M Micro Digital

smxAware™ User’s Guide

Version 5.2.0
February 14, 2024

by Marty Cochran and David Moore

oo 111 o] o [OOSR 1
YU o] oTo] g t=To l I T=T o 10 o o[- S 1
0] =11 = Lo o TSSOSO 1
Changes t0 the APPIICALION..........cuiiiie ettt e te e aeete e e e as e s besteeseeneesee st eseeseebenreereenes 1
TAR EWARM DITECHIONS .. .viveiiitiiieieite ettt sttt ettt sttt b et b et b s etk bbbt et s b ettt en et et 2
L7010 1[0 UL =1 (o] o F OSSOSO USRS 3
USING SINIXAWVATE ...ttt ettt etttk ettt e be s e e bt be b e e bt be £ o4 e eh e e b e e Ee e b€ e b £ 4R e eh £ 2 s e em e e HEeeb £ 2R e e R e e R e e nsenbenbeebenbesm b e s e b e besbesbenbeaneas 6
SIMXAWENE DIAIOG BOX ...tttk h et bbbtk b etk bbb e b e sb et et bbb b st 6
T L WD TEST o] YOO PSUTUTURRORRON 8
SMX Middleware Module DISPIAYSciiiiiieiiciieiieie et s ettt et sa et e e st e bestesbesbesaeesresbesbestestesresneas 17
PEINE MWVINTOW. ...ttt b etk bbbttt b et e £ ek e btk s b e bt e b et e b e sb et et et e eb et ebe st et e abe e 22
Modal VS NON-MOGAl DIAI0OGccueiiuiiieiiiieieei ettt bbbt ebesr et eb e b ere s 22
Suspended Task INFOIMALION ..o ettt se e b et et et et e besbesbesbesbesbeane s 23
TaSK-SPECITIC BrEAKPOINTS.......eiiiiiieiiie ittt ettt st et te et et e s be st e st e besaeeteeseeseestesbesbeeseereenseseeseenreseenraenes 23
Graphical ANalYSiS TOOIS (GAT) ..ot bbbt b ettt bbbt b et b et b et et sb et r s 25
LU0 TP PR 25
Y=Y oL A T 1 TSP 27
0] 1 LTSRS 33
S =103 S U T o -SSR 35
o g =TT 1 (-] OO P PRPPPRN 37
EVENT BUTTEE (TEXLE) ..ttt bbb bbbt etk b et b e s e bt eb et eb e e b et ettt sb et ebe e 38
RESOUITE USAGE ...ttt ettt h e bbb e bt et e e s b e s bt e e b e e eb e oAb e oS E £ 2 b e e R b e eh e e eb e et e en b e eb b e et be e b e e anesbeenbeennas 39
MEMOTY MAP OVEIVIEW.......c.viitiitiiteiteeteeeettesteste s e esee e et e be st e beseessee s esbeeestebesbesbeateeae et eeabesbesbeabeaseanseseeseenteeearaeneens 39
Downloading the EVENE BUFFETcviicccc et st na e neene e e e e eeesnenrenrennens 46
APPIICALION PrEPAIALIONc.iviiiitiieeteite ettt b ettt bbb b st bbbt bt et s bt et b e b st et 47
SIMXAWENE LLIVE ..ottt ettt sttt e et b et e bt e bt e e ek e eb et e ke st e bt e b se et e ebe e et ebeabe e ebeneereabe e 48
LR 1L =V To] [OOSR 48
USING SMXAWAIE LIVE ..oviiiiiiie sttt sttt ettt et e teeteesa e e et e te st e be s besbe et e et e beseesbesbeeaeeteeneeneeseeateaneaneas 49
DIAGNOSTICS ...ttt ettt b etk ee bbb bt bt e e bt e b £ e b e E oS bR e ekt e e e Rt e b e e R e bR £ e R R e b e Rt R e E bt bbbt 50
QLI D o] oA = 0 1Y TSEST: Vo T 50
GAT EITON IMIESSAGES ...ttt vttt ettt h bbb bbbt bRt Rt e e Rt bt e bt e bt e bt e bt et e e e e e sbenb e s neene s 51
D= To Lo (ol Moo 1o To [PV R PRSPPSO 51
L] PSSR 51

© Copyright 1996-2024

Micro Digital Associates, Inc.
(714) 437-7333
support@smxrtos.com
WWW.SMXIrtos.com

All rights reserved.

smxAware is a Trademark of Micro Digital, Inc.
smx is a Registered Trademark of Micro Digital, Inc.

Introduction

Note: This manual was thoroughly revised for SMX v5.20, and much information for older
versions and tools has been deleted. It is recommended for users of older versions to get the
corresponding manual from our support site or by emailing us to request it.

smxAware is a DLL that adds functionality to embedded debuggers, to give them SMX
awareness. While stopped at a breakpoint, you can:

e Display information about kernel specific objects such as ready queue, tasks,
semaphores, messages, events, heaps, stacks etc.

e Display graphs of Event Timelines, Profiling, Stack Usage, Memory Usage, and
Memory Map Overview using the Graphical Analysis Tool (GAT) feature.

e Display print statements generated by the application.

e Set task-specific breakpoints. The breakpoint will be triggered only if it is hit while
the specified task is running.

e Display the address where a suspended task will resume.

smxAware Live is a remote monitoring version that is also documented in this manual.

Supported Debuggers

smxAware supports AR EWARM/C-SPY® for ARM processors. ColdFire and PowerPC users,
please see the v4.4 manual at www.smxrtos.com/support.

Keep in mind that tools change. The smxAware files you have should work well with the tools
your release was built with. If you upgrade to newer tools and you have problems, ask for an
update of smxAware.

Installation

Changes to the Application

Enable the define of SMXAWARE in the main preinclude file, e.g. CFG\iararm.h so
smxaware_init() is called, and add smxaware.c to your application project.

http://www.smxrtos.com/support

Also, for some tools it is necessary to compile XSMX\xglob.c with debug symbolics enabled.
This should already be done in the project file we supply, but check it if you have trouble. Newer
versions of smxAware display a warning that smxVersion can’t be read, if debug symbolics are
not enabled for xglob.c.

smxaware_init() does two things:

1. Determines which version of smx is being used. This is important because there are
differences in internal data structures such as the smx_cf structure and control blocks.

2. Initializes the print window feature. See the section Print Window below.

Pass names in smx_XxxxCreate calls in your application to assign names to smx objects, such as
tasks, semaphores, and exchanges. This allows smxAware to print the name of these objects in
the corresponding displays. smxAware creates a table to correlate names and handles. If
smxAware is unable to find a handle in the table, it simply prints the handle value (hex) in place
of the name.

To name ISRs, messages, and others that cannot be named in a Create call, create a
pseudohandle. See section Pseudohandles. Also note that handles should be defined as global
variables.

Next follow the directions in the appropriate section for your debugger, below.

IAR EWARM Directions

There are big and little-endian versions of the DLL. The big-endian version is suffixed “BE”; the
little-endian version is not suffixed. Some ARMs are one or the other, and some support both.
Also, there are DLLs for different versions of EWARM. You must use the proper version of the
DLL for your target and 1AR version. (Newer versions of EWARM come with smxAware
installed, but the version in your release may be newer, or you may download a newer version
from our support site, so you may need to replace these files in EWARM.)

1. Copy the smxAware files from SMX\SA to this EWARM directory:
arm\plugins\rtos\SMX\ (Create the SMX subdirectory if it doesn’t exist).
Specifically, copy:

smxAwareGAT .exe and one .dll and .ewplugin file, as indicated below. (It is ok to
copy both the big and little-endian files, but you must only copy the files for one
version of EWARM.)

EWARM v8
smxAwarelarArm8.dll, smxAwarelarArm8.ewplugin (little-endian) or
smxAwarelarArm8BE.dll, smxAwarelarArm8BE.ewplugin (big-endian)

EWARM v7
smxAwarelarArm7.dll, smxAwarelarArm7.ewplugin (little-endian) or
smxAwarelarArm7BE.dll, smxAwarelarArm7BE.ewplugin (big-endian)

and similar for previous versions. For v4 there is no numeric suffix.
2. Exitand restart EWARM if you are already in it, and then open the app project.

3. In project settings, select (in left pane): Debugger. In the right pane, select the
Plugins tab. Select smxAware (little endian) or smxAwareBE (big endian) from the
list.

4. Press the Debug button to download the app. “smxAware” should appear in the main
menu if it is working.

5. Run at least until after the call to smxaware_init() in smx_Go() before
attempting to use smxAware.

Configuration

Configuration information is stored in smxAware.ini. Most items are set in the GAT Options
Dialog, but some must be set by editing smxAware.ini.

smxAware.ini

This file stores smxAware state and configuration settings. It is automatically created with
default values if it does not exist, in C:\Windows\Users\<username>\AppData\Roaming\SMX. It
stores some values about your previous session, such as whether you had certain buttons enabled
and window size, and it stores values set in the Options dialog. It also has a few additional values
that can only be configured by editing this file manually:

maxFilesToSave: Number of past event traces to keep.

dataPath: Location to save trace files. Defaults to the location of the smxAware.ini.
diagnostics: Set to the desired diagnostic logging level. See section Diagnostic Logging.
stackScanTimeoutSeconds: Maximum number of seconds to scan questionable stacks after
each debug step or run. Any stacks that have not been scanned will continue to show Usage and
% with “?” following in the text stack display and light blue bars in the graphical display.

Increasing this setting will make each step take longer in the debugger when the text stack
display is expanded.

[TOP_LEVEL_ITEM_SORT]: Specifies the order in which to display items in the Text
window. Change the values to put them in the desired order. If smxaware.ini is deleted, they will
revert to the default order.

Options Dialog

The Options dialog is accessed by pushing the Options button in the GAT toolbar. The settings
are stored in smxAware.ini which is created in the same directory the traces are saved in (see
section Saved Traces). See the section smxAware.ini for information about settings in this file.

Font Size

This controls the size of the font and thickness of the bars in the client area of the displays.
Setting it to a lower number will allow more lines to fit on the screen. Default is 12.

Enable Event Capture (Filtering Events)

These checkboxes allow you to control what classes of events are logged: Task, SSR, LSR,
ISR, Error, and User events. For example, un-checking “Log ISR Events” will prevent ISR
events from being added to the Event Buffer the next time you run. This will allow capturing
a longer trace before the Event Buffer fills up. If ISR events are excluded, for example, even
if the ISR button is pushed on the graphical display, no ISRs will appear because there are no
entries for them in the buffer.

For SSRs, a finer level of control is given to filter SSRs in 8 groups. You can assign SSRs
into groups by changing the SSR Group field (3" byte) in the SMX_ID constants at the end
of XSMX\xdef.h. Group is bit n + 1. For example, 0x--01---- is group 1, 0x--20---- is group
6, etc. Then the checkboxes for SSRs can be checked to enable logging of each group.

Note: To avoid logging particular ISRs, comment out the smx_EVB_LOG macros in them.
To avoid logging LSRs, pass flag SMX_FL_NOLOG to smx_LSRCreate(). It is currently not
possible to control which specific tasks to log. SSRs can be selectively enabled by group —
see the smx Users Guide for details.

Each checkbox corresponds to a flag in the smx global smx_evben. This global can be
changed in the code, by setting it to the desired SMX_EVB_EN _ flags (see xevb.h). The
checkboxes will reflect the value of smx_evben, so if a checkbox changes from how you last
set it, the code must have changed smx_evben.

Window Action

This controls what happens with open smxAware windows each time you step or run your
application in the debugger.

Update after each run: The smxAware windows remain open and are updated after each
step. This can slow down stepping depending upon how much data smxAware has to
retrieve for whatever is currently being displayed.

Close window on each run: The smxAware windows automatically close each time you
step or run. The user can manually open the GAT window any time the target is stopped.

Guidelines

These checkboxes allow you to enable light gray guidelines in the Event Timelines display,
to make it easier to see how things line up. This is an alternative to using the Crosshairs tool.

Horizontal Guidelines: Lines are added between each row to line up horizontal events.

Vertical Guidelines: Vertical lines will be placed at each event to line up vertical events.

Using smxAware

smxAware Dialog Box

The smxAware dialog box lets you browse text displays of smx objects. It opens when selected
from the main menu of the debugger/IDE. (The sections above describe how to start it from each
debugger.) Use it while stopped at a breakpoint.

For IAR EWARM, the smxAware window is initially docked but can also be undocked. It is a
single hierarchical tree. Here it is shown with Tasks expanded.

o I

[

|| B-Ready Qusus
[H-L5E Qusus
- Tasks

: TaskID cht flg Timeout State
;nsmx_Nulltask goooooao a0 0Oe INF Stopped
- (=nx_Idle) 000000ce a0 47 *% RUTH %
t-PegTaslk goopooilils g0 17 INF Wait
H-=mxTSEH-OHCT oooo0iled g0 07 INF Wait
H-=mzUSEH-Hub gooo0o0ibo g0 07 12 TWait
t-HetTaslk gooo0lfc g0 07 10 Wait
H-LED taslk gopooz4s g0 13 INF Wait
H-opoon oooooz94 g0 13 INF Wait
H-SFS lst Test Task gooo03zc g0 17 INF Wait
t-PegTouchTask gopooszs g0 17 INF Wait
t-webserver 000003c4d a0 07 39 Wait

: -Telnet server ooooo41o g0 07 82 TWait

:~Stacks

t-Heap

H-Semaphores

H-Hutexes

t-Exchanges

H-Hessages

H-Blacks

H-Event Queuss

H-Event Flags

H-Timers

H-FPipes

H-Print

H-User

H-Conf Values

-Handle Takble

'"Diagnostics

i =mzFS

i =mzHS

H- sm=l1SED

H- sm=lISEH

With a task expanded:

onee: M
-- =n=lISEH-Hub 0oo0o001lko 03 12 TWait

--NetTask gooo0ilfe 04 10 Wait
EI- LED ta=slk
- Tazk Hame LED_ta=k
- Jueued In aoon0be0n =nx_TicksEQ
- Forward Link aoon0be0n =nx_TicksEQ
- Backward Link oooonz294 opocon
- chtype an
- z=tate Wait
- flagz (=== below) gooooola
- Priority 04
- Hormal Priority 04
- Error Humber 00 Ho Error
- HReturn Value a
- Suzpend Valus £
- Run Time Counter oo0o00e 35
- Regizter Save Area g0244ean
- Stack Pointer 80245148
- this Pointer aooooooo
- Main Function g802bebac
- Hooled Entry aooooonn
- Hooked Exit aooooooo
- Stack Top Pointer anz244ifa
- Stack Bottom Fointer B02451f0
- Stack Size noooolfs
- Stack HWHM 00000040 (walid)
- Oyned Mutex none

- flags=:
- Ewent Queus True
Start Locked Fal=se
Stack Check True
Ferm Stack Fal=se
Hooked Entry~Exit False
Hutex Wait Fal=se
Stack Owverflow Fal=se
Stack HWM Valid True

+- opoon Qooooz294 11

Other displays are similar.
Copy to Clipboard:
IAR v9.40 and later: Pressing “c” will copy all of the text in the most recently expanded tree in

the smxAware Text window to the clipboard. (To copy a tree already expanded, collapse and re-
expand it. “Ctrl-c” is not supported.)

Other: Pressing “c” will copy all of the text in the current smxAware Text window to the
clipboard. (“Ctrl-c” can also be used for IAR.)

Kernel Displays
Below is a summary of the information displayed for each smx object type.

Note that the order of these can be changed by editing smxaware.ini. Change the values in the
[TOP_LEVEL_ITEM_SORT] section, to put them in the desired order. If smxaware.ini is
deleted, they will revert to the default order.

Ready Queue

Shows the tasks in each level of the ready queue, in order. Left-most is the first to be serviced.
() around the task name indicates ct. (Normally this will be the left-most task at the highest
occupied level, but if it is locked and bumped with smx_TaskBump(), it could appear at the end
of the level, yet still be ct.)

LSR Queue

Number of the LSR. 0 is next to run.

Address LSR function address. Correlate to .map file.

Par Parameter passed to LSR.

LSRs

LSR LSR name from LCB, or handle if not named.
Type T for trusted; U for safe umode; P for safe pmode.
LsriD LSR handle.

HostTask Task LSR is associated with, if any.

Expanding an LSR shows:

Main Function Main function address.
Flags LSR flags (see below).
HostTask Task LSR is associated with, if any.

Stack Top Pointer ~ Address of top of stack (end it grows to, not including pad).
Stack Bottom Pointer Address of bottom of stack (end it starts from).

MPA Size Number of slots in MPA for Safe LSR (SecureSMX)..
MPA Ptr Address of MPA for Safe LSR (SecureSMX).

LSR Handle Ptr Pointer to variable holding this LSRs handle.

Flags breakdown:

Trust 1/0 Trusted LSR.
Umode 1/0 Safe LSR (umode/pmode).
Nolog 1/0 LSRR not logged in EVB if True.

Tasks

Note: Starting with smx v5, fields can be added to the end of the TCB, and smxAware will
continue to work, and it will display the values as generic 32-bit values. This depends on having
the following definition in smxaware.c: u32 smx_tcb_size = sizeof(struct TCB). In the past we
have advised against adding fields to the TCB because it will break smxAware. Now fields can
be added, but only to the end, and there must be no other changes (which could break smx too).

Task
TaskID

Mode
Pri

Flag
Err

Timeout

State

SuspLoc

Task name from TCB, or handle if not named. () around the task name indicates
the current task.

Task handle.

P is privileged, U is unprivileged. (SecureSMX)

Priority 0 to 127. 0 is the lowest priority. If two values are displayed, the first
number is the current priority, and the second is the normal priority. See Own Pri
field of Mutex display, below.

Task flags.

* in this column means smx error occurred. For SecureSMX it may also mean
there is an error in the Task’s MPA. If this appears, expand the task and check the
Error Number field and MPA.

of ticks (decimal) until the task will timeout.

blank means task is not waiting or stopped (i.e. no timeout).

INF means infinite timeout.

Negative number means the timeout has happened but Timeout LSR() has not yet
moved the task to the ready queue.

Task state (Run, Ready, Sleep, Stopped, Wait (suspended), or WaitInf (suspended
with infinite timeout)).

Address where task was suspended. See section Suspended Task Information for
details.

Expanding a task will display more task-specific information.

Task Name
Queued In

Forward Link
Backward Link
Index

Error

State

Flags

Priority

Normal Priority
Timeout Priority
Return Value

Task name from TCB, or handle if not named.

The queue it is in, if any. For the ready queue, it shows the ready
queue level it is in (e.g. rq[3]).

Control block handle

Control block handle

Index of task relative to first TCB.

smx error number and name of last error caused by task.
00 No Error if none.

Task state

Task flags (see below)

Current priority of task (0 to 126 and >= Normal Priority)
Normal priority of task (0 to 126)

Priority task is raised to if timeout occurs (0 to 126)

Used by smx calls that cause the task to wait

Suspend Value Used by some smx calls to save a value when they suspend, such
as the differential count for tasks in an event queue.

Suspend Value 2 Used by some smx calls to save a value when they suspend.

exret Low byte of exception return value, which indicates type of stack
frame for FPU register autosave (ARM-M).

Runtime Counter Counter for runtime limiting or task profiling

Runtime Limit Runtime limit (or pointer to top parent’s rtlim)

Runtime Limit Count Runtime limit counter (or pointer to top parent's rtlimctr)

Stack Pad Pointer Pointer to pad above stack.

Stack Top Pointer ~ Address of top of stack (end it grows to, not including pad)

Stack Pointer Stores stack pointer when task suspended

Stack Bottom Pointer Address of bottom of stack (end it starts from)

Stack RSA Ptr Pointer to part of stack where registers are saved (task context)

Stack HWM Stack high water mark. Indicates stack usage, in bytes. Directly
compares to Stack Size.

Stack Size Usable bytes of stack (not including pad)

this Pointer this pointer, for C++ tasks

Main Function Address of task’s main function (entry point)

Callback Function Address of callback function for task exit, entry, init, etc.

Owned Mutex Mutex name or handle. One line for each.

Suspended Location Address where task was suspended. See section Suspended Task
Information for details.
Task Handle Pointer Pointer to variable holding this task’s handle.

srnest srnest when enter PendSVH/PreSched from SSREXitInt()
MPU / SecureSMX Fields:

Parent Parent task.

Irq Pointer to permitted IRQ table for task.

MPA Template Ptr MPA template pointer for this task

MPA Pointer MPA pointer for this task

MPA Size Number of slots in MPA.

Dual Slot Number Dual slot number (high nibble is aux slot).

Idle Counter Number of idle passes per RTL frame.

Token Array Pointer Pointer to token array for this task.

Flags breakdown:
Stack Check 1/0 Stack checking enabled for task
Stack HWM Valid 1/0 Indicates Stack HWM (above) is valid; the stack has been
scanned since the last time the task ran.
Stack Overflow 1/0 Stack overflow detected, if true

Stack Perm 1/0 Task has permanently bound stack (not stack pool stack)
Stack Prealloc 1/0 Stack is preallocated block user passed.
Hooked 1/0 Callback routine hooked to save additional task state

In Priority Queue 1/0 Task is in a priority queue
In Event Queue 1/0 Task in event queue
Mutex Wait 1/0 Task is waiting to get a mutex.

10

Event Group AND/OR 1/0 Task is waiting on AND/OR of flags in Event Group
Event Group AND 1/0 Task is waiting on AND of flags in Event Group

Start Locked 1/0 Task starts locked.

Unpriv Mode 1/0 Unprivileged mode.

Pipe Front 1/0 Put packet to pipe front if 1, to back if 0.
Pipe Put 1/0 Task waiting to put packet to pipe.

Token Ok 1/0 Token test passed.

Rv_r0 1/0 Copy ct->rv to r0 in exframe on task stack.

MPA (SecureSMX)

MPAs for all tasks are shown, using a format like the MPU display below. If the MPU has static
slots, the regions show different indexes for MPA and MPU, and the static slots are displayed at
the bottom of the MPA after a line.

MPU (SecureSMX)
Details of the MPU are shown including:

Current Task Current task name and handle.
Flags MPU ON/OFF MPU is on/off
BR ON/OFF Background Region is enabled/disabled Remember that BR
enabled for umode has no effect, but this is done for ISRs
that interrupt utasks.
(UN)PRIV MODE Processor is currently in (un)privileged mode. Privileged if
in Handler Mode, else is CONTROL.nPriv.

MSP/PSP Main Stack / Process Stack is in use
Caution Warnings about overlaps
MPUIN] Information about each slot, including Start and End address, Size, Attributes,
RBAR, RASR, and name of region.
Subreg Dis Lists subregions that are disabled (0 to 7). Size indicates
size of each subregion (1/8 of region size).
Sub Start/End Start and end address of enabled contiguous subregions.

Size indicates their total size.

Stacks (Task)

Task Owner. Task name from TCB, or handle if not named.

StkTopAddr Starting address of the memory block and top of stack. (Stack grows toward this
end.)

Used Amount of stack used (based on Stack HWM field in TCB). A “?” next to the

value indicates that the value is questionable because the task has run since the
last time its stack was scanned (task’s SHWM_VALID flag is 0), so it may have
used more stack. See notes below.

Size Size of memory block excluding padding.

% Percent used (used/size * 100). “?” has the same meaning as for the Used column.

11

Type

Bound, Shared, or None. Bound is a heap stack permanently allocated to the task;
Shared is a stack from the stack pool that is released if the task stops (not if it
suspends); None means the task currently does not have a stack (it stopped and
released its shared stack).

The bottom of the window summarizes:
1. how many shared stacks are used out of the total number that exist.
2. how big of a pad is allocated at the logical top of each stack, if any.
3. how stack usage (HWM) is determined (i.e. by stack scanning or checking sp at task
switches).

Shows entries for all stacks in use. It is done by listing all tasks, since this allows showing stack
usage and HWM for tasks that currently don’t have a stack. This information is independent of
the particular stack assigned to the task; it reflects usage over the lifetime of the task.

The first line is the System Stack. This is used for ISRs, LSRs, scheduler, and error manager.

The best way to view stack usage is graphically. See the section Stack Usage for more

information.

Heap

The heap window shows the following main items for each heap:

Summary
Allocated

Various statistics of heap usage and settings.
List of allocated chunks (see below).

Donor Chunk Size of donor chunk.

Top Chunk
Small Bins
Upper Bins

Size of top chunk.
List of small bins. Summary line shows number of chunks and total space for all.
List of upper bins. Summary line shows number of chunks and total space for all.

The Allocated and Bin items show these fields when expanded:

Type
Address
Size

Align
SpSize
ChunkAddr
CSize

bl

fl

free bl

free fl
Alloc Time
Owner

Type of chunk: free, inuse, debug, start, end

Block starting address. Address returned to the user where data will start.
Block size of data part, excluding CCB and fences, if any.

Alignment of data part (actual, which may be > requested).

Size of spare space, if any.

Chunk starting address.

Chunk size.

Backward link to previous chunk.

Forward link to next chunk.

Backward link to previous free chunk in bin. (Only for free chunks.)
Forward link to next free chunk in bin. (Only for free chunks.)

etime when chunk was allocated. (Only for debug chunks, i.e. CDCB.)
Task that allocated the chunk. (Only for debug chunks, i.e. CDCB.)

12

Fences Ok or Broken (all fences should == SMX_HEAP_FENCE_FILL.)

S/IUr* Bin is sorted, unsorted, or being sorted. Applies only to upper bins.
Semaphores

Name Semaphore name from SCB, or handle if not named.

Handle Semaphore handle.

count Signal counter.

limit The signal counter must reach this value before the top task(s) waiting at the

semaphore will be resumed, for semaphore types that use a limit. See the
Semaphores chapter of the smx User’s Guide.

mode Type of semaphore, e.g. binary resource.

Callback Address of callback function.

Expanding a semaphore will display the forward and backward links and fields listed above and:

Tasks Waiting Names or handles of tasks waiting for the semaphore.
Mutexes
Name Mutex name from MUCB, or handle if not named.
Owner Task Owner task’s name from TCB, or handle if not named.
Own Pri Owner task’s priority. If two values are displayed, the first number is the current

priority, and the second is the normal priority. The current priority is >= normal
priority. Normal priority is the original priority of the task before promotion due
to ceiling or priority inheritance.

nest Nesting count.

pi Priority inheritance enabled (if != 0).

ceil Ceiling priority.

mtxp Name or handle of next mutex in list of mutexes owned by a task. (The head of

the list is pointed to by the task’s TCB.mtxp.) If NULL, this mutex is either not
owned or is the last mutex in the list.

Expanding a mutex will display all tasks waiting to get it, in priority order.

Exchanges

Name Exchange name from XCB, or handle if not named.

Handle Exchange handle.

tq 1: one or more tasks is queued, 0: no tasks are queued.

mq 1: one or more messages are queued, 0: no messages are queued.
Status Number of Messages Enqueued or Tasks Waiting.

Callback Address of callback function.

Expanding an exchange will display the queue with any tasks or messages queued.

13

Messages
Name

Owner

Pri
Exchange
Block
Pool

Name or handle of message. It is rare that messages are named so usually this will
be the handle.

Message owner or “free” for a free message and “unused” for an unused MCB. (A
free message is one with an allocated buffer but that is not owned.) Usually this
will be a task handle. It can also be a pipe handle or LSR handle if an LSR
received it. When the message is in an exchange, this field stores the handle of the
exchange it is in, if any. However, in that case, the exchange name or handle is
displayed in the Exchange field instead.

Message priority.

The exchange name or handle that the message is in, if any.

Pointer to the message buffer.

Pool the block is from.

Expanding a message will display other MCB fields not shown in the summary (1-line) display:

Forward Link Control block handle

Backward Link Control block handle

Block Source Heap or pool from which block came, or -1 if from free block.
Reply Index Index of the handle of the object to reply to among QCBs

(typically an exchange handle)

Other fields for ARMM7 and ARMMBS8: See SecureSMX manual.

Blocks
Name

Owner

Pool

Name or handle of block. It is rare that blocks are named so usually this will be
the handle.

Block owner or “free” for a free block. (A free block is one with an allocated
buffer but that is not owned.) Usually this will be a task handle, but it can be an
LSR handle if an LSR got it.

The name or handle of the block pool the block is in.

Block Pointer Pointer to the data area of the block.

Size

Block size (decimal).

Event Queues

Name
Handle
Callback

Event name from EQCB, or handle if not named.
Event handle.
Address of callback function.

Expanding an event will display the tasks queued along with priority and count. The counts are
converted from differential count to absolute number of counts until each is resumed.

Event Groups

Name
Handle

Event group name from EGCB, or handle if not named.
Event group handle.

14

flags Hex image of flags set with smx_EventFlagsSet().
Callback Address of callback function.

Expanding an event group will display the tasks queued at each slot and the following
information:

Flags Flags currently set
TestMask Test mask
ClearMask Clear mask

AND, OR, or AND/OR Indicates which type of condition the task is waiting for.

Timers

Name Timer name from TMCB, or handle if not named.

OwnerTask Name or handle of the task that owns the timer (the one that called
smx_TimerStart()).

type Type of timer: cyclic or one-shot

state Pulse state LO/HI.

count left The counts are converted from differential to absolute number of ticks remaining
until the timer expires and LSR is invoked.

Isr LSR to be called when the timer counts down to zero

opt LSR parameter option. Indicates what will be passed to the LSR: par, pulse state
(LO/HI), etime at timeout, or number of timeouts since start.

Expanding a timer will display more timer-specific information.

Name Timer name from TMCB, or handle if not named.
Forward Link Next timer in timer queue (smx_tq) or NULL if none.
Timeouts Number of timeouts since last start.

Diff Count Difference count from preceding timer.

Next Delay When it will timeout again (etime).

Period Period (ticks) for a cyclic timer.

Width Pulse width.

Parameter Parameter to LSR.

Owner Task that started it.

Timer Pulse State Low or High pulse state.

Pipes

Name Pipe name from PICB, or handle if not named.
Handle Pipe handle.

Callback Address of callback function.

Expanding a pipe will display more pipe specific information.
Name Pipe name from PICB, or handle if not named.

Handle Pipe handle.
Forward Link Control block handle of waiting task. (Start of queue.)

15

Backward Link Control block handle of waiting task. (End of queue.)

Flags Flags

Width Pipe element width.

Length Number of elements pipe can hold.
Buffer Start Address of the buffer.

Buffer End Address of the end of the buffer.
Read Pointer Buffer read pointer.

Write Pointer Buffer write pointer.

Print
See section Print Window below.

User

This button activates a window that can be used to display custom user application objects that
may be helpful in a debugging session. The user or Micro Digital can write Microsoft Visual
C++ code to display any user application object, structure, variable, buffer, or memory value.
Contact Micro Digital for more information.

Config Values

Shows the configuration values for the smx kernel. These are stored in the smx_cf structure and
set in acfg.h in the application.

Handles

Name Object name.

Handle Object handle.

Type Type of handle (Task, Semaphore, Ready Queue, ...).

Displays all entries of the handle table and all objects named when created (which need not be
added to the handle table starting with v4.2).

Diagnostics

Indicates the version of smx and smxAware and the processor/memory model. Displays coarse
profiling information (percent idle, work, and smx overhead). Also displays a list of smx kernel
errors and the last smxBase error, if any. The column Reported/Caused By indicates who
encountered or caused the error. This can be a task name or strings to indicate LSR, ISR, or
general smx error. Some errors are clearly caused by the indicated task/LSR/ISR, such as
SMXE_INV_PARM or SMXE_STK_OVFL, but others are not. For example
SMXE_RQ_ERROR is a general system error, and it is not known what caused it. Some errors
such as SMXE_OUT_OF_and SMXE_INSUFF __ are encountered by a task but not necessarily
caused by the task. For example, it is not the fault of the task that not enough control blocks or
heap space was configured, but it is possible that the task is trying to allocate more of something
than it should, so showing the task name may be a helpful clue.

16

smxFS
smxNS
smxUSBD
smxUSBH

See section SMX Middleware Module Displays below.

SMX Middleware Module Displays

This feature is currently available only for IAR EWARM (little endian) versions of smxAware.

The middleware sections display detailed information about each installed middleware product.
They only appear in the list in the window if the corresponding modules are present in your
application and you have the minimum version of each indicated below. This is because changes
were made to some data structures in each product, such as field ordering and size.

If smxAware is unable to read some global variables it needs, it will display a message
indicating this. These are the files with symbols that are referenced:

SmxFS: fapi

SMxNS: net.c, netconf.c, support.c, tcp.c
smxUSBD: uddcd.c, udfunc.c

smxUSBH: udriver.c

Below is a sample of each display.

sSmxFS
Minimum Version: SFS_VERSION >= 0x202 in \XFS\fport.h

Disk 0
DevicelD 00000000
Status Device Mounted
FAT Type FAT32
Sector Size 200
Cluster Size 200
Total Sectors 3cdal
Reserved Sectors 46
First Data Sector 7f0
Free Clusters 1da6b
Cache Sizes

Open File O sfstest.bin

Handle 20069610
DevicelD 00000000
File Size 1ec000

17

File Pointer 1ec000
File Status READWRITE
Update Status
File Updated
File Cache Empty
Cache Updated

Attributes

Buffer Pointer 20069640
Path Cluster 2

Entry Cluster b

Offset e

First Cluster 15

FP Cluster f75

Open File 1 Testl.bin
Open File 2 Test2.bin

Disk 1

SmMXNS
Minimum Version: SNS_VERSION >= 0x0260 in \XNS\include\smxns.h

Net Status
Buffer Status
ARP Status
Route Status

These each expand to display a table. They are the same as the diagnostics SmxNS reports via
Telnet, and they are documented in the smxNS User’s Guide in Appendix B: Debugging
Techniques.

smxUSBD
Minimum Version: SUD_VERSION >= 0x0231 in \XUSBD\udport.h

Device Controller Name ATI1
Registered Function driver Serial
Device Status Configured
Device Address 2
Device Descriptor
bLength 12
bDescriptorType 1
bcdUSB 110
bDeviceClass 2
bDeviceSubClass 0

18

bDeviceProtocol
bMaxPacketSize0
idVendor
idProduct
bcdDevice
iManufacturer
iProduct
bNumConfigurations
Total Configuration Number
Active Configuration Descriptor
bLength
bDescriptorType
wTotalLength
bNumlnterfaces
bConfiguration Value
iConfiguration
bmAttributes
bMaxPower
Alternative for interface 0 is O
Interface Descriptor
bLength
bDescriptorType
binterfaceNumber
bAlternateSetting
binterfaceClass
binterfaceSubClass
binterfaceProtocol
ilnterface
Endpoint Descriptor
bLength
bDescriptorType
bEndpointAddress
bmAttributes
wMaxPacketSize
binterval
Endpoint Descriptor

(@]
(@]

HI—‘NI—‘BO-PCDO
N

DO ML FP NN O
o ~

OO FRLPNDNNOO MO

N O1

Bulk

19

smxUSBH
Minimum Version: SU_VERSION >= 0x0224 in \XUSBH\uport.h

Host Statistics
Host name OHCI
Registered class drivers

Device Name hub
Device Name usb-storage
Device Name ush-mouse
Device Name usb-keyboard
Plugged Device: hub
Address 1
Device Descriptor:
bLength 12
bDescriptorType 1
bcdUSB 110
bDeviceClass 9
bDeviceSubClass 0
bDeviceProtocol 0
bMaxPacketSize0 8
idVendor 0
idProduct 0
bcdDevice 0
iManufacturer 0
iProduct 2
iSerialNumber 1
bNumConfigurations 1

Active Configuration Descriptor
bLength
bDescriptorType
wTotalLength
bNumlnterfaces
bConfigurationValue
iConfiguration
bmAttributes
bMaxPower
Interface Descriptor O
Alternate setting
bLength
bDescriptorType
bAlternateSetting
binterfaceClass
binterfaceSubClass
binterfaceProtocol
Endpoint Descriptor for Endpoint 0

oOhrOFRPFPEDNO

OO wWwo 0o

20

bLength 7
bDescriptorType 5
bEndpointAddress 81
bmAttributes 3
wMaxPacketSize 2
binterval ff
Plugged Device: usb-storage
Address 2
Device Descriptor:
bLength 12
bDescriptorType 1
bcdUSB 110
bDeviceClass 0
bDeviceSubClass 0
bDeviceProtocol 0
bMaxPacketSize0 40
idVendor eal
idProduct 6828
bcdDevice 110
iManufacturer 1
iProduct 2
iSerialNumber 3
bNumConfigurations 1
Active Configuration Descriptor
bLength 9
bDescriptorType 2
wTotalLength 27
bNumInterfaces 1
bConfigurationValue 1
iConfiguration 0
bmAttributes 80
bMaxPower 32
Interface Descriptor O
Alternate setting 0
bLength 9
bDescriptorType 4
bAlternateSetting 0
binterfaceClass 8
binterfaceSubClass 6
binterfaceProtocol 50

Endpoint Descriptor for Endpoint 0

bLength 7
bDescriptorType 5
bEndpointAddress 81
bmAttributes 2
wMaxPacketSize 40

21

binterval 0
Endpoint Descriptor for Endpoint 1

Print Window

The print feature is like using printf() to send info strings to the smxAware print window. The
user calls sa_Print() or sa_PrintVals() with a null-terminated string. During execution, the strings
are written to the print buffer in the order in which they are encountered. Examples:

sa_Print("looping™); [* display a string */
sa_PrintVals("i = %d j = %d", i, j); [* display 2 values */
sa_PrintVals("i = %d", i, 0); [* display 1 value */

Caution: These functions are not safe from ISRs, since they call SSRs (semaphore).

Note: You may want to use C library functions to prepare the string for sa_Print(). However note
that sprintf() requires a lot of stack, so we do not recommend using it. Also note that you should
protect any non-reentrant C library functions you use with a mutex.

To use the print window:

1. Add calls to sa_Print() from points of interest in your app, such as the examples
above.

2. Build the Debug version of your app.

3. Run your app in the debugger. Open the smxAware window and select the Print
display to view the contents.

sb_MsgDisplay() calls sa_Print() so those messages appear in this window too. Messages
pending in the OMQ or OMB are also displayed.

Modal vs Non-Modal Dialog

The dialog for IAR is non-modal, meaning you can continue to step through the code and use the
debugger while the smxAware dialog is open. This is convenient to allow you to watch as smx
objects change, but it can slow down responsiveness of the debugger. The delay is most
noticeable when you are stepping through the code, since data is transferred after each step.
Closing the smxAware window when not needed will make stepping faster. This can be done
automatically; in project Options check “Close window on each run”.

22

Suspended Task Information

Some debuggers have the ability to display suspended task information, such as to show the
location it was suspended in the code window, with call stack and even registers. However, this
is tool-specific and can be difficult to implement, so in v4.4.0, we added a feature to smx to
show where tasks were suspended. It can be easily retrofitted into existing v4.2, v4.3, and v4.4
releases. Currently it has been implemented only for ARM and ARM-M.

The susploc field was added to the TCB to store the location a task was suspended. It is the
address of the next instruction that will execute when that task is resumed (and the one before it
is the last one that ran before the suspension occurred). You can enter that address into the
debugger’s disassembly window to see the location, and you can set a breakpoint there to run to
that point and then continue debugging that task.

smxAware displays this address in the SuspLoc column of the text Tasks display and in the
Suspended Location field of an expanded Task. SMX_CFG_SAVE_SUSPLOC must be 1 in
xcfg.h and the CPU architecture .inc file, e.g. xarmm_iar.inc, and sa_susploc must be TRUE in
smxaware.c.

Note that the value in TCB.susploc should be ignored for stopped tasks (because they will restart
from the beginning) and for ct (since it is currently running). smxAware displays a — for these
cases.

*| & Tasks &
Task TaskID Hode Fri Flag Timeout State Susploc
%--Smx_Nulltask Oz20000400 - oo oooooood INF Stopped - L
+ idle O=x20000450 - an aoooooo? Ready 00206f9a 3
%--LED_task O0=200004=20 - 04 ooooooz2l INF Wait 0020417
-;---DDDDH O=x200004£0 - i1 ooooooz2l INF Wait 0020=335
+ leddemo_task 0=x20000540 - 03 aoooooz2s INF Wait 0020bsf 9

= J;--esmx O=20000590 - o1 aoooooos Ready 00211845

E—’- fr--t2a 0=x200005=0 - nz aoooooos Ready ooziigao

9 J;f--t2b O=20000630 - nz aoooooos Ready 00211884

E H- (L2 0=x20000680 - nz aoooooos *%x RUH =% - <

Task-Specific Breakpoints
Task-specific breakpoints are breakpoints that only occur if the specified task is the active or
running task. They are often used to break in a common routine that is called by multiple tasks.
IAR
Only available for IAR v6.10 and higher.
To set a task-specific breakpoint:

1. Run until the tasks are created.

2. Set a breakpoint on the line of code.

3. Right click that line, and select “Edit Breakpoint”. Click the Task button, and select a
task from the drop-down list. Click the “Break only if selected task is active” checkbox.

23

The drop-down list only shows tasks that have been created at the time. If the task is not named
(in the handle table) then the task handle will be displayed in the drop-down list. If the code at
the breakpoint is only ever executed by one specific task, there is no need to make the breakpoint
task-specific.

Stepping (using the green task-specific stepping toolbar, in some 1AR versions): If more than
one task can execute the same code, there is a need for both task-specific breakpoints and task-
specific stepping. For example, consider some utility function, called by several different tasks.
Stepping through such a function to verify its correctness can be quite confusing without task-
specific stepping. Standard stepping usually works as follows (slightly simplified): When you
invoke a step command, the debugger computes one or more locations where that step will end,
sets corresponding temporary breakpoints, and simply starts execution. When execution hits one
of the breakpoints, they are all removed, and the step is finished. During that brief (or not so
brief) execution, basically anything can happen in an application with multiple tasks. In
particular, a task switch may occur, and another task may hit one of the breakpoints before the
original task does. It may appear that you have performed a normal step, but now you are
watching another task. The other task could have called the function with another argument or be
in another iteration of a loop, so the values of local variables could be totally different. Hence,
there is a need for task-specific stepping. The step commands on the green stepping toolbar
behave just like the normal stepping commands, but they will make sure that the step does not
finish until the original task reaches the step destination (unless a different breakpoint is
executed first).

Note: In the standard debugger menu, there are no Instruction Step Over and Instruction Step
commands. This is because the standard Step Over and Step Into commands are context
sensitive, stepping by statement and function call when a source window is active, and stepping
by instruction when the Disassembly window is active. The RTOS stepping commands are
unfortunately not context sensitive; you must choose which kind of step to perform.

24

Graphical Analysis Tools (GAT)

smxAware with GAT includes graphical displays that are very useful. To access them select
smxAware | Graph from the menu. There are 3 graphical displays here plus an error buffer
display. These are selected by the buttons “Event”, “Profile”, “Stack”, and “Error”. These are
discussed below, in turn. There are also Event Buffer, Resource Usage, and Memory Map
displays in the smxAware menu.

This feature is currently implemented only for IAR.

If these displays don’t work, check that EVB_SIZE is non-zero in APP\acfg.h and that
SMX_CFG_EVB is set to 1 in xsmx\xcfg.h.

For IAR, GAT runs as a standalone executable that is launched automatically by the IDE, rather
than as a window within the IDE. It is launched when you select smxAware | Graph or Event
Buffer from the menu. If the GAT window does not open, see the Troubleshooting section at the
end of this manual.

The standalone smxAwareGAT .exe can also be run from Windows to look at past traces off-
line. The Event Trace Buffer that is downloaded from the target is saved in the directory
indicated in Saved Traces below, or where the smxAware.ini file there specifies in its dataPath
setting. (In the past, they were stored in the same directory as the smxAware DLL, but this is not
allowed by Windows User Access Control.) The file name of each saved trace indicates the date
and time it was saved. If the GAT window does not open, see the Troubleshooting section at the
end of this manual.

Guides

Color Key
blue tasks (light blue is used for tasks with no events during the sample period)
green LSRs
red ISRs

scheduler
SSR calls in blue and green bars; ISR invokes in red bars
red dots errors detected

25

Toolbar

The toolbar was changed to be 2 lines. View-specific buttons were moved/added to the second
line.

Event Timelines

Open | < | | [Task [LSR [ISR [Event Profile| Stack | | Detail| + | L ? |
SortAlpha | SortTime | | & | @m |
Open Open saved trace files.
<> Scan through saved trace files.
Task, LSR, ISR See section Filters below.
Event Event Timelines display. See Event Timelines below.
Profile Profile display. See Profile below.
Stack Stack Usage display. See Stack Usage below.
Error Error display. See Error Buffer below.
Detail Details window. See Details Button below.
+ Crosshairs
Options Configuration settings. See section Options Dialog.
? Help
SortAlpha/Time Re-orders lines. See section Sort Buttons below.
-/+ Zoom. See section Zoom below.
Profile
Open| < | |[Task [LsR [1SR Event |Profile Stack | | Detail| + | 2 |
All Frames | Next Frame > | Percent Time | Table |
All Frames Shows the average for all frames.
Prev Frame Moves to the previous frame.
Next Frame Moves to the next frame.
Percent Shows profile information as a percent of total time.
Time Shows actual run time.
Table Shows data in tabular form.
Stack
Open| < | |[Task [1SR [1SR Event|Profile| Stack | L+ | 2 |
SurtAIpha| SontSize | Percent Bytes
SortAlpha/Size Re-orders lines in alphabetically or by stack size.
Percent Shows stack usage as a percentage of each stack’s size.
Bytes Shows the number of bytes used.

26

Event Timelines

This is the premier feature of GAT. This display lets you visualize system operation with bars
that indicate when tasks, LSRs, and ISRs ran, and it indicates events that occurred in them, such
as smx calls. This gives you a good view of system execution over a short sample period. As the
system runs, smx logs entries in its Event Buffer, and smxAware displays this information with
graphical bars. The display is clean and un-cluttered, making it appear deceptively simple. This
section discusses its capabilities, some of which might not be immediately evident.

When the window is first opened it is zoomed all the way out, showing the entire trace. See
section Zoom below for discussion of zooming in and out.

Setup

To use this feature, the smx Event Buffer must be enabled by setting SMX_CFG_EVB_SIZE to
a non-zero number of bytes in acfg.h and by setting SMX_CFG_EVB to 1 in xcfg.h. Ensure you
have enough heap space to accommodate it.

Also, the sb_ticktmr_ variables in the BSP must be set appropriately, to tell smxAware the
characteristics of the timer used for event record timestamps. smxAware uses this information to
convert the timestamp into a meaningful time (fractional seconds). See section Event
Timestamps. For more information about the Event Buffer, see the smx User’s Guide.

27

Event Timelines

o] smxAware Graphical Analysis Too gm
Open| < [Task [1SR [1SR [Event Profile| Stack | | Detail| + | | 2 |
|| Sortaipha [SortTime | | & | an |
Hanes Time 4 _ 0608 S5 Drag Me to ZOOM -
4.10 430 4 50
Syzten Stack
=nx_Idle IO NI NI I N I

snxz_TickISE |
=mx_KeepTinelSE |
I

FEEEErrrrrrrrrrrd
FEEEErrrrrrrrrrrd
snz_TimeoutLSR PP
PegTask |
lsr_timerl | | | | | |
HetTashk | | |
opoon | | | | \ |
=nxzISEH-Hub | | |
PegTouchTask | | | | | | | |
smx_ProfilelSR | :
presmpter_task |
event_flags =set_fl | | | |
event flags wait3 |
n=g_=send_taslk | \
lsr_timer2 |
pips_put_task | |
pipe_get_task | |
nedemno_task
n=g_receive_task
event flags waitl |
event_flags_waitl |
1ED task
=lesper_tashk
=tart_hi_lo_task
hi_task
timer_task
lo task
SFS lst Test Tashk
EMAC ISR
HULL
=nxUSBH-OHCT

naster_task

FRTTIN 3

C\Users\David Moore\AppData\Roaming\SMX\Data_Jan21_23-17-02.smx

Notes about this sample:

1. The window shows the whole trace initially. It can be zoomed in very finely, as shown in the

next graphic below.

2. Notice the regularity of smx_TickISR and smx_KeepTimeLSR. If you zoomed in, you would

see that smx_KeepTimeLSR runs right after smx_TickISR.

3. Itisalso interesting that although there are many tasks in the demo doing various things, the
system is mostly idle. This gives a clear picture of how little time it takes for smx operations

such as sending and receiving messages.

The next sample shows the same trace zoomed fairly finely, to show about 400 usec of the trace,
near the end of the trace (see scale). When zoomed, it is possible to see the system call events

(white bars) within the colored bars.

28

EEe—— e

Open| < > |[Task [L5R [1SR [Event Profile| Stack | | Detail| + | | 2 |
SortAlpha| SeriTime MG | & | & | @&l |

Hame Time 4_.5901 S5 Drag Me to ZOOM
4.59000 4.59010 4.59020 4.59030

Sy=tem Stack
PegTask |~ = =
snx_Idle |
=mx_TickISR
snx_KeepTinsLSE
lzr_timerl
snx_TimeoutLSR
HetTask
opoon
=nxUSEH-Hub
PegTouchTask
=mx_FrofilelSR
presnpter_task
event_flags =et_f1
svent_flags waitd
n=g_=zend_ task
l=r_timexr2
pipe_put_task
pipe_get_task
n=deno_task
nEg_receive tasl
event_flags waitl
event_flags wait2
LED task
=leeper_task
start_hi lo_task
hi_task

timer_task

1o_task
SFS lst Test Task
EMAC ISR
HULL
=nzUSEH-OHCT
naster_taslk

<« [m b |

C\Users\David Moore\AppData\Roaming\SMX\Data_Jan21 23-17-02.smx

Saved Traces

The Open button allows you to open past traces. They are stored in
C:\Windows\Users\<username>\AppData\Roaming\SMX. (AppData and Application Data are
hidden directories.) The date and time are encoded in the file name of each. To increase the
number of saved traces, increase the setting maxFilesToSave in smxAware.ini. If you want to
permanently keep the trace simply rename it to a descriptive name. Note that saved traces can be
opened offline by running smxAwareGAT .exe.

Filters

The Task, ISR, and LSR buttons control which bars are enabled in the display. The buttons are
toggles that are visibly in or out. This does not affect what events are logged in the Event Buffer.
To control that, see section Options Dialog.

Reference Line

Right-click anywhere in the client area of the timelines display to set a vertical reference line. To
clear it, right-click in the header or in the left pane. As you move the mouse, the time delta is
displayed in the header area. This is useful for measuring times.

29

Zoom

In addition to the 4 zoom buttons, the view can be zoomed by dragging the mouse in the gray
header above the timelines display right or left with the left button pressed.

If a reference line is set, the line stays fixed, so you can zoom in to a specific area.

The behavior of the Zoom buttons is as you would expect, except for Zoom in Max. Pressing this
button zooms in to show the 4 most recent events (those at the right edge of the window) or, if a
reference line is set, it zooms in to the 4 events nearest it. You may be able to zoom in a little
more since it zooms until the 4 events fill the screen, but this may not be maximum zoom.

Panning / Scrolling

In addition to the horizontal scroll bar, the view can be panned by dragging the client area left or
right with the left mouse button pressed.

Event Lines in Bars

Some events, such as SSR calls and LSR invokes appear as white lines inside the blue, green,
and red bars. You may need to zoom in a bit to see them. For example, this task line shows many
events:

b bl b b b e b P b b b b e bl e e e] b e b e]

The vertical tick at the left of each event indicates the entry event and the tick at the right
indicates the exit event. For example, they indicate the entry and exit of an SSR (smx call). The
bar connecting them shows the duration of the SSR call. LSR invoke events appear as a single
tick mark.

Error Dots

Errors appear as red dots in the bars of the routines that caused them. The dots always appear the
same size regardless of zoom level so that they are noticeable. Moving the mouse over a dot with
the Details window open shows information about the error. Zooming in will show where the
error occurred relative to other events on the bar. Here is an example that shows what the dot
looks like when zoomed out.

When zoomed in, you can see where the error occurred relative to other events:

LN |-
KELR = H__H H I

30

Details Button

With the Details button pressed, mouse-over the tick marks at the ends of the white event lines to
see details of the event in the small window that pops up. For an SSR, the left tick shows the
parameters passed and the right tick shows the return value (which is the initial FALSE return
because the call has to wait). Example:

Time 1.3196755 Time 1.3196833
Hame FegTas=k Hame PegTask
snx_EventOueuseCount | =nz_EventfueusCount ()
smx_TicksEQD, return FALSE:
2.
IHF):
Left Tick (Start of Event) Right Tick (End of Event)

This is what is displayed when the mouse is moved over the left and right edges of an SSR bar. It
shows the parameters and return value of the call.

The ends of the colored bars are also events (the start and end of a task, LSR, or ISR). Mouse-
over them for details. You can also mouse-over error dots to get details about error events.

The Details button and its associated window allow you to get detailed information about events
without cluttering the display with a lot of icons.

Note: The Name field shows the name of the task/LSR/ISR bar. In the case of an error dot for
the smx STK_OVFL error, if it is reported by smx_ldleTask, the dot appears in the task line for
smx_ldleTask, so that is the name that is shown in this window, not the name of the task whose
stack overflowed. For this error, please press the Error button to see the error list, which shows
the name of the task whose stack overflowed. Also note that if an error is reported in an ISR that
has no smx_EVB_LOG_ISR() and smx_EVB_LOG_ISR_RET() macros, there will be no
timeline for it, so the dot will be drawn in the timeline of the task that was running when it was
reported.

Re-Ordering Event Lines

You can drag and drop lines in the left pane up or down to change the ordering. The event bars
move along with the text lines. This is useful to better visualize sequences of events. Also, when
you switch to the Profile and Stack Usage displays, the same ordering is used.

Sort Buttons

These re-order the lines so that the lines are sorted alphabetically or by time. For time, the
topmost line is the one with the first event, the second line has the next event, etc. If the

31

reference line is set (by right-clicking the mouse), it is the events after the reference line that
determine the sorting. Otherwise, it is relative to the left edge of the window.

Overlaps

It is correct that ISRs and LSRs overlap task bars, since they run in the context of the current
task. Also, there is a period between the ISR event and LSR event when the LSR scheduler runs
that shows up as a gap between the ISR and LSR events. We mark this region orange in the blue
task bar as a reminder that the LSR scheduler ran during this time.

Duration of an Event

Set the reference line at the left edge of the event (right-click the mouse) and move the pointer to
the right. The header shows the Delta time between the reference line and mouse pointer.

Guidelines

To enable horizontal and vertical guidelines, open the Options dialog and check the Guidelines
checkboxes.

32

Profile

This display shows profiling information gathered by smx. It allows stepping through the profile
frames. The first graph shown is the average of all frames. See the profiling sections of the
Diagnostics chapter of the smx User’s Guide for information about smx profiling.

-] smxAware Graphical Analysis Too L= E)
Open| < Task | LSR | ISR Event [Profile Stack | | Detail| + | | 2 |
‘ All Frames | Next Frame > | 'w Time | Table |
| Hame Profile TimeFrame: All 1.00 to 4.00 Seconds ‘
ISR total J12% |
ISR total 3% |
snx_Idle gy |
P=gTask 18|
=nxUSEH-OHCI ooz
=mxlSBH-Hub 02z |
HetTask 04 |
LED task 00 |
opCon 02z |

0o% |
1z
03% |
nz2x |
02% |
00% |
0ox |
00 |
00 |
0ox |
003 |
02% |

nedeno task

SFS 1=t Test Task
n=g_send_task
neg_receive task
presnpter_task
naster_task
start_hi_lo task
=lesper_tashk
event_flags_waitl
event_flags_wait2
event_flags_waitld
event_flags set_f1

R R R R N N N N N N N N N N N - -]

timer_tashk oo |
pipe_put_task 13% |
pips get_task Ll |
PegTouchTask L02% |
=lavel o0
=slavel o0
=lavel .oox
=lavel .00%
slaved ooz
lo taslk .00%
hi_task .00%
<] »

C\Users\David Moore\AppData\Roaming\SMX\Data_Jan21_23-17-02.smx

Notice the All Frames button is pressed which shows the average of all samples. Using the Next
Frame / Prev Frame buttons, you can step through each sample.

Overhead is shown on the first line (not pictured here), which indicates the time for scheduling
and other system overhead and profiling overhead. It is calculated as the remaining time, as
explained in the smx User’s Guide. It may differ from the value shown for Ovh on the terminal
display, because the latter is smoothed by the code in smx_ProfileDisplay().

33

Clicking the Table button shows the data in tabular form:

smxAware Graphical Analysis Too

Open| < > |[Task [1SR [1SR Event |Profile Stack | | Detail| + | | 2 |
All Frames | Next Frame > | Percent Time Table

Hame Profile TimeFrame: A1l 1.00 to 4. 00 Seconds

LSR total 12z 12% 12k
ISE total .34x 5% L36%
=nz_Idle J16% 7% .89%
PegTask .1ex 18% Jlax
=nzUSBH-OHCI o0 00 o0
=nzUSEH-Hub o2z 02x .02%
HetTask .ozx 05 .08%
LED_task .00% 00 .00
opCon 0z 02% 01%
n=deno task .00z o0z .00
SFS 1st Test Task 11% 11% 10%
neg_send task L03% 03% .03%
n=g_receive_task 02k 02% (134
presnpter_task L02x 02k L01%
naster_task 00 00 01
start_hi_lo task .00 01% ik
sleeper_task 00 00 k4
event_flags waitl L01% o0 L01%
event_flags wait? 00 00 01
event_flags waitld L01% 01 ik
event_flags set_f1l .02z 02z L02%
timer_task 0o 00 [ilik4
pipe put_task .13z 13 L13%
pipe_get_task 12% 12% 12%
PegTouchTask L02x 02 .03%
=lavel 00 00 0oz
=lavel .o0x 00 o0
=lavel Riliks 00 0n%
=lavel .o0x 00 o0
=laved Riliks 00 0n%
lo_task o0 00 o0
hi_task Riliks 00 0n%

« [m] r o [
C\Users\David Moore\AppData\Roaming\SMX\Data_Jan21_23-17-02.smx

All three samples are shown. The number of profile samples is configured in smx.

34

Stack Usage

This display shows stack usages for all task stacks as a percent of each stack’s size, to help size
stacks and see whether overflow has occurred in any of them. In a multitasking system, stacks
account for a large portion of the system’s RAM requirement, so it is very helpful to have this
display to be able to tune them. Also, stack overflow is a common and difficult problem to detect
without a tool such as this. Note that if stacks are put into SRAM to boost performance, fine-
tuning stack sizes is even more important.

[ﬁ;mxﬁmam Graphical Ana E'ST 0 E
Open | < Task | LSR | ISR Event |Profile[Stack Error | |+ B 2 |
SortAlpha| SonSize Percent Bytes

Hames Stack Usage 114.1% s=shared stack dim bars indicate guestionable HWHs
T=ed- Size 0 103 20 30% 403 503 60 70z a0% a0
Sy=ten Stack 176,512
FPeqgTaszk 3424-16384
pipe_get_task 64,504
=nx_Idle 288,600
=nx_TickISRE
=nx_KeepTinelSR
s=nx_TimeoutLSE
opcon 72-504
PegTouchTask £28-8192
EMAC ISR
HetTask 13281296
ler_timerl
preenpter_task 136504
event_flags =set_f1 64,504
=nxUSEH-Hub 104800

@]

wow

n=g_receive_task 64504

n=g_s=end_task 88504
event_flags_waitl 72,504
event_flags wait?2 72-504
LED_task 64-504
=leeper_task 76504
pipe _put_task 96,504
start_hi_lo_task 128504
hi_task E6-504
tiner taslk 128504
lo task 6504
n=deno_taslk I60-2696
SFS 1=t Test Task 2242496
event_flags_waitd 72,504
=nx_ProfilelSE
=nxUSEH-OHCI 48-89%6
mnaster_task 128504
slavel 48504
slavel 48504
slave 48504
4 | 3 48504

C\Users\David Moore\AppData\Roaming\SMX\Data Jan24 23-11-34.smx

L B T ¥ /T I I

2]

L I /R

e Blue bars indicate stacks that are ok.

e Orange bars indicate stacks that are close to overflow.

e Red bars indicate that overflow has occurred.

e Dim blue bars (not shown) mean that stack usage may not be accurate (actual usage may
be higher) because the stack has not been scanned since the last time the task ran. These
usually appear briefly, if at all, because after smxAware draws the graph, it scans those
stacks via the debug connection and then redraws them. Most stack scanning is done by
the idle task.

35

e White mark in bars indicates the current stack pointer. If it is far from the right end of the
bar, investigate why so much more stack is needed. Possibly it is only needed during
initialization, a large buffer in the stack, or something else that can be changed to reduce
stack size.

e The numbers at the left of each bar indicate the number of bytes used vs. the stack size.
Note that the red bars only go to about 110% regardless of how severe the overflow is, so
consult these numbers to see the actual usage.

e An “s” next to a bar indicates a shared stack (one from the stack pool). Note that all
shared stacks have the same size (e.g. 504 bytes, in the diagram above). Keep in mind
that stack usage is independent of whether there is currently a stack assigned to the task
or not. It reflects the maximum amount of stack used by the task throughout its existence.
A task whose stack is marked “s” may not currently have a stack assigned to it (because
it is stopped, not suspended). If a task is deleted and re-created, the usage cannot be
retained because the TCB is freed and reallocated each time.

We recommend you enable stack scanning in your application, since that is the most reliable
method of determining stack usage (SMX_CFG_STACK_SCAN in xcfg.h and STACK_SCAN
in acfg.h). The alternative is to rely on smx periodically checking the value of the stack pointer,
but this will likely miss times when the stack pointer is at an extreme. If scanning is off, all bars
will be dim, since determining stack usage this way is unreliable. Whether the bar is dim or not
depends on the state of the stk_hwmv flag in the TCB. This flag is set after the stack is scanned.
It is cleared when the task is started or resumed, since it may use more stack as it runs. Stack
scanning is done by smx_StackScan() (XSMX\xsched.c) which is called by the idle task. If many
of the bars are initially dim, the system is heavily loaded and the idle task is not running very
often.

Also enable stack padding (SMX_CFG_STACK_PAD_SIZE in acfg.h) so the system will
continue to run after overflow (if only into the pad), and you can determine the amount of stack
needed for each task after letting the system run a while. Note that stack sizes next to the bars do
not include the pad size.

This display uses the shwm and ssz fields of the TCB. shwm is the “high-water mark,” an
indication of the number of bytes of stack that have been used. ssz is the size of the stack (the
usable area, not including any padding at the top, the Register Save Area (RSA), or loss due to
alignment).

The System Stack usage is also shown. This stack is used by ISRs, LSRs, the scheduler, and
error handling.

smxAware scans any questionable task stacks (those for tasks that have run since the last time
they were scanned by smx) before it displays this stack information, when the Stack button is
pushed in GAT or the Stack tree is expanded in the Text displays. By default this is limited to 3
seconds, in case there are many large stacks to scan. If the time limit is reached, any remaining
stacks that weren’t scanned will show Usage and % with “?” following, as indicated above for
these fields. The time limit can be increased to allow more stack scanning to be done if you are
seeing “?” often, or it can be reduced to shorten the delay to make debugging more responsive,

36

since every run or step with the Stack tree expanded will be slowed down for stack scanning.
(However, when stepping, it is unlikely many other tasks will run, so few if any tasks should
need to be scanned on successive steps.) Edit stackScanTimeoutSeconds in smxAware.ini to
change the time limit, if desired. See the Configuration section for more information.

Error Buffer

For convenience, the Error button allows inspecting the error buffer from the Graphical Analysis
Tool, to avoid needing to switch back to the smxAware text window to see it. It shows all errors
in textual form, in the order in which they occurred. The Error button is disabled if no errors
have occurred. The Reported/Caused By column indicates who encountered or caused the error.
See section Diagnostics for more discussion.

37

Event Buffer (text)

This shows the information contained in the smx Event Buffer, in textual form. Each line
represents one event in the buffer. This is an alternate way to view the data shown by the Event
Timelines bar graph. This window has the ability to filter which events are displayed and save to
a file or copy to the clipboard. It allows searching for any string and stepping next or previous.

Open| Save| Copy|[Task[LSR [ISR [8SR [Emor [Invok [User [a0 %

Find: | Fext | Prev [Match case [v Calor

»6395390 SR return=00000001

.h396448 _ smxz_TaskLockClear()

.6396474 _ smx_TasklockClear() return=TEUE

LR493819 smx_TickISR enter

.6493842 smu_Invoke §02c08f8 pl=0x00000000

L 6493889 smx_TickIZR exit

. 6493969 smx_FKeepTimelIR enter

.6494008 802c08£8 smx_EventQueueZignal () pl=smx_ TicksEQ

.6494065 B02c08F3 smxE_FventQueuelignal () return=TRIE

.6494103 smx_Invoke G0Z2c ok pl=0x0000000Z2

,6494154 smx_Invoke B02c4378 pl=0xz00000000

.b494206 smz_Invoke G002 0bhbe pl=0xz00000000

. 6494245 smx_ HeepTimel3R exit

L h494314 lsr_timerl enter

.6494390 lsr_timerl exit

L 6494494 gmx TimeoutLSRE enter

.B494515 smx_TimeoutL3E exit

.6494621 PegTask {resume

.6494724 PegTask smE_SemTest() pl=PegPresentationlem p2=INF
. 6494757 PegTask smx_Jemlest() return=TEUE

. 64948357 PegTask smx_SemSignal () pl=PegPresentaticonem
.b494892 PegTask smz_Sem3ignal () return=TRIE

.6494932 PegTask smx_EventQueueCount () pl=smx TicksEQ pZ2=2 p3=INF
.6495066 PegTask smi_FEventQueueCount () return=FALSE

. 6495203 smx_Idle {resume>

LB496799 smx_Idle smx_TasklockClear()
.b490826 smx_Idle smx_TasklockClear()
L6497507 smx_Idle smx_TasklockClear()
LR497535 smx_Idle smx_TasklockClear()
LBE93829 smx_TickIEZER enter

,6593852 smx_Invoke 8020818 pl=0xz00000000

.h593898 smz_TickIZRE exit

.6593979 smx HeepTimel3R enter

LRE94021 BOZc0Af8 smxE_FEventQueuelignal () pl=smx_TicksEQ

.6594100 802c08f8 smx_Event(ueuelignal () return=TRIE

LRE94139 smx_Invokes 802z 0hhe pl=0x00000000

.6594178 smx_KeepTimel3IR exit

LBE594239 smx_ TimeoutLSRE enter

LRE94261 0 smx_TimeoutL3SE exit

.B5943688 msg_receive_task {resume >

6594483 msg_receive task smxE_MsgReceive () pl=mail¥chyg? pZ=INF

.6594513 msg_receive_task smx_MsgReceive(] return=msy

.6594604 msg_receive task smxE_MsgSend () pl=msyg pZ=mailXchgB p3=NHILL
.6594681 msg_receive task smxE_MsgSend () return=TRUJE

.65945820 msg_send_task Tasgk <resume>

LB595170 msg_send task SER smiE_EventQueueCount () pl=smx_TicksEQ pZ2=10 p3=INF
.6595245 msg_send task o5R smx_EventlueueCount () return=FALIE

.6595384 msg_receive task Task <{resume>

L6595479 msag receive task S5R smx EventOueueCount i ml=smx TicksEQD nZ2=25 w3=INF

C\Users\David Moore\AppData\Roaming\SMX\Data_lan24_20-51-27.smx

return=TRIE

return=TRUJE

Buttons
Open Open saved trace file.
Save Save text to a file. Saves filtered lines only (i.e. what appears in the window). To
save all lines, ensure all filters are depressed (press the All button).
Copy Copies to clipboard. Same note as Save.

38

Task, etc. Filter the display to show only selected types of events. Toggle.

All Toggles all filters on/off.

Next Finds the next occurrence of the string entered on the Find line.
Prev Finds the previous occurrence of the string entered on the Find line.

You can search for any text displayed. For example, to quickly get to events at a certain time,
you could search for the first digits of the time. For example, searching for 4.66 in the trace
shown will find the first matching entry. Also, for convenience, the view moves as you type.

Resource Usage

This shows a summary of memory usage by main system objects.

Hame Hemory Uszage

Tzed Size 0% 10%

Hemnory
SDAR 8569952
ADAR 2364K/2368E
Heap 367E-2306K
Stack Pool 520
L5SE Quesues n0-100

(371120)

—
o
—

Control Blocks
BCE 330
HCE I0-57
HUCE 1.4
FPCE 346
PICE 1.8
QCE 7ES117
TCE 32-50
THCE 25

e Stack Pool, LSR Queue, and Control Block sizes are indicated in number of units; others
are in bytes.

e Thin red lines indicate high water marks. They indicate the maximum usage at any time
during execution since startup.

Memory Map Overview

This shows an overview of the memory layout of the system, with the ability to zoom in for
increasing detail, much like Google Earth. Areas are colored and labeled, and double-clicking
one will open a hex dump of the data there. Finally, you can visualize the memory layout of your

39

system! Seeing the proximity of one object or region to another may give clues about the cause
of a problem, especially a suspected overflow.

Introduction

The Memory Map Overview window has 2 horizontal memory bands. The top band is static and
displays only the memory in the target that can be discovered by smxAware. It will typically
have one or more gaps between memory areas.

T Memoary Map Cverview . . EE
open | < | | Detail| @ | & | an | \ |

Memory Map Overview

CurrentAddress 0x100013f4

PN e

w
E 5
= — . amacoo
[O~ I woohy
=

Mmoo

ADAR

s e o | |

comtoooa

4‘
=

cwuNooooa
omMoooo e
[SIRTRISTSTSTSNY BEH

! %_

cowoooo— =
oomoocoo

BTacooo—o
cOwoooo Ho
arnbkoooos F—
comoocoo—
oTmmocoo—
osmocoo—
ommocoo—
cooacooa
SISV TSTS,
oroscoo—
omMoscoo
omMbsooos g
MMEacoo—

C:\Users\David Moore\AppData\Roaming\SMX\Data_Mov08_12-57-25.smx

The top memory band has a Magnifier Rectangle that the user can drag, stretch, and shrink to
display an area in the lower band.

Both bands have smx areas colored and the lower band has details appropriate for the zoom
level.

Both bands are sliced horizontally into three bars. The idea of them is to show containment. For
example the top bar shows ADAR, and the middle bar shows Heap and Stack Pool because they
are contained within ADAR (in the release this image was captured from). Similarly, the bottom
bar shows stacks which are contained in the heap and stack pool. The map above was zoomed to
show these details in the middle of the bottom band:

40

-
Memory Map Overview

open| < | > |Dewil] @ | & | aAn | B | 7 |

Memory Map Overview

CurrentAddress 0x10000f34

[Py,
~NaMaoooa
O~Fwoomh

T N T A S0

| ADAR

i e | ser |

Timer Queue SCB in_clib SCB in_sa_print SCB ns_sem_00

1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
E F F F F F
F 1 2 3 4 5
3 0 0 0 0 0

oomoocoo—

SCB ns_sem_01

MomMocoo

|C\Users\David Moore\AppData\Roaming\SMX\Data_Nov08_12-57-25.smx

Notice the event and semaphore control blocks and other objects are named.

41

In the following display, the heap has been expanded to show even the CCBs which precede
each block.

[] Memary Map Overview E‘g‘
open| < | | Dewil| @ | & | an | | |
Memory Map Overview W
CurrentAddress 0x2800dccd
1 12 2
0 038 8
0 00 0
0 00 1
0 13 F
1 EA 5
1 17 4
4 7C I)
SDAR ‘ | ADAR
|—<‘He| Heap | Heapl Heap free _

i
=]
m

ADAR
hicalHcs| Heap Block smx_Nulltask Heap Block smy_Nulltask
Handle Table

QumOoomn
[STelwl=T=T--1%)
cmODoomn |—.
onODoomN —
[why lw e =T=T--TX)

C\Users\David Meore\AppData\Roaming\SMX\Data_MNov08_12-57-25.5mx

Double-clicking any colored region opens a data window to show its contents. See Data Window
below.

Magnifier Rectangle Navigation

Grab anywhere inside the Magnifier Rectangle and slide it to the desired location. If the
Magnifier Rectangle is too narrow to grab inside, you can also grab above or below it. Watch for
the cursor to change to a hand when you are in the proper location to drag.

Zoom by grabbing the left or right side of the Magnifier Rectangle. Watch for the cursor to
change to a two-headed arrow.

Notice in the screenshots above, the Magnifier Rectangle in the top bar has shrunk to a narrow
line due to the high level of zoom.

42

Lower Band Navigation

Pan: Grab and drag left or right anywhere inside the lower band to scroll horizontally.
Zoom: Grab and drag a little above or below the lower band to zoom. Or spin the mouse wheel
or use the + - buttons on the toolbar.

Set a reference line by right clicking anywhere in the upper or lower bands. The reference line
will cause the zoom function to center around it, like in the Event Timelines display. Remove the
reference line by right clicking outside the upper or lower bands.

Toolbar Buttons

Open| < | | Detail| @ | @ | An | | |

Open Open one of the data files that is automatically uploaded from the target and
saved on the host PC each time the target is stopped by the debugger and
smxAware is opened. The left side of the status line at the bottom left of the
window has the path to the current data file.

< Open the previous (by date) data file that was automatically saved.
> Open the next (by date) data file that was automatically saved.
Detail Open the detail window. This window displays details of the region that is under

the cursor, such as name, start/end addresses, and size.

- Zoom out a little with each click.

+ Zoom in a little with each click.

All Top band displays all used and unused RAM. See section All Button below for
more information.

MPU Shows MPU regions (SecureSMX)

Options Change display options.

? Help.

Data Window

Double-clicking any colored region in the upper or lower band opens a Data Window that shows
a memory dump of the bytes in that region. Buttons allow selecting 8, 16, 32, and 64-bit display,
as well as changing endianness. The dump shows the exact range of bytes occupied by the region
(e.g. a single TCB, task stack, heap block, etc.). It can be extended with Up/Down buttons, and
the original region is delimited by lines to make its boundaries clear. The following shows a
small heap block. Notice the title bar indicates the name of the block, which is the same as what
is shown in the colored bar that was clicked. (Data is simulated in this capture.)

43

La N
Heap Block smx_Mulltask L&J

ZB00DCED 03020100 E7E0E584 EBEABOEE BFEEBDEC |................
2B00DC90 93929190 97969594 9BOA9998 9F9ESDOC |.......... ...
2B00DCAD ASAZATIAD A7ADASAL ABAAAODAER AFAEADAC |.........iveunn.
2800pCB0 B3B2B1B0 B7/BOB5B4 BBBABY9BS BFBEBDBC |................
2B00DCCO C3C2C1CO0 C7CHCSCY CBCACOCE CFCECDCC |- ivvvnininnenes
2800DCD0 D3D201D0 D7DGEDSD4 DBDADIDE DFDEDDDC |...v.vvienvnnn.n
2800DCEQ E3EZE1EQ EVEGESE4 EBEAESEE EFEEEDEC |....vvvivinnan..
i |2800DCFO F3F2FLFO F7FGF3F4 FBFAFOF8 FFFEFDFC |................
28000000 03020100 07060504 0B0AO908 OFOEODOC |.....vvvevvann.n
2800DD10 13121110 17161514 1141918 1F1EIDIC |.........ivnn.n.

a8 (16 33 g4 [BigEndan Copy ‘ Close | Up DDWH|

b

Double-clicking another region opens a second window so you can compare two regions. Two
windows are the maximum that can be opened, and attempting to open more will toggle between
them. When you double click to open a region, only that region will be displayed, up to a
maximum of 5000 bytes.

To view data before or after the selected region, click the Up or Down button to read from the
target 1000 more bytes above or below the start or end of the range displayed. Each button press
adds 1000 more bytes. Start and end region delimiters (lines) are placed in the data to show the
boundaries of the original object that was double-clicked, as a visual reference.

Stack blocks are shown in single-column format, by default. The radio buttons at the bottom of
the window can be used to change the format. Stack top and bottom are indicated with separator
lines. For the current task’s stack, “<-sp” marks the current top of stack (based on the CPU SP
register). For a suspended task, “<-tch.sp” marks the saved stack pointer.

All Button

When not enabled (default), the top band only includes stacks, heaps, and smx objects. When
enabled, the top band displays all used and unused RAM. All is only useful to compare the
amount of space stacks and heaps use vs. the total amount of target memory. smxAware can’t get
an accurate accounting of the target’s memory without help from the target. In
XBASE\smxaware.c you will find variables such as sa RAM_S and sa_ RAM _E that contain
starting and ending addresses, typically set from symbols defined in the linker command file.
smxAware will read these values and use them to display different memory areas. In the linker
command file for IAR, it may be necessary to make minor changes:

44

For the old-style .icf file that defines symbols with __ ICFEDIT__in the name, it is necessary to
add the exported keyword if not already there, as shown:

define exported symbol __ ICFEDIT _region_RAM _start = 0x10000000;

For the new-style .icf file, it may be necessary to add symbols like this:

define exported symbol RAM_S = start(RAM);

define exported symbol RAM_E = end(RAM);

define exported symbol SRAM _S = start(SRAM);

define exported symbol SRAM_E = end(SRAM);

where RAM and SRAM are regions defined above in the file.

Note that the RAM symbols defined in smxaware.c are the superset of all RAM symbols that
appear in our .icf files. They are all treated the same by smxAware, and the only reason they

were named this way rather than RAMO to RAM9 (or whatever) is to make it easier to match
them up with the names in the .icf files.

The All button is a minor feature that does not provide much additional information, so you may
prefer to just comment out these lines in smxaware.c.

45

Cortex-M MPU Support

For SecureSMX, an MPU button is enabled that allows showing MPU regions in the top bar of
each band. Different colors indicate regions that are accessible to the current task, system
regions, and overlapping regions:

=5 Memory Map Overview (300,
Open‘ < ‘ ‘Delail| [©F | (O} | | R |
Memory Map Overview

Current Task LED_task

cooRmoo
b U EIRETE

cphooocoom
BROMOOoR, 1

| Heap ”|Heap

!
Il

Heap free

e

Heap Block . Heap Block ”-l H—l”H HH | Top Chunk

UFi
E
B
1
c

0

0

2

5

E

[

1

D

oTMmoooon
O sooor
om-—tooon
ommacoon
wOOrooon
omemooon
wnEOooon
©OROMOOoR

MPU Bar Privileged . Unprivileged Background . Overlap l:‘ Unmapped

CA\Users\David Moore\AppData\Roaming\SMX\Data_Apr18_12-01-55.smx

As the key in the lower left shows, privileged regions in the MPA (regardless of current mode)
will show pink. This alerts you that these regions are only accessible if in privileged mode,
which would be the case in an ISR that interrupts a utask that has privileged regions. Most
regions will show dark green (unprivileged). Unmapped areas (white above) will show light
green if you stop in an ISR that interrupted a utask, reminding you that the ISR has access to
everything, not just what is mapped by the current MPU regions.

Downloading the Event Buffer

Whenever the Graph or Event Buffer items are chosen from the menu after running or stepping
through the application, the full Event Buffer must be read from the target via the debug
connection. This can take awhile on a system with a slow connection. Typically, evaluation
boards come with a low-cost, slower connection device. It is worth buying a JTAG unit such as
IAR I-jet.

46

Application Preparation

smx events are automatically logged in the Event Buffer. However, it is necessary for you to add
macros to your ISRs to log them. Also, you can add user macros to your tasks to put timestamps
and store data (e.g. variable values) in the Event Buffer. It is also necessary to set a few global
variables to indicate to smxAware the nature of the clock used for timestamps in event records.
The following sections explain what you need to do in your application.

Pseudohandles

All of the smx_EVB_LOG macros require that you pass a handle to identify what is being
recorded. ISRs do not have handles, so pseudohandles must be created to identify them. This is
true for user events too. Also, the pseudohandles should be added to the smx Handle Table so
smxAware can print the name. For example:

void* isrl_handle; /* defined at global scope */

void appl_init(void)

isrl_handle = smx_SysPseudoHandleCreate();
smx_HT_ADD(isrl_handle, "isr1l");

}

Pseudohandles are pre-defined for smx_TickISR and smx_LSR_INVOKE() events (in xglob.c
and xht.c).

Event Macros for Use in the Application

Most of the macros in xevb.h are used internally (in the scheduler and elsewhere). Some are
provided for use in your application code. This section documents the macros for your use.
These macros each add an event to the Event Buffer, and it appears as a white mark within the
bar of the Task, LSR, or ISR whose handle is passed.

smx_EVB_LOG_ISR() and smx_EVB_LOG_ISR_RET()
Add these to ISRs that you want to log in the Event Buffer. Put smx_EVB_LOG_ISR at the
beginning of the ISR, right after smx_ISR_ENTER(), and put smx_EVB_LOG_ISR_RET at
the end, right before smx_ISR_EXIT(). Assembly language macros are not provided, but
shell functions are available in xevb.c that can be called from assembly ISRs. If better
performance is required, create assembly versions via the compiler, then optimize them, and
convert them to assembly macros.

smx_EVBLoglnvoke() (smx_EVB_LOG_INVOKE)
smx_EVB_LOG_INVOKE() is not a user macro since it is automatically used in
smx_LSR_INVOKE() macro and smx_LSRInvoke() SSR. However, if you write an
assembly ISR that invokes an LSR, and you want to log the invoke event, call
smx_EVBLoglnvoke() (xevb.c).

47

smx_EVB_LOG_USERN()
This macro can be used anywhere in your code to add a user record to the Event Buffer. It
stores the timestamp and up to n 32-bit values that you pass as parameters. The handle par is
typically a pseudo handle but could be another identifier. See the logging user events section
of UG Event Logging for discussion.

sa_Print() (callssmx_EVB_LOG_USER_PRINT)
sa_Print() is a function that prints a string to the print ring buffer and also calls the macro
smx_EVB_LOG_USER_PRINT() to log this event in the Event Buffer. The macro is only
for use by this function; don’t use it in your code. See section Print Window for examples of
using this function.

Event Timestamps

sb_PtimeGet() is called by each smx_EVB_LOG macro to get the timestamp for each event. It
returns the counter of the timer used to generate the smx tick. See the documentation for this
function and the sb_ticktmr_ variables in the BSP API section of the smxBase User’s Guide for
more information.

Using the tick timer ensures there is at least one event for every rollover of the timer. This is
required for smxAware to display timelines correctly. The smx_EVB macros used by the tick
ISR and/or smx_KeepTimeLSR() ensure there is at least one event per rollover.

smxAware Live

smxAware Live is a version of smxAware for remote monitoring of the application, without a
debugger. It allows viewing the GAT displays, such as timelines and event buffer. It
communicates with the target via TCP/IP, using smxNS. It is designed to be minimally intrusive.
When the Capture button is pressed, the application stops adding new records to the Event
Buffer while a low priority task sends the data to smxAware Live. Then event logging resumes
automatically.

Additional target monitoring features will be added in future releases. Note that smxAware GAT
is included with smx, but smxAware Live is an extra cost option.

Installation

No installation is needed. The smxAware Live executable can be run from the SMX\SA
directory, or you may copy it to another directory. Note that there are big endian (BE) and little
endian (LE) versions. Use the one that matches your target. If you run the wrong one, an error
dialog will display telling you to run the other.

48

Enable the define SMXAWARE_LIVE in the prefix file in the SMX\CFG directory (e.g.
iararm.h) and recompile your application. This enables sections of code in smxaware.c that are
needed by smxAware Live.

Using smxAware Live
When you run smxAware Live, its control panel displays:

10.1.1.100

Fort

4000z

Connect

Mot Connected

Enter the IP address of your target and click Connect. The message below the input box will
change to Connected if it succeeds, and the Capture button will un-dim. Clicking Capture will
cause it to read the event buffer from the target and then immediately open the event timelines
window. The Graph and Event Buffer buttons open the event timelines and text event windows,
respectively. These look the same as smxAware GAT. Each time Capture is clicked, the
windows are updated.

If you get a “Bad address” error when you try to connect, check that SMXAWARE_LIVE is
defined in the master preinclude file (in SMX\CFG, e.g. iararm.h), that this conditional appears
in smxaware.c, and that you rebuilt your application.

If you have other connection problems, click the More button to open a lower pane that shows
diagnostic information. The window can be widened by dragging the corner.

The control panel has a vertical format so it uses minimal space on typical monitors, which have

a wide aspect ratio. Note that it can be moved anywhere on the screen by dragging the title bar.
Most of the title bar is covered with buttons, so grab it under the Min/Max/Close buttons.

49

Diagnostics

Text Display Error Messages

The following are the errors you may see in the text display, with more explanation about each.
Only the first part of the error message is shown.

Apparently your processor is Big/Little Endian but you are using the Little/Big...
You are probably using the wrong endian version of the smxAware DLL. For example, most
ARM processors are little endian, some are big endian, and some allow choosing. Two
versions of the smxAware DLL are provided. You must use the one that matches the
endianness of your target. This is tested if sa_ready has an invalid value. In that case, the
bytes are reversed, and if the value is then valid, this message is displayed.

Could not read sa_ready from target.
Check the link map to ensure it is listed and wasn’t deadstripped by the linker. Assuming it is
there, something else is wrong. Maybe there is something wrong with the debugger or the
connection. If you have this problem we may have to add more diagnostics to the DLL (or
debug it with your app on your hardware) to help determine why it is failing.

sa_ready has an invalid value.
This global has only a few possible values. If it does not have one of those values, then it
probably was corrupted. This may indicate a memory corruption in your application due to a
bad pointer, for example. In any case, if it does not have a valid value, smxAware won’t
work. This global is initialized in smxaware_init() in XBASE\smxaware.c. The code there
makes it clear what values it can have.

smxAware has not been initialized.
This error usually occurs because the target has not run long enough to initialize smxAware.
The function smxaware_init() must be called by the application before the smx objects are
visible in smxAware. This function is called in smx_Go() (or ainit() in older versions), so run
past that point before opening the smxAware window.

smx_Version (and probably other smx globals) could not be read from the target because
the debugger could not locate them.
Be sure the smx kernel is compiled with debug symbolics enabled for xglob.c. Also verify
smx_Version appears in the link map, to ensure it wasn’t deadstripped.

50

GAT Error Messages

When running the standalone smxAwareGAT .exe, if any of the events in the event buffer data
file (data_*.smx) are corrupt then GAT will touch up the bad data point so the graph can be
displayed. The following error message will appear below the window title bar.

InternalError=0x10: Timestamp of an event <= previous event.
InternalError=0x20: Timestamp of an event >= next event.
InternalError=0x40: Someone wrote into an area of the event buffer that should be zero.

Diagnostic Logging

Additional diagnostic information can be enabled by setting “diagnostics = n” in the [CONFIGS]
section of smxaware.ini, where n is one of the following:

1 Log information about stack scanning.
2 Log information about communication via debug connection, such as transfer times.

Data is written to LogFile.txt in the same directory as smxaware.ini. The data is intended for use
by MDI support personnel and is not documented here.

Tips

1. If your smx application doesn’t execute properly, put a breakpoint in function
smx_EMHook() in smxmain.c (or smx_EMY() in xem.c). If smx runs out of resources or has
another error, it will call this function.

2. If stepping is slow when the smxAware dialog is open, either close it or set project Options
to close it automatically by checking “Close window on each run”.

Troubleshooting

Note: The version of smxAware in your release is likely to be newer than the one included in
the IAR EWARM release, so first try replacing that. The latest version is available from the
Enhancements section of our support site (www.smxrtos.com/support).

Problem: smxAware does not load (not in IDE menu) or window does not open.

Cause: If you upgraded to a new version of the compiler suite and installed it to a new
directory, you must copy the smxAware DLL to the new directory.

Solution: Copy the smxAware .dll, .exe, and related files to the new directory and restart the
IDE. The installation directions at the beginning of this manual specify the directory

o1

Problem:

Cause:

Solution:

Problem:

Cause:

Solution:

Problem:

Cause:

Solution:

to copy it to. If this doesn’t fix it, maybe the tools changed so that you need an
updated DLL from Micro Digital.

smxAware window displays message that it can’t read smx_Version or another
specified global variable.

smxAware can’t determine the address of the variable. This is most likely caused by
not compiling xglob.c in the smx kernel or certain files in other SMX modules with
debug symbolics enabled. See section SMX Middleware Module Displays.

Ensure the project is set to compile xglob.c and key middleware files with debug
symbolics enabled.

GAT window does not open and instead a file open dialog appears.

This is likely caused by Windows User Access Control (UAC). It should only be an
issue for older smxAware DLLs, since v4.1.0 was changed to save the .smx files
under the Documents and Settings or Users directory, as newer versions of Windows
require. Older versions of smxAware stored the trace files in the EWARM Plugins
dir, under Program Files, but only Administrators are permitted to write files there. If
you are using smxAware pre-v4.1.0, change EWARM to run as Administrator. Also,
it is probably necessary to take ownership of the plugins directory the DLL is in.

Right click on the EWARM icon or entry in the Start menu, and select Run as...,

select Administrator. In Windows Explorer, right click on the plugins directory where
the DLL resides and select Take Ownership.

SMXE_INV_SCB errors caused by sa_Print() calls.
Semaphores used by smxAware tracing were not initialized. If
SMXE_OUT_OF_QCBS is reported, then maybe the semaphores couldn’t be created.

Otherwise, maybe smxaware_init() hasn’t been called.

If SMXE_OUT_OF_SCBS was reported, increase SMX_CFG_NUM_SEMS in
APP\acfg.h. Ensure smxaware_init() is being called from smx_Go().

52

	Introduction
	Supported Debuggers
	Installation
	Changes to the Application
	IAR EWARM Directions

	Configuration
	Using smxAware
	smxAware Dialog Box
	Kernel Displays
	SMX Middleware Module Displays
	Print Window
	Modal vs Non-Modal Dialog
	Suspended Task Information
	Task-Specific Breakpoints

	Graphical Analysis Tools (GAT)
	Guides
	Event Timelines
	Profile
	Stack Usage
	Error Buffer
	Event Buffer (text)
	Resource Usage
	Memory Map Overview
	Downloading the Event Buffer
	Application Preparation

	smxAware Live
	Installation
	Using smxAware Live

	Diagnostics
	Text Display Error Messages
	GAT Error Messages
	Diagnostic Logging

	Tips
	Troubleshooting

