
  

 
 

smxFLogTM User’s Guide 
 

Flash Logger 
 

Version 1.50 
February 22, 2024 

 
by Yingbo Hu and David Moore 

 
 
 
Table of Contents 
 

1. Overview .............................................................................................................................................. 1 
1.1 Features ............................................................................................................................................ 1 
1.2 Limitations ....................................................................................................................................... 2 
1.3 Overhead .......................................................................................................................................... 2 
1.4 Record Size ...................................................................................................................................... 2 
1.5 Multiple Logs .................................................................................................................................. 3 

2. Using smxFLog .................................................................................................................................... 3 
2.1 Getting Started ................................................................................................................................. 3 
2.2 Basic Terms ..................................................................................................................................... 3 
2.3 Configuration Settings ..................................................................................................................... 4 
2.4 Implementation Details .................................................................................................................... 6 
2.5 Partitioning the Flash ....................................................................................................................... 6 
2.6 Mixed and Small Block Sizes .......................................................................................................... 9 
2.7 Wear Leveling ................................................................................................................................. 9 
2.8 Erasing Blocks ................................................................................................................................. 9 
2.9 Power Fail Safety ............................................................................................................................. 9 
2.10 Error Correction ............................................................................................................................. 9 
2.11 Application Development ............................................................................................................ 12 

3. smxFLog API ..................................................................................................................................... 13 
3.1 API Data Types.............................................................................................................................. 13 
3.2 API Reference ................................................................................................................................ 13 

4. Low-Level Flash Drivers................................................................................................................... 23 
4.1 NAND flash ................................................................................................................................... 23 
4.2 NOR flash ...................................................................................................................................... 26 

5. Application Examples ....................................................................................................................... 31 
5.1 Offload Log Data to smxFS ........................................................................................................... 31 
5.2 Offload Log Data to smxUSBD Serial Device .............................................................................. 31 
5.3 Erase Oldest Record When System is Idle .................................................................................... 32 
5.4 NAND Flash Array ........................................................................................................................ 32 



  

A. File Summary .................................................................................................................................... 33 

B. Size and Performance ....................................................................................................................... 34 
B.1 Code Size ...................................................................................................................................... 34 
B.2 Data Size ....................................................................................................................................... 34 
B.3 Performance .................................................................................................................................. 34 

C. Tested Hardware .............................................................................................................................. 36 
C.1 NAND ........................................................................................................................................... 36 
C.2 NOR .............................................................................................................................................. 36 

 
 
 
 
 
 
 
 

© Copyright 2008-2024 
 

Micro Digital Associates, Inc. 
 (714) 437-7333 

support@smxrtos.com 
www.smxrtos.com 

 
All rights reserved. 

 
 

smxFLog is a Trademark of Micro Digital Inc. 
smx is a Registered Trademark of Micro Digital Inc.



 

 1 

1. Overview 
smxFLog has the simple purpose of logging data efficiently and reliably in flash, using a minimum of 
RAM. Logging data is a very common operation in embedded systems, and warrants a good solution. It is 
a sequential operation consisting of appending data to a file. This is not efficient in FAT file systems 
when writing to flash media. The problem is that writing less than a full cluster of data each time requires 
the partially-filled last cluster to be moved around in flash each time, and it also requires modifying FAT 
and directory sectors, which also have to be moved. This hurts peformance and wears the flash. It also 
means garbage collection is frequently required, which is a lengthy operation and can stall further logging 
temporarily. smxFLog can append new records without moving data, and it has no tables to move either. 
 
smxFLog is also power-fail-safe because of its simplicity. The DOS/Windows FAT file system is 
inherently not power-fail-safe, unless it is extended with journaling or some other mechanism, which 
might be incompatible. Non-standard file systems can be designed to be power-fail-safe, as smxFFS was, 
but they are more complex and have larger memory footprints. This makes them unsuitable for many low-
end SoCs with small on-chip SRAM and no ability to connect to external memory. 
 
File systems are very useful, though, because they allow storing multiple files and directories. Moreover, 
the DOS/Windows FAT file system allows media to be shared with other computers. Even non-
removable media in an embedded target can be read from the file system on a PC if the target is running a 
USB device stack with mass storage driver, such as smxUSBD. In this case, a disk stored in resident flash 
will look like a disk to a PC connected by USB cable. File systems are useful because they allow sharing 
data either using removable media or via a data link such as USB or FTP. 
 
Thus, it is beneficial to use smxFLog and smxFS in the same system. Data can be logged reliably by 
smxFLog and periodically offloaded in chunks to the file system, which is efficient. API functions are 
provided, and code examples shown in section 5. Application Examples, to make this easy. They can 
coexist in the same flash (in separate partitions), and in this case, they will share the same low-level flash 
driver, so there is only one driver to port and no duplicated code. 

1.1 Features 
• Works with NAND, NOR, or serial NOR flash. 
• Can be used with any size flash memory. 
• Supports multi-chip flash arrays. 
• Uses the same low-level drivers as smxNAND and smxNOR. 
• Supports multiple logs by partitioning the flash. 
• Wear leveling is inherent. 
• Skips bad blocks. 
• Efficient and fast. 
• Designed for reliable use. 
• ECC mode for NAND flash. 
• Read back and verify mode. 
• Simple, safe API. 
• Power fail safe. 
• Small:  

o ROM: 5 KB with ECC, 3 KB without ECC. 
o RAM: 288 bytes with ECC: 32 bytes without ECC, for each log. 

• Can share flash with smxFS, smxFFS, boot code, and application code 



 

 2 

1.2 Limitations 
In order to make smxFLog simple, efficient, and reliable, the following restrictions are imposed: 
 

• All flash records in a log must have the same size, specified at compile time. Size restrictions are 
different for NAND and NOR flash. See g_LogConfig[] in section 2.3.2 flcfg.c. 

• New records can only be appended following the old records, and existing records cannot be 
modified. 

• Supported NAND flash types are those that: support block erase (changing all cells to 0xFF), 
support partial page write at least 3 times, and have a spare area. There is no overhead in the data 
area. MLC flash is not supported because it has no partial page programming. 

• For NOR flash there is overhead in the data area to store the status and ECC bytes since there are 
no spare areas. 

1.3 Overhead 
1/4 status byte plus 3 bytes ECC (optional) are stored for each flash record. For NAND flash there is no 
overhead because these are stored in the spare area of each page. For NOR flash there are no spare areas, 
so this information must be stored in the data area. Overhead is 
(1+3*((record_size+255)/256))/record_size if ECC is enabled. The minimum tested flash record size is 32 
bytes, for which overhead is 12.5%. For a record size of 256, overhead is 1.56%. See the discussion for 
g_LogConfig[] in section 2.3.2 flcfg.c. 

1.4 Record Size 
For NAND and NOR, record size cannot exceed (erase) block size. If you must log more data than the 
block size, you must use multiple records. 
 
NAND flash:  Flash records must be 512 bytes or a power of 2 multiple of 512 bytes (1, 2, 4, 8, ..). This 
is because of partial programming limitations. (See section 2.4.2 Status and ECC Bytes.) If the record 
were 256 bytes, there would be 2 per page, requiring partial programming 6 times (3 times for each status 
byte (ECC is written with first status byte write)), but many flash chips support only 3 times. If the flash 
chip supports at least 6 times, this can be reduced to 256. Note that some flash chips with page size 2048 
actually combine four 512-byte pages together to generate the 2048-byte page so these flash chips can 
still support a 512-byte record size. Record size does not need to be 2048 bytes. 
 
NOR flash:  Flash records can be any size that is a power of 2 because there is no partial programming 
issue, but the overhead of status and ECC bytes becomes significant as block size decreases. See section 
1.3 Overhead. It is important to support smaller record sizes for NOR flash since most systems won’t 
have much. The minimum tested record size is 32 bytes. 
 
For serial NOR (SPI) flash, record size must be the page size of the flash, usually 256 bytes, for the low-
level drivers we supply (since they are written to also support our file systems, smxFFS and smxFS which 
read file system sectors). Also, this is required for flash chips that require writes to start at page 
boundaries, unless buffering and copying are done. Some allow writing at any address within a page, 
which should make it easier to use a smaller record size. In any case, when creating a new driver, we 
recommend supporting record == page size first. Also for smaller record sizes, it’s likely the 
InfoRead/Write() functions will need special handling, as discussed below. 
 



 

 3 

Tips 
 
1. Our low-level flash drivers (nandio*.c and norio*.c) are shared with smxFFS, smxFS, and smxFLog. 
 
2. SectorSize in the low-level drivers means a file system sector size, typically 512 bytes for our file 
systems. For smxFLog it means a record. 
 
3. For serial NOR, choose a chip that supports writing to any location in a page, if you want to use a 
record size < page size. See discussion above. 
 
4. nor_IO_InfoRead() and nor_IO_InfoWrite() write the metadata (status + ECC bytes) at the start of each 
flash erase block for all records in that block. If record size is small or if enabling ECC, this could mean it 
takes more than 1 page of space. In that case, these routines must have extra logic to read/write the correct 
page, such as this: 
 
    xxxx_READ(BlockIndex*PagesPerSector + Offset/PageSize, Buf, PageSize, 0); 
    memcpy(Buf + Offset%PageSize, pInfo, BufSize); 
    xxxx_WRITE(BlockIndex*PagesPerSector + Offset/PageSize, Buf, PageSize); 

1.5 Multiple Logs 
Multiple logs are supported by defining fixed-size partitions in g_LogConfig[] (see section 2.3.2 flcfg.c 
for details). Record size can be set independently for each log. Logs are identified by integer IDs, which 
could be named constants in the application, for readability. 
 
Typical applications sample data at a constant interval with a constant sample size, so the rate of growth 
of each log is known in advance, and partition sizes can be set proportionately. Supporting fixed-size logs 
rather than dynamic logs makes the code simpler and smaller and requires less RAM. smxFLog was 
designed to run with very little RAM (only 32 bytes with ECC disabled), unlike flash file systems. See 
Appendix B. Size and Performance for code and data sizes. 

2. Using smxFLog 

2.1 Getting Started 
You must erase the flash first if it contains any pre-loaded image or data. After you implement your low 
level NAND or NOR flash driver, use the code provided in ffstest.c (for NAND), fdtest.c (for NOR), or 
flltest.c (both) to verify your driver first. Please see section 3.2 nandio.c in the smxNAND User’s Guide 
or section 5.3 Verify the Driver in the smxNOR User’s Guide for details. 

2.2 Basic Terms 
Block Minimum erasable unit of the flash chip. Some NOR flash chips use the term sector, 

instead. 
Page Maximum read/write unit of data of a NAND flash chip. It is 512 or 2048 bytes. 
Flash Record A unit of flash data. All in a log must be the same size and a power of 2. 
Data Record A unit of application data. May not be the same size as a flash record, in which case, 

several might occupy a single flash record, or one may span several flash records. 
smxFLog is not aware of data record size or structure. 



 

 4 

Pointer/Ptr Record index not address. For example, 1, 2, 3, …. 
 
Note:  It is cumbersome to specify “flash record” and “data record” in all places. When not specified, 
context should make it clear. Most often, record means flash record, since that is what smxFLog is 
concerned with, not data records. 

2.3 Configuration Settings 

2.3.1 flcfg.h 
flcfg.h contains flash logger configuration constants that allow selecting features and tuning performance, 
code size, and RAM usage. 

Note:  Other settings are in the low-level driver configuration file, flashcnf.h (NAND) or fdcfg.h 
(NOR). 

SFL_NAND 
Set to “1” to use NAND flash to log data. 

 
SFL_NOR 

Set to “1” to use NOR flash to log data. 
 
SFL_USE_ECC 

Set to “1” to enable software ECC code to check and correct data consistency. Default setting is “0”. 
If you have hardware ECC support for your processor, set SFL_USE_ECC to 0 and implement it in 
the low level driver. Ensure the hardware generated ECC code won’t overwrite the 4-byte status in 
the spare area. 

 
SFL_READBACK_VERIFY 

Set to “1” to enable read back verification to check data consistency. It will allocate an additional 
flash record-sized read back buffer in RAM. Default setting is “0”. Normally this is only used for 
testing. 

 
 Operation if enabled:  After writing the data, smxFLog reads it back into another buffer and compares 

this buffer to the original data buffer. If they are not the same, it marks the current record bad and 
goes to the next empty record to write it again. The process repeats until it is written successfully, or 
it will stop if SFL_RECYCLE_FLASH is 0 and there are no more empty records. The retries are 
transparent to the application, and the bad block is not marked because we cannot guarantee we can 
still update the status byte to the desired value. The next time we encounter it, we will skip it again. 

 
SFL_RECYCLE_FLASH  

Set to “1” to enable auto reclaim of the oldest block when the flash is full. Default setting is “1”. If 0, 
smxFLog will stop logging when the flash is full. 
 
Operation if enabled:  Immediately after writing a record, smxFLog checks to see if the flash is full. If 
so, it reclaims the oldest block(s), so empty records are ready for new data. 
 
CAUTION:  Erasing blocks is a slow and variable-length operation. See section 2.8 Erasing 
Blocks. 

 



 

 5 

SFL_SAFETY_CHECKS  
Set to “1” to enable extra safety checking code to check internal data structures and parameters 
passed to the APIs. The safety checks are not guaranteed to catch all problems, such as a particular 
memory corruption pattern or corrupted record data buffer pointer. 

 
SFL_BADREC_BITMAP 

If 1, a bitmap is used for the bad record array for sfl_Read() rather than a byte array. This allows 
reducing the size of the buffer that must be passed to hold bad record information, but it is less 
efficient. If the application needs to read many records at once, you may want to enable this. 

 
SFL_MAX_RECORD_SIZE 

Maximum record size of all logs. It is used to allocate memory if SFL_READBACK_VERIFY is 
enabled or to calculate ECC bytes if SFL_USE_ECC is enabled. It can be ignored it if both 
SFL_READBACK_VERIFY and SFL_USE_ECC are disabled. 
 
Note:  Record size for each log is set in the configuration tables in flcfg.c. By default, they use 
this value, but it can be specified as any value <= SFL_MAX_RECORD_SIZE in those tables, and it 
can be different for each log. 

 
SFL_MAX_LOG_NUM 

Maximum number of logs smxFLog should support. It is also necessary to set the log configuration 
table in flcfg.c. See section 2.3.2 flcfg.c for details. 

 

2.3.2 flcfg.c 
g_LogConfig[] 

This is the multiple log configuration table used to tell smxFLog the properties of each log. 
Configure this table as desired. This is an array of structure SFL_LOG_CONFIG, which is defined 
as: 

 
typedef struct 
{ 
    u32 iStartBlock; 
    u32 iBlockNum; 
    uint iRecordSize; 
    uint iRecycleBlockNum; 
} SFL_LOG_CONFIG; 

 
iStartBlock 
Start block index of this log. When using multiple logs or other file systems on the same flash chip, 
ensure this log’s area does not overlap other partitions. 
 
iBlockNum 
Total number of blocks reserved by this log. Use ((u32)-1) to use the remaining blocks to the end of 
flash. When using multiple logs or other file systems on the same flash chip, ensure this log’s area 
does not overlap other partitions. 
 
iRecordSize 
Flash record size. Must be a power of 2, subject to the characteristics of the flash, as discussed in 
section 1.4 Record Size. All flash records in the same log must be the same size, so for small data 
records, we recommend buffering data, then writing multiple data records into each flash record.  



 

 6 

 
iRecycleBlockNum 
How many block(s) smxFlog needs to erase each time, when the SFL_RECYCLE_FLASH is set to 
1. Normally it should be set to 1. If you want to group multiple records into one big virtual record, 
you may need to change this setting. For example, if your application needs to use a 256KB record 
size but your flash’s block size is only 128KB then you cannot set iRecordSize to 256KB but your 
application can read/write two 128KB record to get a virtual 256KB application record. To avoid the 
problem of having a partial record due to smxFLog recycling one block, you need to set this value to 
2 so smxFlog will erase two blocks each time. 

2.4 Implementation Details 
This manual does not document the theory of operation of smxFLog. However, we explain here a few key 
concepts that will aid in understanding how to use the API. 

2.4.1 Record Pointers and Marks 
smxFLog maintains pointers to the oldest record, next record to read, and the next record to write. These 
are initialized by scanning the whole flash at startup. The oldest record pointer is advanced as old flash 
blocks are reclaimed. The read pointer is advanced after each sfl_Read() to point at the next record to 
read. The write pointer is advanced after each sfl_Write() to point at the next empty slot to write to. The 
flash is treated as a circular queue and the pointers go round and round, unless the application never 
erases old blocks and SFL_RECYCLE_FLASH is 0. 

sfl_ReadPtrMark() allows marking the record in flash that the read pointer currently points to so that if a 
power fail occurs, the read pointer will start there after restart. This API will erase all the old records that 
were already read, in the blocks preceeding the one the mark is written to. 

2.4.2 Status and ECC Bytes 
The status byte is used to indicate if a write is in progress or completed, or to mark the record bad. It is 
also used to mark the current read pointer when blocks are erased or it is moved by sfl_ReadPtrMark(). 
The status byte is also used as an erase mark, so an erase operation can be resumed if power fails. The 
byte starts at 0xFF, which is the flash erased value. It is first changed to the value to mean write in 
progress. At that same time, the ECC is written. When the write is done, it is either changed to the write 
completed value or to the bad record value. In the first case, it might be changed later by clearing a bit to 
indicate it is the current read pointer. At most 3 writes are done to the combined status + ECC bytes, so 
that the 3-times rule for partial programming NAND flash is not violated. An erase mark is never written 
to the same page as the read mark, to avoid exceeding the partial programming limit. 

2.5 Partitioning the Flash 
By default smxFLog uses the entire flash. However, it is easy to reserve blocks before it and after it in the 
flash, for use by other software, such as our FAT file system smxFS, as is discussed in the Overview of 
this manual. In order to understand how to configure this, the following diagrams are helpful. 



 

 7 

The following diagram shows how the different SMX file systems relate to each other. 

 
Notice that smxFLog is at the same level as the NAND and NOR high level drivers. The start and end 
block numbers in flashcnf.h (NAND) and fdcfg.h (NOR) are comparable to those in flcfg.h (smxFLog). 
The following diagram shows how smxFS + smxNOR and smxFLog can share NOR flash. This example 
shows a flash chip with 1024 flash blocks. 

 

 
smxFS  

 
smxFLog 

NOR Flash 
High Level 

Driver 

NOR Flash 
Low Level 

Driver 

NAND Flash 
High Level 

Driver 

NAND Flash 
Low Level 

Driver 

 
smxFFS API 

  smxFFS 

   smxNOR 

smxFS + 
smxNOR  
768 blocks 

smxFLog 
256 blocks 

0 

768 

1024 



 

 8 

To achieve this, configure as follows: 

XFD\fdcfg.h  (smxNOR; NOR driver for smxFS) 
#define NOR_START_BLOCK_INDEX 0 
#define NOR_BLOCK_NUM                   768 
 
XFL\flcfg.c 
const SFL_LOG_CONFIG g_LogConfig[SFL_MAX_LOG_NUM] = 
{ 
    {768, 256, 2048}, 
}; 
 

Note that additional blocks could be reserved at the start and end of flash for other purposes by changing 
NOR_START_BLOCK_INDEX to non-zero values and SFL_BLOCK_NUM to be smaller than 256. For 
example, if additional 128 blocks need to be reserved for boot loader then the configuration will be: 

 

 
XFD\fdcfg.h 
#define NOR_START_BLOCK_INDEX 128 
#define NOR_BLOCK_NUM                   640 
 
XFL\flcfg.c 
const SFL_LOG_CONFIG g_LogConfig[SFL_MAX_LOG_NUM] = 
{ 
    {768, 256, 2048}, 
}; 
 

Partitioning the NAND flash is similar. 

smxFS + 
smxNOR  
640 blocks 

smxFLog 
256 blocks 

0 

768 

1024 

Bootloader 
128 blocks 

128 



 

 9 

2.6 Mixed and Small Block Sizes 
For NAND flash, all blocks are the same size, but it is common for NOR flash to have smaller block sizes 
at the start or end of the flash (i.e. the boot block). The total size of the small blocks is the same as a 
normal flash block (e.g. 64KB). To handle this, either exclude these small blocks from the partitions of 
the flash used by smxNOR and smxFLog, or treat them as a single block by adding special handling to 
nor_IO_SectorRead() and nor_IO_SectorWrite() in the low-level NOR driver. 

SoCs with on-chip flash typically have small blocks, such as 4KB instead of the typical 64KB. The low-
level NOR driver can support this. 

2.7 Wear Leveling 
Wear leveling is guaranteed because data is written to the flash sequentially. 

2.8 Erasing Blocks 
Erasing blocks is a slow operation, especially for NOR flash. It can take 0.1s to 1s or even more. The 
amount of time is variable and can increase for a particular block the more times it has been erased. Be 
careful about any assumptions about how long an erase or logging operation should take. smxFLog 
provides an option to recycle flash and two API functions that erase one or more flash blocks, but that 
doesn’t mean they should be used. If the system must continue logging data without interruption, it may 
be necessary to choose a large enough flash chip (or array) to store a complete log without erasing. In the 
application, it may only be safe to wait until a sampling session is complete, and then offload the data, 
erase the whole flash, and start over. 

The two API functions that erase blocks are sfl_Erase() and sfl_ReadPtrMark(). It might be good to use 
them only to erase one block at a time. For sfl_Erase(), pass SFL_ERASE_ONE_BLOCK. For 
sfl_ReadPtrMark(), call it every time a block worth of records has been read. 

2.9 Power Fail Safety 
Power fail safety is easily achieved because there are no data structures, such as mapping tables, FATs, or 
directories, to keep consistent with the data. A status byte for each flash record indicates whether a write 
operation is pending or completed. Partially written records are simply skipped, when reading. 

2.10 Error Correction 
After a NAND flash chip has been used for a long time, it may develop some bad bits. smxFLog 
implements a software ECC algorithm capable of detecting a 2-bit error and fixing a 1-bit error. The ECC 
code is 3 bytes per 256 bytes. smxFLog uses ECC only for NAND because NOR flash tends to be more 
reliable. Also, when it does fail, many bits tend to go bad, not just one or two. 

The ECC is generated before the data is actually written to the flash chip. When data is read back from 
the flash chip, if it has a correctable error, the corrected data is returned. If the data has an error that 
cannot be corrected, an error SFL_ERROR_BAD_REC is reported but the record data will still be 
returned. 

Our ECC algorithm can only process 256 bytes, but a flash record may be larger or smaller. For a record 
of size 512 bytes or a multiple of 512 bytes, two ECC codes are generated for each 512 bytes of data—



 

 10 

one for the first 256 bytes and the other for the second 256 bytes. The ECC codes are stored in the spare 
area of each page for NAND flash or in the area smxFLog reserves in NOR flash. For NAND flash, if the 
record (page) size is a multiple of 512 bytes, several ECC codes may be created in the NAND spare area, 
so the flash chip must have spare areas larger than 16 bytes per page. The ECC codes require 3 bytes per 
256 bytes, so ECC uses 3 * page_size/256 bytes, and 1 byte is required for the status byte. For example a 
2048-byte page size requires 1 + 3 * 2048/256 == 25 bytes in each spare area. Flash chips with page size 
2048, normally have a spare area of 64 bytes instead of the normal 16 bytes, which is plenty to store the 
ECC and status byte information. For NOR flash, this is not an issue because the status byte plus three 
ECC bytes is written after each data record or 256 data bytes, whichever is smaller. When a NOR flash 
record is less than 256 bytes, it is treated as if it were padded out to 256 bytes with 0’s, and a 3-byte code 
is still generated.  

If the record size is multiple of NAND flash page size, ECC of each page will be stored in the spare area 
of each page. 

2.10.1  ECC Code Generation 
 
We use a Hamming code to implement 1-bit ECC. It can detect a 2-bit error and correct a 1-bit error. 
 
A. ECC code consists of 3 bytes per 256 bytes 

- Actually 22 bit ECC code per 2048 bits 
- 22 bit ECC code = 16 bit line parity + 6 bit column parity 

 
B. Data bit assignment table with ECC code 

 
1st byte bit7 bit6 bit5 bit

4 
bit3 bit2 bit1 bit0 LP00 LP02 LP04 

2nd byte bit7 bit6 bit5 bit
4 

bit3 bit2 bit1 bit0 LP01 

 3rd byte bit7 bit6 bit5 bit
4 

bit3 bit2 bit1 bit0 LP00 LP03 

4th byte bit7 bit6 bit5 bit
4 

bit3 bit2 bit1 bit0 LP01 

……………. 
253th byte bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 LP00 LP0

2 
LP05 

254th byte bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 LP01 
255th byte bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 LP00 LP0

3 256th byte bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 LP01 
 CP00 CP01 CP00 CP01 CP00 CP01 CP00 CP01    

 CP02 CP03 CP02 CP03    
 CP04 CP05    

 
Column Parity is calculated over the entire data block as each data byte is processed. Selected bits of each 
data byte are added to the previous value of each Column Parity bit. The equations for the Column Parity 
bits are: 
 
CP00 = bit7 XOR bit5 XOR bit3 XOR bit1 XOR CP00 
CP01 = bit6 XOR bit4 XOR bit2 XOR bit0 XOR CP01 
CP02 = bit7 XOR bit6 XOR bit3 XOR bit2 XOR CP02 
CP03 = bit5 XOR bit4 XOR bit1 XOR bit0 XOR CP03 
CP04 = bit7 XOR bit6 XOR bit5 XOR bit4 XOR CP04 



 

 11 

CP05 = bit3 XOR bit2 XOR bit1 XOR bit0 XOR CP05 
 
Line parity is calculated over the entire data block as each data byte is processed. If the sum of the bits in 
one byte is 0, the line parity does not change when it is recalculated. The sum of the bits in 1 byte of data 
is: 
 
Dall = bit7 XOR bit6 XOR bit5 XOR bit4 XOR bit3 XOR bit2 XOR bit1 XOR bit0 
Sixteen line parity bits (LP15-LP00) are computed from 256 bytes of data. An 8 bit counter counts data 
bytes, bits of this counter are used as a mask for Line Parity bits. The counter increments by 1 for each 
new byte of data. Line Parity is computed by initializing all line parity bits to zero, reading in each byte, 
computing the byte sum (Dall), and adding Dall to the line parity bits when they are enabled by the 
appropriate counter bits. 
The equations for the Line Parity bits are: 
 
LP00 = LP00 XOR (Dall AND Counter_bit0) 
LP01 = LP01 XOR (Dall AND Counter_bit0) 
LP02 = LP02 XOR (Dall AND Counter_bit1) 
LP03 = LP03 XOR (Dall AND Counter_bit1) 
LP04 = LP04 XOR (Dall AND Counter_bit2) 
LP05 = LP05 XOR (Dall AND Counter_bit2) 
LP06 = LP06 XOR (Dall AND Counter_bit3) 
LP07 = LP07 XOR (Dall AND Counter_bit3) 
LP08 = LP08 XOR (Dall AND Counter_bit4) 
LP09 = LP09 XOR (Dall AND Counter_bit4) 
LP10 = LP10 XOR (Dall AND Counter_bit5) 
LP11 = LP11 XOR (Dall AND Counter_bit5) 
LP12 = LP12 XOR (Dall AND Counter_bit6) 
LP13 = LP13 XOR (Dall AND Counter_bit6) 
LP14 = LP14 XOR (Dall AND Counter_bit7) 
LP15 = LP15 XOR (Dall AND Counter_bit7) 
 
C. Error detect case 

LP 
15 

LP 
14 

LP 
13 

LP 
12 

LP 
11 

LP 
10 

LP 
09 

LP 
08 

LP 
07 

LP 
06 

LP 
05 

LP-
04 

LP 
03 

LP 
02 

LP 
01 

LP 
00 

CP 
05 

CP 
04 

CP 
03 

CP 
02 

CP 
01 

CP 
00 

code stored in 
Flash 

                      XOR 
LP 
15 

LP 
14 

LP 
13 

LP 
12 

LP 
11 

LP 
10 

LP 
09 

LP 
08 

LP 
07 

LP 
06 

LP 
05 

LP-
04 

LP 
03 

LP 
02 

LP 
01 

LP 
00 

CP 
05 

CP 
04 

CP 
03 

CP 
02 

CP 
01 

CP 
00 

code  read 
generated 

                       
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 No Error 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 Correctable 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 1 Uncorrectable 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Code Error 

 
No error 
Since there is no difference between the code stored in the flash and the one generated after the read, it is 
assumed that there is no error in this case. 
 
Correctable error 
Since all parity bit pairs (CP00 and CP01),.....,(LP014 and LP15) have one error and one match in them as 
the result of the comparisons between the code stored in flash and the one generated after the read, this 
case is considered to be a correctable error. 
 



 

 12 

Uncorrectable error 
In this case, both CP00 and CP01 are in error as the results of the comparison between the code stored in 
flash and the one generated after the read. This represents a multiple bit error, and is therefore 
uncorrectable. 
 
ECC code area error 
When only one bit (LP13) is erroneous (the result of the comparison between the code stored in flash and 
the one generated after the read), it is assumed that the error occurred in the ECC area and not in the data 
area. This is because a single erroneous data bit should cause a difference in half of the Line Parity bits 
(by changing Dall, which affects half of the Line Parity bits based on the current counter value), and half 
of the Column Parity bits (based on the equations for the Column Parity bits, which each include half of 
the data bits). 
 
D.  Error Correction 
The error location can be found by XORing the ECC parity bits stored in the flash with ECC bits 
calculated from the data read out of the flash. The error location is assembled from XORing the following 
stored and computed line 
parity bits: 
 
(LP15,LP13,LP11,LP09,LP07,LP05,LP03,LP01) - this gives the byte address. 
(CP05,CP03,CP01) - this gives the bit number. 
 

2.11 Application Development 
The main operations of smxFLog are:  initialize flash, write records, read records, and (optionally) erase 
old blocks of records.  The read pointer can be moved in limited ways, and a read mark can be set to 
revert to. smxFLog can be configured to write once through the flash or to recycle the flash and wrap 
around to the beginning when the end is reached. The API is documented in section 3. smxFLog API. 

The read and write pointers are not written to flash due to partial programming limitations. Instead, at 
power-up they are determined by scanning the flash. Their positions are determined based on unused 
space (empty blocks). Unfortunately, on some flash chips, bad blocks cannot be distinguished from empty 
blocks, so the locations of these pointers is ambiguous. To make their locations certain, smxFLog writes a 
read mark at the start of the flash when it is initialized so it is guaranteed that there will be one, and when 
writing a new read mark (with sfl_ReadPtrMark()), all blocks before it are erased. Erasing flash can be 
slow, especially for NOR flash, so it may be best to erase one block at a time. See section 2.8 Erasing 
Blocks for more information. In a multitasking environment, a loop could be used that suspends the task 
briefly after erasing each block, to allow others to run. 

smxFLog prevents loss of data, but if a power fail occurs, the read pointer may be restored to an earlier 
position, so that data being transcribed or transmitted may be repeated. As a consequence, the application 
should store a sequence number or timestamp in each record, so that it is possible for the recipient to 
determine where to continue processing the data. 



 

 13 

3. smxFLog API 
The smxFLog API is defined in smxflog.h, which contains the functions that are called by the application. 

int  sfl_Init(uint iFlag); 

int  sfl_Release(void); 

int  sfl_Read(uint iLogID, u8 *pRecord, uint iNum, uint *piNumRead, u8 *pBadRecArray, uint 
iNumBadRecArray); 

int  sfl_ReadPtrMark(uint iLogID); 

int  sfl_ReadPtrRestore(uint iLogID); 

int  sfl_ReadPtrSkipTo(uint iLogID, u32 dwNewReadPtr); 

int  sfl_ReadPtrSkipToRel(uint iLogID, u32 dwNum); 

int  sfl_Write(uint iLogID, u8 *pRecord, uint iDataSize); 

int  sfl_Erase(uint iLogID, uint iFlag); 

u32  sfl_GetMaxRecords (uint iLogID); 

u32  sfl_GetMaxFreeRecords (uint iLogID); 

u32  sfl_GetOldestReadPtr(uint iLogID); 

u32  sfl_GetReadMarkPtr(uint iLogID); 

u32  sfl_GetReadPtr(uint iLogID); 

u32  sfl_GetWritePtr(uint iLogID); 

 

3.1 API Data Types 
These are defined in flport.h. 

3.2 API Reference 
Each smxFLog API will return a result to the application. The application should check the return value 
carefully for any potential error case. SFL_ERROR_NONE is the return value for success. 



 

 14 

int sfl_Init (uint iFlag) 
 
Summary Initialize hardware and internal data structures. 
 
Details This function should be called first before using smxFLog. It calls the NAND or NOR Flash 

Hardware IO Routine in the low-level driver to initialize the flash chip and retrieve the basic 
information about it such as the block size and total number of blocks. It then will perform the 
following:  

 
Pars iFlag One of the following: 
  SFL_INIT_CHECK 
  Do normal power up and scan the whole flash to initialize the record pointers. 

Preserves existing records in the flash. This delays the power up procedure due to 
the scanning. 

  SFL_INIT_SKIP_CHECK 
  Do not scan the flash to initialize the record pointers. This assumes the application 

has erased the whole flash partition used by smxFLog. It is the fastest way to 
initialize smxFLog. 

  SFL_INIT_ERASE_ALL 
  Erase the whole smxFLog partition before using it. All records will be lost. 
 
Returns SFL_ERROR_NONE  Initialization succeeded. 
 SFL_ERROR_HARDWARE Initialization failed because the low level hardware init 

function returned an error.  
 SFL_ERROR_NO_MUTEX Initialization failed because smxFLog could not allocate 

mutex resource from the OS.  
 SFL_ERROR_INTERNAL Internal data structure(s) are corrupted. smxFLog will stop 

logging. Please call sfl_Release() and sfl_Init() again to 
try to recover from it.  

 
See Also sfl_Release() 
 
Example 
 if(SFL_ERROR_NONE == sfl_Init(SFL_INIT_CHECK)) 
  printf(“Flash Logger Initialized.”); 
 

 

int sfl_Release (void) 
 
Summary Release smxFLog resources. 
 
Details This function should be called when the application is done with smxFLog. It resets the 

internal record pointers set by sfl_Init() and calls the NAND or NOR Flash Hardware IO 
Routine to release the hardware resources. 

 
Pars none 
 
Returns SFL_ERROR_NONE Release succeeded. 
 



 

 15 

See Also sfl_Init() 
 
Example 
 if(SFL_ERROR_NONE == sfl_Release()) 
  printf(“Flash Logger Released.”); 
 

 

 

int sfl_Read(uint iLogID, u8 *pRecord, uint iNum, uint *piNumRead, u8 *pBadRecArray, 
uint iNumBadRecArray) 

 
Summary Read one or more flash records from the flash memory. Bad records are still returned but will 

be marked in the BadRecArray. 
 
Details This function reads flash records from the flash memory starting at the record pointed to by the 

read pointer. The buffer allocated by the application must be large enough to hold the specified 
number of records. The read pointer (in RAM) is advanced to point to the next record to read. 

 
 If bad records are encountered, the data is still read into the destination buffer *pRecord as is, 

and pBadRecArray[] indicates which records are bad. For example, if the application needs to 
read 4 records but the second one is bad because the ECC check failed, then pBadRecArry[] = 
{0, 1, 0, 0}. To reduce the size of this array for large reads, SFL_BADREC_BITMAP can be 
enabled so it is a bitmap rather than a byte array. For more information, see section 2.3 
Configuration Settings. 

 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 pRecord The destination buffer to hold the records read from flash. 
 iNum The requested number of records to read. 
 piNumRead The actual number of records read. This number may be smaller than the 

number requested. 
 pBadRecArray Array to indicate bad records. If NULL is passed for this parameter, 

smxFLog will not return information about bad records, and it will ignore 
parameter iNumBadRecArray. 

 iNumBadRecArray The size of the bad records array. 
 
Returns SFL_ERROR_NONE Records were read from the flash, but the actual number 

read may be smaller than the number requested, so the 
application needs to check the value of *piNumRead. 

 SFL_ERROR_BAD_REC One or more of the records read was bad. The application 
needs to check pBadRecArray to find out which records 
are bad. 

 SFL_ERROR_FLASH_EMPTY All records have been read. 
 SFL_ERROR_INTERNAL Internal data structure(s) are corrupted. smxFLog will stop 

logging. Please call sfl_Release() and sfl_Init() again to 
try to recover from it.  

 SFL_ERROR_INVAL_PARAM A parameter passed to this API is invalid. For example, 
pRecord is a NULL pointer or iNumBadRecArray is 
smaller than the iNum, the number of records requested.  

 



 

 16 

See Also sfl_Init(), sfl_ReadPtrMark(), sfl_ReadPtrRestore(), sfl_Write() 
 
Example 
 u8 RecordBuf[10*512]; 
 uint iNumRead 
 u8 BadRecArray[10]; 
 int result; 
 uint I; 
 result = sfl_Read(0, RecordBuf, 10, &iNumRead, BadRecArray, 10); 
 if(result == SFL_ERROR_NONE) 
 { 
  printf(“There are no bad records. Actual number of records read is %d.”, iNumRead); 
 } 
 else if(result == SFL_ERROR_BAD_REC) 
 { 
  printf(“Returned records contains bad records, total record number is %d”, iNumRead); 
  for(i = 0; i < iNumRead; i++) 
  { 
   If(BadRecArray[i] == 1) 
   { 
    printf(“Record %d is bad. You may need to ignore it.”, i); 
   } 
  } 
 } 
 
 

 

int sfl_ReadPtrMark(uint iLogID) 
 
Summary Mark the read pointer in the flash chip. 
 
Details This function marks the flash record to which the current read pointer (stored in RAM) points, 

by clearing one of its status bits, so after system restart, it is not necessary to re-read the old 
records that were already read from the flash. The old blocks of records before it will be 
erased, starting at the block pointed to by the oldest record pointer. It erases up to the nearest 
physical block boundary below the new read pointer. 

 
 CAUTION:  Erasing blocks is a slow and variable-length operation. See section 2.8 

Erasing Blocks. To ensure only one block is erased, this function should be called every time 
a block worth of records is read. 

 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 
Returns SFL_ERROR_NONE  Mark succeeded. 
 SFL_ERROR_FLASH_EMPTY All records have been read. 
 SFL_ERROR_FLASH_ERASE Mark succeeded but erasing the old blocks failed. 
 SFL_ERROR_FLASH_WRITE Mark failed because the flash write operation failed. 
 SFL_ERROR_INTERNAL Internal data structure(s) are corrupted. smxFLog will stop 

logging. Please call sfl_Release() and sfl_Init() again to 
try to recover from it.  

 



 

 17 

See Also sfl_Read() 
 
Example 
 while (data_to_send) 
 { 
  sfl_Read(0, &sbuf, num_records, &num_records, NULL, 0); 
  SendData(&sbuf); 
  if (data_sent_ok) 
   sfl_ReadPtrMark(0, TRUE); 
  else  
     sfl_ReadPtrRestore(0); 
 } 
 
 
 
 
int sfl_ReadPtrRestore (uint iLogID) 
 
Summary Restore the read pointer to the last marked position. 
 
Details This function restores the read pointer to the last position stored in the flash so if anything goes 

wrong, the application can restart reading from the last known read pointer. Useful if data is 
lost during transmission. 

 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 
Returns SFL_ERROR_NONE Restore succeeded. 
 SFL_ERROR_INTERNAL Internal data structure(s) are corrupted. smxFLog will stop 

logging. Please call sfl_Release() and sfl_Init() again to try to 
recover from it.  

 
See Also sfl_Read(), sfl_ReadPtrMark() 
 
Example See the example for sfl_ReadPtrMark(). 
 
 
 
 
int sfl_ReadPtrSkipTo (uint iLogID, u32 dwNewReadPtr) 
 
Summary Move the read pointer forward to skip unwanted records. 
 
Details This function allows moving the read pointer forward to a certain position to skip unwanted 

records. It is necessary to know the new read pointer position before calling this function. 
Typically this is a write pointer that was saved at some meaningful location, by 
sfl_GetWritePtr(). It is not possible to move the read pointer backward to an older record to 
retrieve the skipped records using this function. (Use sfl_ReadPointerRestore().) 

 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 dwNewReadPtr The new read pointer location. 
 
Returns SFL_ERROR_NONE Skip succeeded. 
 SFL_ERROR_INTERNAL Internal data structure(s) are corrupted. smxFLog will stop 

logging. Please call sfl_Release() and sfl_Init() again to try to 
recover from it.  



 

 18 

 SFL_ERROR_INVAL_PARAM The new read pointer is not valid. For example, an 
attempt was made to move it backward to an older record. 

 
See Also sfl_GetReadPtr(), sfl_GetWritePtr(), sfl_Read(), sfl_ReadPtrMark() 
 
Example  
 dwSavedPtr = sfl_GetWritePtr(iLogID); 
 //…write some records with sfl_Write() 
 //… 
 sfl_ReadPtrSkipTo(iLogID, dwSavedPtr); 
  
 
int sfl_ReadPtrSkipToRel (uint iLogID, u32 dwNum) 
 
Summary Move the read pointer forward to skip unwanted records, skipping the specified number of 

records. 
 
Details This function allows moving the read pointer forward to skip specific number of unwanted 

records. It is not possible to move the read pointer backward to an older record to retrieve the 
skipped records using this function. (Use sfl_ReadPointerRestore().) 

 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 dwNum Number of records to skip. 
 
Returns SFL_ERROR_NONE Skip succeeded. 
 SFL_ERROR_INTERNAL Internal data structure(s) are corrupted. smxFLog will stop 

logging. Please call sfl_Release() and sfl_Init() again to try to 
recover from it.  

 SFL_ERROR_INVAL_PARAM The new read pointer is not valid. For example, an 
attempt was made to move it backward to an older record. 

 
See Also sfl_GetReadPtr(), sfl_GetWritePtr(), sfl_Read(), sfl_ReadPtrMark() 
 
Example  
 sfl_ReadPtrSkipToRel(iLogID, 10);     /* skip 10 records from current read pointer */ 
 
 
 
int sfl_Write(uint iLogID, u8 *pRecord, uint iDataSize) 
 
Summary Append a new flash record to the flash log. 
 
Details This function adds a new flash record to the flash log following the previous one. After writing 

the record, the write pointer is advanced to the next empty record. If 
SFL_READBACK_VERIFY is 1 and the verify fails, the record is marked bad and it is 
written at the next location and checked again. If the end of flash has been reached and recycle 
mode has not been specified, no further writes will be allowed. If recycle mode has been 
specified and the last free block is about to be used, then the next block is erased. 

 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 pRecord Pointer to the record data buffer to write. 
 iDataSize Actual data record size. If the actual size is smaller than iRecordSize in the 

configuration table, performance can be improved by passing the actual size to this 



 

 19 

API, and then padding is not written. If the data record size is very small, it is 
recommended to pack multiple small records into one big flash record (i.e. 
iRecordSize) to improve the performance and flash usage efficiency. For example, 
if the data record size is 120 and iRecordSize is 512, then pack 4 data records into 
one 512 byte buffer and call sfs_Write(pRecord, 480) to write them at once. 

 
Returns SFL_ERROR_NONE  Flash record data appended. 
 SFL_ERROR_FLASH_FULL  Flash is full and automatic reclaim of the oldest block is 

disabled. 
 SFL_ERROR_INTERNAL Internal data structure(s) are corrupted. smxFLog will stop 

logging. Please call sfl_Release() and sfl_Init() again to 
try to recover from it.  

 SFL_ERROR_INVAL_PARAM A parameter passed to this API is invalid. For example, 
pRecord is a NULL pointer or iDataSize is larger than 
iRecordSize.  

 
See Also sfl_Read(), sfl_Erase() 
 
Example 
 u8 RecordBuf[512]; 
 sfl_Write(0, RecordBuf, 512);  
 
 
 
 
int sfl_Erase(uint iLogID, uint iFlag) 
 
Summary Erase one or more blocks of the oldest records 
 
Details This function erases one or more blocks of the oldest records, according to the flag specified.  
 
 CAUTION:  Erasing blocks is a slow and variable-length operation. See section 2.8 

Erasing Blocks. It may be desirable to erase one block at a time (pass 
SFL_ERASE_ONE_BLOCK for iFlag). 

 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 iFlag One of the following flags to indicate how many of the oldest blocks should be 

erased: 
SFL_ERASE_ONE_BLOCK 
Erase only the oldest block of records each time. Erasing one block at a time 
from the idle task/loop will minimize the impact on performance if logging is 
occurring simultaneously. Moves the marked read pointer up to the first record in 
the next block if it was pointing at the block that was deleted. 
SFL_ERASE_OLD_BLOCKS  
Erase all the old blocks of records up to the one the read pointer is in. At least 
one block will be kept. Moves the marked read pointer up to the first record in 
the next block if it was pointing at a block that was deleted. 
SFL_ERASE_ALL_BLOCKS  
Erase all data records. After this call the flash partition is just like a new one; all 
the blocks within that partition are erased. smxFLog will write new records 
starting at the beginning of that flash partition. Resets all record pointers. 

 



 

 20 

Returns SFL_ERROR_NONE  Erase succeeded. 
 SFL_ERROR_FLASH_ERASE Erase failed.  
 SFL_ERROR_INTERNAL Internal data structure(s) are corrupted. smxFLog will stop 

logging. Please call sfl_Release() and sfl_Init() again to 
try to recover from it.  

 SFL_ERROR_INVAL_PARAM The parameter iFlag is not valid.  
 
See Also sfl_Init() 
 
Example 
 sfl_Erase(0, SFL_ERASE_ONE_BLOCK);  
 
 

 

u32 sfl_GetMaxFreeRecords (uint iLogID) 
 
Summary Get the maximum number of free records in this smxFLog partition. 
 
Details Call this function to get the maximum number of free records in this smxFLog partition. If 

there is any bad blocks, the real number of records that can store data may be less than this 
value. 

 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 
Returns The maximum number of free records. 
 
See Also sfl_GetMaxRecords() 
 
Example  
 
 
 
 
u32 sfl_GetMaxRecords (uint iLogID) 
 
Summary Get the maximum total number of records this smxFLog partition can store. 
 
Details Call this function to get the maximum number of records that can be stored in this smxFLog 

partition. If there are any bad blocks there the actual number of records you can store may be 
less than this value. 

 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 
Returns The maximum total number of records. 
 
See Also sfl_GetReadPtr(), sfl_GetWritePtr() 
 
Example See the example for sfl_ReadPtrSkipTo(). 



 

 21 

u32 sfl_GetOldestReadPtr (uint iLogID) 
 
Summary Get the oldest read pointer of this smxFLog partition. 
 
Details Call this function to get the oldest read pointer of this smxFLog partition. 
 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 
Returns The oldest read pointer. 
 
See Also sfl_GetReadPtr() 
 
Example See the example for sfl_ReadPtr(). 
 
 
 
 
u32 sfl_GetReadMarkPtr (uint iLogID) 
 
Summary Get the current read mark pointer of this smxFLog partition. 
 
Details Call this function to get the current read mark pointer of this smxFLog partition. 
 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 
Returns The current read mark pointer. 
 
See Also sfl_ReadPtrMark () 
 
Example See the example for sfl_ReadPtrMark(). 
 
 
 
 
u32 sfl_GetReadPtr (uint iLogID) 
 
Summary Get the current read pointer of this smxFLog partition. 
 
Details Call this function to get the current read pointer of this smxFLog partition. 
 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 
Returns The current read pointer. 
 
See Also sfl_GetWritePtr() 
 
Example See the example for sfl_ReadPtrSkipTo(). 



 

 22 

u32 sfl_GetWritePtr (uint iLogID) 
 
Summary Get the current write pointer of this smxFLog partition. 
 
Details Call this function to get the current write pointer of this smxFLog partition. The only way to 

change the write pointer is by calling sfl_Write().. 
 
Pars iLogID Log ID. Should be 0 to SFL_MAX_LOG_NUM–1. 
 
Returns The current write pointer 
 
See Also sfl_GetReadPtr() 
 
Example See the example for sfl_ReadPtrSkipTo(). 
 
 
 
 
 
 
 
 
 



 

 23 

4. Low-Level Flash Drivers 
smxFLog uses the same low-level drivers as smxNAND and smxNOR.Low-level drivers normally need 
some customization to the specific hardware on which they are to run. Below is the summary of those low 
level functions 

4.1 NAND flash 
 

void  nand_IO_Flash_Reset (uint iChipID); 
 

Summary Reset the flash chip. 
 
Details Reset the flash hardware. Normally issues the 0xFF command to the chip. Refer to the 

hardware spec for details. 
 
Pars iChipID  The device ID to use.  
 
Returns none 
 
See Also asm_Flash_Init() 
 
Example 
 nand_IO_Flash_Init(); 
 nand_IO_Flash_Reset(0);  
 
 
 
void  nand_IO_Flash_Init (void);  
 
Summary Reset the flash chip. 
 
Details Initialize the interface hardware between the processor and the NAND flash chip, such as GPIO 

and MMU. This is the first function that must be called for the NAND flash driver. 
 
Pars none  
 
Returns none 
 
See Also nand_IO_Flash_Release() 
 
Example 
 nand_IO_Flash_Init(); 
 
 
 



 

 24 

void  nand_IO_Read_Device_ID (uint iChipID, DEVICE_INFO *pDeviceInfo);  
 
Summary Get the flash chips information. 
 
Details Read the device ID so the flash driver can retrieve the hardware information into the 

DeviceInfo structure. Please refer to the DeviceInfo definition to see which information is 
needed by the flash driver.  

 
 
Pars iChipID  The chip index to use. Currently only pass 0. 
 pDeviceInfo The NAND flash device information structure to fill.  

typedef struct 
{ 
    uint32 wDeviceMaker;         //0xec:samsung, 0x98:toshiba 
    uint32 wDeviceType;          //1:1M, 2:2M, 4:4M, 8:8M, 16:16M,  ..bytes 
    BLOCKNODE wBlockNum;         //blocks in a disk 
    PAGENUMTYPE wPagesPerBlock;  //pages in a block 
    PAGESIZETYPE wPageSize;      //page_size in bytes 
    PAGESIZETYPE wPageDataSize;  //data_size in bytes 
    PAGESIZETYPE wPageSpareSize; //spare_size in bytes 
    BLOCKNODE wDataBlockNum;     //data block number which can be 

used 
    BLOCKSIZETYPE wBlockSize;    //block size in bytes 
    BLOCKSIZETYPE wBlockDataSize;//block data size in bytes 
}DEVICE_INFO; 

 
Returns none 
 
See Also nand_IO_Flash_Init(),nand_IO_Flash_Reset() 
 
Example 
 nand_IO_Flash_Init(); 
 nand_IO_Flash_Reset(0); 
 nand_IO_Flash_Read_Device_ID(0, &DevInfo); 
 
 
 
uint16  nand_IO_Write_Page (uint iChipID, byte * write_data, uint32 page_index, uint offset, 

uint32 data_size); 
 
Summary Write data to the main area of one flash page. 
 
Details  Write some data to the NAND flash. The flash driver ensures that the whole block is already 

erased before writing to it. Please do not erase it before writing to it. Page_index and offset 
can be used to generate the physical address to write to. 

 
Pars iChipID  The chip index to use. Currently only pass 0. 

write_data  Pointer to the source buffer 
page_index Page index number. 
offset  Offset from the beginning of the main data area. Currently only pass 0. 
data_size Data size to be written. According to the spec for NAND flash, the 

data_size can be from 1 to page_size + spare_area_size. If the page size 



 

 25 

is 512 bytes and spare data size is 16 bytes, the data_size can up to 528 
bytes.  Currently only pass 512/2048 or 528/2112. 

 
Returns If the write operation failed, it should return a non-zero value. Otherwise it should return 0. 
 
 
 
uint16  nand_IO_Read_Page (uint iChipID, byte * read_data, uint32 page_index, uint offset, 

uint32 data_size); 
 
Summary Read data from the main area of the flash. 
 
Details  Read some data from the NAND flash.  

 
Pars iChipID  The chip index to use. Currently only pass 0. 

read_data  Pointer to the target buffer 
page_index Page index number.  
offset  Offset from the beginning of the main data area. Currently only pass 0. 
data_size Data size to be read. According to the spec for NAND flash, the 

data_size can be from 1 to page_size + spare_area_size. If the page size 
is 512 bytes and spare data size is 16 bytes, the data_size can up to 528 
bytes. Currently only pass 512/2048 or 528/2112. 

 
Returns If the read operation failed, it should return a non-zero value. Otherwise it should return 0. 
 
 
 
uint16  nand_IO_Write_Page_Spare (uint iChipID, byte * write_data, uint32  page_index, uint 

offset, uint32 data_size); 
 
Summary Write data to the spare area of one flash page. 
 
Details  Write some data to the NAND flash spare area. The flash driver ensures that the whole block 

is already erased before writing to it. Please do not erase it before writing to it. 
 

Pars iChipID  The chip index to use. Currently only pass 0. 
write_data  Pointer to the source buffer 
page_index Page index number.  
offset Offset from the beginning of the spare area. It must be 16-bit aligned, for 

example, 2, 4, or 6 for v1.80 or later. This is used to avoid the location 
where the hardware ECC is written (if using a NAND controller that 
does ECC). 

data_size Data size to be written. According to the spec for NAND flash, the 
data_size can be from 1 to spare_area_size. If the spare data size is 16 
bytes, the data_size can up to 16 bytes. For v1.80 and later, data size is 
always 16 bits, that is, 2. 

 
Returns If the write operation failed, it will return a non-zero value. Otherwise it will return 0.  
 
 
 



 

 26 

uint16  nand_IO_Read_Page_Spare (uint  iChipID, byte * read_data, uint32 page_index, uint 
offset, uint32 data_size); 

 
Summary Read data from the spare area of the flash. 
 
Details  Read some data from the NAND flash spare area.  

 
Pars iChipID  The chip index to use. Currently only pass 0. 

read_data  Pointer for the target buffer 
page_index Page index number.  
offset Offset from the beginning of the spare area. It must be 16-bit aligned, for 

example, 2, 4, or 6 for v1.80 or later. This is used to avoid the location 
where the hardware ECC is written (if using a NAND controller that 
does ECC). 

data_size Data size to be read. According to the spec for NAND flash, the 
data_size can be from 1 byte to spare_area_size. If the spare data size is 
16 bytes, data_size can up to 16 bytes. For v1.80 and later, data size is 
always 16 bits, that is, 2. 

 
Returns If the read operation failed, it should return a non-zero value. Otherwise it should return 0. 
 
 
 
uint16  nand_IO_Erase_Block (uint32 block_index); 
 
Summary Erase one flash block 
 
Details  Erase one flash block. All the data of that block will be reset to 0xFF.  

 
Pars block_index Block index. May be necessary to generate the block address by 

multiplying it by block size. 
 

Returns  If the erase operation failed, it will return a non-zero value. Otherwise it will return 0.  
 

4.2 NOR flash 
 
int nor_IO_FlashInit (uint iID, NOR_DEVINFO * pDevInfo) 
 
Summary Initialize the flash chip. 
 
Details This function initializes the NOR flash chip and gets the basic information of it.  
 It is necessary to set the member variables, dwTotalBlockNum and dwBlockSize of structure 

NOR_DEVINFO, so the driver can initialize its own internal data structures. Also set 
dwSectorSize and set NOR_FORCE_SECTOR_SIZE to 1 if you need to use a certain sector 
size, or else it will be calculated. 

 
Pars nID  The device ID to use.  
 pDevInfo  The pointer to the device information structure to fill. 
 



 

 27 

Returns 1 Initialization succeeded. 
 0 Initialization failed. 
 
See Also nor_IO_FlashRelease() 
 
Example 
 NOR_DEVINFO DevInfo 
 If(nor_IO_FlashInit (0, &DevInfo)) 
 { 
  printf(“Total Block number is %d\n”, DevInfo.dwTotalBlockNum); 
  printf(“Block size is %d\n”, DevInfo.dwBlockSize); 
  printf(“Sector size is %d\n”, DevInfo.dwSectorSize); 
 }  
 
 
 
int nor_IO_FlashRelease (uint iID) 
 
Summary Release the flash chip. 
 
Details This function releases the NOR flash chip. 
 
Pars nID The device ID to use.  
 
Returns 1 
 
See Also nor_IO_FlashInit() 
 
Example 
 nor_IO_FlashRelease (0); 
 
 
 
int nor_IO_SectorRead (uint iID, u8 * pRAMAddr, u32 wSectorIndex, uint wSectorSize) 
 
Summary Read one sector of data from the flash chip. (This is a file system sector or log record of 

specified size, not a flash erase block.) 
 
Details This function read one sector of data from the flash chip. The sector is normally 512 bytes by 

default but may be another size so please make sure the memory buffer is big enough.  
 If the flash chip cannot read 512 bytes each time, it may be necessary to map this function call 

to multiple flash commands. For example, some serial flash can only read up to 256 bytes in 
one command. Our sample code already shows how to handle this case. For smxFLog a sector 
is one record. 

 
Pars nID The device ID to use.  
 pRAMAddr The pointer to the memory buffer to hold the data. The buffer should be at 

least one sector in size. 
 wSectorIndex The physical sector index of the flash chip. It may be necessary to map this 

index to the flash address. 
 wSectorSize The size of the buffer. 
 
Returns 1 The read succeeded. 
 



 

 28 

See Also nor_IO_SectorWrite() 
 
Example 
 u8 pData[512]; 
 memset(pData, i, NOR_DEFAULT_SECTOR_SIZE); 
 nor_IO_SectorWrite(0, pData, j + i * iPagePerSec, NOR_DEFAULT_SECTOR_SIZE); 
 memset(pData, 0xFF, NOR_DEFAULT_SECTOR_SIZE); 
                 nor_IO_SectorRead(0, pData, j + i * iPagePerSec, NOR_DEFAULT_SECTOR_SIZE); 
                 for(k = 0; k < NOR_DEFAULT_SECTOR_SIZE; k++) 
                 { 
                      If(pData[k] != (u8)i) 
                      { 
   printf("IO Sector Write/Read mismatch at %d, %d, %d \r\n", i, j, k); 
  } 
 } 
 

 

int nor_IO_SectorWrite (uint iID, u8 * pRAMAddr, u32 wSectorIndex, uint wSectorSize) 
 
Summary Write one sector data to the flash chip. (This is a file system sector or log record of specified 

size, not a flash erase block.) 
 
Details This function writes one sector of data to the flash chip. A sector is normally 512 bytes by 

default. If the flash chip cannot write 512 bytes each time, it may be necessary to map this 
function call to multiple flash commands. For example, some serial flash can only write up to 
256 bytes in one command. For smxFLog a sector is one record. 

 
Pars nID The device ID to use.  
 pRAMAddr The pointer to the memory buffer holding the data to write. It should be at 

least one sector in size. 
 wSectorIndex The physical sector index of the flash chip. It may be necessary to map this 

index to the flash address. 
 wSectorSize The size of the buffer. 
 
Returns 1 The write succeeded. 
 
See Also nor_IO_SectorRead() 
 
Example 
 u8 pData[512]; 
 memset(pData, i, NOR_DEFAULT_SECTOR_SIZE); 
 nor_IO_SectorWrite(0, pData, j + i * iPagePerSec, NOR_DEFAULT_SECTOR_SIZE); 
 memset(pData, 0xFF, NOR_DEFAULT_SECTOR_SIZE); 
                 nor_IO_SectorRead(0, pData, j + i * iPagePerSec, NOR_DEFAULT_SECTOR_SIZE); 
                 for(k = 0; k < NOR_DEFAULT_SECTOR_SIZE; k++) 
                 { 
                      If(pData[k] != (u8)i) 
                      { 
   printf("IO Sector Write/Read mismatch at %d, %d, %d \r\n", i, j, k); 
  } 
 } 
 

 



 

 29 

int nor_IO_InfoRead (uint iID, void * pInfo, uint wBufSize, u32 wBlockIndex, uint wOffset) 
 
Summary Read a few bytes from the flash chip. 
 
Details This function reads a few bytes of information from the flash chip. Information will only be 

stored in the first few pages of each block. 
 
Pars nID The device ID to use.  
 pInfo The pointer to the memory buffer pointer holding the data. 
 wBufSize The size of the buffer pointed to by pInfo. 
 wBlockIndex The physical block index of the flash chip in which the information is 

stored. 
 wOffset The byte offset of the information from the beginning of this block. 
 
Returns 1 The read succeeded. 
 
See Also nor_IO_InfoWrite() 
 
Example 
 nor_IO_InfoWrite(0, &dwInfo, sizeof(u32), i, j*sizeof(u32)); 
 nor_IO_InfoRead(0, &dwInfoTemp, sizeof(u32), i, j*sizeof(u32)); 
 if(dwInfo != dwInfoTemp) 
 { 
  printf("IO Info Write/Read mismatch 1 at %d, %d \r\n", i, j); 
 } 
 

 

int nor_IO_InfoWrite (uint iID, void * pInfo, uint wBufSize, u32 wBlockIndex, uint wOffset) 
 
Summary Write a few bytes to the flash chip. 
 
Details This function writes a few bytes of information to the flash chip. Information will only be 

stored in the first few pages of each block. 
 
Pars nID The device ID to use.  
 pInfo The pointer to the memory buffer pointer to hold the data. 
 wBufSize The size of the buffer pointed to by pInfo. 
 wBlockIndex The physical block index of the flash chip in which the information is 

stored. 
 wOffset The byte offset of the information from the beginning of this block. 
 
Returns 1 The write succeeded. 
 
See Also nor_IO_InfoRead() 
 
Example 
 nor_IO_InfoWrite(0, &dwInfo, sizeof(u32), i, j*sizeof(u32)); 
 nor_IO_InfoRead(0, &dwInfoTemp, sizeof(u32), i, j*sizeof(u32)); 
 if(dwInfo != dwInfoTemp) 
 { 
  printf("IO Info Write/Read mismatch 1 at %d, %d \r\n", i, j); 
 } 
 



 

 30 

 

int nor_IO_BlockErase (uint iID, u32 wBlockIndex) 
 
Summary Erase a block of the flash chip. 
 
Details This function erases the whole block at the specified index. 
 
Pars nID  The device ID to use.  
 wBlockIndex The physical block index. 
 
Returns 1 Erase succeeded. 
 
See Also nor_IO_SectorRead(), nor_IO_SectorWrite(), nor_IO_InfoRead(), nor_IO_InfoWrite() 
 
Example 
 for(i = 0; i < DevInfo.dwTotalBlockNum; i++) 
 { 
  nor_IO_BlockErase(0, i); 
 } 
 



 

 31 

5. Application Examples 

5.1 Offload Log Data to smxFS 
The data records can be written to a file in a file system by smxFS, so the user can offload the log data to 
removable media such as a thumb drive, or it can be retrieved from the file system later via data link such 
as USB, FTP, etc.  
 
#include "smxflog.h" 
#include "smxfs.h" 
 
void SendRecordsToFile(void) 
{ 
 FILEHANDLE fp; 
 uint iNumRead; 
 u8 RecordBuf[4*512]; 
 
 fp = sfs_fopen(“A:\\DataRecord.bin”, “wb”); 
 if(fp) 
 { 
  do 
  { 
   sfl_Read(0, RecordBuf, 4, &iNumRead, NULL, 0); /* read 4 records each time */ 
   sfs_fwrite(RecordBuf, iNumRead, 512, fp);           
  } while(iNumRecords > 0); 
  sfs_fclose(fp); 
 
  /* Done offloading, so set the read pointer in flash to the current record and erase all the records  
      before it (up to the current block). */ 
  sfl_ReadPtrMark(0, TRUE); 
 } 
} 

5.2 Offload Log Data to smxUSBD Serial Device 
Data records can be retrieved through the smxUSBD serial port emulator, so the user can use a laptop to 
get the log data. 
 
#include "smxflog.h" 
#include "smxusbd.h" 
 
void SendRecordsToUSBSerial(void) 
{ 
 u8 RecordBuf[10*512]; 
 uint iNumRead; 
 while(sfl_Read(0, RecordBuf, 10, &iNumRead, NULL, 0) == SFL_ERROR_NONE) 
 { 
  sud_SerialWriteData(0, RecordBuf, iNumRead*512); 
 } 
} 



 

 32 

5.3 Erase Oldest Record When System is Idle 
The application should erase old blocks when idle so that logging is never delayed. Only erase 1 block at 
a time if the application needs to continue logging. 

void idle_task_main(void) 
{ 
 /* do other idle jobs here */ 
 … 
 /* now try to reclaim the oldest block of records */ 
 sfl_Erase(0, SFL_ERASE_ONE_BLOCK); 
} 

5.4 NAND Flash Array 
To get a bigger capacity, a NAND flash array can created. For details please refer to the smxFFS User’s 
Guide, Appendix B: Flash Chip Array. 



 

 33 

A. File Summary 
 

FILE DESCRIPTION 
  
flcfg.h 
flcfg.c 

Configuration file for smxFLog. 

flport.h 
flport.c 

Porting definitions. 

flog.c Flash Logger API Implementation. 
smxflog.h Flash Logger API. 
flhdw.h NAND Flash Hardware IO routines. 
norio.h NOR Flash Hardware IO routines. 

 



 

 34 

B. Size and Performance 

B.1 Code Size 
Code size varies depending upon CPU, compiler, and optimization level. 
 

 ARM7/9 
IAR 

ColdFire 
CodeWarrior 

smxFLog (without ECC) 3 KB 3 KB 
smxFLog (with ECC) 5 KB 5 KB 

 

B.2 Data Size 
smxFLog was designed to minimize RAM use. 
 

smxFLog core 32 B 
smxFLog ECC (disabled by default) 256 B 
smxFLog readback verify (disabled by default) flash record size 

 

B.3 Performance 
The following are performance tables for smxFLog on platforms we tested. Raw read/write speeds are for 
the low-level driver only (no logging or file system), and are shown for comparison. 
 
Performance highly depends upon the flash chip, bus speed, microprocessor speed, and RAM speed. It is 
recommended that you do measurements on your hardware before making final design decisions, if 
performance is critical. The results here are intended only to provide guidance. Also, keep in mind that 
smaller record sizes generate more overhead. 
 
NAND:  LPC2468  

 
Record Size, Bytes 

Raw Data 
Read/Write 

KB/s 

smxFLog 
Read/Write 

KB/s 
512  1795/1638 1438/851 
1024  2184/1956 1657/1352 

 
NAND:  MCF5282 

 
Record Size, Bytes 

Raw Data 
Read/Write  

KB/s 

smxFLog 
Read/Write  

KB/s 
512  2730/1260 2338/712 
1024  2730/1260 2338/910 

 



 

 35 

NOR:  LPC2468 
 
Record Size, Bytes 

Raw Data 
Read/Write  

KB/s 

smxFLog 
Read/Write  

KB/s 
64 2048/195 793/155 
128 2048/195 1333/169 
256 2048/195 1338/185 
512 2048/195 2000/185 

 
NOR:  MCF5485 

 
Record Size, Bytes 

Raw Data 
Read/Write  

KB/s 

smxFLog 
Read/Write  

KB/s 
64 5461/264 4000/215 
128 5461/264 5376/232 
256 5461/277 5397/240 
512 5461/282 5397/247 

 
 
ECC calculation takes significant processor time. The times below show how much performance is 
reduced, especially for slower processors. 
 
NAND:  LPC2468 

 
Record Size, Bytes 

smxFLog Read/Write with 
ECC 
KB/s 

smxFLog Read/Write 
without ECC 

KB/s 
512  819/569 1438/851 

 
NOR:  MCF5485 

 
Record Size, Bytes 

smxFLog Read/Write with 
ECC 
KB/s 

smxFLog Read/Write 
without ECC 

KB/s 
64  1524/178 4000/215 

 



 

 36 

C. Tested Hardware 

C.1 NAND 
• K9F1G08U on NXP LPC2468 board. Flash record size: 512, 1024. 

• K9F2808U on our Avnet Coldfire 5282 add-on board. Flash record size: 512, 1024. 

C.2 NOR 
• 39VF320 on NXP LPC2468 board. Flash record sizes: 32, 64, 128, 256, 512. 

• 28F128K3, 28F256K3, 28F128J3D on MCF5485EVB board. Flash record sizes: 32, 64, 128, 256, 
512, 1024. 


	1. Overview
	1.1 Features
	1.2 Limitations
	1.3 Overhead
	1.4 Record Size
	1.5 Multiple Logs

	2. Using smxFLog
	2.1 Getting Started
	2.2 Basic Terms
	2.3 Configuration Settings
	2.4 Implementation Details
	2.5 Partitioning the Flash
	2.6 Mixed and Small Block Sizes
	2.7 Wear Leveling
	2.8 Erasing Blocks
	2.9 Power Fail Safety
	2.10 Error Correction
	2.11 Application Development

	3. smxFLog API
	3.1 API Data Types
	3.2 API Reference

	4. Low-Level Flash Drivers
	4.1 NAND flash
	4.2 NOR flash

	5. Application Examples
	5.1 Offload Log Data to smxFS
	5.2 Offload Log Data to smxUSBD Serial Device
	5.3 Erase Oldest Record When System is Idle
	5.4 NAND Flash Array

	A. File Summary
	B. Size and Performance
	B.1 Code Size
	B.2 Data Size
	B.3 Performance

	C. Tested Hardware
	C.1 NAND
	C.2 NOR


