smxNS™
User's Manual

Version 3.10

February 2024

A

S SOFTWARE.

EEEEEEEEEEEEEEEEEE

M Micro Djgital

Copyright and Trademark Information

Copyright 2006-2024 Micro Digital Associates Inc. for all new material written for SMX.
WWW.SmXrtos.com support@smxrtos.com

Copyright 1996-2006 Lantronix Inc. All rights reserved. No part of this publication may be
reproduced, translated into another language, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of Lantronix Inc.

Lantronix Inc. makes no warranty of any kind with regard to this material, including but not limited to
the implied warranties of merchantability and fitness for a particular purpose. Lantronix Inc. assumes
no responsibility for any errors that may appear in this document. Lantronix Inc. makes no
commitment to update or to keep current the information contained in this document.

Lantronix®, US Software®, and USNet® are trademarks of Lantronix, Inc. smxNS is a trademark of
Micro Digital Inc. Other brands and names are the property of their respective owners.

For support contact Micro Digital.

Documentation Conventions

Computer output and code examples: Courier, usually in a separate paragraph.

Function names and command names: Bold italic, usually followed by parentheses, as in main() function.
Variables: Courier italic (mt_busy).

File names: Times bold (the file usrclk.asm), usually in lower case.

Key names: Initial capital, in angle brackets, as in press <Enter>.

Menu names and selections, dialog box names, screen titles, window titles: Times bold, as in File menu.
Notes: Indicate important information.

Cautions: Indicate potential damage to hardware or data.

Revision History

Revision Date Notes
2.58 April 2006 Based on USNet 2.52.1 June 2005.
2.58 January 2007 Updated for new features.
2.59 July 2007 Added PPP, SNMP, and Web Server sections.
2.59 September 2007 Updated information about add-ons and demos.
2.59 February 2008 Added RTOS porting information.
2.60 July 2008 Updated naming, described Telnet debug.
2.63 October 2009 Updated naming, APIs, debug information.
2.63 July 2010 Updated naming, APIs.
2.70 October 2010 Changed porting layer to use smxBase.
2.70 August 2011 Updates, corrections, and new sections.
2.80 December 2013 Updates and addition of IPv6, mDNS Responder, and others.
2.81 July 2014 Added notes to DHCP server, DNS client, MTU.
2.90 July 2015 Updates for DPI error codes, CGl, SNMP and misc clarifications.

2.90 October 2015 Corrections and updates.

291 February 2017 Corrections and updates.

2.92 February 2018 Adds NC-SI, updates SNMP, misc updates.

2.92 September 2018 Portconfig() options, web server functions, AJAX/jQuery, misc
3.10 February 2024 Porting information removed.

Contents

1. INErOAUCTION.....oiiiiiie e 1
OVEIVIBW ...ttt ettt ettt se et et e et see e s e e beeeeentesaeemeeeaesneeneesaeeneeneeaneas 1
WAL IS SUPPHIEA ..o 2
SMXNS Design CoNSIAEIAtIONS........cccciviiiiriiiirieie e 3

RS2 TSRS 3

(O - T ST 3
EXTErNAl SUPPOITovieie ettt sreare b nne e 4
=103 = To | [o SR 4
REENITANCY ..ttt e e st e e sbb e sabe e e nbbe e sneeesnes 4
ROM RESIHENCEcviviiiieieeee sttt b e 4
Yol I Y= USSR 4
Yoo (0] = 2SS 4
Recommended ReadINGccveiiiiiiiii it 5
2700 &SSP 5
ORS00 oo T [T 6
01U g T o T=T T o= OSSPSR 8
Overview of the DevelopmMENT PrOCESSccovieeieieeiest e se s 8
Analyzing the Design Problem ... 9
Obtaining Design Tools and Verifying Your SYStemcccccooevoviienvnenieneniene 9

N © LU T o] 1Q0] - AR 10
DIreCLONY SITUCKUIE....c.viivieie ettt sreene s 10
BT £ o] TSSOSO PRUR PPN 10
Do TN {0101 ¢ U1 o] OSSPSR 10
CONTIGUIALION. ...ttt bbbttt st 10
Building the SMXNS COUE.ccuiiiiiiieieieee s 11
Running the Main TeSt Programscccviieiirereisisene e 11
LT Lo (=] Tty o g =T] T SR 11
41570 (=101 To P U TSP P PRSPPI 11

3. Beginning Your Applicationcccccvevieiieiii e, 17

Developing a Simple APPHCALIONcccvvieiiiice e 17
INCIUAE FIIES ...t 19
INItIALIZING SMXNS ... sre e 19
Establishing @ CONNECLION.........c.cciiieii e 20
Terminating SMXNS ..o s 22
Compiling Your ApplICALIONcuoiiiiiiceee e e 24

L0000 [I 1] Vo SR 24

Developing Your APPlICatioN.........cccviiiiiiiiiice s 31

v o] o 1o U] =11 o] o [RS URS SRR 33
OVEBIVIBW ...ttt bbb bbbt bbbt bt b bbbt nb et 33
Configuring the Build Settings (NSCFQ.N)coveveiiiii e 34
Configuring Local Parameters (NSCfg.n)ccooveieiiiii e, 34

SNS_MIN_RAM MACIO...ciiitiiiiiiiiiiiieie ettt snae e saeenns 35
SNS_HW_RX_CHECKSUM MACTOcciiiiieieieieiieiesie et 35
SNS_HW_TX_CHECKSUM MaCIO.......ccoiiiieieieiaiaieaesiesesieseeieseeessesse e seenens 35
SNS_CPU_CACHE_DATA MACKOccuviviriiiiiieieieesiesie et 35
SNS_BUFFS_IN_SRAM MACIOc.ccviiiiiriinierieieieesiesie e seesieseesseessessessesseseeeens 35
NCONNS MAECTO. ...ttt ittt ettt sttt sbe e sbe e sbeesaeesabesnneas 36
NBUFFS IMACTOuviiiiiie ettt ettt et e s te e sare e nreeeaneas 36
Y IO AV Uod o PSPPSR 36
MAX_REASSEM MACTOcouvevieiieiiiiieiesiesie et sne s sne e s 36
USSBUFALIGN MACTO.....ccciiiiiiiiecie sttt et s nnas 36
FRAGMENTATION MACKIO....c.cciiiiiiicieiieciesieiee ettt 37
IPOPTIONS MACTO.....ccteieieiieieieiieie ettt sttt eneenestesreneeneas 37
USS_IP_MC_LEVEL MACIOccvveviiiieieiiesiesiesieie et 37
IP_MC_DFLT_NETNO MACIO....ccocoveiiriiiiieiiesieieieess et a e 37
KEEPALIVETIME IMAECIO ..ottt 38
RELAYING IMACTO...c.ciiiiieieieiieieiesie ettt sttt s e e s 38
ChKSUM_INASM MACTO......otiiiiiiiieisiste st 38
] STV - T ISP 38
NDINSS MACKTO ...ttt ettt bttt sb e e sbe e sbeesanesnbeanreas 38
TCP_SACK MACIOeeeiiiee it ceeesee sttt st e tee e s e e sraeessae et e e snaeeenneeennaeean 39
LOCALHOSTNAME MACI0....cuuiiiiiiieieeiee ettt sae e 39
USERID Macro & PASSWD MACIOccooieiieiiiiie ittt 39
USS_PROXYARP IMECTO.....cuciiiiiiitiiiiniesieieeeesie sttt see s ssesnas 39
FILE_SUPPORT MACIO ..ccutiiiiiiiiiiiiieie ettt sttt sttt sttt snaeenne e 39
SNS_DEBUG_LEVEL MACIOcvoviieiieiisice ettt 40
NINETS IMECIO ...ttt ettt neene e 40
NNETISRS MACIOcviiiieiieiieie sttt a ettt ettt naeneanas 40
SEIECLING PIrOtOCOIS ..ottt 40
SEIECTING DIFIVELS. ..ottt 41

5. Dynamic Protocol Interface........c.cccccevvvevieiiiiie i, 43
L@ 1Y V1 SRS 43
Blocking Versus Non-Blocking Operation...........ccccceveviiiviiciiicccccce e 44
INCIUAE FIES ... bbb 44
Initialization and TermMiNatioN............cooiiiirir i 44

INEIEE 1.t bt bbb ettt 44
11T 1 U O PSP P PP UPTOPRRPRRPRN 45
POFTCIBALE ...ttt ettt sb e sb e s sabe e 45
POITCONTIG. ..ttt 46

0T 1 1 PRI 49

POIESTALE. ...ttt b 50
POTEEIMNL .ttt ettt sb e nbe e sreesanennne s 51
(0] o1 o T=To1 (o] o S FO PSSP 51
Open, Close, Read, and WHILE.........ccccvv e 52
(6] o 1= o T U OO UPTUPTUPRTUPROPRN 54
INCIOSE ...ttt 56

AN =T (o PR T TSP R PRPR PP 57

N T (USSR 58
Dynamic Protocol Interface MaCroSc.ooiieeieiiee e 59
SOCKET _NOBLOCK ..ottt sttt 60
SOCKET_BLOCK ..ottt st nne e 60
SOCKET _ISOPEN ..ottt sttt eseenesneste e neens 60
SOCKET _HASDATA .ttt st ae e nbe e nes 60
SOCKET_CANSENDcottiiiiiiecie ettt st ns 61
SOCKET_ISSENDING ..ottt st 61
SOCKET_TESTFIN ..ottt ettt 61
SOCKET _ISFATAL ..ttt nes 61
SOCKET_MAXDAT ..ottt ettt sttt st nesne et nne e 62
SOCKET _RXTOUT ..ttt sttt e 62
SOCKET _REMADDR ...ttt ettt e 62
SOCKET _LOCADDRI ...ttt et sate et sae e 62
SOCKET_REMPORT ..ottt st e 63
SOCKET _LOCPORT ...ttt ettt sttt 63
SOCKET _PUSH ..ottt ettt 63
SOCKET _FIN ..ottt sttt nr e 63
SOCKET _FAMILY ..ottt sttt 63
SOCKET _HASMYADDRGcooiiieiie ettt e 64
SOCKET_LOCSITEADDRScviiiiiiiiiiiiieiesieeees et 64
SOCKET_REMADDRSGc.ooiiiiiiiieiisiiii ettt 64
SOCKET_LOCLINKADDRScccoviiiiiiisiiiesieieeeesie st 64
MUIEICASE AP (DP1) vt 65
01 (015 (€T 01U o] 1 ISR 65
USSHOSTGIOUPLEAVEeivieeie et sttt sttt ettt ettt e snaesnaennee s 65
SR o Tl F= 1 o | 17 o PSSP SSUPSSR 66
EXAMPIES ..ttt ettt ene s 66
Broadcasting EXamMPIES.......cco oo 67
TCP File Transfer EXamMPIEcc.ooviiiiiiiece et 67
Non-Blocking Operations EXamplesc.ooovieiiiiiieneieeese e 68

. BSD Socket Interface.........cccccovviiiiieiiesie e, 71
ADOUL BSD SOCKELScveieieieiieeiie sttt nee e e 71
Structures and DefiNITiONS.cuiiiiiiiiiieee e 72
BSD Socket Interface FUNCLIONSccoviiiiiiieieieese e 72
2 61 01<] o TP 75
013 PP 76
ClOSESOCKET ...t 77

(o0 11 =11 (PR 78

FONTISOCKET ... sne e 79

£ 0=T=T: To Lo LT o PSR 79

0T S =1 (o] SR 80

[0 T=1 o [0 T) (o SR 81
OELPEEIMAMIE ...ttt ettt sttt ettt b e b e bt e s bb e b bt a bt et e e nbe e bt e sbe e e e e e nne e be e e 83
GETSOCKNAIMEttt bbbttt 84
QEtSOCKOPL, SELSOCKOPL ...ttt 85
10T A 0] (0] o PSSP 87
10T A o] (o] o TSR TPRSRN 88
HOCHISOCKEL ... ettt te e sbe e sbeesbeesaresare s 89
13 =T o OSSP 90
L2210 {010l ST 91
1703V PR PRSPPI 92
(=10 Y 1 0] 1 1 TSRO RTOUSTRRTRR 94
12103 V71 0 S0 SR 95
SEIBCEISOCKEL ...ttt sttt n e b e b sne b e 96
C1=] 0o RSP PPPT 98

=] 1o] 0o OSSR OSR 100
=T 00| (o SR 101

] 110 [0 TSR 102
01 3G SR 103
WITTESOCKEL ...ttt sttt e eas 104
MUIEICASE APT (BSD)oooveeiieeereeeeeeeesiesessesseessesssesssssenssse s sssnssssssnesnees 105
7. Network Applications and Protocolscccccevveinnieininennn, 107
OVEBIVIBW ...ttt bbb bbbttt b bbb 107
AARP ettt ettt Reere et re e eens 108
PIOXY ARP ...ttt sttt neer ettt e 108
DHCP bbbttt 109
DHCP Client Configuration............cccccviiveveiiiie e 109
DHCP Server Configurationc.ccooiiiereieeie e 111
DHCP Server Operation ReStrCHIONSc.ccviveiiiicieieiecce e 112
] (O e 0= o USSR 113
DIN S ettt ettt R e R Rt Re ettt n e neereareete st e neens 116
SEIDINS() v evveeeriereeteee ettt ettt eere e re e nr s 116
DINSIESOIVE() 1vveveeiieitestie ettt st be et e be s e sbesneeaenneens 116

[I =V o I I SRS 117
SEAIT SBIVE ...t b et ettt b sbe e saeesaneanne s 117
SENA FHIE . s 118
RECEIVE FIE ..o 118
HTTP CHENT ..ottt 119
RErEVE @ WED PagE.......ociiiieeie ettt 120
Web Page Callback FUNCLION...........cccvoviiiiiie e 120
IGMP [IMUITICAST. ...ttt 120
16 =] o ST 121

MDNS RESPONUE ...ttt 122
N A T ettt R Rt R e e Rt Rt et et e n e e neereeReerenreneeneens 126
NAT CONFIQUIALION ..o 126
NSt b ettt bt 128
PPPOEcoe ottt ettt et reere et st et ens 129
PPPOE CONFIQUIAtIONoviiiiiiiieee s 129
Sl ettt 131
Using SLIP with Windows COMPULETScc.coviiiiiiiiienicieeeeeeesesesie e 131

R0 1Y IS 132
SN T P bbbttt 134
Get TIME USING SNTP ... 134
=] =) OSSR 135
. Point To Point Protocol (PPP) ..., 137
OVEBIVIBW ...ttt bbb bbbttt b bbb 137
[o T T I =T Y PSSRSO 137
IO o 0P - TS 138
Authentication Phase (PAP/CHAP) ..o 138
INCP PRESE ...ttt bbbttt bbb 138
PPP N PraCliCeoiiiiiiee ettt seeeneas 139
USBIOE. .. ettt r e r e 139
CONFIGUIALION ...ttt e reene s 140

ST] 01 RSP OSPRPRSRPTIN 143
NOLES ON SPECIAI CASESvevieieeie ettt re e e 146
PPP IOCHI ROULINEScviiiiiiie ettt st nne s 154
DESCIIPION ...ttt bbbttt ettt bbb 154
OPLION LISTING -ttt sttt sne e e e sbeeneeseeeneas 154
USIiNg PPP IOCLI() FOULINES........cueeieiieiiieee et 156
PPP dialapi ROULINES.........ccooiiiieieiecie sttt ene s 160
I C ol o1 (o] USSR 160
DefinitionS OF APl ..ot 160
Dynamically Configuring SmxNS PPP Dial SCriptS.........cccovvvvvevieiiveieveieeieie, 161
PPP PPPSIG ROULINES ...ttt sttt ane s 162
[T od 0 o] o OSSR 162
Definition of Signals Available............ccooiiiiiii i 162
Using PPP Signaling ROULINES.........c.cciiiiiiiiecie e 163

. Simple Network Management Protocol (SNMP).................... 165
INEFOAUCTION ... ettt 165
SNIMP OVEIVIBWoviiiieiieieieie ettt sttt seesesnesneneeneenes 165

Design of SMXNS SNIMPovoiii e e 166

Building an ApPLICAtION ..o 167

Build-time ConfIQUIAtION...........ccoiiiiiiiieee e 167
Agent Use of Build-time CONSLANTSccerveiiiiiniiciereee e 171
APPHCAtION INTEITACE.......cviiiceie e 172
CUSTOMIZING TNE AGENT ... 180
Configuring the AGENt MIB..........ooiiiiee e 180
AAING NEW IMIBS ..ottt 185
Configuring the Transport Mappingccoceeererieininenene s 193
EXErcising the AQENT........ooi it 195
10. WED SEIVEN ... 197
WWED SEIVEE OVEIVIBW ...ttt ettt seeenes 197
Web Server REQUITEMENTSccveviieiie ettt ens 198
EXaMPIe WED SEIVET ..ottt 198
Building the Example Web Server for Your Targetcccoovveiiivninicncienns 198
Connecting to the Example WEeD SEIVEScccvvveieie i 199
Adding Web Pages Using a File SYStem..........ccccoovviiiiiniiiieeesesc e 199
USING the WED SEIVET ..o 200
USEI SEIVET FUNCLIONScviiiieiiiiiecieeie sttt sttt n e sresre e e nae e 200
HTTP Server REQUEST STFUCTUIEoocvviiiiiie e 204
Modules and HanAIErSooviieiieeeeee e e 206
Module FUNCtION DESCIIPLIONSccviiiiiiiiieiieieieeeee e 207
MODCHKACCESS().. v vververeeiesieerie st st etese ettt st ste e sbe st et e te s e sresneeaesne e 207

Y L@ T ol 117 101 T USSR 208
MODCRKIOC() ..t 209
MODCRKEYPE() -ttt 209

Y (@I T0) (U1 =T) USSR 210
IMODIOG() ++veveereererreniesiesiesiesieee e et sae et e e e seeseesessestessesbeseeseeseeseeseesessessesseneas 211

Y L@ =Ty T =1 (=T) TS 211
REQUEST STFUCTUTE... ..ottt e e steesree e 212
(0L [0 AT o] (o T TSRS 213
Server Configuration File...........cooiiiiiieiece e e 213
MIME INFOFMALION.itiiiiiieieis e 219
AdATYPE COMMANG.....c..oiieieiecicie et sbeenes 220
Page Configuration File ... 221
Variable Configuration File ..o 223
ACCess Configuration File............cooiiiiiiiiei s 224
CGI Function Programming INterfaceccocveieieiieiine e 225
SYStemM SUPPOIT ROULINESeiieiieieieieees ettt 226
CGI ROULINES ..ot bbbttt bbb 231
CGI Environment Variables. ..o s 237
USMETA Programming INterfaceccooovieeiiiieieneee e 240
HECNO .. 241
FEEXBC 1.ttt ettt R b e Rt b E e Rt R bRt R bRt e b bt e b enes 242
=10 To] 100 [SR 243
200 1=T 0 0] Y TP T TR PP UTRTTRTO 244

Vi

2SS (=] 1 OSSP R 244

PN A Q- 1o (o I [H LT oSS 245
11, DEVICE DIIVELSviiieiiiiie ettt 247
L@ 1Y Y 1= PSPPSR 247
DAtA STIUCTUIES. ... ettt b ettt s be st be e 247
MeSSh (MESSH) SEIUCLUIE.........ccueiieieieeie et 248
NEL (NET) SITUCTUIE ..ottt 249
SUPPOIT FUNCLIONS ..ot st eneas 250
Disable and Enable INtErTUPLS........cccooiiiieiiiece e 250
INStall INTEITUPL VECLOTeieieei it 251
ReStore INErrUPE WECTO.......coiuiiiie et 251
MaP 1/O AQAIESS....vveiveieieiie ettt et re st sreene e tesne e 251
Adding Messages t0 @ QUEUE..........ccuiiiiiinieieeeeese st 251
Removing Messages from @ QUEUEocuvieeirieeeeie e 253
INtErruPt HANGIING.ooveiieiiieee e 254
Interacting with an EtNernet PHY ... 254
Configuring 8 NEW PrOCESSONceiviitiiieieesieeie st eieeie st see e see e seesreenaeseeenees 255
N (o] g O a o L= SR TSR 255
WIItING @ DEVICE DIIVELccveii et 255
(O g T U= (o1 (=] g D 1Y SRS 255
INErTUPE HANAIET ..o e 257
TranSMIt ROULINEoveiieiie ettt te e neas 258
OPEN CONNECLION ...ttt bbbt 259

(O] [0 LSt 00 1= ox 1 o] ST 260
Configure and SEArt UPooeveieeeeeesese e 260
SNUE DOWN ..ottt sttt sre e e teenee e 261
NEetWOrk ProtoCol TaDIEcveiiieeieee e 262
BIOCK DIFIVEIS ..ottt sttt enennenne s 263
INEEITUPE HANGIET ... 264
TranSMIt ROULINEooveiieiie ettt e e e re e e 267
Configure and STArt UPccvoiiiieicecie e sttt 270
PHY SUPPOIt FUNCLIONS ...ttt 271
0] | 11T USROS 273
SNUE DOWN ...ttt ettt st et e sbeeneeseeeneas 274
ProtoCOl TabIe e 275
12. Technical Background.............cccoooeiiiiinniiniieiie e, 277
OVEBIVIBW ...ttt bbb bbbttt b bbb 277
TCP RELIANSMISSION ...ttt bbb 277
SHAING WINAOW ... 278
TCP Delayed ACKo ittt sttt sttt reens 280
CoNQgEStioN CONIOLcviiieiiciceee e reene s 280

vii

Sily WINAOW SYNAIOMEocveiiiieicce ettt 281

TCP WINAOW PrODE ...ttt 281
Address CoNfliCt DEtECTIONoviiiiriiie e 281
ARP CaChiNG ... 282
AL TerMINOIOY . .cccueeiieiiiiiese e 283
B. Debugging TeChNIQUES..........ceviiiiiiieiiece e, 285
OVEBIVIBW ...ttt bbb bbbttt b bbb 285
Displaying Trace Datacccooviiveiiiiiiiieree e 285
DebUQg OVEE TeINET ... e st 287
arpstat: Dump the ARP Tablecoooiiiiiecee e 287
bufstat: Display Details for Frame BUFfers..........ccccccovviiiieiicic i, 288

ifstat: Display Network Interface State.........cocovovieeiiiiieiiiece e 289
logdump: Display SMXNS LOQ......ccceiiiiieiiiiiie et 290
memadump: Display MEMOIYccuiiiiiiiiiereeee s 290
netstat: Display CONNECLION SEALUSc.ooveieriiieieiecee e 290
ngstat: Show the State 0f CONNECLIONS..........coeiiiiiiiiiiie e 291
routestat: Display Routing INfOrmationcccceveiiiieiii i, 292
Other COMMANGS ..ottt see st e eneeseeeneas 292
NETWOIK ANAIYZEIS. ... e 292
WINAOWS UTHITIES ... 293
WVED SEIVELS ...t 293
VErifiCation TESHING.......ooiiiieiie et enes 293
C. Dynamic Configuration...........ccccceveviiiiiniesnie e 295
OVBIVIBW ...ttt ettt sttt e e sttt e s beete e s e saeen e e naesaeeneesbeeneeseesteeneeneeaneas 295
Configuration FUNCLIONS..........cciiiiiiiicie e 295
SEIDETAUITROULET........eeeee ettt seeene s 295

D. Driver-Specific Information.............ccccooveviiiieiii i, 297
ACTL0L00 ...ttt ettt sesbe st st e e et eseeneeneaneaseneeneeneens 297
AT O bbbttt 297
CRFEC .t 298
DC2LLA0 .. ittt r Rttt st n e reere et st e neens 298
1 SRS 300
8255 .ttt 301
LANOLCKXX .ttt sttt et se s etesbesaeste st et e e neeneaseasestesteneeneens 302

viii

(1107500 GO 304
=520 Lo OO 304
RTLBLB.....oeoveeeeeieeeese st eese s n s eneean s en s e 306
STRXXX ooviveeeeeveeeeees s es e es st n s s 306
USBD ...ttt 307
012 1T 307
WIF oot 308

E. Serialized MAC AdAIESSES.......cocvvieiiiieeiiiiee et 310

F. Memory Usage and Performancec.cccccoeevvvveveevieeinesnnnnn, 311
MEMOKY USAQE (KKB)ocuvciiiiceicie sttt sne e 311
=T (0] 1 4 F= 1 (ol TR 312

Introduction

1. Introduction

Overview

smxNS™ began from USNet® v2.58. Much has been changed, and improvements continue to be
made.

smxNS is a set of software routines that support TCP/IP protocols and runs on SMX RTOS. It
supports the TCP/IP protocols shown in Table 1-1.

Table 1-1: smxNS Supported Protocols

Protocol| Description

TCP Transmission Control Protocol: Transport layer with
connections, flow controland error correction

UDP User Datagram Protocol: Simple connectionless
transport layer
IP Internet Protocol: The network layer.

Both IPv4 and IPV6 are supported.

ICMP Internet Control Message Protocol: Part of IP for
practical purposes

ARP Address Resolution Protocol: Retrieves a host’s netwg
controller’s hardware address, given the host’s Interne

address

Chapter 1

The logical relationships between the protocols are illustrated in the figure below:

Application
TCP/UDP
IP/ICMP
Link Layer

Device Driver

Device
A
\ 4

A
A 4

Network

Figure 1-1: Protocol Stack

smxNS’s TCP/IP protocol suite allows diverse systems to communicate with each other. It
implements a dual IPv4/IPv6 stack. IPv4 support and IPv6 support can be enabled individually or
together. More information about IPv6 is presented in the IPv6 section of Chapter 7, Network
Applications and Protocols.

Typically, smxNS software is used in a target embedded system that communicates to a server. The
target application interfaces with the outside world, performing some form of data collection. When
necessary, the target application opens a connection to the server and transmits the data. smxNS takes
on the responsibility of providing a reliable connection and reliable data transport when using TCP/IP.

smxNS offers 2 API’s:
1. Dynamic Protocol Interface (DPI) — Simple, proprietary API. See Chapter 5.
2. Berkeley Sockets (BSD) — Standard API. See Chapter 6.

Please refer to Appendix A, Terminology for the definition of terms you are unfamiliar with.

What is Supplied

smxNS includes full source code and sample application protocols and test programs that are useful
when building networking into your application.

nsdemo.c includes support for the following protocols:
e FTP client

e FTP server

o Loopback test (exercises core stack protocols)

o DHCP server

o mDNS Responder

e Ping client

Introduction

POP email retrieval

SMTP email sending

SMTP email server

SNMP agent

Telnet server

TFTP client (like FTP file transfer, but using UDP)
TFTP server

Web server

Support for these protocols can be turned on and off using switches at the top of the file.

nstels.c is a simpler application that includes support for a Telnet server.

smxNS Design Considerations

The smxNS design considers many of the special requirements of the embedded world, such as:

Size

Size

Clarity

External support
Packaging
Reentrancy
ROM residence
Device drivers

Modularity

The complete TCP/IP protocol, including all needed subroutines but excluding the application level,
totals about 25 kilobytes of code. The protocols can be individually configured, so the minimum
system is even smaller than this. The fixed RAM requirement is typically less than 1 kilobyte. Each
active connection needs buffer space, which is dynamically allocated with the buffer space
requirements depending on the application. Stack usage is kept to a minimum by avoiding deep
function nesting and excessive autovariables.

Clarity

The main code does not contain any conditional controls for different compilers or processors. Only
some of the porting files have code of this form:

#ifdef COMPILER_S0OSO
do it so-so
t#else

Chapter 1

do it right
#endif

All the support for different byte ordering or word size is invisible to the user.

External Support

The package, as delivered, uses only a few basic ANSI C services.

Packaging

smxNS is supplied and configured in source code. The applications are packaged as C subroutines.
There are only about 30 external routines, with names not likely to conflict with any other names.

Reentrancy

The code is reentrant and can be used with preemptive multitasking and nested interrupts.

ROM Residence

The code is ROMable in a wide sense of the word: All initialized data is type “const,” and there
are no attempts to change code or constants.

Device Drivers

smxNS considers drivers as extensions to hardware, and uses a separate data link layer. In other
words, the device drivers and link layers are designed as separate modules. This results in short and
simple drivers independent of the link layer, and allows new drivers to be added without requiring
recoding of the link layer. The link layer processes the link-level protocol such as Ethernet, SLIP, or
PPP.

Modularity

In addition to the main stack, SmxNS offers various add-on modules, such as a web server, NAT
support, mDNS responder, and SNMP. By separating these from the main stack, you are saved cost
and memory space by omitting them if they are not needed.

Recommended Reading

Introduction

This manual documents smxNS only. It assumes you are already familiar with TCP/IP. If you are new
to TCP/IP, please read one or more of the books listed below. Also, this manual does not go into
detail about TCP/IP standards. These are documented fully in the RFC’s. See the Internet references

below.

Books

TCP/IP Hlustrated
Volume 1: The Protocols
W. Richard Stevens
ISBN 0-201-63346-9

TCP/IP Illustrated

Volume 2: The Implementation
Gary R. Wright

W. Richard Stevens

ISBN: 0-201-63354-X

Internetworking with TCP/IP

Volume 1: Principles, Protocols, and Architecture

Douglas E. Comer
Second Edition
ISBN 0-13-468505-9

Internetworking with TCP/IP

Volume 2: Design, Implementation, and Internals

Douglas E. Comer
Second Edition
ISBN 0-13-125527-4

Troubleshooting TCP/IP

Analyzing the Protocols of the Internet
Mark A. Miller P.E.

ISBN 1-55851-268-3

The Simple Book

An Introduction to Internet Management
Second Edition

Marshall T. Rose

ISBN 0-13-177254-6

SNMP, SNMPv2, SNMPv3, and RMON 1 and 2
Practical Network Management

William Stallings

ISBN 0-201-48534-6

UNIX Network Programming
W. Richard Stevens
ISBN 0-13-949876-1

Foundations of WWW Programming with HTML & CGI

IDG Books
ISBN 1-56884-703-3

Chapter 1

CGI Programming in C and Perl
Thomas Boutell

Addison Wesly

ISBN 0-201-42219-0

CGI Developers Guide
Eugene Eric Kim
Sams Net

ISBN 1-57521-087-8

Zero Configuration Networking

The Defnitive Guide

Stuart Cheshire & Daniel H. Steinberg
O’Reilly

ISBN 0-596-10100-7

There are many books on web page design. This one is very good for low-level protocols, and has
cross-references to RFCs:

Internet Protocols Handbook
Dave Roberts

Coriolis Group Books

ISBN 1-883577-88-8

RFCs Supported

RFCs (requests for comment) are a series of documents that represent the TCP/IP standards as they
continue to evolve. All RFCs are available over the Internet by searching with a web browser. The
most important ones for sSmxNS are:

RFC 768 UDP
RFC791 IP
RFC 792 ICMP
RFC793 TCP

RFC 821 SMTP

RFC 822 SMTP

RFC 959 File Transfer Protocol

RFC 1034 DNS

RFC 1035 Domain Names - Implementation and Specification

RFC 1101 DNS

RFC 1112 Host Extensions for IP Multicasting

RFC 1122 Explanations and clarifications of all the above, plus additions and corrections
RFC 1144 Compressing TCP/IP Headers for Low-Speed Serial Links
RFC 1157 Simple Network Management Protocol (SNMP)

RFC 1213 SNMP MIB-II

RFC 1320 The MD4 Message-Digest Algorithm

RFC 1321
RFC 1332
RFC 1334
RFC 1661
RFC 1662
RFC 1725
RFC 1867
RFC 1869
RFC 1876
RFC 1982
RFC 1989
RFC 1990
RFC 1994
RFC 2018
RFC 2045
RFC 2046
RFC 2047
RFC 2048
RFC 2049
RFC 2065
RFC 2068
RFC 2131
RFC 2132
RFC 2236
RFC 2433
RFC 2461
RFC 2462
RFC 2463
RFC 2516
RFC 2663
RFC 2863
RFC 3411
RFC 3414

Introduction

The MD5 Message-Digest Algorithm

The PPP Internet Protocol Control Protocol (IPCP)
PPP Authentication Protocols

The Point-to-Point Protocol (PPP)

PPP in HDLC-like Framing

POP

Form-based File Upload in HTML

SMTP

DNS

DNS

PPP Link Quality Monitoring

The PPP Multilink Protocol (MP)

PPP Challenge Handshake Authentication Protocol (CHAP)
TCP Selective Acknowledgment Options

MIME: Format of Internet Message Bodies

MIME

MIME

MIME

MIME

DNS

HTTP

Dynamic Host Configuration Protocol

DHCP Options and BOOTP Vendor Extensions
Internet Group Management Protocol, Version 2
Microsoft PPP CHAP Extensions

Neighbor Discovery for IPv6

IPv6 Stateless Address Autoconfiguration

ICMPV6

A Method for Transmitting PPP Over Ethernet (PPPoE)
IP Network Address Tranlator (NAT) Terminology and Considerations
The Interfaces Group MIB

An Architecture for Describing SNMP Management Frameworks

User-based Security Model for SNMPv3

Chapter 1

RFC 3174 Secure Hash Algorithm 1 (SHA1)

RFC 3826 The AES Cipher Algorithm in the SNMP User-based Security Model
RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses

RFC 4022 Management Information Base for TCP

RFC 4292 IP Forwarding Table MIB

RFC 4293 Management Information Base for IP

RFC 5227 IPv4 Address Conflict Detection

RFC 5322 Internet Message Format

RFC 5681 TCP Congestion Control

RFC 6056 Recommendations for Transport-Protocol Port Randomization

RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)
RFC 6762 Multicast DNS

RFC 6763 DNS-Based Service Discovery

Your Experience

This manual assumes you are familiar with TCP/IP and related protocols, C programming, your
compiler toolsuite, and your target hardware. For help learning TCP/IP, see the previous section,
Recommended Reading. It is likely that you will need to become familiar with the assembly language
of your target processor.

If your hardware is not supported, you will need to develop several low-level interface routines. For
this reason, you should know how to perform device-level programming for your target hardware,
e.g., serial ports, timers, interrupts, etc.

Overview of the Development Process

The following text provides an overview of the typical process used to develop embedded networking
applications using sSmxNS.

These are the main steps in the development process:

Analyze the design problem and its constraints.

Obtain and install all of the development tools and verify their operation.

Install your SMX release, which includes smxNS.

Verify that the Network Controller hardware, network servers, and network cables are functional.
Add XNS files and paths to the application project if not already there.

Build and run the SMX Protosystem with the smxNS demo enabled \SMX\APP\DEMO\nsdemo.c).

N oo a &~ w Db

Develop and debug your application.

Introduction

8. Generate your production code. Set the macro SNS_ DEBUG_LEVEL in nscfg.h to 0 (to
optimize code space). Configure Ethernet interfaces with the ENA option so that each device
uses a unique MAC address.

Steps 1 and 2 are covered in the remainder of this chapter. The remaining steps are discussed in the
following chapters.

Analyzing the Design Problem

Proper configuration of smxNS and its dependencies is crucial to the success of your application. For
example, you must select a target processor that can handle all of the tasks required by the application.
When analyzing the application, you might want to ascertain the minimum network throughput and
response time requirements. You should know such things as what ROM/RAM resources are
available to the application and whether there is enough room for the target application. It might be
necessary to compile smxNS and SMX to know how much code space it will use, or to do a timing
and resource analysis to ensure adequate load and resource headroom. Be sure to allow room for
additional protocols or client/server applications that you might decide to use later.

Obtaining Design Tools and Verifying Your System

If possible, compile and load some simple test programs on the target hardware. Verify that you can
use your debugger or ICE tools while executing your test program on the target.

Chapter 2

2. Quick Start

Directory Structure

smxNS is organized in a hierarchical directory structure under \SMX\XNS, as shown:

doc Additional documentation
drvsrc Drivers and CPU support
<cpu> CPU-specific files
include smxNS header files
netsrc Core smxNS source code
supsrc Low-level code common across other products in this family

Other directories may be present if you have purchased smxNS add-on packages.

ipvésrc smxNS Internet Protocol version 6

pppsrc smxNS PPP support package

snmpsrc smxNS SNMP package

websrc smxNS Web Server package
Version

The smxNS version number is indicated by SNS_VERSION in \SMX\XNS\include\smxns.h.

Documentation

Manuals are supplied in PDF format at www.smxrtos.com/doc. Also see the text files in the
SMX\XNS\doc directory for important additional information.

Release notes are supplied in the \SMX\DOC and \SMX\XNS\doc directories. Please take time to
review these files.

Configuration

10

It should be possible to run the packaged smxNS demo program with few or no changes. The IP
address of the system running smxNS is set with the LOCALIP macro at the top of the nsdemo.c file
in the \SMX\APP\DEMO directory.

If LOCALIP is set to 0.0.0.0, then smxNS will retrieve an IP address from a DHCP server, or you
could set this to an appropriate fixed address for your network. Other commonly adjusted settings are
collected at the top of nsdemo.c. There is a series of macros that specify which clients and servers
the test program will launch. There are also test specific settings such as the IP address of a test FTP
server, and account information for logging in to the test FTP server.

Other smxNS configuration options are documented in Chapter 4, Configuration.

Quick Start

Building the smxNS Code

Add the XNS source files and paths to the application project, if not already in it.

One source code file might require modification in order to run smxNS’s test programs. nscfg.h,
resides in the include directory and is used to define how smxNS is configured for the application.
The number of physical connections, buffers, and other TCP/IP options are set here. For testing
purposes under the conditions assumed, neither file should need to be modified. File nscfg.h and its
parameters are described in section Configuring Local Parameters of Chapter 4, Configuration.

Running the Main Test Programs

Test programs which were separate in USNet have been combined into a single demo file nsdemo.c
in the \SMX\APP\DEMO directory.

Guidelines for Testing

e Test using the smxNS trace output. (See Appendix B, Displaying Trace Data.)

» Do not start with untested hardware. If you don’t have any diagnostics available, get a

commercial board that is reasonably close to your own and run smxNS in that board. Then move
to your own hardware.

As much as possible, make sure that all the network cabling is verified before you start testing.

If you make experimental changes to the test program, always keep the last test that worked as a
fallback position. Whenever a test fails, go back to what works and retry that. (A cable may have
become loose!) Then try a different, smaller step.

Set SNS_DEBUG_LEVEL = 3 in nscfg.h to help report error conditions in the stack. Do a grep

or search on “DEBUG_MSG” in the stack modules to locate error traps.

» The header file net.h contains error return number translations and meanings.

» Use the function Nprintf() or Nputstr() in your test programs as a trace output tool.

» Use a LAN analyzer to capture and troubleshoot your test programs’ data traffic during stack

communications.

nsdemo

nsdemo.c combines several test programs and example servers into one demo. The specific tests are
controlled by a series of #define switches at the top of the file, and these are summarized below.

TEST_CRYPTO

Run a test to confirm cryptographic functions.

TEST_DHCP_SERVER

Start a DHCP server.

TEST_FTP_CLIENT

Run an FTP client that continuously uploads and downloads a test
file.

TEST_FTP_SERVER

Start an FTP server.

11

Chapter 2

TEST_LOOPBACK

Test the core of the TCP/IP stack.

TEST_MDNS_RESP

Start an mDNS Responder.

TEST_PING_CLIENT

Run a Ping client.

TEST_POP_RECEIVE

Retrieve an email message from a POP server.

TEST_SMTP_SEND

Send an email message using an SMTP server.

TEST_SMTP_SERVER

Start an SMTP email server.

TEST_SNMP_AGENT

Start an SNMP agent so that the smxNS system will respond to
queries from an SNMP manager.

TEST_SNTP_CLIENT

Run the SNTP client that will retrieve the current time from a time
Server.

TEST_SSL_SERVER

Start a version of the Web Server that uses the Secure Sockets Layer.

TEST_TELNET_SERVER

Start a Telnet server. The Telnet server provides a simple command
line that allows the state of the network stack to be displayed.

TEST_TTCP_SERVER

Run the TTCP server so that network performance can be measured.

TEST_WEB_SERVER

Start a Web server that will respond with canned web pages.

See Chapter 7 Network Applications and Protocols for information about these. The sections below

give details about these tests.

To run nsdemo, add it to the SMX Protosystem project. Also add compiler command line defines for

SMXNS and SMXNS_DEMO.

The nsdemo application and the smxNS stack provide feedback by logging messages with the
DEBUG_MSG() macro. For example, this line appears in nsdemo.c:

DEBUG_MSG2_PARO(*'smxNS Portinit for enet Failed\n'™);

These log messages are sent to both the debug terminal and the smxAware print buffer. The debug
terminal output is usually sent to an RS232 port on your target.

The debug macro is of the form DEBUG_MSGd_PARp, where d is the debug level from 1 to 6, and p
is the number of parameters in the format string from 0 to 10.

When running under an IDE, the strings directed to the smxAware print buffer can be reviewed by
opening the smxAware text display window and expanding the Print node in the object list. Viewing
the log messages this way allows you to see all of the most recent trace messages, and is more useful

for debugging.

FTP Client Test Overview

12

The FTP client test sets up the system under test to act as an FTP client. The system writes a file to an
FTP server, and then reads it back and verifies that the data has been transferred correctly. This test
will run in a continuous loop until the Escape key on the keyboard is pressed.

If you don’t already have an FTP server in the local network, the following are freely available and

relatively easy to set up:

o Filezilla Server, available at http://sourceforge.net/projects/filezilla/

Quick Start

e War FTP Daemon, available at http://www.warftp.org/

The following definitions in nsdemo.c should be reviewed before running the FTP client. You will
likely need to adjust these definitions and perhaps set up a user account under your FTP server in
order for the FTP client test to run successfully.

FTPSERVER IP address or DNS name for the FTP server.
FTPUSERID User name for the FTP account.
FTPPASSWD Password for the FTP account.

FTP Client Pass Indicator

If all is going well, you should see status report messages similar to the following.

9 FTtest OK

This indicates that the test program has completed 9 passes in which the test file has been uploaded to
the FTP server and then downloaded and compared. Additional information may be available from
the log messages or from the FTP server’s user interface.

If the test is not successful, you could verify that the FTP user account settings are working by playing
the role of the test program and logging into the server from a command line. For more detailed
debugging, you could increase the setting of SNS_DEBUG_LEVEL in XNS\include\nscfg.h for more
verbose logging, and you could review network activity using a network sniffer.

FTP Server Test Overview

The FTP server demonstrates the use of ftp_session_main() function to implement an FTP server.
The ftp_session_main() function handles all aspects of an FTP session with a client once the control
connection has been established. File system support may be provided either through the minimal
RAM based file system, or through traditional file system support such as smxFsS.

Loopback Test Overview

The loopback test uses a wrap driver while executing read/write tests on your target. It sets up a TCP
connection through a loopback device driver, so that all communication takes place within the unit
under test. It exercises a number of features of the TCP layer by forcing unusual but valid behavior in
the outgoing TCP segments. These behaviors are introduced by writing directly to internal data
structures, which may create some issues for future maintenance, but this method is simple and allows
important features to be easily tested.

The loopback test sends trace update messages during execution, and if the test is successful it will
display about 30 lines of trace data with “NO errors in LTEST” at the end of the trace. If you

don’t have trace capability, you can use your debugger to verify execution results by setting various
breakpoints in Itest().

In order to set up the loopback test, follow these steps.

1. Edit APP\ADEMO\nsdemo.c so that just TEST_BASE_NETWORK and TEST_LOOPBACK are
enabled

2. Compile and download the top level project

3. Start execution and allow it to run for about 20 seconds

13

http://www.warftp.org/

Chapter 2

Loopback Test Pass Indicators

The Loopback test will display the following trace output if the test passed.
This concise listing was created with the SNS_DEBUG_LEVEL constant set to 3 in nscfg.h.

ARP 767676767676 -> 192.9.202.1
ARP 767676767676 -> 192.9.202.1
***SEND AND RECEIVE 20 MESSAGES
—20 MESSAGES OK

***FRAGMENTATION

***FRAGMENTATION WITH RETRANSMIT
reTX1l 14900 C1/204 ST1 SQ2669 MS741
—FRAGMENTATION OK

***SEQUENCE NUMBER ROLLOVER
—ROLLOVER OK

***OVERLAPPING MESSAGES

—OVERLAP OK

***0QUT OF ORDER MESSAGES

—OUT OF ORDER OK

***DUPLICATE MESSAGES

—DUPLICATE OK

***RETRANSMISSION

reTX1 45399 C1/204 ST2 SQ77c MS298
—RETRANSMISSION OK

no errors in LTEST

Potential Sources of Failure for the Loopback Test

Here are some sample problems that would cause LTEST to fail. Since LTEST doesn’t use any target
resources other than the CPU, RAM, and ROM, most problems are due to errors in environment
initialization.

» Target stack space is too small.

e Target memory RAM/ROM control registers are not set up properly.

POP Email Retrieval Test Overview

The POP email retrieval test will call the POPreceive() function to retrieve an email message from an
email server. The following items should be configured for this test.

TEST_POP_RECEIVE Set to 1 to launch the test.
TEST_POP_SERVER The IP address or URL of the POP server.
TEST_POP_USER The user name for the account on the POP server.

TEST_POP_PASSWORD The password for the account on the POP server.

14

Quick Start

SMTP Email Send Test Overview

The SMTP send test will call the SMTPsend() function to send a canned email message to an SMTP
server. The following items should be configured for this test.

TEST_SMTP_SEND Set to 1 to perform test.

TEST_EMAIL_ADDRESS The email address to which the test message will be sent. This

address is parsed in order to determine the SMTP server that is
used when sending the message.

TEST_SMTP_FLAGS Normally set to 0. Setto SMTP_USE_SSL to use SMTP over

SSL. This requires an SSL library.

MULTIPART Set to 1 to send a multipart message.

SMTP Server Test Overview

An SMTP server may be launched as part of nsdemo. Log messages will be written as email
messages are received.

SNMP Agent Test Overview

The SNMP agent may be started as one of the tasks run in nsdemo. The SNMP agent acts as a server
and provides network status information in response to requests sent by a Network Manager
application. The SNMP agent is discussed further in Chapter 9.

Telnet Server Test Overview

A Telnet server may be launched as part of nsdemo. telnetd_task_main() sets up connections, and
sns_TelnetCli() interprets command lines and provides a response.

The Telnet session function sns_TelnetSessionMain() provides the following functions.

It exchanges some basic control information with the client.

It provides simple editing by allowing the backspace key to remove the last character typed from
the command line, and then redisplays the line.

It reads command lines, and calls the routine sns_TelnetCli() for each. The example in nsdemo.c
passes the command to sns_DebugCli() so that the command can be processed by the debug
interpreter. If the optional HTTP client module is configured (SNS_PROTO_HTTPC = 1), then
instead of running the command through the debug interpreter, the command string is interpreted
as a URL, and the HTTP client function attempts to retrieve the web page at that location.
nstels.c also implements a Telnet client, and if this version is built rather than nsdemo.c, then the
Telnet command processor simply echoes back the command that was received.

If sns_TelnetCli() returns 0, then the telnet session will continue supplying command lines. If
sns_TelnetCli() returns —1, the session will be closed. The example in nsdemo.c returns -1 when
it is called with the string “quit”.

The command interpreter in nsdemo.c or nstels.c could serve as a starting place for a full featured
command line interface for the system running smxNS.

15

Chapter 2

Web Server Test Overview

The Web server may be launched as part of nsdemo. The following configuration items may be

useful.

TEST_WEB_SERVER

Set to 1 to enable the Web server.

LOCALIP

The Web server will be accessible at this address.

NUM_WEBS_TASKS

This specifies how many tasks will be launched to fulfill individual
requests to retrieve a resource. Setting this to O will fulfill a request in
the context of the main Web server task.

When the Web server is running correctly, you should be able to enter the IP address of the system
running smxNS as the URL in a web browser, and a default web page should be displayed. More
information on the Web server is presented in Chapter 10.

16

Beginning Your Application

3. Beginning Your Application

Developing a Simple Application

Before developing your full application, it is instructive to develop a small simple first application.
Many of the problems encountered during development are eliminated by first working through the
test programs and creating a simple application. This section describes the rudimentary design of an
application consisting of a server program and a client program. The server will wait for the client to
establish a connection, then will wait for the client to send a request for data. Once the client has
established the connection to the server, it will send a request for some number of bytes of data. The
server then begins sending a buffer of data for a predefined number of times, while the client reads the
data, checks the data’s integrity, and sends a confirmation message.

The code presented in this section is intended to illustrate SmxNS’s Dynamic Protocol Interface (DPI)
as simply as possible; therefore, some of the code might seem inefficient. Refer to Chapter 5 in this
manual for more information on the DPI. If the application requires BSD sockets, also consult this
manual for information about smxNS’s BSD interface.

NOTE: The choice between TCP and UDP must be thought through properly. A common
misconception is that data transferred via TCP arrives in packets. Data transferred by
TCP should be thought of as a stream. If an application calls the write function three
times, each time writing 20 bytes of TCP data, the local stack may combine this
information into a single TCP segment with a 60-byte data payload. The remote side
read will then receive one 60-byte data chunk. The application-layer protocol is
responsible for parsing the data into useful information.

The first question to answer about a first application is “What is the data to be exchanged?” Most of
smxNS’s test programs send a buffer of sequential numbers that can be easily checked by the remote
host.

If the numbers in the received buffer do not match up, an error is generated. This type of data is
probably the easiest to generate and check quickly. An application can construct such a buffer of data
with this code:

#define DATA_SIZE 100 /* Number of bytes in buffer */
u16- count; /* Index counter */
u8 Junk[DATA_ SIZE] /* Buffer */

for(count=0;count<DATA_SIZE;count)
jJunk[count] = count%256; /* Number is 0 -> 255 */

17

Chapter 3

18

Once the data has been received, the buffer can be checked by a similar section of code:

/*
** Data received and stored in junk[]
*
/
for(count=0;count<DATA_SIZE;count){
it (Junk[count] != count%256)
DEBUG_MSG2_PARO(* BAD DATA “);
¥

The next question that needs to be addressed is “What roles do the server and client play?” Do they
exchange data? Does one side control the other? What protocols should be used in the exchange?
The server’s role in the application outlined above is very basic. It will control the transfer of a buffer
as outlined above, to the client via a TCP connection. The client’s role is to receive the buffer from
the server, then check the data’s integrity. This type of transfer could be used to send control
information from a server to a factory floor or to a remote sensing station.

Once the crucial design questions have been answered, the server and client need to be defined. Since
both the server and client will be running an image built from the smxNS source code, some small
differences need to be established so that one system will act as the server and the other as the client.

The server will be running the server application that listens for a network connection and the client
will be running the client application that establishes the connection and makes requests of the server.
This can be accomplished by using files specific to these network applications when building the top
level project. These files will also establish IP addresses and port numbers for the server and client.
In this example, one application file is called nsserver.c and the other is nsclient.c.

Since the application is going to be using TCP, port numbers must be assigned to both sides of the
connection. Port numbers must be consistent between the server and client. Because the server is
going to perform a passive open, it will listen on its local port for incoming messages from any remote
site’s port. The client side must receive and send to the same server port. The following section of
code defines the server- and client-specific information:

#define CLIENT_IP “10.1.1.2” /* Client IP address */
#define SERVER_IP “10.1.1.3” /* Server IP address */
#define CLIENT_MAC “00:01:02:03:04:05" /* Client hardware addr */
#define SERVER_MAC “00:01:02:03:04:06" /* Server hardware addr */
#define LOCALMASK “255.255.255.0” /* Set subnet mask here */

#define SERVER_PORT 1500 /* Server port number */
#define DATA_SIZE 200 /* Data buffer size in bytes */
#define ITERATIONS 10 /* Number of passes */

Beginning Your Application

This information must be included in both the server and client programs. For the outlined sample
application, this information is stored in file nscs.h. A listing of nscs.h is included at the end of this
section. Port numbers below 1024 have conventions regarding their use, so for general applications
select port numbers greater than 1024.

The server and client programs will be very similar. There will be two differences between the two
programs: First, the client will have a complimentary set of Nread() and Nwrite() functions to that of
the server. Second, the client will check the integrity of the incoming data. Other than these two
differences, the overall design considerations are the same. The design of the server will be presented
first, then the client design will be shown but without the detailed explanations.

The server program will have the name nsserver.c and the client, nsclient.c. Both these files must
reside in the demo directory. Any program using SmxNS requires four main features:

e Include files
e Initialization
» The establishment of a connection

e Termination

Include Files

One smxNS header file must be included at the top of nsserver.c. The file is:

#include “smxns.h” /* Prototypes and definitions */
/*

** Include application-specific information

*/

#include “nscs.h”

The file smxns.h in turn #includes the files nscfg.h, net.h, mtmacro.h, support.h, and socket.h. The
file nscfg.h contains smxNS’s configuration, such as the number of physical connections, buffers, and
options. The file net.h contains the function prototype information and type definitions. The file
mtmacro.h contains definitions associated with the multitasking environment. The file support.h
contains prototypes of internal support functions. Finally, the file socket.h specifies the BSD sockets
API. If the application requires any application-specific information stored in a header file, that file
should also be included.

Initializing SmxNS

Two functions are required to initialize smxNS. The first, Ninit(), will zero all data structures, move
the netdata|] table from ROM to RAM, and initialize the stack. This is called by SMX module
initialization and doesn’t need to be included in the network application. The second initialization
function, Portinit(), initializes a network interface driver and prepares it for sending and receiving
network frames.

19

Chapter 3

In smxNS, the call to Ninit() is integrated with the rest of the system start up. The calling sequence is
as follows.

ainit() [implemented in main.c]
Calls smx_modules_init() [implemented in smxmods.c]
Calls smxns_init() [implemented in smxmods.c]

and smxns_init() calls Ninit(). If there is a fatal error in networking initialization, system start up will
fail. Otherwise, ainit() continues to launch applications.

ainit() [implemented in main.c]
Calls appl_init() [implemented in app.c]
Calls nsdemo_init() [implemented in nsdemo.c]
and nsdemo_init() launches the test program tasks.

When shutting down, a similar process occurs. Here the chain is exitx_main() calls
smx_modules_exit() calls smxns_exit() calls Nterm().

From the perspective of the application developer, the network application code can be considered to
start with a function modeled on nsdemo_init(), which typically launches one or more tasks that create
and use network sockets.

Let’s say that the server task is named server_task_main(). Here is some sample code that shows
typical start up of a network application task.

void server_task_main(uint_dummy){
int error_code;

error_code = Portinit(“enet”, “7);
if(error_code < 0) return;

Function Ninit() does not take any parameters. Function Portinit() takes two parameters defining the
physical connection to be initialized and any special parameters for the initialization.

Establishing a Connection

Once the initialization is complete, the server can open a connection via the Nopen() function. Since
the server is going to be doing a passive open, it will remain in the Nopen() function until the client
establishes a connection. If the connection was successfully established, Nopen() will return a
connection number; otherwise, it will return a negative number indicating an error. The connection
number is used by the Nread() and Nwrite() functions to indicate on which connection the operation
is to be performed.

The following code will create a passive open in the server:

/*

20

Beginning Your Application

** Perform a passive open on port SERVER_PORT
*/

conno = Nopen(“*”, "TCP/IP”, SERVER_PORT, 0, 0);
if(conno < 0) return;

Function Nopen() takes five parameters:

Parameter Description

first Specifies the name of the remote host. * indicates the server should accept a connection
from any host. To do an active open to a client, the “*” could be replaced with a string
containing the IP address of the client.

second Tells smxNS what protocol will be used in the connection. Other valid options are
“UDP/IP” or “ICMP/IP”.

third Tells smxNS which port the local host will be using.

fourth Indicates which port the remote site will be using. Since the server is doing a passive

open, the fourth parameter is zero to indicate the server should accept a connection from
any port at a remote host.

fifth A flag that can instruct smxNS to do a non-blocking open if set to S_NOWA.

If Nopen() returns with a connection number, the client has established a connection. Now the server
will wait for the client’s request, then begin transferring the data through the established connection
by using the Nwrite() function to send the data. An Nread() function receives confirmation from the
client if the data was intact. Both functions return the number of bytes written or read if successful;
otherwise, they return a negative error number. To write the buffer of sequenced data and check for
the client response, add this code to nsserver.c:

/* Call to Nopen() returns conno here */

/* Build junk[] data here */

-
** Loop through data transfer. [ITERATIONS
** defined previously in code.

*/

for(i = 0; I<ITERATIONS;i++){
/*
** Wait for request for number of bytes to send
*/

error_code = Nread(conno, data_size, sizeof(data_size);
if(error_code < 0) return;

/*

21

Chapter 3

** Convert data req buffer to integer data requested here
*/

/0

** Write data

*/

error_code = Nwrite(conno, junk, data request);
if(error_code < 0) return;

/*

** Read client response

*/

error_code = Nread(conno, status, sizeof(status));
if(error_code < 0) return;

Both the Nwrite() and Nread() functions take three parameters. The first is the connection number,

which specifies the connection that will be used for the transfer. In the example above, the connection

number, CONNO, was returned by the Nopen() performed earlier. The second parameter for Nwrite()
is the buffer containing the data to send, and for Nread() the buffer is the storage place to receive the
data. The final variable is the maximum length of the buffer for Nread() and the data length to write
for Nwrite(). The length is specified in bytes.

Terminating SmxNS

22

After the data exchange is complete, both sides of the application are ready to terminate SmxNS.
Each function in the termination sequence is a reciprocal function to those called to establish a
connection. Therefore, the first thing to do is close the connection by calling Nclose(). Finally,
smxNS is terminated by calling Nterm(), which actually calls the Portterm() function to shut down
the physical connections. It is common for a system to run its networking functions at all times, so
the call to Nterm() may be omitted. Add the following code to nsserver.c:

/*
** Terminate smxNS
*/
Nclose(conno); /* close the connection */
return;
} /* End of main */

Function Nclose() takes a single parameter, the connection number, conno, returned by Nopen().
For every open connection, a call to Nclose() is required. Function Portterm() also takes a single
parameter, the physical connection that needs to be shut down. In the defined application, Portterm()
could take the parameter “enet” since the local host has a single physical connection defined in the
netdata[] table. The parameter “*” indicates all connections should be shut down. Finally,
Nterm() does not take any parameters.

Beginning Your Application

A source code listing of nsserver.c is included at the end of this section. The code listed is slightly
more complete than the code included above. It also contains comments describing what each section
of code is doing.

For nsclient.c, the overall structure in the program is the same, with two differences between the
smxNS calls themselves. The include files, defined constants, and the call to Ninit() are the same as
in nsserver.c. The first difference is in the call to Nopen(). Program nsclient.c will do an active
open to the server and the TCP port on the server. The following code should be in nsclient.c:

conno=Nopen(SERVER_IP, “TCP/IP”, Nportno(), SERVER_PORT, 0);

When the system running nsclient calls this Nopen(), it will begin to actively establish the connection
to the server. In this call to Nopen(), the client does not need a well-defined local port number, so a
call to Nportno() is used. Function Nportno() returns a random port number greater than 1024.

The second difference is in the calls to Nwrite() and Nread(). Since the client will be doing the
complimentary operations of the server, its data collection loop will be:

7~

oop throu ata transfer

** Loop th gh d T

*/

for(i = 0; I<ITERATIONS;i++){
/*
** Generate random number between 1 and DATA_SIZE
** then convert to a buffer “char data_req[2].”
** Send request to server
*/
error_code = Nwrite(conno, data_req, sizeof(data_req));
if(error_code < 0) return (error_code);
/*
** Read the data from the server
*/
error_code = Nread(conno, junk, sizeof(Junk));
if(error_code <= 0) return (error_code);
/*
** This is where the data’s integrity would
** be checked.
*/
s
** Write out status
*/
error_code = Nwrite(conno, “All Done”, 8);
if(error_code < 0) return (error_code);
}

23

Chapter 3

One can see that these operations are the compliments of the server side. Finally, the termination is
the same as in nsserver.c.

A source code listing of nsclient.c, with comments, is included following the listing of nsserver.c.

Compiling Your Application

The IDE project files delivered with smxNS are designed to handle building an application without
major modifications. Make a copy of the smx Protosystem directory to work in and create your
application files there. In this example, make two copies of the Protosystem and create nsclient.c in
one and nsserver.c in the other. Add each to the project file in its directory, in place of nsdemo.c.

Run the make and check for compiler errors and warnings. Address any that crop up before running
either program. Once both programs are built, they are ready to run by doing the following:

1. Ensure that the server and client are connected via Ethernet.
2. Run the nsserver executable on the server.
3. Run the nsclient executable on the client.

The program server will print out a few messages, and then wait until the connection is made. Once
the client begins, trace messages should appear on both machines.

Code Listings

This section includes listings of nscs.h, nsserver.c, and nsclient.c.

Listing of nscs.h

/*
** Copyright 1997 U S Software Corp.

**

** nscs.h — Header file used by nsserver.c and nsclient.c
*/

/*

** Check to see if this has been included previously
*/

#ifndef _NSCS_H

#define _NSCS_H

/*

** Useful constants. These should be included in nsserver.c and nsclient.c.
*/

#define CLIENT_IP “10.1.1.2” /* Client IP address */

#define SERVER_IP “10.1.1.3” /* Server IP address */

#define CLIENT_MAC “00:01:02:03:04:05" /* Client hardware addr */
#define SERVER_MAC “00:01:02:03:04:06" /* Server hardware addr */
#define LOCALMASK “255.255.255.0” /* Set subnet mask here */

#define SERVER_PORT 1500 /* Server listens at this TCP port */
#define DATA_SIZE 200 /* Size of data buffer in bytes */
#define I1TERATIONS 10 /* Number of times to send data buffer*/
#endif /* NSCS_H */

24

Beginning Your Application

Listing of nsserver.c

*

nsserver.c Version 2.70

smxNS simple server test application. To be used
in conjunction with nsclient.c

New code and modifications:
Copyright (c) 2006-2011 Micro Digital Inc.
All rights reserved. www.sSmxXrtos.com

USNet sample code:
Copyright (c) 1997 United States Software Corporation

This software is confidential and proprietary to Micro Digital Inc.
It has been furnished under a license and may be used, copied, or
disclosed only in accordance with the terms of that license and with
the inclusion of this header. No title to nor ownership of this
software is hereby transferred.

Author: Richard Ames

Portable to any ANSI compliant C compiler.

O O ok b X R b X R X X ok Ok X X X X 2k XN

#ifdef SMXNS_DEMO

/*

** Include at least the following files for an application
** using the Dynamic Protocol Interface.

*/

#include “smxns.h”

/*

** Useful constants. This is where any application-specific
** information would be included.

*/

#include “nscs.h”

/*

** Server starts here.
*/

#define MAIN_STACK_SIZE 1200

#ifdef _ cplusplus
extern "C" {

#endif

void nsdemo_init(void);
void nsdemo_exit(void);
#ifdef _ cplusplus

}
#endif
static TCB_PTR server_task;

void server_task_main(uint dummy)

{
int error_code; /* Error codes returned by interface */
int conno; /* Connection to remote client */
uint count; /* Count index in junk[] */
uint pass; /* Number of times data sent to client */

25

http://www.smxrtos.com/

Chapter 3

26

uint data_request; /* Number of bytes client requested */

char junk[DATA_SI1ZE]; /* Sample junk data */

char data_size[2]; /* Buffer of number of bytes client wants */
char status[10]; /* Client status */

(void)dummy;

/*

** Attempt to initialize the physical connections on this
** host.

*/

DEBUG_MSG3_PARO("'Server attempting a Portinit(QQ\n");
Portcreate(‘““enet™);

Portconfig(“enet”, “IP”, SERVER_IP);
Portconfig(“enet”, “MASK”, LOCAL_MASK);
Portconfig(“enet”, “MAC”, SERVER_MAC);
Portconfig(“enet”, “LINK”, “Ethernet”);
Portconfig(“enet”, “DRIVER”, “ETHCTRL™);

error_code = Portinit(enet", “”);

if (error_code <0)

DEBUG_MSG1_PAR1(
"Failed to initialize ports due to code %d\n'", error_code);
Nterm(); /* Terminate smxNS */
return;
3
/*
** Build the data buffer. The buffer is just numbers
** from 0 to 255.
*/
for(count=0;count<DATA_SIZE;count++)
Junk[count]=count%256;
/*
** QOpen a server connection. The server will enter the
** | ISTEN state and wait for the client to establish the
** connection. Nopen() returns the connection number.
** I¥ conno<0 an error occurred.
*/
DEBUG_MSG3_PAR1("'Server doing an Nopen() on %d\n',SERVER_PORT);
conno = Nopen(**", "TCP/IP", SERVER_PORT, 0, 0);
if (conno <0)

DEBUG_MSG1_PAR1("Failed to open connection due to code %d\n',conno);
Nterm(); /* Terminate smxNS */
return;
b
/*
** Connection has been established. Begin writing buffer
** the number of times specified by ITERATIONS.
*/
DEBUG_MSG3_PAR1("'Server writing data to client %d times\n', ITERATIONS);
for(pass=0;pass<ITERATIONS;pass++)

/*

** Read the client’s request for the number of bytes to send.
*/

data_request = 0;

error_code = Nread(conno, data_size, sizeof(data_size));

if(error_code <= 0)

DEBUG_MSG1_PAR1("Failed on data request due to code %d\n",
error_code);

Nclose(conno);

Nterm(Q);

Beginning Your Application

return;
¥ _
data_request = (OxffO0 & (data_size[0]<<8)) | /* convert to number */
(OXO0ff & data_size[1]):;
DEBUG_MSG3_PAR1("'Received request for %u\n', data_request);
/*
** Write out the junk data to connection conno.
*/
error_code = Nwrite(conno, junk, data_request);
if(error_code < 0)

{
DEBUG_MSG1_PAR1("'Failed on writing data due to code %d\n",
error_code);
Nclose(conno);
Nterm();
return;
3
/*

** Read status from client to see if it has finished

** reading. In this test we don’t care what the client
** wrote as long as the reading of the data was OK.

** The client will check the integrity of the data.

** |f the data was received OK, then the client will send
** a small packet. Therefore we do not check status.

*/

error_code = Nread(conno, status, sizeof(status));

if(error_code < 0)

{
DEBUG_MSG1_PAR1("Failed on reading data due to code %d\n",error_code);
Nclose(conno);
Nterm(Q);
return;
}
/*
** Got this far? If so, we had a successful pass.
*/

DEBUG_MSG3_PARL1(" Pass %d complete\n", pass+1l);

DEBUG_MSG3_PARO("'Server program completed successfully\n™);
/* Close down the connection */

Nclose(conno);

return;

/
* DEMO INITIALIZATION / CLEANUP

void nsdemo_init(void)

DEBUG_MSG3_PARO(''Server Start\n');

server_task = smx_TaskCreate(server_task_main, PRI_NORM, MAIN_STACK_ SIZE, O,

“'server_task');

void nsdemo_exit(void)

{
}

#endif /* SMXNS_DEMO */

27

Chapter 3

Li

*

O O ok b X R b X R X X ok Ok X X X X 2k XN

sting of nsclient.c

nsclient.c Version 2.70

smxNS simple client test application. To be used in conjunction with
nsserver.c.

New code and modifications:
Copyright (c) 2006-2011 Micro Digital Inc.
All rights reserved. www.sSmxXrtos.com

USNet sample code:
Copyright (c) 1997 United States Software Corporation

This software is confidential and proprietary to Micro Digital Inc.
It has been furnished under a license and may be used, copied, or
disclosed only in accordance with the terms of that license and with
the inclusion of this header. No title to nor ownership of this
software is hereby transferred.

Author: Richard Ames

Portable to any ANSI compliant C compiler.

#i

/*

fdef SMXNS_DEMO

** Include at least the following files for an application
** using the Dynamic Protocol Interface.

*/
#i

/*

nclude "smxns.h"'

** Useful constants. This is where the application specific
** information would be included.

*/

#include "nscs.h"

/*

** Client starts here.

*/

#define MAIN_STACK_SIZE 1200
#ifdef _ cplusplus

extern "C" {

#endif

void nsdemo_init(void);

void nsdemo_exit(void);

#i
3

fdef __ cplusplus

#endif

static TCB_PTR client_task;

28

http://www.smxrtos.com/

Beginning Your Application

void client_task main(uint dummy)

{

int error_code; /* Error codes from function calls */
int conno; /* Physical connection number */

uint count; /* Count index in junk[] buffer */
uint pass; /* Number of times server sent data */
uint client_port; /* Client-side port number */

uint data_request; /* Number of bytes requested by client */
int data_read; /* Number of bytes read by client */
char junk[DATA_SI1ZE]; /* junk buffer */

char data_size[2]; /* Request sent to server */
(void)dummy;

/*

** Attempt to initialize the physical connections on
** this host.

*/

DEBUG_MSG3_PARO(""Client attempting a Portinit(QQ\n");
Portcreate(““enet™);

Portconfig(“enet”, “IP”, CLIENT_IP);
Portconfig(“enet”, “MASK”, LOCAL_MASK);
Portconfig(“enet”, “MAC”, CLIENT_MAC);
Portconfig(“enet”, “LINK”, “Ethernet”);
Portconfig(“enet”, “DRIVER”, “ETHCTRL”);

error_code = Portinit("enet"”, “7);

if (error_code <0)

DEBUG_MSG1_PAR1(
"Failed to initialize ports due to code %d\n",error_code);
3
/*
** QOpen a client connection. The client will establish
** the connection because the server is in the LISTEN
** state. Nopen() returns the connection number.
** I¥ conno<0 an error occurred.
*/
client_port = Nportno();
DEBUG_MSG3_PAR2("'Calling Nopen() local port %d remote port %d\n",
client_port, SERVER _PORT);
conno = Nopen(SERVER_IP, "TCP/IP", client_port, SERVER_PORT, 0);
if (conno <0)

DEBUG_MSG1_PAR1(" Failed to open connection due to code %d\n', conno);
return;

3

/*

** Connection has been established. Begin writing buffer

** the number of times specified by ITERATIONS.

*/

DEBUG_MSG3_PAR1("'Client reading data from server %d times\n",ITERATIONS);

for(pass=0;pass<ITERATIONS;pass++)

/*

** Zero out the buffer to ensure we do not check the

** previously sent data.

*/

memset(Junk, O, DATA_SIZE);

/*

** Generate a request for data. Number of bytes range from

** 1 to DATA_SIZE. Then send data request to the server.

*/

data_request = TimeMSQW®DATA_SIZE + 1; /* TimeMS returns ms count */

29

Chapter 3

data_size[0] = data_request>>8; /* Store number in buffer */
data_size[1l] = OxOOff & data_request; /* Finish storing number */
DEBUG_MSG3_PAR1("'Sending request for %u bytes\n",data_request);
error_code = Nwrite(conno, data_size, sizeof(data_size));

if(error_code < 0)

{
DEBUG_MSG1_PAR1(
"Failed on send data request due to code %d\n",error_code);
Nclose(conno);
return;
¥
/*

** Read the requested number of bytes of junk data
** from connection conno. DATA_SIZE the maximum

** puffer size. Nread() will return the number of
** actual bytes read in error_code.

*/

data_read = Nread(conno, junk, DATA_SIZE);

if(data_read < 0)

{
DEBUG_MSG1_PAR1("'Failed on reading data due to code %d\n",error_code);
Nclose(conno);
return;

3

/*

** Check the integrity of the data. The buffer

** received is supposed to contain numbers from O

** to 255 in order. This section reads through junk[]
** and checks the values against expected values.

*/

for(count=0; count<data_read; count++)

{
if(junk[count] !'= count%256)

DEBUG_MSG1_PARO(''Bad Data Received:\n");
DEBUG_MSG1_PAR1(" Byte number %d ',count);
DEBUG_MSG1_PARLI("is %d ", junk[count]);
DEBUG_MSG1_PAR1("'but should be %d\n", count%0x256);
Nclose(conno);

return;

3

/*

** Send the status to the server to indicate that the

** client successfully read the data.

*/

DEBUG_MSG3_PAR1(" Data was intact. Read %u bytes\n',data_read);
error_code = Nwrite(conno, "All Done", 8);

if(error_code < 0)

DEBUG_MSG1_PAR1("'Failed on writing data due to code %d\n",error_code);
Nclose(conno);
return;

3

/*

** Got this far? ITf so, we had a successful pass.

*/

DEBUG_MSG3_PAR1(" Pass %d complete\n",pass+1l);

}
DEBUG_MSG3_PARO("'Client program completed successfully\n');

Nclose(conno); /* Close the connection */
return;

30

Beginning Your Application

/
* DEMO INITIALIZATION / CLEANUP

void nsdemo_init(void)

DEBUG_MSG3_PARO("Client Start\n");
client_task = sb_TaskCreate(client_task main, PRI_NORM, MAIN_STACK_SIZE, O
"client_task™);

void nsdemo_exit(void)

{
}

#endif /* SMXNS_DEMO */

Developing Your Application

Congratulations on your success with your integration efforts! Now that you are ready to start
developing your application, there are a few points to keep in mind:

e SetSNS_DEBUG_LEVEL = 3innscfg.h to help report error conditions in the stack. Do a
grep or search on DEBUG_MSG in the stack modules to locate error traps.

» The header file net.h contains error number translation.
» Use DEBUG_MSG() in your application as a trace tool.
e Use a LAN analyzer to capture data traffic during stack communications.

» Use an incremental development approach when adding new functionality to your application.
Unit test each feature before integrating new features.

When you have finished developing your application, set SNS_DEBUG_LEVEL = 0 in nscfg.h.
This will remove the once-useful debug code from your final application build.

31

Configuration

4. Configuration

Overview

This section provides an in-depth look at the configuration of smxNS.

The following table summarizes the modules that contain configuration parameters. The text below
the table briefly describes the purpose of each module.

Table 4-1: Configuration Files

Configuration File(s) Location
Build Settings nscfg.h <root>\XNS\include\nscfg.h
Local Parameters nscfg.h <root>\XNS\include\nscfg.h
Protocol Selection nscfg.h <root>\XNS\include\nscfg.h
SSL Support nscfg.h <root>\CFG\iararm.h

Notes for Table 4-1:

<root> = \SMX
<xxx.yyy> = Build directory, as standard for SMX. xxx is compiler; yyy is CPU, such as
IAR.ARM.

Build Setting configuration: nscfg.h specifies macros to enable smxNS add-ons. The project file
compiles all files.

Local parameter configuration: nscfg.h contains site-dependent definitions, such as read/write
buffer sizes, packet size, and other parameters.

Protocol selection: You can remove the protocols that you will not use in the header file nscfg.h.
SSL Support: CSL_USSL should be defined as 1 to enable HTTPS or SMTP over SSL.

33

Chapter 4

Configuring the Build Settings (nscfg.h)

nscfg.h contains various configuration settings. Add-on selection is done in this file too.

Configuring Local Parameters (nscfg.h)

34

smxNS is configured mainly by editing file nscfg.h in the include directory. Other files are also
configurable, but do not have the scope of nscfg.h. These are the macros in the order they appear in
the file. Following this summary is more detailed information for each macro, except the first three
which are simple.

SNS_PROTO_ selects which application and mid-level protocols to enable. The stack can
be configured to use IPv4, IPv6, or both (dual-stack) for the network layer.

SNS DRV _ selects which Ethernet driver to enable.

SNS_CRYPTO_ selects which cryptography functions to enable.

SNS_MIN_RAM selects options to minimize RAM usage.

SNS_HW_RX_ CHECKSUM enables inbound hardware checksum calculation.
SNS_HW_TX CHECKSUM enables outbound hardware checksum calculation.
SNS_CPU_CACHE_DATA locates Ethernet receive buffers in non-cacheable memory.
SNS_BUFFS_IN_SRAM locates network message buffers in SRAM.

NSDAR_SPACE amount of memory to reserve for web server.

NCONNS sets the maximum number of open logical connections in one host.
NBUFFS sets the number of message buffers.

MTU sets the Maxiumim Transmission Unit size.

USSBUFALIGN sets the alignment boundary for the message buffer array.

FRAGMENTATION sets whether the code to fragment and reassemble IP packets is included.
IPOPTIONS is the IP option support.

USS_IP_MC_LEVEL sets the level of support for IP multicast.

IP_MC_DFLT_NETNO sets the default interface for IP multicast.

KEEPALIVETIME is the BSD socket keepalive time.

RELAYING defines whether or not host is to relay.

chksum_ INASM tells smxNS that the checksum routine will be performed in assembly so the
routine in support.c will not be needed. Not all the CPUs supported by
smxNS have the checksum routine Nchksum() in assembly.

DHCP configures support for DHCP client functions.
DNS configures support for DNS client functions.
NDNSS Number of DNS servers.

Configuration

TCP_SACK enables selective ACK for TCP.
LOCALHOSTNAME obtains smxNS’s host name.
USERID identifies a user for a PPP session.
PASSWD authenticates a user for a PPP session.

USS_PROXYARP enables proxy ARP feature.

FILE_SUPPORT configures file system support.

SNS_DEBUG_LEVEL sets the amount of debug output.

NNETS sets the maximum number of network controllers in one host.

NNETISRS specifies the number of interrupt vectors used by the network interfaces.

SNS MIN RAM Macro

This option selects a “minimum RAM?” configuration. It influences the default settings of other
options and a few sections in the code. A default setting based on the processor type is already set up,
but can be changed depending on the system needs.

SNS HW RX CHECKSUM Macro

This option enables hardware checksum calculations for inbound traffic by the Ethernet controller.
Checksums in the IP, TCP and UDP headers are calculated. If the checksum is incorrect, the
incoming frame is dropped. SNMP statistics are not maintained for frames that are dropped this way.
The Ethernet controller and driver must support hardware checksums. Enabling this setting decreases
host processing for incoming frames and should increase network thoughput.

SNS_HW_TX_CHECKSUM Macro

This option enables hardware checksum calculations for outbound traffic by the Ethernet controller.
Checksums in the IP, TCP and UDP headers are calculated. The Ethernet controller and driver must
support hardware checksums. Enabling this setting decreases host processing for building outgoing
headers and should increase network throughput.

SNS CPU CACHE DATA Macro

This option is used to locate buffers that store incoming Ethernet frames in non-cached memory. This
is intended to avoid inconsistent memory values due to the cache controller not recognizing data
written via DMA by the Ethernet controller. In practice, turning on this setting has been useful even
in situations where special handling of the Ethernet frame buffers doesn’t appear to be necessary.

SNS BUFFS IN SRAM Macro

This setting specifies that Ethernet frame buffers should be located in SRAM. This may desirable for
reasons of cache consistency, or for performance reasons. This is typically enabled if
SNS_CPU_CACHE_DATA is enabled since internal SRAM is not cached.

35

Chapter 4

NCONNS Macro

This is the maximum number of open logical connections (“sockets”) in one host. When Nopen()
establishes a connection, it returns a value from O to (NCONNS-1). Enough memory is set aside to
handle these connections based on the value set. When estimating your need, consider that a TCP
close leaves the connection block reserved for about a minute.

When using the Sockets API, the diagnostic counter sns_TcpSynDrops will count the number of times
an incoming TCP connection attempt is dropped due to insufficient connections. This count can be
displayed using a source level debugger or by using the Telnet debug interface and entering the netstat
command. You can use this information to help tune the setting of NCONNS.

NBUFFS Macro

This is the number of working message buffers available to smxNS. When smxNS passes packets up
and down the stack, it uses these buffers. These buffers are also used for internal purposes. SmxNS
contains a large number of dynamic queues, so there is no exact formula for NBUFFS. Too few
buffers will hurt performance. The rule of thumb is five buffers per possible active connection.

MTU Macro

Maximum Transmission Unit size, in bytes, for the system. This sets the size of the largest
unfragmented IP datagram that can be sent or received. The MTU directly affects the size of the
frame buffers.

Ethernet supports an MTU of 1500 bytes, but it can be set to 576 bytes to conserve memory, SLIP
interfaces are typically set to 576 bytes and PPP interfaces are typically 1500 bytes.

The MTU for the system should be the largest of any of the desired network interface MTUs. When
the system is configured to forward between interfaces and at least one interface is Ethernet, the MTU
should be set to 1500 bytes, since hosts on the Ethernet network won't be aware that smxNS could be
running with a reduced MTU.

MAX_REASSEM Macro

Maximum size IP datagram that can be reassembled. If the system should be able to reassemble
datagrams larger than the MTU, change this value to the largest datagram size. All hosts are required
to reassemble a datagram of at least 576 bytes in size (per RFC 791).

Note that a typical setting for MAX_REASSEM is simply equal to the MTU, and the system normally
doesn’t need to reassemble fragmented datagrams. If the MAX_REASSEM size is adjusted to be
larger than the MTU, make sure the MTU is 1500 bytes.

USSBUFALIGN Macro

36

This value specifies the alignment boundary for the start of the array of message buffers, and also the
alignment for the data area within a message buffer. The setting will depend on the memory access
characteristics for the host processor and the network controller. Changes to this setting should be
carefully reviewed.

Configuration

FRAGMENTATION Macro

This value specifies whether or not to support fragmentation at the IP layer. Do not fragment packets
if you can avoid it. TCP and UDP can handle much larger data packets than Ethernet can, so the IP
layer will chop up or assemble large packets depending on this switch.

The largest IP datagram that can be reassembled depends on the size of the frame buffers, which is set
with the MAXBUF macro. The largest datagram size is MAXBUF — MESSH_SZ — LHDRSZ bytes,
which is typically MAXBUF — 46. Fragmented datagrams are not common, and typically are created
to accommodate link layers with unusually small frame sizes. Under most conditions, the default
setting for MAXBUF will be fine for use with fragmentation support enabled.

0 Do not do any type of fragmentation. Code is removed at compile time.
1 Reassemble incoming large data packets.
3 Reassemble incoming large data packets and fragment outgoing large packets.

IPOPTIONS Macro

This macro enables RFC IP option support, chiefly the source routing options. This is required in the
standard, but little used and perhaps obsolete. Uses up 90 bytes extra per connection block.

USS IP_MC LEVEL Macro

This specifies the level of support to include for IP multicasting. The IP multicast feature allows for
efficient communication with a group of hosts.

The value is taken from RFC 1112, which defines the following IP multicast conformance levels:

Level 0 no support
Level 1 support sending multicast IP datagrams
Level 2 support sending and receiving multicast IP datagrams

The default setting is 0, which is fine for any system that makes no use of multicast IP datagrams.

Note that in order to receive multicast datagrams through an Ethernet interface, the device driver for
the interface must also include support for receiving multicast frames.

IP MC DFLT NETNO Macro

This specifies the default network interface for IP multicasting. Multicast frames will be sent on this
interface unless the application changes the setting.

37

Chapter 4

KEEPALIVETIME Macro

This is the time to keep a BSD socket connection open, in milliseconds. Default is 2 hours but
inactive, as required by the standard. To use, uncomment the line and change the value as needed.

RELAYING Macro

This specifies whether smxNS should relay packets. The TCP/IP standard requires relaying to be off

by default.
1 Relay packets to another host
2 Do not relay

chksum INASM Macro

This specifies whether the checksum routine is written in assembly or not. Define it if checksum is
in assembly. Some platforms that smxNS supports do not have an assembly routine, such as
PowerPC, so this should be undefined.

DNS Macro

This value specifies if DNS support code should be included, and if it should be automatically called
when looking up the remote end of a network connection.

The following settings are defined:

undefined No DNS support code will be included.

1 DNS support code will be included, but not called automatically. It will be left to the
application to make a call to DNSresolve() when a domain name needs to be looked
up.

2 DNS support code will be included, and DNSresolve() will be called as part of

Nopen() or gethostbyname().

The default setting for DNS is undefined.

Note that a DNS server must be known to the system in order for DNSresolve() to succeed. This
information can be directly specified using the SetDNS() function, or it can be retrieved automatically
when the DHCPget() function is called.

NDNSS Macro

This is the number of DNS servers available for DNS look ups. The default value is 2. The DNS
server IP addresses may be specified by calling SetDNS() or retrieved automatically through
mechanisms such as DHCP.

38

Configuration

TCP SACK Macro

Define this macro to enable the selective ACK feature for TCP. The selective ACK feature can
improve throughput for TCP connections that suffer datagram loss for reasons other than congestion.

LOCALHOSTNAME Macro

smxNS must know its own host name, in several places such as PPP when negotiating a CHAP
session. The host name is specified with this macro.

For embedded targets, the supplied LOCALHOSTNAME() loads a fixed name. You will want to
keep the host names unique within a network, as you would on any network to avoid ambiguities.
There is no absolute rule against duplicate names; however, there may be consequences. For instance,
host XXX cannot open by name another host called XXX, or if a network had a host YY'Y and two
hosts XXX, YYY would communicate with the XXX listed first in the network configuration table
and the second XXX could not be reached in this manner. All XXX hosts, however, could still talk to
host YYY. Unless you have some special needs, it is best to keep your hostnames unique.

If you have a network with a large number of identical hosts, you may want to supply your own
LOCALHOSTNAME() macro. This could get the name from an EPROM or a similar source. It
could also read an identification off a network controller and match this to a table. This method of
course requires that all hosts have an identical hardware configuration.

USERID Macro & PASSWD Macro

These specify the user name smxNS should use when connecting to a remote site, or the name smxNS
expects when someone connects to SmxNS. These are used in PPP, and Dial-up connections. They
are used for establishing a PPP connection using PAP and/or CHAP.

USS_PROXYARP Macro

Define this macro in order to allow the system running smxNS to respond to ARP requests on behalf
of other hosts. This can be useful, for example, when the system running smxNS should perform
bridge-like functions, relaying network frames to hosts on one network while making it appear that
the hosts are part of another network.

FILE _SUPPORT Macro

This specifies file system support. Since smxNS may be paired with a number of file systems, with
differing APIs, this macro is used to specify the particular interface. The following file systems have
been defined.

0 Minimal RAMdisk. Supplied by smxNS.
1 SmxFS

2 SmxFFS

3 POSIX API

39

Chapter 4

SNS DEBUG LEVEL Macro

This specifies the amount of information that is generated for use in debugging. The value set
between 0 and 6. When set to 0, no information is generated, and when set to 6, all debug messages
are written. The meaning of the levels is as follows:

: Disables all debug output and debug statements are null macros
: Only output fatal error information

: Output additional warning information

: Output additional status information

: Output additional device change information

: Output additional data transfer information

o o0 A W N -, O

: Output interrupt information

NNETS Macro

This is the number of physical network connections associated with a host. If a host has two serial
connections and an Ethernet connection, set NNETS to at least three.

NNETISRS Macro

This is the number of ISRs associated with network interfaces. For processors with built in Ethernet
controllers, a value appropriate for the on board controllers is defined. For systems with external
network interfaces, the value will depend on the particular drivers and the number of interfaces.

Selecting Protocols

40

Any network protocols that you do not need can be configured out of the build by defining the
protocol as 0 in the local configuration file nscfg.h. The following is an example of how this is done:

#define SNS_PROTO _UDP O /* User Datagram Protocol */

Several of smxNS's high level protocols are only supported with TCP and not UDP. Therefore the
following smxNS high level protocols will not run under a UDP-only build of smxNS:

ftp*.c File Transfer Protocol

The following smxNS high level protocols do use UDP only and will therefore run:

dhcp*.c Dynamic Host Configuration Protocol
dns*.c Dynamic Name Service
tftp.c Trivial File Transfer Protocol

The stack can be configured to use IPv4, IPv6, or both (dual-stack) for the network layer. To
configure the network layer, set SNS_PROTO_IPV4, SNS_PROTO_IPV6 or both to 1.

Systems that have only a serial interface and use a protocol such as PPP or SLIP can undefine ARP
and Ethernet.

Configuration

Selecting Drivers

Drivers for the network interfaces can be configured out of the build similar to the way that this is
done for network protocols. Certain drivers will not compile for certain architectures. In order to
allow one project file containing a number of possible drivers to be used across a family of
processors, a facility is included that allows individual drivers to be turned on or off. If a driver is not
selected, a stub file will be generated when compiling that driver.

The significant point here is to make sure that the driver for the network interface used in your system
is enabled. If it is not, you should receive a link error when you build the final project. Also, if an
unneeded driver is causing compiler errors when building the network code, the driver can easily be
disabled using this facility.

The list of drivers follows the list of protocols in the file nscfg.h. Here is an example showing the
selection of the CF5485 Fast Ethernet Controller, and not the CF5282 controller.

#define SNS_DRV_CF5282 0 /* ColdFire FEC used on most ColdFires */
#define SNS_DRV_CF5485 1 /* ColdFire FEC used on 5485/75 */

41

Dynamic Protocol Interface

5. Dynamic Protocol Interface

Overview

This chapter details the usage of sSmxNS’s Dynamic Protocol Interface. The Dynamic Protocol
Interface provides a simple and efficient interface to the smxNS stack. It is an alternative to the BSD
Sockets Interface (Chapter 6).

The Dynamic Protocol Interface contains some functions that are used to initialize or shut down the
network system. These functions are Ninit(), Portcreate(), Portconfig(), Portinit(), Nterm() and
Portterm(). Systems that implement their network applications using the BSD Sockets API will still
use these DPI functions for system start up.

The Dynamic Protocol Interface is recommended for

Applications with individual read and write sizes smaller than the MTU. Note, for example, that
an MTU of 1500 bytes typically allows a buffer of 1460 bytes to be written or read at the
application level.

Simple code

Developers looking to minimize the learning curve

The BSD Sockets API is recommended for

Developers already familiar with this API

Ports from existing applications or new development that should share common network code
across systems

Applications where it is desirable to be able to pass an arbitrarily sized buffer in the read and
write calls. With the BSD Sockets API, the underlying layers will take care of dividing up the
transfers if needed.

The following issues are covered in this chapter:

Blocking versus non-blocking operation

Include files

Initialization and termination

Connections

Open, read, write, and close functions

Macros for setting and obtaining control information on connections
Multicast API

Error Handling

Examples

43

Chapter 5

Blocking Versus Non-Blocking Operation

There are two modes of operation that affect how your application deals with network events in a non-
multitasking system: Blocking and non-blocking.

Blocking is the default mode. This mode will halt processing while waiting for a network event to
complete or timeout. An example of this would be a wait for a return from a TCP open. Blocking
mode would halt processing until the open returned a connection number or timed out. This behavior
is usually unsatisfactory for most embedded systems.

Non-blocking allows processing to continue while polling the status of the network event. Non-
blocking is desirable in a non-multitasking system because it makes efficient use of CPU time while
waiting for network events to complete.

In a multitasking system, blocking is the recommended mode of operation because blocking does not
actually block processing as it does in a non-multitasking system.

Non-blocking issues are addressed in the appropriate sections in this chapter. An example of non-
blocking is also given at the end of this chapter.

Include Files

All programs that call smxNS routines need to contain the following include statement:

#include “smxns.h”

Initialization and Termination

Ninit() performs general initialization, such as initialization of tables and buffers. It must be the first
network function called and can’t be called again unless the function Nterm() has been called first.
Ninit() is called as part of smx_modules_init(), so the network application doesn’t call Ninit()
directly.

Portinit() and Portterm() are used to initialize and shut down the system’s network interfaces.

Detailed descriptions of these functions follow.

Ninit

Performs general network initialization.
int Ninit(void);

Ninit() takes no parameters.

See also: Nterm, Portinit, Portterm

Return Value
0 Success.

All error conditions are < 0

44

Dynamic Protocol Interface

NE_CFGERR Configuration error. Check log for details.

Example
main()

{

/* initialize all connections */
if (Ninit() < 0)
/* process error */

Nterm

Shuts down networking.
int Nterm(void);
Nterm() takes no parameters. Any open network interfaces will be shut down, so Portterm() does not
need to be called before Nterm(). Network support can be restarted by making a call to Ninit().

See also: Ninit, Portinit, Portterm

Return Value
0 Always returns 0.

Example
/* shut down all network connections */
Nterm();

Portcreate

Creates a network interface.
int Portcreate(const char *ifname);

ifname The name to be associated with the network interface that is created. The maximum
size of the interface name is set by the struct NET definition in support.h. The
current limit is 11 characters. If a longer string is specified, it will truncated to the
maximum length.

See also: Ninit(), Nterm(), Portconfig(), Portinit(), Portterm()

Return Value
>= 0 Interface created. Value is interface index.

All errors are <0

NE_CFGERR Configuration error. No room for creating an interface. Room for
more interfaces can be made by increasing the value of NNETS.

45

Chapter 5

Example

Portcreate(“enet”);

Portconfig

Configures a network interface.

int Portconfig(const char *name, const char *key, const char *value);

name The name of the interface.

key A string that identifies the parameter to be configured. The string is not case
sensitive, and only the first four characters of the string are evaluated.

value A string containing the value to be configured.

Portconfig() configures a network interface. When a network interface is created, its properties are
initialized to 0. Portconfig() can be called repeatedly to assign values as needed.

Summary of parameters:

IP IP address, expressed as a dotted decimal

MASK Mask for IP address, dotted decimal

IPV6 IPv6 address for static configuration

LINK Link layer

DRIV Driver name

MAC MAC address

FBIP Fallback IP address, dotted decimal

FBMK Mask for fallback IP address, dotted decimal
FBCO Fallback count, switch to fallback IP after FBCO attempts
P2 Alias IP, dotted decimal

MK2 Mask for alias IP, dotted decimal

NAT Enable Network Address Translation on interface
DIAL Enable serial dial out on interface

PEER IP address of peer in PPP link

PCP Priority Code Point for VLAN tag

VID VLAN ID for VLAN tag

46

Dynamic Protocol Interface

Details on parameters

IP: This is the primary IP address associated with the interface. If an address has already been
assigned to the interface, calling Portconfig() to set an IP address will also kick off address conflict
detection for the new address to qualify it for use.

Special values can be assigned as follows
*0.0.0.0”- Use DHCP to obtain an IP address

“169.254.x.x” - Use a link local IP address. This address range is also known as the Auto-IP address
range. The initial setting for this address will be tested for an address collision. If there is no
collision, then that address will be adopted. If there is a collision, then another randomly generated
address in the link local address range of 169.254.1.0 to 169.254.254.255 will be tried until a free
address is found. Note that other address conflicts can lead to the system adopting the fallback IP
address, so if you want to just use a local IP address, you should set both IP and FBIP to this range.

Any other address — The address will be used, provided there are no other systems on the local
network using this address.

IPV6: This configuration option can be used to assign a static IPv6 address to the system. The string
that provides the address should be in hexadecimal with groups of four digits separated by colons.
Leading zeros may be omitted, and a double colon can be used to represent one or more groups of
zeros, for example “2001:db8:85a3::8a2e:370:7334”.

Link layer: Should be one of "Ethernet”, "PPP" or "SLIP".

Driver name: The driver is identified based on a string in the NPTABLE structure for the driver.
Most wired Ethernet drivers can use "ETHCTRL".

Fallback IP: Fallback IP address to use if the primary IP address cannot be used. If the primary IP
address is set for DHCP, the fallback address is used if the attempt to obtain an address from a DHCP
server fails. If the primary IP address is a static address, the fallback address is used if a conflict is
detected when probing for a duplicate of the primary address. If the first attempt to establish the
fallback address is not successful, it will continue to be retried.

Fallback Count: Number of times to retry establishing the primary IP address before switching to the
fallback IP address.

Alias IP: If a non-zero Alias IP is specified, the network interface will accept traffic for this address as
well as the primary address.

NAT: Enable Network Address Translation on interface. The string that indicates the state should be
either “ENABLE” or “DISABLE”. There are more notes on NAT configuration in Chapter 7.

DIAL: Enable serial dial out on interface. The string that indicates the state should be either
“ENABLE” or “DISABLE”. There are notes on using a modem with serial communication in
Chapter 8.

PEER: IPv4 address of peer in PPP link. The IP address should be supplied in dotted decimal format.
This setting is optional for a PPP link.

PCP: The Priority Code Point specifies the frame priority for a VLAN tagged frame. The priority
level range is 0 to 7.

VID: The VLAN ID is a 12-bit value. When a VLAN ID is defined, outgoing frames will include a
VLAN tag. The string containing the VID should be in hexadecimal and of the form “0x123”. If a
VLAN tag is defined for an interface, the tag will be included in all frames sent on the interface.

See also: Ninit(), Nterm(), Portcreate(), Portinit(), Portterm()

47

Chapter 5

Return Value

0 Value stored.

All errors are < 0

NE_PARAM Run-time parameter error. The named interface was not found, key not
found, or invalid value. See log for details.
NE_CFGERR Configuration error. See log for details.
Examples

48

The following code is typical for a static IP address. It sets an address of 10.1.1.20.

Portcreate(“enet”);

Portconfig(“enet”, “IP”, “10.1.1.207");
Portconfig(“enet”, “MASK”, *255.255.255.07);
Portconfig(“enet”, “MAC”, “00:01:02:03:04:05");
Portconfig(“enet”, “LINK”, “Ethernet™);
Portconfig(“enet”, “DRIVER”, *“ETHCTRL™);

it (Portinit(“enet”, “7) < 0)

DEBUG_MSG1_PARO(*“smxNS Portinit for enet failed\n™);
}

Here’s a more involved example that starts with an address obtained via DHCP and then transitions to
a static IP address.

Note that it is possible to leave the interface active while changing the type of IP address that is used,
i.e. one doesn’t need to go through the Portterm(), Portinit() sequence again in order to change to a
new local IP address. All application level connections should be shut down before changing the
address though.

Portcreate(“enet™);

Portconfig(“enet”, “MAC”, “00:01:02:03:04:05");
Portconfig(“enet”, “LINK”, “Ethernet™);
Portconfig(“enet”, “DRIVER”, “ETHCTRL™);

if (Portinit(“enet”, “’) < 0)

DEBUG_MSG1_PARO(*“smxNS Portinit for enet failed\n™);
}

while (Portstate(““enet”) != NETIF_READY)
smx_DelayMsec(500) ;

/* System is now using address from DHCP server */
Portconfig(“enet”, “FBIP”, “10.1.1.1007");
Portconfig(“enet”, “FBMK”, “255.255.255.07);
DHCPrelease(GetPortlndex(“enet’™));

while (Portstate(*“enet”) != NETIF_READY)
smx_DelayMsec(500);

/* System is now using address 10.1.1.100 */

Dynamic Protocol Interface

The first time the interface is set up, no IP address is defined, so the default value 0.0.0.0 will be in
place and the DHCP client will be started to obtain an IP address. After the port is initialized, the
loop that calls Portstate() will continue looping until an address is established.

In order to transition to a static IP address, the new address and mask should be stored in the fallback
IP and fallback mask slots, and the DHCP leased address should be released. This way, the DHCP
server is informed that the leased address is no longer in use, and the DHCP client state machine will
pick up the fallback address after the leased address is turned in.

If the call to DHCPrelease() were immediately followed by a call to Portinit() to set the IP address
directly there is a chance that the DHCP client state machine would restart before the static IP address
was in place.

Portinit

Initializes a network interface.
int Portinit(const char *ifname, const char *initstring);
i fname The name associated with the network interface to be initialized.

initstring A string that can contain additional initialization information. Device drivers may
obtain information from this string.

Portinit() initializes a network interface. The initialization routine will prepare the device driver to
transmit and receive network frames, and will install and enable the interrupt service routine for the
network device driver. Note that Ethernet interfaces with 10/100 PHYs may take around 6 seconds to
negotiate link parameters.

Although the call to Portinit() may immediately return successfully, there may be a delay before
frames can be sent or received. An attempt to establish an active connection will fail if the network
interface has not come up yet. The nsdemo.c file contains code that will wait until at least one
network interface is up. This code appears in the example below.

See also: Ninit(), Nterm(), Portterm()

Return Value
0 Initialization successful.

All errors are <0

NE_PARAM Parameter error. ifname not found, interface already initialized, error in
initialization string or hardware error.

NE_CFGERR Configuration error. Link or driver layer not defined, insufficient
resources configured.

NE_HWERR Hardware error. Hardware behavior was not as expected.

NE_NOBUFS Not enough memory resources to initialize.

Additional details on error conditions are available in the log.

Example

Portcreate(“enet”);

49

Chapter 5

Portconfig(“enet”, “IP”, “10.1.1.207);
Portconfig(“enet”, “MASK”, *255.255.255.07);
Portconfig(“enet”, “MAC”, "00:01:02:03:04:05");
Portconfig(“enet”, “LINK”, “Ethernet™);
Portconfig(“enet”, “DRIVER”, “ETHCTRL™);

if (Portinit(“enet”, “7) < 0)

DEBUG_MSG1_PARO(**smxNS Portinit for enet failed\n™);

}
while (Portstate(*'") != NETIF_READY)
smx_DelayMsec(500) ;

Portstate

Checks the state of one or more network interfaces.
int Portstate(const char *name);

name If “*”, then all network interfaces are checked; otherwise, this should be a network
interface name specified in a call to Portcreate().

Checks the state of a network interface. This is useful for determining when an interface has reached
the NETIF_READY state so that one can be sure connections can be actively establilshed and
network traffic can be sent.

All interfaces can be checked at once, in which case the state of the network that is closest to or at
"NETIF_READY" is reported.

Return Value
NETIF_UNITIALIZED Network interface not initialized.
NETIF_NOLINK No link established for interface (often cable disconnected)
NETIF_NEGOTIATING Interface is linked but IP address not yet established
NETIF_READY Interface is ready to transmit

All errors are < 0

NE_PARAM Parameter error. name not found
See also: Ninit(), Nterm(), Portinit()
Examples

while (Portstate("*') != NETIF_READY)
smx_DelayMsec(500);

50

Dynamic Protocol Interface

Portterm

Shuts down one or more network interfaces.
int Portterm(const char *name);

name If “*”, then all network interfaces for this host will be shut down; otherwise, this
should be a network interface name specified in a call to Portcreate().

Shuts down the specified network interfaces. Note that all interfaces can be shut down at once, or
individually. The shut down routine will put the network controller into an idle state, and restore the
interrupt vector associated with the network device driver to its original state. Any network
connections associated with the interface are marked as fatal. The shutdown is reversible: Just make
another call to Portinit(). A call to Portterm() can be omitted prior to calling Nterm(), because
Nterm() automatically calls Portterm().

See also: Ninit(), Nterm(), Portinit()

Return Value
0 Always returns 0.

Examples
/* shut down all network connections */
Portterm(“*"");

/* shut down a specific network connection */
Portterm(“serial™);

Connections

Connections behave very much like files: You can open and close a connection, you can read data
from it, and write data to it. The main difference is that a connection has a user at each end, and a file
has only one user. The data you read is the data the other user wrote, and vice versa.

smxNS offers the user two basic kinds of connections: TCP and UDP. There are two primary
differences:

e TCP performs error correction and flow control, and UDP does not. You can read TCP like a
local disk file: You want to check for errors, but they should not occur and if they do you quit.
Doing this with UDP would be difficult, and writing applications using UDP is quite cumbersome.
It is best to leave UDP for pre-written applications, such as TFTP.

e UDP is a packet protocol, and TCP is a byte-stream protocol. With TCP, you can’t predict with
certainty how many bytes a read will return, or how many reads you’ll need for a given amount of
data.

Port numbers are used to match the two ends of the connection. If your local port number is my
remote port and vice versa, then we have a connection.

Normally one end performs an active open and the other a passive open. The system performing a
passive open is typically running a server application. This system will wait until it receives an
indication from a client application performing an active open.

51

Chapter 5

Open, Close, Read, and Write

52

These four routines (plus the startup and shutdown) are the only user-level network functions required
to write an application using smxNS. This might surprise you, especially if you have seen network
packages that go something like:

call TCPwrite
call Ipwrite
call DRIVERwrite

smxNS uses a table-driven protocol stack structure. Each protocol level has only one public symbol:
The name of the protocol table. smxNS performs all necessary calls through these protocol tables.
The user only has to call a general high-level function that is the same for all protocol configurations.

The open function specifies which protocols, and in which order, are to be used. There are no
restrictions on the protocol stack as such, but of course not all combinations make sense.

Beginning with smxNS v2.90, the error codes returned from Nopen(), Nclose(), Nread() and Nwrite()
no longer include overlapping POSIX error codes, i.e. EBADF, ECONNABORTED, etc. Instead,
smxNS specific error codes are used as appear in the table below.

smxNS v2.8 and earlier smxNS v2.9 and later
EBADF NE_BADF
ECONNABORTED NE_CONNABORTED
EHOSTUNREACH NE_HOSTUNREACH
ENETUNREACH NE_NETUNREACH
EMSGSIZE NE_MSGSIZE
EWOULDBLOCK NE_WOULDBLOCK
ENOBUFS NE_NOBUFS
ETIMEDOUT NE_TIMEDOUT

smxNS creates definitions for the POSIX error codes if they are not present using negative values
using code like the following from support..h.

#ifndef EHOSTUNREACH
#define EHOSTUNREACH -10
#endif

If the error code is defined, then the existing definition is retained. In some build environments, these
error codes have positive value, which is not compatible with the convention that DPI functions return
a negative value on error. For this reason, the new error code definitions were introduced in SmxNS
version 2.90.

Network applications that use the DPI functions may need to be adjusted if they include error
handling that uses the old error codes. In order to update the code, one should substitute the new error
code name. Here is an example:

Change:

rc = Nread(s, buf, buflen);
if (rc == ETIMEDOUT)
{

To:

rc = Nread(s, buf, buflen);
if (rc == NE_TIMEDOUT)
{

Dynamic Protocol Interface

53

Chapter 5

Nopen

Opens a connection.

54

int Nopen(const char *to, const char *protoc,

to

protoc

Ip

rp

flags

int Ip, int rp, int flags);

String specifying the name of the remote system. This can take one of the following
forms:

“host” Remote host, shortest route.

“host%ifname” Remote host, using named

interface.
ek Any host, used for passive
open or broadcast.
“*%ifname” Any host, using named
interface.
“nl.n2.n3.n4” IP address of remote system in IPv4 format.

“XIXIXIX:IX:IxX:ix:X” IP address of remote system in IPv6 format, as
specified in RFC 4291, section 2.2. “Text Repre-
sentation of Addresses”. It is a series of eight 16-bit
address segments separated by colons. Leading zeros
may be omitted. Sequences of one or more groups
of zeros may be abbreviated as ::, but only once.

String specifying the transport and network layer protocols, separated by a slash.
Typical values would be “TCP/ZIP”*, “UDP/ 1P’ or “1CMP/IP”. Ifa
listening connection specifies IP as the bottom half of the protocol, IPv4 and IPv6
clients are accepted. If IPv6 is specified, only IPv6 clients are accepted.

Local port number. For an active open, this is often an ephemeral port, and a
suitable random value can be obtained using the utility function Nportno(). For a
passive open, the well-known port number should be used.

Remote port number. For an active open, this should be the well-known port for the
service used in the connection. For a passive open, this value should be specified as
0, and any remote port will be accepted for the connection.

Normally 0, but for a non-blocking open, you can specify the flag S_NOWA, and
the call will return without blocking. In order to determine if the connection is
established, use the macro SOCKET_ISOPEN(). Also, for UDP connections, you
can use the value S_NOCON to cause the connection to behave in a connectionless
manner. When you specify S_NOCON, the connection will accept all UDP
messages directed to the local port, regardless of the originating IP address or UDP
port. This information is stored so that a call to Nread() followed by a call to
Nwrite() will respond to the source of the message that was just read.

Nopen() is used for both active and passive opens. The behavior is determined by the parameters
supplied to the function. Several examples follow to further illustrate the use of the function. A
passive open will wait indefinitely. An active open for TCP will return when the connection has been
made, but it times out in a couple of minutes if there is no answer.

Dynamic Protocol Interface

See also: Nclose(), Nread(), Nwrite()

Return Value

conno A return value >= 0 is a connection number. This is the handle for
further communication on the connection.

All errors are <0

NE_PARAM Run-time parameter error. Protocol not recognized.
NE_CFGERR Out of connection blocks.
NE_HOSTUNREACH No route to host
NE_CONNABORTED Remote host sent RST when opening connection.
NE_NOBUFS No frame buffers available when opening connection.
NE_TIMEDOUT Time out trying to create connection

Examples

/* An active open from hostl that causes TCP to send out open requests
to port 1000. The local port number is dynamically and randomly
assigned with the function Nportno(). */

/* hostl */
int conno, myport; /* connection and port number */
myport = Nportno();
conno = Nopen(“host2”, “TCP/IP”, myport, 1000, 0);
if (conno < 0)

/* process error */

/* A passive open at host2 that waits for and accepts calls from anyone
who asks for port number 1000. This type of open would be done by a
server */

/* host2 */
int conno; /* connection number */
conno = Nopen(*“*”, “TCP/IP”, 1000, 0, 0);
if (conno < 0)

/* process error */

/* A UDP open at hostl for hostA through port seriall would look like
this: */

/* hostl */
conno = Nopen(“hostA%seriall”, “UDP/IP”’, 1000, 1010, 0);

/* The specification of “seriall” indicates a specific network
interface on hostl, and is not referring to hostA’s network interfaces.
This form of open may be needed if there are two connections between
hostl and hostA. In this manner, “seriall” serves to identify which
local network interface is being used. */

/* To send and receive ICMP messages, you can use the form: */

/* hostl */
conno = Nopen(“host2”, “ICMP/IP”, 1000, 1010, 0);

/* This is a special situation. */

55

Chapter 5

/* Perform a non-blocking OPEN and do some processing while polling for
the OPEN connection. */
conno = Nopen(*“*”, “TCP/IP”, 1000, O, S_NOWA);

if (conno < 0)

/* handle error condition */
while ('SOCKET_ISOPEN(conno))

/* perform other processing */

Nclose

Closes a connection.
int Nclose(int conno);
conno The connection humber previously returned from a call to Nopen().

Nclose closes a connection, possibly waiting for a complete close handshake. In no case should the
application retry the close. In some cases (as with TCP), the connection block will actually be freed
after a minute or so, but this is automatic, and the application should not touch the connection after

the close.
See also: Nopen(), Nread(), Nwrite()
Return Value
0 Normal close.
-1 Error occurred in attempting to close the connections. Possible reasons

are an invalid connection number or a protocol problem.

Example
int error; /* error code */
int conno; /* connection number */

error = Nclose(conno); /* close the connection */

if (error < 0) /* process error */

56

Dynamic Protocol Interface

Nread

Reads a message from a connection.

int Nread(int conno, char *buff, int len);

conno Connection number.
buff Buffer to store message.
len Size of the buffer.

Reads a message from a connection into the specified buffer. For a blocking socket, the call will
block until information is available to be read, or until a timeout occurs. The timeout can be adjusted
using the SOCKET_RXTOUT() macro.

For TCP connections, Nread() may return up to the maximum amount of information that will fit in
one internal message buffer. This will be less than MAXBUF bytes. For UDP connections, the data
from the next UDP message will be returned.

See also: Nclose(), Nopen(), Nwrite()
Return Value
0 The remote system has closed the connection.
>0 Indicates the number of bytes read.
NE_BADF The connection number is not valid.
NE_WOULDBLOCK Non-blocking connection can’t proceed. Read would be retried.
NE_TIMEDOUT Timeout. Read can be retried.
NE_CONNABORTED Protocol problem. For example, the peer TCP sent a RST segment.

Normally the application should close the connection.

NE_MSGSIZE The message is too long for the supplied buffer. The incoming TCP
segment or UDP message is dropped and no data is transferred to buff,
but the application can continue to use the connection.

Example
/* user defined input buffer size */

#define MAX BUFFER_SIZE 80
int error; /* error code */
int conno; /* connection Number */
char buff[MAX_BUFFER_SIZE]; /* data input buffer */
/* read data into “buff” from connection number “conno” */
error = Nread(conno, buff, sizeof(buff));
if (error < 0)
/* process error */

The constant MAX_BUFFER_S1ZE could be replaced with the smxNS constant MTU defined in file
nscfg.h. A call to Nread() cannot return more than MTU bytes.

57

Chapter 5

Nwrite

Writes a message to a connection.

int Nwrite(int conno, const char *buff, int len);

conno Connection humber.
buff Buffer containing message.
len Number of bytes to write.

Nwrite() writes a message to a connection from the specified buffer. The largest buffer passed to
Nwrite() should not exceed the value given by the SOCKET_MAXDAT() macro. For TCP
connections, this will reflect the maximum segment size that is indicated by the remote TCP when the
connection is established. For UDP connections, this value will reflect the MTU imposed by the link
layer. These values will generally be at least 256 bytes, so it is reasonable to write out small buffers
directly.

By default, when Nwrite() writes a TCP segment, the PSH flag will not be set. This flag is a hint to
the receiving TCP that a usable set of information has been sent and that it should be processed by the
receiving network application. The PSH flag can be set by using the SOCKET_PUSH() macro prior
to calling Nwrite(). If the receiving TCP is slow to process incoming information, it may help to set

this flag.

See also: Nclose(), Nopen(), Nread()
Return Value

>= 0 Indicates the number of bytes written. For TCP connections, this
indicates that the buffer has been written, but not necessarily that the
remote end has received the information. Ensuring delivery is handled
in the background.

NE_BADF The connection number is not valid.

NE_TIMEDOUT Timeout. With TCP in blocking mode, this probably means the other
end did not send acknowledgments as expected. It could also mean an
extremely heavy system load and that a timeout occurred before the
acknowledgment could be received. The connection should be closed.
In non-blocking mode, the write should be retried.

NE_CONNABORTED Protocol problem. Normally the application should close the
connection.

NE_MSGSIZE The message is too large for the internal buffer.

NE_WINZERO The peer TCP window is not large enough to accept the data. This only
occurs in non-blocking mode. See the Non-Blocking Operations
Example section for workarounds.

Example

/* user defined output buffer size */

#define MAX BUFFER_SIZE 80

int error; /* error code */

int conno; /* connection Number */
char buff[MAX_BUFFER_SIZE]; /* data output buffer */

58

Dynamic Protocol Interface

/* write data stored in “buff” to connection number “conno” */
error = Nwrite(conno, buff, sizeof(buff));
it (error < 0)

/* process error */

/* dynamically sized write buffer */
/*

/*
/*

error code */
connection Number */
maximum write size */
char buff[MAXBUF]; /* data buffer */
/* write data stored in “buff” to connection number ‘“conno” */
conno = Nopen(“host”, “TCP/IP”, Nportno(), 1050, 0);
if (conno < 0)

/* process error */
maxwrite = SOCKET_MAXDAT(conno);
error = Nwrite(conno, buff, maxwrite);
it (error < 0)

/* process error */

int error;
int conno;
int maxwrite;

Dynamic Protocol Interface Macros

The following macros are useful for obtaining additional information or setting control information
for a connection, and are described in this section

SOCKET_NOBLOCK
SOCKET_BLOCK
SOCKET_ISOPEN
SOCKET_HASDATA
SOCKET_CANSEND
SOCKET_TESTFIN
SOCKET_ISFATAL
SOCKET_MAXDAT

SOCKET_RXTOUT
SOCKET_REMADDR
SOCKET_LOCADDR
SOCKET_REMPORT
SOCKET_LOCPORT
SOCKET_PUSH
SOCKET_FIN
SOCKET_FAMILY

SOCKET_HASMYADDRG

sets the connection for non-blocking operation.

sets the connection for blocking operation.

checks to see if a connection has entered the ESTABLISHED state.
checks to see if a message is available on a connection.

checks to see if a connection can accept data to be written.

checks to see if the remote end of the connection has closed.
checks for an unrecoverable error on the connection.

provides the maximum size of a buffer than can be written to a
connection.

sets the receive timeout for a connection.

provides the IP address of the remote end of a connection.
provides the IP address of the local end of a connection.
returns the remote port number for a connection

returns the local port number for a connection

sets the PSH flag on the next outgoing TCP segment.
sets the FIN flag on the next outgoing TCP segment.
returns the address family for a given connection.

checks if the IPv6 site local address has been allocated.

SOCKET_LOCSITEADDRE® returns the IPv6 site local address.

59

Chapter 5

SOCKET_REMADDRS6 returns the remote host’s IPv6 address.
SOCKET_LOCLINKADDREG returns the IPv6 link local address.

SOCKET_NOBLOCK

Sets the connection for non-blocking operation.
SOCKET_NOBLOCK(conno)
conno The connection for which non-blocking operation should be set.

When non-blocking operation is set, calls to network functions that normally would need to wait for
network activity in order to be completed will return the negative value ENOULDBLOCK when such
a condition is encountered.

SOCKET_BLOCK

Sets the connection for blocking operation.
SOCKET_BLOCK(conno)
conno The connection for which blocking operation should be set.

When blocking operation is set, calls to network functions run to completion, or return a timeout error
if an associated time limit is exceeded. Blocking operation is the default behavior for network
functions, and this call will only be needed to return a non-blocking connection to blocking operation.

SOCKET_ISOPEN

Checks to see if a connection has entered the ESTABLISHED state.
SOCKET_1SOPEN(conno)
conno The connection that should be checked for the ESTABLISHED state.

This macro will evaluate as O if the connection is not in the ESTABLISHED state, and 1 if the
connection is in the ESTABLISHED state. This macro is useful for connections that call Nopen()
with the S_NOWA flag, so that after requesting a connection, the connection can be checked to see if
it has been established.

SOCKET_HASDATA

Checks to see if a message is available on a connection.
SOCKET_HASDATA(conno)
conno The connection that should be checked for an available message.

This macro will evaluate as O if no information is available, or non-zero if data is available.

60

Dynamic Protocol Interface

SOCKET CANSEND

Checks to see if a connection can accept data to be written.
SOCKET_CANSEND(conno, len)
conno The connection that should be checked for room for writing.
len The amount of data to be written.

This macro will evaluate as O if the amount of data is more than can be written out immediately, or
non-zero if the data length specified can be written.

SOCKET_ISSENDING

Checks to see if all data that has been written by the application has been acknowledged by the peer TCP.
SOCKET_1SSENDING(conno)
conno The connection that should be checked for acknowledgment from the remote end.

This macro will evaluate as non-zero if outgoing data has not yet been acknowledged by the peer
TCP. The macro will evaluate as 0 if all outgoing data has been acknowledged, or if there has been
an unrecoverable error on the connection.

If the application calls SOCKET_ISSENDING() immediately after calling Nwrite(), it will typically
return true. Outgoing data is typically acknowledged within a couple hundred milliseconds.

This macro may be useful for tracking status of a transfer or in creating recovery mechanisms for
lengthy transfers. Note that even though the peer TCP may have acknowledged receiving a TCP
segment, this does not guarantee that the application running on the peer system has successfully read
the information. Closing the connection and checking for success is a more reliable mechanism for
verifying a complete transfer.

SOCKET_TESTFIN

Checks to see if the remote end of the connection has closed.
SOCKET_TESTFIN(conno)
conno The connection that should be checked for a close from the remote end.

This macro will evaluate as O if the remote end of the connection has not yet closed, or non-zero if the
remote system has closed.

SOCKET_ISFATAL

Checks for an unrecoverable error on a connection.
SOCKET_ISFATAL(conno)

conno The connection that should be checked for errors.

61

Chapter 5

This macro will evaluate as O if there are no unrecoverable errors on the connection, or non-zero if an
unrecoverable error has occurred. As an example, an unrecoverable error occurs when a peer TCP
sends a RST segment to the local end of the connection. The socket should still be closed when this
condition is detected.

SOCKET_MAXDAT

Provides the maximum size of a buffer than can be written to a connection.
SOCKET_MAXDAT (conno)
conno The connection for which the maximum buffer size should be determined

This macro will evaluate to the maximum number of bytes that can be accepted by the connection in a
call to Nwrite().

SOCKET_RXTOUT

Sets the receive timeout for a connection. The default timeout is set by TOUT_READ in net.h.

SOCKET_RXTOUT(conno, tout)

conno The connection for which the timeout is to be adjusted.
tout The new timeout, in milliseconds. For an infinite timeout, use the value
SB_TMO_INF.

SOCKET_REMADDR

Provides the IP address of the remote end of a connection.
SOCKET_REMADDR(conno)
conno The connection for which the remote IP address is to be returned.

The data type of the result is 1 1d.

SOCKET_LOCADDR

Provides the IP address of the local end of a connection.
SOCKET_LOCADDR(conno)
conno The connection for which the local IP address is to be returned.

The data type of the result is 1 §d. This macro is useful for systems that have more than one network
interface. The IP address returned will be that of the interface that is used for the connection.

62

Dynamic Protocol Interface

SOCKET_REMPORT

Provides the TCP or UDP port number of the remote end of a connection.
SOCKET_REMPORT(conno)
conno The connection for which the remote port is to be returned.

The data type of the result is unsigned short.

SOCKET_LOCPORT

Provides the TCP or UDP port number of the local end of a connection.
SOCKET_LOCPORT(conno)
conno The connection for which the local port is to be returned.

The data type of the result is unsigned short.

SOCKET PUSH

Sets the PSH flag on the next outgoing TCP segment.
SOCKET_PUSH(conno)
conno The connection for which the next outgoing segment should include the PSH flag.

The next TCP segment to be written following a call to this macro will have the PSH flag set in the
TCP header. This is useful for indicating to the TCP on the remote system that all internally buffered
segments up through this segment should be delivered to the application as soon as possible.

SOCKET FIN

Sets the FIN flag on the next outgoing TCP segment.
SOCKET_FIN(conno)
conno The connection for which the next outgoing segment should include the FIN flag.

The next TCP segment to be written following a call to this macro will have the FIN flag set in the
TCP header. This is useful for shutting down a connection at the same time that the last segment is
sent. Following the write, call Nclose() to finish closing the connection. Nclose() will not send a
F IN segment in this case.

SOCKET_FAMILY

Returns the address family for a given connection.
SOCKET_FAMILY (conno)

conno The connection for which to return the address family.

63

Chapter 5

For IPv6 connections, returns AF_INET6. For IPv4 connections, returns AF_INET.

SOCKET _HASMYADDRG6

Checks if the IPv6 site local address has been allocated.
SOCKET_HASMYADDR6(conno)
conno The connection for which the site local address should be checked.

This macro evaluates as 1 when the IPv6 site local address has been allocated. The macro evaluates
as 0 when the address has not be allocated.

SOCKET_LOCSITEADDRG6

Returns the IPv6 site local address.
SOCKET_LOCSITEADDR6(conno)
conno The connection for which the IPv6 site local address should be returned.

This macro evaluates to data type 16id. The macro SOCKET_HASMY ADDRG6(conno) can confirm if
the IPv6 site local address has been allocated.

SOCKET_REMADDRG

Returns the remote host’s IPv6 address.
SOCKET_REMADDR6(conno)
conno The connection for which the remote host’s IPv6 address should be returned.

This macro evaluates to data type 16id.

SOCKET_LOCLINKADDRG

Returns the IPv6 link local address.
SOCKET_LOCL INKADDR6(conno)
conno The connection for which the IPv6 link local address should be returned.

This macro evaluates to data type 16id.

64

Dynamic Protocol Interface

Multicast API (DPI)

In order to receive information associated with a multicast host group, join the multicast group using
the ussHostGroupJoin() function described here, specifying the IP address for the group, and the
interface that will be used. Once the group has been joined, datagrams on the local network directed
to the group will be accepted by the system.

If there is no longer a need to continue receiving datagrams directed to a certain group, the system can
stop accepting datagrams directed to the group by using the ussHostGroupLeave() function.

ussHostGroupJoin

Joins a multicast host group.
int ussHostGroupJoin(lid iid, int netno);
iid IP address for multicast host group.

Netnho Index for network interface.

The ussHostGroupJoin() function allows a system to receive multicast messages as part of a multicast
host group. The group is identified by the multicast IP address that is passed to the function.

The network interface is identified by an index. The first network interface for a system that occurs in
the netdata[] table is identified as 0, the next is 1, and so on. For systems with just one network
interface, this value should be 0.

See also: ussHostGroupLeave
Return Value

0 Success.

NE_PARAM Invalid group address or interface identifier.

ENOBUFS Insufficient resources to join another group.
Example

#define MCTESTIP "224.1.2.3"
rc = ussHostGroupJoin(inet_addr(MCTESTIP), 0);

ussHostGrouplLeave

Leaves a multicast host group.
int ussHostGroupLeave(lid iid, int netno);
iid IP address for multicast host group.
Netno Index for network interface.

The ussHostGroupLeave() function removes the system from a multicast host group that has
previously been joined.

65

Chapter 5

The network interface is identified by an index. The first network interface for a system that occurs in
the netdata[] table is identified as 0, the next is 1, and so on. For systems with just one network
interface, this value should be 0.

See also: ussHostGroupJoin

Return Value

0 Success.
NE_PARAM Invalid group address or interface identifier.
EBADF Multicast group not found.

Example

#define MCTESTIP "224.1.2.3"
rc = ussHostGroupLeave(inet_addr(MCTESTIP), 0);

Error Handling

When a DPI call returns ECONNABORTED, no further communication over the connection is
possible. If the connection was previously opened successfully, then the application must call
Nclose() on the connection. Otherwise memory and network data structures might still be assigned to
it.

Note that a connection can go from a good state to a failed state at any time. Consider the case where
the system at the remote end of a TCP connection unexpectedly goes offline shortly before a client
running on an smxNS system sends a query using Nwrite(). The call will likely return a positive
value equal to the number of bytes in the buffer being written. This may be confusing, but the
meaning of the return value is that sSmxNS has taken responsibility for delivery this number of bytes to
the remote system. It does not necessarily mean that these bytes have been delivered.

The TCP specification describes how a segment will be retransmitted if the remote system does not
send a timely acknowledgement. smxNS will perform this retransmission in the background. If these
attempts fail, the next time the application calls a function involving the connection, the function will
return ECONNABORTED.

The macro SOCKET _ISFATAL() can be used at any time to check for a failed connection.

Examples

The following text provides examples of:
e Broadcasting
* TCP File Transfer

* Non-Blocking Operations

66

Dynamic Protocol Interface

Broadcasting Examples

For broadcasting messages to all hosts on the network, use host name “*” in the active open, and
then, do an Nwrite(). For instance:

hostl:
conno = Nopen(*“*/enet”, “UDP/IP”, 1010, 1000, 0);

stat = Nwrite(conno, buf, len);

In this case, “enet” is the network name, and “*” represents all hosts on that network. The
receiving hosts’ open() would generally be a passive open.

host2:
conno = Nopen(**”, “UDP/IP”, 1000, O, 0);

stat = Nread(conno, buf, len);

The receiving hosts must be listening on the same port number that the broadcasting host is sending to
(e.g., 1000 in this case).

Broadcasting should only be used for data links that support it in hardware, such as Ethernet. It
should not be done at the TCP level.

If the broadcasting host connects to several networks, the open call must specify the network name.
Broadcasting is done to one network only.

TCP File Transfer Example

This example might be used to write a file to a remote host. Flow control and error checking are
handled by TCP.

/* Client */

int maxwrite; /* maximum write size */
char buf[MAXDAT]; /* data buffer */
conno = Nopen(“hostl”, “TCP/IP”, Nportno(), 1000, 0);
it (conno < 0)
/* process error */
maxwrite = SOCKET_MAXDAT(conno);
for (53D
{
len = fread(ifile, buf, maxwrite);
if (len <= 0)
break;
stat = Nwrite(conno, buf, maxwrite);
if (stat < 0)
/* process error */
}
stat = Nclose(conno);
if (stat < 0)
/* process error */

/* Server */

char buf[MAXDAT];
conno = Nopen(**”, “TCP/IP”, 1000, O, 0);

67

Chapter 5

if (conno < 0) /* process error */
for (53)
{
len = Nread(conno, buf, sizeof(buf));
if (len < 0) /* process error */
if (len == 0) break;
stat = fwrite(ofile, buf, len);
if (stat < 0) /* process error */
}
stat = Nclose(conno);
if (stat < 0) /* process error */

Non-Blocking Operations Examples

68

The following example shows how to read using non-blocking operations. Non-blocking writes will
complicate an application quite a bit. A heavy use (perhaps even any use) of non-blocking mode is
not recommended.

conno = Nopen(*“*”, “TCP/IP”, 1001, 0, S_NOWA);
if (conno < 0) /* ERROR */
while (YSOCKET_ISOPEN(conno))

/* perform other work */

SOCKET_NOBLOCK(conno) ;
for (53)
{
SNS_YIELDQ);
len = Nread(conno, buf, sizeof(buf));
if (len < 0)
it (len = EWOULDBLOCK)
break; /* error */
else
/* perform other work */
else if (len == 0)
break; /* other end closed */
else

{
}
}
stat = Nclose(conno);
if (stat < 0) /* ERROR */

/* process message */

The return code from Nwrite() will be EWINZERO if you are in non-blocking mode and the TCP
window is not large enough to take your packet.

So, if you are using non-blocking 1/0 and there is a possibility that the remote host's window may
close (this happens when the remote host does not read the received data), then you must use one of
the following workarounds:

1) Write less data. The remote window is stored in
connblo[conno] -window

Examine the window and resend using a packet size smaller than the remote window.

Dynamic Protocol Interface

2) Enable the TCP window probe. To do this, you must revert to blocking mode and rewrite the data.
The write will block while performing the window probe.

len = Nwrite(conno, buff, sizeof(buff))

it (len == EWINZERO) {
SOCKET_BLOCK(conno) ;
len = Nwrite(conno, buff, sizeof(buff));
/* check error, etc */

}

3) Close the connection.

4) Use SOCKET_CANSEND() before you write to evaluate whether the connection can send data.
This will let you avoid getting into the situation for which you need to test for EWINZERO, but will
not solve the problem that there is no probe in non-blocking mode.

69

BSD Socket Interface

6. BSD Socket Interface

About BSD Sockets

The BSD 4.3 sockets are the closest thing there is to a standard user interface to TCP/IP. However,
they can only be approximated on a non-UNIX system, because many UNIX functions interact with
sockets. The UNIX dependencies come in these forms:

The UNIX sockets are really an intertask communication system, not a networking interface.
They can be used to map to the various UNIX file systems, and they can mix files and sockets and
even other things in one operation.

The use of functions fentl(), select(), read(), write(), and close() for networking purposes will
easily cause conflicts. smxNS changes these names by appending “socket” to them.

The UNIX sockets have an interface to the UNIX signals, which again have an interface to just
about any UNIX function.

Some BSD socket features are implicitly not reentrant. These include function gethostbyname()
and all use of errno. This is of course more a multitasking question than a networking question.

The BSD use of TCP urgent data is in conflict with the TCP standard. The smxNS module tcp.c
contains a source-level variable to select either the standard or the BSD method. Best policy in all
cases is not to use the BSD out-of-bound data, or the TCP urgent data.

For somebody who already knows the BSD sockets interface, writing any new code using them makes
sense. (The Dynamic Protocol Interface needs quite a bit less space, but the difference in speed is not
significant.) To support these users, we have made the smxNS sockets as similar to 4.3 BSD sockets
as reasonably possible. These points may require special attention:

Symbolic error codes are not perfectly standardized across different UNIX systems. smxNS uses
the Solaris names.

The typical UNIX use of errno is not reentrant. If this becomes critical, use getsockopt() to get
the last error code.

The function gethostbyname() is not reentrant. Use gethostbyname_r() instead if this is critical.

You can’t mix files and sockets. For instance, you can’t use a selectsocket() to wait for either a
keyboard character or a network packet.

Avoid non-blocking mode if multitasking is used.

71

Chapter 6

Structures and Definitions

struct sockaddr {
unsigned short sa family;
char sa_data[14];

3

To get in the needed definitions, use:

#include “smxns.h”

Many of the BSD socket routines use a pointer to structure sockaddr, which specifies network
address information. The sockaddr structure is a generic structure that can be used with a number
of different communications protocols. smxNS only uses the Internet Protocol (IP), and therefore
only requires the use of the Internet structure sockaddr_in. Values are assigned to
sockaddr_in and passed into the socket routine via the sockaddr parameter. This requires a
typecast to sockaddr *. The discussion of the connect() function provides an example. Here are
the structure definitions:

/* generic socket address */
/* address family */
/* up to 14 bytes of address */

In practice, this is used almost as a void pointer. The true Internet address structure is:

struct in_addr {

/* Internet address */

unsigned long S addr;

¥

struct sockaddr_in { /* Internet socket address */
short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

BSD Socket Interface Functions

72

The smxNS BSD Socket Interface provides these function calls:

accept()
bind()
closesocket()
connect()
fentlsocket()
getaddrinfo()
getpeername()
getsockname()
getsockopt()
ioctlsocket()
listen()
readsocket()
recv()
recvfrom()

accepts a connection on a socket.

binds a name to a socket.

closes a socket.

initiates a connection on a socket.

controls socket flags.

returns the IP address that corresponds to a host name.
extracts the remote address information for a socket.
extracts the local address information for a socket.
gets options on sockets.

sets control parameters for a socket.

listens for connections.

receives a message from a socket ID.

receives a message.

receives a message from a connection.

recvmsg()
selectsocket()
send()
sendmsg()
sendto()
setsockopt()
shutdown()
socket()
writesocket()

BSD Socket Interface

establishes a connection and receives a message.
waits for activity on a set of sockets.

sends a message on an established connection.
sends a message that can be split between buffers.
establishes a connection and sends a message.

sets options on sockets (described with getsockopt).
shuts down part of a connection.

creates a socket.

sends a message to a socket.

The typical calling sequences for a connection-oriented client and server are shown below.

Server Client

|socket() |

accept() |

A 4
[«— | connect()

+——|writesocket()

readsocket()

writesocket(

readsocket()
closesocket()

readsocket()

closesocket(

)

Figure 6-1: Functions Used in a Connection-Oriented System

73

Chapter 6

For a connectionless protocol, the typical functions used by the server and client are shown in the next
figure.

Server Client

|socket() |

I|sendto() |

|sendto() || recvfrom()

|c|osesocket()

Figure 6-2: Functions Used in a Connectionless System

recvfrom()

Most functions return a value of -1 in case of an error. The error code is stored in €rrno, and can
also be retrieved using the getsockopt() function, as in the following example:

int errcode, errlen;

onnect(s, (struct sockaddr *)é&socka, sizeof(socka));

i
{
il = errno;
if (getsockopt(s, SOL_SOCKET, SO_ERROR,
&errcode, &errlen) >= 0)
il = errcode;
DEBUG_MSG2_PAR1(*“connect: error %d\n”, il);
/* additional error handling */
¥

Here the value of errno is saved before calling getsockopt(), in case this call fails and causes
errno to be overwritten. The getsockopt() function should be used when possible in multitasking
systems because errno is not reentrant.

If a call to socket() returns -1, there is no socket number to refer to when trying to retrieve the error
code. In this case, the error code must be retrieved from errno.

The gethostbyname() functions return a pointer to a host data structure. If these functions fail, then a
null pointer is returned.

74

BSD Socket Interface

accept

Accepts a connection on a socket.

int accept(int s, struct sockaddr *name, Int *namelen);

S Socket identifier.
name On return, this provides information about the remote end of the connection.
namelen On entry, this is a pointer to an integer containing the size of the name structure, and

on return this pointer points to the size of the returned structure. This size will not
change under smxNS.

The accept() call is used by a server application to perform a passive open for a socket. The socket
will remain in the LISTEN state until a client establishes a connection with the port offered by the
server. The return value from this function is an identifier for a newly created socket over which
communication with the remote client can occur. The original socket remains in the LISTEN state,
and can be used in a subsequent call to accept() to provide additional connections.

See also: socket, bind, listen

Return Value
-1 Error.

>=0 Socket identifier for the established connection.

Example
int sl, s2;
int socksz;
struct sockaddr_in socka;

socksz = sizeof(socka);
memset(&socka, 0, sizeof(socka));
socka.sin_family = AF_INET;
s2 = accept(sl, (struct sockaddr *)&socka,
&socksz);
if (s2 <0)
DEBUG_MSG2_PARO(*“Error in accept\n™);

75

Chapter 6

bind

Binds a name to a socket.

int bind(int s, struct sockaddr *name, int namelen);

S

name

namelen

Socket identifier.

Structure that identifies the remote end of the connection. The sin_family
member of the structure can be left as 0 to accept connections on any attached
network interface.

Size of name.

A server application uses the bind() function to specify the local Internet address and port number for
a connection. The port number is the port that the server will be listening on. A call to bind() can
also optionally be called by a client application before calling connect().

See also:

Return Value

-1
0

Example

76

int rc;
int s;

socket, listen, accept, closesocket

Error.

Success. The Internet address and port number have been associated with the local
end of the socket.

/* return code */
/* socket identifier */

struct sockaddr_in socka; /* local port, etc */

memset(&socka, 0, sizeof(socka));

socka.sin_family = AF_INET;

socka.sin_port = htons(1100);

rc = bind(s, (struct sockaddr *)&socka, sizeof(socka));

if (rc < 0)

DEBUG_MSG2_PARO(*“Error in bind\n”);

In this example, 1100 is the local port number to be used. A client performing a connect() to this
server would also use port number 1100.

BSD Socket Interface

closesocket

Closes a socket.
int closesocket(int s);
S Socket identifier.

The closesocket() function is used to close a socket. This function is the same as the regular BSD
Sockets close() function, but it has been renamed to avoid conflicts with the close() function that
operates on file descriptors.

There is a special situation that may need to be addressed when using non-blocking sockets.
Although calling selectsocket() on the write descriptor prior to calling send() will normally take care
of most error conditions, there is one case where this may fail. If a lot of data is sent using send() and
then closesocket() is called immediately also in non-blocking mode, a portion of data may remain
unsent. The easiest solution is to add an additional call to selectsocket() prior to calling closesocket().
See the example section.

See also: socket

Return Value

-1 Error.

0 Close was successful.
Example

void wait_for_write(int sockfd)

{

fd_set wset;
struct timeval tm;
do {
tm.tv_sec = 10;
tm.tv_usec = O;
FD_ZERO(&wset);
FD_SET(sockfd, &wset);
} while (! selectsocket(sockfd + 1, 0, &wset, 0, &tm));

}

void write_data(int sockfd, char *buff, int buffsz)
{
int len, totlen;
int noblock = 1;
ioctlsocket(sockfd, FIONBIO, é&noblock);
do {
wait_for_write(sockfd);
len = send(sockfd, buff[totlen], buffsz - totlen, 0);
if (Ien < 0) {
/* Handle the error condition */

}

totlen += len;
} while (totlen < buffsz);
/* This extra call to select avoids lost data */
wait_for_write(sockfd);
closesocket(sockfd);

77

Chapter 6

connect

Initiates a connection on a socket.

int connect(int s, struct sockaddr *name, int namelen);

S Socket identifier.
name Structure that identifies the remote end of the connection.
namelen Size of name.

The connect() function performs an active open, allowing a client application to establish a
connection with a remote server. The name structure is used to specify the Internet address and port
number for the remote end of the connection. The Internet address is usually retrieved using the
gethostbyname_r() function.

See also: closesocket

Return Value

-1 Error.

0 Success. A connection has been established with the remote server.
Example

int rc; /* return code */

78

struct sockaddr_in socka; /* Internet address */
/* and port number */
struct hostent hostent; /* for retrieving IP */
/* address from host */
unsigned char buff[BUFFLEN + 1];

memset(&socka, 0, sizeof(socka));

socka.sin_family = AF_INET;

gethostbyname_r(*hostl”, &hostent, buff,
sizeof(buff), &rc);

if (rc < 0)
DEBUG_MSG2_PARO(*“Error: gethostbyname_r\n’);
memcpy((char *)&socka.sin_addr,
(char *)hostent.h_addr_list[0], 1id_SZ2);
socka.sin_port = htons(1100);
rc = connect(s, (struct sockaddr *)&socka,
sizeof(socka));

if (rc < 0)
DEBUG_MSG2_PARO(*““Error connecting to remote server\n”);

Here you can see that &socka which is of type sockaddr_in * must be cast to a sockaddr
* since this is what is expected by connect(). This refers back to the previous discussion on
structures and definitions.

BSD Socket Interface

fcntlsocket

Controls socket flags.
int fcntlsocket(int s, int cmd, int arg);
The networking commands are:
F_GETFL get flags
F_SETFL setflags
This should of course be fentl, but we append “socket” to this to avoid naming conflicts.

The fentlsocket() function allows a socket to be set to use non-blocking semantics, and also allows the
current setting to be retrieved.

Networking uses only one flag: FNDELAY (or O_NDELAY; both names seem to be in use) for non-
blocking 1/0.

See also:Non-blocking sockets in Chapter 5, Dynamic Protocol Interface.

Return Value

The return value is -1 for error, 0 for successful SETFL, the current value of the flags for successful
GETFL.

freeaddrinfo

Release the memory allocated for the given addrinfo structure.

void *freeaddrinfo(struct addrinfo *res)

res (Input) Pointer of the address structure to release

The linked list acquired with getaddrinfo() is released.

See also: getaddrinfo

Return Value
none

Example
struct addrinfo *ai;
freeaddrinfo(ai);

79

Chapter 6

gai_strerror

Convert an error code from getaddrinfo() into a character string.
const char gai_strerror(int errcode);
errcode (Input) Error code.

Return Value
Pointer to the corresponding character string.

Example

int errcode;
char *errorstr;
errorstr = gai_strerror(errcode);

80

BSD Socket Interface

getaddrinfo

Obtain address information based on host and port information.

int getaddrinfo(const char *hostname, const char *servname, const
struct addrinfo *hints, struct addrinfo **res);

hostname (Input) Host name or IP address

servname (Input) Service name or port number string
hints (Input) Additional optional specifications for the type of address
res (Output) Address storage area

hostname specifies the acquired host name or IP address.

servname specifies the port number as a character string.

The type and the protocol of the desired socket are specified via the hints parameter.
The result of the request is provided in the res parameter.

The memory dynamically allocated uses one message buffer (MESS structure).

The following ai_flags options in the hints field are supported.

AIl_PASSIVE

AI_NUMERICHOST

Al_ADDRCONFIG

It is necessary to release the allocated memory with freeaddrinfo().

See also: freeaddrinfo()
Return Value
0 Success
1=0 Check error associated with socket
EAI_ADDRFAMILY The requested address family for the given hostname is not available

EAI_FAMILY The requested address family is not available

EAI_SERVICE The requested service cannot be used by the requested socket type
EAI_NONAME The requested name is illegal

EAI_MEMORY Insufficient memory

EAIL_FAIL The name server failed in responding to the request

EAI_SYSTEM Other system error occurred

81

Chapter 6

Example

82

struct addrinfo hints;

char portstr[10];

int port = 80;

char *hostname = “(lpv6 address)”;
struct addrinfo *ai;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = 0;
hints.ai_flags |= AI_NUMERICSERV;
sprintf(portstr, “%u”, (int)port);

if (getaddrinfo(hostname, portstr, &hints, &ai))

return —-1;

BSD Socket Interface

getpeername

Extracts the remote address information for a socket.

int getpeername(int s, struct sockaddr *name,
int *namelen);

S Socket identifier.
name Structure into which the remote address information should be stored.
namelen A pointer to the length of the name structure.

The getpeername() function retrieves the remote address information and stores it in the supplied
structure.

Return Value

-1 Error.

0 Remote address was retrieved.
Example

struct sockaddr_in socka;

int rc; /* return value */

int s; /* socket identifier */

s = socket(PF_INET, SOCK_DGRAM, 0);

rc = getpeername(s, (struct sockaddr *)&socka,
&socksize);

if (rc < 0)
DEBUG_MSG2_PARO(*“Error in getpeername\n”);

83

Chapter 6

getsockname

Extracts the local address information for a socket.

int getsockname(int s, struct sockaddr *name,
int *namelen);

S Socket identifier.
name Structure into which the local address information should be stored.
namelen A pointer to the length of the name structure.

The getsockname() function retrieves the local address information and stores it in the supplied
structure.

Return Value

-1 Error.

0 Local address was retrieved.
Example

struct sockaddr_in socka;

int rc; /* return value */

int s; /* socket identifier */

s = socket(PF_INET, SOCK_DGRAM, 0);

rc = getsockname(s, (struct sockaddr *)&socka,
&socksize);

if (rc < 0)
DEBUG_MSG2_PARO(*“Error in getsockname\n”);

84

BSD Socket Interface

getsockopt, setsockopt

Gets and sets options on sockets.

int getsockopt(int s, int level, int optname,
char *optval, int *optlen);

int setsockopt(int s, int level, int optname,
char *optval, int *optlen);

S Socket handle.

level See Table 6-1 below.

optname See Table 6-1 below.

optval Pointer to option value. Refer to the table below for the data type.
optlen Pointer to the size of the data stored in optval.

The functions in the following table manipulate socket options.

85

Chapter 6

Table 6-1: Routines that Manipulate Socket Options

level optname Type Description

IPPROTO_IP IP_ADD_MEMBERSHIP struct ip_mreq Join multicast group
IP_DROP_MEMBERSHIP struct ip_mreq Leave multicast group
IP_MULTICAST _IF struct in_addr Set multicast interface
IP_OPTIONS char Options in IP header
IP_TTL unsigned int TTL in IP header

IPPROTO_TCP TCP_MAXSEG unsigned int Get TCP maximum segment
TCP_NODELAY unsigned int Don’t delay send

SOL_SOCKET SO _BROADCAST unsigned int Permit broadcast
SO_DEBUG unsigned int Debug flag
SO_DONTROUTE unsigned int No routing
SO_ERROR unsigned int Get and clear error code
SO_KEEPALIVE unsigned int Keepalive probing
SO_LINGER struct linger Linger on close
SO_OOBINLINE unsigned int Leave URG data inline
SO_RCVBUF unsigned int Receive buffer size
SO_REUSEADDR unsigned int Local address reuse
SO_SNDBUF unsigned int Send buffer type
SO_TYPE unsigned int Get socket type

See also: fctlsocket, ioctlsocket

Return Value
-1

0

Example

Error.

Success. The optval pointer points to the option value for getsockopt(); the
option was set for setsockopt().

rc = setsockopt(s, SOL_SOCKET, SO KEEPALIVE, 0, 0);
if (rc < 0)

DEBUG_MSG2_PARO(*“Error in setsockopt\n™)

86

BSD Socket Interface

inet_ntop

Convert an address structure into a string.

char *inet_ntop(int af, void *src, void *dst, int cnt);

af (Input) Address family.

src (Input) Pointer to the network address structure.
dst (Output) Area where the result is stored.

cnt (Input) Size of area where the result is stored.

The inet_ntop() function converts network address structure src of address family af into a character
string. This function copies the string into memory at location dst (length cnt bytes).

af specifies AF_INET or AF_INETS6.

If the value in af is not supported, errno is set to EAFNOSUPPORT. If the resulting string would
occupy more than cnt bytes, errno is set to ENOSPC.

Return Value
NULL Error.

Pointer to dst Success.

Example
example

87

Chapter 6

inet_pton

Convert a string into a network address structure.

int inet_pton(int af, char *src, char *dst);

af (Input) Address family.
src (Input) Pointer to the address of the character string.
dst (Output) Area where the conversion result is stored.

The inet_pton() function converts the string pointed to by src of the af address family into a network
address structure, and stores it at address dst (of length cnt bytes).

af specifies AF_INET or AF_INETS6.

The function returns a negative value and sets errno to EAFNOSUPPORT if the value for af is not
supported. When src is not a valid address, the function returns 0.

Return Value

>0 Success

<0 The address family is not supported.

0 The address of the character string is illegal.
Example

example

88

ioctlsocket

BSD Socket Interface

Sets control parameters for a socket.

int 1octlsocket(int s,

s
request

arg

Socket identifier.
Request type. See table below.

Optional argument. See table below

int request, char *arg)

The ioctlsocket() function behaves the same as the regular BSD Sockets ioctl() function, except that it
only accepts socket identifiers. The optional third argument is used as a pointer for the result. There
is some variation in how this function is defined in BSD sockets: The second argument may be
“unsigned long”, and of course the variable arguments are treated differently in non-ANSI C.

request argument type description

FIONBIO int * Sets non-blocking 1/0 if arg
points to an int of non-zero value.
Sets blocking 1/0O otherwise.

FIONREAD int * arg is assigned the number of
bytes that have not yet been read.

SIOCATMARK int * ardg is assigned 1 if the socket

read is at the out-of-bound mark,
0 otherwise.

See also:getsockopt, setsockopt

Return Value
-1

0

Operation successful.

89

Chapter 6

listen

Listens for connections.
int listen(int s, int backlog);
S Socket identifier.

backlog Specifies the number of connections that will be held in a queue waiting to be
accepted. This value includes connections that are in the SYN_RCVD state and
connections that are in the ESTABLISHED state that have not yet been accepted by
the application. The value of backlog must be greater than 0 for a subsequent call to
accept() to succeed. If there are no connections available at the time a SYN
segment is received, the incoming segment will be dropped and the diagnostic
counter sns_TcpSynDrops will be incremented. NCONNS can be adjusted up if
sns_TcpSynDrops shows dropped SYNs.

The listen() function is part of the sequence of functions that are called to perform a passive open.
This call puts the socket into the LISTEN state.

See also: socket, bind, accept
Return Value
-1 Error.
0 Success.
Example
int rc; /* return code */
int s; /* socket identifier */

rc = listen(s, 5);
if (rc < 0)
DEBUG_MSG2_PARO(*“Error calling listen\n”);

90

BSD Socket Interface

readsocket

Receives a message from a socket ID.

int readsocket(int s, char *buf, int len);

S Socket identifier.
buf Buffer into which received data will be stored.
len Maximum number of bytes to be received.

The readsocket() function behaves the same as the regular BSD Sockets read() function, except that it
only accepts socket identifiers.

See also: recv, recvfrom, recvmsg
Return Value
-1 Error.
>0 Number of bytes received.
0 The remote side closed the connection.

91

Chapter 6

recv

Receives a message.

int recv(int s, char *buf, int len, int flags);

S Socket identifier.
buf Buffer into which received data will be stored.
len Maximum number of bytes to be received. For non-stream connections, excess

bytes will be discarded.

flags Allows for these options:
MSG_QOOB returns urgent data.
MSG_PEEK returns information, allowing it to
be read again on a subsequent call.

The flag MSG_WAITALL is not supported.

See also: recvfrom, recvmsg
Return Value
-1 Error.
>0 Number of bytes received.
0 The remote side closed the connection.

The following error codes could be returned in errno or through getsockopt() if recv() returns
indicating an error:

EWOULDBLOCK

Only returns if the socket is set up as non-blocking. If this is the case, then a call to
recv() can check for ENOULDBLOCK and try again later, effectively polling.

ETIMEDOUT Would only be returned if previously the macro SOCKET_RXTOUT was used to
adjust the receive timeout of the socket. The application could call recv() again
later.

EOPNOTSUPP 1. The call to recv() asked for out-of-band data (the flags
parameter had MSG__ OOB set), and none was available.

2. The call to recv() didn't ask for out-of-band data, and
there is some that needs to be received.

EBADF Invalid socket handle. No need to close, since that call would return an error as
well.
ECONNABORTED

A definite fatal error. Usually results from a retransmission timeout or reception of
a RST segment. Time to close the socket.

92

Example

BSD Socket Interface

int rc; /* return code */
int s1, s2; /* socket identifiers */
unsigned char buff[BUFFLEN]; /* read buffer */

s2 = accept(sl,

(struct sockaddr *)&socka,

&socksize);

rc = recv(s2, buff, 2, 0);

if (rc < 0)

DEBUG_MSG2_

else if (rc ==

DEBUG_MSG3_

else

DEBUG_MSG2_

PARO(“Error receiving data.\n”);

2)
PARO(*“Success: read 2 bytes\n”);

PARO(Error: did not retrieve 2 bytes\n”);

Notice in this example that recv() uses the second socket identifier, the one returned from the
accept(), not the original socket which is used as an argument to accept().

93

Chapter 6

recvfrom

Receives a message from a connection.

int recvfrom(int s, char *buf, int len, int flags,
struct sockaddr *from, int *fromlen);

s Socket identifier.

buf Buffer in which information will be stored.

len Number of bytes to receive. For non-stream connections, excess bytes will be
discarded.

flags Specifies optional behavior:

MSG_OOB returns urgent data.
MSG_PEEK returns information, allowing it to be
read again on a subsequent call.

from Indicates the remote host from which the information was received.
fromlen Size of the From data structure.

The recvfrom() function allows a connection to be made and a message to be read from the
connection. The flag MSG_WAITALL is not supported.

See also: recv, recvmsg
Return Value
-1 Error.
>=0 Number of bytes received.
Example
The accept() or connect() call is not needed here since recvfrom() establishes the connection before
reading.
int s1, s2; /* socket identifiers */
int rc; /* return code */

int socksize;
unsigned char buff[BUFFLEN]; /* read buffer */
struct sockaddr_in socka; /* remote host address */

memset(&socka, 0, sizeof(socka));

rc = recvfrom(s2, buff, 8, 0, (struct sockaddr *)&socka, &socksize);

94

BSD Socket Interface

recvmsg

Receives a message.
int recvmsg(int s, msghdr *msg, int flags);
S Socket identifier.

msg Pointer to structure that describes how received data should be stored. This
structure is shown below.

flags Specifies optional behavior:
MSG_OOB returns urgent data.
MSG_PEEK returns information, allowing it to be
read again on a subsequent call.

The recvmsg() function is the most general of the recv functions. This function allows a connection
to be established and read with one call. The flag MSG_WAITALL is not supported.

Here is the definition of the msghdr structure:

struct msghdr { /* Message header for recvmsg */
char *msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather arra */
int msg_iovlen; /* num of elems in msg_iov */
char *msg_accrights; /* access rights */
int msg_accrightslen;
};
struct iovec { /* address and length */
char *iov_base; /* base */
int iov_len; /* size */
};

smxNS ignores the access rights field in the msghdr structure.

See also: recv, recvfrom

Return Value

-1 Error.
>0 Number of bytes received.
0 The remote side closed the connection.

95

Chapter 6

selectsocket

Waits for activity on a set of sockets.

96

int selectsocket(int nfds, fd_set *readfds, fd_set
*writefds, fd_set *exceptfds,
struct timeval *timeout);

nfds Number of sockets. Watch out for “off by one” errors. For example, if the highest
value of the descriptors that should be evaluated is n, nfds should be set to n+1.

readfds Socket identifiers for which selectsocket() should return if data becomes available
or the state of the socket changes.

writefds Socket identifiers for which selectsocket() should return if the socket can accept
more data or if there is an error.

exceptfds Socket identifiers for which selectsocket() should return if out-of-band data is
available.

timeout Specifies time after which selectsocket() will return if none of the specified
conditions occurs.

This is a general UNIX routine, but handles sockets as well as files. The Fd_set structures specify
which sockets (range 0 to nfds-1) are considered.

These macros can be used to manipulate fd_set:

FD_ZERO(&Fd_set) clears the socket list
FD_SET(s, &fd_set) adds socket s
FD_CLR(s, &fd_set) removes socket S

FD_ISSET(s, &fd_set) non-zero if S included

When selectsocket() returns, there are bits in the fd-set structures only for those sockets that
satisfied the condition.

Structure timeval gives the timeout value:

struct timeval { /* Time-out format for select() */
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

}:

ANULL pointer means an infinite timeout. If the structure contains the value 0, then the descriptors
will be checked once and the call to selectsocket() will return without delay. This is useful for
application-level polling.

smxNS uses the SIG_SEL signal to support the select operation. SIG_SEL is raised when traffic
comes into the stack or maintenance functions run that might change the state of a connection.

BSD Socket Interface

Return Value

-1 Error. Note that this should not occur in the current implementation.

0 Timeout occurred.

>0 This number of sockets are ready for the requested operations.
Example

int s1, s2, s3; /* sockets */

int rc; /* return code */

fd_set socket setl, socket set2;

FD_ZERO(&socket _setl);

FD_ZERO(&socket _set2);

FD_SET(sl1l, &socket _setl);

FD_SET(s3, &socket _setl);

FD_SET(s2, &socket set2);

rc = selectsocket(3, &socket setl, &socket set2, 0, NULL);

if (rc < 0)

DEBUG_MSG2_PARO(*“Error, no sockets ready.\n);
else

DEBUG_MSG3_PAR1(“%d sockets ready.\n”, rc);

if (FD_ISSET(s1, &socket_setl))
DEBUG_MSG3_PARO(““Socket 1 is ready to be read.\n”);
else if (FD_ISSET(s2, &socket _set2))
DEBUG_MSG3_PARO(*““Socket 2 is ready to be written\n’);
else if (FD_ISSET(s3, &socket_set3l))
DEBUG_MSG3_PARO(*““Socket 3 is ready to be read.\n”);
else
DEBUG_MSG2_PARO(“Error.\n’");

97

Chapter 6

send

Sends a message on an established connection.

int send(int s, char *buf, int len, int flags);

S Socket identifier.

buf Pointer to data to be sent.
len Number of bytes to send.
flags Allows for these options:

MSG_OOB sends the data as urgent data
MSG_DONTROUTE ensures that the message is
not sent through a default router.

The send() function can be used with sockets for which the connection has previously been
established.

See also: sendto, sendmsg
Return Value
-1 Error.
>=0 Number of bytes sent.

If send() returns indicating an error, the following error codes could be returned in errno or through
getsockopt():

EBADF The socket descriptor is invalid, or another process is using the socket at the
moment.

ESHUTDOWN The application has already requested that the sending side of the socket be shut
down. No further data can be sent through this socket.

ECONNABORTED An error has occured on this socket. The socket should be closed.

EMSGSIZE A non-stream socket has been asked to send more information than can be written at
once through the socket.

ENOBUFS The system is out of buffers for sending data. The call to send() can be retried later.

EWINZERO The receiving TCP window is not large enough to take accept the data. See the
examples section for a workaround.

Example
int s2; /* socket identifier */
int rc; /* return code */

98

unsigned char buff[BUFFLEN];

rc = send(s2, buff, sizeof(buff), 0);
if (rc < 0)
DEBUG_MSG2_PARO(*“Error sending data\n’);

BSD Socket Interface

The errno from send() will be EWINZERO if you are in non-blocking mode and the TCP window is
not large enough to take your packet.

If you are using non-blocking I/O and there is a possibility that the remote host's window may close
(this happens when the remote host does not read the received data). Then you must use a
workaround.

You can do one of several options:
1) Write less data. The remote window is stored in connblo[conno].window
Examine the window and resend using a packet size smaller than the remote window.

2) Enable the TCP window probe. To do this, you must revert to blocking mode and rewrite the data.
The write will block while performing the window probe.

int noblock = 1; /* Set to non-blocking mode */
ioctlsocket(sockfd, FIONBIO, &noblock);
len = send(sockfd, buff, sizeof(buff), 0);
if (len < 0) {
int 11, errval, sz;
sz sizeof(val);
il getsockopt(sockfd, SOL SOCKET, SO_ERROR, &errval, &sz);
if (errval == EWINZERO) {
noblock = 0;
ioctlsocket(sockfd, FIONBIO, &noblock);
len = send(sockfd, buff, sizeof(buff), 0);
if (len > 0) {
noblock = 1;
ioctlsocket(sockfd, FIONBIO, &noblock);
/* Continue normal execution */

}

}

else if (errval '= EWOULDBLOCK) {
DEBUG_MSG2_PAR1("Error %d\n'", errval);

closesocket(sockfd);
return -1;

}

3) Close the connection.

4) Call selectsocket() with a write set enabled to check. This will let you avoid getting into the
situation for which you need to test for EWINZERO, but will not solve the problem that there is no
probe in non-blocking mode.

99

Chapter 6

sendmsg

Sends a message that can be split between buffers.

int sendmsg(int s, msghdr *msg, int flags);

S Socket identifier.

msg Pointer to structure that describes the data to be sent. This structure is shown
below.

flags Specifies optional behavior:

MSG_OOB sends the data as urgent data
MSG_DONTROUTE ensures that the message is
not sent through a default router.

The sendmsg() function is a send function that allows the data to be sent from an array of buffers.

Here is the definition of the msghdr structure:

struct msghdr { /* Message header for recvmsg */
char *msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather arra */
int msg_iovlen; /* num of elems in msg_iov */
char *msg_accrights; /* access rights */
int msg_accrightslen;
33
struct iovec { /* address and length */
char *iov_base; /* base */
int iov_len; /* size */
}:

smxNS ignores the access rights field in the msghdr structure.

See also: send, sendto

Return Value
-1 Error.

>=0 Number of bytes sent

100

BSD Socket Interface

sendto

Send a message.

int sendto(int s, char *buf, int len, int flags,
struct sockaddr *to, int tolen);

S Socket identifier.

buf Buffer from which information will be sent.
len Number of bytes to send.

flags Specifies optional behavior:

MSG_OOB sends the data as urgent data.
MSG_DONTROUTE ensures that the message is
not sent through a default router.

to Specifies the remote host to which the connection should be made.
tolen Size of the to data structure.

The sendto() function allows a connection to be made and a message to be written to the connection.

See also: send, sendmsg
Return Value

-1 Error.

>=0 Number of bytes sent.
Example

rc = sendto(s, “HIJKLMNO”, 8, O,
(struct sockaddr *)&socka, sizeof(socka));

if (rc < 0)
DEBUG_MSG2_PARO(*““Error sending\n’);

101

Chapter 6

shutdown

Shuts down part of a connection.
int shutdown(int s, int how);
S Socket identifier.

how Describes type of shutdown:
0 shuts down receive data path
1 shuts down send data path, TCP sends FIN
2 shuts down send and receive path

The shutdown() function is useful for fully specifying the limited closure of a connection. Normally
the closesocket() function is used to fully close a connection.

See also: closesocket

Return Value
-1 Error.

0 Shutdown successful.

102

BSD Socket Interface

socket

Creates a socket.

int socket(int domain, int type, int protocol);

domain For smxNS, this should always be PF_INET.

type smxNS expects one of three constants for this parameter:
SOCK_STREAM stream socket (TCP/IP)
SOCK_DGRAM datagram socket (UDP/IP)
SOCK_RAW raw-protocol interface

protocol This can be specified as 0.

A call to socket() will create a socket of the specified type. A socket must be created before any other
socket calls are used.

See also:closesocket
Return Value
-1 Error.

>=0 The newly created socket can be accessed through this handle.

If socket() returns with an error indication, the value in errno or obtained through getsockopt() can
be interpreted as follows:

EPROTONOSUPPORT
The requested protocol is not available. Perhaps SOCK_STREAM was specified,
but TCP support is not configured for the underlying stack.

Example
int s; /* a socket */

s = socket(PF_INET, SOCK_DGRAM, 0);
if (s <0)
DEBUG_MSG2_PARO(*““Error opening socket\n”);

103

Chapter 6

writesocket

Sends a message to a socket.

int writesocket(int s, char *buf, int len);

S Socket identifier.
buf Pointer to data to be sent.
len Number of bytes to send.

The writesocket() function behaves the same as the regular BSD Sockets write() function, except that
it only accepts socket identifiers.

See also: send, sendto, sendmsg
Return Value

-1 Error.

>=0 Number of bytes sent.

104

BSD Socket Interface

Multicast API (BSD)

In order to receive information associated with a multicast host group, join the multicast group by
performing the following steps:

socket() Use INET protocol family with SOCK_DGRAM.
setsockopt() Use SO_REUSEADDR with a value of 1.
bind() Use a well known port (to receive multicasts on).

setsockopt() Fill out the mreq structure with an appropriate Multicast address and host interface.
If no host interface is given, the default will be used instead. This is defined by the
macro, IP_MC_DFLT_NETNO, and is declared in nscfg.h.

recvfrom() Receive Multicasts as they come in on the port that was bound.

105

Overview

Network Applications and Protocols

7. Network Applications
and Protocols

smxNS offers support for a number of networking applications, and also special features at the stack
level. Some are included and some are extra-cost options.

ARP
DHCP
DNS
FTP
HTTP
IGMP
IPv6
mDNS
NAT
PPP
PPPoE
SLIP
SNTP
TELNET
TFTP
Web Server

maps an IP address to a hardware address.

delivers host configuration parameters to a client host.
allows hosts to be specified by name rather than IP address.
is a file transfer programs implemented with TCP.

transfers web pages. A simple client is provided.

is the multicast protocol

directs datagrams to the destination host using 128-bit IPv6 addresses
allows network hosts to discover local services

is the network address translation.

connects two hosts over a serial link.

is a protocol typically used with DSL equipment.

a minimal protocol for connecting over a serial link.

allows hosts to synchronize time information.

is the usual TCP/IP method of remote terminal access.

is a simple file transfer program implemented with UDP.

serves web pages.

The discussions of PPP and the Web Server are lengthy and are presented in separate chapters which

follow this one.

107

Chapter 7

ARP

ARP (Address Resolution Protocol) is used to map an IP address to a hardware address. The ARP
client checks its ARP cache first for the IP address of the destination host, to get its hardware address.
If there is no entry in the cache, it sends a broadcast message to all the hosts on the network segment.
The host with the desired IP address responds with its hardware address, and the requestor adds it to
its ARP cache.

Proxy ARP

108

The Proxy ARP feature allows a system running smxNS to answer ARP requests on behalf of another
system. This is useful when smxNS acts as a transparent bridge, making it appear that systems that
are reachable through the system running smxNS are directly connected to an Ethernet network.

There are three steps to enable the Proxy ARP capability in smxNS:

1.) Uncomment the following line in include\nscfg.h:

#define USS_PROXYARP

this will enable the proxy ARP feature in arp.c and ip.c.

2.) Add the definitions of the Proxy ARP hosts with the PROXY ARP flag in the flags field:

"netl86, "enetl™, C, {206,251,94,253}, EAO, PROXYARP, Ethernet,
AMD961, "IRNO=4 PORT=0x200",

3.) You should have at least two interfaces for the local host defined in the netdata[] table. For
example, say the local host is named server:

server, 'enet0"”, C, {206,251,94,224}, EAO, O, Ethernet, NE2000,
"IRNO=10 PORT=0x0300",

“server', "enetl", C, {206,251,94,252}, EAO, 0, Ethernet, CS8900,
"IRNO=5 PORT=0x0320 BASE=0xC800",

Note that the port name, which is the second field in the definition, is different for the two interfaces
defined for the local host and that our proxy ARP host uses the port name of the second interface
definition. The order is important. sSmxNS will take the first subnet address match that it finds when it
decides where to send its messages.

We have added logic to ip.c to scan the table for the proxy ARP host and its matching interface
definition on the local host. So we need to have the "other" interface specified first in the table so that
smxNS will find that when it scans for the subnet address match.

To test this feature, you need two hosts connected to each other on a dedicated network with the host
doing the proxy ARP also connected to a second network. Use another host on the second network to
send a ping to the host that is on the dedicated network.

The host on the dedicated network should respond to the ping that should be indicated by a ping reply
message. After the ping has executed, the ARP cache (use arp -a) on the sending host should have a
new entry with the IP address of the host on the dedicated network and the ethernet address of the
proxy ARP host.

Network Applications and Protocols

DHCP

DHCP (Dynamic Host Control Protocol) is a method by which a DHCP server can deliver host
configuration parameters to a client host, typically when the client host boots. DHCP can be used
within a subnet, and also across subnets, provided that a DHCP server is available, and the appropriate
hosts have been set up to forward DHCP messages. DHCP is based on the BOOTP protocol, and
provides extensions such as the ability for a server to dynamically assign reusable network addresses.

In smxNS, DHCP is used to obtain an IP address for the host. The protocol will be used automatically
as part of NetTask() and Portterm() based on the setting of the #define SNS_PROTO_DHCPC
line in nscfg.h.

The call to obtain an IP address through DHCP is:
void DHCPget(int netno);
This function is called automatically from the NetTask() network background task.

The current state of the DHCP client is visible via the nets[0]. DHCPstate variable. Normally it should
have the value DHCP_BOUND, meaning that the system is using the IP address acquired from the
DHCP server.

The call to release an assigned IP address is:
int DHCPrelease(int netno);
The DHCPrelease() return codes are:
0 Success
ETIMEDOUT Timeout
The smxNS DHCP Server follows RFC's 2131 and 2132 with the restrictions noted below.
o DHCPserv() starts the server.

e The server should never return.

DHCP Client Configuration

To use DHCP for address assignment with SmxNS:

1) Set the primary IP address to 0.0.0.0 like:
Portconfig(*“enet”, “IP”, “0.0.0.0”);

2) #define SNS_PROTO_DHCPC 1 in nscfg.h

3) To adjust the number of times the DHCP client retransmits the DHCPDISCOVER message when
trying to locate a DHCP server, adjust DHCPC_DISCOVER_MAX_RETRY in dhcp.h. Setting this
macro to OXFFFFFFFF will allow the call to DHCPget() to retry indefinitely waiting for a DHCP
server to become available.

4) To get a router from DHCP:
#define DHCP_CONFIG =1o0r?2

109

Chapter 7

110

When DHCP_CONFIG is set to 1, the client will request only an IP address from the DHCP server.
When DHCP_CONFIG is set to 2, the client will request an IP address, a subnet mask, a router, and a
DNS server.

%% %% % MPORTANT NOTE * * * * *

For network environments where the system running smxNS and the DHCP server may be on
different subnets, the DHCP_CONFIG=2 setting should be the most reliable. This setting should
ensure that the DHCP server includes the router option in its response.

5) Additional configuration options:

If additional configuration options are desired, then edit dhcp.h and modify the discopts declaration.
The options with DHCP_CONFIG = 2 are as follows:

static const u8 discopts[] =
{99, 130, 83, 99, 53, 1, DHCPDISCOVER, 55, 3, 1, 3, 6};

Option 55 is a parameter request list, 3 is the number of parameters requested, 1 is the subnet mask
option, 3 is the router option, and 6 is the DNS server option in the example above. Valid option
codes are given in RFC 2132. To remove options, remove the appropriate one and change the number
of parameters accordingly. Do not change any options before or including option 55.

6) DHCP is automatically called from NetTask() if #define SNS_PROTO_DHCPC 1 is set in nscfg.h.
When initializing more than one interface using DHCP, they need to be initialized separately.
Example:

Portinit("eth1", “); /* initializes interface 1 */
Portinit("eth0", “"); /* initialized interface 0 */

7) Fallback behavior:

If the initial attempt to obtain an IP address from the DHCP server fails (perhaps because there is no
DHCP server on the network), it is possible to have smxNS use an alternate method to obtain an IP
address. The alternate method is specified in the FallbackAddr field of the network data structure,
which is set with Portconfig() using the “FBIP” key.

If the value here is 0.0.0.0, then smxNS will continue attempting to use DHCP to obtain an IP address.
Since the network data structure is cleared to zero as part of initialization, this is the default value, so
by default smxNS will stick to DHCP.

If FallbackAddr is set to an address in the range 169.254.x.x, then smxNS will generate a link-local
address (also known as an AutolP address), which will be a random address in this same range.

Any other value for FallbackAddr will be considered a fixed IP address, and that address will be
adopted.

In order to set a link-local address or fixed IP address as the fallback address, set the value before
calling Portinit(), as in this example.

Portconfig(“enet”, “FBIP”, “192.168.1.5");
Portinit(“enet”, “);

8) Lease renewal:

smxNS will automatically track the time left on a DHCP lease to renew it. The lease time and the
renewal time are stored in the sSmxNS NET structure.

In order to suggest a lease time to the DHCP server, fill in a value for the SuggestedLease field in the
nets[] data structure before calling Portinit(). This value is in units of 1 second. For example

Network Applications and Protocols

nets[0].SuggestedLease = 7200; /* 2 hour lease */
Portinit(“enet”, “);

DHCP Server Configuration

1) Server configuration file:

The name of the server configuration file is defined as CONF_FILE in dhcp.h. The default name is
"dhcp.con™ with no path. This file contains the configuration parameters that the server will give to
clients. Most entries are self-explanatory. The range entry is the range of IP addresses you wish to
give your clients. To configure with no router or domain name server, put 0 for the number of entries,
with no IP addresses to follow To configure no domain name or bootfile name enter none.

This file must have the following format with no lines omitted:

netname
subnet_mask X.X.X.X

range X.X.X.X X.X.X.X

router number_of_routers X.X.X.X [X.X.X.X ...]
domain_name_server number_of_dns X.X.X.X [X.X.X.X ...]
domain_name name

bootfile name or none if not needed

Here is a specific example:

enet

subnet_mask 255.255.255.0

range 192.168.1.150 192.168.1.159

router 2 192.168.1.1 192.168.1.3
domain_name_server 2 192.168.1.1 192.168.1.3
domain_name ussw.com

bootfile none

If the server configuration file does not exist when sns_DHCPServerConfig() is called, a new one will
be created from the cfgstr string that is passed as a parameter to sns_DHCPServerConfig(). Here is an
example cfgstr definition from nsdemo.c,

char cfgstr[] = {
"enet\r\n"
"subnet_mask 255.255.255.0\r\n"
"range 192.168.1.150 192.168.1.159\r\n"
"router 2 192.168.1.1 192.168.1.3\r\n"
"domain_name_server 2 192.168.1.1 192.168.1.3\r\n"
"domain_name ussw.com\r\n"
"bootfile none\r\n"

¥

The DHCP server can service multiple interfaces. When configuring the DHCP server for multiple
interfaces, the configuration information blocks follow one after the other. Here is an example cfgstr
definition for two interfaces. (Also, the enet entry has been simplified.)

char cfgstr[] = {
"enet\r\n"
"subnet_mask 255.255.255.0\r\n"
"range 192.168.1.150 192.168.1.159\r\n"
"router 1 192.168.1.1\r\n"
"domain_name_server 1 192.168.1.1\r\n"

111

Chapter 7

"domain_name none\r\n"

"bootfile none\r\n"

"wifinet\r\n"

"subnet_mask 255.255.255.0\r\n"

"range 192.168.2.10 192.168.2.19\r\n"
"router 1 192.168.2.1\r\n"
"domain_name_server 1 192.168.2.1\r\n"
"domain_name none\r\n"

"bootfile none\r\n"

)
2) Server lease file:

The name of the server lease file is defined as LEASE_FILE in dhcp.h. The default name is
"dhcp.lea" with no path. Create this as an empty file when running the server for the first time.
Otherwise, do not edit this file.

3) General configuration;
a) dhcp.h contains two configuration switches:

i) DHCP_PROBE : defining DHCP_PROBE enables an ICMP echo request probe of each potential
address before the server gives it out. This enables the server to detect addresses in use and mark them
as unavailable to give. #undef DHCP_PROBE disables it.

ii) DHCP_BROADCAST: The DHCP server will unicast all replies to the client's hardware address
and to yiaddr (the IP address it is trying to give the client). This behaviour corresponds to #undef
DHCP_BROADCAST in dhcp.h. If the TCP/IP stack on your client is unable to receive unicast
messages before the IP address is configured, then #define DHCP_BROADCAST and all messages
will be broadcast to all clients. Note that a smxNS client can receive unicast messages before the
client is configured if DHCP is enabled.

b) #define DHCP_SERVER "server_name" in dhcp.h
c) #define DHCP 2 in nscfg.h

d) The DHCP server must be configured with a static IP address. The server IP address must be in
the same subnet as the client address range set in the CONF_FILE.

e) The task stack size must be large, possibly as much as 5000 bytes.

Please read the information below under File Access for information on how the smxNS DHCP server
access a filesystem.

DHCP Server Operation Restrictions

112

The smxNS DHCP server is not a complete implementation of RFC 2131. It is subject to the
following limitations:

Options allowed for minimal implementation:

Option codes are from RFC 2132

Code Bytes Option
1 4 Subnet Mask
3 4n Router

Network Applications and Protocols

6 4n DNS Server

15 n Domain Name

50 4 Requested IP Address
51 4 IP Address Lease Time
53 1 DHCP Message Type
54 4 Server Identifier

Client requests for options other than the ones above the line will be ignored.
Restrictions and Requirements:

1) smxNS's DHCP server will not interact with relay agents. The client must be on the same subnet as
the server.

2) smxNS's DHCP server will assume there are no other DHCP servers on the same subnet.
3) smxNS's DHCP server will not have support for limited lease times. All lease times will be infinite.

4) smxNS's DHCP server will deliver a boot file name, but will not provide a mechanism for
delivering the file.

5) The smxNS DHCP server only allows “dynamic allocation”. This means that addresses are always
assigned from a pool. The smxNS server does not support the ability to always associate a single
address with a particular client.

File Access:

The DHCP server uses persistent storage for:

1) Lease file - record of client bindings and

2) Configuration file - DHCP server configuration.

The lease file is accessed with the functions find_lease(), read_lease(), and write_lease(). The
configuration file is accessed with the function read_conf(). File access is done using the C <stdio.h>
functions. These file access functions should be changed to the appropriate methods for accessing
non-volatile storage on your system. The include file dhcp.h includes <stdio.h> if EOF is not already
defined. This include will also need to be changed if a different method of file access is used.

DHCP Testing

The smxNS DHCP client has been tested against the smxNS DHCP server and against the Internet
Software Consortium DHCP server (www.isc.org).

The smxNS DHCP server has been tested against the smxNS client, and against Windows 95 and
Windows 98 DHCP clients.

The details of the testing procedure are given below.
smxNS DHCP server testing against SmxNS clients:

All addresses below are 192.168.1.xxx

113

Chapter 7

114

The address range in dhcp.con is defined as 192.168.1.150 to 192.168.1.160 for this test (unless
specified otherwise).

Acquire is performed by configuring client to use DHCP and starting fttest on the client. Release is
performed by stopping the fttest client with the <ESC> key. For example, client B in test 2 performs:
fttest 192.168.1.151, starts and acquires an address, then is stopped with <ESC> and address is
released. Unless otherwise noted, all tests are performed on 80x86 platform, compiled with Borland
C compiler v4.5. (Tests also verified for Microsoft C compiler v8.00). Note: fttest was a standalone
USNet application which has been moved into nsdemo.c.

Test Client Action(s) (A = Acquire, R = Release address)

1 A A 151

2 B A 152 /R 152

3 B A 152 /R 152

4 C A 152 (simultaneous)
D A 153

** Reboot Clients C and D without releasing address

5 Cc A 152
D A 153
6 B A 154

** Reboot server and restart it

7 any A previous address

** Reboot server, delete lease file, and restart server. Also, reboot client B.

8 B A 154

** Reboot server, reboot all clients. Delete lease file. Edit DHCP configuration file to have range of
one address (151).

9 A A 151

10 B Fails in acquiring address

What does each test prove?

1 Basic ability to acquire address.

2 Tests release of address.

3 Re-acquire gives client same address.
4 a) Client can reclaim unused address

b) Simultaneous client requests work

5 Clients get same address back even if they didn't release it.

6 Client binding of B has address now in use by client C.

Network Applications and Protocols

7 Server remembers client bindings through persistent storage

8 DHCP_PROBE defined:

Address probe detects addresses in use even though there are not bindings for these
clients (since we deleted the lease file). Server gives an address not in use.

DHCP_PROBE undefined:

Server will attempt to give an address in use with the address probe disabled. Client will
send DHCPDECLINE because it also probes the offered address (and we haven’t
disabled this probe).

Server handles DHCPDECLINE, and offers next address until it gets to one which the
client accepts.

9 —

left.

10 Server prints warning message, doesn’t attempt to give address when there are no more

The smxNS DHCP server passed all the above tests for 4 server configurations:

DHCP_BROADCAST DHCP_PROBE
defined defined

defined undefined
undefined defined
undefined undefined

BIG endian vs. LITTLE endian test:

The smxNS DHCP client was run on the SH3 platform (which is BIG endian). The smxNS server is
run on 80x86 (LITTLE endian). This tests whether there are any byte ordering problems in how the

server handles messages.

smxNS DHCP Server testing against Windows 95 and Windows 98 clients

Test Client Action(s)

1 A A151/R 151
2 B A 151

3 A A 152

4 B R 151

Windows acquire/release performed with winipcfg, multiple acquire/release, and renew all work.

115

Chapter 7

DNS

DNS, or Domain Name System, is a protocol that allows a system to be located based on its host
name. This introduces a useful level of indirection when specifying the end of a connection that can
allow a system to continue to function even though changes may occur in the way the endpoints are
attached to the Internet.

When the DNS macro is set to 2 in nscfg.h, the DNS look up will be invoked automatically for calls
that accept a string to specify a host name. For example, Nopen() could use www.smxrtos.com rather
than a dotted decimal IP address as the first parameter in the function call that specifies the host at the
remote end of the connection.

In order for the DNS look up to succeed, at least one DNS server must be available to smxNS. If the
smxNS system uses DHCP, then this information can be retrieved automatically as part of that
process. Otherwise, the SetDNS() function can be used to manually specify DNS hosts. Up to
NDNSS (default 2, set in nscfg.h) DNS servers may be specified. The DNS server can be located on
another network, so long as a router is available.

The DNS resolver can also map from a local host name to an IP address using a legacy mDNS query.
In this case, a DNS server does not need to be defined. Details are in the DNSresolve() section below.

Here is the function that allows a DNS server to be specified.

SetDNS()

int SetDNS (char *ip, char *index)
The function arguments are:
ip IP address of the DNS server, as a string in dotted decimal format.

index The index for the DNS server entry. Any existing entry will be overwritten. Indices
0..NDNSS-1 are valid.

The call returns 0 for success, -1 for failure.

Applications can also call the DNS resolver directly using the DNSresolve() function (described next).

DNSresolve()

116

Resolves a domain name to an IP address.

int DNSresolve(const char *fullname, 1Paddr *iidp);
ful Iname domain name

iidp pointer to the address of the returned IP address
DNSresolve() stores the IP address at this location if ful Iname is non-zero.

DNSresolve() can start with either a domain name or IP address. If there’s an @ in the name,
DNSresolve() tries to find a mail host (IP address). If the first letter in the name is between 0 and 9,
it’s a pointer to an IP address, and DNSresolve() tries to find the domain name.

DNSresolve() can also attempt to obtain an IP address from a local host by sending a legacy mDNS
query. In this case, the fullname parameter should end in ".local". For example, calling DNSresolve()

http://www.smxrtos.com/

Network Applications and Protocols

on "myhost.local" will return the IP address of host "myhost" if it is on the local network and running
an mDNS Responder.

Return Value

>=0 Successful lookup

-1 IP address could not be obtained from the DNS server(s)
ENOBUFS Not enough buffers available for query (defined in support.h)
Example

IPaddr 1ipa;
char *hostname;

hostname="localhost";
stat = DNSresolve(hostname,ipa);
if (stat<0)

ERROR();

FTP and TFTP

FTP and TFTP are file transfer protocols. FTP is implemented with TCP. TFTP is implemented with
UDP so it is smaller but less reliable. TFTP is less secure and less capable, so it is of limited use.

The two ends of a file transfer are called a client and a server. The server is the passive component,
which sits and waits for requests. To view the source code, refer to files XNS\netsrc\ftpc.c,
XNS\netsrc\ftps.c, XNS\netsrc\tftp.c, and APPADEMO\nsdemo.c.

The FTP server as shipped is configured for ANSI C support. In this mode, only the basic file transfer
functions are available. You can configure it for the DOS file system by setting the variable
EXTENDED_Cto 1.

The FTP server supports the internal commands APPE, CDUP, CWD, DELE, EPRT, LIST, MKD,
MODE, NLST, PASS, PASV, PORT, PWD, RETR, RMD, RNFR, RNTO, STOR, STRU, TYPE,
USER, QUIT, XCUP, XCWD, XMKD, XPWD and XRMD.

See Chapter 2 for more information on the FTP server and client test programs in nsdemo.c.

Start Server

These calls will start the servers. If you are using a multitasker, you will want to start these as tasks.
int FTPserv()
int TFTPserv(Q)

The server never returns. In other words, it sits in an infinite loop.

117

Chapter 7

Send File

This call sends a file.

int FTPput (char *host, char *Ifile, char *rfile, char *userid, char
*pw, Int mode)

int TFTPput (char *host, char *I1file, char *rfile, int mode)
The send file arguments are:

host Name of the server host. The form can be host or host/network.
Ifile Name of the local file to be sent.

rfile Name of the file to be stored on the remote system.

userid Name of user account on the remote system. Not needed for TFTP.

pw Password for the user account on the remote system. Not needed for TFTP.
mode ASCI | for a text file, IMAGE for a binary file.

The call returns 0 for success, -1 for failure. Note that the FTP protocol sends the user ID and
password information as cleartext.

FTP & TFTP Examples

FTPput(“XX”, “tl1”, “/usr/aa/tl”, “user”, “password”, IMAGE);
/* t1l => host XX target file /usr/aa/tl */

TFETPput (XX, *“testl”, *“testl”, ASCII); /* testl => host XX */

Receive File

This call receives a file.

int FTPget(const char *host, const char *Ifile, const char *rfile,
const char *userid, const char *pw, int mode)

int TFTPget (char *host, char *Ifile, char *rfile, iInt mode)
The receive file arguments are:

host Name of the server host. The form can be host or host/network.
Ifile Name of the local file to be saved.

rfile Name of the file to be retrieved from the remote system.

userid Name of user account on the remote system. Not needed for TFTP.

pw Password for the user account on the remote system. Not needed for TFTP.
mode ASCI I for a text file, IMAGE for a binary file.

The call returns 0 for success, -1 for failure. Note that the FTP protocol sends the user ID and
password as cleartext.

118

Network Applications and Protocols

FTPget Examples

FTPget(“XX”, “testl”, “testl”, “user”, “pw”, ASCII);
/* testl <= host XX */

FTPget(“XX”, “\tmp\tl”, “tl”, “user”, “pw”, IMAGE);
/* \tmp\tl <= host XX t1 */

HTTP Client

Support for retrieving a web page is available via the HTTPget() function in the http.c . The use of
this function is demonstrated in the nstels.c application. This function is not intended for use as a
general purpose browser, but rather as a mechanism for automated retrieval of information that is
available via a web page.

When running nstels, you can log in to the sSmxNS Telnet server and then retrieve a web page by
typing in the web server’s host name followed directly by the path to the page. Here is an example
session.

C:>telnet 192.168.2.2

smxNS skeleton Telnet server

smxNS Telnet Server

www.smxrtos.com/

Calling HTTPget() for host www.smxrtos.com with path /
1016 004: HEAD

1028 005: TITLE

3000 006: /TABLE
3006 005: /BODY
3018 005: /[HTML
0400 000:

In this example, the default page from www.smxrtos.com is retrieved. The page contents are
delivered via the HTTPdisplay() callback function, which parses the information into chunks of one
HTML tag or word at a time. The callback function also includes flags and a length field, which are
the first two values that appear on each line. In the nstels.c demo, the output is directed to the Telnet
connection. An application that needed to extract a specific piece of information from a page could
simply scan the results for a keyword and throw the rest away.

In addition to web servers on the Internet, a local server on the LAN should be a practical way to

develop applications that use this function. The appendix contains a pointer to a simple web server
that may be used this way. Also note that many network devices such as consumer routers provide
web server based status and configuration, and these may be useful for a quick test of this function.

119

http://www.smxrtos.com/

Chapter 7

Retrieve a Web Page

This call starts the process to retrieve the contents of a web page.

int HTTPget (char *host, char *rsrc)

The arguments are:

host Name of the server host. The form can be host or host/network.
rsrc The path to the web page to be retrieved.

The call returns 0 for success, < 0 for failure.

Web Page Callback Function

This call returns the parsed web page to the application.
int HTTPdisplay (int flags, u8 *chunk, int len)
The arguments are:

flags Flags describing the returned HTML tag or parsed word.
0x0100 text
0x0200 precede with space
0x0400 follow with new line
0x10xx html control <something>
0x20xx html control off </something>
0x40xx special character &something;

chunk The parsed HTML tag or word from the body text.
len The length of chunk. The last element from a page has lenth 0.
The application should return 0 for success.

Each time the function is called, either an HTML tag or a word from the body is delivered.

IGMP / Multicast

120

IGMP (Internet Group Management Protocol) allows sending messages to multiple hosts in a group.

smxNS must be configured to include multicast support code if the application needs to send or
receive multicast messages. This setting is made with the USS_IP_MC_LEVEL macro in nscfg.h, and
is described in Chapter 4, Configuration.

No special application level operations need to be performed when sending information to a multicast
group. When the IP address of the destination is a multicast host group, then the physical layer frame
will be built appropriately for delivery to the multicast group, and sent on the default multicast
interface. The index of the default multicast interface is specified via the constant
IP_MC_DFLT_NETNO which is defined in nscfg.h.

The host group addresses range from 224.0.0.0 to 239.255.255.255.

The smxNS multicast application program interface is based on the recommended interface described
in RFC 1112,

Network Applications and Protocols

See the DPI or BSD chapter for documentation of the multicast API functions.

iperf

iperf is a program for measuring network performance. The smxNS version of iperf is based on iperf
version 3.0.3. A repository of iperf code is at http://downloads.es.net/publ/iperf/. The original iperf
files were adapted to work with smxNS and are located in the XNS/iperfsrc directory.

An iperf test is run by running two instances of the iperf program on two hosts that can communicate
over a network. To enable the iperf program in the smxNS build, add all .c files in the iperfsrc
directory to the project, and add an include path to XNS/iperfsrc

$PROJ_DIRS$\..\..\. \XNS\iperfsrc\

and set TEST_IPERF_SERVER to 1 in APP/DEMO/nsdemo.c.

The other host can be a Linux computer. In order to run that instance, you can follow these steps:
Download and extract the source code archive

Move to the top level directory of the archive, build and run iperf using these commands

$ cd iperf-3.0.10

$./configure

$ make (many warnings may be reported)

$ cd src

$ Jiperf3 -v (this will show the version and confirm the executable is present)

To invoke iperf with smxNS running at 192.168.1.100, you can use
iperf3 -1 1460 -c 192.168.1.100 -V
iperf3 -1 1460 -R 192.168.1.100 -V

The first command is for smxNS to send bulk information and the second is for sSmxNS to receive
bulk information.

After the test runs for 10 seconds, a summary of the test results is displayed, for example

Test Complete. Summary Results:

[ID] Interval Transfer Bandwidth Retr
[4] 0.00-10.00 sec 12.5 MBytes 10.5 Mbits/sec 0] sender
[4] 0.00-10.00 sec 12.5 MBytes 10.5 Mbits/sec receiver

IPv6

IPV6 is a network layer that uses 128-bit addresses. An IPv6 node can assign an IP address
automatically and does not depend on a DHCP server.

The smxNS IPv6 implementation does not currently support ICMP redirect, SLIP or PPP.

When the network interface is initialized (by calling the Portinit() function), the network prefix
(fe80::/64) for the link local address and the interface ID are combined and the link local address is
automatically created. The Interface ID is created based on the MAC address of the Ethernet
interface.

121

Chapter 7

RFC 2464 specifies a mechanism for generating a link local address based on the MAC address of an
Ethernet interface. For example, given a MAC address of 34:56:78:9A:BC:DE, the Interface ID is as
follows.

36:56:78:FF:FE:9A:BC:DE

The byte sequence FF:FE is inserved for the 4™ and 5™ bytes. The first byte is exclusive ORed with
0x02.

The corresponding link local address becomes
FE80::3656:78FF:FE9A:BCDE

If a Router Advertisement is received from a router, an IPv6 address will be created based on the
Router Advertisement and the Interface ID.

The IPv6 address is stored in the fourth member of the struct NETDATAG structure regardless of
whether the address is statically configured or automatically set up.

The IPv6 stack should check for a duplicate IPv6 address. This check should be performed for both
manually configured and autoconfigured addresses. The prospective address is a temporary address,
and cannot be used until the check is completed.

The Duplicate Address Detection logic is executed once a candidate address has been created. The
check typically takes one second.

The Duplicate Address Detection check is also performed on the link local address. Thus there is a
delay following the time the network interface is initialized (by calling the Portinit() function) before
the link local address can be used.

Configuration of Duplicate Address Detection is performed in the file XNS\include\nd6.h.
#define ND6_DAD_COUNT 1 /* DupAddrDetectTransmits */

Duplicate Address Detection is performed ND6_DAD_COUNT times every second. When
ND6_DAD_COUNT is set to 0, Duplicate Address Detection is disabled, and the IPv6 address can be
used immediately.

MDNS Responder

122

The mDNS (Multicast Domain Name Service) Responder allows local hosts on the network to
discover services running on the smxNS system. For example, if the smxNS system is running a print
server, the mDNS Responder can advertise and answer queries from other systems to help them locate
this service on the network.

Example code for setting up and starting the mDNS Responder is provided in nsdemo.c. To enable
the mDNS Responder:

e Set TEST_MDNS_RESP to 1 at the top of nsdemo.c.

e Set SNS PROTO_IGMP to 1 in XNS\include\nscfg.h.
e SetUSS IP_MC_LEVEL to 2 in XNS\include\nscfg.h.
o Add XNS\netsrc\igmp.c to the project.

The service or services that the mDNS Responder maintains are organized as a set of associated
records. The record types are defined as part of the DNS protocol, and this framework is extended in
the mDNS protocol.

Network Applications and Protocols

e APTR (pointer) record associates a service with an instance name.

o A SRV(service) record associates an instance with a listening port and a network host name.
e A TXT (text) record associates an instance with a text string, which may be empty.

Here is an example of a data structure used to initialize the mDNS Responder:

GLOBALCONST RR_RECORD dns_rec[] =

{{“superprint”, “ printer._tcp”, “paper=A4”, 631, NULL, 0}
}éLOBALCONST RESPONDER_CONTEXT mdns_rc =
{
dns_rec,
1
Y

This structure provides the information used to construct the PTR, SRV and TXT records that are
used in responses to mDNS queries.

The fields are used as follows:

“superprint”: This is the instance name for the service. It is intended to be a user-friendly name, and
some implementations may provide a mechanism to allow the end user to configure this name. A
service instance name must be unique on the local network. If the provided name is not unique, the
mDNS Responder will modify the name by appending an index so that it becomes unique. This is
handled as part of the mDNS protocol.

“_printer._tcp”: This is the service name. There are well known service names such as _printer._tcp
and _ftp._tcp, and these are currently registered at the Internet Assigned Numbers Authority.

“paper=A4": This is the string used for the TXT record. In order to configure multiple key/value
pairs in a text string, use the separator 0x01 between pairs.

631: This is the port that the service listens on. This information is used in creating the SRV record.

NULL, 0: These are empty fields that can be used to define subtypes of the service. An example
appears below.

The RESPONDER_CONTEXT structure contains a pointer to the record initialization data and a
count of the number of services. Multiple services can be advertised by placing additional entries in
the RR_RECORD structure.

Service name subtypes are useful in some circumstances to allow mDNS queriers to find a subset of
instances that support a service. To define one or more subtypes that are associated with a service,
create a list of subtype strings, and include a pointer to this list in the corresponding RR_RECORD
definition. For example

GLOBALCONST char *subtypes[] = {*_coremote._sub”, “_dbupdate._sub”};
GLOBALCONST RR_RECORD dns_rec[] =

{“superprint”, “_http._tcp”, “”, 80, subtypes, 2}

Here the subtypes _coremote._sub._http._tcp and _dbupdate._sub._http._tcp are subtypes of the
service _http._tcp. The value (2) that follows the pointer to the list of subtypes is the number of
strings in the list.

123

ftp://ftp.tcp/

Chapter 7

124

To advertise additional services you can simply add another resource record to the list. For example,
you might add an ftp service with the instance name “helper” which listens on port 23 and has no
subtypes:

GLOBALCONST RR_RECORD dns_rec[] =

{

{“superprint”, “_http._tcp”, “”, 80, subtypes, 2},
{“helper”, “_ftp._tcp”, “”, 23, NULL, 0}

Y

GLOBALCONST RESPONDER_CONTEXT mdns_rc =
{

dns_rec,

2

¥

In order to run the mMDNS Responder, pass the initial configuration using the
sns_mDNSResponderInit() function, and then repeatedly call the sns_mDNSResponderCheck()
function.

void mdns_task_main(uint dummy)
{
intil;
struct RESPONDER_STATE *mdns_state;
int name_established,;
name_established = 0;
i1 = sns_mDNSResponderInit(&mdns_rc);
if (i1 >=0)
{
do
{
mdns_state = sns_ mDNSResponderCheck();
if ((mdns_state->state == MDNS_RESPONDING) && (name_established == 0))

DEBUG_MSG3_PAR1(“Instance name is %s\n”, sns_ mDNSGetInstance(0));
name_established = 1;

} while (mdns_state->error == 0);
sns_mDNSResponderShut();
}

return;

}

The sns_mDNSResponderCheck() function maintains the state machine and receives and responds to
mDNS traffic as needed. The function returns a structure that includes an error indication and the
state machine state. If an error occurs, the mDNS Responder should be shut down and restarted. The
state information is useful to determine when the instance names have been established. Once the
state reaches MDNS_RESPONDING, the names have been established. Under normal circumstances
the name will not change, but if there is another host on the local network configured to use the same
name for a service, then an index will be appended.

The sns_mDNSGetInstance() function can be used to obtain a pointer to an instance name. The value
passed to the function is a 0-based index using the same order as the list of services used to initialize
the mDNS Responder.

The sns_mDNSSetUniqueCallback() function can be used to specify a user-defined function to make
the instance name unique. This must be called following the call to sns_mDNSResponderInit().

Network Applications and Protocols

The sns_mDNSResponderShut() function sends goodbye messages to time out the advertised services
and closes the sockets associated with the mDNS Responder.

The mDNS Responder also maintains an address record (A record) that maps the smxNS host name to
the network interface IP address. The smsNS host name may also be modified by the mDNS
Responder. The name is established once the state reaches MDNS_RESPONDING.

The host name may be updated at runtime by calling the function SetHostname(char *) and passing a
pointer to a host name string. The current value of the host name string can be retrieved by calling
GetHostname(), which returns a pointer to the string. The host name string does not include the
domain name when used with these functions.

The mDNS Responder implementation is based on the current Internet-Drafts for Multicast DNS and
DNS-Based Service Discovery as of April 2013. The mDNS Responder was exercised using the Mac
OS X command line dns-sd utility and the Linux command line avahi-browse utility. Sample
command lines follow

> dns-sd —B _printer._tcp

Browsing for printer.tcp
Timestamp A/R Flags if Domain Service Type Instance Name
11:47:27.564 Add 2 4 local. _printer._tcp superprint

> avahi-browse —r —t _printer._tcp

+ ethO IPv4 superprint printer

= ethO IPv4 superprint printer local
hostname = [MDI-System.local]
address = [192.168.1.12]
port = [1234]
txt=1]

125

Chapter 7

NAT

Note: NAT is available as an extra-cost option for smxNS.

smxNS currently has support for NAPT (Network Address Port Translation). This form of NAT
assumes that hosts on the internal LAN will initiate communications with hosts on the external WAN
through the smxNS NAT router. ICMP, UDP, TCP and other protocols may be used through a sSmxNS
NAT router. Support for the FTP protocol ALG (Application Layer Gateway) is also included.

The following diagram represents an example NAT router’s network:

(206.251.94.210) (192.168.1.1)

(192.168.1.2)

This section describes how to build smxNS as a NAT router.

NAT Configuration

In file include\nscfg.h set RELAYING to 1 to enable smxNS to relay between interfaces:

Change:

#define RELAYING 2
To:

#define RELAYING 1

Set the NAT flag to each interface that should behave as the router for a private network. The
following Portconfig() example shows one private (internal or LAN) interface and one public
(external or WAN) interface.

Portconfig(“eth0”, “IP”, *192.168.1.1");
Portconfig(“eth0”, “NAT”, “ENABLE”);
Portconfig(“ethl”, “IP”, *“206.251.94.2107);

In file NETSRC\nat.c, several table size definitions exist.

TUTABLESZ — TCP/UDP table size

126

Network Applications and Protocols

This value represents the number of entries that may concurrently exist within the NAT TCP/UDP
table. All TCP and UDP communications routed through the NAT router must be entered in the TU
Table.

ICMPTABLESZ — ICMP table size

This value represents the number of entries that may concurrently exist within the NAT ICMP table.
Every ICMP message must have a corresponding entry in the ICMP Table.

UNTABLESZ — Unknown protocol table size

This value represents the number of entries that may concurrently exist within the NAT Unknown
protocol table. Entries in this table include all IP protocols other than TCP, UDP, and ICMP. Every
transaction taking place via the NAT router must have the protocol registered in the Unknown
Protocol Table.

These should be defined to appropriate values for the target networking environment. This is
determined by examining the requirements of the LAN hosts. For example, if there are 2 LAN hosts
and each host will open no more than 5 concurrent UDP/TCP communication channels with hosts on
the Internet, then a maximum of 10 (2x5) entries may need to be maintained. Therefore,
TUTABLESZ must be defined to 10 to avoid lost information. The default value in NETSRC\nat.c is
10.

ICMP messages often do not expect replies. This means that only the maximum number of
simultaneously routed ICMP messages must be accounted for. As a rule of thumb, this value can be
set to the number of hosts on the local network.

The unknown protocol table should include all other Internet communications not using TCP, UDP,
or ICMP.

Explanation of table entry replacement:

A modified LRU algorithm is used when the NAT table is full and a new entry is added. Entries that
are least used and have the least precedence are replaced first. The precedence is primarily determined
by the transport protocol in use. The precedence is ICMP, UDP, Unknown, TCP, and TCP-FTP-
control, in order of least to greatest precedence.

If a TCP or UDP channel is replaced in the NAT table, a new local port number will be generated and
will disrupt communications using an existing connection.

The cost of adding new entries is linear on a per-datagram basis. In other words, each datagram
passed through the NAT router is searched for linearly in the NAT table. As the number of NAT
entries increases, the amount of CPU time spent searching for those entries also increases.

As with smxNS in general, the debugging trace level may be used to enable printf() debugging from
the NAT module. By default, if SNS_DEBUG_LEVEL is 3 or greater, the following NAT debugging
information will be generated:

Inbound/Outbound IP address mappings (IP.port => IP.port)
TCP/UDP port adjustments (TCP/UDP.port => TCP/UDP.port)
FTP translations (Sequence number, PORT command)

If SNS_DEBUG_LEVEL is 5 or greater, NAT will print out:
Table additions/removals

If NAT debugging is to be isolated from the rest of smxNS debugging, set SNS_ DEBUG_LEVEL to
1 (or the appropriate value) and modify netsrc\nat.c as follows:

127

Chapter 7

#include "smxns.h"
#undef SNS DEBUG LEVEL
#define SNS _DEBUG_LEVEL 5

NC-SI

128

Note: NC-SI is available as an extra-cost option for SmxNS.

NC-SI (Network Controller Sideband Interface) is a protocol that allows a host processor and Ethernet
controller acting as a BMC (Baseboard Management Controller) to control one or more NICs
(Network Interface Controllers). This design allows flexible out-of-band management of the NICs
and is applied in certain networking equipment.

The NC-SI feature in smxNS is implemented by replacing the usual direct interface between the
Ethernet controller and the PHY with one that uses the NC-SI protocol to allow an Ethernet controller
to communicate with one or more NICs. With NC-SI, operations such as checking PHY link status
are performed by calling a function that creates an Ethernet frame that is directed to a NIC, and then
listening for a response frame from the NIC.

The smxNS NC-SI implementation provides most of the commands described in the Network
Controller Sideband Interface Specification and allows AENs (Asynchronous Event Notifications) to
be received via a callback function.

The NC-SI feature is driven by the NC-SITask() function that is launched as part of smxNS start up.
The first steps of the task are to configure the attached NIC including setting the MAC address so that
it can send and receive Ethernet frames.

There are approximately 25 NC-SI functions that a network application can call to issue an NC-SI
command. All command functions include parameters to specify the NIC package and channel and
fill in an ncsi_status structure to provide details on how the command executed. The call to the
command function blocks while it is executing, and this includes exchanging messages with the NIC.
If the NIC responds to the command, the function will return 0.

Here is an example function prototype

int NCSIGetNCSIStatistics(uint pkg, uint ch, struct ncsi_ncsi_stats
*ns, struct ncsi_status *s);

This function returns statistics using the ncsi_ncsi_stats structure. Here is an example use of the
function.

struct ncsi_ncsi_stats ns;

struct ncsi_status resp;

int stat;

uint pkg = 0;

uint ch = 0;

stat = NCSIGetNCSIStatistics(pkg, ch, &ns, &resp);
DEBUG_MSG3_PAR1("'Get NC-SI Statistics returns %d\n', stat);
if (stat == 0)

DEBUG_MSG3_ PAR2("" Response 0x%04x Reason 0x%04x\n',
resp.response_code, resp.reason_code);

DEBUG_MSG3_PAR1(*'NC-S1 Commands Received %d\n',
ns.ncsi_commands_received);

Network Applications and Protocols

DEBUG_MSG3_PAR1("'NC-S1 Control Packets Dropped %d\n",
ns.ncsi_control_packets_dropped);
DEBUG_MSG3_PAR1(*'NC-SI Command Type Errors %d\n",
ns.ncsi_command_type_errors);
DEBUG_MSG3_PAR1(**"NC-S1 Command Checksum Errors %d\n",
ns.ncsi_command_checksum_errors);
DEBUG_MSG3_PAR1(*'NC-SI Receive Packets %d\n",
ns.ncsi_receilve_packets);
DEBUG_MSG3_PAR1("'NC-S1 Transmit Packets %d\n',
ns.ncsi_transmit_packets);
DEBUG_MSG3_PAR1("AENs Sent %d\n', ns.aens_sent);

}

Definitions for the NC-SI structures are in XNS/include/ncsi.h. You can review these structures to
see which fields can be used to pass inbound parameters or retrieve outbound parameters.

An application can access the information in AEN packets by registering a callback function that is
called when an AEN is received. Note that this callback function is executed in the context of
smxNS’s high priority NetTask(), so it should perform its function promptly. The AEN information is
delivered in an ncsi_aen_info structure and includes the channel 1D, AEN type and 4 bytes of data
specific to the AEN. Here’s an example of the use of an AEN callback.

/* From XNS/include/ncsi.h */
struct ncsi_aen_info {

int channel_id;

int type;

int data;
33

/* Network application code */
void callback(struct ncsi_aen_info *p)

{

}
NCSIRegisterAENCal Iback(cal lback);

Nprintf(""AEN status type %d\n', p->type);

PPPoE

Note: PPPoE is available as an extra-cost option for smxNS.

PPPoE (Point-to-Point Protocol Over Ethernet) encapsulates PPP frames in Ethernet frames. This is
useful in certain applications, especially in DSL-related equipment that uses PPP features for access
control and accounting. smxNS provides support for building both PPPoE Hosts and PPPoE Access
Concentrators.

PPPoE Configuration

Here are the necessary steps to configure and build PPPoE with smxNS.
1. Test smxNS on the target without PPPOE integration. Run nsdemo with PPPoE disabled in nscfg.h.

Note that PPP must be configured even though there may not be a serial interface on the target.

129

Chapter 7

130

2. Build the PPPoE version

If you purchased the PPPoE option, there should be a target defined that will build sSmxNS with
PPPOE support.

3. Define the target interface

In configuring the PPPOE interface, change the link layer setting from Ethernet to PPPOE.
For example:

Previously, the configuration may have been:

Portconfig(“eth0”, “LINK”, “Ethernet™);

It should then be changed to the following:

Portconfig(“eth0”, “LINK”, “PPPOE™);

If the IP address is defined by the Access Concentrator, define the IP address as 0.0.0.0.
Additionally, create an entry for the peer host so that PPP can store the remote IP address for later.

ac'', "pppoe", C, X, EAO, ROUTER, O, O, O,
"test", ''pppoe”, C, X, EAO, 0, PPPOE, PCIl, O,

If smxNS is being run as an Access Concentrator, additional entries in the netdata[] table can be set up
so that they are distributed to PPPOE hosts. Here is an example configuration for this

"host", "tnet", CC, W, EAO, PROXYARP, 0, O, O,

"test", "tnet", CC, X, EAO, 0, PPPOE, NE2000, "IRNO=10 PORT=0x300",
"test", "enet", CC, Y, EAO, 0, Ethernet, NE2000, "IRNO=5
PORT=0x320",

gw', “enet'", CC, Z, EAO, ROUTER, Ethernet, 0, O,

In addition, for use as an Access Concentrator, the following settings are suggested for nscfg.h.

#define RELAYING 1
#define USS_PROXYARP

3. Run nsdemo with PPPOE enabled in nscfg.h.

4. Further configuration items specific to the operations of the PPPoE host are contained within
netsrc\pppoe.c. Edit the file configuration options as necessary. The default settings should be a
reasonable starting point.

The corresponding file for the Access Concentrator version is netsrc\pppoeac.c. The following notes
describe the configurable values at the top of the file.

#define PPPOE_TIMER_GRANULE 1000

The PPP timeout function for PPPoE sessions will be called using a period defined by this constant.
The default value sets a frequency of once per second.

#define PPPOE_ACNAME "AC-0000"

This string is delivered in the AC-Name tag when the Access Concentrator sends its PPPoE Active
Discovery Offer (PADO) packet. This Access Concentrator name may be useful to the PPPoE host in
deciding whether or not to set up a PPPoE with this Access Concentrator. In practice, this
information is commonly ignored.

#define MAX_SERVICE_NAME_LEN 16

Network Applications and Protocols

This defines the size of the buffer that stores the string associated with the Service-Name tag. The
Access Concentrator is set up to use a liberal policy on service names, accepting any name that is
suggested by the host. This policy is suggested in the Security Considerations section of RFC 2516.

Similar buffer length definitions exist for the Host-Uniq, AC-Cookie and Relay-Session-1d tags.
#define PNETS 2

This defines the number of physical network interfaces. State information for PPP sessions is stored
in the network interface structure nets[]. Typically, each network interface is associated with a
physical network interface, which may be a serial interface for PPP, or an Ethernet interface for a
PPPOE host. A PPPoE Access Concentrator may support multiple PPPOE sessions over the same
Ethernet interface.

In order to support this, some interface structures are used as "virtual interfaces". Interfaces with an
index between 0 and PNETS - 1 correspond to physical interfaces. Indices between PNETS and
NNETS - 1 correspond to virtual interfaces, which are mainly used to store PPP session state.

Note that NNETS which is defined in nscfg.h needs to be larger than the number of physical
interfaces. The default value of 4 happens to provide a little room for this.

The Access Concentrator will provide up to NNETS — PNETS PPPoE sessions. Once this limit is
reached, the Access Concentrator will respond to incoming PPPoE Active Discovery Request (PADR)
packets with a PPPoE Active Discovery Session-confirmation (PADS) packet that contains an AC-
System-Error tag.

SLIP

SLIP is a link layer that connects two hosts over a serial connection. In order to configure an
interface to use SLIP, the SLIP protocol table should be specified using the “LINK” keyword when
calling Portconfig(). An example is provided in the Configuration chapter.

Using SLIP with Windows Computers

An smxNS system running SLIP may be connected to a larger network by using a Windows XP
computer as a gateway. In order to set up a SLIP connection on Windows XP, follow these steps.

1. Select Start, then right click on My Network Places and select Properties.
Select "Create a new connection"”. Select "Next".

Select "Set up an advanced connection”.

Select "Connect directly to another computer".

Select "Guest".

Enter a name for the connection, for example "SLIP".

Select the serial port for the connection.

©© N o g A~ w D

Select "Finish".
Windows displays a connection window. Select "Properties”.
10. Select "Configure..." from the "General" tab.

11. Deselect all checkboxes.

131

Chapter 7

12. Set speed to 115200 bps (this is the smxNS default, adjust as needed).
13. Select "OK" to close the modem configuration window.

14. Select the "Options" tab in the SLIP properties window.

15. Deselect all except "Display progress".

16. Select the "Networking" tab.

17. Select "SLIP: Unix Connection".

18. Under "This connection uses the following items:", select only "Internet Protocol (TCP/IP)"
and "QoS Packet Scheduler".

19. Again under "This connection uses the following items:", highlight "Internet Procotol
(TCP/IP)" and select "Properties".

20. Select "Use the following IP address:", and enter "192.168.2.1".
21. Select "Advanced". Deselect all "Advanced TCP/IP Settings".

22. Select the "WINS" tab. Deselect "Enable LMHOSTS lookup" if it is selected. Select
"Disable NetBIOS over TCP/IP".

Please refer to the section on Null Modem Links in the PPP chapter for additional details on direct
serial links and networking through a Windows system.

SMTP

Note: SMTP is available as an extra-cost option for smxNS.

SMTP is the Simple Mail Transfer Protocol, used for sending email. The optional smxNS email
client package allows an application to send an email message from a host connected to the internet.

int SMTPsend(struct outgoing_email *request)
The argument is:

request Pointer to an outgoing_email structure. This structure is filled in to describe the email
that should be sent.

struct outgoing_email {
const char *mailserver;
uint port;
const char *to;
const char *cc;
const char *from;
const char *subject;
const char *username;
const char *domain;
const char *password;
const char *type;
uint flags;
time_t localtime;
uint status;

%

mailserver is a pointer to the name of the mail server that should receive the email.

132

Network Applications and Protocols

port is the UDP port for the SMTP transfer.

to, cc, from, and subject are the familiar values one sees in email headers.

The to and cc strings can contain commas to specify multiple addresses.

The from field can be left blank if the username and domain fields are filled in.

The username, domain and password fields are also used as part of the authentication exchange if the
server requests CRAM-MDS5, NTLM, LOGIN or PLAIN authentication methods.

The type string is used to fill in a “Content-type:” email header if it is present.

The flags field can contain the SMTP_USE_SSL bitflag to direct the email client to set up an SSL
connection to the email server. It can also contain the SMTP_MUST_AUTHENTICATE flag to force
the SMTP transaction to be authenticated. If the server does not attempt to authenticate and this flag
is set, the call will fail and no information will be transferred.

The localtime field can be filled in with the local time in time_t format, or it can be left empty and
SMTPsend() will call smx_SysStimeGet() to retrieve time information.

The call returns 0 for success, < 0 for failure.

More detailed information on error returns can be obtained by examining the status field in the
outgoing email structure after the function call completes. The following values may be returned:
SMTPC_SUCCESS, SMTPC_GENERAL_ERROR, SMTPC_CONNECTION_ERROR,
SMTPC_AUTHENTICATION_ERROR, SMTPC_PARAMETER_ERROR,
SMTPC_RCPT_ERROR.

The body text of the email message comes from a callback function that the email sending application
needs to implement. The function prototype looks like this

int SMTPgetdata(char *buff, int buflen, struct part_info *i);

The first time SMTPgetdata() is called, buflen will be set to 0. This is a hint that the application
should fill in the the part_info structure as a response to this call. The following call will have a non-
zero value to indicate it is time to pass the content data. Here’s the part_info structure.

struct part_info {
int passthrough;
const char *encoding;
const char *type;
const char *filename;

¥

The part_info structure is cleared before SMTPgetdata() is called, so if no options are needed the
structure can be left alone. Here are some notes on the options.

passthrough is a flag to indicate if the data returned in buff should be returned directly to the SMTP
server. If passthrough is left as 0, the outgoing buffer will be terminated with CRLF before passing
the information to the server, otherwise the data is transferred without modification.

encoding, type and filename are used to set up headers if needed. Example values are “base64”,
“application/octet-stream” and “example.bin” respectively.

For the initial call in a sequence (where buflen = 0), SMTPgetdata() should return 0 to indicate that a
text message is about to be returned, and 1 to indicate that a multipart message will be returned.

After the initial call, the SMTP sending function will provide a buffer to hold the outgoing content
and will indicate the amount of room in the buffer in buflen. The SMTPgetdata() implementation

133

Chapter 7

should fill in buff and return the number of bytes transferred as the return value. When there is no
more data left to transfer, SMTPgetdata() returns 0.

For multipart transfers, SMTPgetdata() will continue to be called after the first part is complete.
When all parts have been transferred, SMTPgetdata() should return -1.

SNTP

SNTP stands for Simple Network Time Protocol, and it is a simplified form of NTP, the Network
Time Protocol. An NTP server can service both NTP and SNTP clients. smxNS includes an SNTP
client function, so that time information can be retrieved from a time server.

NTP time servers are capable of delivering 64 bits of time information, or better, with a resolution on
the order of nanoseconds. For the simplified SNTP version, 64 bits of time information are used, and
this can be used to correct error in the local time source. The time returned is based on an epoch of
January 1, 1900, and this may need to be converted for use with the local time support. The NTP
server provides universal time (UTC), and will need to be adjusted for time zone and daylight savings
time if desired.

Get Time using SNTP

134

The routine will attempt to retrieve the time from the specified NTP server. The function accepts a
string for the host name, and this can be either be an IP address or a name that can be looked up via
DNS.

Three functions are supplied that work together to retrieve time information from an NTP server and
adjust the local time.

s64 sns_SntpGet(char *timeserver)

The sns_SntpGet() return codes are:
1=0 Adjustment for NTP time
0 Time request failed

The 1900 epoch for NTP timestamps may be different from the convention supported by the C library
or other system software. For example, a system might use an epoch of January 1, 1970. The sample
code in nsdemo.c translates to this epoch by adjusting based on a point in time that is common to both
systems. In this case, the calculation uses UTC on January 1, 1972, which is established to be
2,272,060,800 as an NTP timestamp.

void sns_LocalNtpTimeAdjust(s64 adj)

sns_LocalNtpTimeAdjust() adjusts an internally maintained time offset so that a local time reading
can be combined with the NTP server information to provide an adjusted time.

u64 sns_LocalNtpTimeGet(void)

sns_LocalNtpTimeGet() reads the local time using the local time function and combines it with the
offset provided by the NTP server. The return value is an unsigned 64-bit value in NTP format. The
upper 32 bits represent whole seconds and the lower 32 bits hold fractional seconds. The epoch for
NTP is January 1, 1900.

Here is an example that combines these three functions to update and then retrieve the adjusted
current time in NTP format, adjusted to include only include the elapsed seconds information.

Network Applications and Protocols

u32 ntptime;
sns_LocalNtpTimeAdjust(sns_SntpGet(SNTPSERVER));
ntptime = sns_LocalNtpTimeGet() >> 32;

The combination of sns_LocalNtpTimeAdjust() and sns_SntpGet() should be called periodically to
adjust for drift in the local time source. sns_LocalNtpTimeGet() can be called any time to get the
current reading of the time adjusted by the offset provided by the NTP server.

A public pool of time servers has been organized, and is available using the name “pool.ntp.org”.
More information on this project is available at http://www.pool.ntp.org. This should be a good
choice for the timeserver name, so long as DNS support is available.

The NTP messages are sent over UDP, and there is the chance that they will be lost. This function
does not contain retry logic, but this could be implemented at the application level. The tests we
conducted show the communication with servers to be reliable, despite the transport protocol.

Telnet

Telnet is the usual TCP/IP method of remote terminal access. The client part of Telnet acts as a
terminal emulator. The server part depends quite a bit on the circumstances, but is usually a
command processor with a remote login. The figure below shows this relationship.

Telnet Terminal
rver i
Telnet Serve Driver
Client
Command Shell

Figure 7-1: TCP Remote Terminal Access

smxNS Telnet support is implemented as a server function that handles Telnet sessions. The function
takes a connected Telnet connection as an argument, and uses a callback function to submit the
command line supplied by the user and retrieve a response.

135

Point To Point Protocol

8. Point To Point Protocol (PPP)

Overview

The Point to Point Protocol (PPP) is a link layer protocol that connects two hosts over a serial
connection. This is commonly used in data acquisition and Internet connectivity. PPP is commonly
used to provide TCP/IP networking for end node systems that have at least one serial port, but no
Ethernet controller.

For dial-up purposes (that is, using a modem and telephone line), a dialer is included. It is also an
option to use a personal or vendor specific dialer in place of our mechanism, though we cannot
support this. smxNS dialing does require the use of a precompile-time interpreter, provided in DOS
executable format with source code. A compiler/linker for the development OS should not have
problems turning this into an executable file. It is written in ANSI C.

smxNS PPP is based on RFC 1661, and this is the most current specification of PPP at the time of this
writing. Related RFCs that were used in the PPP implementation include:

1332 IPCP

1334 PAP

1662 HDLC framing
1990 MP

1994 CHAP

2433 MS-CHAP

PPP in Theory

The Point to Point Protocol is not a server/client system. It is commonly used that way, but only
because it is convenient to do so. We will use the following conventions: the side who initiates
communications is the client and the side who is waiting to be contacted is the server. The host is the
side of reference (i.e. “this” side); the peer is the side opposite the reference (i.e. "that" side). So the
server can be peer or host and the client can be peer or host (or vice versa for either). The peer may
also be called a remote host.

There are two necessary phases within PPP: Link Control Protocol phase and Network Control
Protocol phase. These are referred to as LCP and NCP respectively. The LCP used by PPP is most
recently specified in RFC1661. The NCP phase is specified by the network layer protocols used. In
smxNS, the Internet Protocol (IP) is used in our network layer, so we use the Internet Protocol
Control Protocol (RFC1332). A third phase, commonly included at the end of the LCP phase and
before the NCP phase, is authentication. Generally, the Password Authentication Protocol (PAP from
RFC1334) or Challenge Handshake Authentication Protocol (CHAP from RFC1994 or MS-CHAP
from RFC2433) is used.

137

Chapter 8

LCP Phase

The LCP phase determines the requirements and capabilities of both sides of a PPP link before actual
communications begin. Let us refer to the client as the host and the server as the peer. Typically, the
client (host) sends a configure-request packet ("conf-req") to the server (peer) to initiate
communications. This packet contains a list of options that the host would prefer to use in the future.
The peer should respond with either a configure-acknowledge (“conf-ack™) or a configure-negative-
acknowledge (“"conf-nak™) according to its satisfaction with the options within the conf-req. Also,
when a peer receives a conf-req, it will send a conf-req back with the options it would like to use, so
the process is mutual. If the host receives a conf-nak, then the peer was dissatisfied with the options
enabled and the host must reconfigure itself and send a new set of options corresponding to the
wishes/abilities of the peer in a new conf-req. If the options nak'd (negatively-acknowledged) are
necessary for correct functioning of the host, the host must terminate the link negotiations.

If the host received a conf-ack, the host must wait to receive the peer's conf-req. If the host gets the
conf-req and the options requested are acceptable, the host must send a conf-ack. At this point, the
LCP phase is Open and the next phase should be initiated. If a timeout occurs before the conf-req is
received, the host must re-send its conf-req and restart its half of the negotiations.

Authentication Phase (PAP/CHAP)

Authentication is used to decide what level of access the authenticatee should have to the
authenticator. This is usually a "all- or-nothing" sort of thing. Using the same pair from LCP as an
example, we continue on to authentication. Let us assume that the peer (server) requested PAP in its
conf-req. This would require the host (client) to now send an authentication-request ("auth-req").
This packet includes a user ID and a password. smxNS does not encrypt these. If the peer finds the
user ID and the password acceptable, the host should receive an authentication-acknowledge (“auth-
ack™) and authentication would be completed. If the peer finds the user 1D and password
unacceptable, the host should receive an authentication-negative-acknowledge (“auth-nak™) and the
link should be terminated by the peer (this is not necessarily true, however).

Let us go back to the end of LCP and assume that the peer had requested CHAP in its conf-req instead
of PAP. The peer (server) would then send a challenge (some unique value to be hashed). The host
(client) would then tag on its password (secret) to the challenge and hash it with MD5. It would place
this hashed value in a response and send it back. The peer would hash what should be the same thing
on their side and compare it to the original. If they match, the peer would send a success packet and
authentication would be concluded; otherwise, it would send a failure packet and the link should
terminate (although it may continue on). There are two distinct advantages about CHAP over PAP.
Primarily, the raw password is never sent over the network (this does mean that both sides must
maintain a copy of the password). Secondarily, the authenticator authenticates the authenticatee (i.e.
sends the first packet) rather than forcing the authenticatee to authenticate itself to the authenticator.

MS-CHARP is different than CHAP. It makes use of the MD4 algorithm to hash the password.

Mutual authentication is appropriate, and often suggested as a means of increasing security, though
most "servers" will not allow this. smxNS will allow this, though some work may need to be done for
its role as an authenticator. smxNS has no pre-configured mechanism for storing a table of User IDs
and secrets (passwords) for potential peers, though the structure to access that table is in place.

NCP Phase

Once the LCP is finished (and authentication if necessary), the NCP phase(s) must start. We use
IPCP, as mentioned earlier. The behavior is nearly identical to the LCP phase, but its purpose is not

138

Point To Point Protocol

to set up link layer communications but to set up network layer communications for the IP protocol,
including the IP address.

Optionally, smxNS allows a host to use Van Jacobson TCP/IP header compression. It is negotiated
during IPCP. Throughput should increase slightly when using this.

PPP in Practice

Usage

Set up the network interface to an appropriate state. Here are examples for use with PPP:

Portcreate(“ppp0™);

Portconfig(“ppp0”, “IP”, “0.0.0.0™);

Portconfig(“ppp0”, “LINK”, “PPP”);

Portconfig(“ppp0”, “DRIVER”, “NS16550”);

Portinit(“ppp0”, “IRNO=3 PORT=0x2F8 CLOCK=115200 BAUD=9600");

"ppp0" — A smxNS host that connects to other hosts through a null modem. It has no IP
address assigned statically so it is assumed that the peer will provide one during IPCP.

Portcreate(“pppd0”);

Portconfig(“pppd0”, “IP”, “0.0.0.0”);

Portconfig(“pppd0”, “LINK”, “PPP”);

Portconfig(“pppd0”, “DRIVER”, “NS16550);

Portconfig(“pppd0”, “DIAL”, “ENABLE”);

Portinit(“pppd0”, “IRNO=4 PORT=0x3F8 CLOCK=115200 BAUD=9600");

"pppd0" — A smxNS host that connects to other hosts through a modem. It has no static IP
address so it is assumed that the peer will assign one during IPCP. The only difference between
this interface configuration and "ppp0" is the “DIAL” attribute is turned on. The macro,
DIALD, needs to be configured to 1 in include\pppconf.h in order to use this entry.

Portcreate(“pppdl”);

Portconfig(“pppdl”, “IP”, “206.251.94.242");

Portconfig(“pppdl”, “LINK”, “PPP”);

Portconfig(“pppdl”, “DRIVER”, “NS16550”);

Portconfig(“pppdl”, “DIAL”, “ENABLE”);

Portconfig(“pppdl”, “PEER”, “206.251.94.243");

Portinit(“pppdl”, “IRNO=3 PORT=0x2F8 CLOCK=115200 BAUD=9600");

"pppd1"” — A smxNS host that connects to other hosts through a modem. This host has an IP
address. If a peer dials into it, this host will be able to assign the peer the IP address from
"PEER". The macro, DIALD, will need to be configured to 1 in include\pppconf.h in order to
use this entry.

Note that for PPP connections, the PPP peer will act as the default router unless another default router
is configured. If necessary, the host may have other interfaces to which subnetting still applies. If
anything is not in that subnet, the default router, specified by SetDefaultRouter(), will be used.

The BIN directory contains the file prefrmt.exe. This is in DOS executable format. The source code
for this file is in the BIN\PREFRMT directory under the name prefrmt.c. If the development machine
cannot execute DOS applications, prefrmt.c should be compiled for the appropriate OS. The source
code's only dependancy is having script.h and script2.h in the include path. If script2.h does not exist,

139

Chapter 8

make an empty file in the same directory as script.h called "script2.h" (it is normally generated during
the standard build process). Make sure the resulting executable file ends up in the BIN directory.

If scripted dialing will be used (DIALD == 1), the script files may require modifications to interact
more correctly with the modem being used.

dial-in.scr — This is used to allow a remote host to dial into smxNS. It uses manual answer mode
but may be changed to use auto answer.

dial-out.scr — This is used to dial out to a remote host over a line. At least the phone number will

have to be changed along with any special considerations for flow control or other modem or
line specific properties.

dial-dwn.scr — This is made to de-initialize a modem after a session has ended. This is not
absolutely necessary, but it makes it easier to bring the modem up the next time.

See the "Scripting" section later in this manual for assistance with the function of these files.
When first starting or if scripts or pppconf.h options are changed, consider turning PPP_DEBUG to 1.

This will make changes and their effects more readily apparent. It will also reveal areas that may
need adjustment.

Configuration

140

All PPP related macro values are defined in include\pppconf.h. They are quite extensive and some of
them interact with each other, so it is important to understand what they do when changing them. In

the state it is shipped in, PPP should be able to establish a link with most implementations using a null
modem.

PPP_DEBUG

smxNS PPP comes with a module called pppdebug.c which can parse and print out, with
Nprintf(), the frames that are sent and received by the link. This macro enables/disables this
capability. It is useful to set this macro to 1 while configuring the PPP link. Once the link is
behaving appropriately, this can be set to 0 and only warnings and errors will be printed out with
Nprintf(). SNS_DEBUG_LEVEL takes precedence over this value.

DIALD
This specifies whether PPP will use the dialer automatically. See later sections of this document
for further information.

DBUFFER

PPP starts negotiations when the application forces the link up explicitly or when the first

datagram is transmitted. This option tells PPP to buffer datagrams while the link comes up. By
default this is on.

DBUFFER_SZ

This tells PPP how many buffers to queue up while waiting for the link to become established.
The default value is NBUFFS/NNETS so that PPP doesn't starve the rest of smxNS out of buffers
but has enough to effectively perform the function of dial-on-demand.

IDLE_TOUT
This value specifies the amount of vacant time in seconds (TimeMS()/1000) in the link before it is
closed manually. As delivered, it is disabled with a value of 0.

ECHO_TOUTMS

This value specifies the amount of time (in TimeMS() milliseconds) in an open link between echo-
request packets being sent. This can be used to check the link quality or to check if the peer has
disappeared (if the peer loses connectivity without warning).

Point To Point Protocol

ECHO_RETRIES
This value specifies the number of echo-request packets sent without a reply before the link is
deemed bad and is set to close. Setting ECHO_TOUTMS to a positive non-zero value enables
this.

PPP_USERID
Because the PPP authentication user ID may differ from the application level user 1D, we provide
this value. It defaults to the application layer user ID. This value is set in Portinit() and can be
changed thereafter through the ioctl routine (see the PPP ioctl Routines section).

PPP_PASSWD
Because the PPP authentication password may differ from the application level password, we
provide this value. It defaults to the application layer password. This value is set in Portinit() and
can be changed thereafter through the ioctl routine (see the PPP ioctl Routines section).

AUTHENT
We support PAP, CHAP and MS-CHAP authentication. This macro specifies which of those we
will allow a peer to use on us. For client-oriented applications, this will usually be set to allow all
three. For server-oriented applications, most people turn this off to save code space. All three are
enabled by default.

USE_NT
Set this to one to use NT style challenge response. Set to zero for Lan Manager style challenge
response. It is best to leave this on unless the remote host is a Lan Manager or an old Windows
machine.

REQAUTH
This specifies which authentication will be requested by the smxNS host. For CHAP/MS-CHAP,
AUTH_ALG must also be set (see below). For PAP, it is what it is.

AUTH_ALG
For MS-CHAP, this value must be set to CHAPalg_MD4; for normal CHAP, the value must be set
to CHAPalg_MD5.

TOUTMS
This is the elapsed time in milliseconds (TimeMS()) before time out. Our default is 2.5 seconds
(2500) though RFC 1661 sets the default at three seconds. It has been noted that race conditions
occur more frequently with smaller values, though every link is different. Links that come up
slowly may need a smaller timeout period. Links that do not come up at all may require a longer
timeout period.

TOUT_GROW
This specifies whether or not the restart timer should start small and grow to the maximum
timeout value (TOUTMS) as link quality is assessed to be poor. It is off by default. When on, this
may cause more retransmissions than necessary at the start of negotiations.

MAXCONF
This is the value in the restart counter for both LCP and IPCP. It should default to ten. The
configuration packet will be resent this many times without response before the link is set to close.

MAXTERM
This is the value in the restart counter for LCP when closing. It should default to three. The
terminate request packet will be resent this many times without acknowledgement before the link
is forced closed.

COMPRESSION
This can be set to request and support protocol field and address/control field compression and/or
VJ TCP/IP header compression. It is generally best to leave this at 3 to support both types as this
will increase your throughput slightly. If code size is favored, it is best to leave this at either 1 (for

141

Chapter 8

142

address/control/protocol field compression) or 0 (for no compression). VJ compression requires a
great deal of code, but the others do not.

MAXSLOTS
Maximum slots for TCP/IP (VJ) header compression. See RFC 1144 for more information or
leave them at their default values. They basically correspond to the number of TCP connections
coexisting on the link.

PPP_MRU
Specifies whether or not the host will negotiate the MRU (Maximum Receive Unit) for smxNS.
This value is equivalent to (MAXBUF - MESSH_SZ - LHDRSZ) in smxNS. Unless you are
planning on reducing buffer size, this is not necessary.

MAGICNUM
Specifies whether or not the host will use Magic number with LCP. Unless you really want to
save on the amount of data sent, leave this on. It is standard for almost all PPP links.

ASYNC
RFC 1662 tells of HDLC framing and the character escaping mechanism. This option will request
that the peer use the RACCM value (see below) as its character map when sending to us. This
option is enabled by default.

RACCM
This is the Remote Asynchronous Control Character Mapping. This option is only negotiated if
ASYNC is enabled (see above). It is a 32-bit field where each bit corresponds to a character <
0x20. If the bit is set, PPP HDLC encoding must escape the character. Therefore, a value of
0x00000000 increases throughput the most but decreases reliability. A value of Oxffffffff escapes
all characters and decreases throughput. The default value is 0x00000000.

IPCP_DNS
RFC 1877 includes extensions for PPP that allow configuration of DNS addresses during IPCP.
This is not recommended except for dedicated devices with minimal application functionality and
is disabled by default.

There are two parts to this option. The active configuration and the passive configuration. When
the active portion is enabled (by setting bit 0 to 1), the host will send a configure-request with the
current DNSiid. Typically, this will not have been configured by the application and will be
0.0.0.0 for both primary and secondary addresses. When the passive portion is enabled, the host
will do nothing unless a configure-request is received for either the primary or secondary DNS in
which case the host will reply with a Nak of the address if it does not match the host's DNSiid as
configured by the application through SetDNS().

MP
The Multilink Protocol (RFC 1990) is enabled by a new Maximum Reconstructed Receive Unit.
The endpoint discriminator is negotiated along with the MRRU. This option is not tested and is
not considered a supported feature.

MPBUF
The number of buffers MP packets can occupy. Reasonably, no host should fragment any packet
into more pieces than the number of physical connections.

AUTH_ACK_REPLY
When the peer passes authentication, this string is sent. It does not matter what it is, though the

peer application may see it.

AUTH_NAK_REPLY
When the peer fails authentication, this string is sent. In MS-CHAP, a result code and retry flag is
sent instead. If SNS_DEBUG_LEVEL >=5 and PPP_DEBUG is on, the Message field of this
packet will appear as strange characters because of the MS-CHAP result code.

Point To Point Protocol

QUALITY
This allows the peer to use link quality report monitoring. Very few implementations support this
so you will want to leave this off. If you do wish to use this, contact Micro Digital PPP support.

Scripting

In order for PPP to function over a modem, there are three non-error cases that must be handled:

1. If PPP needs to actively establish a link to a remote host over a modem line, the modem needs
to dial out to the remote host prior to the initiation of PPP.

2. If PPP is waiting for a remote host to establish a link over a phone line, it must configure the
modem to wait for such an event and perform some actions when the event occurs.

3. If either the host or the peer terminates PPP, the modem should be configured to a default state
to wait for further action.

In order to facilitate this operation, there are several scripts used by smxNS dial-on-demand:

1. pppsrc\dial-out.scr — This is written to configure the modem to dial a phone number to a
remote host for active links. Once it is completed successfully, PPP is initiated. It checks the
condition of the modem, changes it to off-line mode if necessary and dials the phone number.
If the attempt to connect fails because of a modem error condition (e.g. no dialtone), the script
will try a few more times. If the modem is not responding, the script will attempt to bring the
modem to off-line mode (see dial-dwn.scr below). The phone number is defined as a global
variable that can be changed in your application. There is more information on variables in
scripts in the "Commands" section following number 3 below.

2. pppsrc\dial-dwn.scr — This is written to configure the modem to be in terminal mode after
being in on-line mode. It hangs up the line. In order to force a modem to off-line mode, most
require that the string "+++" be sent surrounded by a guard time of 1 or 2 seconds of silence.
The default script will successively increase the guard time from 1 to 5 seconds if the modem is
not responding. At that point the script will fail. 1f the modem returns to terminal mode, the
script succeeds.

3. pppsrc\dial-in.scr — This is written to configure the modem to wait for an incoming call and
answer it when it comes. PPP will wait passively once the script finishes with success. With
the current setup, this script is executed while PPP is down for all links. If you will only be
dialing out, an empty file (null script) can be used in its place in order to save a little CPU time.
The current script should never finish unless an incoming call is received.

There are three additional scripts for logging into Windows based machines when using a physical
null modem instead of a conventional modem.

1. pppsrc\ms-out.scr — This is written to send the string CLIENT to the passive machine. The
string, CLIENTSERVER, is expected in response after which the script is successfully
completed and PPP data can flow.

2. pppsrc\ms-dwn.scr — This is written to disconnect from a directly connected Windows
machine. It sends the string, None, and terminates.

3. pppsrc\ms-in.scr — This script waits forever for the string, CLIENT. If received, the string
CLIENTSERVER is sent followed by some carriage returns and the script completes
successfully so that PPP data can flow.

Commands used by scripts:

FILE name
Name the file being used (‘'name' in this case).

143

Chapter 8

144

GOTO 3
Go to tag 3 unconditionally.

3
This marks the position for tag 3

CHECK 13
If the internal status is good
gototagl,
Else
gototag 3.

INIT
Make the internal status good.

Y%retries 5
Set the initial value of %retries to 5. Future
references to %retries will become an integer value
atruntime. The name is arbitrary (like any
variable name). Any characters can be in a variable
name except for \r', \n'or ' ".
9Ybad\rvariablename
Y%bad variable name
%good_variable_name
Y%bad_variable_name_this_is_just_too_long
#

The default variable name length is 30 characters.

-- %retries
Decrement the value of %retries by one. Include a
space between the "--" and the '%'.

++ %retries
Increment the value of %retries by one. Include a
space between the "--" and the '%'.

(Y%retries<0) 12
If the value of %retries is less than O,
goto 1,
Else
goto 2.
#
>, <, >=, <=, == are supported operators.
#
Either of the two comparison values can be an integer
variable or integer value. Any variables must be
locally defined in a script.

$SUSERID test

Declare USERID as a pointer to "test". Future
references to $USERID will become "test”. Note that
USERID is a global that can be referenced by your C
application. Itis a char *. Don't be afraid to
point it to a new location.

#include "..\pppsrc\script.h”
char *new_string = "new_string";
void func(void)

HoH HH HHH R

Point To Point Protocol

{
USERID = new_string;

#}

SEND ATD 1 $PHONENUM \r

Send 8-bit data string to modem. This particular
sequence will dial the phone number prefixed with
al. The "\r" is necessary for most modems to
signal the end of a command sequence. NOTE: a "'
(space character) is required between a variable
name and any other form of data. This makes
variables distinct while parsing the script.

HoHHHHH

EXPECT 5 OK
If "OK" is not received in 5 seconds, make the internal
status bad and go on.
If "OK" is received in 5 seconds or less, just go on.

PAUSE 5
Yield control for five seconds.

DEBUG 3 Hello, World!
If SNS_DEBUG_LEVEL >=3,
print "Hello, World!" to stdout.
Else,
preprocess this command out.

>logArray 20
Create an array of 20 bytes to log with

LOG >logArray
Start putting incoming data into array

NOLOG
Stop saving incoming data

These scripts may need modification for any particular environment. The rules for doing so are
mentioned below. While going though them, it is recommended that a dial script be at hand to make
references tangible. It is important to remember that the script is parsed into a series of arrays at build
time. During execution of the application the arrays are stepped through to discover their outcomes.

Read time rules

- Each command must be on its own line.

- Anything following '#, the comment character, on a single line will be ignored.

- A file line will be truncated after 80 characters.

- prefrmt always expects the scripts to be in the order dial in, dial out and dial down.
Run time rules

- The status flag is internal. The status becomes good when INIT is performed. The status
becomes bad when an EXPECT or SEND times out (i.e. the expected data is not received or sent
data never sent). Until the status flag is reset, SEND and EXPECT operations will be skipped.

- Except for GOTO, CHECK and the if-else operation, all of which move the script index to the
appropriate TAG value, the commands are performed in the order of the script.

145

Chapter 8

Variable usage

- Variables must be declared before they are used. String and log variables have global scope,
however, so they can be declared in a prior module and used in a later one:

dial-in declares ussDialVar
dial-out uses ussDialVar without declaring it

- Do not define a single variable multiple times. Remember, string and log variables have global
scope.

- Variables must be surrounded by space characters so that they can be differentiated from other
strings. Upon transmission or reception, the spaces will be disregarded.

- For SEND or EXPECT, data is concatenated at run time as if there were no space or tab
characters. Carriage returns can be placed in a string by using "\r" or "*M". These can be used
without spaces between them and other strings; however, there must be a space between them
and variable references.

Suggestions

- We recommend that SEND and EXPECT are always performed in pairs. 1f a DEBUG statement
or other time consuming command is performed in between, chances are that the EXPECT will
not be installed early enough to receive the data provided from the modem as a response to the
SEND information.

- Loops that may require a significant amount of time should have a SEND, EXPECT, PAUSE or
DEBUG statement inside of them. All other commands are concatenated in execution and will
block. For example, the following should never be done because it will starve the rest of SmxNS.

INIT
1
%temp 30000
(%temp >=0) 12
-- %temp

2

Adding the following just after tag 1 will remedy the situation.
PAUSE 0

Notes on Special Cases

Dial On Demand

Although it is good to be able to send/receive data regardless of the state of the link, our present
implementation has no direct access to the driver. This means that certain important functions (like
checking the wire status) must be performed with timeouts and assumptions.

A second concern with dial-on-demand is that the link often requires a great deal of time to come up
(configuring the modem, dialing out, bringing LCP, authentication and NCP up). If the upper layers
require timely feed back from the remote host, replies may not arrive quickly enough. For purposes
such as forwarding segments periodically over an open connection, it may serve a valuable purpose.
There is a method to force the link to be either up or down. See the appendix for details.

146

Point To Point Protocol

One last area of concern is the IP address negotiations used by PPP. If the dial-up server requires that
the host change its IP address, the connection may become invalid. Therefore, make sure that the
original IP address remains through each demand dial session. One method of gaining this
information is through the PPP ioctl() function and the PPP signal functions. Modify the following
macro in pppsig.h:

extern lid previous_ip;
#define PPPSIG_IPCP_UP(netno) \
do {\
lid ip; \
ussPPPTable.ioctl(&nets[netno], \
ussPPPHostAddressGetE, &id, 4); \
if (id.1 I= previous_ip.l) {\
PPPSIG_PRINT("Warning: IP address changed!\n", netno); \
abort_application_connections(); \
ja
} while (0)

The PPPSIG_IPCP_UP() macro is chosen because it always procedes the IPCP layer where IP
addresses are negotiated. The do { ... } while(0) phrase is used to encapsulate the command as a
single expression.

Null Modem Links to Window Machines

Three special scripts were created to support this operation more efficiently. They are ms-in.scr, ms-
out.scr, and ms-down.scr in the pppsrc directory.

Special considerations:

Windows 95 — This operating system would not behave as a dial-up server so SmxNS was always
the passive host when connecting to Win95 machines.

Windows 98 — We were not able to install a null modem into the operating system and were
forced to seek a third party solution. There was no problem using this operating system with
conventional telephone modems. Contact Micro Digital PPP support for information about the
driver used if the null modem cannot be configured.

Windows NT — A special null modem cable or adapter was required to allow a physical
connection between the hosts. The Microsoft web site has ample information about this issue.
Otherwise, everything worked as expected.

Windows 2000 — A null modem cable is required. Steps for setting up the connection:
1. Select Start, Settings, Network and Dial-up Connections.
2. Double click on "Make New Connection".

3. Both a "Network Connection Wizard" and a "Location Information™ dialog box will appear.
In the "Location Information” dialog box, fill in a dummy value in the "What area code (or
city code) are you in now?" box, and select "OK".

From the "Phone And Modem Options” dialog box, select "OK".
Now the "Network Connection Wizard" dialog box remains on the screen. Select "Next>".

Select "Connect directly to another computer".

N o o &

Select "Guest".

147

Chapter 8

8. Select the serial port for the connection.

9. Select "For all users".

10. Enter a name for the connection, for example "PPP".

11. Select "Finish".

12. Windows displays a connection window. Select "Properties".

13. Under the "General" tab, make sure the communication port that you selected earlier is still
selected.

14. Select "Configure..." from the "General" tab.

15. Deselect all checkboxes.

16. Set speed to 115200 bps (this is the smxNS default, adjust as needed).

17. Select "OK" to close the modem configuration window.

18. Select the "Options" tab in the PPP properties window.

19. Deselect all except "Display progress".

20. Select the "Networking" tab.

21. Select "PPP: Windows 95/98/NT4/2000, Internet".

22. Under "This connection uses the following items:", select only "Internet Protocol (TCP/IP)".

23. Again under "This connection uses the following items:", highlight "Internet Procotol
(TCP/IP)" and select "Properties"”.

24. Select "Use the following IP address:"”, and enter "192.168.2.1". Any unused IP address
should work, but one that is "next" to the address assigned to the attached PPP port is easier to
keep track of.

25. Select "Advanced". Deselect all "Advanced TCP/IP Settings".
26. Select the "WINS" tab. Deselect "Enable LMHOSTS lookup” if it is selected.

27. Select OK. You will be asked "This connection has an empty primary WINS address. Do
you want to continue?". Select "Yes".

28. Select OK two more times to close the configuration dialog boxes.

Windows XP — A null modem cable is required. Here are the steps for setting up the connection.
Select Start, then right click on My Network Places and select Properties.

Select "Create a new connection”. Select "Next".

Select "Set up an advanced connection".

Select "Connect directly to another computer".

Select "Guest".

Enter a name for the connection, for example "PPP".

Select the serial port for the connection.

N o g ~ w N PP

Select "Finish".

148

Point To Point Protocol

9. Windows displays a connection window. Select "Properties".

10. Select "Configure..." from the "General" tab.

11. Deselect all checkboxes.

12. Set speed to 115200 bps (this is the smxNS default, adjust as needed).
13. Select "OK" to close the modem configuration window.

14. Select the "Options" tab in the PPP properties window.

15. Deselect all except "Display progress".

16. Select the "Networking" tab.

17. Select "PPP: Windows 95/98/NT4/2000, Internet".

18. Under "This connection uses the following items:", select only "Network Monitor Driver",
"Internet Protocol (TCP/IP)" and "QoS Packet Scheduler".

19. Again under "This connection uses the following items:", highlight "Internet Procotol
(TCP/IP)" and select "Properties"”.

20. Select "Use the following IP address:", and enter "192.168.2.1". Any unused IP address
should work, but one that is "next" to the address assigned to the attached PPP port is easier to
keep track of.

21. Select "Advanced". Deselect all "Advanced TCP/IP Settings".

22. Select the "WINS" tab. Deselect "Enable LMHOSTS lookup” if it is selected. Select
"Disable NetBIOS over TCP/IP".

23. Select OK until all the configuration dialog boxes are closed.

To enable traffic to flow over this connection, first start the system running smxNS, then bring up the
Network Connections dialog box by selecting Start | My Network Places | View Network
Connections. Now double click on the name of connection that you configured, i.e. “PPP”, and you
should see the connection status change from “Disconnected” to “Connected”.

Once the connection has been established, the directly linked XP host computer will be able to contact
the smxNS system at its IP address. In order for other systems to establish connections with the
smxNS system, they must be updated with routing information that indicates that the SmxNS system
is accessible via the linked XP host. In addition, the XP host must have IP forwarding turned on in
order for IP datagrams to be forwarded between its LAN connection and the SLIP connection.

In order to turn on IP forwarding on a Windows XP computer:

Start Registry Editor (regedit.exe).

Open the following registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

If the value of IPEnableRouter is not 1, change it to 1.

o rp w N oRE

Reboot the computer.

The Windows route command can be used to install a static route that allows other Windows
computers on the LAN to reach a system that is connected via SLIP or PPP. This is best illustrated by
an example. An smxNS system is configured to use PPP over an interface with an IP address of
192.168.2.2. The computer that is directly connected to the smxNS computer has an Ethernet
interface with the address 192.168.1.100, and the other computers on the LAN are on the 192.168.1.X

149

Chapter 8

MS

network. The following route command can be used to update a Windows XP routing table so that it
can access the smxNS system.

C:>route add 192.168.2.0 mask 255.255.255.0 192.168.1.100

In the same scenario, if the SLIP connected sSmxNS system needs to communicate with systems on the
Internet, the default router should be configured with a static route to the SmxNS system. If the
default router is consumer device, this configuration may be possible through an advanced LAN
configuration web page. The web GUI should take similar parameters.

To summarize, when a direct serial link connects an smxNS system to a Windows computer:

1. The smxNS system should be able to communicate with the directly connected Windows
computer without any special configuration changes.

2. The smxNS system should be able to communicate with other systems on the LAN once IP
forwarding is turned on in the directly connected Windows computer, and once the peer computer
on the LAN has been updated with information on the route to the SmxNS system.

3. The smxNS system should be able to communicate with the Internet once IP forwarding is turned
on in the directly connected Windows computer, and once the default gateway has been updated
with information on the route to the smxNS system.

-CHAP Authentication

This form of authentication is commonly performed when establishing a link with a Microsoft system.
Note that the domain must be prepended to the user name. At the time this was implemented, one NT
server had the domain USSOFTWARE so a person's user 1D was "USSOFTWARE\\name".
Authentication will fail without this. Of course, if SmxNS is the authenticator rather than the
authenticatee, the user ID is whatever smxNS says it is. Also, NT supports passwords of up to 256
Unicode characters, but we recommend that you not make use of this feature and use conventional
passwords.

Routing and IP Addresses with PPP Interfaces

150

IPCP has the ability to change an interface's IP address. Many client-oriented interfaces will not
know either their own IP address, the peer's IP address or both. The host address is changed if it is
0.0.0.0 and the remote host can provide a new one. In order to bring about the features mentioned,
there are two cases to consider. Each case can be configured using the Portconfig() function.

CASE 1:

If smxNS is a server, an IP address to be assigned to the remote host can be specified by
calling Portconfig() with the “PEER” attribute. When the peer suggests that its address

be 0.0.0.0, smxNS will respond with a hint to use the one statically defined and the peer
should take the hint.

CASE 2:

If sSmxNS is running as a client with a PPP interface, it is recommended that (unless the
host IP address is known to not change) the host address be defined as 0.0.0.0. The
subnet mask must be set to a value corresponding to what will be true of the future IPs
and the rest of the network in general. This means that some information must be known
about the remote network. For those situations where there is only one interface on your
smxNS host, subnet masks do not matter because the remote host will always be the
default router. If you wish to communicate with the peer, you can retrieve the IP address
using the PPP ioctl() function as described below.

Point To Point Protocol

Another way to gain access to the IP addresses is through the PPP ioctl() function. The following
options are available:

ussPPPHostAddressGetE — Get the host address
ussPPPHostAddressSetE — Set the host address
ussPPPRemote AddressGetE — Get the remote address
ussPPPRemote AddressSetE — Set the remote address

Note that the 'Get' ioctl() operations can only yield useful information after IP address negotiations
(i.e. when PPP is open). The 'Set' ioclt() operations can only be used prior to link negotiations (i.e.
when PPP is closed).

Renegotiation of IP Address

PPP always negotiates the host and peer IP addresses. In the case where the host address is unknown,
PPP will request a 0.0.0.0 address and the peer will reply with a valid one to use instead. Once PPP is
established, the new IP address is assigned to the host. If PPP goes down and then renegotiates a new
link, the last negotiated host address will be requested. Usually the peer will assign a new address if
the requested one is not valid, but it may be the case that the peer cannot handle this address and will
either abort the link or let network layer operations fail by administering incorrect IP addresses. For
cases such as this, the smxNS PPP must be configured to reset the host address to 0.0.0.0 between
PPP negotiation sequences. The best way to do this is to assign the host address once LCP completes.
The macro, PPPSIG_LCP_UP(netno), in pppsig.h can be defined to a value to modify the host IP
address. The host address is stored in the nets[netno].haddr field. Here is an example macro
definition:

#define PPPSIG_LCP_UP(netno) \
do {\
lid id; \
ussPPPTable.ioctl(&nets[netno], \
ussPPPHostAddressSetE, &id, 4);\
} while (0)

The PPPSIG_LCP_UP() macro is chosen because it always precedes an IPCP request.

The do { ... } while(0) phrase is used to encapsulate the command as a single expression.

Handling Loss of Carrier

Sometimes modems go off-line or a line breaks without warning. This situation can be dealt with in a
variety of ways. The following cases examine a few examples and their relative advantages and
disadvantages.

CASE 1 Application level timeout

Protocols such as TCP or other application level protocols often have timeout periods for
expected data. If the PPP link becomes disestablished, there is a good chance that the
upper-level protocols will be able to detect this error and restart the application when they
notice that their data is not arriving in a timely manner.

Advantages
requires no initial engineering effort

requires no extra code

151

Chapter 8

152

CASE 2

Disadvantages

requires a lot of time (depending on the application) to notice that data is not
arriving.

PPP echo-request detect loss of link

PPP has a feature similar to the ping operation of IP level systems called the LCP echo-
request packet. smxNS PPP can be configured to transmit this echo-request packet
periodically. If a certain number of packets are sent in a row without any reply, the link
is automatically terminated.

As an example, define the following in pppconf.h:

#define ECHO_TOUTMS 2500
#define ECHO_RETRIES 3

Given the above definitions and a broken link, PPP will recognize the failed link in a
maximum of ECHO_TOUTMS * (ECHO_RETRIES + 1) milliseconds.

The application will probably need to be informed of the condition. The
PPP_LINK_DOWN(netno) macro from pppsig.h can be used for this purpose.

Advantages
requires minimal engineering effort
relatively quick response time
Disadvantages
requires a timeout period with retransmission to detect a physical line break
does not detect looped-back condition

application must be signalled of link failure

CASE 3 PPP echo-request detect modem looped-back

If a Hayes modem is being used, the modem may enter echo mode automatically when it
goes off-line. This feature enables PPP to depend on the magic number within the echo-
request packet to detect a looped-back link. To use this feature, MAGICNUM,
CHECK_LOOPED_BACK and ECHO_TOUTMS must all be enabled in pppconf.h.
Once enabled, PPP will transmit echo-request packets periodically. It will notice that the
packets contain the same magic number and will ignore them which will eventually force
PPP to conclude that the peer is no longer available.

As an example, define the following in pppconf.h:

#define MAGICNUM 1

#define CHECK_LOOP_BACK 1
#define ECHO_TOUTMS 2500
#define ECHO_RETRIES 3

The above options will for PPP to send an echo-request packet every 2.5 seconds. If the
modem goes off-line it will start echoing back all data. PPP will ignore the echo-
request/reply packets and will force a link termination after 3 retransmissions of the echo-
request packet. This will take a maximum of ECHO_TOUTMS * (ECHO_RETRIES +
1) milliseconds.

The application will probably need to be informed of the condition. The
PPP_LINK_DOWN(netno) macro from pppsig.h can be used for this purpose.

Point To Point Protocol

Advantages
requires minimal engineering effort
relatively quick response time

discovers looped-back condition

Disadvantages

requires a timeout period with retransmission to detect a physical line break
application must be signalled of link failure

CASE 4 Application detect and handle link break

If the driver or application software can detect a change in line status corresponding to
either modem loss of carrier or physical line break, the PPP link can be instantly forced

shut.

Write the following code in a new module:

#include "smxns.h"
#include "ppp.h"
#include "dialapi.h”

static char ppp_Kkill_flag[NNETS];

void LOST_CARRIER_OR_LINE_BREAK_FOR_PPP(int netno)

{
ppp_kill_flag[netno] = 1;

void nettask_ifkillflag(int netno) {
if (ppp_kill_flag[netno]) {
smx_TaskLock();
nets[netno].state = PPPclsd;
#if DIALD
MODEM_DIALIN(netno);

#endif
pppDQ(netno); // Make non-static inside ppp.c!!!
ppp_kill_flag[netno] = 0;
smx_TaskUnlock();
}
}

In net.c, insert the following:

void nettask_ifkillflag(int netno); // New prototype
void nettask(...)

{
|f (netp->protoc[0] == PPP) {
pppTimeout(netno)
nettask_ifkillflag(netno); // New Call
}
}

153

Chapter 8

In the event that the application detects loss of carrier or a line break in an ISR, the
application can call the LOST_CARRIER_OR_LINE_BREAK_ FOR_PPP(netno)
function. When nettask() runs next (within a second), the PPP link will reset itself to start
again. The connection level application will probably need to be informed of the
condition. This should be done by the ISR that initiates the transaction.

Advantages

requires less than a second from detection of loss of
carrier to resolution of PPP link.

does not need to detect looped-back condition
Disadvantages
invasive into the stack

application must be signalled of link failure

PPP ioctl Routines

Description

The PPP ioctl() function allows an application to dynamically configure or manage various parts of
the PPP protocol layer. The PPP ioctl() operations pertain to specific interfaces on the host and
therefore each requires a handle to the network interface structure, nets.

Here is the function prototype.

int ussPPPTable.ioctl(
void *netp,
enum ioctlreq req,
void *arg,
size_t size);

If no error occurs, 0 is returned. Otherwise, applicable errors may be returned. At this time, only the
ussErrinval return code is provided for cases when the ioctlreq option is invalid.

The netp parameter must be a smxNS (struct NET *) data type.

The arg parameter data type varies from on ioctl option to another.

Option Listing

These options are defined in net.h as part of the ioctlreq enumeration.
i) ussLinklsUpE

Upon return, *(int *)arg will be true if the link is up and false if the link is down.

ii) ussLinklsDownE

154

Point To Point Protocol

Upon return, *(int *)arg will be true if the link is down and false if the link is down. If the dialer
is enabled, this means that the dialer is in the passive state waiting for an incoming call.

iii) ussLinkBringUpE

Attempt to force the link up for the time in seconds specified by the size parameter. If the link
becomes established prior to the passage of the full amount of time, the function will return early.
The value of the arg parameter is ignored in this option.

iv) ussLinkBringDownE

Attempt to force the link down for the time in seconds specified by the size parameter. If the link
becomes fully disestablished prior to the passage of the full amount of time, the function will
return early. The value of the arg paramter is ignored in this option.

V) ussPPPUserldSetE
Set the host userid to be negotiated by authentication protocols (PAP, CHAP, MS-CHAP).
The userid is passed through the (char *)arg parameter.

Note that the function stores the pointer, not the actual data (NO strcpy()!). The userid must
remain allocated for the entire PPP session.

The userid must be a null terminated string.

vi) ussPPPUserldGetE
Get the host userid to be negotiated by authentication protocols (PAP, CHAP, MS-CHAP).
The userid is copied into the (char arg[15]) parameter.

Note that the function copies the actual data into the arg parameter so at least 15 bytes must be
allocated to accomodate the potential maximum userid size.

vii) ussPPPPasswordSetE
Set the host password to be negotiated by authentication protocols (PAP, CHAP, MS-CHAP).
The password is passed through the (char *)arg parameter.

Note that the function stores the pointer, not the actual data (NO strcpy()!). The password must
remain allocated for the entire PPP session.

The password must be a null terminated string.

viii) ussPPPPasswordGetE
Get the host password to be negotiated by authentication protocols (PAP, CHAP, MS-CHAP).
The password is copied into the (char arg[15]) parameter.

Note that the function copies the actual data into the arg parameter so at least 15 bytes must be
allocated to accomodate the potential maximum userid size.

iX) ussPPPDialEnableE

Enable the dialer on the interface.

This is only valid if DIALD is defined in pppconf.h.
X) ussPPPDialDisableE

Disable the dialer on the interface.

155

Chapter 8

This is only valid if DIALD is defined in pppconf.h.
Xi) ussPPPHostAddressGetE
Get the Host IP address as negotiated by IPCP.

Before IPCP is completed, this value is the IP address that smxNS PPP will attempt to negotiate
on the interface. After IPCP has completed, this value is the actual IP address smxNS is
communicating as from the PPP interface. The arg data type is * lid.

Xii) ussPPPHostAddressSetE
Set the Host IP address to negotiate during IPCP.

This is only valid if it is performed prior to link establishment. Also, it does not guarantee that the
IP address specified will be the one chosen because PPP must negotiate addresses. If the peer
recommends that a different address be used, then smxNS will use that one instead. The arg data
type is * lid.

xiii) ussPPPRemoteAddressGetE
Get the Peer IP address as negotiated by IPCP.

Before IPCP is completed, this value is the IP address of the peer host that smxNS PPP was last
connected to. After IPCP has completed, this value is the actual IP address of the peer host to
which smxNS is directly connected to. The arg data type is * lid.

xiv) ussPPPRemoteAddressSetE
Set the Peer IP address to negotiate during IPCP.

This is only valid if it is performed prior to link establishment. Also, it does not guarantee that the
IP address specified will be the one chosen because PPP must negotiate addresses. If the peer
recommends that a different address be used, then smxNS will use that one instead. The arg data
type is * lid.

Using PPP ioctl() routines

156

In all examples below, it is assumed that Ninit() and Portinit() have been called prior to the
execution of any ioctl() procedure.

i) Forcing the link up

If your application requires the link layer to be up at a particular point in time, use the
following:

#include "smxns.h"

void func(int netno)
{
struct NET *netp;
intil;

netp = &nets[netno];

/*

** The last parameter to ioctl when using

** ussLinkBringUpE represents the time in seconds
** to block while waiting for the condition to

Point To Point Protocol

** occur. The function will return early if the
** link conclusively fails or succeeds.
*/
ussPPPTable.ioctl(netp, ussLinkBringUpE, 0, 30);
ussPPPTable.ioctl(netp, ussLinkIsUpE, &il, 0);
if (1i1)
DEBUG_MSG2_PARO("Error: could not force PPP up!\n™);
else
DEBUG_MSG3_PARO("PPP is up\n");

}

ii) Forcing the link down

If your application requires the link layer to be down at a particular point in time, use the
following:

#include "smxns.h"

void func(struct CONNECT *conp)
{

struct NET *netp;

intil;

netp = &nets[conp->netno];
/-k
** The last parameter to ioctl() when using
** ussLinkBringDownE represents the time in
** seconds to block while waiting for the
** condition to occur. The function will return
** early if the link is closed.
*/
ussPPPTable.ioctl(netp, ussLinkBringDownE, 0, 10);
ussPPPTable.ioctl(netp, ussLinklsDownE, &il, 0);
if (li1)
DEBUG_MSG2_PARO("Error: couldn't force PPP down\n");
else
DEBUG_MSG3_PARO("PPP is down\n");
}

iii) Capturing the link status
If the status of the link must be known, use the following:

#include "smxns.h"

void func(int netno)
{
struct NET *netp;
intil;

netp = &nets[netnol;

ussPPPTable.ioctl(netp, ussLinkIsUpE, &i1, 0);

if (i1)
DEBUG_MSG3_PARO("PPP is up\n");

else {
ussPPPTable.ioctl(netp, ussLinklsDownE, &il, 0);
if (i1)

157

Chapter 8

DEBUG_MSG3_PARO("PPP is down\n");
else
DEBUG_MSG3_PARO("PPP is negotiating\n");
}

}

iv) Configuring the username and the password
If the host user ID or password must be set prior to link negotiations, use the following:

#include "smxns.h"

char *uid = "new userid", *pw = "new password";

void func(int netno)

{
struct NET *netp;
char tuid[15], tpw[15];

netp = &nets[netno];
ussPPPTable.ioctl(netp, ussPPPUserldGetE, tuid, 0);
ussPPPTable.ioctl(netp, ussPPPPasswordGetE, tpw, 0);

/* Change userid if unmatched */
if (Istrcmp(tuid, uid))
ussPPPTable.ioctl(netp, ussPPPUserldSetE, uid, 0);

/* Change password if unmatched */
if (Istrcmp(tpw, pw))
ussPPPTable.ioctl(netp, ussPPPPasswordSetE, pw, 0);
}

v) Switching between modem and null modem links

If the host wants to connect through a null modem and a conventional modem with only one
interface configured using Portinit(), use the following:

#include "nscfg.h"
#include "ppp.h"

extern int host_using_modem;

void func(int netno)

struct NET *netp;

netp = &nets[netno];
#if DIALD
if (host_using_modem)
ussPPPTable.ioctl(netp, ussPPPDialEnableE, 0, 0);
else
ussPPPTable.ioctl(netp, ussPPPDialDisableE, 0, 0);
#else
DEBUG_MSG3_PARO("No modem configured\n™);
#endif

}

158

Point To Point Protocol

vi) Configuring and capturing the host and peer IP addresses

#include "nscfg.h"

static void getIP(lid *id)
{ - -
intil;
Nprintf("Enter IP as four single typelings\n >");
for (i1=0;il<4;il++) {
id->c[i1] = Ngetchr();
Nprintf("" %02x (%c)",
id->c[i1], id->c[i1] > 0x19 && id->c[il] < Ox7f ? id->c[i1] : '.");

}
Nprintf(*\n");

void func(int netno)

{

intil;

lid hid, rid;

/* Loop waiting for user request */

for (;;){
SNS_YIELD(); /* Yield to smxNS and PPP */
/* Check for user input */
if (Nchkchr()) {

[* Get user input */
i1 = Ngetchr();

if (il ==0x1b) {

break; /* Exit function */
}
else {

/*

** Switch on the user request.

** 1 -- Get host address

** 2 -- Set host address

** 3 -- Get peer address

** 4 -- Set peer address

** 9 -- Print addresses

*/

switch (i1) {

case 1"
ussPPPTable.ioctl(&nets[netno],

ussPPPHostAddressGetE, &hid, 4);

case 2"
if (i1 =="2
getIP(&hid);

ussPPPTable.ioctl(&nets[netno],
ussPPPHostAddressSetE, &hid, 4);
case ‘3"
ussPPPTable.ioctl(&nets[netno],
ussPPPRemoteAddressGetE, &rid, 4);

case '4"
if (i1 =="4")
getlP(&rid);

159

Chapter 8

ussPPPTable.ioctl(&nets[netno],
ussPPPRemoteAddressSetE, &rid, 4);
break;
default:
/* Force the link up (non-blocking) */
ussPPPTable.ioctl(&nets[netno],
ussLinkBringUpE, 0, 0);
continue;
}
Nprintf("* H %u.%u.%u.%u R %u.%u.%u.%u\n",
hid.c[0], hid.c[1], hid.c[2], hid.c[3], rid.c[0], rid.c[1], rid.c[2], rid.c[3]);
}
}
}
Nprintf("User terminated\n”);

}

PPP dialapi Routines

Description

The dial API routines are defined in include\dialapi.h. For the most part they are used within the
PPP core module. In some cases, it may be beneficial to use them from the application to improve
configurability. In other cases, it may be useful to modify the dial API to map onto an already
defined dialing layer for smoother integration with smxNS PPP.

Definitions of API

i) MODEM_PROCESS(netno)
Execute modem operations in a non-blocking fashion for a particular interface.

ii) IS_.MODEM_DONE(netp)
Boolean condition. True when the currently executing modem process associated with an
interface structure is completed.

iii) IS_MODEM_NONE(netp)
Boolean condition. True when the currently executing modem process associated with an
interface structure is ready for another operation.

iv) MODEM_DIALIN(netno)
Install or start the dial-in procedure for a particular interface.

v) IS_ MODEM_DIALIN(netp)
Boolean condition. True when the currently executing modem process associated with an
interface structure is the dial-in process.

vi) MODEM_SET_DIALIN(name)
This function is specific to the smxNS PPP implementation. It is used to define the dial-in
script.

vii) MODEM_DIALOUT (netno)
Install or start the dial-out procedure for a particular interface.

160

Point To Point Protocol

viii) IS_MODEM_DIALOUT (netp)
Boolean condition. True when the currently executing modem process associated with an
interface structure is the dial-out process.

ixX) MODEM_SET_DIALOUT (name)
This function is specific to the smxNS PPP implementation. It is used to define the dial-out
script.

X) MODEM_DIALDOWN(netno)
Install or start the dial-down procedure for a particular interface.

xi) IS_MODEM_DIALDOWN(netp)
Boolean condition. True when the currently executing modem process associated with an
interface structure is the dial-down process.

xii) MODEM_SET_DIALDOWN(name)
This function is specific to the smxNS PPP implementation. It is used to define the dial-out
script.

Dynamically Configuring smxNS PPP Dial Scripts

In order to change a dial script without recompiling, a few function calls can be made at run-time.
At compile-time, the pppsrc\dial.mak file must be configured with the appropriate dial scripts.

It is not necessary, but is recommended, that PPP be not negotiating at the time of the change.
This means that the state ought to be closed and the dialer ought to be inactive (dial-in).

Here is an example function that replaces the dial-in script with the ms-in.scr script already
provided:

void install_ms_in(void)

{
MODEM_SET_DIALIN(ms_in_scr);
MODEM_DIALIN(netno);

}

Here is an example function that replaces both the dial-in and dial-out scripts using the Hayes
modem type scripts:

void install_dial_in_and_dial_out(void)

{
MODEM_SET_DIALIN(dial_in_scr);
MODEM_SET_DIALOUT(dial_out_scr);
MODEM_DIALIN(netno);

}

Note in the above case that MODEM_DIALIN() is called after installing the new script. This
ensures that no ghost script is left executing.

161

Chapter 8

PPP pppsig Routines

Description

The ppp signalling routines can be used to signal the application layer of events normally hidden
within the PPP stack without the requirement of OS signal handlers. These events can be both
informational and functional. They are defined in pppsig.h.

Definition of Signals Available

162

PPPSIG_PPP_UP(netno)
The entire PPP layer is up on the interface and is ready for network traffic.

PPPSIG_PPP_DOWN(netno)
The PPP layer is completely down on the interface and is ready for configuration or complete
restart.

PPPSIG_IPCP_UP(netno)
The network layer is up (for IP) on the interface and is ready for traffic. This may also mean
that IP addresses have been configured for perhaps the host and/or the peer.

PPPSIG_IPCP_DOWN(netno)
The network layer is down (for IP) on the interface and can no longer handle network traffic.
This may also mean that IP addresses are no longer valid.

PPPSIG_HAUTH_UP(netno)
The host is authenticated to the peer on the interface.

PPPSIG_HAUTH_DOWN(netno)
The host failed authentication with the peer on the interface.

PPPSIG_PAUTH_UP(netno)
The peer passed authentication with the host on the interface.

PPPSIG_PAUTH_DOWN(netno)
The peer failed authentication with the host on the interface.

PPPSIG_LCP_UP(netno)
The link layer is established and ready for network level configuration and authentication on
the interface.

PPPSIG_LCP_DOWN(netno)
The link layer is down completely and is ready for restart on the interface.

PPPSIG_DIALOUT_UP(netno)
The dial-out proceedure completed on the interface.

PPPSIG_DIALOUT_DOWN(netno)
The dial-out procedure failed on the interface.

PPPSIG_DIALIN_UP(netno)
The dial-in proceedure completed on the interface.

Point To Point Protocol

PPPSIG_DIALIN_DOWN(netno)
The dial-in procedure failed on the interface.

PPPSIG_DIALDOWN_UP(netno)
The dial-down proceedure completed on the interface.

PPPSIG_DIALOUT_DOWN(netno)
The dial-down procedure failed on the interface.

Note that this is not considered an error condition to the PPP layer so it will proceed to set up
the dial-in procedure.

PPP_STATE_HOLD(netno) — From ppp.h
Stop PPP at the current state on the interface.

PPP_STATE_RELEASE(netno) — From ppp.h
Let PPP continue at the current state on the interfaces

Using PPP Signaling Routines

See the section on PPP ioctl Routines for a useful example of these macros.

It is important to remember that the signalling functions are meant to produce signals. The code that
gets executed must not block and ought not to bloat the stack.

163

SNMP

9. Simple Network Management
Protocol (SNMP)

Introduction

This chapter describes the use of the Simple Network Management Protocol for SmxNS®. smxNS
SNMP provides support for integrating an SNMP agent into a real-time embedded system application.
It is designed for use with SNMP Version 3 managers; however, it will also respond to Version 1 and
2 requests.

The reader ought to have a conceptual knowledge of SNMP in order to understand the terminology in
this manual. There are several books available that explain more completely the terminology and
function of SNMP systems, and some of these are listed in the Recommended Reading section of
Chapter 1.

SNMP Overview

The Simple Network Management Protocol, SNMP, is used widely by industry to manage networks.
On a network, a client in one host (a SNMP manager) communicates with a server in another host (an
SNMP agent). The manager requests the agent to read or write information (objects) in a
Management Information Base (MIB).

Network
Msal:lwg/lglz:r Application | 'ransport | Standard
PP layer MIB-I
Enterprise
Agent
MIB

Figure 9-1: SNMP Agent on a network

165

Chapter 9

Design of smxNS SNMP

166

The smxNS SNMP design includes these features:

ROMable

Compact

User-configurable

The agent is processor-independent. Almost any ANSI C compiler will do.

The agent is not tied to a particular transport layer. Any networking stack or other data
communication layer can be used to transfer data to and from the agent. The code is ROMable in that
all initialized data is type const, and there are no attempts to change code or constants at run-time.

The agent requires less than 30K code bytes and 12K RAM bytes on a typical compiler without
optimization. If security is removed, the agent requires less than 20K code bytes and 4K RAM bytes.
Actual code requirements also vary somewhat from processor to processor and compiler to compiler.

smxNS SNMP supports the same application interface and functionality across all processors. In
other words, standard C code developed for one processor can be recompiled for another processor
with minimal effort.

Custom MIBs can be created using the MIB compiler supplied with the sSmxNS SNMP agent. The
application can add these new MIBs or remove old or unused MIBs with relative ease.

The following describes known limitations in the SNMPv3 configuration or functionality.

Version 3 Trap: Version 3 trap messages cannot be generated. They would require the handling of
Report messages from management stations and possibly non-authoritative authentication.

Row creation/deletion: Row creation/deletion is not supported.

User Management: The usmUserTable cannot be accessed or modified through SNMP, but users can
be added in application code.

VVACM support: The vacmViewTable cannot be accessed or configured through SNMP, but views
can be added in application code.

SNMP

Building an Application

Build-time Configuration

The build-time configuration of the agent is performed in the snmp.h, vacm.c and usm.c files in the
snmpsrc directory. In the file snmp.h there is a set of definitions used to configure the agent. These
symbolic constants may require modification before compiling and linking the product. The View-
based Access Control Model definitions are declared in vacm.c.

Constants

ENTERPRISE Constant

The ENTERPRISE value refers to the ENTERPRISE 1D assigned by ICANN (formerly IANA).
It is used to partly form the snmpEnginelD for the agent. Information on obtaining a Private
Enterprise Number (PEN) is available at the time of this writing at http://pen.iana.org/pen/.

ENTERPRISE = 991

This default value is an old number for U S Software, and it should be changed for a production
release.

System Variable Constants

The MIB system group used by the agent provides a textual description of the agent and is required by
SNMP. These strings can be modified, adding appropriate values for the particular agent application.
These variables are shown in Table 9-1.

Table 9-1: System Variables

Variable Description

SYSCONTACT The value is stored in system.sysContact.
Replace this value with the company name and
phone number.

SYSLOCATION | The value is stored in system.sysLocation.
Replace this with the company name and address.

SYSDESCR The value is stored in system.sysDescr.
Replace this string with a description for the agent

Note that these values should not be greater than 64 bytes each without changing the size of the arrays
that hold them. See sysContact, sysLocation, and sysDescr in snmpsrc\agent.c.

SYSCONTACT = “MDI (714) 437-7333, support@smxrtos.com”
SYSLOCATION = “MDlI Costa Mesa, CA USA”
SYSDESCR = “Embedded controller running smxNS”

167

Chapter 9

ENABLEAUTHENTRAPSVAL Constant

The ENABLEAUTHENTRAPSVAL specifies the snmpEnab leAuthentTrapsVal default
value. Use 1 for enabled and 2 for disabled.

ENABLEAUTHENTRAPSVAL = 2

MAXOID Constant

MAXOID defines the maximum length of an object identifier in the MIB. The object identifier
(OID) uniquely defines MIB variables. Be sure this is large enough to accommodate all objects
within any application MIB.

MAXOID Example

#define MAXOID 12 /* maximum length of object ID */
static const struct
{u8 nlen, name[MAXOID], key[16]:;}
party[]1={
{11, {0x2b,6,1,6,3,3,1,3,10,11,12}, {0} },
{11, {0x2b,6,1,6,3,3,1,3,10,11,13}, {0} },
{11, {0x2b,6,1,6,3,3,1,3,10,11,14},
{0x74,0x68,0x69,0x73,0x74,0x68,0x69,
0x73,0x74,0x68,0x69,0x73,0x74,0x68,0x69,0x33} 1},
}:

The name field in the above table stores SNMP object IDs, and MAXO 1D specifies the maximum
size for this value. Note that the OIDs start with the value 0X2b, which is the BER encoding for
13.

MAXOID = 15

MAXKEY Constant

MAXKEY defines the maximum number of keys allowed. Keys form the index used to identify a MIB
table entry. For example, the tcpConnTable has four keys: tcpConnLocalAddress,
tcpConnLocalPort, tcpConnRemAddress, and tcpConnRemPort. No other table
in the MIB-11 has more than four, so MAXKEY can be set to 4.

MAXKEY = 4

MAXKLEN Constant

168

MAXKLEN defines the maximum length in bytes for an encoded index. An index is the encoding of

the keys used to define a table entry. These keys may be one or more of nearly any fixed length data

type such as IpAddress or INTEGER. For standard MIB-II objects, the largest possible index is
potentially generated by the tcpConnTable. Its keys include two 1 pAddresses each up to 8
bytes encoded and two 16-bit unsigned integers each up to 3 bytes encoded. The result is 22 bytes.

MAXKLEN = 22

SNMP

MAXVAR Constant

MAXVAR specifies the maximum number of variables allowed in a request. A request is a message
sent by the manager to the agent for reading or setting values of one or more variables. MAXVAR sets
the maximum number of variables that may be accessed in one request. Note that the number of total
response variables for a response to a bulk request is limited by the packet size, not this constant.

MAXVAR = 16

SNMP_MAXSIZE Constant

SNMP_MAXS I ZE specifies the maximum transport size in bytes. Note that this value represents the
size of each of four SNMP message buffers used for the following purposes: Receiving requests,
sending replies, sending traps, and performing security operations. RFC 3411 requires this value be at
least 484 bytes.

SNMP_MAXSIZE = 1000

User-based Security Model Configuration

The smxNS SNMP Agent can respond to SNMPv1, SNMPv2c and SNMPv3 messages. These SNMP
versions have different conventions for qualifying SNMP queries and providing for secure
communication. The smxNS SNMP Agent adopts the framework used by SNMPv3 and adapts it so
that the configuration information can also be applied to SNMPv1 and SNMPv2c.

SNMPv3 established strong security by adding the concepts of “groups” and “views”.

Under SNMPv3, access to MIB variables and the way the information is transferred is tied to a group,
which can also be though of as a class of users. A view is a portion of a MIB tree that is visible. The
view could consist of a collection of entire MIBs, or it may be limited to certain subsections. A given
group might also use different contexts to access SNMP information, for example, the “poweruser”
group may use “normal” context most of the time and “advanced” context for administrative
operations that involve modifying variable states.

Security settings are defined at run time before starting the SNMP Agent. A detailed description of
the functions follow later in the Application Interface section of this chapter, but for now here’s a
simple example.

static const OID sys_oid = {6, {Ox2b, 6, 1, 2, 1, 1}};
snmpViewAdd(“sys”, Oxffffffff, &sys_oid);
snmpAccessAdd(“userl”, “normal”, “sys”, 0, noAuthNoPriv);
snmpUserAdd(“userl”, 0, 0, 0, 0);

This code sets up a view named “sys” for the MIB-2 System group (given by the pointer to the OID
&sys_oid). The second line sets an access policy that group “userl” when operating in context
“normal” can have read access to the “sys” group with no authentication needed an no encryption of
the response. The third line creates a group named “userl” with no authentication or privacy
passwords. With this configuration, one could walk the system group using this Net-SNMP command

$ snmpwalk —u userl —n normal -l noAuthNoPriv —v 3 10.0.1.100

SNMPv1 and SNMPv2c use a “community string” to identify the entity making an SNMP query. If
the string matches the configured string, access is granted, otherwise the incoming query is ignored.

For SNMPv1 and SNMPv2c access, you can use the snmpAcessAdd() function with an empty group
parameter and the context name set to the community string like this.

169

Chapter 9

snmpAccessAdd(“”, “public”, “sys”, 0, noAuthNoPriv);

Note that this function call builds on the “sys” group that was added with the call to snmpViewAdd()
we used earlier.

With this configuration one could use this command to perform a walk with SNMPv1
$ snmpwalk —c public —v 1 10.0.1.100

Note that snmpViewAdd() can be called multiple times with the same view name in order to create a
collection of subtrees that are all included in the view. For example, here’s how to set up a view that
includes the MIB-I1 group (.1.3.6.1.2) and the SNMPv2 group (.1.3.6.1.6).

static const OID mgmt_oid = {4, {O0x2b, 6, 1, 2}};
static const OID snmp_oid = {4, {Ox2b, 6, 1, 6}};

snmpViewAdd(“mib2”, Oxfffffff, &mgmt_oid);
snmpViewAdd(“mib2”, Oxffffffff, &snmp_oid);

SNMPv3 defines a method of security known as the User-based Security Model (USM). The
definition in RFC 3414 encompasses both authentication and privacy. Authentication means the
verification of host identity, usually through a user name and password. Privacy means the encryption
of SNMP messages such that unauthorized hosts cannot interpret the data. The current agent supports
authPriv (i.e. authentication with privacy), authNoPr iV (i.e. authentication without privacy) and
noAuthNoPriv (i.e. no authentication and no privacy) for security levels. Future versions may
add new authentication and privacy protocols.

It would not be secure to transmit passwords over the network, so the authors of SNMPv3 came up
with a scheme to hide passwords. This method is called password localization and is described in
RFC 3414 in section A.2. It takes the password and the shmpEngine 1D as input and outputs a
digest-specific key. A SNMP manager uses the key with each SNMP request message to form an
authentication digest using HMAC-MD5 or HMAC-SHA, and transmits the message plus the new
digest as an authenticated SNMP message. The agent checks each digest value with the digest it
creates in the same fashion on each message. If the two match, the management station and agent
must have used the same localized password for the request to be further processed. Otherwise, the
request causes the agent to transmit a usmStatsWrongDigests report to the manager.

The snmpEngine 1D used by the agent concatenates the ENTERPR I SE value and the transport
layer IP address. The ENTERPR I SE value must always be configured in snmp.h, but the IP address
is retrieved at run time.

View-based Access Control Configuration

170

SNMPv3 defines a method of access control known as the View-based Access Control Model
(VACM). ltis defined in RFC 3415 as a means of restricting access to particular subsets of variables
based on the identity of the manager and secur ityLevel used in the request.

A view is a group of MIB variables on the agent. The agent defines a view for each user based on the
user identity and securitylLevel. A contextName and a secur ityName define the
user identity and the secur ityLevel is listed directly in each request. Note that if no security is
used (i.e. securityLevel == noAuthNoPriv), the securityName can be undefined.
Also, in order to provide compatibility with version 1 and 2¢c management stations, the
contextName in each view entry may refer to either a contextName or a community
name. The securityLevel would then be assumed to be NOAUThNOPr V.

The general practice is that informational variables be accessible to all users with all security levels.
Write access and read access to sensitive information are limited to selective users implementing

SNMP

authentication and perhaps privacy. Generally, if a user uses greater security than is required by the
access entry including a particular variable, access is allowed. The VACM module will search
through each entry until it finds a valid entry for the variable. This way multiple entries can be
defined for a single secur i tyName given different combinations of contextNames and
securitylLevels.

Agent Use of Build-time Constants

Here are user configurable settings from snmp.h:

#define ENTERPRISE 991

#define SYSCONTACT "MDI (714) 437-7333, support@smxrtos.com"
#define SYSLOCATION "MDI Costa Mesa, CA USA"
#define SYSDESCR "Embedded controller running smxNS"
#define DEFAULT_CONTEXT_STR “public”

#define ENABLEAUTHENTRAPSVAL 2

#define MAXOID 15

#define MAXKEY 4

#define MAXKLEN 22

#define MAXVAR 16

#define SNMP_MAXSIZE 1000

There are also constants in vacm.c that establish limits

#define NVIEWS 4
#define NSUBTREES 4
#define NACCESSENTRIES 8
And in usm.c

#define NUSERS 3

#define PASSWORD_MAX LEN 16 /* includes terminating NULL */

171

Chapter 9

Application Interface

The application file defines the run-time environment in which the agent executes.

The first step in launching an SNMP agent is to configure security parameters. If these settings are
not made, no incoming SNMP queries will be qualified, and the agent will be unresponsive.

snmpViewAdd

Creates or adds to an SNMP view.
int snmpViewAdd(const char *name, u32 mask, const OID *oid);

This function creates or adds to the view with the given name with the MIB subtree in oid. The mask
is a bit mask with the least significant bit applied to the first subidentifier of the OID and so on. Ifa
mask bit is not set, the corresponding subidentifier is not compared for a match. Although the mask
could be used to make the view definition more flexible, in practice it is set to Oxffffffff.

Return Value

>=0 Success. The value returned is the index of the view that was created or updated.
<0 An error occurred. Check the log for details on the error.
Example

#include “snmp.h”
ététic const OID sys oid = {6, {Ox2b, 6, 1, 2, 1, 1}};

én&pviewAdd(“sys”, OXFFFFFFFF, &sys oid);

Additional subtrees can be included in a given view by calling snmpViewAdd() again with the same
view name and a pointer to another OID.

snmpAccessAdd

Establishes an access level for a given group and context

int snmpAccessAdd(const char *group, const *context, const char
*readview, const char *writeview, uint level);

This function establishes what SNMP MIB access is permitted for a given group and context. The
readview indicates which MIB view is available for read operations and the writeview indicates the
MIB view for write operations. The level may be noAuthNoPriv, authNoPriv or authPriv, indicating
if authorization and privacy protocols are used in communication.

Return Value
>=0 Success.

<0 An error occurred. Check the log for details on the error.

172

SNMP

Example
#include “snmp.h”

snmpAccessAdd(“admin-md5”, “admin”, “admin”, “mib2”, authNoPriv);

In this example, the group admin-md5 when operating in the admin context is allowed read access to
the admin view and read-write access to the mib2 view. Operations will apply the authentication
protocol to confirm the identity of the entity making the queries before completing them.

This function is also used to set up the community string for use with SNMPv1 and SNMPv2. In that
case the group field is left empty (), the context field provides the string, and the other fields are
filled in as needed.

In order to indicate no read or no write access, the view name should be given as 0 in the
corresponding field.

snmpUserAdd

Establishes a group that can access SNMP information.

int snmpUserAdd(const char *group, uint aproto, const char *auth_pw,
uint pproto, const char *priv_pw);

This function sets up an SNMP group and specifies the authentication protocol, the authentication
password, the privacy protocol and the privacy password to be used with that group when needed.

The aproto field should be one of usmNoAuthProtocol, usmHMACMDS5AuthProtocol,
usmHMACSHAAuthProtocol or usmHMACSHA2AuthProtocol.

The pproto field should be one of usmNoPrivProtocol, usmDESPrivProtocol, usmAESPrivProtocol or
usmAES2PrivProtocol.

The passwords that are used must be less than or equal to PASSWORD_MAX_LEN characters
including a terminating 0. This constant is defined at the top of XNS/snmpsrc/usm.c and defaults to
16.

Return Value

>=0 Success
<0 An error occurred. Check log for details on error.
Example

#include “snmp.h”

snmpUserAdd(“admin-md5”, usmHMACMD5AuthProtocol, “secretpassword”,
usmDESPrivProtocol, “mylittlesecret”);

In this example, the group admin-md5 is set up to use HMAC-MD?5 as the authentication protocol
with the password “secretpassword” and use DES for the privacy protocol with the password
“mylittlesecret”.

173

Chapter 9

AGENT_CONTEXT Structure

typedef struct

{

const MIB **mibs; /* Array of pointers to host MIBs */
uintlé nummibs; /* Number of host MIBs */

const TRAP_HOST **thosts; /* Trap hosts */

uintl6é numthosts; /* Number of trap hosts */

uintlé trapv, trapt; /* Trap version and startup type */

const TRANSPORT_MAPPING *tm; /* Transport mapping */

} AGENT_CONTEXT;

The mibs field is the list of MIBs that managers may have access to. Note it is vital that the MIBs
be listed in lexicographical order. If not, the agent will think certain variables do not exist within the
MIB. The nummibs field specifies the number of MIBs available.

The thosts field specifies the hosts to which agent traps will be sent. The TRAP_HOST
definition is simply ‘typedef uint8 *TRAP_HOST ;’ and each host should be acceptable to
the transport layer. In other words, the transport layer needs to be able to open a connection to the
entity specified by the trap host field. The numthosts field specifies the number of trap hosts
available

If the trap hosts or other properties of the AGENT_CONTEXT structure need to be modified after
starting the SNMP Agent, the agent should be stopped and restarted with the new configuration.

The trapv field specifies the trap version to use during agent operations. The trapt field
specifies the trap used by the agent during startup. Use —1 for none. Otherwise use one of these
defined types from snmp.h:

COLDSTART

WARMSTART

L INKDOWN

L INKUP

AUTHENT ICATIONFAILURE
EGPNE1GHBORLOSS
ENTERPRISESPECIFIC

The tm field specifies the transport mapping to be used by the agent. The
TRANSPORT _MAPP ING data structure is defined later.

Example

174

This is an example of a SNMP agent application taken from nsdemo.c.

A global structure is declared for the agent task to initialize from. In this example, the structure has
been set up to request a SNMPv1 (0) COLDSTART trap be sent when the agent is started. The
USNET DPI transport mapping is used for sending and receiving SNMP messages.

#include “snmp.h”

extern const MIB mib_if, mib_at, mib_ip, mib_icmp, mib_tcp, mib_udp;
extern const MIB mib_sys, mib_snmp, mib_engine;
extern const MIB mib_usm;

/* The following MIBs must be in lexicographical order */
static const MIB *mibs[] =

{
&mib_sys, /* system group */
&mib_it, /* interfaces group */
&mib_at, /* address translation group */
&mib_ip, /> 1P group */
&mib_icmp, /* ICMP group */
&mib_tcp, /* TCP group */
&mib_udp, /* UDP group */
&mib_snmp, /* SNMP group */
&mib_engine, /* SNMPv3 engine group */
&mib_usm /* USM group */

};

static const TRAP_HOST primary = “192.168.1.30;
static const TRAP_HOST secondary 192.168.1.31;
static const TRAP_HOST *thosts[]

{

&primary,
&secondary

¥
extern const TRANSPORT_MAPPING TM_DPI;

/* This structure is defined as external in SNMPAgentTask() */
const AGENT_CONTEXT snmp_ac =

{
mibs, (sizeof(mibs) / sizeof(MIB *)),
thosts, (sizeof(thosts) / sizeof(TRAP_HOST)), O, COLDSTART,
&TM_DPI

};

SNMP

175

Chapter 9

ussSNMPAgentinit

Initializes the agent.
sintl6 ussSNMPAgentInit(const AGENT_CONTEXT *acp);

This function initializes the agent with the run-time environment defined by the value of the
AGENT_CONTEXT parameter. The run-time environment that the agent uses is defined by the
MIBs visible to the agent, the Trap hosts, and a transport mapping.

Return Value

>=0 No error
<0 An error
Example

#include “snmp.h”

éxie;n const AGENT_CONTEXT snmp_ac;
1 = ussSNMPAgentlnit(&snmp_ac);
f (i1 < 0)

DEBUG_MSG2_PAR1(*““SNMPAgentTask: Initialization failed %d\n”, il);
return;

}

ussSNMPAgentCheck

Checks the status of the agent for pending requests, and responds as necessary
sintl6 ussSNMPAgentCheck(void);

This function checks the transport for incoming messages, and generates responses as necessary.

Return Value

>=0 No error
<0 An error
Example

#include “snmp.h”

}* Céntrol loop for reading requests and
forming/sending replies */
while (ussSNMPAgentCheck() >= 0)

176

SNMP

ussSNMPAgentShut

Terminates the agent.
sintl6 ussSNMPAgentShut(void);

This function performs any clean-up necessary to terminate all the layers of the Agent.

Return Value

>=0 No error
<0 An error
Example

#include “snmp.h”

ussSNMPAgentShut();

ussSNMPAgentTrap

Sends a trap to all configured trap hosts as defined in the AGENT_CONTEXT.

sintl6 ussSNMPAgentTrap(uint8 type, uint8 spec,
const uint8 *contextName,
const uint8 *vbs, uintl6 len);

type the trap type

spec trap-specific code

contextName context or community name
vbs pointer to a variable bindings for trap
len the buffer length

The ussSNMPAgentTrap() function may be used from an agent application to send a trap to a
manager. The ussSNMPAgentCheck() function may be run concurrently with the
ussSNMPAgentTrap() function since they are designed to be thread safe with respect to each other.
Trap types specified as 0 through 6 are shown in Table 9-2.

177

Chapter 9

178

Table 9-2: SNMP Trap Types

Value

Trap Type

Description

cold start

The agent network protocol has
reinitialized, indicating that its
configuration may have been
altered.

warm start

The agent network protocol has
reinitialized; however, its
configuration has not been altered.

link down

A communication link has failed.
The failing link is identified via
the first variable within the
variable bindings field of the PDU
(protocol data unit). The PDU is,
essentially, the data protocol used
by SNMP. The variable bindings
field is a list of MIB variables sent
to the manager packaged within a
PDU.

link up

A communication link has come
up. The affected link is identified
as the first element within the
variable bindings field.

AuthenticationFailure

The agent could not resolve the
authentication for an SNMP
message received from the
manager.

EgpNeighborlLoss

An EGP peer neighbor is down.

EnterpriseSpecific

A nongeneric trap has occurred.
This is specific to a particular
enterprise. Use this for
application-specific traps.

SNMP

Return Value

The number of traps sent. This should be compared to the number of trap hosts configured in the
AGENT_CONTEXT.

Example

To send a trap from an application, simply call ussSNMPAgentTrap() and pass in the trap type, the
trap-specific code, the context/community name, a pointer to a buffer of variable data for the manager
to process, and the length of the variable data. If the buffer is not needed 0 may be used. For
example, to send a “warm start” trap with no variable data, use:

int rc; /*return code */
rc = ussSNMPAgentTrap(WARMSTART,0, “public”, 0, 0);
if (rc <= 0)

<process error >

If a trap must pass variable data to the manager, declare a buffer, assign the variable binding data to it
and pass it to ussSNMPAgentTrap().

#define VARBUFFERSIZE <some constant value>
int rc; /* return code */
u8 varbuffer[VARBUFFERSIZE];
varbuffer = <load the data into the buffer>;
rc = ussSNMPAgentTrap(WARM_START, 0, “public”, varbuffer,
VARBUFFERSIZE) ;
if (rc 1= 0)
<process error>;

This function call is flexible in that the variable data may be passed in any format; however, it is
constrained to what the manager can understand. Generally, this would be in the form of an SNMP
variable bind list. Here is a more detailed example

static const u8 oid_snmptrapoid[] = {Ox2b, 6, 1, 6, 3, 1, 1, 4, 1,
0}:

static const u8 oid_testO[] = {Ox2b, 6, 1, 4, 1, 16, 17}; /*
arbitrary enterprise OID tree starting with .16. */

static const u8 oid_testl[] = {Ox2b, 6, 1, 4, 1, 16, 17, 18, 1}; /*
represents specific enterprise trap */

u8 vbbuf[64]; /* size according to space occupied by var bindings */
u8 *prevp;

u8 *curp;

u8 *startp;

curp = vbbuf + sizeof(vbbuf);
startp = curp;

/* These will appear in reverse order */

prevp = curp;

snmpRWriteval (&curp, "test', SNMP_STRING, strilen('test'));
snmpRWriteVal(&curp, oid_testl, SNMP_IDENTIFIER, sizeof(oid _testl));
snmpRWriteLength(&curp, SNMP_SEQUENCE, (s16)(prevp - curp));

prevp = curp;
snmpRWritevVal (&curp, oid_testO, SNMP_IDENTIFIER, sizeof(oid_test0));

179

Chapter 9

snmpRWriteVal (&curp, oid_snmptrapoid, SNMP_IDENTIFIER,
sizeof(oid_snmptrapoid));

snmpRWriteLength(&curp, SNMP_SEQUENCE, (sl16)(prevp - curp));

ussSNMPAgentTrap(ENTERPRISESPECIFIC, 0, (const u8 *)"public'", curp,
startp - curp);

Customizing the Agent

Configuring the Agent MIB

Standard MIBs are supplied with smxNS SNMP based on Internet standards defined by RFCs
(request for comments, on the Internet) 1156 and 1213. The MIBs are the System Group, Interfaces
Group, Address Translation Group, IP Group, ICMP Group, TCP Group, UDP Group, SNMP Group,
snmpEngine Group and usmMIBBasicGroup. These RFCs have since been clarified in several
updated RFCs modularized from the originals.

MIB Structure

Each MIB module must be molded into the MIB structure used by the agent.

typedef struct

{
const MIBVAR *mvp; /* MIB variables */
sintlé (*numvars)(void); /* Number of variables */
const MIBTAB *mtp; /* MIB tables */
sintl6é (*numtabs)(void); /* Number of tables */
void (*get)(sintl6 varix, sintl6é tabix, uint8 **vvptr);
sintle (*set)(sintl6 varix, sintl6 tabix);
sintle (*index)(sintl6 varix, sintl6 index);
void C*init)(uintlé type); /* Initialize the MIB */

3} MIB;

MIBVAR and MIBTAB Structures

The MIBVAR and MIBTAB structures are the primary data structures, which define MIB data. Each MIB
contains variables mibvar and mibtab, which are simply arrays of these structures. MIBVAR and
MIBTAB are defined in snmpv3.h as follows:

typedef struct

uint8 nlen, name[MAXOID];

} OID;

typedef struct

{
OID oid; /* Base OID of table */
uint8 nix; /* Number of indices for table */
uintlé IX[MAXKEY]; /* Index values (offsets) */
uintl6é len; /* Length of table */

} MIBTAB;

180

SNMP

typedef struct

{
OID oid; /* ldentifier name, length */
uint8 opt; /* Options */
uint8 type; /* Type of variable */
sintl6 len; /* Length of pointer field */
void *ptr; /* Pointer to variable data */
1} MIBVAR;

MIBVAR contains the definitions and values of all MIB variables. MIBTAB contains indices into the
MIBVAR for accessing MIB table (SEQUENCE OF) entries. Most of these fields are used
internally by the SNMP agent; however, some are useful to know. OID is used to uniquely define
each record in the MIBVAR and MIBTAB. Also, for a given MIB table variable, the OID is the key
value, which links MIBVAR and MIBTAB entries. The purpose of the MIBVAR is simply to store
all MIB data; that is, scalar values and values within a MIB table. In the case of a MIB table, the
mibtab. ix[1] values are used as indices to the appropriate records in the MIBVAR. An
example of its use is provided in the ‘MIB . index ()’ section.

Default Operation

When the SNMP agent receives a GetRequest PDU (protocol data unit), the entries in the MIBVAR
array are reviewed to find an entry that matches the requested OID. The ptr field in the matching
entry is then used to locate the memory location that contains the value that should be returned. For
scalar variables, this location is read directly. For variables in tables, an offset is added to the pointer
that corresponds to the index portion of the OID in the GetRequest PDU.

When the SNMP agent receives a SetRequest PDU, the corresponding entry is located as above, and
the memory location based on the ptr field is overwritten with the value provided in the
SetRequest PDU.

MIBVAR Record Options

Some of the variables in MIBVAR may not be well suited to the default operation of the SNMP agent.
To support these needs, the opt field of the MIBVAR record allows for flags that will indicate that
special processing is required.

IMMED The variable value is stored directly in the Ien field, rather than being pointed to by
the ptr field. The variable should be an 8-bit value. The value for ptr can be 0.

IMMED2 The variable value is stored directly in the type and Ien fields, rather than being
pointed to by the ptr field. The variable should be a 16-bit value. The value for ptr
can be 0.

SCALAR The variable is in a table, but should be looked up without adding an index to ptr.
This allows a variable to be part of a table, but not accessed in the same manner as other
variables in the table. If the value for a variable is known to be the same for every index
in the table, then this technique can be used to reduce the size of the memory image that
represents the contents of the table. This flag need not be specified for normal scalar

variables.
W The variable may be modified.
SX The variable is the first item of a MIB table.

181

Chapter 9

CAR A read notification function may be called before returning the value of the variable.
CAW A write notification function may be called after writing a new value to the variable.

CHOICE A'CHOICE' ASN.1 syntax element is required in the OID of this object. Note that it is
only used to force the atTable to behave correctly and, if defined, code size will
increase for all MIBs.

MIB.set() and MIB.get() Functions

These functions are written as part of each MIB and provide the actions to perform for read or write
notification.

static sintl6 set(sintl6 varix, sintl6é tabix);
void get(sintl6é varix, sintl6 tabix, uint8 **vvptr);

The first argument, variX, is an integer which acts as an index into the MIB identifying the variable
to be accessed. If that MIB variable is a MIB table, the tab 1 x parameter may be used as a 0-based
index into the table. If variX is a scalar value or not a table entry, then no index is required and -1
is passed in for tabiXx. The **vvptr is passed to the get() function in case the MIB needs to
replace the value pointer with a new address for the agent to operate upon.

The value returned by set() should be 0 if the function executes normally. In the case of an error
situation, the value returned from these functions will be used as an error code in the response that the
SNMP agent sends to the SNMP request.

The get() and set() functions are called indirectly from the function ussSNMPAgentCheck() in
agent.c through the MIB structure in which the get() function pointer resides. The declaration below
shows how the MIB structure is defined.

Example
#include “snmpv3.h”

static void get(sintl6 varix, sintl6 tabix, uint8 **vvptr)
{

const MIBVAR *mvp = &mibvar[varix];

uint8 *bytevp = *vvptr;

/*

** If varix is 3, the variable is a 32-bit value

** that must be updated before being read by the agent.
** We set it here to a value that is determined by using
** a value in a table indexed by an array of index

** values.
*/
if (varix == 3) /* Fourth variable in MIB */
{
*(uint32 *)*vvptr = Barray[Aarray[tabix].nindex].value32;
}
/*

** If varix is 12, the first index is not stored in the
** table. The second and all subsequent indices are in
** the table, however. We can simply point the value

182

SNMP

** pointer to a new location.
*/

it (varix == 12) /* Thirteenth variable in MIB */
it (tabix == 0)
*vvptr = &value;

else
*vvptr

&table[tabix].-value;

}
}

static sintl6 set(sintl6 varix, sintl6é tabix)
MIBVAR *mvp = &mibvar[varix];
uint8 *bytevp = mvp->ptr;
if (varix == 3)
Ef (*(uint32 *)bytevp == 0x1234567)

*(uint32 *)bytevp
return badvValue;

0;

}

return O;

}

const MIB mib_example =
{

mibvar,

mibvarsize,

mibtab,

mibtabsize,

get,

set,

index,

init

The globally-accessible function pointer mib_example . get is assigned the get() function which
is local to the current MIB module. The mib_example.get() function is only called if CAR is in the
option field for the variable and the get() function pointer is valid (that is, not 0). Upon entry into the
get() function, the variable var I X is an index into the MIBVAR array for the current variable to be
read. The tabiX is assigned —1 if no table is being accessed. Otherwise, tab X is a zero-based
index into the table to which the variable belongs.

183

Chapter 9

MIB.index() Function

Determines size of tables in a MIB.

sintl6 index(sintl6 varix, sintl6 Index);

If tables exist in a MIB, the SNMP agent needs a mechanism to determine the size of the tables that
have been added. The index() function indicates when the end of the table has been reached and also
can be used to specify when a table entry should be skipped. Good examples of MIB index()
functions can be found in mib_if.index, mib_tcp.index, mib_udp.index, etc

The index() function is required to implement a table.

When the SNMP agent receives a get request or a get-next request that involves a MIB table and the
index() function is defined, the agent will call the index() function while iterating through the table to
determine if an entry should be included in the search for the variable. The MIB index() function is
defined similarly to the MIB get() and set() functions.

Return Value:

1 Accept the record

0 Skip over the record

-1 End of table
Example

/* Index the IP MIB’s tables */
static sintl6 mibindex_ip(sintl6 varix, sintl6é tabix)

{

184

uint8 *cp;
uintl6é usi;
sintl6 il;

cp = (uint8 *)mibvar_ip[varix].oid.name + 5;
usl = *cpt++ << 8;
usl += *cp;

switch (usl)

{
case 0x0416: /* 1P net to media table */
if (nets[tabix].netstat == 0)
break;

for (il = 0; il < Eid_SZ; il++)

ifT (nets[tabix].Eaddr.c[i1])

goto lab5;
break;
case 0x0414: /* 1P address table */

if (tabix >= NNETS)

goto lab7;
if (nets[tabix].cfgflags & LOCALHOST)

goto lab5;
break;

SNMP

case 0x0415: /* 1P routing table */

if (nets[tabix].netstat == 0)
break;
if (I(nets[tabix].cfgflags & LOCALHOST))
goto lab5;
break;
default: /* any other */
goto lab5;
¥

return O;
lab5:

return 1;
lab7:

return -1;
b

In this example, a section of the Object ID is used to identify the variable for which the index function
is being called. The value of IndexX could also be used for this purpose, but using a section of the
OID allows a subtree of the MIB to easily be identified. At the beginning of the function, Cp is set up
to point to the interesting section of the OID, and then the next two bytes of the OID are stored in
usl.

This is just one example of how an index() routine could be coded. Processing of accept, skip,
or end of table is determined by checking values of smxNS data structures in the above case.
The 1ndex may be used as an index into some of these structures. The MIBTAB values are simply
used as flags to indicate which variable is to be processed. The actual value of the variable requires
accessing of the smxNS data structures. Refer to the smxNS documentation and source code for
explanations of values such as NNETS, and nets[tabix].

Adding New MIBs

A particular application may require new MIBs in addition to those supplied as part of the MIB-II. If
this is the case, use the ASN.1 (Abstract Syntax Notation) syntax to add the definitions of variables to
a MIB file. Refer to a text on SNMP or the appropriate RFCs for definitions of this syntax. Then use
MIBTOC to translate the ASN.1 definitions into C code understandable to the SNMP agent.

MIB Translation Overview

To use a new MIB with the smxNS SNMP agent, a file describing the MIB variables must be
compiled into C source code. The program MIBTOC, performs this translation. It reads a
description of the MIB variables in ASN.1 format, and produces two ANSI C-compatible files. In the
following diagram, “MIB” represents the name of the MIB file.

185

Chapter 9

MIBTOC

Figure 9-2: MIB Translation

The source files created by the MIB compiler may require additional hand coding to add features or
supply information that can't be derived from the MIB. The application can compile and link the MIB
with the agent so the agent can access the MIB database.

Building the MIB Translator

The translator is provided as source code and as a pre-compiled executable. The source is located in
the BIN\MIBTOC directory. To build it by hand, simply use the included batch file. If the batch file
isn’t set up for your tools, pass the source file as an argument to a compiler/linker. For instance, if
using the Borland compiler, run:

bcc BIN\MIBTOC\mibtoc.c
Or, if building from a UNIX environment, run:
cc BIN/MIBTOC/mibtoc.c

MIBTOC is ANSI-compatible and can be compiled by most commercially available compilers.
Since the MIBTOC application uses a significant amount of stack space, the compiler or linker may
need to be configured with an option to increase the stack space. The compiler is included in
executable format for DOS and Windows platforms.

Running the MIB Translator

MIBTOC takes one or two arguments: The first argument is the name of the MIB file to be
processed, and the optional second argument provides the base name for the output file. The syntax
is:

MIBTOC mibfile [outfile]

If an output file name is not specified, the name for the output files will be derived from the base file
name of the input file. For example, this command will generate the output files toaster.c and
toaster.h:

MIBTOC toaster.mib

If the second parameter is provided, then the output file names are based on the second parameter.
Given this command line, the translator will generate the output files test.c and test.h:

MIBTOC toaster.mib test

186

SNMP

Watch the output of MIBTOC to be sure that no errors occurred in preparing the output files. A
normal run will look like:

C:\usnet\snmpsrc>mibtoc rfc2571.txt

USNET MIB to C Translator 1.10

Co
Root
Root
Root
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
TC:
TC:
TC:
TC:
TC:

Type

pyright (c) U S Software 1994, 1999, 2000.
> ccitt

: iso

> joint-iso-ccitt

“No Access’: org { iso 3 }

“No Access’: dod { org 6 }

“No Access’: internet { dod 1 }

“No Access’: mgmt { internet 2 }

“No Access’: experimental { internet 3 }

“No Access’: private { internet 4 }

“No Access’: security { internet 5 }

“No Access’: snmpV2 { internet 6 }

“No Access”: snmpDomains { snmpV2 1 }

“No Access”: snmpProxys { snmpv2 2 }

“No Access’: snmpModules { snmpV2 3 }

“No Access’: mib-2 { mgmt 1 }

“No Access’: transmission { mib-2 10 }

“No Access’: enterprises { private 1 }

“No Access’: snmpFrameworkMIB { snmpModules 10 }
SnmpEnginelD (OctetString)
SnmpSecurityModel (Integer)
SnmpMessageProcessingModel (Integer)
SnmpSecuritylLevel (Integer)
SnmpAdminString (OctetString)

“No Access’: snmpFrameworkAdmin { snmpFrameworkMIB 1 }

Type “No Aocoess”: smpRramenorikdMIBObjects { smpFramenoriMIB 2 3
Type “No Acoess”: smpRramenoridvilBConformance { smpHramenoriMIB 3 3

Type
Type
Type
Type
Type
Type
Type
Type
snmp

“No Access’: snmpEngine { snmpFrameworkMIBObjects 1 }

“OctetString’: snmpEnginelD { snmpEngine 1 }

“Integer’”: snmpEngineBoots { snmpEngine 2 }

“Integer”: snmpEngineTime { snmpEngine 3 }

“Integer’”: snmpEngineMaxMessageSize { snmpEngine 4 }

“No Access’: snmpAuthProtocols { snmpFrameworkAdmin 1 }

“No Access’: snmpPrivProtocols { snmpFrameworkAdmin 2 }

“No Access’: snmpFrameworkMIBCompliances {
FrameworkMIBConformance 1 }

Type “No Access’: snmpFrameworkMIBGroups { snmpFrameworkMIBConformance

2}

Type “No Access’: snmpEngineGroup { snmpFrameworkMIBGroups 1 }

2554

lines processed OK

If there is a problem in processing the file, the last line will notread “- . . processed OK” but
rather will describe an error in processing the file. For example, if the definition for MAXOID in
mibtoc.c is too small, then this message will be displayed:

L388 myTablelndex MAXOID too small

This indicates that in processing line 388 of the MIB file, it was discovered that there was not enough

room to build the needed Object ID array. To correct this, the value for MAXOID should be

increased in mibtoc.c, and MIBTOC should be rebuilt. Also MAXOID should be increased to the

same value in snmpconf.h, because it will be used again when building the SNMP agent.

187

Chapter 9

MIB Files

MIBTOC generates two files as output. Using the example of an ASN.1 input file named
toaster.mib, the output files would be toaster.c and toaster.h. The SNMP agent uses the output files

as follows:

toaster.h Defines external variable and symbol definitions to which the application and MIB
module may wish to refer as “extern”.

toaster.c Allocates MIB variable and table values statically and provides the global ‘M 1B

mib_toaster structure declaration to provide global access to the MIB from
the application.

Read/Write Notification

Each variable in a MIB may have read or write notification associated with it. This means that prior
to a get operation or after a set operation, the agent will signal the MIB that its data is being operated
upon.

For get-, getNext- or getBulk-requests, the option field in the MIB variable is checked for read
notification (CAR - Call Application Read). If this is set for the variable, the get() function for the
MIB will be called with the index of the variable and a pointer to a pointer to the value of the variable.
This is so that the MIB can update the value of the variable or dynamically redirect it to a new
memory location.

For set-requests, the option field in the MIB variable is checked for write notification (CAW — Call
Application Write). If this is set for the variable, the MIB set() function will be called with the index
of the variable. Special processing can be performed due to important changes in the value of the
MIB variable.

To indicate to the agent that read or write notification is required on a given variable, add the CAR
and/or CAW options to the opt field of the variable record within the MIB source file using the
bitwise OR operator (i.e. ‘|’).

Example

{8,{0x2b,6,1,2,1,1,6,0}, W | CAR | CAW, String,
sizeof(syslocat), syslocat}, /* sysLocation */

This example shows a MIBVAR record (see the next section) which adds read and write notification
to the MIB variable sysLocation. Before modification, the option field was simply W, indicating
a variable that allows write access. The option field may be zero for no options or a combination of
others. The possibilities are defined in snmpv3.h and are shown in Table 9-3 below.

#oefine MVBED OOL /~* Inmediate value in mp->len */

#Hoefire IMWER O2 /~* Imediate value in mvp=>type + len %/
#Hoefine BAEEL OB /* Base O in data spece, base 1 In MIB %/
#idefine LAAR 04 /* Table not indexed (o offset) */
Hoefire W 080 /7~ Write allored */

Hoefine SX 00 /*~ Sequential table index inferred */
#define N\CRDER 00 /* Network byte ordering for besic type */
#Hoefire GR 00 /* Call gplication after reed */
Hoefine CAW 008 /* Call goplication before write */

Table 9-3: MIBVAR Record Options Field

188

Options | Description

Field

IMMED | The variable value is stored directly in the Ien field (see
below), rather than using the ptr field to store the address
of the value.

IMMED2 | Similar to IMMED except the variable value is stored
directly in the type and Ien fields (see below).

BASE1 | The variable index value is represented by SNMP starting
at a base value of ‘1’ even though the agent must deal
with the actual data with a base “0’.

SCALAR | A scalar value. In other words, the value is not in a table
even though its ASN.1 definition defines it as part of a
table.

w A variable that allows write access, i.e., the value may be
modified.

SX Indicates the first item of a MIB table, i.e., a SEQUENCE
OF.

CAR Use Read notification.

CAW Use Write notification.

Summary of Adding a User-Defined MIB

SNMP

1. Create the standard “out of the box” version of the SNMP agent, and confirm that the standard
MIB-II variables are accessible from an SNMP manager.

2. Build the MIBTOC compiler, if it is not already built for the development platform.

3. Create the enterprise-specific MIB. This example presents the wt2000 remotely accessible

weather station MIB, which uses the MIB called weather.mib. The MIB will be associated with
a product of the fictional company “WeatherTek International” that makes devices that record
weather conditions. These conditions can be retrieved from their instruments through an SNMP

manager.

The first information to be included in the user-defined MIB will establish the path in the MIB

hierarchy to the enterprise-specific MIB. If the enterprise code for WeatherTek International were
123, and the variables were those collected by the wt2000 model, then the following information
might appear first in weather.mib:

MIB DESCRIPTION

WEATHER-MIB DEFINITIONS ::= BEGIN

weathertek
wt2000

OBJECT IDENTIFIER
OBJECT IDENTIFIER

{ enterprises 123 }
{ weathertek 3 }

In this example, the weather station contains components that monitor conditions at a number of
altitudes. Some of the variables in weather.mib concern the weather station as a whole, and some
concern the conditions at each altitude. Let us say that a string is set up to hold the unit location, and
the latitude and longitude of the installation are also stored.

189

Chapter 9

This information might appear in weather.mib as follows:

— The wt2000 Group

location OBJECT-TYPE

SYNTAX DisplayString
ACCESS read-write
STATUS mandatory
DESCRIPTION “The geographical name for the device location.”
Ii= wt2000 1 }
latitude OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory

DESCRIPTION “The latitude at which the device
o= { wt2000 2 }
longitude OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory

DESCRIPTION “The longitude at which the device is installed.”
o= { wt2000 3 }

is installed.”

190

SNMP

Now a table can be introduced to hold the information that is collected for a number of altitudes. For
this table, the altitude will act as an index, and temperature, humidity, wind speed and wind direction
will be monitored. Here is how it might appear in weather.mib:

weatherTable OBJECT-TYPE

SYNTAX SEQUENCE OF weatherEntry
ACCESS not-accessible
STATUS mandatory

DESCRIPTION “This table contains a tally of weather conditions”
o= { wt2000 4 }
weatherEntry OBJECT-TYPE

SYNTAX WeatherEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION “Each row represents conditions at a given altitude.”

INDEX { altitude }

::= { weatherTable 1 }

WeatherEntry :-:= SEQUENCE {

altitude INTEGER,

temperature INTEGER,

humidity INTEGER,

windSpeed INTEGER,

windDirection INTEGER { NORTH),
NORTHEAST (2),
EAST 3),
SOUTHEAST (4),
SOUTH A5),
SOUTHWEST (6),
WEST a,

NORTHWEST (8)}}
altitude OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS mandatory

DESCRIPTION “Altitude in meters, used as an index.”
::= { weatherEntry 1 }

191

Chapter 9

The definitions for temperature, humidity, windSpeed, and windDirection
would appear similar to the definition for altitude.

Process the MIB with MIBTOC to create source code. Make sure that the compiler reports no errors.
Using the mibtoc.exe utility in the BIN\ directory:

cd snmpsrc
BIN\mibtoc weather.mib

Add the files generated by MIBTOC to the project. So in this example, add the file weather.c to the
project.

If there are any tables in the user-defined MIB, an index() function will have to be created in
snmpsrc\weather.c and added to the MIB mib_weather declaration.

cd snmpsrc
edit weather.c
const MIB mib_weather =

{
mibvar,
mibvarsize,
mibtab,
mibtabsize,
o, /* get */
o, /* set */
index, /* <<< New >>> */
0 /* Init */
};

Declare the program variables that are introduced in the user defined MIB. In this example, external
declarations for the variables will be written into weather.h, but the variables will not be declared in
any module. The names of the variables are based on the names appearing in the MIB definition, and
can be found in weather.h, which is excerpted here:

extern char *location;

extern int latitude;

extern int longitude;

extern struct weatherTable weatherTable[];

These variables must be declared somewhere in the application, and for this example the declarations
are made in a modified version of weather.c:

#define WTABSZ 3 /* number of entries in weather table */
char *location;

int
int

latitude;
longitude;

struct weatherTable weatherTable[WTABSZ];

192

Note that the size of the table is not apparent from the information in the MIB definition and may be
variable. In this example, a constant has been defined to specify the size. WTABSZ represents the
largest possible table size. This information should be used by the index() function.

Initialize the variables in the user-defined MIB. Any default values or fixed values can be set up
before the SNMP agent is started. Also, any index fields in tables must be initialized before the agent
is started.

SNMP

Here is an example from the modified weather.c:

const char defaultlocation[] = “Portland, Oregon’;
#define DEFAULTLATITUDE 46
#define DEFAULTLONGITUDE 123

static void init(uintl6é type)

{
memset(weatherTable, 0, sizeof(weatherTable));
location = defaultlocation;
latitude = DEFAULTLATITUDE;
longitude = DEFAULTLONGITUDE;
for (i1l = 0; 11 < WTABSZ; il++) {
weatherTable[il].altitude = il * 1000 + 1000;
weatherTable[il].windDirection = 1;
}
}

In this example, default values for location, latitude, longitude and the
windDirection field in weatherTable are initialized. The altitude index field in the
table is initialized with the values 1000, 2000 and 3000.

If the value of a variable should be updated before being read, then the get() function should be
implemented.

Likewise, if special action should be taken once a variable is written, then the set() function should be
implemented, and if the number of rows in a table is variable then the index() function should be

implemented.
The weather MIB structure will have to be updated to reflect any required get, set, index or init
functions:
const MIB mib_weather =
{
mibvar,
mibvarsize,
mibtab,
mibtabsize,
get, /* <<< New >>> */
set, /* <<< New >>> */
index, /* <<< New >>> */
init/* <<< New >>> */
33

Configuring the Transport Mapping

A Transport Mapping is a defined method of data transfer between SNMP hosts. RFC 3417 defines
the use of SNMP over UDP/IP on Internet-based networks as well as many others. From this, a
module was defined called TRANSPORT _MAPP ING. Here is the structure definition that the
smxNS SNMP agent uses:

193

Chapter 9

194

typedef struct

/* Initialize underlying transport framework */
sintle C*init)(uint8 *ip, uint32 *maxsize, uint8 *name);

/* Open passively to receive SNMP messages */
sintlé (*passive_open)(void);
sintlé (*passive_read)(uint8 *buff, uintl6 len);
sintlé (*passive write)(const uint8 *buff, uintl6 len);
sintle (*passive_close)(void);

/* Open actively to send SNMP messages */
sintlé (*active_open)(const uint8 *rhost);
sintlé (*active_write)(const uint8 *buff, uintl6 len);
sintle (*active_read)(uint8 *buff, uintlé len);
sintle (*active_close)(void);

/* The host’s system time */
uint32 (*time)(void);
} TRANSPORT_MAPPING;

The application is expected to perform basic initialization of the network or other media. Once that is
completed, the agent may perform the following operations:

init() Initialize the transport specific features required by the agent. Included are the
IP address, maximum message size, and host name. If any of these is defined
and does not conflict with the transport layer, they can remain the same.

passive_open() Tell the transport that the agent is ready to receive data.

passive_read() Get available data from the transport.

passive_write() Transmit potential responses to passive_read() operations.

passive_close() Tell the transport that the agent will no longer receive data.

active_open() Tell the transport to create a data channel to a particular host for sending traps.
Note that the rhos't field is one of the trap hosts defined by the application.

active_write() Transmit a message to the host to which an active_open() was performed.

active_read() Receive data on the trap channel. This will not occur with SNMPv1 and v2c.

However, SNMPv3 has the provision that an agent may have to authenticate
itself to a management station. Version 3 trap messages are not supported at this

time.
active_close() Close the data channel for writing traps.
time() Get the system time in tenths of a second.

Each of the above operations returns a signed 16-bit value, except time() which returns the current
time as a 32-bit value. For passive_open(), passive_close(), active_open(), and active_close() the
return value should be >= 0 unless an error occurs. For passive_read(), passive_write(),
active_read(), and active_write() functions the return value should represent the number of bytes
transmitted or received. Note that the agent cannot internally handle an error value when performing
passive_open(). Essentially, the agent is useless without its passive functions.

When the ussSNMPAgentTrap() function is called by the application or by the agent, the agent will
actually iterate through each active_xxx() function for each trap host.

SNMP

For example implementations, see the following:

snmpsrc\tm_bsd.c smxNS BSD socket interface (smxNS,
UNIX, and Windows)

snmpsrc\tm_dpi.c smxNS DPI interface

Exercising the Agent

An SNMP agent traditionally services queries from an SNMP Manager, which is implemented by
software such as HP OpenView. There are other freely available software packages that can perform
SNMP Manager operations. This section discusses the use of Net-SNMP. The Net-SNMP package is
currently available from http://net-snmp.sourceforge.net/, and binaries are available for a number of
platforms, including Microsoft Windows.

The Net-SNMP package provides command line utilities that can perform operations on an SNMP
Agent using SNMP Version 1, Version 2 or Version 3. Here are some example commands that
demonstrate these functions. These examples use the default user configuration in usm.c.

Example: Dump the entire MIB tree using SNMP Version 1
C:>snmpwalk —c public —v 1 192.168.11.100

Here the community name is given as “public”, the version is specified as “1” and the SmxNS SNMP
agent is running on a system that has the IP address 192.168.11.100.

Example: Dump the entire MIB tree using SNMP Version 2C

C:>snmpwalk —c public —v 2c 192.168.11.100

Example: Dump the entire MIB tree using SNMP Version 3

C:>snmpwalk —I noAuthNoPriv —n public