 
name.  The securityLevel would then be assumed to be noAuthNoPriv. 

The general practice is that informational variables be accessible to all users with all security levels.  
Write access and read access to sensitive information are limited to selective users implementing 



SNMP 

171 

authentication and perhaps privacy.  Generally, if a user uses greater security than is required by the 
access entry including a particular variable, access is allowed.  The VACM module will search 
through each entry until it finds a valid entry for the variable.  This way multiple entries can be 
defined for a single securityName given different combinations of contextNames and 
securityLevels. 

Agent Use of Build-time Constants 
Here are user configurable settings from snmp.h: 

#define ENTERPRISE 991 
#define SYSCONTACT "MDI (714) 437-7333, support@smxrtos.com" 
#define SYSLOCATION "MDI  Costa Mesa, CA  USA" 
#define SYSDESCR "Embedded controller running smxNS" 
#define DEFAULT_CONTEXT_STR “public” 
#define ENABLEAUTHENTRAPSVAL 2 
#define MAXOID 15 
#define MAXKEY 4 
#define MAXKLEN 22 
#define MAXVAR 16 
#define SNMP_MAXSIZE 1000 

There are also constants in vacm.c that establish limits 

#define NVIEWS         4 
#define NSUBTREES      4 
#define NACCESSENTRIES 8 

And in usm.c 

#define NUSERS            3 
#define PASSWORD_MAX_LEN 16  /* includes terminating NULL */ 
 



Chapter 9 

172 

 Application Interface 
The application file defines the run-time environment in which the agent executes. 

The first step in launching an SNMP agent is to configure security parameters.  If these settings are 
not made, no incoming SNMP queries will be qualified, and the agent will be unresponsive. 

snmpViewAdd 

Creates or adds to an SNMP view. 

int snmpViewAdd(const char *name, u32 mask, const OID *oid); 

This function creates or adds to the view with the given name with the MIB subtree in oid.  The mask 
is a bit mask with the least significant bit applied to the first subidentifier of the OID and so on.  If a 
mask bit is not set, the corresponding subidentifier is not compared for a match.  Although the mask 
could be used to make the view definition more flexible, in practice it is set to 0xffffffff. 

Return Value 
>= 0 Success.  The value returned is the index of the view that was created or updated. 

< 0 An error occurred.  Check the log for details on the error. 

Example 
#include “snmp.h” 
. . . 
static const OID sys_oid = {6, {0x2b, 6, 1, 2, 1, 1}}; 
. . . 
snmpViewAdd(“sys”, 0xffffffff, &sys_oid); 
 

Additional subtrees can be included in a given view by calling snmpViewAdd() again with the same 
view name and a pointer to another OID. 

 

snmpAccessAdd 

Establishes an access level for a given group and context 

int snmpAccessAdd(const char *group, const *context, const char 
*readview, const char *writeview, uint level); 

This function establishes what SNMP MIB access is permitted for a given group and context.  The 
readview indicates which MIB view is available for read operations and the writeview indicates the 
MIB view for write operations.  The level may be noAuthNoPriv, authNoPriv or authPriv, indicating 
if authorization and privacy protocols are used in communication. 

Return Value 
>= 0 Success. 

< 0 An error occurred.  Check the log for details on the error. 



SNMP 

173 

Example 
#include “snmp.h” 
. . . 
snmpAccessAdd(“admin-md5”, “admin”, “admin”, “mib2”, authNoPriv); 

In this example, the group admin-md5 when operating in the admin context is allowed read access to 
the admin view and read-write access to the mib2 view.  Operations will apply the authentication 
protocol to confirm the identity of the entity making the queries before completing them. 

This function is also used to set up the community string for use with SNMPv1 and SNMPv2.  In that 
case the group field is left empty (“”), the context field provides the string, and the other fields are 
filled in as needed. 

In order to indicate no read or no write access, the view name should be given as 0 in the 
corresponding field. 

snmpUserAdd 

Establishes a group that can access SNMP information. 

int snmpUserAdd(const char *group, uint aproto, const char *auth_pw, 
uint pproto, const char *priv_pw); 

This function sets up an SNMP group and specifies the authentication protocol, the authentication 
password, the privacy protocol and the privacy password to be used with that group when needed. 

The aproto field should be one of usmNoAuthProtocol, usmHMACMD5AuthProtocol, 
usmHMACSHAAuthProtocol or usmHMACSHA2AuthProtocol. 

The pproto field should be one of usmNoPrivProtocol, usmDESPrivProtocol, usmAESPrivProtocol or 
usmAES2PrivProtocol. 

The passwords that are used must be less than or equal to PASSWORD_MAX_LEN characters 
including a terminating 0.  This constant is defined at the top of XNS/snmpsrc/usm.c and defaults to 
16. 

Return Value 
>= 0 Success 

< 0 An error occurred.  Check log for details on error. 

Example 
#include “snmp.h” 
. . . 
snmpUserAdd(“admin-md5”, usmHMACMD5AuthProtocol, “secretpassword”, 
usmDESPrivProtocol, “mylittlesecret”); 
. 

In this example, the group admin-md5 is set up to use HMAC-MD5 as the authentication protocol 
with the password “secretpassword” and use DES for the privacy protocol with the password 
“mylittlesecret”. 

 

 



Chapter 9 

174 

AGENT_CONTEXT Structure 

typedef struct 
{ 
    const MIB **mibs;          /* Array of pointers to host MIBs */ 
    uint16 nummibs;            /* Number of host MIBs */ 
    const TRAP_HOST **thosts;  /* Trap hosts */ 
    uint16 numthosts;          /* Number of trap hosts */ 
    uint16 trapv, trapt;       /* Trap version and startup type */ 
    const TRANSPORT_MAPPING *tm; /* Transport mapping */ 
} AGENT_CONTEXT; 

 
The mibs field is the list of MIBs that managers may have access to.  Note it is vital that the MIBs 
be listed in lexicographical order.  If not, the agent will think certain variables do not exist within the 
MIB.  The nummibs field specifies the number of MIBs available. 

The thosts field specifies the hosts to which agent traps will be sent.  The TRAP_HOST 
definition is simply ‘typedef uint8 *TRAP_HOST;’ and each host should be acceptable to 
the transport layer.  In other words, the transport layer needs to be able to open a connection to the 
entity specified by the trap host field.  The numthosts field specifies the number of trap hosts 
available. 

If the trap hosts or other properties of the AGENT_CONTEXT structure need to be modified after 
starting the SNMP Agent, the agent should be stopped and restarted with the new configuration. 

The trapv field specifies the trap version to use during agent operations.  The trapt field 
specifies the trap used by the agent during startup.  Use –1 for none.  Otherwise use one of these 
defined types from snmp.h: 

COLDSTART 
WARMSTART 
LINKDOWN 
LINKUP 
AUTHENTICATIONFAILURE 
EGPNEIGHBORLOSS 
ENTERPRISESPECIFIC 

The tm field specifies the transport mapping to be used by the agent.  The 
TRANSPORT_MAPPING data structure is defined later. 

Example 
This is an example of a SNMP agent application taken from nsdemo.c. 

A global structure is declared for the agent task to initialize from.  In this example, the structure has 
been set up to request a SNMPv1 (0) COLDSTART trap be sent when the agent is started.  The 
USNET DPI transport mapping is used for sending and receiving SNMP messages. 

 
#include “snmp.h” 

extern const MIB mib_if, mib_at, mib_ip, mib_icmp, mib_tcp, mib_udp; 
extern const MIB mib_sys, mib_snmp, mib_engine; 
extern const MIB mib_usm; 

/* The following MIBs must be in lexicographical order */ 
static const MIB *mibs[] = 



SNMP 

175 

{ 
    &mib_sys,       /* system group */ 
    &mib_if,        /* interfaces group */ 
    &mib_at,        /* address translation group */ 
    &mib_ip,        /* IP group */ 
    &mib_icmp,      /* ICMP group */ 
    &mib_tcp,       /* TCP group */ 
    &mib_udp,       /* UDP group */ 
    &mib_snmp,      /* SNMP group */ 
    &mib_engine,    /* SNMPv3 engine group */ 
    &mib_usm        /* USM group */ 
}; 

static const TRAP_HOST primary = “192.168.1.30”; 
static const TRAP_HOST secondary = “192.168.1.31”; 
static const TRAP_HOST *thosts[] = 
{ 
    &primary, 
    &secondary 
}; 

extern const TRANSPORT_MAPPING TM_DPI; 
 
/* This structure is defined as external in SNMPAgentTask() */ 
const AGENT_CONTEXT snmp_ac = 
{ 
    mibs, (sizeof(mibs) / sizeof(MIB *)), 
    thosts, (sizeof(thosts) / sizeof(TRAP_HOST)), 0, COLDSTART, 
    &TM_DPI 
}; 
. . . 



Chapter 9 

176 

ussSNMPAgentInit 

Initializes the agent. 

sint16 ussSNMPAgentInit(const AGENT_CONTEXT *acp); 

This function initializes the agent with the run-time environment defined by the value of the 
AGENT_CONTEXT parameter.  The run-time environment that the agent uses is defined by the 
MIBs visible to the agent, the Trap hosts, and a transport mapping. 

Return Value 
>= 0 No error 

< 0 An error 

Example 
#include “snmp.h” 
. . . 
extern const AGENT_CONTEXT snmp_ac; 
. . . 
i1 = ussSNMPAgentInit(&snmp_ac); 
if (i1 < 0) 
{ 
   DEBUG_MSG2_PAR1(“SNMPAgentTask: Initialization failed %d\n”, i1); 
   return; 
} 

 

ussSNMPAgentCheck 

Checks the status of the agent for pending requests, and responds as necessary. 

sint16 ussSNMPAgentCheck(void); 

This function checks the transport for incoming messages, and generates responses as necessary. 

Return Value 
>= 0 No error 

< 0 An error 

Example 
#include “snmp.h” 
. . . 
/* Control loop for reading requests and  
   forming/sending replies */ 
while (ussSNMPAgentCheck() >= 0) 
    ; 



SNMP 

177 

ussSNMPAgentShut 

Terminates the agent. 

sint16 ussSNMPAgentShut(void); 

This function performs any clean-up necessary to terminate all the layers of the Agent. 

Return Value 
>= 0 No error 

< 0 An error 

Example 
#include “snmp.h” 
. . . 
ussSNMPAgentShut(); 

 

 

ussSNMPAgentTrap 

Sends a trap to all configured trap hosts as defined in the AGENT_CONTEXT. 

sint16 ussSNMPAgentTrap(uint8 type, uint8 spec,  
        const uint8 *contextName,  
        const uint8 *vbs, uint16 len); 

type  the trap type 

spec  trap-specific code 

contextName context or community name 

vbs  pointer to a variable bindings for trap 

len  the buffer length 

The ussSNMPAgentTrap() function may be used from an agent application to send a trap to a 
manager.  The ussSNMPAgentCheck() function may be run concurrently with the 
ussSNMPAgentTrap() function since they are designed to be thread safe with respect to each other.  
Trap types specified as 0 through 6 are shown in Table 9-2. 



Chapter 9 

178 

Table 9-2:  SNMP Trap Types 

Value Trap Type Description 
0. cold start The agent network protocol has 

reinitialized, indicating that its 
configuration may have been 
altered. 

1. warm start The agent network protocol has 
reinitialized; however, its 
configuration has not been altered. 

2. link down A communication link has failed.  
The failing link is identified via 
the first variable within the 
variable bindings field of the PDU 
(protocol data unit).  The PDU is, 
essentially, the data protocol used 
by SNMP.  The variable bindings 
field is a list of MIB variables sent 
to the manager packaged within a 
PDU. 

3. link up A communication link has come 
up.  The affected link is identified 
as the first element within the 
variable bindings field. 

4. AuthenticationFailure The agent could not resolve the 
authentication for an SNMP 
message received from the 
manager. 

5. EgpNeighborLoss An EGP peer neighbor is down. 
6. EnterpriseSpecific A nongeneric trap has occurred.  

This is specific to a particular 
enterprise.  Use this for 
application-specific traps. 



SNMP 

179 

Return Value 
The number of traps sent.  This should be compared to the number of trap hosts configured in the 
AGENT_CONTEXT. 

Example 
To send a trap from an application, simply call ussSNMPAgentTrap() and pass in the trap type, the 
trap-specific code, the context/community name, a pointer to a buffer of variable data for the manager 
to process, and the length of the variable data.  If the buffer is not needed 0 may be used.  For 
example, to send a “warm start” trap with no variable data, use: 

int rc;  /*return code */ 
rc = ussSNMPAgentTrap(WARMSTART,0, “public”, 0, 0); 
if (rc <= 0) 
    <process error > 

If a trap must pass variable data to the manager, declare a buffer, assign the variable binding data to it 
and pass it to ussSNMPAgentTrap(). 

#define VARBUFFERSIZE   <some constant value> 
.... 
int rc;  /* return code */ 
u8 varbuffer[VARBUFFERSIZE]; 
.... 
varbuffer = <load the data into the buffer>; 
.... 
rc = ussSNMPAgentTrap(WARM_START, 0, “public”, varbuffer, 
       VARBUFFERSIZE); 
if (rc != 0) 
 <process error>; 

This function call is flexible in that the variable data may be passed in any format; however, it is 
constrained to what the manager can understand.  Generally, this would be in the form of an SNMP 
variable bind list.  Here is a more detailed example 

static const u8 oid_snmptrapoid[] = {0x2b, 6, 1, 6, 3, 1, 1, 4, 1, 
0}; 
static const u8 oid_test0[] = {0x2b, 6, 1, 4, 1, 16, 17};  /* 
arbitrary enterprise OID tree starting with .16. */ 
static const u8 oid_test1[] = {0x2b, 6, 1, 4, 1, 16, 17, 18, 1};  /* 
represents specific enterprise trap */ 

   u8  vbbuf[64];  /* size according to space occupied by var bindings */ 
   u8 *prevp; 
   u8 *curp; 
   u8 *startp; 
 
     curp = vbbuf + sizeof(vbbuf); 
     startp = curp; 
 
     /* These will appear in reverse order */ 
     prevp = curp; 
     snmpRWriteVal(&curp, "test", SNMP_STRING, strlen("test")); 
     snmpRWriteVal(&curp, oid_test1, SNMP_IDENTIFIER, sizeof(oid_test1)); 
     snmpRWriteLength(&curp, SNMP_SEQUENCE, (s16)(prevp - curp)); 
 
     prevp = curp; 
     snmpRWriteVal(&curp, oid_test0, SNMP_IDENTIFIER, sizeof(oid_test0)); 



Chapter 9 

180 

     snmpRWriteVal(&curp, oid_snmptrapoid, SNMP_IDENTIFIER, 
sizeof(oid_snmptrapoid)); 
     snmpRWriteLength(&curp, SNMP_SEQUENCE, (s16)(prevp - curp)); 
     ussSNMPAgentTrap(ENTERPRISESPECIFIC, 0, (const u8 *)"public", curp, 
startp - curp); 

Customizing the Agent 
 

Configuring the Agent MIB 
Standard MIBs are supplied with smxNS SNMP based on Internet standards defined by RFCs 
(request for comments, on the Internet) 1156 and 1213.  The MIBs are the System Group, Interfaces 
Group, Address Translation Group, IP Group, ICMP Group, TCP Group, UDP Group, SNMP Group, 
snmpEngine Group and usmMIBBasicGroup.  These RFCs have since been clarified in several 
updated RFCs modularized from the originals. 

MIB Structure 

Each MIB module must be molded into the MIB structure used by the agent. 

typedef struct 
{ 
    const MIBVAR *mvp;          /* MIB variables */ 
    sint16 (*numvars)(void);    /* Number of variables */ 
    const MIBTAB *mtp;          /* MIB tables */ 
    sint16 (*numtabs)(void);    /* Number of tables */ 
    void (*get)(sint16 varix, sint16 tabix, uint8 **vvptr); 
    sint16 (*set)(sint16 varix, sint16 tabix); 
    sint16 (*index)(sint16 varix, sint16 index); 
    void (*init)(uint16 type);  /* Initialize the MIB */ 
} MIB; 

MIBVAR and MIBTAB Structures 

The MIBVAR and MIBTAB structures are the primary data structures, which define MIB data.  Each MIB 
contains variables mibvar and mibtab, which are simply arrays of these structures.  MIBVAR and 
MIBTAB are defined in snmpv3.h as follows: 

typedef struct 
{ 
    uint8 nlen, name[MAXOID]; 
} OID; 
 
typedef struct 
{ 
    OID oid;               /* Base OID of table */ 
    uint8 nix;             /* Number of indices for table */ 
    uint16 ix[MAXKEY];     /* Index values (offsets) */ 
    uint16 len;            /* Length of table */ 
} MIBTAB; 



SNMP 

181 

 
typedef struct 
{ 
    OID oid;               /* Identifier name, length */ 
    uint8 opt;             /* Options */ 
    uint8 type;            /* Type of variable */ 
    sint16 len;            /* Length of pointer field */ 
    void *ptr;             /* Pointer to variable data */ 
} MIBVAR; 

MIBVAR contains the definitions and values of all MIB variables.  MIBTAB contains indices into the 
MIBVAR for accessing MIB table (SEQUENCE OF) entries.  Most of these fields are used 
internally by the SNMP agent; however, some are useful to know.  OID is used to uniquely define 
each record in the MIBVAR and MIBTAB.  Also, for a given MIB table variable, the OID is the key 
value, which links MIBVAR and MIBTAB entries.  The purpose of the MIBVAR is simply to store 
all MIB data; that is, scalar values and values within a MIB table.  In the case of a MIB table, the 
mibtab.ix[i] values are used as indices to the appropriate records in the MIBVAR.  An 
example of its use is provided in the ‘MIB.index()’ section. 

Default Operation 

When the SNMP agent receives a GetRequest PDU (protocol data unit), the entries in the MIBVAR 
array are reviewed to find an entry that matches the requested OID.  The ptr field in the matching 
entry is then used to locate the memory location that contains the value that should be returned.  For 
scalar variables, this location is read directly.  For variables in tables, an offset is added to the pointer 
that corresponds to the index portion of the OID in the GetRequest PDU. 

When the SNMP agent receives a SetRequest PDU, the corresponding entry is located as above, and 
the memory location based on the ptr field is overwritten with the value provided in the 
SetRequest PDU. 

MIBVAR Record Options 

Some of the variables in MIBVAR may not be well suited to the default operation of the SNMP agent.  
To support these needs, the opt field of the MIBVAR record allows for flags that will indicate that 
special processing is required. 

IMMED The variable value is stored directly in the len field, rather than being pointed to by 
the ptr field.  The variable should be an 8-bit value.  The value for ptr can be 0. 

IMMED2 The variable value is stored directly in the type and len fields, rather than being 
pointed to by the ptr field.  The variable should be a 16-bit value.  The value for ptr 
can be 0. 

SCALAR The variable is in a table, but should be looked up without adding an index to ptr.  
This allows a variable to be part of a table, but not accessed in the same manner as other 
variables in the table.  If the value for a variable is known to be the same for every index 
in the table, then this technique can be used to reduce the size of the memory image that 
represents the contents of the table.  This flag need not be specified for normal scalar 
variables. 

W The variable may be modified. 

SX The variable is the first item of a MIB table. 



Chapter 9 

182 

CAR A read notification function may be called before returning the value of the variable. 

CAW A write notification function may be called after writing a new value to the variable. 

CHOICE A 'CHOICE' ASN.1 syntax element is required in the OID of this object.  Note that it is 
only used to force the atTable to behave correctly and, if defined, code size will 
increase for all MIBs. 

MIB.set() and MIB.get() Functions 

These functions are written as part of each MIB and provide the actions to perform for read or write 
notification. 

static sint16 set(sint16 varix, sint16 tabix); 
void get(sint16 varix, sint16 tabix, uint8 **vvptr); 

The first argument, varix, is an integer which acts as an index into the MIB identifying the variable 
to be accessed.  If that MIB variable is a MIB table, the tabix parameter may be used as a 0-based 
index into the table.  If varix is a scalar value or not a table entry, then no index is required and -1 
is passed in for tabix.  The **vvptr is passed to the get() function in case the MIB needs to 
replace the value pointer with a new address for the agent to operate upon. 

The value returned by set() should be 0 if the function executes normally.  In the case of an error 
situation, the value returned from these functions will be used as an error code in the response that the 
SNMP agent sends to the SNMP request. 

The get() and set() functions are called indirectly from the function ussSNMPAgentCheck() in 
agent.c through the MIB structure in which the get() function pointer resides.  The declaration below 
shows how the MIB structure is defined. 

Example 
#include “snmpv3.h” 
. . . 
static void get(sint16 varix, sint16 tabix, uint8 **vvptr) 
{ 
    const MIBVAR *mvp = &mibvar[varix]; 
    uint8 *bytevp = *vvptr; 

    /* 
    ** If varix is 3, the variable is a 32-bit value 
    ** that must be updated before being read by the agent. 
    ** We set it here to a value that is determined by using 
    ** a value in a table indexed by an array of index  
    ** values. 
    */ 

    if (varix == 3)    /* Fourth variable in MIB */ 
    { 
        *(uint32 *)*vvptr = Barray[Aarray[tabix].nindex].value32; 
    } 

    /* 
    ** If varix is 12, the first index is not stored in the  
    ** table. The second and all subsequent indices are in 
    ** the table, however.  We can simply point the value  



SNMP 

183 

    ** pointer to a new location. 
    */ 

    if (varix == 12)   /* Thirteenth variable in MIB */ 
    { 
        if (tabix == 0) 
            *vvptr = &value; 
        else 
            *vvptr = &table[tabix].value; 
    } 
} 

static sint16 set(sint16 varix, sint16 tabix) 
{ 
    MIBVAR *mvp = &mibvar[varix]; 
    uint8 *bytevp = mvp->ptr; 

    if (varix == 3) 
    { 
        if (*(uint32 *)bytevp == 0x1234567) 
        { 
            *(uint32 *)bytevp = 0; 
            return badValue; 
        } 
    } 

    return 0; 
} 
. . . 

const MIB mib_example = 
{ 
    mibvar, 
    mibvarsize, 
    mibtab, 
    mibtabsize, 
    get, 
    set, 
    index, 
    init 
}; 

The globally-accessible function pointer mib_example.get is assigned the get() function which 
is local to the current MIB module.  The mib_example.get() function is only called if CAR is in the 
option field for the variable and the get() function pointer is valid (that is, not 0).  Upon entry into the 
get() function, the variable varix is an index into the MIBVAR array for the current variable to be 
read.  The tabix is assigned –1 if no table is being accessed.  Otherwise, tabix is a zero-based 
index into the table to which the variable belongs. 

 



Chapter 9 

184 

MIB.index() Function 

Determines size of tables in a MIB. 

 sint16 index(sint16 varix, sint16 index); 

If tables exist in a MIB, the SNMP agent needs a mechanism to determine the size of the tables that 
have been added.  The index() function indicates when the end of the table has been reached and also 
can be used to specify when a table entry should be skipped.  Good examples of MIB index() 
functions can be found in mib_if.index, mib_tcp.index, mib_udp.index, etc. 

The index() function is required to implement a table. 

When the SNMP agent receives a get request or a get-next request that involves a MIB table and the 
index() function is defined, the agent will call the index() function while iterating through the table to 
determine if an entry should be included in the search for the variable.  The MIB index() function is 
defined similarly to the MIB get() and set() functions. 

Return Value: 
 1 Accept the record 

 0 Skip over the record 

-1 End of table 

Example 
/* Index the IP MIB’s tables */ 
static sint16 mibindex_ip(sint16 varix, sint16 tabix) 
{ 
    uint8 *cp; 
    uint16 us1; 
    sint16 i1; 

    cp = (uint8 *)mibvar_ip[varix].oid.name + 5; 
    us1 = *cp++ << 8; 
    us1 += *cp; 

    switch (us1) 
    { 
    case 0x0416:            /* IP net to media table */ 
        if (nets[tabix].netstat == 0) 
            break; 
        for (i1 = 0; i1 < Eid_SZ; i1++) 
            if (nets[tabix].Eaddr.c[i1]) 
                goto lab5; 
        break; 
    case 0x0414:            /* IP address table */ 
        if (tabix >= NNETS) 
            goto lab7; 
        if (nets[tabix].cfgflags & LOCALHOST) 
            goto lab5; 
        break; 



SNMP 

185 

    case 0x0415:            /* IP routing table */ 
 
        if (nets[tabix].netstat == 0) 
            break; 
        if (!(nets[tabix].cfgflags & LOCALHOST)) 
            goto lab5; 
        break; 
    default:                    /* any other */ 
        goto lab5; 
    } 
    return 0; 
lab5: 
    return 1; 
lab7: 
    return -1; 
} 

In this example, a section of the Object ID is used to identify the variable for which the index function 
is being called.  The value of index could also be used for this purpose, but using a section of the 
OID allows a subtree of the MIB to easily be identified.  At the beginning of the function, cp is set up 
to point to the interesting section of the OID, and then the next two bytes of the OID are stored in 
us1. 

This is just one example of how an index() routine could be coded.  Processing of accept, skip, 
or end of table is determined by checking values of smxNS data structures in the above case.  
The index may be used as an index into some of these structures.  The MIBTAB values are simply 
used as flags to indicate which variable is to be processed.  The actual value of the variable requires 
accessing of the smxNS data structures.  Refer to the smxNS documentation and source code for 
explanations of values such as NNETS, and nets[tabix]. 

 

Adding New MIBs 
A particular application may require new MIBs in addition to those supplied as part of the MIB-II.  If 
this is the case, use the ASN.1 (Abstract Syntax Notation) syntax to add the definitions of variables to 
a MIB file.  Refer to a text on SNMP or the appropriate RFCs for definitions of this syntax.  Then use 
MIBTOC to translate the ASN.1 definitions into C code understandable to the SNMP agent. 

MIB Translation Overview 

To use a new MIB with the smxNS SNMP agent, a file describing the MIB variables must be 
compiled into C source code.  The program MIBTOC, performs this translation.  It reads a 
description of the MIB variables in ASN.1 format, and produces two ANSI C-compatible files.  In the 
following diagram, “MIB” represents the name of the MIB file. 



Chapter 9 

186 

 
 
 
 
 
 
 
 
 
 

Figure 9-2:  MIB Translation 

 

The source files created by the MIB compiler may require additional hand coding to add features or 
supply information that can't be derived from the MIB.  The application can compile and link the MIB 
with the agent so the agent can access the MIB database. 

 

Building the MIB Translator 

The translator is provided as source code and as a pre-compiled executable.  The source is located in 
the BIN\MIBTOC directory.  To build it by hand, simply use the included batch file.  If the batch file 
isn’t set up for your tools, pass the source file as an argument to a compiler/linker.  For instance, if 
using the Borland compiler, run: 

bcc BIN\MIBTOC\mibtoc.c 

Or, if building from a UNIX environment, run: 

cc BIN/MIBTOC/mibtoc.c 

MIBTOC is ANSI-compatible and can be compiled by most commercially available compilers.  
Since the MIBTOC application uses a significant amount of stack space, the compiler or linker may 
need to be configured with an option to increase the stack space.  The compiler is included in 
executable format for DOS and Windows platforms. 

Running the MIB Translator 

MIBTOC takes one or two arguments:  The first argument is the name of the MIB file to be 
processed, and the optional second argument provides the base name for the output file.  The syntax 
is: 

 MIBTOC mibfile [outfile] 

If an output file name is not specified, the name for the output files will be derived from the base file 
name of the input file.  For example, this command will generate the output files toaster.c and 
toaster.h: 

MIBTOC toaster.mib 

If the second parameter is provided, then the output file names are based on the second parameter.  
Given this command line, the translator will generate the output files test.c and test.h: 

MIBTOC toaster.mib test 

MIB file MIBTOC

MIB.H

MIB.C



SNMP 

187 

Watch the output of MIBTOC to be sure that no errors occurred in preparing the output files.  A 
normal run will look like: 

 C:\usnet\snmpsrc>mibtoc rfc2571.txt 

USNET MIB to C Translator 1.10 
  Copyright (c) U S Software 1994, 1999, 2000. 
Root: ccitt 
Root: iso 
Root: joint-iso-ccitt 
Type ‘No Access’: org { iso 3 } 
Type ‘No Access’: dod { org 6 } 
Type ‘No Access’: internet { dod 1 } 
Type ‘No Access’: mgmt { internet 2 } 
Type ‘No Access’: experimental { internet 3 } 
Type ‘No Access’: private { internet 4 } 
Type ‘No Access’: security { internet 5 } 
Type ‘No Access’: snmpV2 { internet 6 } 
Type ‘No Access’: snmpDomains { snmpV2 1 } 
Type ‘No Access’: snmpProxys { snmpV2 2 } 
Type ‘No Access’: snmpModules { snmpV2 3 } 
Type ‘No Access’: mib-2 { mgmt 1 } 
Type ‘No Access’: transmission { mib-2 10 } 
Type ‘No Access’: enterprises { private 1 } 
Type ‘No Access’: snmpFrameworkMIB { snmpModules 10 } 
TC: SnmpEngineID (OctetString) 
TC: SnmpSecurityModel (Integer) 
TC: SnmpMessageProcessingModel (Integer) 
TC: SnmpSecurityLevel (Integer) 
TC: SnmpAdminString (OctetString) 
Type ‘No Access’: snmpFrameworkAdmin { snmpFrameworkMIB 1 } 
Type ‘No Access’: snmpFrameworkMIBObjects { snmpFrameworkMIB 2 } 
Type ‘No Access’: snmpFrameworkMIBConformance { snmpFrameworkMIB 3 } 
Type ‘No Access’: snmpEngine { snmpFrameworkMIBObjects 1 } 
Type ‘OctetString’: snmpEngineID { snmpEngine 1 } 
Type ‘Integer’: snmpEngineBoots { snmpEngine 2 } 
Type ‘Integer’: snmpEngineTime { snmpEngine 3 } 
Type ‘Integer’: snmpEngineMaxMessageSize { snmpEngine 4 } 
Type ‘No Access’: snmpAuthProtocols { snmpFrameworkAdmin 1 } 
Type ‘No Access’: snmpPrivProtocols { snmpFrameworkAdmin 2 } 
Type ‘No Access’: snmpFrameworkMIBCompliances { 
snmpFrameworkMIBConformance 1 } 
Type ‘No Access’: snmpFrameworkMIBGroups { snmpFrameworkMIBConformance 
2 } 
Type ‘No Access’: snmpEngineGroup { snmpFrameworkMIBGroups 1 } 
2554 lines processed OK 

 
If there is a problem in processing the file, the last line will not read “... processed OK” but 
rather will describe an error in processing the file.  For example, if the definition for MAXOID in 
mibtoc.c is too small, then this message will be displayed: 

L388 myTableIndex MAXOID too small 

This indicates that in processing line 388 of the MIB file, it was discovered that there was not enough 
room to build the needed Object ID array.  To correct this, the value for MAXOID should be 
increased in mibtoc.c, and MIBTOC should be rebuilt.  Also MAXOID should be increased to the 
same value in snmpconf.h, because it will be used again when building the SNMP agent. 



Chapter 9 

188 

MIB Files 

MIBTOC generates two files as output.  Using the example of an ASN.1 input file named 
toaster.mib, the output files would be toaster.c and toaster.h.  The SNMP agent uses the output files 
as follows: 

toaster.h Defines external variable and symbol definitions to which the application and MIB 
module may wish to refer as “extern”. 

toaster.c Allocates MIB variable and table values statically and provides the global ‘MIB 
mib_toaster’ structure declaration to provide global access to the MIB from 
the application. 

Read/Write Notification 

Each variable in a MIB may have read or write notification associated with it.  This means that prior 
to a get operation or after a set operation, the agent will signal the MIB that its data is being operated 
upon. 

For get-, getNext- or getBulk-requests, the option field in the MIB variable is checked for read 
notification (CAR – Call Application Read).  If this is set for the variable, the get() function for the 
MIB will be called with the index of the variable and a pointer to a pointer to the value of the variable.  
This is so that the MIB can update the value of the variable or dynamically redirect it to a new 
memory location. 

For set-requests, the option field in the MIB variable is checked for write notification (CAW – Call 
Application Write).  If this is set for the variable, the MIB set() function will be called with the index 
of the variable.  Special processing can be performed due to important changes in the value of the 
MIB variable. 

To indicate to the agent that read or write notification is required on a given variable, add the CAR 
and/or CAW options to the opt field of the variable record within the MIB source file using the 
bitwise OR operator (i.e. ‘|’). 

Example 
{8,{0x2b,6,1,2,1,1,6,0}, W | CAR | CAW, String,  
  sizeof(syslocat), syslocat}, /* sysLocation */ 

This example shows a MIBVAR  record (see the next section) which adds read and write notification 
to the MIB variable sysLocation.  Before modification, the option field was simply W, indicating 
a variable that allows write access.  The option field may be zero for no options or a combination of 
others.  The possibilities are defined in snmpv3.h and are shown in Table 9-3 below. 

#define IMMED   0x01 /* Immediate value in mvp->len */ 
#define IMMED2  0x02 /* Immediate value in mvp->type + len */ 
#define BASE1   0x03 /* Base 0 in data space, base 1 in MIB */ 
#define SCALAR  0x04 /* Table not indexed (no offset) */ 
#define W       0x80 /* Write allowed */ 
#define SX      0x40 /* Sequential table index inferred */ 
#define NWORDER 0x20 /* Network byte ordering for basic type */ 
#define CAR     0x10 /* Call application after read */ 
#define CAW     0x08 /* Call application before write */ 

Table 9-3:  MIBVAR Record Options Field 



SNMP 

189 

Options 
Field 

Description 

IMMED The variable value is stored directly in the len field (see 
below), rather than using the ptr field to store the address 
of the value. 

IMMED2 Similar to IMMED except the variable value is stored 
directly in the type and len fields (see below). 

BASE1 The variable index value is represented by SNMP starting 
at a base value of ‘1’ even though the agent must deal 
with the actual data with a base ‘0’. 

SCALAR A scalar value.  In other words, the value is not in a table 
even though its ASN.1 definition defines it as part of a 
table. 

W A variable that allows write access, i.e., the value may be 
modified. 

SX Indicates the first item of a MIB table, i.e., a SEQUENCE 
OF. 

CAR Use Read notification. 
CAW Use Write notification. 

 

Summary of Adding a User-Defined MIB 

1. Create the standard “out of the box” version of the SNMP agent, and confirm that the standard 
MIB-II variables are accessible from an SNMP manager. 

2. Build the MIBTOC compiler, if it is not already built for the development platform. 

3. Create the enterprise-specific MIB.  This example presents the wt2000 remotely accessible 
weather station MIB, which uses the MIB called weather.mib.  The MIB will be associated with 
a product of the fictional company “WeatherTek International” that makes devices that record 
weather conditions.  These conditions can be retrieved from their instruments through an SNMP 
manager. 

The first information to be included in the user-defined MIB will establish the path in the MIB 
hierarchy to the enterprise-specific MIB.  If the enterprise code for WeatherTek International were 
123, and the variables were those collected by the wt2000 model, then the following information 
might appear first in weather.mib: 

—                  MIB DESCRIPTION 
WEATHER-MIB DEFINITIONS ::= BEGIN 
— 
weathertek      OBJECT IDENTIFIER  ::= { enterprises 123 } 
wt2000          OBJECT IDENTIFIER  ::= { weathertek 3 } 

In this example, the weather station contains components that monitor conditions at a number of 
altitudes.  Some of the variables in weather.mib concern the weather station as a whole, and some 
concern the conditions at each altitude.  Let us say that a string is set up to hold the unit location, and 
the latitude and longitude of the installation are also stored.   



Chapter 9 

190 

This information might appear in weather.mib as follows: 

— 
— The wt2000 Group 
— 
location OBJECT-TYPE 
   SYNTAX      DisplayString 
   ACCESS      read-write 
   STATUS      mandatory 
   DESCRIPTION “The geographical name for the device location.” 
   ::= { wt2000 1 }  
latitude OBJECT-TYPE 
   SYNTAX      INTEGER 
   ACCESS      read-write 
   STATUS      mandatory 
   DESCRIPTION “The latitude at which the device is installed.” 
   ::= { wt2000 2 } 
longitude OBJECT-TYPE 
   SYNTAX      INTEGER 
   ACCESS      read-write 
   STATUS      mandatory 
   DESCRIPTION “The longitude at which the device is installed.” 
   ::= { wt2000 3 } 



SNMP 

191 

Now a table can be introduced to hold the information that is collected for a number of altitudes.  For 
this table, the altitude will act as an index, and temperature, humidity, wind speed and wind direction 
will be monitored.  Here is how it might appear in weather.mib: 

weatherTable OBJECT-TYPE 
   SYNTAX      SEQUENCE OF weatherEntry 
   ACCESS      not-accessible 
   STATUS      mandatory 
   DESCRIPTION “This table contains a tally of weather conditions” 
   ::= { wt2000 4 } 
weatherEntry OBJECT-TYPE 
   SYNTAX      WeatherEntry 
   ACCESS      not-accessible 
   STATUS      mandatory 
   DESCRIPTION “Each row represents conditions at a given altitude.” 
   INDEX       { altitude }  
   ::= { weatherTable 1 } 
WeatherEntry ::= SEQUENCE { 
   altitude      INTEGER, 
   temperature   INTEGER, 
   humidity      INTEGER, 
   windSpeed     INTEGER, 
   windDirection INTEGER { NORTH     (1), 
                           NORTHEAST (2), 
                           EAST      (3), 
                           SOUTHEAST (4), 
                           SOUTH     (5), 
                           SOUTHWEST (6), 
                           WEST      (7), 
                           NORTHWEST (8)}} 
altitude OBJECT-TYPE 
   SYNTAX      INTEGER 
   ACCESS      read-only 
   STATUS      mandatory 
   DESCRIPTION “Altitude in meters, used as an index.” 
   ::= { weatherEntry 1 } 



Chapter 9 

192 

The definitions for temperature, humidity, windSpeed, and windDirection 
would appear similar to the definition for altitude. 
 
Process the MIB with MIBTOC to create source code.  Make sure that the compiler reports no errors.  
Using the mibtoc.exe utility in the BIN\ directory: 

cd snmpsrc 
BIN\mibtoc weather.mib 

Add the files generated by MIBTOC to the project.  So in this example, add the file weather.c to the 
project. 

If there are any tables in the user-defined MIB, an index() function will have to be created in 
snmpsrc\weather.c and added to the MIB mib_weather declaration. 

cd snmpsrc 
edit weather.c 
 const MIB mib_weather = 
 { 
     mibvar, 
     mibvarsize, 
     mibtab, 
     mibtabsize, 
     0,  /* get */ 
     0,  /* set */ 
     index,  /* <<< New >>> */ 
     0   /* init */ 
 }; 

Declare the program variables that are introduced in the user defined MIB.  In this example, external 
declarations for the variables will be written into weather.h, but the variables will not be declared in 
any module.  The names of the variables are based on the names appearing in the MIB definition, and 
can be found in weather.h, which is excerpted here: 

extern char *location; 
extern int latitude; 
extern int longitude; 
extern struct weatherTable weatherTable[]; 

These variables must be declared somewhere in the application, and for this example the declarations 
are made in a modified version of weather.c: 

#define WTABSZ 3  /* number of entries in weather table */ 
char *location; 
int latitude; 
int longitude; 
struct weatherTable weatherTable[WTABSZ]; 

Note that the size of the table is not apparent from the information in the MIB definition and may be 
variable.  In this example, a constant has been defined to specify the size.  WTABSZ represents the 
largest possible table size.  This information should be used by the index() function. 

Initialize the variables in the user-defined MIB.  Any default values or fixed values can be set up 
before the SNMP agent is started.  Also, any index fields in tables must be initialized before the agent 
is started.   



SNMP 

193 

Here is an example from the modified weather.c: 

const char defaultlocation[] = “Portland, Oregon”; 
#define DEFAULTLATITUDE 46 
#define DEFAULTLONGITUDE 123 

static void init(uint16 type) 
{ 
    memset(weatherTable, 0, sizeof(weatherTable)); 
    location = defaultlocation; 
    latitude = DEFAULTLATITUDE; 
    longitude = DEFAULTLONGITUDE; 
 
    for (i1 = 0; i1 < WTABSZ; i1++) { 
        weatherTable[i1].altitude = i1 * 1000 + 1000; 
        weatherTable[i1].windDirection = 1; 
    } 

} 

In this example, default values for location, latitude, longitude and the 
windDirection field in weatherTable are initialized.  The altitude  index field in the 
table is initialized with the values 1000, 2000 and 3000. 

If the value of a variable should be updated before being read, then the get() function should be 
implemented.   

Likewise, if special action should be taken once a variable is written, then the set() function should be 
implemented, and if the number of rows in a table is variable then the index() function should be 
implemented. 

The weather MIB structure will have to be updated to reflect any required get, set, index or init 
functions: 

const MIB mib_weather = 
{ 
    mibvar, 
    mibvarsize, 
    mibtab, 
    mibtabsize, 
    get,  /* <<< New >>> */ 
    set,  /* <<< New >>> */ 
    index, /* <<< New >>> */ 
    init /* <<< New >>> */ 
}; 

Configuring the Transport Mapping 
A Transport Mapping is a defined method of data transfer between SNMP hosts.  RFC 3417 defines 
the use of SNMP over UDP/IP on Internet-based networks as well as many others.  From this, a 
module was defined called TRANSPORT_MAPPING.  Here is the structure definition that the 
smxNS SNMP agent uses: 



Chapter 9 

194 

typedef struct 
{ 
   /* Initialize underlying transport framework */ 
    sint16 (*init)(uint8 *ip, uint32 *maxsize, uint8 *name); 
 
   /* Open passively to receive SNMP messages */ 
    sint16 (*passive_open)(void); 
    sint16 (*passive_read)(uint8 *buff, uint16 len); 
    sint16 (*passive_write)(const uint8 *buff, uint16 len); 
    sint16 (*passive_close)(void); 
 
   /* Open actively to send SNMP messages */ 
    sint16 (*active_open)(const uint8 *rhost); 
    sint16 (*active_write)(const uint8 *buff, uint16 len); 
    sint16 (*active_read)(uint8 *buff, uint16 len); 
    sint16 (*active_close)(void); 
 
   /* The host’s system time */ 
    uint32 (*time)(void); 
} TRANSPORT_MAPPING; 

The application is expected to perform basic initialization of the network or other media.  Once that is 
completed, the agent may perform the following operations: 

init()  Initialize the transport specific features required by the agent.  Included are the 
IP address, maximum message size, and host name.  If any of these is defined 
and does not conflict with the transport layer, they can remain the same. 

passive_open()  Tell the transport that the agent is ready to receive data. 

passive_read()  Get available data from the transport. 

passive_write()  Transmit potential responses to passive_read() operations. 

passive_close()  Tell the transport that the agent will no longer receive data. 

active_open()  Tell the transport to create a data channel to a particular host for sending traps.  
Note that the rhost field is one of the trap hosts defined by the application.  

active_write()  Transmit a message to the host to which an active_open() was performed. 

active_read()  Receive data on the trap channel.  This will not occur with SNMPv1 and v2c.  
However, SNMPv3 has the provision that an agent may have to authenticate 
itself to a management station.  Version 3 trap messages are not supported at this 
time. 

active_close()  Close the data channel for writing traps. 

time()  Get the system time in tenths of a second. 

 
Each of the above operations returns a signed 16-bit value, except time() which returns the current 
time as a 32-bit value.  For passive_open(), passive_close(), active_open(), and active_close() the 
return value should be >= 0 unless an error occurs.  For passive_read(), passive_write(), 
active_read(), and active_write() functions the return value should represent the number of bytes 
transmitted or received.  Note that the agent cannot internally handle an error value when performing 
passive_open().  Essentially, the agent is useless without its passive functions. 

When the ussSNMPAgentTrap() function is called by the application or by the agent, the agent will 
actually iterate through each active_xxx() function for each trap host. 



SNMP 

195 

For example implementations, see the following: 

 snmpsrc\tm_bsd.c  smxNS BSD socket interface (smxNS,  
    UNIX, and Windows) 

 snmpsrc\tm_dpi.c  smxNS DPI interface 

Exercising the Agent 
An SNMP agent traditionally services queries from an SNMP Manager, which is implemented by 
software such as HP OpenView.  There are other freely available software packages that can perform 
SNMP Manager operations.  This section discusses the use of Net-SNMP.  The Net-SNMP package is 
currently available from http://net-snmp.sourceforge.net/, and binaries are available for a number of 
platforms, including Microsoft Windows. 

The Net-SNMP package provides command line utilities that can perform operations on an SNMP 
Agent using SNMP Version 1, Version 2 or Version 3.  Here are some example commands that 
demonstrate these functions.  These examples use the default user configuration in usm.c. 

Example: Dump the entire MIB tree using SNMP Version 1 

C:>snmpwalk –c public –v 1 192.168.11.100 

Here the community name is given as “public”, the version is specified as “1” and the smxNS SNMP 
agent is running on a system that has the IP address 192.168.11.100. 

Example: Dump the entire MIB tree using SNMP Version 2C 

C:>snmpwalk –c public –v 2c 192.168.11.100 

Example: Dump the entire MIB tree using SNMP Version 3 

C:>snmpwalk –l noAuthNoPriv –n public –u initial –v 3 192.168.11.100 

Example: Dump the entire MIB tree using SNMP Version 3 with authentication.  Note that 
Net-SNMP will only dump the MIB-II tree unless otherwise requested.  This example command 
specifies that the walk start at .1 so that all MIBs are included. 

C:>snmpwalk –a MD5 –A secretpassword –l authNoPriv –n admin –u 
admin-md5 –v 3 192.168.11.100 .1 

Example: Display the number of SNMP traps sent using SNMP Version  3 with MD5 authentication 

C:>snmpget –a MD5 secretpassword –l authNoPriv –n admin –u admin-md5 
–v 3 192.168.11.100 snmpOutTraps.0 

Example: Display the number of SNMP traps sent using SNMP Version 3 with MD5 authentication 
and DES privacy 

C:>snmpget –a MD5 –A secretpassword –l authPriv –n admin –u admin-md5 
 –x DES –X mylittlesecret –v 3 192.168.11.100 snmpOutTraps.0 

Example: Display the number of SNMP traps sent using SNMP Version 3 with MD5 authentication 
and AES privacy 

C:>snmpget –a MD5 –A secretpassword –l authPriv –n admin –u admin-md5 
 –x AES –X mylittlesecret –v 3 192.168.11.100 snmpOutTraps.0 

Example: Display the number of SNMP traps sent using SNMP Version 3 with SHA authentication 

http://net-snmp.sourceforge.net/


Chapter 9 

196 

C:>snmpget –a SHA –A mylittlesecret –l authNoPriv –n admin –u admin-sha 
 –v 3 192.168.11.100 snmpOutTraps.0 

Example: Display the number of SNMP traps sent using SNMP Version 3 with SHA-256 
authentication and AES-256 privacy 

C:>snmpget –a SHA-256 –A mylittlesecret –x AES256 –x secretpassword –l 
authPriv –n admin –u admin-sha –v 3 192.168.11.100 snmpOutTraps.0 



Web Server 

197 

10.  Web Server 
 

 

Web Server Overview 
The smxNSTM Web Server provides an HTML server framework with default modules, handlers, a 
server configuration file, and the nsbldpg utility to compile HTML.  It also includes CGI system 
support routines and the USMETA programming interface.  The developer does not have to create 
their own Web Server API, and the Web Server is customizable. 

The smxNS Web Server supports any MIME file type that can be manipulated or displayed by your 
web browser.  This includes audio and Java.  The MIME types determine how the browser processes 
the information. 

All source code discussed in this chapter is supplied with the smxNS Web Server unless stated 
otherwise. 

The smxNS Web Server has a modular design, and can be easily modified to suit your application.  
Because existing web technology is page-oriented rather than object-oriented, full pages transfer from 
the server to the client.  This limits the speed that data can be updated on the browser.  

These are the general steps for creating and inserting web pages into the embedded Web Server: 

1. Design and prototype your website using a standard web design tool (see Recommended Reading 
in Chapter 1).   

2. Test your prototype HTML on any standard web server. 

3. Move your prototype to the development system. 

4. Change CGI programs to CGI functions (see CGI Function Programming Interface later in this 
chapter). 

5. Configure the Web Server to work with your network by modifying the configuration file (see 
Server Configuration File later in this chapter). 

6. Process your web pages through the nsbldpg utility to obtain a C file that is compiled into the 
embedded format (see Using nsbldpg later in this chapter). 

7. Compile your application. 

8. Test. 

Though the smxNS Web Server is designed to be user-customizable, it probably will not need 
customization.  If you do want to customize, design information and guidelines for modifications are 
included in this document. 



Chapter 10 

198 

Web Server Requirements 
System Requirements: 

For a typical Web Server configuration, a minimum of 6K RAM (data and stack), and 
30K ROM.  Since the Web Server is modular these sizes may vary depending on the 
application, processor, and compiler. 

NOTE:   The Web Server uses the program stack to hold temporary data, so make sure there is at 
least a 5K stack in your application.  

Tools required to build the Web Server: 
smxNS Web Server source, a compiler/linker for your target platform, and an editor. 

Optional Tools: 
 A test Web Server for page design. 
 
 You can also use a web page design tool.  Be sure that your tool produces only HTML 
without propriety extensions.  Microsoft FrontPage contains proprietary extensions and 
will not work with the Web Server. 

 

Example Web Server  
NSDEMO is provided as a sample Web Server.  Some of the terms listed below might be new (for 
definitions, see Terminology in Appendix A).  They will be discussed throughout the manual.  The 
example is placed here to show the powerful features available in the Web Server. 

There are six web pages in the sample smxNS Web Server, NSDEMO.  The main page, and the first 
two links demonstrate static pages with formatted text and graphics.  The “Sample Form” page 
presents and accepts a web form.  When the form is submitted, a sample CGI function is invoked to 
demonstrate the interpretation of the information submitted in the form. 

 

Building the Example Web Server for Your Target 
Edit the buildpg.cfg file, found in the websrc directory.  The following lines might need to be 
modified to match your target configuration: 

# Change ServerAdmin to be the email address of someone who  
# administers the target 
ServerAdmin                   admin@yourcompany.com 
 
# Change ServerName to the name associated with the IP  
# address of your target 
ServerName      Target.yourcompany.com 

These configuration variables are not used by the Web Server or test programs, but are available for 
use in your applications. 

You may want to familiarize yourself with the other configuration files in the Web Server.  More 
information on these files is given later in this chapter.  New pages are added to the server by 



Web Server 

199 

specifying the pages in the file pages.cfg.  If you want to access a variable via a META command, 
those variables are specified in the file vartable.cfg. 

The NSDEMO example application includes code to launch the web server, so building the project 
that contains this file will create an example web server image.  Note that when building with the 
CodeWarrior compiler, the nsbldpg utility must be invoked by hand prior to building the project.  See 
the section “Using nsbldpg” for more detail. 

 

Connecting to the Example Web Server 
To connect to your Web Server from a browser such as Netscape Navigator or Internet Explorer, enter 
the following in the open dialog box: 

http://xxx.xxx.xxx.xxx 

Where xxx.xxx.xxx.xxx is the IP address of the target system running the Web Server. 

   

Adding Web Pages Using a File System 
The Web Server always includes a set of default web pages that are stored in ROM alongside the code 
for the web server itself.  Some applications may find it useful to augment the set of web pages with 
information stored in a local file system.  These pages could replace default web pages stored in 
ROM, or they could be additional pages not previously defined. 

The Web Server has been set up to check the local file system if HTTPS_USE_LOCAL_FS is set to 1 
in XNS\include\https.h.  This support is designed for use with the smxNS file system, but it can be 
adapted to other non-volatile file systems.  The capabilities needed are 

• Check if a file exists 

• Get file size 

• Read from the file in chunks (typical size 256 bytes) 

When the Web Server is configured for use with smxFS (FILE_SUPPORT set to 1), the path to a file 
is constructed from the "DocRoot" string concatenated with the path in the request.  If no matching 
file is found at that location, the ROM file system is searched. 

The DocRoot string is defined in DEMO\WEBPAGE\buildpg.cfg and has the identifier 
DocumentRoot 

#ScriptAlias  /cgi-bin/ / 
DirectoryIndex  index.html 
Readme   ReadMe 
DocumentRoot        A:\\htdocs\\ 



Chapter 10 

200 

Using the Web Server 
 

User Server Functions 
These functions are described in this section: 

Bwrite() Performs a buffered write to the network. 

doreq() Processes incoming HTTP request. 

GetEntry() Finds and returns the ENTRY structure used to access the web page. 

httpinit() Sets up listening Web Server socket. 

HTTPservinit() Initalizes the Web Server and allocates space for all the structures. 

httpterm() Shuts down Web Server. 

Neof() Tests for the EOF indicator for the network stream. 

waitreq() Waits for incoming HTTP request. 

 

Bwrite() 

Performs a buffered write to the network. 

int Bwrite(struct SERV_REC *recp,u8 *buf,u32 len) 

recp a pointer to the request structure 

buf a pointer to the output buffer 

len the length of the buffer 

Bwrite() writes out the buffer to the network.  The output is buffered to minimize network traffic.  To 
flush the buffer, use NULL for buf, or len of zero. 

Return Value  
<0  Error 

0 or >0 Success 

Example 
Rslt = Bwrite(reqp,buf,len); /* write buffer */ 
Rslt = Bwrite(reqp,NULL,0); /* flush buffer */ 



Web Server 

201 

doreq() 

Processes an HTTP request. 

int doreq(struct request_rec *reqp) 

The doreq() function processes an incoming HTTP request.  There is more information on how the 
request is qualified, broken down and the response is constructed in the “HTTP Server Request 
Structure” section that follows.  Note that each incoming HTTP message that is processed is logged 
with the MODlog() function which by default will list the request line, associated file that was 
referenced and the return code for the request processing. 

Return Value  
0  request processed OK 

<0  error in processing request 

Example 
while (web_server_enabled) 
{ 
   reqp = waitreq(servp); 
   if (reqp) 
      doreq(reqp); 
} 

GetEntry() 

Finds and returns the ENTRY structure if the web page is found.  The ENTRY structure is used to access the 
web page. 

ENTRY *GetEntry(REQUEST_REQ *reqp,const char *file,const char *path) 

reqp a pointer to the request structure 

file the name of the file, i.e., index.html 

path the absolute path after translation 

The GetEntry() function searches the directory specified by pathfor the page file..  If the 
directory or file doesn’t exist, a NULL is returned. 

This is the ENTRY structure: 

 struct entry { 
  const char *name; 
  const char *path; 
  s16  type; 
  const char *mime; 
  char  *encoding; 
  char  *lang; 
  void  *offset; 
  size_t clen; 
  size_t ulen; 
  u32  hits; 
  ENTRYACCESS *access; 



Chapter 10 

202 

 } 
 typedef struct entry ENTRY; 

Return Value  
Pointer to ENTRY structure if found 

NULL if not found 

Example 
ENTRY *ep = GetEntry(reqp, “index.html”,NULL); 

httpinit() 

Sets up listening Web Server socket.  

struct server_rec *httpinit(struct server_rec *mysrv) 

This function creates a socket for the Web Server to listen on.  The port number is given in 
mysrv->port, which typically is 80.  If the SSL library is part of the project and enabled (#define 
CSL_USSL 1), an additional socket will be set up listening on the HTTPS port (443).  In order to only 
run the HTTPS server, set myserv->port to 0 before calling httpinit(). 

Return Value 
Non-NULL Initialization OK, return value is pointer to server request structure 

NULL  Error 

Example 
extern SERV_REC server; 
 
main() 
{  
   SERV_REC *servp; 
   servp = &server; 
   memset(servp, 0, sizeof(SERV_REC)); 
   memcpy(servp, &romserver, sizeof(SERV_REC)); 
   HTTPservinit(servp); 
   httpinit(servp); 
   … 
} 

HTTPservinit() 

Initalizes the Web Server and allocates space for all the structures.  

struct SERV_REC *HTTPservinit(struct SERV_REC *servp) 

servp the server information for the Web Server 

Use the HTTPservinit() function to initialize server information such as port or IP.  The function is 
called only once per server. 

Return Value 
struct SERV_REC Filled-out server information 



Web Server 

203 

httpterm() 

Shuts down Web Server.  

int httpterm(struct SERV_REC *servp) 

servp the server information for the Web Server 

Use the httpterm() function to shut down the Web Server. 

Return Value 
0 Always returns 0 

 

Neof() 

Tests for the EOF indicator for the network stream. 

int Neof(int stream) 

stream the network file descriptor 

Neof() tests the end-of-file indicator for the network stream pointed to by stream, returning non-
zero if it is set. 

Return Value: 
 0  More data available 

!0  End of data 

 

waitreq() 

Waits for incoming HTTP request 

struct request_rec *waitreq(struct server_rec *servp) 

servp the server information for the Web Server 

 Use the waitreq() function to wait for the next incoming HTTP request so that it can be processed by 
the doreq() function.  The function will time out after 1 second and can be called repeatedly. 

Return Value: 
 Non-NULL  pointer to updated request structure 

NULL  Error or timeout 

 



Chapter 10 

204 

HTTP Server Request Structure 
The structure of the HTTP server is very modular, so modules can be added and removed at any time.  
This allows for additions of new features and control of code size without extensive changes. 

The request structure is the heart of the server.  The request structure is passed through a sequence of 
functions which process the request.  By having a request filter through different modules, the 
processing of that request can be tailored to each application.  It also allows for user-written 
processing without affecting other parts of the HTTP server, which reduces debugging. 

The processing of the request structure occurs in the doreq() function. 

int doreq (REQ_STRUCT *reqp) 

reqp a pointer to the request structure 

The pseudocode for doreq() is: 

 request processing 
 translate paths 
 check the URL 
 check the MIME type 
 check access 
 get user ID 
 authorize the user 
 handle the request 
 log the request 

See also:   Request Structure, later in this document 



Web Server 

205 

The following figure shows the process that each request to the embedded web server goes through. 
 
 
 

Request Processing

Check the MIME Type

Translate Paths

Check Access

Check the URL

Get User ID

Authorize User

Handle the Request

Type of Requests

. . . additional Handlers
Log the Request

SVA (user-customized
requests)

CGI Function

Java Applets

HTML Pages & Forms

META Commands

ISMAP

 
 

Figure 10-1:  Process for Request to the Embedded Web Server 

Return Value 
<0   Error 

  



Chapter 10 

206 

Modules and Handlers 
The structure of the HTTP server is very modular, so modules can be added and removed at any time.  
This allows for additions of new features and control of code size without extensive changes.  New 
plug-in modules and increased functionality will be added in the future. 

All data is passed through the modules by the request structure.  The Web Server provides a 
framework and default modules for your use, and is designed so the user can customize it.  To 
customize the modules, you must modify or replace the existing modules, using the existing modules 
as templates.   

Each module has a function and modifies only certain parts of the request structure.  Only the 
MODtranslate() and MODchkloc() functions are required; all others are optional.  The module 
functions are described in alphabetical order, but are used in this sequence: 

MODtranslate() Parses and translates the URL. 

MODchktype()  Determines the type and encoding of the document. 

MODchkloc()  Checks for the existence of the file. 

MODchkaccess()  Checks access privileges of the document. 

MODgetuser()  Performs user authorization. 

MODchkauth()  Finds the user in a database or file, and does the final authorization. 

MODlog() Logs errors and access. 

 

Once the request has been processed by all the modules, the final display is the responsibility of the 
handler function.  Each type of page has an associated handler.  Each handler processes the page and 
sends the output to the browser.  You can also add your own specialized handlers if needed for 
customization. 

When the default web page type is set to 'text' (in buildpg.cfg), only the text handler is necessary.  
Additional handlers enhance the Web Server by allowing it to handle different page types. 

These typical handlers are included with the smxNS Web Server: 

HNDtext Handles the standard HTML pages and text. 

HNDcgi Sets up the CGI environment and calls the function. 

HNDasis  Sends the file to the browser without any processing. 

HNDmeta  Handles server-side HTML parsing. 

HNDussnmp  Comes with the U S Software SNMP package. 



Web Server 

207 

Module Function Descriptions 
 

MODchkaccess() 

Gets access privileges of the document. 

int  MODchkaccess(struct request_rec *rec) 

rec  pointer to the request_rec structure 

This optional function checks the group flags or a directory file to determine the access permissions 
(security) for this page.  Access parameters and page permissions are defined in access and page 
configuration files access.cfg and pages.cfg.  This module sets the access group flag using the 
information specified in the access configuration file.  MODchkauth() must be written so that the 
correct username/password returns a flag to match this access group flag. 

The default MODchkaccess() module sets up two types of access checking: 

None No checking done (anyone can access) 

Group Checks a group flag associated with a user 

The developer may implement other forms of access checking by modifying or replacing 
MODchkaccess(). 

See also: Request Structure, in this document. 
Using nsbldpg and Page Configuration File, in the smxNS Web Server User’s Guide. 

Return Value 
< 0  Error 

Otherwise modifies the structure. 

Example 

This is a pseudocode example for the authentication procecure: 

MODchkaccess() 
/* Checks access restiction of a given web page */ 
Check request structure for page protection 
if (not protected) return 0 
if protected 
  initialize access information in request structure 
  /* specifically, set access group flag */ 
  return 0 



Chapter 10 

208 

MODchkauth() 

User-implemented routine to verify user authentication information. 

int  MODchkauth(struct request_rec *rec) 

rec  pointer to the request_rec structure 

MODchkauth() is an optional routine that checks the authentication parameters obtained by 
MODgetuser() against a user-defined lookup.  The default routine supplied with IAP sets the group to 
match the one specified in the access configuration file, if a preset username and password are 
entered.  This routine must be modified by the developer to implement a site-specific lookup 
mechanism. 

MODchkauth() does two types of access checking: 

None No checking done (anyone can access) 

Group Checks that the individual is within the group 

If the developer has set up alternate checking methods in MODchkaccess(), they must be 
implemented here. 

See also: Request Structure, in this document. 
Using nsbldpg and Page Configuration File, in the smxNS Web Server User’s Guide. 

Return Value 
< 0  Error 

Otherwise modifies the structure. 

Example 
MODchkauth() 
/* Largely user-defined routine to authenticate user info */ 
if (no access restriction) return 0 
match username/password to user-defined lookup 
/* Default routine has a hard-coded username and password.  
   When these are matched, a hard-coded group flag is  
   returned. This group flag matches the one in the access  
   configuration file, which was read into the request  
   structure in MODchkaccess(). */ 
if (no match) return 401 
if (match) return 0 



Web Server 

209 

MODchkloc() 

Checks for the existence of the file. 

int  MODchkloc(struct request_rec *rec) 

rec pointer to the request_rec structure 

This required module finds the document and sets up a pointer to an embedded structure.  If the page 
is not found, a result of 404 (not found) is returned to the requesting host.   

If smxFS is included in the system, then this function looks for the file in the file system first, and 
then searches the files in ROM.  The search starts at the location specified by DocRoot. 

See also: Request Structure, in this document 

Return Value 
< 0  Error 

Otherwise modifies the structure. 

Example 
See the file modchklo.c in your source code. 

 

MODchktype() 

Determines the type and encoding of the document. 

int  MODchktype(struct request_rec *rec) 

rec  pointer to the request_rec structure 

This optional function checks the embedded type flags or the extension to determine the correct 
handler.  This routine is appropriate when there is a file system in your embedded target. 

See also: Request Structure, in this document 

Return Value 
< 0  Error 

Otherwise modifies the structure. 

Example 
See the file modchkty.c in your source code. 



Chapter 10 

210 

MODgetuser() 

Performs user authorization. 

int  MODgetuser(struct request_rec *rec) 

rec  pointer to the request_rec structure 

MODgetuser() is an optional routine that gets authentication information from an end user.  The 
routine extracts the username and password (commonly entered in a pop-up dialog from a browser) 
from the HTTP headers.  This information is stored in the request structure and subsequently 
processed by MODchkauth().  This routine decodes authentication information using either the basic 
or digest authentication schemes.  Support for any other authentication scheme must be added by the 
developer. 

See also: Request Structure, in this document 
RFC 2069 and chapter 11 of RFC 2068 

Return Value 
< 0  Error 

Otherwise modifies the structure. 

Example 
MODgetuser() 
/* Checks user authorization information */ 
if (no access restriction) return 0 
if (no “Authorization” in HTTP header) 
  add “WWW-Authenticate” to HTTP header  
  return 401 (Unauthorized) 
  /* A browser receiving “WWW-Authenticate” will commonly 
     pop up a username/password dialog. Entered parameters 
     are sent to server as new request with “Authorization”  
     in HTTP header. */ 

if (“Authorization” in header) 
  if (not basic or digest authentication) return 401 
  decode username and password from HTTP headers 
  store username and password in request structure 
  return 0 



Web Server 

211 

MODlog() 

Logs errors and requests. 

int  MODlog(struct request_rec *rec) 

rec  pointer to the request_rec structure 

MODlog() is an optional function that must be impelemented by the developer.  This routine could 
log all requests and errors to a buffer, to a monitor, or to a file if a file system is present. 

See also: Request Structure, in this document 

Return Value 
< 0  Error 

Otherwise modifies the structure. 

Example 
See the file httputil.c in your source code. 

 

MODtranslate() 

Parses and translates the URL. 

int  MODtranslate(struct request_rec *rec) 

rec  pointer to the request_rec structure 

MODtranslate() is a required module that parses the URL and translates its contents to a form usable 
by the Web Server.  The path, file, and query information are parsed from the URL, and stored in the 
URI structure within the request structure.  This information is used in the handler modules to take the 
appropriate action, such as displaying a page or executing a CGI function.  This module supports 
HTML and CGI translation. 

See also: Request Structure, in this document 

Return Value 
< 0  Error 

Otherwise modifies the structure. 

Example 
See the file modtrans.c in your source code.   



Chapter 10 

212 

Request Structure  
The request structure is the heart of the server.  As an HTTP request is filtered through the modules, 
the request structure is filled in.  

Since the structure is broken into stages, the user can customize each of the modules with little impact 
on the rest of the code.  This also allows for future enhancements to be added easily.   

The request structure is defined in the include file, https.h.  An example of the request_rec 
structure is provided below: 

struct request_rec { 
    int           rslt;      /* result status */ 
    SERV_REC      *servp;    /* ptr to server rec */ 
    int           reqfd;     /* req sock descriptor */ 
    char          *ptr;      /* ptr for strng manip */ 
    uint          blen;      /* buf len left to read*/ 
    int           slen;      /* sz of sockadd struct*/ 
    struct sockaddr saddr;   /* sock addr structure */ 
    uint          flags;     /* keepalive and other flags */ 
    int           protonum;  /* protocol number */ 
    char          *protover; /* protocol version */ 
    s16           type;      /* type of HTTP req */ 
    const char    *method;   /* request method */ 
    s16           hostport;  /* listen port */ 
    char          *reqline;  /* request line */ 
    char          *status;   /* ptr to status line */ 
    char          *scheme;   /* GET, POST, (unused) */ 
    char          *hostname; /* where from */ 
    URI           uri;       /* text info */ 
    s16           headcnt;   /* num of HTTP headers*/ 
    struct headers *headers; /* HTTP headers */ 
    int            rplycnt;   /* num to HTTP reply */ 
    struct headers *rplyheads;/* reply headers */ 
    u8            *body;     /* ptr to body of POST */ 
    u32            bodylen;   /* how big? */ 
    struct entry  *fileinfo; /* after page is found, 
                                ptr to the entry */ 
    char           *mime;    /* mime type */ 
    char           *encoding;/* the encoding */ 
    char           *lang;    /* the language */ 
    char           *accepth;    
    char           *connecth;   
    char           *from; 

    struct cookie  *cookie;  /* cookie info */ 
    int           (*handler)(struct request_rec *req); 
    ACCESS         *access;  /* access structure */ 
    u32            ldat;     /* undefined data */ 
    void           *data1;   /* now undefined ptr */ 
    void           *data2;   /* another undef ptr */ 
    char        *buff;    /* gen purpose buffer */ 
}; 



Web Server 

213 

Using nsbldpg 
The nsbldpg utility builds the web pages from your configuration files.  To do this, it reads these files 
in this order: 

• The server configuration file, named buildpg.cfg  

• The MIME types file, named mime.typ 

• The page configuration file, named pages.cfg  

• The variable configuration file, named vartable.cfg  

nsbldpg then takes the pages and turns them into C code, generating: 

htpgtbl.c headers and tables, plus the server configuration and pages in binary format 

htpgtbl.dat  an included C file that contains source data for the web pages 

These files are then compiled into your application. 

When using the IAR compiler, the nsbldpg program is automatically invoked using the “Custom 
build” feature.  Building the project will include the appropriate steps for building the generated C 
files. 

When using the CodeWarrior compiler, the nsbldpg program must be invoked from the command line 
prior to building the NSDEMO project.  To do this, invoke the utility and specify the buildpg.cfg 
configuration file, as in the following example: 

C:\SMX\APP\DEMO\WEBPAGE>..\..\bin\nsbldpg buildpg.cfg 

If the path to the configuration file contains spaces, use quotes around the path, for example: 

C:\SMX\BIN> nsbldpg “c:\work\test area\smx\app\demo\webpage\buildpg.cfg” 

The nsbldpg utility will try to locate the other configuration files (mime.typ, etc.) using the same path 
as that specified for buildpg.cfg.  For convenience, the nsbldpg utility can be moved to a location that 
is in the executable search path. 

 

Server Configuration File 
The smxNS Web server’s configuration is similar to the NCSA and Apache* web servers.  nsbldpg 
uses the configuration file to build your web pages.  There are five different areas of the server 
configuration, which can be seen in the example file on the next page: 

• Other configuration files 

• Application system information 

• Server information 

• Directory and file system information 

• MIME information 



Chapter 10 

214 

This is an example of a typical buildpg.cfg file: 

# This configuration file is read by the nsbldpg utility 

# other configuration files 
BuildDocRoot .\ 
PageConfig pages.cfg 
VarConfig vartable.cfg 
TypesConfig mime.typ 
AccessConfig access.cfg 

# application system information 
Processor 68EN302 
HWdate  3 April 1951 
HWversion Release 35.1 
HWconfig  WOM (Write Only Memory) 
SWdate  11 Aug 1955 
SWversion 1309.7.32 
SWconfig  swodniW ultra light 
TotalMem  32 
SysMem  25 
FreeMem  7 

# server information 
BindAddress 206.29.173.23 
DefaultType text/html 
Port  80 
ServerAdmin admin@yourserver.company.com 
ServerName yourserver.company.com 

# directory and file system information 
Alias  /pages/ / 
Alias  /other/ / 
DirectoryIndex index.html 
Readme  ReadMe 

# mime information 
AddEncoding x-zip zip 
AddEncoding x-gzip gz 
AddType  application/x-us-snmp smp 
AddType  application/x-us-prog uso 
AddType  application/x-us-include usi 



Web Server 

215 

Other Configuration Files 

These variables provide information on where needed files are located.  These files are described in 
detail later in this chapter. 

Table 10-1:  Other Configuration Files 

Value Description Example 
PageConfig The name of the page configuration file.  See also: 

Page Configuration File, in this chapter. 
pages.cfg 

VarConfig The name of the variable configuration page.  Each 
entry in the file has the format of: 
Searchname, type, size, varname 
An example is: 
VAR1, WEB_SHORT, sizeof(variable1), variable1 
See also: Variable Configuration File, in this chapter. 

vartable.cfg 

TypesConfig The name of the file that contains the file extension to 
MIME type mapping.  See also: MIME Information, in 
this chapter. 

mime.typ 

AccessConfig The name of the access configuration file.  See also: 
Access Configuration File, in this chapter. 

access.cfg 

 



Chapter 10 

216 

Application System Information 

Application system information contains values that define more about the embedded system.  The 
values are returned to the user when a META command is embedded into the HTML.  These values 
can also be filled in at initialization time by the application.  The values must be a string or a number, 
as specified in the following table, but they are not case-sensitive and can be in any format. 

Table 10-2:  Application System Information Variables 

 

Value Description Example
BindAddress Binds the listen connection to this

address (eight 16-bit hex numbers).
0000:0000:0000:0000:
0000:0000:C0A8:0101
(same as 192.168.1.1)

Port The listen port. 80

ServerAdmin The server administrator’s e-mail
address.

admin@yourserver.
company.com

ServerName The host name of the HTTP server. yourserver.
company.com

access_log There are two different formats,
depending on the logging method:
• E-mail address -- the log is
  stored in RAM until it is mailed
  to this address.
• File name -- the log information
  is saved to a file.

admin@yourserver.
company.com

 



Web Server 

217 

Server Information 

These variables set the server and network environment. 

Table 10-3:  Server Information Variables 

 
 

Value Description Example 
BuildDocRoot Defines the path used by nsbldpg to 

preprocess the pages. 
./pages 

DocRoot On File System this would be the root 
where the search would start. 

C:/mypages 

DefaultType If the system does not know what type a 
file is when handling a message, it will use 
this type. 

text/html 

Readme Default name in directory for more 
information. 

ReadMe 

DirectoryIndex Default file when no file is specified. index.html 
Alias Changes the URL path, for instance, from 

/here/file to /there/file (the physical path 
would be C:/mypages/there/file). 

/here/    /there/ 

ScriptAlias Remaps the URL to a physical directory, 
and notifies the server that the file being 
accessed is code. 

/cgi-bin/    / 

ErrorAlias If an error occurs, the output to the browser 
is changed from the standard error to this 
new page. 

404 notfound.html 



Chapter 10 

218 

Directory and File System Information 

These variables provide information on where needed files are located. 

Table 10-4:  Directory and File System Information Variables 

 

Value Type Description Example
Processor string Defines the processor type. 68EN302

HWdate string Defines the hardware build data. 3 April 1951
HWversion string Defines the hardware version. Release 35.1
HWconfig string Contains any special hardware

configuration information.
WOM (Write
Only Memory)

SWdate string Defines the software build date. 11 Aug 1955

SWversion string Defines the software version. 1309.7.32.8
SWconfig string Contains any special software

configuration information.
swodniW ultra
light

TotalMem number The total size of memory, in kilobytes. 32
SysMem number The amount of memory used by the

system.  Because the application
defines what ‘system’ is, this could be
anything.

25

FreeMem number The amount of free memory, in
kilobytes.

7

 



Web Server 

219 

MIME Information 
MIME file types are defined by suffix (extension), and the MIME type controls how the server or 
browser will treat the defined files: 

• If the file is server-specific, the MIME type tells the server how to handle it.   

• If it is a browser file, the server adds the content type(s) to the header information for the 
browser’s use.   

• The MIME information also defines how to decode the data, and the nsbldpg program uses it for 
the encoding scheme. 

There are two ways of defining MIME types for the smxNS Web Server:  In the mime.typ file, or 
with the AddType command.  The mime.typ file included in the smxNS Web Server distribution 
contains most of the standard definitions.  The AddType command adds definitions to the server 
configuration file, allowing you to keep your mime.typ file general. 

 

MIME Types File 

This file lists the types of files the server is capable of sending.  You can define multiple extensions 
for one file type.   

This is an example portion of a mime.typ file: 

# This is a comment. I love comments. 
 
application/mac-binhex40 hqx 
application/msword  doc 
application/octet-stream bin dms lha lzh exe class 
application/pdf  pdf 
application/postscript ai eps ps 
application/powerpoint ppt 
application/rtf  rtf 
application/x-compress Z 
application/x-cpio  cpio 
application/x-csh  csh 
application/x-director dcr dir dxr 
application/x-gtar  gtar 
application/x-gzip  gz 
application/x-httpd-cgi cgi 
application/x-tar  tar 
application/x-tcl  tcl 
application/x-wais-source src 
application/zip  zip 
audio/basic  au snd 
audio/mpeg  mpga mp2 
audio/x-aiff  aif aiff aifc 
audio/x-wav  wav 
image/gif  gif 
image/jpeg  jpeg jpg jpe 
image/tiff  tiff tif 
message/external-body 
message/news 



Chapter 10 

220 

multipart/alternative 
multipart/appledouble 
multipart/digest 
multipart/mixed 
multipart/parallel 
text/html  html htm 
text/plain  txt 
text/x-sgml  sgml sgm 
video/mpeg  mpeg mpg mpe 
video/quicktime  qt mov 
video/x-msvideo  avi 
 

AddType Command 

Adds an additional MIME type to the Web Server.  

AddType application/type extension 

type the type of file 

extension the extension for the file type  

AddType helps define the file type when parsing.  The new type goes into the server configuration file 
(not the mime.typ file) and functions like a command.  Use AddType to add specialized MIME types 
to the Web Server rather than to your mime.typ file, thus keeping your mime.typ file general. 

Example 
AddType application/x-us-meta  usm 



Web Server 

221 

Page Configuration File 
The page configuration file defines what local pages should be included in embedded web sites.  Each 
page is defined by a line with a format of: 

Buildname,webname,accessname,flags[,maxsize, mime] 

Buildname  the name of the source file on your development system or the name of the CGI 
routine within the application program. 

webname  the URL name. 

accessname a string used to associate authentication parameters with a web page.  This 
variable is used by Modchkaccess().  The authentication parameters associated 
with accessname are specified in access.cfg. 

flags define the processing this page needs. The flags are defined by 0xFFTT, where 
FF are bit flags and TT is a type number. 

 The flags are defined as: 
 0x01 RAM/ROM, if set move page to 
    RAM and access it from RAM  
 0x02 If bit is set, the URL is executable  
    (i.e., CGI function) 
 0x04 Undefined 

 The type is: 
 0,1  TEXT and HTML 
 2    CGI Function 
 3    ASIS, just send it out without  
    parsing 
 4    USMETA, a HTML file with META  
    commands 
 5    USSNMP, a UUUSMP file with  
    META commands 
 255  QUIT, exit the server 

maxsize  optional numeric variable used to reserve memory (a specified number of bytes) 
for the web page.  

mime  rarely-used optional alpha variable that overrides the MIME definitions from the 
mime.typ file and AddType. 



Chapter 10 

222 

This is a example of a typical pages.cfg file: 

# format is  
# build file name or link name 
# page name 
# accessname: string to define access parameters 
# flags bits TYPE 0-7, ROM/RAM = 0x0100, DATA/LINK = 0x0200, 
# 0,1 = TEXT 
# 2 = CGI 
# 3 = ASIS 
# 4 = META 
# 5 = USSNMP 
# 255 = ABORT 
# [maxsize] optional (0-9) 
# [mime] optional (alpha) 

# pages 
index.htm,index.html,0,0 
linktest.htm,linktest.htm,0,0 
imagepag.htm,imagepag.htm,0,0 
example3.htm,example3.htm,0,0 
example4.htm,example4.htm,0,0 
example5.htm,example5.htm,0,0 
example6.htm,example6.htm,0,0 
mailit.htm,mailit.htm,0,0 

#images 
example5.gif,example5.gif,0,3 
image.jpg,image.jpg,0,3 
lava_l.gif,lava_l.gif,0,3 

#cgi functions 
query_cgi,cgi-bin/query,0,0x0202 
post_query_cgi,cgi-bin/post-query,0,0x0202 
prntenv_cgi,cgi-bin/prntenv,0,0x0202 
mailit_cgi,cgi-bin/mailit,0,0x0202 
rainbow.cls,RainbowText.class,0,0x0003 



Web Server 

223 

Variable Configuration File 
The variable configuration file defines the variables in the application that need to be accessed from 
the web pages.  The file translates text strings into variables for access, and creates a table.  The web 
pages can access the variables directly using META commands.  You can use this to allow an end-
user to access a variable within the application. 

The format is: 

web_name, web_type, sizeof(type), variable_name 

web_name name used to access variable on web page 

web_type one of: 
WEB_INT, WEB_UINT, WEB_SHORT, WEB_USHORT, WEB_LONG, 
WEB_ULONG, WEB_CHAR, WEB_STRING 

sizeof(type) sizeof(variable) 

variable_name  global variable in application 

This is an example of a vartable.cfg file: 

NAME,WEB_STRING,sizeof(name_var),name_var 
pagecnt,WEB_LONG,sizeof(long),pagecnt_var 

name_var and pagecnt_var are global variables in the application. 

Example 

NAME, WEB_STRING, sizeof(name_var), name_var 
pagecnt, WEB_LONG, sizeof(long), pagecnt_var 

Note that name_var and pagecnt_var are global variables in your application. 

 
Your name is <!—-#ECHO FORMAT=”%s” VAR=”name”—-><BR> 
 

Note that the variable name “name” is case-insensitive compared to the one in the configuration file. 

There are <!--#ECHO FORMAT=“%d” VAR=”pagecnt”--> pages in this 
document. 

Note that the variable is declared as WEB_LONG in the configuration file -> type long, but is printed 
out in “%d” – int format.  The format specified in the META Echo command supercedes the format 
specified in the variable configuration file.  If the FORMAT is left out of the META Echo statement, 
then the one in the variable configuration file will be used. 

 

 



Chapter 10 

224 

Access Configuration File 
The access configuration file defines parameters for page authentication.  The file is typically named 
access.cfg and is located in the DEMO\WEBPAGE directory. 

The format is: 

name, check_type, auth_type, group, realm, [key, domain] 

name string used in pages.cfg to associate authentication parameters with a specific 
page.  In the example which follows, “test_digest” and “test_basic” specify two 
different sets of authentication parameters.  Using the access name string in the 
pages.cfg file will match a set of authentication parameters to a specific web 
page. 

check_type type of authorization: 0 = none, 1 = group, >1 other (not implemented) 

auth_type 0 = basic, 1 = digest 

group an unsigned long flag which must match the flag returned by finduser().  The 
example below uses a flag of 0x7fffffff which is matched against the group set 
in finduser(). 

realm defines protection space.  In the following example, pages within the realm 
testing@smxrtos.com are protected.  Once a request has been authenticated, all 
subsequent requests for pages in the same realm will be automatically 
authenticated. 

key a string used as the challenge key for digest authentication. 

domain the URL space to protect for digest authentication. 

 

This is an example of an access.cfg file: 

# This is an access file 
# format for basic 
#     name,checktype,authtype,groups,realm 
# 
# format for digest 
#     name,checktype,authtype,groups,realm,key,domain 
# 
# string,int,int,long,string[,hexstring,string] 
 
test_digest,1,1,0x7fffffff,testing@smxrtos.com,smxtest,smxrtos.com 
test_basic,1,0,0x7fffffff,testing@smxrtos.com 

The corresponding pages.cfg file would look like this: 

# Basic authentication parameters test_basic required for access 
# to web page ex0.htm: 
ex0.htm,ex0.htm,test_basic,0 
# Digest authentication parameters test_digest required for access 
# to web page ex2.htm 
ex2.htm,ex2.htm,test_digest,0 

mailto:testing@smxrtos.com


Web Server 

225 

CGI Function Programming Interface 
The heart of the interactive web is the Common Gateway Interface (CGI).  The server needs to 
display different pages depending on the user’s actions.  CGI reads parameters from forms on the 
displayed web page to the server.  The data is in the format of: 

 name1=value1, name2=value2 

The smxNS Web Server supplies all needed support routines to manipulate CGI data.  The HTTP 
server uses the standard CGI programming interface, but with a twist.  The main difference is that the 
embedded HTTP server uses subroutines instead of programs. 

ISMAP is supported via argc and argv passed into the CGI function.  A mouse click would be 
passed in as argv[1] being x and argv[2] being y. 

In UNIX the CGI programs are called like: 

int main(int argc, char *argv[]) 

In the embedded world it would be: 

 int subname(int argc,char *argv[],REQ_STRUCT *reqp) 

The CGI function can provide all of the components of the response to an incoming request, including 
the status code, response headers and the message body.  Details on the format of an HTTP response 
are in Section 6 of RFC 2616. 

There are a number of example CGI functions in XNS/websrc/CGI directory.  The example in query.c 
is part of the smxNS Web Server demonstration.  The query_get_cgi()  function receives information 
submitted in a web form and stores it in global variables. 

The code at the beginning of query_get_cgi() writes the HTTP status code, response headers and a 
CRLF delimiter that indicates the beginning of the message body for the response.  This code can 
serve as a starting point for customization and as boilerplate for other CGI functions. 

reqp->rslt = 200; 
rplystatus(reqp); 
reqp->rplycnt = addheader(reqp->rplycnt, reqp->rplyheads, 
   "Content-type", "text/html"); 
reqp->rplycnt = addheaders(reqp->rplycnt, reqp->rplyheads, 
   "Expires", "0"); 
rplyheaders(reqp, reqp->rplycnt, reqp->rplyheads); 
PRINTF(reqp->, "\r\n"); 

The value set in reqp->rslt is sent as the HTTP status code when rplystatus() is called.  The example 
code will generate the following 

HTTP/1.1 200 OK 

The calls to the addheader() function add HTTP headers to the response and the rplyheaders() 
function sends the headers.  The example code will generate the following 

Content-type: text/html 
Expires: 0 

To include more headers in the response, insert additional calls to addheader().  The first and second 
fields in the header are specified as the last two parameters in the addheader() call. 

At the end of this sequence there is a call to PRINTF() to send the carriage-return line-feed characters 
that will mark the end of the response headers and the beginning of the message body. 



Chapter 10 

226 

The following sections includes descriptions of the CGI routines and the CGI system support routines. 

 

System Support Routines 
These routines are support routines for the application engineer to use for CGI functions such as 
exchanging information with the network.  They are similar to standard CGI support routines, but 
tailored to the embedded environment.   

These routines are described in this section: 

findvar() Searches the variable structure for a specified string. 

getvar() Searches the request structure for a variable. 

Ngetenv() Searches the environment structure for a specified string. 

send_file() Writes a file to the network. 



Web Server 

227 

findvar() 

Searches the variable structure for a specified string. 

VARENTRY *findvar(REQSTRUCT *reqp, char *name) 

reqp a pointer to the request structure 

name a pointer to the specified string 

The findvar() function searches the variable structure for a string that matches the string pointed to by 
name.  It is typically used for changing the variable structure.  This allows name to be reassigned 
to a different pointer.  This routine could be used to write a larger buffer for a pointer associated with 
the name. 

See also: getvar()  
Request Structure, in the HTTP Server Request Structure section. 

Return Value  
A pointer to the VARENTRY structure if found, NULL if not found. 

Example 
/* This program demonstrates the GET CGI routines */ 
/* the HTML is given a filename that is to be sent */ 

typedef struct { 
    char name[128]; 
    char val[128]; 
} entry; 
 
static entry entries[10]; 
 
int demo_cgi(int argc,char *argv[],REQUEST_REQ*reqp) 

{ 
  char *str, fname; 
  int *pmaxetn; 
  ENTRY *ep; 
  VARENTRY *vp; 
     reqp->rslt = 200; 
      rplystatus(reqp); 
      reqp->rplycnt = addheader(reqp->rplycnt, reqp->rplyheads, 
         "Content-type", "text/html"); 
      reqp->rplycnt = addheader(reqp->rplycnt, reqp->rplyheads, 
         "Expires", "0"); 
      rplyheaders(reqp->rplycnt, reqp->rplyheads); 
      PRINTF(reqp, "\r\n"); 
  str = Ngetenv(reqp,“METHOD”);  /* get the 
               METHOD=XXXX */ 
  if(strccmp(str,”GET”) != 0) { 
        /* compare str to “GET” case-insensitive */ 
   str = Ngetenv(reqp,“QUERY_STRING”); 
   if (str == NULL) {    
    PRINTF(); 
    return 0; 
   } 
  } else if (strccmp() == 0) { 



Chapter 10 

228 

   char buff[8192]; 
   (reqp,buff,8192); 
   str = buff; 
  } else { 
   PRINTF(reqp,”BAD METHOD”);     /* bad method */ 
   return 0; 
  } 
  pmaxetn = (int*)getvar(reqp,”ENTRYSZ”);   
          /* get a pointer to integer */ 
  for(x=0;cl[0] != ‘\0’;x++) {   
       /* this section decodes the string  
         into an array for easy use */ 
   splitstr(entries[x].val,cl,’&’);  
      /* get the whole “name=value” string */  
   plustospace(entries[x].val);  
          /* change any ‘+’ to ‘ ‘ */ 
   unhex_str(entries[x].val); 
           /* remove any nasties */ 
   splitstr(entries[x].name,entries[x].val,’=’); 
     /* split the entry into “name” and value” */ 
   if(x==*pmaxetn)    /* check if at max */ 
    break; 
  } 
 m=x; 
 setvar(reqp,”THISENTRY”,entries,0);  
      /* save the array to be used later */ 
 
       /* usually the entries are in the 
          same order, but just in case */  
 for(x=0;x<m;x++) {    /* loop through array */ 
  if(strcmp(entries[x].name,”SENDFILE”) == 0){ 
   fname = entries[x].value; 
   break; 
  } 
 } 
 if(x==m) { 
  PRINTF(reqp,”not found\n”); 
  return 0; 
 } 
 ep = GetEntry(reqp,fname,0); 
 send_file(reqp, ep); 
 vp = findvar(reqp, “THATVAR”); 

 if(vp == NULL) { 
  PRINTF(reqp,”not found\n”); 
  return 0; 
 } 
 PRINTF(reqp,”name >%s, data pointer >%x\n”,vp->name, 
    vp->data); 
 Bwrite(reqp,vp->data,vp->size); 
 return 1; 
} 



Web Server 

229 

getvar() 

Searches the request structure for a variable. 

char * getvar(REQSTRUCT *reqp, char *name) 

reqp a pointer to the request structure 

name a pointer to the specified variable 

The getvar() function searches the request structure for a variable that matches the variable pointed to 
by name.  This function is used  to access application variables from the CGI routine.  The variable 
accessed is the same as if done from an HTML META command. 

See also: findvar()  
Request Structure, in the HTTP Server Request Server section 

Return Value 
Returns the pointer needed to access the variable specified by name, so the variable’s value can be 
changed 

Example 
This is included in the example for findvar(). 

 

 

Ngetenv() 

Searches the environment structure for a specified string. 

const char *Ngetenv(struct request_rec *reqp, const char *str) 

reqp a pointer to the request structure 

str a pointer to the specified string 

The Ngetenv() function searches the environment structure for a string that matches the string pointed 
to by str.   

See also: Request Structure, in the HTTP Server Request Structure section 

Return Value 
A pointer to the value in the environment, or NULL if there is no match. 

Example 
This is included in the example for findvar(). 



Chapter 10 

230 

send_file() 

Writes a file to the network. 

int send_file(REQSTRUCT *reqp, ENTRY *ep) 

reqp a pointer to the request structure 

ep pointer to the ENTRY structure, where ENTRY is a structure that contains a file or 
page description 

The send_file() function writes the file in the ENTRY *ep to the network.  This is a way to send out 
a file without processing it. 

See also: GetEntry() description, in this chapter, for a definition of the ENTRY structure 
Request Structure, in the HTTP Server Request Structure section 

Return Value 
< 0  Error 

0 or > 0  Success 

Example 
This is included in the example for findvar(). 



Web Server 

231 

CGI Routines 
These routines are described in this section: 

escape_char() Converts all ‘nasty control characters’ to ‘\x’. 

hextochar() Converts two hex values into an unsigned 8-bit value. 

Nmakeword() Parses a string and returns a pointer to the word that was matched. 

plustospace() Converts all ‘+’ to spaces. 

splitstr() Parses a string. 

subchar() Substitutes one character for another in a string. 

unhex_str() Searches for %xx and terminates the string. 

 

escape_char() 

Converts all ‘nasty control characters’ to ‘\x’. 

void escape_char(char *cmd) 

cmd the string to convert 

The escape_char() routine converts unwanted characters (which might blow up shells, be security 
holes, etc.) in the specified string to ‘safe’ characters.  The 'nasty control characters' which are 
processed are: 

 & ; ` ' " | * ? ~~ < > ^ ( ) [ ] { } $ \ 0x0A 

Return Value 
None 

Example 
char *buf = "grep foo > x"; 
escape_char (buf); 
 /* After execution of escape_char(), 
    buf is "grep foo \> x". */ 

 



Chapter 10 

232 

hextochar() 

Converts two hex values into an unsigned 8-bit value. 

char hextochar(char *what) 

what the hexadecimal value to convert 

The conversion is to characters or integers, depending on the hexadecimal number specified. 

Return Value 
The converted value. 

Example 
char *str=”AB”; 
char num; 
num = hextochar(str); /* num = 0xab */ 

See the file cgiutil.c in your source code for another example. 

 

 

Nmakeword() 

Parses a string. 

char * Nmakeword(struct request_rec *reqp, char stop, int *cl) 

reqp pointer to request structure 

stop character to stop at 

cl length of string 

Nmakeword() is like splitstr() but it returns a pointer to the word that was matched.   

It receives a string one character at a time, and terminates the receive upon reception of  the stop 
char or if there is an end-of-string or end-of-line.   Nmakeword() returns a pointer to the word, and 
reqp->ptr is adjusted to point to the next character after the stop character. 

See also: splitstr() 

Return Value 
A pointer to the word that was matched. 

Example 
See the file cgiutil.c in your source code for an example. 

 



Web Server 

233 

plustospace() 

Converts all ‘+’ to spaces 

void plustospace(char *str) 

str the string  to convert 

Return Value 
None 

Example 
This is included in the examples for splitstr(). 

 

 

subchar() 

substitutes one character for another in a string 

void subchar(char *str, char oldchar, char newchar,) 

str the string  to modify 

oldchar the character to be replaced 

newchar the replacement character 

Return Value 
None 

Example 
plustospace() is implemented using subchar(). 

void plustospace(char *str) { 
   subchar(str, ‘+’, ‘ ‘); 
} 

 



Chapter 10 

234 

splitstr() 

Parses a string. 

void splitstr(char *word, char *line, char stop) 

word a pointer to buffer space 

line the beginning of the string 

stop the ending character 

splitstr() parses the string pointed to by line until the stop char is matched or there is an end-of-
string or end-of-line.  splitstr() returns the contents of the buffer pointed to by word, and adjusts 
line to point to the next character after the stop character. 

See also: Nmakeword() 

Return Value 
The contents of the buffer (the line up to the stop character) pointed to by word. 

Example 
This example determines whether to do GET or POST, and shows a GET routine and a POST routine.  
It includes splitstr(), plustospace(), and unhex_str(). 

#include httpd.h 

extern int getcgi(int,char**,REQ_STRUCT*); 
extern int postcgi(int,char**,REQ_STRUCT*); 
#ifdef UNIX 
int main(int argc,char *argv[]) 
#else 
int cgiroutine(int argc,char *argv[], REQ_STRUCT *reqp) 
#endif 
{ 
 char *method = GETENV("REQUEST_METHOD"); 
   reqp->rslt = 200; 
   rplystatus(reqp); 
   reqp->rplycnt = addheader(reqp->rplycnt, reqp->rplyheads, 
      "Content-type", "text/html"); 
   reqp->rplycnt = addheader(reqp->rplycnt, reqp->rplyheads, 
      "Expires", "0"); 
   rplyheaders(reqp->rplycnt, reqp->rplyheads); 
   PRINTF(reqp, "\r\n"); 
 if(strcmp(method,"GET”) == 0){ 
  return getcgi(argc,argv,reqp); 
 }  
 if(strcmp(method,"POST") == 0) { 
  return postcgi(argc,argv,reqp) 
 } 
 return -1;          /* bad request */ 
} 
 
int getcgi(int argc,char* argv[],REQ_STRUCT *reqp); 
{ 
 char *query; 
 int m,x; 
 query = GETENV("QUERY_STRING"); 
 if(query == NULL) { 



Web Server 

235 

  PRINTF(reqp,"No query information to decode.\n"); 
  EXIT(1); 
 } 

 for(x=0;query[0] != '\0';x++) { 
  splitstr(entries[x].val,query,'&');  
    /* get the whole name=value string */  
  plustospace(entries[x].val);  /* convert '+' to ' ' */ 
  unhex_str(entries[x].val);  
        /* remove any nasty chars that might 
         blow up the system */ 
  splitstr(entries[x].name,entries[x].val,'='); 
          /* separate name from value */ 
 } 

 m=x; 
 PRINTF(reqp,"<H1>Query Results</H1>"); 
 PRINTF(reqp,"You submitted the following name/value  
    pairs:<p>%c",10); 
 PRINTF(reqp,"<ul>%c",10); 
 for(x=0; x < m; x++) 
  PRINTF(reqp,"<li> <code>%s = %s</code>%c", 
   entries[x].name, entries[x].val,10); 
 PRINTF(reqp,"</ul>%c",10); 
 return 0; 
} 

 

int postcgi(int argc,char* argv[],REQ_STRUCT *reqp); 
{ 
 char *body; 
 int m,x,qlen; 
 qlen = atoi(GETENV("CONTENT_LENGTH")); 
          /* needed to buffer the input */ 
 body = getbody(reqp); 
 for(x=0;!Neof(reqp);x++) {    /* read until no more */ 
  entries[x].val = Nmakeword(reqp,'&',&cl); 
      /* read input stream for full name=value */ 
  plustospace(entries[x].val);  /* convert '+' to ' ' */ 
  unhex_str(entries[x].val); 
  entries[x].name = splitstr(entries[x].val,'='); 
 } 

 m=x; 
 PRINTF(reqp,"<H1>Query Results</H1>"); 
 PRINTF(reqp,"You submitted the following name/value pairs: 
  <p>%c",10); 
 PRINTF(reqp,"<ul>%c",10); 
 for(x=0; x <= m; x++) 
  PRINTF(reqp,"<li> <code>%s = %s</code>%c", 
   entries[x].name,entries[x].val,10); 
 PRINTF(reqp,"</ul>%c",10); 
 query = GETENV("QUERY_STRING"); 
 if(query == NULL) { 
  PRINTF(reqp,"No query information to decode.\n"); 
  EXIT(1); 
 } 



Chapter 10 

236 

 for(x=0;query[0] != '\0';x++) { 
  splitstr(entries[x].val,query,'&');   /* get the whole  
                   name=value string */  
  plustospace(entries[x].val);  /* convert '+' to ' ' */ 
  unhex_str(entries[x].val);  /* remove any nasty chars 
          that might blow up the system */ 
  splitstr(entries[x].name,entries[x].val,'=');/* separate  
            name from value */ 
 } 

 m=x; 
 PRINTF(reqp,"<H1>Query Results</H1>"); 
 PRINTF(reqp,"You submitted the following name/value  
  pairs:<p>%c",10); 
 PRINTF(reqp,"<ul>%c",10); 
 for(x=0; x < m; x++) 
  PRINTF(reqp,"<li> <code>%s = %s</code>%c", 
   entries[x].name,entries[x].val,10); 
 PRINTF(reqp,"</ul>%c",10); 
 return 0; 
} 

 

 

unhex_str() 

Unescapes %xx hex strings in URL. 

void unhex_str(char *url) 

url the URL to convert 

The unhex_str() routine converts hex numbers to characters.   

Return Value 
None 

Example 
This is included in the example for splitstr(). 

 

 



Web Server 

237 

CGI Environment Variables 
When programming CGI, all the data about the world around you is passed by environment variables.  
Each environment variable has a different meaning. 

Table 10-5:  CGI Environment Variables 

 

Variable Description
SERVER_SOFTWARE The name and version of the information server

software answering the request (and running the
gateway).  Format:  name/version

SERVER_NAME The server’s hostname, DNS alias, or IP address as it
would appear in self-referencing URLs.

GATEWAY_INTERFACE The revision of the CGI specification to which this
server complies.  Format:  CGI/revision

SERVER_PROTOCOL The name and revision of the information protocol
this request came in with.
Format:  protocol/revision

SERVER_PORT The port number to which the request was sent.
REQUEST_METHOD The method with which the request was made.  For

HTTP, this is “GET”, “HEAD”, “POST”, etc.  

 
 

Table continued on next page. 



Chapter 10 

238 

Table 10-5:  CGI Environment Variables (section 2 of 3) 
 

PATH_INFO The extra path information, as given by the client.  In
other words, scripts can be accessed by their virtual
pathname, followed by extra information at the end of this
path.  The extra information is sent as PATH_INFO.   If this
information comes from a URL, the server should decode
the information before it is passed to the CGI script.

PATH_TRANSLATED The server provides a translated version of PATH_INFO,
which takes the path and does any virtual-to-physical
mapping to it.

SCRIPT_NAME A virtual path to the script being executed, used for self-
referencing URLs.

QUERY_STRING The information which follows the ? in the URL which
referenced this script.  This is the query information, and
it should not be decoded in any way.  This variable should
always be set when there is query information, regardless
of command line decoding.

REMOTE_ADDR The IP address of the remote host making the request.
AUTH_TYPE If the server supports user authentication, and the script is

protected, this is the protocol-specific authentication
method used to validate the user.

REMOTE_USER If the server supports user authentication, and the script is
protected, this is the username they have authenticated as.

 

 

Table continued on next page. 



Web Server 

239 

Table 10-5:  CGI Environment Variables (section 3 of 3) 
REMOTE_IDENT If the HTTP server supports RFC 931 identification, then

this variable will be set to the remote user name retrieved
from the server.  Usage of this variable should be limited
to logging only.

CONTENT_TYPE For queries that have attached information, such as HTTP
POST and PUT, this is the content type of the data.

CONTENT_LENGTH The length of the content as given by the client.
HTTP_ACCEPT The MIME types which the client will accept, as given by

HTTP headers.  Other protocols may need to get this
information elsewhere.  Commas as per the HTTP spec
should separate each item in this list.
Format:  type/subtype, type/subtype

HTTP_USER_AGENT The browser the client is using to send the request.
General format:  software/version library/version

DATE_GMT The current date and time in Greenwich mean time.
DATE_LOCAL The current date and time in the local time zone for the

server.
DOCUMENT_NAME The name of the file using this variable.  Contains only

the file name, not the location.
DOCUMENT_URI The path to the file using this variable relative to the page

root directory.  Contains the directory location and the file
name.  For example: /parsed_docs/myfile.shtml

LAST_MODIFIED The last modification date of the file using this variable.
 

 



Chapter 10 

240 

USMETA Programming Interface 
META commands are used to access predefined application system variables in the vartable.cfg file.  
They allow HTML access of the variables, which can be viewed while the application is running.  
You must define these variables and update them when necessary.   

See also: Variable Configuration File, in this chapter 

META commands are parsed by the server, and are stored as comments in the body of the HTML 
page.  The commands have this format: 

 <!—-#command arg=”value”—-> 

Each command accepts different arguments.  For example, this command includes a separate file 
within the page: 

<!—-#include virtual+”../includes/header.txt”-—> 

If the server cannot parse the command in the comment because of an error, it returns the unparsed 
comment to the browser. 

The power of META commands is the ability to not only have access to the variable, but to format the 
variable. 

For example, if you wanted to access an IP address, you can have it printed out in ether hex or 
decimal: 

hex: <!—-#ECHO FORMAT=”%x” VAR=”ipaddress”—-> 
dec: <!—-#ECHO FORMAT=”%d” VAR=”ipaddress”—-> 

This is a command to print a string: 

 <!—-#ECHO FORMAT=”this is it %s” VAR=”astring”—->  

It would print out “this is a web page” if astring contains “web page”. 

These HTML META tags are described in this section: 

#echo Prints a statement to the browser screen. 

#exec Runs a CGI function. 

#include Inserts the contents of a file. 

#memory Prints the memory size, in kilobytes. 

#system Prints information about the system.   



Web Server 

241 

#echo 

Prints a statement to the browser screen.  

The #echo command includes the value of one of the environment variables defined for CGI 
programs (see CGI Environment Variables) or uses SVA (Server Variable Access) to include one of 
the variables defined in the vartable.cfg file (see Variable Configuration File).  By echoing a variable 
to the browser, the web page can dynamically update the page.   

The only argument is var, whose value is the name of the variable you want to output. 

Example 1 
 <!—-#echo var=”HTTP_USER_AGENT”—-> 

Example 2 
<HTML> 

<HEAD> 

<TITLE> Meta Commands Examples </TITLE> 

</HEAD><BODY> 

This is an example of meta commands. 

<!--#include file=”header.txt”-->  <!-- this would read the file 
‘header.txt’ and send it out, then continue sending out this file--> 

The number of widgets is <!--#echo var=”WIDGCNT”-->  
 <!-- would look like The number of widgets is 5 --> 

Total Memory is <!--#memory total-->  
 <!-- Total Memory is 512K --> 

</BODY> 

</HTML> 



Chapter 10 

242 

#exec 

Runs a CGI function.   

The valid arguments are: 

cgi runs the CGI function you specify and includes its output in the page.   

The #exec META tag is useful when a web page should contain dynamically generated information 
that is best localized in a CGI function.  For simple text insertions, #echo combined with server 
variables should be less complicated to implement. 

The CGI function is implemented as discussed in the “CGI Function Programming Interface” section 
earlier in this document, and can process arguments. The server does not check to make sure your 
CGI program produces an output. 

Example 
<!—-#exec cgi=”cgi-bin/fill_in”—-> 



Web Server 

243 

#include 

Inserts the contents of a file. 

<!—-#include file=”filename”—-> 
<!--#include virtual=”path”—-> 

The #include command accepts either of the following arguments: 

file gives a relative reference to the file you want to include.  The path is relative to the 
directory containing the file that uses the #include command.  You cannot use absolute 
paths with this argument.  To keep your non-public directories secure, a page cannot use 
relative paths that traverse upward through the directory structure (that is, it cannot use 
paths that contain ../). 

 filename the filename in the physical file structure on the server machine 

virtual gives the path to a file relative to the page root directory for the server.  The double dash 
after the “!” is necessary. 

  path the file path as seen from the outside by those accessing the server 

The #include command inserts the contents of the file you specify at the location of the #include 
command.  The user must have read access to the file that gets included.  If the file that is included 
has a file extension or location that causes it to be parsed by the server, that file can in turn include 
other files. 

Make sure files you include contain only tags that are appropriate in the context of the files that 
include them.  For example, don’t use the <HTML>, <HEAD>, or <BODY> tags (or their end tags) 
in a file that will be included in another file that already contains these tags.   

Examples 
<!—-#include file=”include.txt”—-> 
<!—-#include virtual=”/doc/cust/include.txt”—-> 

See also: The second example for the #echo command. 



Chapter 10 

244 

#memory 

Prints the memory size, in kilobytes.   

The #memory command accepts these variables: 

total  returns the total amount of memory in the system. 

system returns the amount of memory used by ‘the system’. 
Because this is defined by the application, ‘the system’ is user-defined. 

free returns the amount of free memory. 

This command returns information from the server configuration file’s TotalMem, SysMem, or 
FreeMem field, where the application has earlier set these global variables.   

See also:  Server Configuration File, in this chapter 

Examples 
 <!—-#memory total—-> 

 <!—-#memory system—-> 

 <!—-#memory free—-> 

See also: The second example for the #echo command. 

 

 

 

#system 

Prints information about the system.   

The variables are stored in: 

processor returns the system processor string: 
HWdate  hardware date 
HWversion hardware version 
HWconfig hardware configuration  
SWdate  software date 
SWversion software version 
SWconfig software configuration  

Example 
<!--#system HWdate--> 

 

 



Web Server 

245 

AJAX and jQuery 
AJAX is a framework for creating interactive web pages by incorporating asynchronous requests from 
the web browser to the web server.  This system was originally pieced together using JavaScript code 
and calls to the XMLHttpRequest() function.  Use of this technique has been simplified over time by 
the introduction of JavaScript libraries, such as jQuery, which take care of cross browser 
compatibility and add a number of related interactive web page functions. 

The key to making AJAX work, from the perspective of the web server, is to implement a function 
that interprets the XMLHttpRequest() function that is issued by the web browser.  In the 
demonstration web page ajax.htm this comes together at the bottom of the file where there is a call 

loadXMLDoc(url); 

This, in turn, is defined earlier in the JavaScript in the file as a function specific to the type of browser 
that is in use.  The result is that the browser will send an HTTP GET request of the form 

GET /cgi-bin/updateAjax?q=1000 

The value ‘q=1000’ here is an example of the value that the web browser is passing to the web server.  
In this case it means the “Blink Rate” slider is set to 1000 milliseconds. 

On the web server side, the processing loop receives a GET request specifying a CGI function with a 
parameter.  This is handled by the function mapped to “cgi-bin/updateAjax” in pages.cfg, which is 
updateAjax() defined in ajax.c.  This function reads the passed parameter and updates a variable that 
controls the blink rate.  updateAjax() sends a canned response back to the browser 

<response><method>updateSlider</method><result>0</result></response> 

to indicate that the request was handled successfully. 

The jQuery example is similar.  The HTML portion is implemented in jquery.htm, and uses the 
jQuery library’s ajax function to issue a similar HTTP GET request 

GET /cgi-bin/updatejQuery?q=591 

The GET request is handled by the CGI function defined in jquery.c.  The slider position is captured, 
and rather than send a canned response, the jQuery example sends back “live” data from the 
embedded system.  A string of 5 values representing stack usage and network buffer usage is sent 
back as an ASCII string, for example 

05 09 06 11 46 

Back on the JavaScript side, the string is assigned to the variable “data” by the ajax function, and 
parsed into values that drive the progress bar UI elements that show percent stack usage. 

In addition to being simpler to implement, using a popular JavaScript library may also allow you to 
load the library portion from a CDN server, reducing the amount of resources that need to be stored in 
your embedded system, and the amount of data needed to be transferred from the system. This is 
possible in systems that have access to the public internet, or which can host the JavaScript library 
elsewhere on the connected network.  For reference, jQuery version 2.1.3 as a minified file is 
approximately 82K bytes. 

From the project perspective, the list of what is built into the system image can also help illustrate the 
differences.  In the AJAX demo, 7 files under the slider directory and ajax.htm are compiled into the 
htpgtbl.c “ROMed” file and the image also incorporates the ajax.c CGI function.  The jQuery demo is 
implemented out of the JavaScript files jquery.min.js, jquery-ui.min.js, the jquery.htm HTML page 
and the jquery.c file that handles the GET request.





Device Drivers 

247 

11.  Device Drivers 
 

 

Overview 
A number of device drivers are already provided with smxNS for commonly used network controllers.  
These include Ethernet and serial connections.  A list of supported controllers is provided in the file 
driver.txt.  If your application requires a new controller, you will need to write your own device 
driver.  This chapter describes the steps needed for writing device drivers.  If you are using one of the 
supplied drivers, you may still find this chapter useful, in that it describes the internals of smxNS 
device drivers. 

Support for interrupt handling is provided through smxBase.  All you need to do is write the interrupt 
handler as a C function and pass it to sb_ISRInstall() as the interrupt handler for the device.  smxNS 
provides several support functions which will assist with the interface between smxNS and your 
driver.  These functions and the use of them are presented in this chapter, along with a description of 
the interrupt handling mechanism.  Finally, the functions required for a device driver are described 
and examples are presented. 

Topics discussed are: 

• Data Structures 

• Support Functions 

• Interrupt Handling 

• Configuring a New Processor 

• Error Codes 

• Writing A Device Driver 

• Character Drivers 

• Block Drivers 

Data Structures 
The NET and MESSH data structures may be used within a device driver for storing certain 
information.  You may see how they are used in the function examples given later in this chapter, and 
also in the source code for the supplied device drivers.  Only some of the fields relevant to device 
driver implementations are discussed here; however, their full definitions may be viewed in net.h and 
support.h.  This section will describe NET and MESSH and point out several fields which you may 
find useful when writing your own driver. 

 



Chapter 11 

248 

Messh (MESSH) Structure 
Message buffers are required by block drivers for storing incoming and outgoing messages.  A 
message buffer consists of a header and the contents of the message itself.  The message header is 
defined by structure MESSH in net.h as follows: 

struct MESSH {         /* internal message header */ 
struct MESSH *next; 
u32 timems; 
u32 target; 
u16 mlen;               /* message length */ 
u8 netno;               /* network number */ 
u8 offset;              /* offset to data */ 
.... 
}; 
typedef struct MESSH MESS; 
#define MESSH_SZ ((sizeof(MESS)+3)&~3) 

A few useful fields of the MESSH Structure are shown in Table 12-1. 

Table 12-1:  Some Useful Fields of the MESSH Structure 

Field Description 

mlen Length of the message buffer.  This includes the message data and the message header.  The 
message length must be less than or equal to the maximum size of a message buffer 
(MAXBUF in nscfg.h).  The size of the message data would be: mlen – MESSH_SZ 

netno Network number.  This is an index into the network table (global variable nets[]) and indicates 
the network structure defining the network to be used for this message. 

offset Generally, this is the message header size (MESSH_SZ).  Adding this value to the address of 
the message header (or buffer) itself gives the address of the message data.  For instance: 
u8 *byteptr;  // ptr to message data 
MESS *messptr;  // ptr to message buffer 
….. 
byteptr = messptr + messptr->offset; 

 

 

 

 



Device Drivers 

249 

Net (NET) Structure 

The structure NET defines network connections to smxNS.  These fields may be useful within a 
device driver for storing device-specific information.  Since device drivers are highly dependent on 
the architecture of the device, some of the fields of NET may be used in a number of different ways, 
depending on the requirements for the device.   

Explaining all the ways a device driver could be written is certainly beyond the scope of this 
document.  However, the source code for the device drivers may be examined to see some ways NET 
has been used previously. 

struct NET { /* structure defining a network */ 
    int netstat; 
    NPTABLE *protoc[2]; /* link, driver protocol */ 
    .. 
    u8 hwflags;  /* hardware level flags */ 
    MESS *bufbas;  /* input buffer base */ 
    MESS *bufbaso;  /* output buffer base */ 
    .. 
    u32 bps;   /* bits per second */ 
    .... 
    /* all hardware net structures must fit in SERIAL,    
       use filler if necessary */ 
    struct SERIAL {  /* hardware net data for serial lines */ 
    void (*comec)(int, struct NET *);  
                            /* character from driver */ 
    int (*goingc)(struct NET *);     
                            /* character to driver */ 
    .... 
    } hw; 
}; 

There are many fields within the NET structure, a few of which are described in Table 12-2.  



Chapter 11 

250 

Table 12-2:  Some Useful Fields of the NET Structure 

Field Description 

protoc 

 

Protocol path.  Each entry of this array stores a structure of pointers to functions.  See the 
section on NPTABLES later in this chapter.  The functions are used for implementing a 
protocol level in the protocol stack.  Specifically, protoc[0] stores the functions that 
implement the link layer and protoc[1] stores the device driver functions. 

hwflags Network controller hardware flags.  This may be used if you need to get some flags for your 
device driver which determine, for instance, different modes of operation.or some other flag 
driver feature. 

bufbas Input buffer base.  May be used for storing the address of an input message buffer in a block 
driver. 

bufbaso Output buffer base.  May be used for storing the address of an output message buffer in a 
block driver. 

bps Bits per second, useful for storing the baud rate. 

hw.comec Pointer to the function which transfers a byte from the device driver to the link layer.  This is 
only used with character drivers. 

hw.goingc Pointer to the function which transfers a byte from the link layer to the device driver.  This is 
only used with character drivers. 

 

 

Support Functions 
The following smxBase macros and functions and other macros should be used when you are writing 
your device driver.  They are intended to be used as an interface between smxNS and a driver.  Use 
them within your driver code to separate device-dependent code from smxNS-dependent code. 

Disable and Enable Interrupts 
sb_INT_DISABLE() and sb_INT_ENABLE() are for disabling and enabling interrupts.  This is 
done as follows: 

sb_INT_DISABLE(); 
<< code that cannot be interrupted >> 
sb_INT_ENABLE(); 

Most of the supplied drivers do not need to use this.  However, if in the course of writing your own 
driver you need to ensure that a section of code will not be interrupted, you may use these macros to 
guarantee that.  There is an example of their use in ne2000.c. 



Device Drivers 

251 

Install Interrupt Vector 

sb_ISRInstall(irq, par, func, name) installs a new interrupt handler. 

The interrupt handler is a C function you write within the device driver code. 

When an interrupt occurs, the handler will be called with the instance as an argument.  The instance is 
an index that can be mapped back to the smxNS data structure which defines the network interface to 
be used by the interrupt.  This is described further in the Data Structures section in this chapter.  
sb_ISRInstall() automatically saves the old interrupt vector.  Your device driver code should call 
sb_ISRInstall() from the initialization routine to install the interrupt handler.  See the section on 
function init() later in this chapter for a specific example of its use. 

Restore Interrupt Vector 
sb_ISRRestore() restores the original interrupt vector which was removed by a previous call to 
sb_ISRInstall(). 

It is intended to be called from the shutdown function within your device driver.  See the section on 
function shut() later in this chapter for a specific example. 

Map I/O Address 
This routine converts a flat 32-bit address into a far pointer. 

#define mapioadd(u32 flat) ((u8*)(flat)) 

It is only needed in segmented architectures that expect far pointers.  See file cs8900.c for an example 
of its use. 

Adding Messages to a Queue 
The queue macros are used with block drivers to manipulate arriving and departing messages and the 
smxNS queues which control them.  Note that these macros are only relevant to block drivers. 

QUEUE_IN Macro 
When an interrupt occurs, indicating the network controller has received a new frame, your interrupt 
handler will need to add this new frame to the appropriate smxNS queue.  To queue an arrived frame, 
use the macro: 

QUEUE_IN(ptr, qname, mess) 

ptr is a pointer to the network structure sns_Sys.  The network structure contains fields 
which are pointers to message queues (see struct HOSTINFO in support.h).   

qname  allows you to specify which queue to add the message to.  It takes a value of either 
arrive or depart.  These are keywords which you do not need to predefine.  The 
macro uses these in its string replacement as names of fields within the struct NET. 

mess is a pointer to the frame. 



Chapter 11 

252 

QUEUE_IN Examples 
This example shows how QUEUE_IN() would be used in the interrupt handler (discussed later in this 
chapter) to add an arrived message to the arrived message queue.  The four periods and the << >> 
symbols, in this and subsequent examples, represent omitted code which does not directly relate to 
this example. 

static void irhan(int arg) 
{ 
MESS *mess; 
struct HOSTINFO *sysp; 
struct NET *netp; 
.... 
sysp = &sns_Sys; 
netp = &nets[arg];     /* nets is a global smxNS table */ 
mess = << get message from controller’s memory >>  
.... 
QUEUE_IN(sysp, arrive, mess); 
.... 
}  /* end irhan */ 

To queue a message for transmission use the departure queue.  One place where this may be used is 
within the writE() function (also discussed later), which may be used to send a message to the 
network. 

static int writE(int conno, MESS *mess) 
{ 
struct NET *netp; 
        /* ptr to network structure for this device.*/ 
.... 
netp = &nets[mess->netno];       
    /* get ptr to network required for this message */ 
.... 
QUEUE_IN(netp, depart, mess)     
                          /* add to departure queue */ 
.... 
} /* end writE */ 

QUEUE_FULL Macro 
The QUEUE_FULL() macro may be used to test for a full queue before attempting a QUEUE_IN().  
The syntax is: 

QUEUE_FULL(ptr, qname) 

ptr is a pointer to the network structure nets[netno]. 

qname is the queue to be tested. 



Device Drivers 

253 

QUEUE_FULL Example 
static int writE(int conno, MESS *mess) 
{ 
struct NET *netp; 
..... 
netp = &nets[mess->netno];       
      /* get ptr to network required for this message */ 
if (QUEUE_FULL(netp, depart)) 
   DEBUG_MSG2_PAR0(“Error: departure queue full.\n”); 
else 
   QUEUE_IN(netp, depart, mess); 

Removing Messages from a Queue 
You may use the macro QUEUE_OUT() to remove a message from a given queue and place it in a 
message structure.  Its syntax is similar to QUEUE_IN(). 

QUEUE_OUT Macro 

The QUEUE_OUT() parameters are identical to those for QUEUE_IN(). 

QUEUE_OUT(ptr, qname, mess) 

QUEUE_OUT Example 
This removes a message from the departure queue before writing it to the controller (the device).  
Refer to ne2000.c for a specific example. 

irhan(int arg) 
{ 
MESS *mess; 
struct NET *netp; 
.... 
netp = &nets[arg]; 
.... 
QUEUE_OUT(netp, depart, mess); 
<<write message to network controller >> 
.... 
}  

QUEUE_EMPTY Macro 

The QUEUE_EMPTY() macro may be used to test for an empty queue before attempting a 
QUEUE_OUT().  The syntax for QUEUE_EMPTY() is: 

QUEUE_EMPTY(ptr, qname) 

ptr  is a pointer to the network structure nets[netno]. 

qname is the queue to be tested. 



Chapter 11 

254 

QUEUE_EMPTY Example 
Refer to ne2000.c for a specific example. 

irhan(int arg) 
{ 
MESS *mess; 
struct NET *netp; 
..... 
netp = &nets[arg]; 
.... 
if (QUEUE_EMPTY(netp, depart)) 
 << process error >> 
else 
{ 
QUEUE_OUT(netp, depart, mess); 
<<write message to network controller >> 
} 
..... 
} 

Interrupt Handling 
The smxBase software ISR dispatcher already handles interrupts for you. Please read the smxBase 
User’s Guide for detailed information about its ISR handling.  

The network controller’s interrupt handler code can be written as an ordinary processor-independent 
C function. 

Interacting with an Ethernet PHY 
Ethernet drivers for 10/100 Ethernet controllers need to interact with a PHY.  A PHY often takes the 
form of a physically separate chip that handles signal level encoding and which negotiates the 
properties of the Ethernet link, such as duplex and speed. 

The PHY presents registers to the system that are typically read and written with help from the 
Ethernet controller.  Unfortunately, the details of PHY register access differ from controller to 
controller, so the interface to the PHY is a little complicated.  The functions that read and write the 
PHY registers are included as part of the Ethernet controller driver.  The logic for initializing the PHY 
and checking the current status of the PHY is common across Ethernet controllers, so these functions 
are implemented in a separate module, phy.c. 

To initialize the PHY, the Ethernet driver should configure the controller for communication over the 
MDIO and MDC connections, and then call phy_init() to reset the PHY and start the autonegotiation 
process for the link. 

The PHY status is polled as part of a periodic check function that NetTask() calls for all Ethernet 
controllers about once a second.  The Ethernet driver in turn calls phy_check() in phy.c, which will 
determine the link state.  If the state has changed since the previous call, phy_check() calls back into 
the Ethernet driver to report the change.  Some Ethernet controllers need to coordinate with the PHY 
when the link speed or duplex change, so the callback function coordinates this. 



Device Drivers 

255 

Configuring a New Processor 
If smxBase already provides support for your processor, you may ignore this section.  Otherwise, 
refer to the smxBase User’s Guide about how to port it to a new processor. 

Error Codes 
Two error codes you might want to use as return codes from your driver functions are NE_HWERR, 
and NE_PARAM.  These are defined in net.h.  NE_HWERR is used to return hardware errors 
occurring in the device driver.  NE_PARAM is used to indicate that bad parameters were passed to the 
device in the initialization routine.  Some of the example driver routines later in this chapter use these 
return codes.  The driver will send the return codes to smxNS, which will in turn pass the error to your 
application via the user interface functions. 

Writing a Device Driver 
When you write a device driver, you need to include these functions:  irhan(), init(), shut(), opeN(), 
closE(), and writE().  Depending on your implementation, some of these may be not be needed.  Also, 
you need to assign these functions to an NPTABLE.  This is a table of pointers to your driver 
functions and is the mechanism smxNS uses to call them. 

For example, the format for the driver is: 

irhan(int netno) 
{ 
 .... 
} 
init() 
{ 
 .... 
} 
shut() 
{ 
 ... 
} 
etc. 
NPTABLE ptable(“driver name”, init, shut, etc., ); 

Which function gets called at what time depends on the field it is assigned to within the table, i.e., 
when smxNS expects the shut() function it will call the third function.  Therefore, position within the 
table is crucial.  Each function and the NPTABLE is described in more detail in this chapter’s 
sections on character and block drivers. 

Character Drivers 
The function of a character driver is to get and to send characters between a network controller and 
the link layer.  It does not know what the characters mean, where they go, or where they come from.  
The driver does not assemble characters into messages, because this is a protocol-dependent job.  
Likewise, it does not disassemble a message into characters.  A character driver would be typical of a 
serial driver. 



Chapter 11 

256 

Starting with v2.90, smxNS uses drvsrc/sbuart.c as a driver shim to allow it to use the interrupt driven 
UART drivers in smxBase.  The existing character drivers will continue to be used for the UARTs 
that they target, but using the sbuart shim will be the preferred way to add new character drivers. 

Figure 12-1 shows how incoming data is handled within smxNS as the data is transferred between the 
network controller and the application.  The logic flows from top to bottom.  The part above the wider 
line is performed on one character at a time. 

 

data available
interrupt

gets character
calls comec()

add to message
queue when done

screen() checks,
processes

Nread() gets
message

device

user application

TCP/IP

link layer

driver

 
 

Figure 12-1:  Incoming Data 

Outgoing data shown in Figure 12-2 is handled according to the following diagram, again from top to 
bottom.  The boxes below the wider line are done for each character. 

Nwrite() message

writeE() adds
headers

add to depart
queue

calls goingc(),
sends character to
device

transmit interrupt
sends character to
network

user application

device

driver

link layer

TCP/IP

 
 

Figure 12-2:  Outgoing Data 

The code you must write for your own device driver is represented at the driver level in the diagrams 
above.  Therefore, for reading data, you must retrieve the character from the controller (device) and 
pass it to the link layer via the routine comec().  Similarly, for sending, goingc() is used.  Both 
comec() and goingc() are within the link layer source code.  Their purpose is to act as an interface 
between the driver and link layer, which enables the device driver to be written as a separate module 



Device Drivers 

257 

from the link layer.  This greatly simplifies the writing of device drivers.  Refer to module slip.c for 
an example of how comec() and goingc() are implemented. 

Interrupting on each character is time-consuming.  As a rule of thumb, an Intel 386 can handle at most 
38,400 bits per second this way.  Higher rates than this require either a FIFO buffer in the serial port, 
or the use of DMA.  

smxNS character drivers are short and simple, and will work in any protocol stack.  A typical size 
would be 200 lines of code.  The easiest way to produce a new driver is probably by editing the I8250 
code. 

The following text explains the routines and data structures of a character driver.  The examples 
provided are based on the code for the i8250.c driver.  In some places, some of the original code not 
relevant to the discussion has been removed and replaced with four period symbols, or with angle 
brackets and some pseudocode (such as << write message to buffer >>).  Refer to 
the source code in i8250.c to see a specific implementation of these routines.  Comments which are 
not part of the original code have been added to the examples for explanation.  Recognize that some 
of the code in these examples is device dependent and will be different for your device, particularly 
the _outb() and _inb() calls.  Study the examples for understanding the process, but don’t get bogged 
down in the device-dependent details. 

Interrupt Handler  
This is a regular C function, called from the interrupt shell which is triggered when a network I/O 
interrupt occurs.  The argument is used to index to the network tables. 

static int irhan(int inst) 

The code for irhan() should determine the status of the interrupt.  If this is transmitter 
empty, the handler needs to send a character to the device and must call the routine goingc() (via the 
network structure) to get a character to transmit.  If goingc() returns the value -1, there is no data 
ready for transmission. 

If the interrupt is data available, then the device has data to be received.  The driver should 
take a character from the device and give it to the routine comec() (again through the network 
structure). 

The handler must make sure that the interrupt is cleared before it returns.  In some cases (the I8250 
among them), the handler must check for further interrupts before returning. 

Interrupt Handler Example 

/*============================== 
   C level interrupt handler.  Called from a shell.      
   Returns to the interrupt shell. 
*/ 
. 
static int irhan(int inst) 
{ 
int char;   /* character to be sent or received. */ 
uint tport;   /* device I/O port */ 
u8 status;   /* interrupt status */ 
struct NET *netp;  /* pointer to network structure */ 
UARTSTATEP  infop;      /* pointer to local UART state */ 
infop = uart_state + inst; /* index to state for this instance */ 



Chapter 11 

258 

netp = uart_state[inst].netp; /* assign a ptr to current  */ 
     /* network struct via index inst */ 
tport = infop->port; /* get address of the device I/O port */ 
while ((status = _inb(tport+IIR) & 7) != 1) 
     /* which interrupt occurred? */ 
{ 
.... 
switch (status) /* switch on which interrupt occurred */ 
{ 
.... 
case 2:          /* Transmitter empty interrupt */ 
   char = netp->hw.goingc (netp);  
                     /* get the char to be transmitted */ 
   if (char != -1) 
    _outb(tport+THR, char); /* write char to device */ 
   else          /* no char available at present */ 
    _outb(tport+IER, _inb(tport+IER) & 0xd); 
 break; 

case 4:          /* data available from device. */ 
 netp->hw.comec (_inb(tport+RDR), netp);   
                     /* inb reads from device */ 
 break; /* comec sends to link layer */ 
    .... 
}  /* end case */ 
}  /* end while */ 
.... 

return 1; 
} /* end irhan */ 

All references to device refer to the network controller.  Comec() is accessed via a pointer to the 
function stored in a field of the network structure.  This is pre-assigned by smxNS during link layer 
initialization; all you need to do is call it. 

Transmit Routine 
Use writE() to make a character available to the interrupt handler. 

static int writE(int conno,  MESS *mess) 

conno is a connection number 

mess is a message pointer 

The writE() routine is called whenever your application calls the Nwrite() function, as explained in 
the chapter on the smxNS user interface.  This routine enters the message in the departure queue.  
This makes the message available to the interrupt handler, which sends it when a transmitter-empty 
interrupt occurs.  If the device is not busy, it generates the transmitter-empty interrupt.  It then returns 
and allows the interrupts to take care of the rest. 

 

 



Device Drivers 

259 

Transmit Routine Example 
/*=============================== 
   Transmit routine.  Enters the message in the    
   departure queue.  If link is busy just returns.     
   Otherwise generates the interrupt and returns. 
   Returns: 
        error:  -1 
        queued or started:  0 
*/ 
static int writE(int conno,  MESS *mess) 
{ 
int tport;  /* device I/O port */ 
struct NET *netp; /* ptr to network structure for this message */ 
u32 inst;         /* instance */ 
UARTSTATEP infop; /* local state */ 
(void)conno; /* first parameter not needed here */ 
inst = netno_to_inst[mess->netno]; 
netp = &nets[mess->netno];  
      /* get ptr to network required for this message */ 
infop = uart_state + inst; 
tport = infop->port;  /* assign I/O port */ 
smx_TaskLock();  /* block task switching */ 
if (QUEUE_FULL(netp, depart))  
                     /* if queue is full, process err */ 
     << process queue full error >> 
QUEUE_IN(netp, depart, mess);  
                    /* add message to departure queue */ 
_outb(tport+IER, inb(tport+IER) | 2);  
                   /* generate the transmit interrupt */ 
smx_TaskUnlock();   /* resume task switching */ 
return 0; 
....; 
} 

You can see here that writE() uses the macros QUEUE_FULL() and QUEUE_IN() (discussed earlier 
in this chapter) to perform the queue operations.  In this case, the parameter for connection number is 
not used.  Nevertheless, it is required for compatibility with the smxNS protocol path data structures 
which store and call this routine. 

Open Connection 
Normally no action is needed.  If, however, your network controller has some special needs when 
opening a connection, you may use opeN() to run it. 

static int opeN(int conno, int flag) 

conno is the connection number for the open connection 

flag is a flag that may be used for opening connections  

This routine would be run when your application makes a call to Nopen().  The flag may be used for 
opening connections with different options relevant to some devices.  For example, the WD8003 (not 
a character driver) allows a monitoring option for receiving or rejecting different types of network 
messages. 



Chapter 11 

260 

Close Connection 
Like Open Connection, normally no action is needed.  If, however, your network controller has some 
special needs when closing a connection, you may use closE() to run it. 

static void closE(int conno) 

This routine would be called when your application makes a call to Nclose().  The parameters are 
similar to those for opeN(). 

Configure and Start Up 
This routine processes the hardware parameters, sets up the controller, and stores data into the 
network table. 

static int init(int netno, const char *params) 

netno is the network number 

params are the device-initialization parameters 

The initialization parameters are the same string you pass in a call to Portinit() (see Chapter 5, 
Dynamic Protocol Interface).  Then it calls routine sb_ISRInstall() and sb_IRQUnmask() to store 
the interrupt address and enable the interrupt.  This routine is called from smxNS when your 
application uses function Portinit(). 

The initialization parameters for the I8250 are the baud rate, the I/O port address and the interrupt 
number.  Another device might need different parameters; for instance, two separate interrupt 
numbers. 

Configuration Start Up Example 
/* ===================================================== 
Configure and start up the 8250 interface.  We process the user-level 
text parameters and store the values into the net table.  We initialize 
the controller.  Then we store the interrupt address and enable the 
interrupt.   
*/ 
static int init(int netno, const char *params) 

{ 
   int i1, tport; 
   u32 l1; 
   int irno; 
   int port; 
   char *cp1, par[16], val[16]; 
   struct NET *netp; 
   netp = &nets[netno]; 
   for (cp1=params; *cp1; ) 
 { 
    Nsscanf(cp1, “%[^=]=%s %n”, par, val, &i1); 
    cp1 += i1; 
    if (strcmp(par, “IRNO”) == 0) 
       Nsscanf(val, “%d”, &irno); 
    else if (strcmp(par, “PORT”) == 0) 
       Nsscanf(val, “%i”, &port); 
    else if (strcmp(par, “CLOCK”) == 0) 



Device Drivers 

261 

       Nsscanf(val, “%ld”, &l1); 
      else if (strcmp(par, “BAUD”) == 0) 
       Nsscanf(val, “%ld”, &netp->bps); 
   } 

 
   _outb(port+LCR, 0x80); /* set baud reg access */ 
   i1 = l1 / netp->bps; /* set baud rate */ 
   _outb(port+BRDH, i1>>8); 
   _outb(port+BRDL, i1); 
   _outb(port+LCR, 0x03);  /* set LCR value */ 
   _outb(port+IER, 0x03);   /* set IER value */ 
   _outb(port+MCR, 0x0b);  /* set MCR value */ 
   i1 = (int)(char)_inb(port+LSR);  
                        /* clear any line status int */ 

   if (i1 == -1) 
    goto err2; 
   (void)_inb(port+RDR); 
                      /* clear any receive interrupt */ 
   (void)_inb(port+IIR); 
                  /* clear any transmitter interrupt */ 
   (void)_inb(port+MSR);      
                 /* clear any modem status interrupt */ 
   sb_ISRInstall(irno, fn, irhan, "i8250 ISR"); 
   DEBUG_MSG3_PAR3(“I8250 IR%d P%x BPS%ld\n”, irno, port, netp->bps); 

   return 0; 
err2: 
   return NE_HWERR; 
} 

The device initialization section uses a number of _outb() and _inb() calls along with the device I/O 
port address tport.  See i8250.c for specifics.  This type of code is what will be different for your 
device’s architecture. 

Shut Down 
Shut() turns off the controller.  It also calls routine sb_ISRRestore() to restore original interrupt 
status that existed before smxNS was initialized. 

static void shut(int netno) 

netno is the network number 

Shut() is called by smxNS whenever Portterm() is called from the application. 

Shut Down Example 

/* ===================================================== 
Shut down the 8250 interface.  Turns off the controller.  Restores 
original IRQ, mask and vector. 
*/ 
static void shut(int netno) 
{ 
    int tport; 



Chapter 11 

262 

    UARTSTATEP infop; 
    inst = netno_to_fn[netno]; 
    infop = uart_state + inst; 
    tport = infop->port; 
    while (!(_inb(tport+LSR) & 0x40)); 
    _outb(tport+IER, 0); 
    _outb(tport+MCR, 0); 
    sb_ISRRestore(infop->irno); 
    infop->inuse = 0; 
} 

The _outb() and _inb() calls are device-specific commands.  If you are writing your own device 
driver, these calls would be specific to the architecture of your network controller. 

Network Protocol Table 
smxNS uses a network protocol table to call functions specific to a given protocol or device.  An 
NPTABLE is defined as follows: 

#define NPTABLE const struct P_tab  
    /* typedef caused trouble */ 
struct P_tab { /* protocol table, end of each module */ 
    char name[10];   /* name of protocol */ 
    int (*init)(int, const char *); /* initialize */ 
    void (*shut)(int);   /* shut */ 
    int (*screen)(MESS *); /* screen */ 
    int (*opeN)(int, int); /* open */ 
    int (*closE)(int);  /* close */ 
    MESS *(*reaD)(int);  /* receive */ 
    int (*writE)(int, MESS *); /*send */ 
    int (*ioctl)(void *, enum ioctlreq, void *, size_t); 
    uint Eprotoc;   /* external protocol num */ 
    u8 hdrsiz;   /* header size */ 
}; 

Here, you can see an NPTABLE is basically a structure of pointers to functions.  smxNS uses this 
structure to call the protocol, link layer and device-specific functions when they are needed.  In other 
words, smxNS will call your device driver functions by using pointers to them stored within a 
NPTABLE entry.  Be sure you add your function names to the proper fields (see the example below).  
When smxNS expects to call the device driver init() function, for instance, it should be the init() 
function which is assigned to the init field within the NPTABLE, otherwise your driver will not 
operate properly. 

NPTABLE Example 

NPTABLE I8250_T = {“I8250”, init, shut, 0, opeN, closE, 0, writE, 0, 0, 
MESSH_SZ}; 

The value “I8250” is the name of the driver; all others are normally fixed as you see here.  The 
zeros are used for functions which are not needed.   

In this case, reaD(), and screen() are not needed (or implemented for that matter) by the device driver.  
Protocol layers higher than the device driver level generally use screen(), and reaD() is generally not 
needed since the interrupt handles reading data from the device and sending it to the link layer. 



Device Drivers 

263 

Block Drivers 
A block driver (STM32ETH) receives and sends whole messages, rather than characters, between the 
network controller and the link layer.  It neither examines nor supplies any message contents.  An 
example of a block driver would be one which communicates with an Ethernet controller.  Because 
whole messages are handled at a time, block drivers are implemented differently from character 
drivers. 

Figure 12-3 shows how incoming data is handled within smxNS as the data is transferred between the 
network controller and the application.  The logic flows from top to bottom. 

 

device

driver

link and TCP/IP
layers

  

 

user application

controller initiates
data available
interrupt

gets message from
controller and
queues it

screen() checks
and processes
protocol headers

Nread() gets
message

 
 

Figure 12-3:  Block Driver Incoming Data 

Outgoing data, as shown in Figure 12-4, is handled similarly; again, the sequence is from top to 
bottom.   

 
 

Figure 12-4:  Block Driver Outgoing Data 

user application 

TCP/IP and 
link layers 

driver 

iver device 

Nwrite()  message 

writE()  adds 
headers 

enet_tx() 
to buffer 

controller sends 
message 

 copies 



Chapter 11 

264 

smxNS block drivers are short and simple, and will operate in any protocol stack.  A typical size 
would be 800 lines of code.  The easiest way to produce a new driver is probably by editing the 
existing STM32ETH driver. 

Recently written Ethernet controller drivers use a two part design since a large part of the logic is 
common across Ethernet controllers.  If one thinks of the driver as being near the bottom of a TCP/IP 
stack, then the two part design uses a common upper layer that is implemented in 
XNS/drvsrc/ethctrl.c, and a lower layer that is specific to the Ethernet controller. 

The following sections present each block driver function and show examples of their 
implementation.  Use this as a guide for building your own block device driver.  In some cases, code 
from the original driver has been replaced by either four periods or <<pseudocode>> symbols 
where it was not relevant for understanding the example.  As for character drivers, comments which 
are not part of the original code have been added to the examples for explanation.  Recognize that 
some of the code in these examples is device dependent and will be different for your device.  Study 
the examples for understanding the process, but don’t get bogged down in the device-dependent 
details. 

Interrupt Handler  
This is a regular C function, called from the interrupt shell which is triggered when a network 
controller interrupt occurs. 

static int irhan(uint fn) 

fn is used to index to the instance of the network structure when multiple instances are 
supported 

 

Interrupt Handler Example 
The Ethernet controller interrupt handler  should be short and efficient, capturing state information, 
performing any needed operations to clear the interrupt and returning as soon as possible. SMX link 
service routines (LSRs) can be used to defer processing related to the interrupt to make the ISR very 
short. 

The STM32 interrupt handler and related functions appear next, followed by a detailed description. 

Irhan Example 

STATIC int st_enet_isr(uint arg) 
{ 
   u32 status; 
   interrupt_count++; 
   status = eptr->DMASR; 
   eptr->DMASR = (0x0001e7ff & status);  /* clear received flags */ 
   smx_LSR_INVOKE(st_enet_lsr, status); 
   return 1; 
} 
 



Device Drivers 

265 

STATIC void st_enet_lsr(u32 status) 
{ 
   .... 
   if (status & ((1 << 14) | (1 << 6)))  /* early rx or rx complete */ 
   { 
      processing_incoming(); 
   } 
   .... 
   if (status & (1 << 0))               /* transmit complete */ 
   { 
      process_outgoing(); 
   } 
   .... 
} 

void process_incoming(void) 
{ 
   void *fp;  /* pointer to frame buffer */ 
   u8   *bp;  /* pointer to frame data */ 
   u32   p;   /* pointer to newly allocated frame buffer */ 
   uint  pl;  /* frame length */ 
 
   while (1) 
   { 
      if (!(rbd[rx_index].RDES0 & 0x80000000)) 
      { 
         rx_count++; 
         p = (u32)NgetbufIR(0); 
         if (p) 
         { 
            pl = (rbd[rx_index].RDES0 & 0x3fff0000) >> 16; 
            bp = (u8 *)rbd[rx_index].RDES2; 
            fp = update_frame_info(0, bp, pl); 
            receive_frame((u32)fp); 
            rbd[rx_index].RDES2 = p + MESSH_SZ; 
         } 
         _DSB(); 
         rbd[rx_index].RDES = 0x80000000; 
         rx_index = (rx_index == NUM_RX_BD - 1) ? 0 : rx_index + 1; 
      } 
      else 
      { 
         break; 
      } 
   } 
} 

void process_outgoing(void) 
{ 
   while (1) 
   { 
      if (!(tbd[tx_index2].TDES0 & 0x80000000) && tbd[tx_index2].TDES2) 
      { 
         tx_count++; 
         transmit_done_lsr(tbd[tx_index2].TDES2); 
         tbd[tx_index2].TDES2 = 0; 
         tx_index2 = (tx_index2 == NUM_TX_BD - 1) ? 0 : tx_index2 + 1; 



Chapter 11 

266 

      } 
      else 
      { 
         break; 
      } 
   } 
} 

st_enet_isr() 
The interrupt service routine, st_enet_isr(), is about as straightforward as can be.  The function 
captures the Ethernet controller status from a 32-bit register, masks the interrupt related bits and 
writes them back to the register to clear the interrupt(s), and then invokes an LSR to handle the rest of 
the processing. 

In the case of this driver, the argument passed to the function is ignored.  In the case of systems that 
support multiple instances of a given Ethernet controller, the arg parameter is used to specify which 
instance generated the interrupt.  This can then be used to look up the block of registers specific to the 
instance. 

Only the Ethernet controller specific interrupt acknowledgment needs to take place here.  Since 
st_enet_isr() is called from an interrupt handler wrapper function, operations related to the interrupt 
controller itself will be handled by the wrapper. 

The LSR is invoked by: 

smx_LSR_INVOKE(st_enet_lsr, status); 

and will run when the ISR exits. 

st_enet_lsr() 
The next function, st_enet_lsr(), tests the status bits to call helper functions for receiving frames or 
handling frame transmit complete. 

This function and the helper functions run in an LSR context which has a priority lower than an ISR 
but higher than any task.  LSRs are run in the order they are queued, so they don't interfere with each 
other.  When considering concurrency issues, remember that an LSR can preempt a task, an interrupt 
can preempt an LSR, and there are mechanisms for blocking preemption so that one can set up critical 
sections where needed. 

process_incoming() 
The purpose of the process_incoming() function is to queue incoming frames for processing by the 
stack and reset any used buffer slots so that they can receive additional frames. 

Before discussing the specifics of this function, it will be helpful to present some background on 
smxNS and Ethernet controllers. 

In receiving and transmitting frames the device driver translates between the conventions of the 
Ethernet controller hardware and the frame buffers used by smxNS.  For an Ethernet controller, the 
important attributes are usually a starting location in memory and the length of the frame.  smxNS 
uses a frame buffer data structure to hold network frames, and the header of this structure includes 
other higher level attributes such as a time stamp and routing information. 

The STM32 Ethernet controller uses arrays of buffer descriptors to maintain queues of incoming and 
outgoing frames.  The buffer descriptors contain the start location and length of a frame as well as 
state attributes (available or in use) and information to maintain the queue. 



Device Drivers 

267 

Now to the specifics of the process_incoming() function. 

The function is set up as a loop.  The first step is to check to see if the next buffer descriptor contains 
a frame that is ready to be passed up to the stack.  If the bit mask on RDES0 indicates no frame is 
present, then the function is done and we exit. 

When a frame is received, the frame buffer containing the frame will be moved from the receive 
buffer descriptor queue to the smxNS "arrive" queue.  process_incoming() first calls NgetbufIR() to 
allocate a new frame buffer to fill the slot.  The pool of frame buffers contains a fixed number 
(NBUFFS) of buffers, so it possible that NgetbufIR() will fail, returning 0.  In that case we skip the 
logic to queue the frame buffer (effectively dropping the received frame) and advance to the next 
receive buffer descriptor. 

If we succeed in allocating a frame buffer, we retrieve the frame length and the pointer to the start of 
the frame and pass it to the function update_frame_info().  This function translates the information to 
the format used by smxNS's frame buffers and returns a pointer to the start of the frame buffer.  The 
first parameter in this call is the instance and in this driver it is hard coded to 0. 

All the information for the incoming frame is now captured in the frame buffer, so we call 
receive_frame() to queue the frame for processing by the stack.  In doing this, we are transferring 
control of the frame buffer from the Ethernet controller to the stack, so we swap in a fresh one in the 
statement that follows that sets RDES2.  We index from the pointer to the frame buffer to the start of 
the frame data using the constant MESSH_SZ, which stands for "message header size". 

The following section marks the receive buffer descriptor empty and advances the index to the next 
receive buffer descriptor.  The __DSB() memory barrier instruction is intended to handle transaction 
reordering issues on recent ARM processors, and it forces the operations on the registers to occur in 
the order of the C code statements. 

To summarize the process of handling an incoming frame 

Use update_frame_info(instance, ptr, len) to translate from frame pointer and length to an smxNS 
frame buffer and receive a pointer to that frame buffer. 

Use receive_frame(fb) to queue the frame for processing by smxNS. 

Use NgetbufIR(0) to allocate a fresh frame buffer, and use the expression (u8 *)fb + MESSH_SZ to 
generate a pointer to the start of the frame data within that frame buffer. 

process_outgoing() 
The overall structure of the process_outgoing() function is similar to process_incoming().  It iterates 
through the transmit buffer descriptors and releases frame buffers to the stack until it comes to an 
empty slot.  Note that this function is called after the Ethernet controller indicates that a frame queued 
for transmission has completed transmission. 

The TDES2 member of the the transmit buffer descriptor is a pointer to the start of the frame data.  
The function transmit_done_lsr(ptr) takes that pointer and releases the corresponding frame buffer to 
the stack. 

Transmit Routine 
This is called from smxNS when your application performs an Nwrite(). 

BOOLEAN enet_tx(u32 fn, u8 *pp, u16 pl) 

The arguments are:  instance, pointer to start of frame data, frame length. 

The basic strategy is 



Chapter 11 

268 

1. Set up the controller with the frame attributes. 

2. Start the transmission is this is not already underway. 

3. Return TRUE if the frame transmission was successfully set up, FALSE otherwise. 

Transmit Routine Example 
 
BOOLEAN enet_tx(u32 fn, u8 *pp, u16 pl) 
{ 
   smx_TaskLock();  /* protect from reentrancy */ 
   smx_IRQMask(ENET_IRQ);    /* protect from ENET ISR/LSR */ 
   if (tbd[tx_index].TDES2) 
   { 
      /* No transmit buffer descriptors available */ 
      sb_IRQUnmask(ENET_IRQ); 
      smx_TaskUnlock(); 
      return FALSE; 
   } 
   else 
   { 
      /* Put frame pointer in TX Descriptor, start TX */ 
      tbd[tx_index].TDES2 = (u32)pp;       /* set TX frame pointer */ 
      tbd[tx_index].TDES1 = pl;            /* set TX frame length */ 
      tbd[tx_index].TDES0 &= ~0xfcd1ffff;  /* don't clear TER */ 
      _DSB(); 
      tbd[tx_index].TDES0 |= 0xf0000000;   /* OWN, IC, LS, FS */ 
      _DSB(); 
      eptr->DMATPDR = 1;                   /* transmit poll demand */ 
      tx_index = tx_index == NUM_TX_BD - 1 ? 0 : tx_index + 1; 
      sb_IRQUnmask(ENET_IRQ); 
      smx_TaskUnlock(); 
      return TRUE; 
   } 
} 
 
 

The enet_tx() function starts by setting up a critical section.  smx_TaskLock() will prevent any other 
task from preempting this task within the critical section.  smx_IRQMask() will also prevent the 
Ethernet controller ISR from being executed while inside the critical section. 

The first check is to see if the next transmit buffer descriptor slot is available.  Here we use the 
convention that a slot is available is the pointer to the frame data is 0, otherwise the slot is in use and 
since this is the next slot in the queue, the queue is full.  If the queue ends up being full, this attempt 
to transmit the frame fails.  We leave the critical section and return the value FALSE to indicate that 
the frame wasn't queued for transmission.  Higher layers in the stack will later attempt to retransmit 
the frame if it contains TCP data, otherwise the outgoing frame is dropped. 

If a slot is available, we set up the transmit buffer descriptor as required by the STM32 Ethernet 
controller.  We store a pointer to the start of the frame data, set the frame length, and set other flags to 
describe the frame, including OWN (0x80000000) to indicate that this slot is now owned by the 
Ethernet controller. 

Setting DMATPDR is a hint to the Ethernet controller that a new frame is available for transmission.  
Next we increment the transmit buffer descriptor slot so that we consider the next slot when we enter 
this function. 



Device Drivers 

269 

This completes the critical section, so we call sb_IRQUnmask() and smx_TaskUnlock() to return to 
normal, task level operation. 

Critical Sections in Ethernet Controller Drivers 
The critical section in the example enet_tx() function is designed specifically for the STM32 Ethernet 
controller, but it is useful for demonstrating the considerations one should take in designing the driver. 

There are two variables that are important in this section.  The first is tx_index, which points to the 
next available slot in the transmit buffer descriptor array that can be used to set up a frame for 
transmission.  The second variable is the OWN bit flag in the TDES0 flags field of the descriptor. 

Setting up the critical section for the tx_index variable is fairly straightforward.  This variable is local 
to the STM32 driver and is initialized to 0 by the compiler and again in the enet_init() function. 

The beginning of the Block Drivers section mentions that a network application that calls Nwrite() 
will end up calling enet_tx() to transmit a frame associated with the application level data.  In this 
case, enet_tx() is running in the context of the network application.  Since more than one network 
application may be running on a system, there is the possibility that one network application may 
preempt another if they are set to run at different priorities. 

The NetTask() that handles background network processing also writes using the enet_tx() function, 
and by design it operates at a higher priority that network applications.  So the processor may be in 
the middle of the enet_tx() function when it may be preempted by another task that will end up in 
enet_tx(). 

Since the tx_index variable is used at the beginning of the critical to check for an open slot and it is 
incremented at the end of the critical section, the whole section needs to be protected from being 
preempted by another task.  If the section were not protected, one task could start setting up a slot to 
transmit a frame and another task could preempt and overwrite with the frame it is transmitting.  
smx_TaskLock() / smx_TaskUnlock() will take care of this, forcing competing tasks to serialize their 
access to the transmit buffer descriptor queue. 

The critical section involving the OWN bit is more complex.  In enet_tx(), the function sets OWN in 
TDES0 to tell the Ethernet controller hardware that the transmit buffer descriptor is completely set up 
and won't be modified by software.  The controller owns the descriptor.  Once the frame has been 
transmitted, the controller hardware clears the OWN bit to indicate it no longer owns the descriptor.  
Since this is performed with hardware, there is no code that shows this operation.  Also, once the 
frame is transmitted, the transmit complete interrupt is set, and the process_outgoing() function is 
called in LSR context. 

process_outgoing() uses the following check to identify transmit buffer descriptors slots for frames 
that have been sent and are ready to be released. 

if (!(tbd[tx_index2].TDES0 & 0x80000000) && tbd[tx_index2].TDES2) 

If TDES2 is non-zero, then the slot has been set up for transmission, and if the OWN bit is clear (the 
TDES0 check), the controller is finished sending the frame. 

Since process_outgoing() uses its own tx_index2 to walk the tail end of the transmit queue, it might 
appear that enet_tx() and process_outgoing() operate independently and there is no chance for 
concurrency issues.  However, there is this scenario. 

A network application calls enet_tx() with Frame 1. 

A network application calls enet_tx() with Frame 2. 

Frame 1 completes transmission and the transmit complete interrupt arrives as enet_tx() is setting up 
Frame 2.  Specifically, the interrupt arrives just after setting the pointer to the start of Frame 2 and 
before setting the OWN bit 



Chapter 11 

270 

tbd[tx_index].TDES2 = (u32)pp; 
*** interrupt arrives here *** 
.... 
tbd[tx_index].TDES0 |= 0xf0000000; 

The interrupt calls process_outgoing() which first releases Frame 1 and then moves to the slot 
containing Frame 2.  From looking at the structure information, it appears that the controller has 
completed transmitting Frame 2, but in fact it hasn't been set up yet.  The problem is that the state of a 
slot involves the combination of the OWN bit and the frame data pointer, and at this point in enet_tx() 
the structure is in an inconsistent state. 

To move from the specific details here to more abstract guidelines, one should consider where 
preemptions are possible and which data structures may be in an inconsistent state when preempted.  
The enet_tx() function should always be implemented keeping in mind that another task may preempt 
attempting to write a different frame.  The mechanism that serializes access to the outgoing frame 
queue at the Ethernet controller level can use a critical section to keep the variables associated with 
the queue consistent.  The ISR may also interact with the enet_tx() function, and the interaction of any 
shared variables should be carefully reviewed. 

 

Configure and Start Up 
The enet_init() routine sets up the hardware. 

static int enet_init(u32 fn, uint irno, u32 *addr) 

fn is the instance number 

irno is the interrupt number 

addr is the MAC address 

 

Configure and Start Up Example 
static PHYSTATE phystate = {0, 0, 0, 0, 0, &pread, &pwrite, 
                            &psetspeed}; 

 
/* * * * * * * * * * * * * * * * * * 
** Initialize STM32 MAC 
 * * * * * * * * * * * * * * * * * */ 
int enet_init(u32 fn, uint irno, u32 *addr) 
{ 
   .... 
   eptr = (struct st32enet *)0x40028000; 
   .... 
   enet_set_buffer(); 
   stm32_reset(&macaddr[0]); 
 
   /* Init MII PHY */ 
   if (!phy_init(&phy_state)) 
   { 
      return NE_HWERR; 



Device Drivers 

271 

   } 
 
   if (!sb_ISRInstall(ENET_IRQ, 0, st_enet_isr, "ENET ISR")) 
   { 
      return NE_CFGERR; 
   } 
   sb_IRQUnmask(ENET_IRQ); 
 
   eptr->DMAIER = 0x00014045;  /* enable rx and tx interrupts */ 
 
   /* Start transmission, start receive */ 
   eptr->DMA0MR |= ((1 << 13) | (1 << 1)); 
 
   return 0; 
} 
 

The STM32 only uses one parameter that is passed in the call to enet_init() -- the MAC address.  
Another device might need different parameters. 

The enet_set_buf() function sets up the arrays of buffer descriptors that the STM32 uses to maintain 
receive and transmit queues.  For drivers that use buffer descriptors, smxNS drivers typically set up 
the constants NUM_RX_BD and NUM_TX_BD to size the arrays.  Sometimes the hardware has 
constraints on the arrays, such as a range of sizes that can be supported. 

From an ideal performance standpoint, there should be enough receive buffer descriptors to allow for 
worst case system latency when responding to a frame received interrupt.  On the transmit side, 
consider that any number of network applications could attempt to queue outgoing data. 

Tracking high water marks or frames dropped in the driver under heavy network load is one way to 
tune these sizes.  Also note that even though dropping frames is not good behavior, higher level 
protocols are designed considering the possibility of lost frames and reliable delivery is not 
guaranteed at the network level. 

A call to phy_init() is required for all modern Ethernet controllers.  This function probes for the PHY, 
initializes it, and starts autonegotiation on the link.  It can be called once the registers that control the 
MDC and MDIO signals to the PHY are configured.  phy_init() passes pointers to the PHY access 
functions that should also be implemented in the driver as well.  These functions are described in the 
next section. 

The call to sb_ISRInstall() sets up the interrupt.   The parameters, in order, are (1st) interrupt number,  
(2nd) value that is passed on to the ISR when it is invoked, (3rd) the ISR function, (4th) text string for 
debugging. 

The call to sb_IRQUnmask(ENET_IRQ) enables the Ethernet controller interrupt at the interrupt 
controller, but no interrupts will occur until the next two lines execute, which enable specific interrupt 
conditions for the Ethernet controller, and then start up the transmit and receive subsystems. 

PHY Support Functions 
/* Ethernet controller specific function for reading PHY register */ 
STATIC BOOLEAN pread(PHYSTATE *ctxt, uint reg, uint *val) 
{ 
   int retry; 
 
   eptr->MACMIIAR = (eptr->MACMIIAR & 0x1c) | 
                     0x01 | (ctxt->phyaddr << 11) | (reg << 6); 



Chapter 11 

272 

 
   /* Wait for response from PHY. */ 
   for (retry = 0; retry < MII_FRM_TRY; retry++) 
   { 
      sb_DelayUsec(MII_FRM_DLY); 
      if ((eptr->MACMIIAR & 0x1) == 0) 
      { 
         *val = eptr->MACMIIDR & 0x0000ffff; 
         return TRUE; 
      } 
   } 
   return FALSE; 
} 

/* Ethernet controller specific function for reading PHY register */ 
STATIC BOOLEAN pread(PHYSTATE *ctxt, uint reg, uint *val) 
{ 
   int retry; 
 
   eptr->MACMIIAR = (eptr->MACMIIAR & 0x1c) | 
                     0x01 | (ctxt->phyaddr << 11) | (reg << 6); 
 
   /* Wait for response from PHY. */ 
   for (retry = 0; retry < MII_FRM_TRY; retry++) 
   { 
      sb_DelayUsec(MII_FRM_DLY); 
      if ((eptr->MACMIIAR & 0x1) == 0) 
      { 
         *val = eptr->MACMIIDR & 0x0000ffff; 
         return TRUE; 
      } 
   } 
   return FALSE; 
} 

/* Ethernet controller specific function for change in PHY state */ 
STATIC void psetspeed(PHYSTATE *ctxt) 
{ 
   u32 maccr_copy; 
 
   if (ctxt->state & PHY_STATE_ANEG) 
   { 
      /* Clear FES | DM */ 
      maccr_copy = eptr->MACCR & ~((1 << 14) | (1 << 11)); 
 
      if (ctxt->state & PHY_STATE_100M) 
      { 
         maccr_copy |= 1 << 14;  /* FES, Fast Ethernet Speed */ 
         report_speed(ctxt->fn, 100000000L); 
      } 
      else 
      { 
         report_speed(ctxt->fn, 10000000L); 
      } 
      if (ctxt->state & PHY_STATE_FDUP) 
         maccr_copy |= (1 << 11);  /* DM, Duplex Mode */ 
 



Device Drivers 

273 

      eptr->MACCR = maccr_copy; 
   } 
   else 
   { 
      report_speed(ctxt->fn, 0); 
   } 
} 

The PHY read and write functions are similar.  The PHY register offset and value are passed as 
parameters.  The PHY address is needed to set up the management bus transaction and can be 
retrieved from the context parameter. 

The read and write functions return TRUE for a successful operation and FALSE otherwise. 

The PHY driver calls the psetspeed() function on a change of PHY state.  The state conditions that can 
change are stored in the state member of the ctxt parameter. 

(state & PHY_STATE_ANEG) indicates that the PHY has established a link and can transmit and 
receive data. 

(state & PHY_STATE_100M) indicates the PHY is set for 100 Megabit speed, otherwise the speed is 
10 Megabit. 

(state & PHY_STATE_FDUP) indicates the PHY is in full duplex mode, otherwise it is in half duplex 
mode. 

After coming out of initialization, the state of the PHY is no link, so this function will be called as 
soon as autonegotiation completes, passing the details on what was negotiated.  

Depending on the Ethernet controller, some registers may need to be adjusted to match these PHY 
properties, so this is the place to implement that support. 

The psetspeed() function calls the report_speed() function to communicate interface status to the 
higher layers in the stack.  This logic should follow that example here.  The actual speed of the link is 
not used directly by the higher layers, but it can be helpful diagnostic information.  The stack does 
check to see if the link speed is zero or non-zero to determine if a link is up. 

Polling 
The NetTask() function periodically calls a polling function every FASTTIMERDELAY milliseconds 
(typical value 200) in each active device driver for housekeeping.  For Ethernet controllers, this is 
currently used to check the PHY state.  In a two layer Ethernet controller driver, the entry point is 
enet_check(). 

void enet_check(u32 fn) 

fn the Ethernet controller instance 

Polling Example 

/* * * * * * * * * * * * * * * * * * 
** ST Check 
** 
** Called by ioctl() in ethctrl.c. 
 * * * * * * * * * * * * * * * * * */ 
void enet_check(u32 fn) 
{ 



Chapter 11 

274 

   (void)fn; 
 
   phy_check(&phystate); 
} 

The implementation of this function should call the phy_check() function in the PHY driver, passing 
the PHYSTATE structure. 

The polling function is also useful for debugging purposes, since it is predictably called 
while the driver is running.  Other entry points such as enet_tx() and the interrupt handler 
depend on network application activity or Ethernet activity.  Here the execution is in task 
context and not being called at a high rate, so it's a dependable place to capture state 
information. 

Shut Down 
This turns off the controller. 

void enet_term(u32 fn) 

fn the Ethernet controller instance 

It calls routine sb_ISRRestore() to restore the original interrupt. 

Shutdown Example 

/* * * * * * * * * 
** Shut down EMAC 
 * * * * * * * * */ 
void enet_term(u32 inst) 
{ 
   int i1; 
 
   eptr->DMAIER = 0x00000000;  /* All interrupts disabled */ 
 
   for (i1 = 0; i1 < NUM_RX_BD; i1++) 
   { 
      if (rbd[i1].RDES2) 
      { 
         release_pkt((u8 *)rbd[i1].RDES2); 
      } 
   } 
   sb_ISRRestore(ENET_IRQ); 
} 
 

The goal of the shut down function is to return the Ethernet controller to the state that existed before 
the controller was initialized.  The hardware is put into an idle state, any frame buffers that were 
reserved for storing incoming frames are returned to system  and the interrupt vector is returned to its 
previous state. 



Device Drivers 

275 

Protocol Table 
See the Character Driver section of this chapter for an explanation of the protocol table.  It is 
identical for block drivers.  Since the STM32 example uses a two part driver, the protocol table is 
located in the upper layer in ethctrl.c.  

NPTABLE Example 

GLOBALCONST NPTABLE ussEthCtrlTable = {“ETHCTRL”, init, shut, 0, 
opeN, closE, 0, writE, ioctl, 0, MESSH_SZ}; 

The field “ETHCTRL” is the name of the driver; all others are normally fixed.  Zeros may be used for 
functions which are not used. 





Technical Background 

277 

12.  Technical Background 
 

 

Overview 
smxNS was designed and written according to the TCP/IP protocol definitions.  The Recommended 
Reading section of Chapter 1 lists books and Internet RFCs that provide more information on 
protocols and technical background. 

smxNS was designed especially for embedded environments.  Of course there really is no such thing 
as “embedded TCP/IP;” all TCP/IP implementations must be able to talk to each other in the same 
way.  But the environment affects design and implementation in many ways: 

• smxNS may have to run using very slow hardware, or very little memory. 

• Connections may have high error rates. 

• Hosts can be badly congested due to real-time work. 

• There are often strict response-time requirements. 

• smxNS must run in 8-, 16- and 32-bit architectures, either big-endian or little-endian. 

• There are no “typical” traffic patterns, no “normal” applications such as the Internet FTP and 
TELNET.  

The following text discusses some related technical subjects, especially from the embedded 
viewpoint.  

TCP Retransmission 
When the acknowledgment doesn’t arrive, TCP must resend the data.  The procedure is as follows: 

1. When the timeout txtout expires, resend. 

2. If no ACK in txtout, resend a second time.  

3. If no ACK in 2*txtout, resend a third time.  

4. Keep trying, doubling the timeout until it exceeds a preset value, 30 seconds in smxNS. 

smxNS uses the Jacobson-Karn method to calculate the timeout value as an adjusted average of 
measured round-trip times.  No measurement is done for retransmitted messages.  When more than 
one retry is needed, the timeout is doubled.  (This is a slightly simplified explanation.) 

The Jacobson-Karn method works well; it has little trouble with variable and completely unknown 
round-trip times, or modest error rates.  However, there are a couple of pitfalls in the implementation:  

• Unless the timing granularity is much smaller than the round-trip times, it must be considered in 
the calculations.  The result must be rounded up to at least one clock tick. 

• No measurement should be done for any messages that may end up in the receiver’s “future 
message” queue.  These messages are normally not resent, but they must be treated as if they were.  



Chapter 12 

278 

Ignoring this rule will make Jacobson-Karn unable to handle connections with even modest error 
rates. 

Continuous sharp variation in round-trip time (unfortunately not rare in embedded systems) can cause 
trouble for Jacobson-Karn.  In local networks a solution might be to use a constant timeout value, but 
this really isn’t TCP any more.  Some implementations use a fairly large minimum timeout value, to 
avoid unnecessary retransmission.  This is not suitable as a general solution. 

Jacobson-Karn will not work well for a very bad connection, where a packet often has to be 
retransmitted twice.  Neither would anything else.  The only good way to handle these connections is 
with error detection and correction at the link level.  Someone unnamed has said that TCP/IP will 
work with two paper cups and a string.  This claim may seem a bit misleading to people who have 
actually worked with marginal connections.  TCP/IP will work “over a string,” but only using some 
link-level protocol (such as HDLC) that is not part of the TCP/IP protocol family.  SLIP and PPP do 
not contain any error handling. 

Why does the method ignore packets that were resent once?  You would quickly see why by 
commenting out this check and running TCP/IP over a fast serial line.  Every now and then a packet 
would arrive bad (receiver overrun typically) and be resent.  Jacobson-Karn would keep doubling the 
timeout value, but this would have no effect on the error rate, so the timeout would end up at some 
maximum value, and the throughput would be horrible. 

The one retry rule is of course completely artificial.  There is no particular reason to believe that one 
retry means line error, two means timeout value was too short.  It might even seem that the rule has its 
dangers.  What about this situation: 

• Client has a 50 millisecond timeout. 

• Server needs 75 milliseconds to ACK.  

• All ACKs arrive a little late, so all transmissions need one retry. 

• Timeout value is never updated, so nothing changes, and everything is sent twice. 

Fortunately it turns out that this situation is not stable unless the TCP window only allows for one 
packet.  Never configure TCP/IP so that the TCP window is shorter than twice the maximum packet. 

It might seem that TCP could try to differentiate between lost packets and late ACKs by keeping track 
of duplicate ACKs.  This has been tried, and the results were not encouraging.  In any case the TCP 
standard does not contain anything like this. 

Sliding Window 
TCP flow control uses a sliding window.  Each ACK can be interpreted as “send window bytes more 
data.”  This does not mean “more than you already sent,” it means “after the data hereby 
acknowledged.”  As data is received and consumed, the host keeps extending the window at its own 
pace. 

This simple window concept can be used in different ways Sometimes the packet exchange will look 
like Figure 13-1. 

 



Technical Background 

279 

   <== ACK 1000, WIN=4000
 100 bytes, SEQ=1000 ==>

  <== ACK 1100, WIN=4000
 100 bytes, SEQ=1100 ==>

<== ACK 1200, WIN=4000
 

Figure 13-1:  Packet Exchange 

People sometimes think that there is something wrong here:  The client keeps sending data, so how 
can the window stay the same?  But this is what happens if the application in the server has received 
the data by the time the ACK is sent.  Using delayed ACK (see Figure 12-2) can cause this pattern. 

Here is another common pattern: 
 

   <== ACK 1000, WIN=4000

 100 bytes, SEQ=1000  ==>

   <== ACK 1100, WIN=3900

 100 bytes, SEQ=1100  ==>

  <==  ACK 1200, WIN=3800

  <==  ACK 1200, WIN=4000
 

Figure 13-2:  Delayed ACK 

This suggests that the server ACK’d the two packets immediately, before the application had a chance 
to read.  (Doing this systematically is not acceptable in TCP.)  When the application takes the data, 
TCP sends a window update. 

Figure 12-3 shows a situation where the window is exhausted: 

 

    <== ACK 1000, WIN=1000

  400 bytes, SEQ=1000  ==>

 200 bytes, SEQ=1800  ==>

    <==  ACK 1400, WIN=600

    <==  ACK 2000, WIN=0

  400 bytes, SEQ=1400  ==>

 

 

Figure 13-3:  Exhausted Window 



Chapter 12 

280 

This sequence might seem strange at first.  We have sent 800 bytes into a 1000-byte window, so how 
come the window is 600 bytes and not 200 bytes?  Of course there is no real mystery here.  The 
window is fixed by the ACK number, not by what we have sent, or rather what we think we have sent. 

If the application in this last example will not read any data, the window will stay zero, and the sender 
will have to stop sending.  This is not an error situation in any way (though people sometimes think 
so), and when the reading resumes, the data will flow again.  There is no time limit on the pause. 

The sender is required to keep probing for window size in some way, because an ACK that carries a 
window update might get lost, and also to find out if the receiver is still there.  Traditionally this has 
been done with a packet that contains one data byte.  It would be simpler, cleaner and more efficient 
to use an ACK without any data at all, but for some reason this is not done. 

smxNS uses a 1-byte data probe as described in RFC 1122, and as used by the UNIX-based 
implementations. 

TCP Delayed ACK  
smxNS follows all the rules for delayed ACKs, as described in RFC 1122.  An ACK is delayed until 
one of the following occurs: 

• Data is going out. 

• More than one full-size segment of data can be ACK’d.  (This is normally 1460 bytes in Ethernet.) 

• At least 3 packets can be ACK’d. 

• The window grows by at least one full-size segment (by 1460 bytes in normal Ethernet). 

• A time limit (defined in tcp.c source as 200 ms) expires. 

Delaying ACKs is very important on busy serial connections that use short packets. 

Congestion Control 
The sliding-window flow-control method can run into difficulties when the data is routed.  The 
remote host does not, and cannot, consider the abilities of the routers when it assigns the window size.  
No doubt the original design assumed that whoever takes on the job of routing should have the 
resources for that. 

RFC 1122 describes a two-part procedure for considering the routing bandwidth.  Slow start requires 
the sender to start up gradually, and keep speeding up as the ACKs arrive.  Congestion avoidance 
defines a way to limit the actually-used window to a value that does not cause difficulties.  Originally 
all this was meant for routed connections only. 

Still later another problem started cropping up.  What if the 4096 bytes of data is sent as short packets 
at full speed?  If the remote host receives 100 40-byte packets at full speed, nobody should be 
surprised if it throws away half of them.  Of course packets should not be sent like this in TCP, but it 
is perfectly possible to do so, and with faster and faster hardware these packet bursts can become 
deadly weapons. 

In response to this second problem, slow start and congestion avoidance are now generally used for all 
connections, though RFC 1122 only requires them for non-local connections. 

Slow start and congestion avoidance are absolutely necessary in embedded environments, much more 
so than in workstation networks.  smxNS implements these according to RFC 1122, for all 
connections.  It uses actual packet counts in this, not estimates based on sequence numbers. 



Technical Background 

281 

There is a pitfall in the implementation of a slow-start algorithm.  Assume the following situation: 

• Client is in slow start, sends one packet and waits for the ACK. 

• Client retransmission timeout is 150 ms. 

• Server uses delayed ACK, with a 200 ms delay. 

The client sends a message, times out, and resends.  The ACK arrives.  If the client now re-enters 
slow start (because a retransmission was needed), the circle will never be broken.  The client will be 
in permanent slow start, and the server in permanent ACK delay.  The solution to this problem is 
fortunately simple.  A host should enter slow start only if it also recalculates the timeout value. 

Silly Window Syndrome 
The silly window syndrome consists of the receiver offering very small windows, and the sender 
sending very short packets.  Nobody would have heard of the silly window syndrome if an early 
TELNET had not managed to combine several unlikely design choices to produce it, and if it didn’t 
have such a catchy name. 

smxNS does not suffer from the silly window syndrome because of the following design features: 

• ACKs are delayed to avoid small windows. 

• Stream sockets use Nagle’s algorithm to combine short send requests. 

• TCP send will wait for a larger window if the whole packet does not fit. 

TCP Window Probe 
There is a known limitation in the smxNS TCP/IP stack that the TCP layer will not perform a window 
probe in non-blocking mode.  What this means to the application is that, if the remote host's TCP 
window ever closes (or becomes smaller than the packet we are trying to write), our local non-
blocking host may never be able to write that packet. The remote host never needs to notify the local 
host that its window is larger. This is the purpose of the window probe - we must probe the remote 
host to check when its window becomes larger. (Note that some hosts, including smxNS will inform 
the other host when the window opens, so this problem will not always occur.) 

Address Conflict Detection 
If two hosts on a network attempt to use the same IP address, it is likely that both systems will have 
trouble with their communication.  In order to avoid this condition, smxNS tests the availability of an 
IP address before using it, and watches for attempts by other systems to use the same address.  RFC 
5227 recommends practices to implement Address Conflict Detection, and smxNS follows these 
recommendations. 

If a conflict is detected when probing a candidate address for a conflict when first bringing up an 
interface, the network interface is moved to a state of “address not configured”.  If the start up testing 
shows no conflicts, the network interface moves to a state of “address announced”, which is the 
normal state. 

For systems with a single network interface, system start up should include a call to Portinit() to bring 
up the interface, followed by a poll of the ACD state, to make sure that an IP address has been 
established with no conflicts.  Here is an example taken from nsdemo.c. 



Chapter 12 

282 

if (Portinit("enet", “”) < 0) 
{ 
   DEBUG_MSG2_PAR0("smxNS Portinit for enet Failed\n"); 
} 
/* Wait for network interface to be ready before launching network apps */ 
while (nets[0].acd_state != IP_ADDR_ANNOUNCED) 
   smx_DelayMsec(500); 

If a conflict is detected once smxNS has started using an IP address, a level 1 error message will be 
logged and a counter will record the event.  The smxNS system will continue to use the original 
address in this case.  If the conflict was with an address probe packet from another system that has 
implemented Address Conflict Detection, then the other system should abandon the address and a 
conflict should be avoided. 

ARP Caching 
The ARP table (usually called the ARP cache) gives the Ethernet address (or more generally the 
media address) for the known local hosts.  The cache is built by the ARP protocol.  

A local IP-to-Ethernet table saves time, but like all duplicate information, it presents a maintenance 
problem.  Assume that the table now says: 

192.9.200.3  ==  002324252627 

Also assume that the computer referred to here suffers an accident.  The Ethernet card is quickly 
replaced.  The new Ethernet address is 002324252628.  Until the ARP table is updated, the other host 
can’t send anything to 192.9.200.3. 

smxNS handles ARP updating in the following way: 

• An entry (except for a statically configured entry) times out in 60 seconds, counted from the time a 
packet was last received from this host. 

• Any received ARP request is used to update the entry, even if it is still live. 

In an embedded environment, even 60 seconds can be an eternity.  (It is generally short enough to 
allow for a TCP retry to succeed, though.)  We can’t very well make this constant much smaller, 
because the ARP load might become disturbing.  But the host that changed its address can help itself, 
by sending an ARP request to the network (perhaps to itself) when it goes on-line. 

Many TCP/IP systems even a few years ago would not accept an ARP update for a valid ARP entry.  
The purpose of this was no doubt to keep away hosts that used somebody else’s IP address.  On 
embedded networks, this concern should not be overly important. 



Terminology 

283 

A.  Terminology 
 

 

CGI  Common Gateway Interface.  CGI reads parameters from forms on the displayed 
web page to the server, so the server can display different pages depending on the 
user’s actions. 

CHAP Challenge Handshake Authentication Protocol.  A user and password authentication 
method used by a PPP connection.  Both the user name and password are encrypted. 

DNS Domain Name Server.  This is a machine which tells remote hosts what IP address 
corresponds to a host name and vice versa. 

DHCP Dynamic Host Configuration Protocol.  The protocol used by a host to request an IP 
address from a DHCP server based on the host’s name. 

DPI Dynamic Protocol Interface.  This is smxNS’s primary interface using stream I/O-
like function calls. 

FTP File Transport Protocol.  FTP is used to transfer files using TCP connections 
through port 21 on an FTP server. 

Host A computer on the network. 

HTML META commands 
Commands embedded in the HTML that return predefined system information to 
the user. 

HTTP Hypertext Transfer Protocol, a simple application- level protocol used to access 
hypermedia documents.  The protocol is stateless and generic, which allows it to be 
used for many tasks. 

ISMAP An HTML tag which returns position coordinates within the page image. 

Link Layer The protocol used over the physical connection between two hosts.  smxNS 
supports Ethernet, PPP, and SLIP. 

MIME  Multipurpose Internet Mail Extensions, which defines how to encode and decode 
multipart messages and non-ASCII character sets.   

Passive Open A passive open means a host attempts to open a connection to any remote host 
wishing to establish a connection.  The host will remain in the Nopen() function 
indefinitely until a connection is established. 

POP Post Office Protocol, a minor variation of SMTP that allows a client to retrieve mail 
from a remote server mailbox. 

RTOS Real Time Operating System, such as SMX. 

SMTP Simple Mail Transfer Protocol, a protocol for transferring mail. 

SVA Server Variable Access, a mechanism for accessing static global variables within an 
embedded application via HTML.  



Appendix A 

284 

TCP Transmission Control Protocol.  TCP is a reliable protocol that insures data is 
actually received at the remote site. 

TFTP Trivial File Transport Protocol.  TFTP is used to transfer files via a UDP connection 
through port 69 on a TFTP server. 

UDP User Datagram Protocol.  UDP is a protocol designed to send data packets to the 
remote site without guaranteeing reception.  

 



Debugging Techniques 

285 

B.  Debugging Techniques 
 

 

Overview 
Debugging a network application can be complicated because there are many places where the flow of 
information could be interrupted.  Your initial symptom may be that an FTP “get” operation failed, 
but walking that failure down to the root cause may require a good understanding of TCP/IP 
networking and details on hardware and software configuration. 

Many network link layers, such as Ethernet, are “unreliable”.  This means that there is no guarantee 
that a frame sent on one end of a connection will be successfully received at the destination end.  
These rules of behavior extend into the device drivers.  Thus, the smxNS Ethernet controller driver 
may find that there is no memory available to receive an incoming frame, and so the frame will be 
dropped. 

Upper layers in the network are designed to take these shortcomings into account and work around 
them with techniques such as retransmission.  This can also make debugging difficult, because upper 
layers may mask problems at lower layers, and not all errors in the system indicate a problem. 

TCP/IP networking is standards-based, and there are freely available tools that can help you review 
and analyze network traffic.  In addition, smxNS includes features to flag unusual events, log activity, 
and display status.  This allows you to see “inside” the stack as it is running or walk through a period 
of network activity to see at what point things went wrong. 

By using smxNS-specific tools together with tools that present a third-party view of the network, you 
can compare the different accounts and determine the exact point at which a problem occurred.  For 
example, if a network analyzer shows that an ARP request is being sent out on the network, but the 
smxNS log indicates that the request wasn’t received, you can narrow the search down to somewhere 
between the Ethernet jack and the smxNS ARP module. 

This section describes smxNS specific features as well as software you can run on a desktop PC that 
will help you uncover the root cause of a network problem. 

Displaying Trace Data 
Throughout the smxNS source code there are lines that look like the following. 
 
 DEBUG_MSG2_PAR1("FQ queued SQ%08lx\n", UL1.l); 

This example comes from the module tcp.c, and it logs the sequence number of a TCP segment that is 
being placed in the future queue.  Normally, TCP segments arrive in sequence, so this is an unusual 
event. 

The macro SNS_DEBUG_LEVEL is defined in XNS\include\nscfg.h, and it allows you to control the 
level of trace data output.  The trace statements flag error conditions and also log normal activity.  
You may change the value of SNS_DEBUG_LEVEL to any value between 0 and 6, with 0 
representing no trace and increasing numbers representing an increasing amount of trace output.  At 
installation SNS_DEBUG_LEVEL is set to 3. 



Appendix B 

286 

Here are examples of the type of information that is logged at different SNS_DEBUG_LEVEL 
settings.  

0: No logging.  Can be used in a shipping product to reduce memory use. 

1: Only output fatal error information 

2: Output additional warning information 

3: Output additional status information 

4: Output additional device change information 

5: Output additional data transfer information 

6: Output interrupt information 

The DEBUG_MSG macro formats and prints the log information using the Nprintf() function.  This 
function is similar to the C library printf() function, but since it is implemented as part of smxNS, the 
way the resulting string is handled can be customized. 

The debug macro is of the form DEBUG_MSGd_PARp, where d is the debug level from 1 to 6, and p 
is the number of parameters in the format string from 0 to 10. 

Most hardware platforms support sending network stack trace information through an RS232 serial 
port.  Systems that are built with smxAware can also display the trace information by selecting 
smxAware | smx Objects | Print, from the IDE.   

Even with no special support, the trace strings are directed to a buffer that can be dumped under the 
debugger.  Display the contents of sns_Log.buf under the debugger to see the trace information in raw 
format. 

Below is a TCP trace fragment captured from a target while executing a file transfer.  The fields and 
their contents have meanings defined, and can be used to characterize networking anomalies.  The 
Trace Fields are defined on the next page.  Looking at the first highlighted row, the fields are defined 
as: 

SC 59869865 C1/1b9c ST2 DL0 W5840/15340 SQ2f4d1202 AK39310a6 10 
SC 59869865 C1/1b9c ST3 DL0 W5840/16060 SQ2f4d1202 AK39310a6 11 
TX 59869865 C1/1b9c ST5 DL0 W5840/16060 SQ39310a6 AK2f4d1203 10 
TX 59869865 C0/1a9c ST1 DL6 W5840/16060 SQ39189a2 AK2f4c18de 18 
SC 59869865 C0/1a9c ST1 DL24 W5840/16054 SQ2f4c18de AK39189a8 18 
RX 59869865 C0/1a9c ST1 DL24 SQ2f4c18de AK39189a8 18 



Debugging Techniques 

287 

Field Definition 

Field 1 Identifies the type of  protocol operation.  TCP and UDP have their own unique 
operation codes.  The example above is for TCP, and its codes are defined as follows: 

 TCP CODES: 
  FQ - future queue 

  OP - open connection 
  CL - close connection 
  SC - screen 
  TX - transmit 
  RETX - retransmit 
  RX - receive 

 UDP CODES: 
  UO - open 

  UC - close 
  US - screen 
  UR - read 
  UW - write 

Field 2 The timestamp for each transaction.  This time snapshot is taken from the clock state.  
This is the clock defined in the module clock.c. 

Field 3 The connection number/port number. 

Field 4 The TCP state. 

Field 5 The net data length.  This does not include any headers. 

Field 6 The local (self)/remote window sizes. 

Field 7 The sequence number.  This number is randomly generated to comply with RFC 
recommendations. 

Field 8 The acknowledge number. 

Field 9 The TCP flag. 

Debug over Telnet 
The default set of smxNS demo programs in nsdemo.c include a Telnet server that can display smxNS 
data structures while the system is running.  This feature can be incorporated into other applications 
by using similar code to start a Telnet server task and calling the sns_DebugCli() function to process 
Telnet command lines. 

This debug version of the Telnet server will accept simple commands from a Telnet client that display 
state information about the network as it runs.  The downside of this feature is that information is not 
available if the system becomes unresponsive. 

Here are the Telnet debug commands 

arpstat: Dump the ARP Table 
>arpstat 
ARP Status for Net 0 
ARP Status for Net 1 



Appendix B 

288 

  4 192.168.001.126  00:80:c8:39:7b:b1 
ARP Status for Net 2 
> 

In this example, the ARP tables for three networks are dumped, but only Net 1 has an ARP table 
entry.  The line displaying the entry shows the index in the ARP table, the IP address and the ARP 
address. 

bufstat: Display Details for Frame Buffers 
Example: 

smxNS skeleton Telnet server 
>bufstat 
NBUFFS=15  MAXBUF=1536  MESSH_SZ=32 Nbufbase=0x20000000 
 Buffers Alloc OK=25859 Fail=0 Free OK=25853 Low Water=5 
Nfirstbuf (first free buffer) =  4 
 # nx   time        target     mlen netno offset conno  id   Queue 
 1 00  2744780 192.168.001.126   87     1 RLEASD     0 ALOC  0x0000 
 2 00  2744890 192.168.001.126   87     1 RLEASD     0 ALOC  0x0000 
 3 11  2738650 192.168.001.126 1536     1 RLEASD     0 FREE  0x0003 
 4  6  2738670 192.168.001.126   86     1 RLEASD     0 FREE  0x0001 
 5 00  2744640 192.168.001.126   88     1     86    58 ALOC  0x1000 
 6  7  2738650 192.168.001.126   86     1 RLEASD     1 FREE  0x0003 
 7  3  2738650 192.168.001.126 1536     1 RLEASD     0 FREE  0x0003 
 8 00  2745180 192.168.001.126   88     1 TXDONE     0 WACK  0x0200 
 9 00  2738650 192.168.001.126  928     1     86    58 ALOC  0x0800 
10 00  2744110 192.168.001.126   86     1 RLEASD    58 ALOC  0x0000 
11 12  2600420 192.168.001.126 1536     1 RLEASD     0 FREE  0x0003 
12 13        0 000.000.000.000    0     0      0     0 FREE  0x0003 
13 14        0 000.000.000.000    0     0      0     0 FREE  0x0003 
14 15        0 000.000.000.000    0     0      0     0 FREE  0x0003 
15 00        0 000.000.000.000    0     0      0     0 FREE  0x0003 
> 

The bufstat display starts with some compile time constants that are give a convenient picture of the 
layout of the frame buffers in memory.  The buffers are implemented as an array in memory that start 
at Nbufbase. 

The next line provides statistics on the buffer allocation function.  If the buffer allocation fail count is 
greater than zero, then some attempts to allocate a buffer failed due to low space, but this doesn’t 
necessarily mean that the pool was completely exhausted.  The value “Low Water” indicates the 
lowest number of free buffers available since starting networking support.   Ideally, this value should 
fall to 1 after the system had been tested under the most stressful network traffic load. 

The columns in the tabular section of the display are as follows 

#  the index of the buffer in the array. 

nx  free buffers are in a singly linked list.  This is the next buffer in the list.  The first buffer 
in the list is given by Nfirstbuf in the heading. 

time a timestamp for the buffer, in milliseconds.  One place that this timestamp is written is 
when an outgoing TCP segment is first constructed.  It is also written at other times, or it 
may be an old value from the last time the buffer was used. 

target the IP address of the host to which this frame is being sent. 

mlen the number of bytes in the network frame held in the buffer. 



Debugging Techniques 

289 

netno the index of the network interface associated with the frame. 

offset for frames that are in the process of being processed, this points to the location at which 
new information is being accessed.  For frames that are complete, this may contain a flag 
to indicate if it is queued for transmission, or if it has been sent. 

conno the index of the connection data structure (connblo) associated with the buffer. 

id a flag indicating the disposition of the buffer.  In order to be responsive, the system 
should always have at least one buffer in the FREE state. 

queue a bit-encoded tally of the queues that reference this buffer.  The significance of the bits 
follows. 

0x01 Free buffer list 

0x02 Waiting for ARP reply 

0x04 Network interface arrive queue 

0x08 Network interface depart queue 

0x10 IP layer fragment queue 

0x20 IP layer fragment head 

0x40 PPP partial frame inbound 

0x80 PPP partial frame outbound 

0x100 Connection arrive queue 

0x200 TCP waiting for ACK queue 

0x400 TCP future queue 

0x800 Application layer output buffer 

0x1000 Application layer input buffer 

 

ifstat: Display Network Interface State 
>ifstat 
Network Interface enet index 0 
Bits/sec 100M  Frame size  1280  MAC 00:01:02:03:04:05 
Link layer: Ethernet  Driver: ETHCTRL  State: Ready 
           Frames  Bytes  Discards  Errors 
Inbound                          0       0 

Outbound                         0       0 
IPv4 10.0.1.100  Mask 255.255.255.0 
IPv6 fe80::201:2ff:fe03:405 

In this example, details for network interface "enet" are displayed.  State: Ready indicates that the 
Ethernet link is established and the interface is ready to transmit and receive frames.  The Inbound 
and Outbound rows show a count of frames that were discarded or contained errors.  There are 
columns for displaying frame and byte counts, but support for displaying this information isn't 
implemented yet. 



Appendix B 

290 

logdump: Display smxNS Log 
>logdump 
192.168.1.126 
1 FTtest OK 
FTP.getput: TX 9360 bytes in 10 ms = 936000 bytes/sec 
FTP.getput: RX 9360 bytes in 10 ms = 936000 bytes/sec 
2 FTtest OK 
TN-TX IAC 253 24 
TN-RX IAC 251 24 
TN-TX IAC 250 24 1 
TN-RX IAC 251 31 
TN-RX IAC 250 24 
TN-RX 0 41 4e 53 49 ff f0 
> 

The log captures the information that is written with the DEBUG_MSG() macros used throughout the 
code.  The buffer wraps, and the logdump command shows the information most recently written into 
the log. 

memdump: Display Memory 
>memdump 20004fb4 
20004fb0  6e 2d 00 00>8b 53 00 20 0f 23 00 00 36 30 2f 36 
20004fc0  34 33 37 36 20 53 51 30 30 30 30 32 38 34 30 20 
20004fd0  41 4b 34 63 36 34 34 30 36 65 20 31 38 0a 51 75 
20004fe0  65 75 65 64 20 57 72 69 74 65 20 50 61 63 6b 65 
20004ff0  74 0a 53 43 20 30 30 30 30 31 39 38 39 30 20 43 
20005000  30 33 2f 32 33 20 20 20 20 53 54 30 31 20 44 4c 
20005010  30 30 30 30 20 57 34 39 36 30 2f 36 34 33 37 35 
20005020  20 41 4b 30 30 30 30 32 38 34 31 20 53 51 34 63 
20005030  36 34 34 30 36 65 20 31 30 0a 53 43 20 30 30 30 

In this example, a memory dump starting at address 0x20004fb4 is displayed.  The display starts on a 
16-byte aligned location and highlights the requested location with ">". 

The number of lines displayed is fixed with the setting of DUMP_LINE_COUNT in 
XNS/netsrc/debug.c.  The memdump command is disabled by default since dumping at a protected 
location can lead to a memory access violation fault.  memdump can be enabled by setting 
ENABLE_MEMDUMP to 1 at the top of debug.c. 

netstat: Display Connection Status 
>netstat 
Dropped incoming connection attempts: 0 
 # bs Type Rx Tx Local Address         Remote Address        State 
 0  1 UDP   0  0 000.000.000.000:00161 255.255.255.255:00000    16 
 1  1 TCP   0  0 000.000.000.000:08123 255.255.255.255:00000    LN 
 2  1 TCP   0  2 010.000.001.100:00023 010.000.001.061:52312    ES 
 3  0 
 4  0 
 5  0 
 6  0 



Debugging Techniques 

291 

 7  0 
 8  0 

The netstat command displays information about network connections.  The first line shows the 
number of dropped incoming connection attempts tracked by the global variable sns_TcpSynDrops.  
If this appears as a value greater than zero, you should consider increasing the setting of NCONNS in 
nscfg.h so that incoming connections attempts are not dropped due to lack of available connections. 

The meaning of the columns in the following lines are explained below 

# the index of the network connection. 

bs the state (blockstat) of the connection. 

Type UDP or TCP 

Rx  the number of incoming segments waiting to be processed. 

Tx  the number of outgoing segments waiting for acknowledgement. 

Local the local IP address and port associated with the socket. 

Remote the remote IP address and port associated with the socket 

State the connection state. 

nqstat: Show the State of Connections 
>nqstat 
   <-CONNBLO-> <--- NCONNS QUEUES ---> | <- NNETS -> 
 # bs nx ic St iQ:fb wQ:fb oS:fb iS:Fb | aH:aT dH:dT 
 0  1  0  2 ES  0: 0  1: 6  1: 3  1: 4 |  0: 0  0: 0 
 1  0  0  0 TW  0: 0  0: 0  0: 0  0: 0 |  0: 0  0: 0 
 2  1  0  0 LN  0: 0  0: 0  0: 0  0: 0 |  0: 0  0: 0 
 3  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
 4  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
 5  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
 6  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
 7  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
 8  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
 9  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
10  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
11  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
12  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
13  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
14  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
15  0  0  0  0  0: 0  0: 0  0: 0  0: 0 | 
> 

The netstat display provides information about two data structures: network connections (connblo) 
and network interfaces (nets).  Information about queues is in the format qn:fb, where qn is a 
mnemonic for the queue name, and fb is the index of the first buffer in that queue.  The meaning of 
the columns are as follows. 

# the index in the structure. 

bs the state (blockstat) of the connection. 

nx the index of a linked connection if one exists. 

ic the listening connection that spawned this connection. 



Appendix B 

292 

St the TCP connection state. 

iQ the number of buffers queued for reception on this connection. 

wQ the number of buffers in the “wait of ACK” queue for this connection 

oS the number of buffers in the Sockets API output stream for this connection.  This value 
should not be greater than 1. 

iS the number of buffers in the Sockets API input stream for this connection.  This value 
should not be greater than 1.  

aH the number of network frames queue for input on the network interface with this index. 

dH the number of network frames queued for transmission on the network interface with 
this index. 

routestat: Display Routing Information 
>routestat 
 Default router 192.168.1.1 
> 

The routestat command displays the default router. 

Other Commands 
“help” displays a list of available commands. 

“quit” closes the Telnet session. 

Network Analyzers 

A network analyzer is a tool that can capture and intelligently display network traffic.  Dedicated 
hardware boxes are sometimes used for this purpose, but there are also software packages that can do 
the job very well. 

Since most Ethernet hubs today provide switched circuits for network traffic, a software analyzer 
plugged into a hub will normally not be able to capture the traffic between two other systems.  In 
order to see all the traffic, you can use an older 10BASE-T repeater hub, or you can run the analyzer 
on the computer that is communicating with the system running smxNS.  There are also more 
sophisticated switches that can mirror traffic to a designated port on the device. 

The Wireshark protocol analyzer is very capable and also freely available.  It is available from 
http://www.wireshark.org. 



Debugging Techniques 

293 

Windows Utilities 

There are a number of useful command line network utilities that are available on Windows 
computers.  Typing the command name by itself will usually display brief usage information. 

arp Display or modify ARP table information.  This can be used to see which MAC address 
a Windows system has associated with an smxNS system. 

ftp Connect to an FTP server.  This can be used with the FTP server in the nsdemo.c demo. 

ipconfig Displays information about the Windows system’s network interfaces.  If the computer 
receives its IP address via DHCP, this is a quick way of finding that address. 

ping Send ICMP echo request and report the response.  This is a useful first test when 
bringing up a system. 

route Display or modify routing tables. 

telnet Establish a telnet session with a system.  This can be used with the Telnet server in the 
nstels.c or nsdemo.c demos. 

tftp Connect to a TFTP server.  This can be used with the TFTP server in the nsdemo.c 
demo. 

Web Servers 

A web server must be available in order to exercise the HTTPget() function that retrieves web pages.  
If the server is to be located on local LAN, you may consider the TinyWeb server freely available 
here. 

http://www.ritlabs.com/en/products/tinyweb/ 

This implementation is very small and simple, and is freely available for commercial use at the time 
of this writing.  It runs from the command line, and will serve pages from a specified directory. 

Of course, if you have the smxNS Web Server package, you could use that too! 

Verification Testing 

Micro Digital runs smxNS through a verification test as part of the release process.  Some 
components of the test are included in the nsdemo.c application, for example the TTCP performance 
test.  Tests include: 

• PHY monitoring 

• ARP subsystem 

• DHCP client including address renewal 

• ISIC random traffic test, checks integrity when receiving invalid frames 

• sockstress denial of service testing 

• IPv6 testing 

• Long duration FTP client transfer 



Appendix B 

294 

• Web Server 

• Telnet Server 

• TTCP performance test 

• mDNS Responder test 

• SNMP Agent test



Dynamic Configuration of the Routing Table 

295 

C.  Dynamic Configuration 
 

 

Overview 
Dynamic configuration utilities are implemented in the file confupd.c.  Dynamic configuration 
supports “on-the-fly” modification of host properties. 

Configuration Functions 
The following functions are discussed in this section: 

SetDefaultRouter() sets the default router. 

SetDefaultRouter 

Sets the default router. 

int SetDefaultRouter(const char *ip, const char *ifname) 

ip Default router IP address, specified in dotted decimal format 

ifname Interface that should be used to reach the default router 

SetDefaultRouter sets the default router for the system.  IP traffic will be directed to the default router 
if an outgoing datagram cannot be directly reached on an attached network.  This function can be 
called at any time, and it can be called multiple times to change the default router setting. 

Return Value 
This function will return –1 if the specified network interface cannot be found, otherwise it will 
update the setting and return 0. 

Example 
SetDefaultRouter(“192.168.1.2”, “eth0”); 
 





Driver-Specific Information 

297 

D.  Driver-Specific Information 
 

 

ACT10100 
About the device: 

 type  Ethernet 
 chip  Actel 10100 Ethernet controller  (IP) 
 card  N/A 
 buffer memory on-chip, configurable with IP 
 data transfer DMA 
 interrupts  DMA, Ethernet event 

Configuration 
Interrupt number and port address are fixed.  The MAC address must be supplied when initializing the 
driver. 

Portconfig("eth0", "MAC", "00:01:02:03:04:05"); 
Portconfig("eth0", "DRIVER", "ETHCTRL"); 

 

AT91 
About the device: 

 type  Ethernet 
 chip  Atmel AT91 ARM processors 
 card  N/A 
 buffer memory host memory 
 data transfer DMA 
 interrupts  single interrupt 

This is a driver for the Atmel AT91 on-chip EMAC. Drivers for AT91SAM7X, AT91RM9200, 
AT91SAM9260, and AT91SAM9263. 

Configuration 
Interrupt number and port address are fixed.  The MAC address must be supplied when initializing the 
driver. 

Portconfig("eth0", "MAC", "00:01:02:03:04:05"); 
Portconfig("eth0", "DRIVER", "ETHCTRL"); 

 



Appendix E 

298 

CFFEC 
About the device: 

 type  Ethernet 
 chip  Freescale ColdFire Fast Ethernet Controller drivers 
 card  N/A 
 buffer memory host memory 
 data transfer DMA 
 interrupts  RX, TX, DMA (548x/7x) and several exception conditions 

This is a driver for the Freescale ColdFire on-chip Fast Ethernet Controller. See the comment at the 
top of cf5282.c for a list of ColdFires supported.  The Coldfire 548x/7x also have an on-chip Ethernet 
controller known as a FEC, but this design has significant differences.  The CF548x/7x FEC is 
supported by the driver cf548x.c. 

Configuration 
Interrupt number and port address are fixed, so only the MAC address needs to be configured: 

Portconfig("eth0", "MAC", "00:01:02:03:04:05"); 
Portconfig("eth0", "DRIVER", "ETHCTRL"); 

 

DC21140 
About the device: 

 type  Ethernet 

 chip  Digital Equipment 21140 

 card  PCI 

 buffer memory host memory 

 data transfer DMA 

 interrupts  RX, TX 

This is the driver for the Fast Ethernet controller DC21140.  The driver was tested using the EtherPCI 
card by TRENDNET.  The driver may need modifications for other cards, and for embedded use, but 
these should be small. 

Configuration 
The hardware parameters are configured automatically by the PCI services.  The call to Portconfig() 
defines PCI as the driver: 

Portconfig(“eth0”, “DRIVER”, “PCI”); 

PCI interrupts are always level-triggered.  Make sure that the interrupt controller is cleared after the 
driver interrupt handler is called, not before.  (This code is in driver.c or suppa.asm, but may also be 
part of an operating system.) 



Driver-Specific Information 

299 

Clearing a level-triggered interrupt immediately will cause unwanted interrupts, and can in an extreme 
case generate a stack overflow. 

The source-level variable MEDIUM is used to define what kind of network connection is used.  The 
values are: 

 0 10BASE-T 

 1 BNC 

 3 100BASE-TX 

 4 10BASE-T full-duplex 

 5 100BASE-TX full-duplex 

 6 100BASE-T4 

 7 100BASE-FX 

 8 100BASE-FX full-duplex 

The hardware uses MII (Media-Independent Interface), so these codes should work in any board that 
has a DEC-compatible serial EEPROM.  Of course not all interfaces are available in all cases.  The 
default is 

#define MEDIUM 3        /* normal fast Ethernet */ 

The driver inititalization has the following error returns: 
-1         The device code is not in pcitab in pci.c.  The table uses code 

0x00091011 for DC21140.  Change this if your board has a different code.  
The actual code is shown in an error message. 

NE_PARAM A configuration parameter is not recognized by the driver.  MEDIUM is not 
supported by the hardware. 

NE_HWERR Reading of the hardware address fails.  The board is broken, or not properly 
configured. 

The adapter does not go online.  The board is broken. 

Sending 
The send logic is as follows: 

1. If hwflags is 1, the buffer is in use; queue up the message and return 0 for "pending". 

2. Otherwise, set hwflags to 1, request the chip to transmit, and return 0 for "pending". 

The transmit interrupt handler will check the transmit queue.  If this is not empty, it takes the top 
message and starts the transmission.  If the queue is empty, it sets hwflags  to 0. 

Receiving 
The receive code acquires NRECBUFS (default 2) receive buffers, and sets up the receiver.  The 
interrupt handler performs the following steps for an arrived message: 

1. Allocates a new buffer.  If none is available, discards the message, and restarts the receive 
process. 

2. Queues the message, and notifies the network task. 



Appendix E 

300 

3. Adds the new buffer to the tail of the receive list. 

The error counters are updated for the following cases: 
IfInErrors The error bit for the packet is set, or the message length is invalid. 

IfInDiscards The input queue is full, or no smxNS buffers are available. 

Special Situations 
Some Pentium motherboards have difficulty handling the high-speed DMA load generated by the 
DC21140.  In particular, the 386 instruction lodsd executed in real mode can fetch bad data while the 
DMA is in progress.  This is obviously a very serious problem, but it is caused by a flawed PC 
motherboard, not by the DC21140. 

If you are using DC21140 in real mode, change the parameter CPU in suppa.asm to 3 and run 
BENCH.  If BENCH finishes without any particular difficulties, you are safe.  If not, you can still 
run smxNS by changing CPU back to 0.  However, you might want to look for a better PC. Note: 
BENCH was a standalone test program in USNet. 

 

EP93XX 
About the device: 

 type  Ethernet 
 chip  Cirrus Logic EP93xx ARM family of processors 
 card  N/A 
 buffer memory host memory 
 data transfer DMA 
 interrupts  single interrupt 

This is a driver for the Cirrus Logic EP93xx on-chip Ethernet MAC. 

Configuration 
Interrupt number and port address are fixed.  The MAC address must be supplied when initializing the 
driver. 

Portconfig("eth0", "MAC", "00:01:02:03:04:05"); 
Portconfig("eth0", "DRIVER", "ETHCTRL"); 

 



Driver-Specific Information 

301 

I8255X 
About the device: 

 type  Ethernet 
 chip  Intel 8255x family. 
 card  EtherExpress PRO/100 
 buffer memory host memory 
 data transfer DMA 
 interrupts  RX, TX 

This is a driver for the Intel EtherExpress PRO/100.  This driver has been tested on the i82559 and the 
i82550.  Note that more recent versions in this chip family have lower numbers than the initial 
versions, i.e., the numbering went from i82559 to i82550.  The more recent chips have a superset of 
the features of the earlier versions, and are register level compatible. 

Configuration 
The following parameters are available in the driver source: 

NORB Number of receive frame descriptors.  Each reserves a packet buffer.  Number 
needed depends on CPU speed and worst-case interrupt latency.  Example: 

    #define NORB 4 

DUPLEX   Normally full or half duplex is automatically negotiated by the physical link, but 
the outcome can be full duplex that does not work.  Values:  0 = half duplex, 1 = 
full duplex, 2 = automatic.  Example: 

    #define DUPLEX 0 

In addition to these, the driver needs an interrupt number (parameter IRNO) and the port address.  
These are normally supplied by the PCI BIOS support, the call to Portconfig()is simply: 

Portconfig(“eth0”, “DRIVER”, “PCI”); 

PCI interrupts are always level-triggered.  Make sure that the interrupt controller is cleared after the 
driver interrupt handler is called, not before.  (This code is in driver.c or suppa.asm, but may also be 
part of an operating system.) 

 Clearing a level-triggered interrupt immediately will cause unwanted interrupts, and can in an 
extreme case generate a stack overflow. 

The driver inititalization has the following error returns: 

-1         The device code is not in pcitab in pci.c.  The table uses code 
0x12298086.  Change this if your board has a different code.  The actual 
code is shown in an error message. 

NE_PARAM    A configuration parameter is not recognized by the driver. 

NE_HWERR  Self-test failed.  The board is broken, or not properly configured. 

Sending 
The send logic is as follows: 

1. If hwflags is 1, the transmitter is busy; queue up the message and return 0 for "pending". 



Appendix E 

302 

2. Otherwise, set hwflags to 1, request the chip to transmit, and return 0 for "pending". 

The transmit interrupt handler will check the transmit queue.  If this is not empty, it takes the top 
message and starts the transmission.  If the queue is empty, it sets hwflags to 0. 

Receiving 
The initialization code acquires NORB (default 4) receive buffers, and sets up the receiver.  The 
interrupt handler performs the following steps for an arrived message: 

1. Allocates a new buffer.  If none is available, discards the message, and restarts the receive 
process. 

2. Queues the message, and notifies the network task. 

2. Adds the new buffer to the tail of the receive list. 

 

LAN91CXXX 
About the device: 

 type  Ethernet 
 chip  SMSC LAN91C90, LAN91C92, LAN91C94, LAN91C111 
 card  SMSC91C92 
 buffer memory on-chip, amount varies 
 data transfer 8 or 16-bit, input/output 
 interrupts  RX, TX, allocation 

This is a driver for the Standard Microsystems Corporation LAN91CXXX family of Ethernet 
adapters. 

Configuration 
Interrupt number and port address are needed, for instance: 

Portinit(“eth0”, "IRNO=5 PORT=0x340"); 

See the SMC booklet on how to configure the board.  The actual board configuration must match the 
parameters specified in the call to Portinit().  An incorrect configuration will most likely cause a crash 
or a hang. 

The LAN91C111 has an integrated PHY.  The driver initializes this in autodetect mode. 

Interrupt Handling 
The driver clears the interrupt by masking off all LAN91CXXX interrupts at the start of the interrupt 
handler.  This is to guarantee that an edge-triggered system (such as the PC) will see the next 
interrupt. 

Sending 
The driver appends 0x20 after an odd-sized packet, 2 zeroes after an even-sized packet. 



Driver-Specific Information 

303 

The buffer handling is done by the chip, but the driver must explicitly allocate and free the space.  The 
send logic is as follows: 

1. If hwflags is 1, no buffer space is available; queue up the message, and return 0 for "pending". 

2. Otherwise, ask for buffer space.  If this is available, copy the data, start the transmission, return 1 
for "done". 

3. If space is not available, set hwflags to 1, queue the packet into the departure queue, enable 
the allocation interrupt. 

The allocation interrupt will perform the following steps: 

1. If queue is empty, set hwflags to 0. 

2. Otherwise, request buffer space.  If available, copy the data, start the transmission, go back to 
check for more packets. 

3. If space is not available, make a note to exit the interrupt handler with allocation interrupts 
enabled. 

The transmit interrupt releases the buffer space, leaving all other transmit work to the allocation 
interrupt. 

Receiving 
All buffer handling is done by the chip.  Whenever there is a receive interrupt, the driver allocates a 
smxNS buffer, copies the message into it, and notifies the network task. 

In case of a receive overrun error, the driver clears the overrun and restarts the receiver. 

The error counters are updated for the following cases: 

IfInErrors Any of the fatal error bits is set, or message length is invalid. 

IfInDiscards The input queue is full, or no smxNS buffers are available. 

 

LM3S 
About the device: 

 type  Ethernet 
 chip  Luminary Micro Stellaris LM3Sxxxx ARM family of processors 
 card  N/A 
 buffer memory dedicated FIFO 
 data transfer PIO 
 interrupts  single interrupt 

This is a driver for the Luminary Micro LM3Sxxxx on-chip Ethernet MAC. 

Configuration 
Interrupt number and port address are fixed.  The MAC address must be supplied when initializing the 
driver. 



Appendix E 

304 

Portconfig("eth0", "MAC", "00:01:02:03:04:05"); 
Portconfig("eth0", "DRIVER", "ETHCTRL); 

LPC2XXX 
About the device: 

 type  Ethernet 
 chip  NXP LPC2xxx ARM family of processors 
 card  N/A 
 buffer memory host memory 
 data transfer 32-bit input/output 
 interrupts  single interrupt 

This is a driver for the NXP LPC2xxx on-chip Ethernet MAC. 

Configuration 
Interrupt number and port address are fixed.  The MAC address must be supplied when initializing the 
driver. 

Portconfig("eth0", "MAC", "00:01:02:03:04:05"); 
Portconfig("eth0", "DRIVER", "ETHCTRL"); 

 

NE2000 
About the device: 

 type  Ethernet 
 chip  National Semiconductor 8390 
 card  NE2000 
 buffer memory 16K on the adapter card 
 data transfer 16-bit input/output 
 interrupts  RX, TX 

This is a driver for the Novell Standard NE2000 adapter.  Novell does not build boards any more, but 
the NE2000 has been adopted by several manufacturers, and is still extremely popular.  Many of the 
boards do not actually contain an NS8390. 

There is a separate driver for embedded NS8390. 

Configuration 
Interrupt number and port address are needed, for instance: 

Portinit(“eth0”, "IRNO=10 PORT=0x340"); 

Since these boards come from various manufacturers, we can’t give instructions on how to configure 
them.  Typically, the older boards configure with jumpers, the newer boards with a configuration 
program. 



Driver-Specific Information 

305 

The actual board configuration must match the parameters specified in the call to Portinit().  An 
incorrect configuration will most likely result in a crash or a hang.  NE2000 has no identification 
registers, and the driver initialization has no error returns. 

Interrupt Handling 
The interrupt handler masks off all chip interrupts, to force clearing of interrupts in edge-triggered 
systems. 

One peculiarity of the NS8390 is the receiver overrun error, called Buffer Ring Overflow in the 
documentation.  To continue from this condition, the chip must be stopped, cleared, and restarted.  
There are differing versions of how exactly this should be done.  smxNS follows the instructions 
given in Local Area Networks Databook, 1993 second edition, by National Semiconductor.  We have 
tested the error recovery using artificially induced overruns. 

The overrun recovery contains a 2-millisecond wait in the interrupt handler.  This may not be 
acceptable in an embedded system.  If this becomes a problem, you may want to look into the reasons 
for the overrun.  In a PC, the only way to get overrun errors is to disable interrupts for unreasonable 
amounts of time.  In an embedded system the situation may not be that simple; the overrun errors 
might also mean that the hardware is overloaded in some way. 

Sending 
The send routine uses a transmission buffer at 0x0000.  The logic is: 

1. If hwflags is 1, the buffer is in use; queue up the message and return 0 for “pending”. 

2. Otherwise, set hwflags to 1, copy the message into the current buffer, start the transmission, 
and return 1 for “done”. 

The transmit interrupt handler will check the transmit queue.  If this is not empty, it takes the top 
message, copies it into the TX buffer, and starts the transmission.  If the queue is empty, it sets 
hwflags to 0. 

Double buffering would speed up the transmission a little, but we couldn’t get it to work reliably in 
some NE2000 boards, so we are not using it. 

Receiving 
The receive code uses the buffer pool from 0x0600 to 7FFF.  Whenever there is a receive interrupt, 
the driver allocates a buffer, copies the message into it, and notifies the network task. 

The error counters are updated for these cases: 

IfInErrors The status bit “no errors” is not set, or the message length is invalid, or the 
message pointer is invalid. 

IfInDiscards  The input queue is full, or no smxNS buffers are available. 

 



Appendix E 

306 

RTL8139 
About the device: 

 type  Ethernet 
 chip  Realtek RTL8139 
 card  Commonly found in commodity PCI cards circa 2008. 
 buffer memory host memory 
 data transfer DMA to/from host memory, then copied into frame buffers 
 interrupts  RX, TX 

This is a driver for the Realtek RTL8139 Ethernet controller with integrated PHY. 

Configuration 
The driver needs an interrupt number (parameter IRNO) and the port address.  These are normally 
supplied by the PCI BIOS support, so typical configuration through Portconfig() is simply: 

Portconfig(“eth0”, “DRIVER”, “PCI”); 

The RTL8139 has an integrated PHY.  The driver initializes this in autodetect mode.  The RTL8139 
implements a register set that mimics standard PHY registers in the controller, but it is not a complete 
implementation.  There are no PHY ID registers, so the RTL8139 driver returns the value “deadbeef” 
for these registers so that the RTL8139 can be recognized. 

Sending 
The RTL8139 controller provides 4 buffer descriptors for outgoing frames.  The driver uses this set of 
descriptors for outbound queueing.  If no buffers are available, the driver increments ifOutDiscards 
for the network interface. 

The transmit threshold size setting is adjusted upward when the transmit FIFO underrun condition is 
detected. 

Receiving 
Since the RTL8139 controller requires incoming information to be directed to a single large buffer, 
the incoming frames are copied from this single buffer to individual smxNS frame buffers in the 
receive interrupt. 

STRXXX 
About the device: 

 type  Ethernet 
 chip  STMicro STRxxx ARM family of processors 
 card  N/A 
 buffer memory host memory 
 data transfer DMA 
 interrupts  single interrupt 

This is a driver for the STMicro STRxxx on-chip Ethernet MAC. Tested on STR912. 

Configuration 



Driver-Specific Information 

307 

Interrupt number and port address are fixed.  The MAC address must be supplied when initializing the 
driver. 

Portconfig("eth0", "DRIVER", "ETHCTRL"); 

USBD 
About the device: 

 type  Ethernet 
 chip  N/A 
 card  N/A 
 buffer memory host memory 
 data transfer memcpy() 
 interrupts  none 

This is a driver for USB device stack to Remote NDIS Ethernet. This allows the system running 
smxNS to be connected to a desktop host via USB and appear as an RNDIS network adapter. 

Configuration 
This is an interface between software layers.  No configuration is needed. 

Portconfig("eth0", "DRIVER", "USBD"); 

Sending 
The USBD driver uses the API to the USB device stack to write frames using the RNDIS layer. 

Receiving 
The USBD driver provides a received data callback function that is called from a task in the USB 
device stack.  The USBD driver registers the callback function once the USB stack reports the port is 
connected. 

State Information 
When the USB interface is connected, the value of nets[n].bps is non-zero, otherwise it is 0.  Here n is 
the index of the network interface. 

USBH 
About the device: 

 type  Ethernet 
 chip  N/A 
 card  N/A 
 buffer memory host memory 
 data transfer memcpy() 
 interrupts  none 

This is a driver for USB host stack to Ethernet converter.  It allows the smxNS system to use a USB to 
Ethernet adapter (dongle) to connect to an Ethernet cable and network. 



Appendix E 

308 

Configuration 
This is an interface between software layers.  No configuration is needed.  Note that the MAC address 
for the Ethernet interface is supplied by the external hardware. 

Portconfig("eth0", "DRIVER", "USBH"); 

Sending 
The USBH driver uses the API to the USB host stack to write frames. 

Receiving 
The USBH driver provides a received data callback function that is called from a task in the USB host 
stack.  The USBH driver registers the callback function once the USB stack reports the Ethernet 
interface is up 

State Information 
When the USB interface is connected, the value of nets[n].bps is non-zero, otherwise it is 0.  Here n is 
the index of the network interface. 

WiFi 
About the device: 

 type  Ethernet 
 chip  N/A 
 card  N/A 
 buffer memory host memory 
 data transfer memcpy() 
 interrupts  none 

This is a driver for 802.11 devices.  This driver interfaces with the smxWiFi MAC stack and typically 
uses the smxUSBH host stack. 

Configuration 
Configurable parameters may be modified using the device driver ioctl() function.. Following the call 
to Portinit() that performs basic initialization on the WiFi interface, the interface is in an idle state and 
it will not attempt to make a connection.  During this time, the SSID and security parameters may be 
set. 

Set SSID 

#define SSID “MDIWireless” 
nets[WFNET].protoc[ussDriverIndex]->ioctl(&nets[WFNET], 
ussWifiSsidSetE, (void *)SSID, 0); 

Set WPA Pre-Shared Key authentication 

struct AUTHMODE tests; 
tests.iAuthMode = SWF_AUTH_MODE_WPAPSK; 
tests.iEncrypt = SWF_ENCRYP_AES; 
nets[WFNET].protoc[ussDriverIndex]->ioctl(&nets[WFNET], 
ussWifiAuthModeSetE, (void *)&tests, 0); 
swf_GenerateWPAKey("1234567890", SSID, WPAKey); 



Driver-Specific Information 

309 

nets[WFNET].protoc[ussDriverIndex]->ioctl(&nets[WFNET], 
ussWifiWPAKeySetE, (void *)WPAKey, 0); 

Once these are in place, an explicit ioctl() command brings up the WiFi interface as follows. 

nets[WFNET].protoc[ussDriverIndex]->ioctl(&nets[WFNET], 
ussInterfaceBringUpE, (void *)0, 0); 

Note that the MAC address for the Ethernet interface is supplied by the external hardware. 

Here is a sample configuration line for the WiFi interface: 

Portconfig(“eth0”, “DRIVER”, “WIFINET”); 

Sending 
The WiFi driver uses the API to the smxWiFi MAC stack to write frames. 

Receiving 
The WiFi driver provides a received data callback function that is called from a task in the smxWiFi 
MAC stack.  The WiFi driver registers the callback function once the smxWiFi stack reports the 
interface is in the inserted state. 

State Information 
When the WiFi link is up, the value of nets[n].bps is non-zero, otherwise it is 0.  Here n is the index of 
the network interface.  When link speed information is available, the value is passed through to the 
bps field, otherwise a minimum value of 1 Mbit is stored when the link is up. 



Appendix E 

310 

E.  Serialized MAC Addresses 
 

 

When a system goes into production, each Ethernet interface needs to have a unique MAC address.  
The MAC address space is administered by the IEEE, which assigns Organizationally Unique 
Identifiers (OUI) to companies as needed.  The OUI is used for the first three bytes of the MAC 
address, and the following three bytes can be serialized.  If your organization does not already have a 
block of addresses that can be applied to network products, you can contact the IEEE to obtain a new 
block of addresses.  The IEEE web site also has a page where you can do an online search for your 
organization to see if you already have a block of addresses, and who the organization contact person 
is for this assignment. 

smxNS is set up to use a dummy MAC address for development.  This address is specified by calling 
the Portconfig() function with the “MAC” property.  Once development has reached a certain stage, 
the value for the MAC address should be made unique for each network interface by providing a 
unique string to the Portconfig() call.  This can be based on a serialized value that is found somewhere 
in the memory map or is read in a platform-specific way. You will need to implement this feature 
earlier in development if you will be running multiple smxNS systems on the same network, since 
duplicate MAC addresses will make the ARP mapping between MAC addresses and IP addresses 
unreliable. 

 



Memory Usage and Performance 

311 

F.  Memory Usage and Performance 
 

 

Memory Usage (KB) 
 

Component ARM Thumb ARM ColdFire 
       
 RAM ROM RAM ROM RAM ROM 
Core Files 2.0 + 10.0 25.6 2.0 + 10.0 37.1 2.4 + 11.4 48.8 
DPI API 0.0 2.2 0.0 3.3 0.1 3.3 
Socket API 0.1 4.4 0.1 6.4 0.3 6.3 
DHCP c 0.1 3.2 0.1 4.5 0.1 5.0 
DHCP s 2.0 + 0.1 5.7 2.0 + 0.1 8.2 2.4 + 0.3 8.9 
FTP c 1.0 + 0.6 3.4 1.0 + 0.6 4.5 2.4 + 0.7 7.0 
FTP s 2.7 + 0.1 3.2 2.7 + 0.1 4.2 2.7 + 0.3 4.7 
HTTP c 1.0 + 1.5 3.2 1.0 + 1.5 3.8 2.4 + 1.5 5.6 
IGMP 0.4 2.9 0.4 3.8 0.8 4.8 
NAT 0.4 4.0 0.4 8.7 0.5 3.5 
POP c tbd + 0.0 1.6 tbd + 0.0 2.3 tbd + 0.1 4.0 
PPP 8.0 15.4 8.0 25.1 2.6 22.4 
PPPoE c 8.5 18.6 8.5 29.7 3.0 27.3 
PPPoE s 8.4 18.8 8.4 29.9 2.9 27.4 
SMTP c tbd + 0.0 2.1 tbd + 0.0 2.8 tbd + 0.1 4.4 
SMTP s tbd + 0.3 1.8 tbd + 0.3 2.5 tbd + 0.4 4.3 
SNMP v2 2.7 + 4.0 15.2 2.7 + 4.0 22.4 2.7 + 4.7 18.4 
SNMP v3  2.7 + 9.5 25.8 2.7 + 9.5 39.0 2.7 + 10.4 30.2 
Telnet Server 0.6 + 0.0 0.7 0.6 + 0.0 0.7 1.2 + 0.0 1.3 
Web Server 2.7 + 7.0 12.3 2.7 + 7.0 16.9 3.0 + 8.0 19.3 

 
Notes 

• In the RAM columns, the first number in xx + yy is the approximate stack size for a multitasking 
system. Otherwise, in a non-multitasking system, ignore those and assume about 3 to 4KB extra 
stack depth. Some applications, such as the web server, have extra deep stack needs if features 
such as web form processing are used. tbd indicates we have not yet measured the size. 

• These memory requirements are typical for a system that services one active TCP session at a 
time. 

• Core Files includes support for TCP, UDP, IP, ICMP, and an Ethernet driver. 
• Socket API and DHCP support are commonly used but listed separately. 
• Support for IP fragmentation and reassembly is included. 
• Support for IP Options Headers is not included. 
• PPPoE client and server values include PPP 
• For each additional active session, smxNS should be configured with NCONNS increased by 1, 

NCONFIGS by 1, and NBUFFS by 5. So each active session (client or server) adds about 8KB to 
the RAM requirement.  

 



Appendix F 

312 

Performance 
 

Family Processor MHz Memory Ethernet TCP S TCP R 

ARM7 AT91SAM7X256 48 SRAM on-chip 1315 827 

ARM7 LPC2468 72 SRAM on-chip 966 725 

ARM9 AT91SAM9260 210 SDRAM on-chip 857 532 

CF MCF5282 64 SDRAM on-chip 1131 845 

CF MCF5329 240 SRAM on-chip 1768 3276 

X86 VIA C3 800 SDRAM Intel i825xx 6687 6375 

 

Notes 
• MHz is the clock speed we tested, not necessarily the rated speed of the processor. 

• SRAM is internal memory on the processor, and SDRAM is external memory. 

• VIA C3 may be equivalent to 266MHz Pentium II. 

• Benchmarking performed using nuttcp version 5.3.1. 

 

In order to run the TTCP test on an smxNS system, follow these steps: 

1. To enable the TTCP server in smxNS, set 
#define TEST_TTCP_SERVER 1 
in nsdemo.c  

2. Obtain the latest TTCP Windows application at http://www.nuttcp.net/ 

3. Build and run the smxNS application, then launch the Windows TTCP application  

Sample command lines follow.  The IP address is that of the smxNS system.  Use the -r flag to have 
the smxNS system source the traffic, leave it out to have the smxNS receive the traffic.  The –l flag 
specifies the application level write size.  For good performance, this can be set to the TCP MSS 
(typically 1460 bytes). 

C:\bin\ttcp\nuttcp-5.5.5.win32>nuttcp-5.5.5 -l1460 10.1.1.100 
9.7020 MB /  10.12 sec =    7.6600 Mbps 5 %TX 0 %RX  

C:\bin\ttcp\nuttcp-5.5.5.win32>nuttcp-5.5.5 -r -l1460 10.1.1.100 
9.4611 MB /  10.00 sec =    7.9334 Mbps 0 %TX 3 %RX 

 



 

313 

Index 
 

 

# 

#echo META command 
description, 241 
example, 241 

#exec META command 
description, 242 
example, 242 

#include META command 
description, 243 
examples, 243 

#memory META command 
description, 244 
examples, 244 

#system META command 
description, 244 

_ 

_inb() macro 
and character drivers, 257 
and init(), 261 
and shut(), 262 

_outb() macro 
and character drivers, 257 
and init(), 261 
and shut(), 262 

A 

accept record, 185 
accept() BSD function, 75 

example, 75 
access configuration file 

example, 224 
access, restricting, 207 
access.cfg file 

example, 224 
ACT10100 controller, driver info, 297 
address conflict detection, 281 
AddType command 

description, 220 
example, 220 

agent 
definition, 165 
design of, 166 
running, 174 

AGENT_CONTEXT structure, 174 
AJAX, 245 
application 

beginning, 17 
developing, 17 

application development, 31 
architecture, segmented, 251 
ARP, 108 
ARP cache, 282 
ARP caching, 282 
ARP table, 282 
arrive queue, 251 
AT91 controller, driver info, 297 
authenticating user, 39 
authentication, 170 
authentication of user, 208, 210 
AutoIP, 110 

B 

baud rate 
for I8250, 260 

bind() BSD function, 76 
example, 76 

block drivers 
description, 263 

broadcasting 
example, 67 

browser 
printing to, 241 

BSD, 17 
BSD functions 

accept(), 75 
bind(), 76 
closesocket(), 77 



Index 

314 

connect(), 78 
fcntlsocket(), 79 
for connectionless protocol, 74 
freeddrinfo(), 79 
gai_strerror(), 80 
getaddrinfo(), 81 
getpeername(), 83 
getsockname(), 84 
getsockopt(), 85 
inet_ntop(), 87 
inet_pton(), 88 
ioctlsocket(), 89 
listen(), 90 
readsocket(), 91 
recv(), 92 
recvfrom(), 94 
recvmsg(), 95 
return values, 74 
selectsocket(), 96 
send(), 98 
sendmsg(), 100 
sendto(), 101 
shutdown(), 102 
socket(), 103 
typical calling sequences, 73 
writesocket(), 104 

BSD socket interface, 71 
BSD sockets 

writing new code, 71 
BSD Sockets vs. Dynamic Protocol 

Interface, 43 
buffer space, 3 
buffers 

code for checking, 18 
code for constructing, 17 
code for server.c, 21 
setting number available, 36 

building 
example Web Server for target, 198 

buildpg.cfg file 
editing, 198 
example, 214 

bulk request, 169 
Bwrite() user server function, 200 

C 

CAget() function, 182 
example code, 182 

CAindex() function 
example code, 184 

CAR MIBVAR option, 182, 188 
CAW MIBVAR option, 182, 188 
CFFEC controller, driver info, 298 
CGI 

definition, 225, 283 
CGI environment variables, 237 
CGI function programming interface, 

225 
CGI programs 

running, 242 
CGI routines, 231 

escape_char(), 231 
hextochar(), 232 
Nmakeword(), 232, 236 
plustospace(), 233 
splitstr(), 234 
subchar(), 233 
summary list, 231 
unhex_str(), 236 

CGI support routines 
calling, 225 
findvar(), 227 
general description, 225 
getvar(), 229 
Ngetenv(), 229 
send_file(), 230 
summary list, 226 

CHAP, 138 
CHAP, definition, 283 
character drivers 

description, 255, 257 
chksum_INASM Macro, 38 
CHOICE MIBVAR option, 182 
client 

data collection loop, 23 
defining, 18 
FTP, 117 
required features, 19 
role of, 18 
slow start, 281 
Telnet, 135 



Index 

315 

terminating smxNS, 23 
client.c file 

compiling, 24 
structure, 23 

closE() routine 
description, 260 

closesocket() BSD function, 77 
code 

reentrant, 4 
ROMmable, 4 
source, 4 

code requirements, 166 
code size, 166 
comec() routine 

accessing, 258 
and irhan() function, 257 
for reading data, 256 

compiler, 166 
compiling 

application, 24 
ConfDel() routing table function 

description, 295 
configuration, 33 

build settings, 34 
start up example, 260 

configuration parameters, 33 
configuring, 213 
congestion control, 280 
connect() BSD function, 78 

example, 77, 78 
connecting from browser, 199 
connection 

establishing, 20 
connections 

accepting on sockets, 75 
active open, 51, 54 

example, 55 
closing, 56 
general description, 51 
initiating on a socket, 78 
listening for, 90 
opening, 54 
passive open, 51, 54, 67 

example, 55 
receiving messages from, 57, 94 
shutting down, 102 

writing messages to, 58 
constants 

ENABLEAUTHENTRAPSVAL, 168 
ENTERPRISE, 167 
MAXKEY, 168 
MAXOID, 168 
MAXVAR, 169 

control parameters 
setting for socket, 89 

CS8900 controller 
block driver, 263 

D 

data 
incoming, and block driver, 263 
initialized, 166 
outgoing, and block driver, 263 
reading, and character drivers, 256 
sending, and character drivers, 256 
transfer between controller and 

application, 256, 263 
transfer to and from agent, 166 

data collection loop, 23 
data structures, 247 

fd_set, 96 
include files needed for, 72 
MESSH, 247, 248 
MIBTAB, 180 
MIBVAR, 180 
msghdr, 95, 100 
NET, 247, 249 
request_rec, 212 
sockaddr, 72 
sockaddr_in, 72 
timeval, 96 

DC21140 controller, driver info, 298 
Debug over Telnet, 287 

arpstat, 287 
bufstat, 288 
ifstat, 289 
logdump, 290 
memdump, 290 
netstat, 290 
nqstat, 291 
routestat, 292 

debugging techniques, 285 



Index 

316 

departure queue, 251, 258 
design considerations, 277 
developing first application, 17 
development 

application, 31 
device driver macros 

QUEUE_FULL(), 252 
QUEUE_IN(), 251 
QUEUE_OUT(), 253 
SNS_DISABLE(), 250 
SNS_ENABLE(), 250 

device drivers, 4, 247, 297 
bad parameters, 255 
called from NPTABLE, 262 
code you write, 256 
format, 255 
interface, 247 
restoring interrupt, 251 
support functions, 250 
using struct NET, 249 
writing your own, 255 

DHCP, 109 
definition, 283 
description, 109 

DHCP client configuration, 109 
DHCP lease time, 110 
DHCP server configuration, 111 
DHCP testing, 113 
DHCPget() routine, 109 
DHCPrelease() routine, 109 
dial on demand, 146 
directory structure, 10 
DMA, 257 
DNS, 116 

definition, 283 
DNS macro, 38 
DNSresolve() function 

example, 117 
DNSresolve() routine, 116 
documentation, 10 
documents 

determining encoding of, 209 
determining type, 209 
finding, 209 

domain name, getting, 116 
DPI, 43 

definition, 283 
DPI (Dynamic Protocol Interface), 17 
driver.txt file, 247 
dynamic protocol functions 

Nclose(), 56 
Ninit(), 44 
Nopen(), 54 
Nread(), 57 
Nterm(), 45 
Nwrite(), 58 
Portinit(), 45, 46, 49 
Portstate(), 50 
Portterm(), 51 

Dynamic Protocol Interface, 43 
blocking mode, 44 
non-blocking mode, 44 
overview, 43 

Dynamic Protocol Interface macros 
SOCKET_BLOCK(), 60 
SOCKET_CANSEND(), 61 
SOCKET_FIN(), 63, 64 
SOCKET_HASDATA(), 60 
SOCKET_ISFATAL(), 61 
SOCKET_ISOPEN(), 60 
SOCKET_ISSENDING(), 61 
SOCKET_LOCADDR(), 62 
SOCKET_LOCLINKADDR6(), 64 
SOCKET_LOCPORT(), 63 
SOCKET_LOCSITEADDR6(), 64 
SOCKET_MAXDAT(), 62 
SOCKET_NOBLOCK(), 60 
SOCKET_PUSH(), 63 
SOCKET_REMADDR(), 62 
SOCKET_REMADDR6(), 64 
SOCKET_REMPORT(), 63 
SOCKET_RXTOUT(), 62 
SOCKET_TESTFIN(), 61 
summary list, 59 

Dynamic Protocol Interface vs. BSD 
Sockets, 43 

E 

Email test, 14, 15 
embedded web server 

including pages, 221 
request process, 205 



Index 

317 

encoding, determining type, 209 
end of table, 185 
ENTRY structure 

definition, 201 
finding and returning, 201 

EOF for network stream, 203 
EP93xx controller, driver info, 300 
errno 

and BSD functions, 74 
error codes, 255 
errors, logging, 211 
escape_char() CGI routine 

description, 231 
Ethernet 

drivers provided, 247 
using block driver, 263 

F 

fcntlsocket() BSD function, 79 
fd_set structure, 96 
file transfer 

example, 67 
FILE_SUPPORT macro, 39 
files 

receiving, 118 
sending, 118 
writing to network, 230 

files, checking for, 209 
findvar() CGI support routine 

description, 227 
example, 228 

firstapp.h file, 19 
flow control, 51, 278 

for congestion, 280 
fragmentation, 37 
FRAGMENTATION macro, 37 
freeddrinfo() BSD function, 79 
FTP 

definition, 283 
description, 117 
example, 118 

FTP Client test, 12 
FTP Server test, 13 
FTPget() routine, 118 

examples, 119 
FTPput() routine, 118 

FTPserv() routine, 117 
functions 

MIB.index(), 184 
MIB.set(), 182 
ussSNMPAgentCheck, 176 
ussSNMPAgentCheck(), 182 
ussSNMPAgentInit, 176 
ussSNMPAgentShut, 177 
ussSNMPAgentTrap, 177 

G 

gai_strerror() BSD function, 80 
getaddrinfo() BSD function, 81 

example, 82 
GetEntry() user server function, 201 
gethostbyname_r() BSD function 

example, 79 
getpeername() BSD function, 83 

example, 80, 83 
getsockname() BSD function, 84 

example, 84 
getsockopt() BSD function, 85 

example of retrieving errno, 74 
getvar() CGI support routine 

description, 229 
getword() CGI routine 

example, 234 
goingc() routine 

and irhan() function, 257 
for sending data, 256 

H 

handlers 
included, summary list, 206 

hardware 
configuring, 39 
parameters, 260 

header files, including, 19 
hextochar() CGI routine 

description, 232 
host name, 39 
hosts, 174 
HTML META commands 

definition, 283 
HTTP client, 15 
HTTP server 



Index 

318 

modules, 206 
structure, 204 

HTTP, definition, 283 
HTTPdisplay() routine, 120 
HTTPget() routine, 120, 132 
httpinit() user server function, 202 
HTTPservinit() user server function, 202 
httpterm() user server function, 203 

I 
I/O 

mapping addresses, 251 
I386 processor 

interrupt handling capacity, 257 
I8250 processor 

initialization parameters, 260 
NPTABLE example, 262 

I8255X controller, driver info, 301 
ICMP protocol, 55 
identifying user, 39 
IGMP, 120, 121, 122 

BSD API, 105 
DPI API, 65 

implementation considerations, 277 
include files, 19, 44 
inet_ntop() BSD function, 87 

example, 87 
inet_pton() BSD function, 88 

example, 88 
init() routine 

description, 260 
init_char_driver, 270 

initialization 
and Ninit(), 44 

initializing, 202 
initializing smxNS, 19 

functions required, 19 
Internet standard MIBs, 180 
interrupt addresses 

character drivers, 260 
interrupt handler, 247, 254 

example for character drivers, 257 
example with block driver, 264 
example without transmit interrupt, 

264 
installing, 251 

irhan() description, 257 
with writE(), 258 

interrupt number 
for I8250, 260 

interrupt shells 
for block drivers, 264 
for character drivers, 257 

interrupt vectors 
installing, 251 
restoring, 251 

interrupts 
support, 247 

ioctlsocket() BSD function, 89 
IP address, getting, 116 
IP_MC_DFLT_NETO macro, 37 
IPOPTIONS macro, 37 
IPv6, 121 
irhan() function 

and block drivers, 264 
and character drivers, 257 
example, 264 
example for character drivers, 257 

IRinstall() function, 251 
and init(), 260 
description, 251 

IRrestore() function 
and shut(), 261, 274 
description, 251 

ISMAP, 225 
definition, 283 

J 

jQuery, 245 

K 

KEEPALIVETIME macro, 38 
key, 168 

maximum length, 168 

L 

LAN91CXXX controller, driver info, 
302 

LCP Phase, 138 
link layer 

called from NPTABLE, 262 
link local address, 110 



Index 

319 

listen() BSD function, 90 
example, 90 

LM3S controller, driver info, 303 
local address 

getting for socket, 84 
local parameters, 34 
LOCALHOSTNAME macro, 39 
logging errors and access, 211 
Loopback test, 13 
LPC2xxx controller, driver info, 304 
LTEST, 13 

goals, 14 
pass indicators, 14 

M 

MAC address, serialized, 310 
macros 

Dynamic Protocol Interface, 59 
for device drivers, 250 

manager, definition, 165 
manuals, 10 
mapioadd() routine, 251 
Maxbuf parameter, 57 
MAXKEY() constant, 168 
MAXKLEN() constant, 168 
MAXOID() constant, 168 
MAXVAR() constant, 169 
mDNS Responder, 122 
memory 

printing size of, 244 
memory usage, 311 
message buffers, 248 
messages 

adding to a queue, 251 
broadcasting, 67 
reading from a connection, 57 
receiving, 92, 95 
receiving from connection, 94 
receiving from socket, 91 
removing from a queue, 253 
sending, 98, 100, 101 
sending to socket, 104 
writing to a connection, 58 

MESSH structure 
uses, 247 

META commands 

#echo, 241 
#exec, 242 
#include, 243 
#memory, 244 
#system, 244 
arguments accepted, 240 
format of, 240 
general description, 240 
summary list, 240 

MIB 
application-specific variables, 185 
custom, 166 
data, 180 
definition, 165 
standard, 180 
supplied, 180 
translation, 185 
user-defined, example, 189 

MIB files, 188 
MIB structure, 180 
MIB table, 181 

end of, 185 
MIB translator 

building, 186 
overview, 185 
running, 186 

MIB.index() function, 184 
MIB.set() function, 182 
MIBTAB structure, 180 
MIBTOC 

and adding variables, 185 
and MIB translation, 185 
arguments, 186 
building MIB translator, 186 
output files, 187, 188 
running MIB translator, 186 

MIBVAR structure, 180 
read/write notification, 188 
record options, 181 

MIME types 
adding to server, 220 

MIME types file, 219 
example, 219 

MIME, definition, 283 
MODchkaccess() module/function, 207 
modularity, 4 



Index 

320 

mouse click, 225 
MS-CHAP, 150 
msghdr structure, 100 

definition, 95 
MTU macro, 36 
multicast, 120, 121, 122 

BSD API, 105 
DPI API, 65 

Multicast, 120, 121 

N 

names 
binding to sockets, 76 

NAPT, 126 
NAT, 126 
NAT configuration, 126 
NBUFFS macro, 36 
Nclose() function, 22 

and closE(), 260 
description, 56 
example, 56 

NCONNS macro, 36 
NC-SI, 128 
NDNSS macro, 38 
NE_HWERR error code, 255 
NE_PARAM error code, 255 
NE2000 controller, driver info, 304 
Neof() user server function, 203 
NET structure 

code example, 249 
description, 249 
uses, 247 

net.h file 
contents, 19 

netdata[] table 
and initialization, 19 

network 
buffered write to, 200 
initialization, 44 
initializing interfaces, 45, 46, 49 
shutting down, 45 
shutting down interfaces, 50, 51 
turning off, 274 
writing files to, 230 

Network Address Translation, 126 
network analyzers, 292 

network applications, 107 
network configuration table, 39 
network controller 

drivers provided, 247 
interrupt, 264 
turning off, 261 
using for hostname, 39 

network interfaces 
initializing, 45, 46, 49 
shutting down, 50, 51 

network stream 
finding EOF, 203 

networking application routines 
DHCP, 109 
FTP and TFTP, 117 
HTTP, 119 
SLIP, 131 
SMTP, 132 
SNTP, 134 
summary list, 107 
Telnet, 135 

networking stack, 166 
Ngetenv() CGI support routine 

description, 229 
example, 227 

Ninit() function 
and initialization, 19 
description, 44 
example, 45 

Nmakeword() CGI routine 
description, 232, 236 

NNETISRS macro, 40 
NNETS macro, 40 
non-blocking operations 

example, 68 
Nopen() function, 20 

and opeN(), 259 
description, 54 
examples, 55 
parameters, 21 

Nportno() function, 23 
NPTABLE, 255 

description, 262 
example, 262 
structure definition, 262 

Nread() function, 20, 21, 57 



Index 

321 

description, 57 
example, 57 
parameters, 22 

nsbldpg utility 
files generated, 213 
files read, 213 
using, 197 

nscfg.h, 34 
configuration options, 34 

nscfg.h file, 11 
and protocol selection, 33, 40, 41 
contents, 19 
contents and location, 33 

nsclient.h, 28 
nscs.h, 24 
nsdemo, 2, 11 
nsdemo.c, 11 
nsserver.c, 25 
nstels.c, 3 
Nterm() function, 22 

description, 45 
example, 45, 46, 48 

null modem, 147 
Nwrite() function, 20, 21, 58, 267 

and writE(), 258, 267 
description, 58 
example, 58 
parameters, 22 

O 

object identifier (OID), 168, 181 
open 

active, 51 
passive, 51, 75, 90 

opeN() routine, 259 
options, 188 

P 

packets 
exchanging, 278 
short, 280 

page configuration file 
description, 221 
example, 222 

pages.cfg file 
example, 222 

PAP, 138 
parsing URLs, 211 
passive open, 20, 75, 90 

definition, 283 
PASSWD macro, 39 
passwords, 170 
performance, 311, 312 
PHY, 254 
plustospace() CGI routine 

description, 233 
example, 234 

POP, definition, 283 
port address 

device, 261 
for I8250, 260 

port numbers, 51 
example, 55 

Portinit() function 
and init(), 260 
and initialization, 19 
description, 45, 46, 49 
examples, 49 

Portstate() function 
description, 50 

Portterm() function, 22 
and shut(), 261 
description, 51 
examples, 50, 51 

PPP 
configuration, 140, 161 
dialapi, 160 
ioctl, 154 
NCP phase, 138 
pppsig, 162 
routing, 150 
scripting, 143 

PPPoE, 129 
PPPoE configuration, 129 
processor-independent agent, 166 
processors, 166 
protocol stack, 52 

and opening connections, 52 
with block drivers, 264 
with character drivers, 257 

protocol table, 275 
structure definition, 262 



Index 

322 

protocols, 107 
link-level, 4 
selecting, 40, 41 

Proxy ARP, 108 

Q 

QUEUE_EMPTY() macro 
description, 253 
example, 254 

QUEUE_FULL() macro, 259 
description, 252 
example, 253 

QUEUE_IN() macro, 259 
description, 251 
examples, 252 

QUEUE_OUT() macro, 253 
description, 253 
example, 253 

queues 
adding messages to, 251 
removing messages from, 253 
testing if empty, 253 
testing if full, 252 

R 

RAM, 166 
fixed, 3 

read notification, 182 
reaD(), 262 
Read/Write Notification, 188 
readsocket() BSD function, 91 
recv() BSD function, 92 

example, 93 
recvfrom() BSD function, 94 

example, 94 
recvmsg() BSD function, 95 
RELAYING macro, 38 
remote address 

getting for a socket, 83 
request structure 

description, 204 
example, 212 
loop, 204 
searching for variables, 229 

request to web server 
process, 205 

request_rec structure, 212 
requirements, 198 
RFC 5227, 281 
ROM, 4 
routing table configuration functions 

SetLocalIP, 295 
RTL8139 controller, driver info, 306 

S 

screen(), 262 
security, 170 
selectsocket() BSD function, 96 

example, 97 
send() BSD function, 98 

example, 98 
send_file() CGI support routine 

description, 230 
example, 228 

sendmsg() BSD function, 100 
sendto() BSD function, 101 

example, 101 
SEQUENCE OF, 181 
serial drivers 

and character drivers, 255 
provided, 247 

serial FIFO buffer, 257 
server 

defining, 18 
required features, 19 
role of, 18 
terminating smxNS, 22 

server configuration 
application system information, 216 
directory and file system variables, 

218 
MIME types, 219 
other files, 215 
page configuration file, 221 
server information variables, 217 

server configuration file 
contents, 213 
example, 214 

server.c file 
and include files, 19 
code to add, 21 
compiling, 24 



Index 

323 

servers 
FTP, 117 
starting, 117 
Telnet, 135 

SetDNS() routine, 116 
setsockopt() BSD function 

example, 86 
shut() routine, 274 

description, 261, 274 
example, 261, 274 

shutdown() BSD function, 102 
silly window syndrome, 281 
sizes, 311 
skip, 185 
sliding window, 278 

for flow control, 278 
SLIP, 131 

and Windows, 131 
SLIP program 

description, 131 
SMTP, 132 
SMTP, definition, 283 
smxNS 

design, 3 
overview, 1 

smxns.h, 19 
SNMP 

configuration, build-time, 167 
constants, 167 
design, 166 
introduction, 165 

SNMP Agent 
customizing, 180 

SNMP Agent test, 15 
SNMP Manager, 195 
snmp.h file, 180, 188 
SNMPAgent 

MIB 
configuring, 180 

snmpconf.h file, 171 
SNS_BUFFS_IN_SRAM macro, 35 
SNS_CPU_CACHE_DATA macro, 35 
SNS_DEBUG_LEVEL macro, 9, 40 

and application development, 31 
and testing, 11 

SNS_DISABLE() macro 

description, 250 
SNS_ENABLE() macro 

description, 250 
SNS_HW_RX_CHECKSUM macro, 35 
SNS_HW_TX_CHECKSUM macro, 35 
SNS_MIN_RAM macro, 35 
sns_SntpGet()  routine, 134 
SNTP, 134 
SNTP program 

description, 134 
sockaddr structure, 72 
sockaddr_in structure, 72 
socket interface, 71 
socket() BSD function, 103 

example, 103 
SOCKET_BLOCK() macro 

description, 60 
SOCKET_CANSEND() macro 

description, 61 
SOCKET_FIN() macro 

description, 63, 64 
SOCKET_HASDATA() macro 

description, 60 
SOCKET_ISFATAL() macro 

description, 61 
SOCKET_ISOPEN() macro 

description, 60 
SOCKET_ISSENDING() macro 

description, 61 
SOCKET_LOCADDR() macro 

description, 62 
SOCKET_LOCLINKADDR6() macro 

description, 64 
SOCKET_LOCPORT() macro 

description, 63 
SOCKET_LOCSITEADDR6() macro 

description, 64 
SOCKET_MAXDAT() macro 

description, 62 
SOCKET_NOBLOCK() macro 

description, 60 
SOCKET_PUSH() macro 

description, 63 
SOCKET_REMADDR() macro 

description, 62 
SOCKET_REMADDR6() macro 



Index 

324 

description, 64 
SOCKET_REMPORT() macro 

description, 63 
SOCKET_RXTOUT() macro 

description, 62 
SOCKET_TESTFIN() macro 

description, 61 
sockets 

accepting connections on, 75 
binding names to, 76 
blocking, 60 
closing, 77 
controlling flags, 79 
creating, 103 
getting local address for, 84 
getting options, 85 
getting remote address for, 83 
initiating a connection on, 78 
non-blocking, 60, 77, 79, 99 
receiving messages, 91 
sending messages to, 104 
setting control parameters for, 89 
setting options, 85 
waiting for activity on, 96 

splitstr() CGI routine 
description, 234 

standard MIB, 180 
strings 

parsing, 232, 234 
searching for, 229 

structures 
AGENT_CONTEXT, 174 
allocating space for, 202 
ENTRY, 201, 230 
MIB, 180 
request, 204 

STRxxx controller, driver info, 306 
subchar() CGI routine 

description, 233 
support.h file, contents of, 19 
SVA 

and #echo command, 241 
definition, 283 

SYSCONTACT variable, 167 
SYSDESCR variable, 167 
SYSLOCATION variable, 167 

system group, 167 
system information 

printing, 244 

T 

target system, 2 
design, 9 

TCP 
and flow control, 51 
compared with UDP, 51 
definition, 284 
delayed ACKs, 280 
file transfer example, 67 
flow control, 278 
retransmission, 277 
timeout, 277 

TCP delayed ACK, 280 
TCP vs. UDP, 17, 40 
TCP window probe, 281 
TCP/IP, 277 

and relaying, 38 
embedded, 277 
protocol relationships, 2 
protocols supported, 1 
size, 3 
user interface, 71 

TCP_SACK macro, 39 
Telnet 

description, 135 
programs, 135 

Telnet Server test, 15 
terminating smxNS, 22 
terminology, 283 
test programs, 11 
TFTP 

definition, 284 
description, 117 
example, 118 

TFTPget() routine, 118 
TFTPput() routine, 118 
TFTPserv() routine, 117 
timeval structure, 96 
trace 

and LTEST, 13 
and LTEST results, 14 
displaying output, 285 



Index 

325 

field definitions, 286 
trace output for file transfer, 286 
translating URLs, 211 
transmission 

timeout, 277 
transmit routine 

description, 267 
examples, 259, 268 
writeE(), 258 

transmitter empty, 257, 258 
transmitting 

routines for, 267 
transport layer, 166 
Transport Mapping, 193 
traps, 174 

sending, 189 
sending data, 179 
types, 177, 179 

TTCP test, 312 

U 

UDP 
compared with TCP, 51 
definition, 284 

UDP vs. TCP, 17, 40 
unescape_url() CGI routine 

example, 234 
unhex_str () CGI routine 

description, 236 
UNIX 

sockets, 71 
URL 

translating and parsing, 211 
USBD, driver info, 307 
USBH, driver info, 307 
user 

authenticating, 39 
identifying, 39 

user authentication, 208, 210 
user server functions 

Bwrite(), 200 
GetEntry(), 201 
httpinit(), 202 
HTTPservinit(), 202 
httpterm(), 203 
Neof(), 203 

summary list, 200 
waitreq(), 203 

User-based Security Model, 169 
USERID macro, 39 
USMETA programming interface, 240 
USNET, 185 
USS_IP_MC_LEVEL macro, 37 
USS_PROXYARP macro, 39 
USSBUFALIGN macro, 36 
ussHostGroupJoin, 65 
ussHostGroupLeave, 65 
ussSNMPAgentCheck() function, 176 
ussSNMPAgentInit() function, 176 
ussSNMPAgentShut() function, 177 
ussSNMPAgentTrap() function, 177 

V 

variable bindings, 179 
variable configuration file 

description, 223 
example, 223 

variable structure 
searching for string, 227 

variables 
maximum number, 169 
writable, 188 

vartable.cfg file 
example, 223 

Verification Testing, 293 
version, 10 
View-based Access Control 

Configuration, 170 

W 

waitreq() user server function, 203 
WD8003 controller 

receiving messages, 259 
web pages 

inserting into web server, 197 
steps for creating, 197 

web server, 293 
web server modules 

description, 206 
web server modules/functions 

MODchkaccess(), 207 
sequence of use, 206 



Index 

326 

summary list, 206 
Web Server test, 16 
WiFi, driver info, 308 
window 

exhausted, 279 
for flow control, 278 
silly window syndrome, 281 

windows 
utilities, 293 

Wireshark, 292 
writable variable, 188 
write notification, 182 
writE() routine 

and block drivers, 267 
description, 258 
example, 259 

write, buffered, 200 
writesocket() BSD function, 104 

 


	1.  Introduction
	Overview
	What is Supplied
	smxNS Design Considerations
	Size
	Clarity 
	External Support
	Packaging
	Reentrancy
	ROM Residence
	Device Drivers
	Modularity

	Recommended Reading
	Books
	RFCs Supported

	Your Experience
	Overview of the Development Process
	Analyzing the Design Problem
	Obtaining Design Tools and Verifying Your System


	2.  Quick Start
	Directory Structure
	Version
	Documentation
	Configuration
	Building the smxNS Code

	Running the Main Test Programs
	Guidelines for Testing
	nsdemo


	3.  Beginning Your Application
	Developing a Simple Application
	Include Files
	Initializing smxNS
	Establishing a Connection
	Terminating smxNS
	Compiling Your Application
	Code Listings

	Developing Your Application

	4.  Configuration
	Overview
	Configuring the Build Settings (nscfg.h)
	Configuring Local Parameters (nscfg.h)
	SNS_MIN_RAM Macro
	SNS_HW_RX_CHECKSUM Macro
	SNS_HW_TX_CHECKSUM Macro
	SNS_CPU_CACHE_DATA Macro
	SNS_BUFFS_IN_SRAM Macro
	NCONNS Macro
	NBUFFS Macro
	MTU Macro
	MAX_REASSEM Macro
	USSBUFALIGN Macro
	FRAGMENTATION Macro
	IPOPTIONS Macro
	USS_IP_MC_LEVEL Macro
	IP_MC_DFLT_NETNO Macro
	KEEPALIVETIME Macro
	RELAYING Macro
	chksum_INASM Macro
	DNS Macro
	NDNSS Macro
	TCP_SACK Macro
	LOCALHOSTNAME Macro
	USERID Macro & PASSWD Macro
	USS_PROXYARP Macro
	FILE_SUPPORT Macro
	SNS_DEBUG_LEVEL Macro
	NNETS Macro
	NNETISRS Macro

	Selecting Protocols
	Selecting Drivers

	5.  Dynamic Protocol Interface
	Overview
	Blocking Versus Non-Blocking Operation
	Include Files
	Initialization and Termination
	Ninit
	Nterm
	Portcreate
	Portconfig
	Portinit
	Portstate
	Portterm

	Connections
	Open, Close, Read, and Write
	Nopen
	Nclose
	Nread
	Nwrite
	Dynamic Protocol Interface Macros
	SOCKET_NOBLOCK
	SOCKET_BLOCK
	SOCKET_ISOPEN
	SOCKET_HASDATA
	SOCKET_CANSEND
	SOCKET_ISSENDING
	SOCKET_TESTFIN
	SOCKET_ISFATAL
	SOCKET_MAXDAT
	SOCKET_RXTOUT
	SOCKET_REMADDR
	SOCKET_LOCADDR
	SOCKET_REMPORT
	SOCKET_LOCPORT
	SOCKET_PUSH
	SOCKET_FIN
	SOCKET_FAMILY
	SOCKET_HASMYADDR6
	SOCKET_LOCSITEADDR6
	SOCKET_REMADDR6
	SOCKET_LOCLINKADDR6

	Multicast API (DPI) 
	ussHostGroupJoin
	ussHostGroupLeave

	Error Handling
	Examples
	Broadcasting Examples
	TCP File Transfer Example
	Non-Blocking Operations Examples


	6.  BSD Socket Interface
	About BSD Sockets
	Structures and Definitions
	BSD Socket Interface Functions
	accept
	bind
	closesocket
	connect
	fcntlsocket
	freeaddrinfo
	gai_strerror
	getaddrinfo
	getpeername
	getsockname
	getsockopt, setsockopt
	inet_ntop
	inet_pton
	ioctlsocket
	listen
	readsocket
	recv
	recvfrom
	recvmsg
	selectsocket
	send
	sendmsg
	sendto
	shutdown
	socket
	writesocket

	Multicast API (BSD) 

	7.  Network Applicationsand Protocols
	Overview
	ARP
	Proxy ARP

	DHCP
	DHCP Client Configuration
	DHCP Server Configuration
	DHCP Server Operation Restrictions
	DHCP Testing

	DNS
	SetDNS()
	DNSresolve()

	FTP and TFTP
	Start Server
	Send File
	Receive File

	HTTP Client
	Retrieve a Web Page
	Web Page Callback Function

	IGMP / Multicast
	iperf
	IPv6
	mDNS Responder 
	NAT
	NAT Configuration

	NC-SI
	PPPoE
	PPPoE Configuration

	SLIP
	Using SLIP with Windows Computers

	SMTP
	SNTP
	Get Time using SNTP

	Telnet

	8.  Point To Point Protocol (PPP)
	Overview
	PPP in Theory
	LCP Phase
	Authentication Phase (PAP/CHAP)
	NCP Phase

	PPP in Practice
	Usage
	Configuration
	Scripting
	Notes on Special Cases

	PPP ioctl Routines
	Description
	Option Listing
	Using PPP ioctl() routines

	PPP dialapi Routines
	Description
	Definitions of API
	Dynamically Configuring smxNS PPP Dial Scripts

	PPP pppsig Routines
	Description
	Definition of Signals Available
	Using PPP Signaling Routines


	9.  Simple Network Management Protocol (SNMP)
	Introduction
	SNMP Overview
	Design of smxNS SNMP

	Building an Application
	Build-time Configuration
	Agent Use of Build-time Constants
	 Application Interface

	Customizing the Agent
	Configuring the Agent MIB
	Adding New MIBs
	Configuring the Transport Mapping
	Exercising the Agent


	10.  Web Server
	Web Server Overview
	Web Server Requirements

	Example Web Server 
	Building the Example Web Server for Your Target
	Connecting to the Example Web Server
	Adding Web Pages Using a File System

	Using the Web Server
	User Server Functions

	HTTP Server Request Structure
	Modules and Handlers

	Module Function Descriptions
	MODchkaccess()
	MODchkauth()
	MODchkloc()
	MODchktype()
	MODgetuser()
	MODlog()
	MODtranslate()

	Request Structure 
	Using nsbldpg
	Server Configuration File
	MIME Information
	AddType Command
	Page Configuration File
	Variable Configuration File
	Access Configuration File

	CGI Function Programming Interface
	System Support Routines
	CGI Routines
	CGI Environment Variables

	USMETA Programming Interface
	#echo
	#exec
	#include
	#memory
	#system

	AJAX and jQuery

	11.  Device Drivers
	Overview
	Data Structures
	Messh (MESSH) Structure
	Net (NET) Structure

	Support Functions
	Disable and Enable Interrupts
	Install Interrupt Vector
	Restore Interrupt Vector
	Map I/O Address
	Adding Messages to a Queue
	Removing Messages from a Queue
	Interrupt Handling
	Interacting with an Ethernet PHY

	Configuring a New Processor
	Error Codes
	Writing a Device Driver
	Character Drivers
	Interrupt Handler 
	Transmit Routine
	Open Connection
	Close Connection
	Configure and Start Up
	Shut Down
	Network Protocol Table

	Block Drivers
	Interrupt Handler 
	Transmit Routine
	Configure and Start Up
	PHY Support Functions
	Polling
	Shut Down
	Protocol Table


	12.  Technical Background
	Overview
	TCP Retransmission
	Sliding Window
	TCP Delayed ACK 
	Congestion Control
	Silly Window Syndrome
	TCP Window Probe
	Address Conflict Detection
	ARP Caching

	A.  Terminology
	B.  Debugging Techniques
	Overview
	Displaying Trace Data
	Debug over Telnet
	arpstat: Dump the ARP Table
	bufstat: Display Details for Frame Buffers
	ifstat: Display Network Interface State
	logdump: Display smxNS Log
	memdump: Display Memory
	netstat: Display Connection Status
	nqstat: Show the State of Connections
	routestat: Display Routing Information
	Other Commands

	Network Analyzers
	Windows Utilities
	Web Servers
	Verification Testing

	C.  Dynamic Configuration
	Overview
	Configuration Functions
	SetDefaultRouter


	D.  Driver-Specific Information
	ACT10100
	AT91
	CFFEC
	DC21140
	EP93XX
	I8255X
	LAN91CXXX
	LM3S
	LPC2XXX
	NE2000
	RTL8139
	STRXXX
	USBD
	USBH
	WiFi

	E.  Serialized MAC Addresses
	F.  Memory Usage and Performance
	Memory Usage (KB)
	Performance

	Index

