CSi-Mon™

User’s Guide

Version 5.0
February 1998

CSi-Mon User’s Guide i

Copyright and Trademark Information

Copyright 1998 United States Software Corporation. All rights
reserved. No part of this publication may be reproduced, translated
into another language, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of United
States Software Corporation.

CSi-Mon is a trademark of United States Software Corporation.
*QOther brands and names are marked with an asterisk and are the
property of their respective owners.

United States Software Corporation makes no warranty of any kind
with regard to this material, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose.
United States Software Corporation assumes no responsibility for any
errors that may appear in this document. United States Software
Corporation makes no commitment to update or to keep current the
information contained in this document.

Concurrent Sciences, Inc. is a whole subsidiary of United States
Software Corporation.

United States Software Corporation
Concurrent Sciences Division
205 East 5th Street, Suite 6
Moscow, ID 83843
Telephone: 208.882.0445
Fax: 208.882.9774
E-Mail: tech@debugger.com

ii CSi-Mon User’s Guide

Quick Contents

Quick Contents

1. INSTALLATION Lo 1-1

S|

2. PREPARATION ..ot 2-1

3. DEMONSTRATION ..ot 3-1

4. CONFIGURATIONootiiiiiiiiiiiee et 4-1

5. COMBINING THE MONITOR AND YOUR APPLICATION ... 5-1

6. TROUBLESHOOTINGottiiiiiiiiiiiiieiceeieeeeee e 6-1

APPENDIX A: CSI-MON COMMANDSccoiiiiiiiiiiiiiiiiiiieiiii, A-1
APPENDIX B: REGISTER TABLEScooviiiiiiieeeeeeees B-1
APPENDIX C: BREAKPOINT HANDLE TABLES..................... C-1

ofw[>[ofa]>]o

CSi-Mon User’s Guide iii

Documentation Conventions

Documentation Conventions

Computer output and code examples:Courier , usually in a
separate paragraph.

Function names and command namesBold italic, functions are
followed by parentheses, asnmain() function.

Variables: Courier 11 italic fit_busy).
File names Times bold (the filaisrclk.asm), in lower case.
Key names Initial capital, in angle brackets, as in press <Enter>.

Menu names and selections, dialog box names, screen titles,
window titles: Times bold, as ikile menu

Notes Indicate important information.
Cautions. Indicate potential damage to hardware or data.
Warnings: Indicate potential injury to users.

Revision History

RevisionNumber History Date
2.0 Second Edition June 1996

iv CSi-Mon User’s Guide

Quick Contents

Quick Contents

APPENDIX D: CSI-BOOT ERROR MESSAGES...........cccvvvvinnne D-1 G

CSi-Mon User’s Guide v

Vi

CSi-Mon User’s Guide

Contents

Contents
PREFACEo e Xl
ADOUL thiS MaANUAIceviiiiiii e Xlii
Technical SUPPOIT ... e XV
How to contact Technical SUpport:...........ccoovviiiiiiciiiiiie e XVi
GETTING STARTED ...uecceeeee et 1-1
L. INSTALLATION L.ttt e e aaa e 1-1
INSLAlliNG CSI-MON ..o 1-2
CSI-MON SOUICE FilES ...cveiieiiieeee e 1-2
2. PREPARATION ..ottt e e 2-1
TOOIS REQUITEA ... 2-2
Why Is a Locator Needed?oooiiiiiiiiiiiiiiiii e 2-2
Hardware RESOUICESoivviiiiiiiieee ettt 2-3
ROM/RAM RESOUICESceveiiiiiiiiieeii et e e e e e e e aaae s 2-3
ProCesSOr RESOUICESciiniiiiei et 2-3
Communication RESOUICESccccuuiieiiiieeeiieeeeiie e 2-4
3. DEMONSTRATION ...oottiiieiiieie et 3-1
Loading/Installing @& MONITOYcooiiiiiieiiieiiieeeeeei e 3-2
PC Absolutely Located MONItOrSccooeveeeeeiiiiiiiiieiiiiiiiiinn 3-2
DOS EXEDBGouuiiiieeiteee ettt e e 3-5
Embedded Targets ... 3-5
Testing the MONITOTuuiiiiie e 3-6
Rebuilding the MONItOrcooviiiiiiiiii e 3-10

CSi-Mon User’s Guide Vii

Contents

4., CONFIGURATION ..ottt 4-1
Before YOU STartoooveiiiiiiiiiiii e 4-2
Configuring @ MONIEOTooiiiieeeeeeei e 4-3

Target HardWareuueeiiiiiieeeeeeeeeeeeeeeeet e 4-4
Configuring Monitor EXtENSIONScoiiiiiiieeeeieiieeeeeeiiiiii e 4-5
Communication Configurationccooeviiiiiiiiiiiiiii e 4-6

SeleCt A UART ..o 4-6

Polling CommuUuNICAtiONcovviiiiiiiiiiiii e 4-6

Interrupt-Driven Communicationeuuvviiiiiiiiinneeeeeeeeeen, 4-7

Configuring Interrupt Controllers for National and Intel UARTS.. 4-9

Specify MAPI FUNCHONSueiiiiiiiiiieeeeeeceeee e 4-10

Selecting TOOIS......cooiiiiiee s 4-11

Locate the Monitor in MEMOIYuueeiiiiiieeeeeeeeeeeeeeeeiiiienens 4-12

USER REFERENCEcci it 5-1

5. COMBINING THE MONITOR AND YOUR APPLICATION 5-1
When To Make CSi-Mon a Library and When Not To 5-2
Combining Your Application with the CSi-Mon Library 5-3
Merging the Source of Your Application and CSi-Mon 5-5
CommMON PIAIIS ... 5-13

6. TROUBLESHOOTING ..ottt 6-1
Incorrect 1/0 Addresses for Communication Device 6-2
Incompatible Baud Ratescoooiiiiiiiiiiiiiiiei e 6-3
Code Configured for Wrong Targetuuvueiiiiiiiieeeeeeeeeeeeeeeiinns 6-3
Monitor Not Compiled COrrectlycccoevveeiiiiiiiiiiiiin 6-4
Monitor Not Properly Located ... 6-4

APPENDIX A: CSI-MON COMMANDSccooiiiiiiiieieeiieeeeeeeeiiiies A-1
Monitor CommaNd SYNEAXcoeeeeeiiiiiiiiiiiiiiiiiee e eeeeeeeeeeees A-1

viii CSi-Mon User’s Guide

Contents

Command Syntax Elements ... A-1
MONItOr COMMANTS ... e e eeeeenaeee A-2
Command TabIes ... A-12

APPENDIX B: REGISTER TABLEScooviiiiiiiiiieeeeeeeeeeeeeeeeeiee B-1
Stack Register Masksuuuuviiiiiiiiiieeeeeeeeei e B-2
APPENDIX C: BREAKPOINT HANDLE TABLES..................... C-1
APPENDIX D: CSI-BOOT ERROR MESSAGES..........ccccevvviineee D-1
INDEX ..o e e e e e e e e e e e et at e e e e e e aaaaaaaas -1

CSi-Mon User’s Guide ix

CSi-Mon User’s Guide

Figures

Figures

4. CONFIGURATIONciiiiieeeeeei ettt e e e e e e e e 4-1
Figure 4-1: Target hardware optionsccccoeveevveiiiiiieeeeeiiie e, 4-4
Figure 4-2: Monitor extension OPLioNScceevvveviviiiiiiiineeee e 4-4
Figure 4-3: Communications OPtiONSuceiieeeeeeeeeeeeieeeeeeiiiiineens 4-7

Figure 4-4:Communication system specifications, 16450 UART .. 4-8

Tables

2. PREPARATION .t e e e e 2-1
Table 2-1: Processors supported by CSi-Mon.............uuvvveiiinnnnnn. 2-3
Table 2-2: Devices supported by CSi-Monooovvviiiiiiinnennn. 2-5

APPENDIX A: CSI-MON COMMANDSccoiiiiiiiiiiccieecceeee A-1
Table A-1: Breakpoint tyPesSoooiiiiiiiiiiiiiiiiiiiie e A-5
Table A-2: Execution commandscccoooeeeeeieiiieeeieeiiiiiiiinnnn A-12
Table A-3: Memory COMmMaNdScoooeeeeeeeeiiiiieeeeeeiiiii e A-12
Table A-4: Register commandsccooeeevveiiiiiiieeeceiiice e, A-13
Table A-5: Miscellaneous commandsueeviiiiiinnieeeeeeennn. A-13

APPENDIX B: REGISTER TABLES ..o, B-1
Table B-1: General purpose and tasking registers..........cc.cccuu..... B-1
Table B-2: Protection controls and debug registers B-2
Table B-3: Coprocessor stack registerscocovvveeeeeeeiiiieiieeiiinnnnns B-3
Table B-4: Miscellaneous coprocessor registerscceeeeeeeeeee. B-4
Table B-5: Configuration table entriesccooooevvviiiiieeeeviiinnnnn. B-4

CSi-Mon User’s Guide Xi

Tables

APPENDIX C: BREAKPOINT HANDLE TABLES.............ovve.. C-1

Table C-1: breakpoint handles

Xi

CSi-Mon User’s Guide

Preface

Thank you for purchasing CSi-Mon™ monitor for Soft-Scope®
debugger. CSi-Mon is a monitor that can be embedded in a remote
target for use with Soft-Scope to aid in debugging an embedded
application.

About this Manual

This manual provides a reference to the features and functions of
CSi-Mon for Soft-Scope. We have organized the manual into three
sections with several chapters in each section. Prékace(this

section) contains information about the manuaétting Started

contains everything necessary to get a monitor running on a target.
TheUser Referenceontains advanced topics not covereeiting

Started To make the best use of this manual, read the chapters in
Getting Startedn their entirety. Thé&Jser Referenceontains a

collage of stand alone chapters that can be read independently of each
other. A brief description of the chapters in each section follows:

Preface

About this Manuaprovides a road map to this manual, describing
major sections.

Technical Suppordescribes how to reach Technical Support and
when to contact them.

CSi-Mon User’s Guide Xiii

About this Manual

Getting Started
Installationexplains how to install CSi-Mon.

Preparationlists the tools you need to build the monitor and lists the
resources the monitor will use.

Demonstratiorprovides an introductory guide to building, installing,
and testing a monitor on a target.

Configurationprovides step-by-step instructions on configuring a new
monitor.

User Reference

Combining the Monitor and your Applicati@xplains two methods
for merging the monitor and your application.

Troubleshootindists common problems and their solutions; things to
try before contacting Technical Support.

Appendices

CSi-Mon Commanddetails the format and purpose of all the
commands between Soft-Scope and CSi-Mon.

Register Tabledescribes each register and how CSi-Mon
communicates it to Soft-Scope.

Breakpoint Handle Tabledefines how breakpoints are stored and
communicated.

CSi-Boot Error Messagdists and defines CSi-Boot error messages.

Xiv CSi-Mon User’s Guide

Technical Support

Technical Support

Concurrent Sciences, Inc. provides technical support to its customers
via phone, FAX, E-mail, and the World Wide Web. Before you contact
us, ensure that you have done the following:

* Be sure the information isn’t already covered in the manual or in
thereadme.docon the installation disks.

» If the problem is related to source changes, be ready to provide an
example that reproduces the problem.

When you do contact us, be sure to provide:
* Your name
e The name of your company

* A method to contact you after we have researched the problem
(phone number, FAX number, or E-mail address)

* Version of the monitor (found at the top of CSICFG and on the
installation diskettes)

» Serial number for the monitor (found on the installation diskettes)
* Processor type
* Tool chain(s) used to build the monitor with version of each tool

» Thecsicfg.cfgfile that was used to build the monitor should the
technician request it

* Adescription of the problem and your efforts to solve it

CSi-Mon User’s Guide XV

Technical Support

How to contact Technical Support:

Phone: 208.882.0445 (between 9 AM and 5 PM Pacific Time)
FAX: 208.882.9774

E-mail: tech@debugger.com

World Wide Web: http://www.debugger.com

XVi CSi-Mon User’s Guide

Getting Started

©
D
o
-
©
e
)
(@)
=
=
()]
O

CSi-Mon User’s Guide

CSi-Mon User’s Guide

1. Installation

Before you can begin using CSi-Mon™, you need to install the
software. We suggest having at least 3 megabytes of disk space
available on the hard disk: 2 megabytes for the installation and 1

megabyte for building the new monitor.

Chapter Contents

INSEAlliNG CSI-MON ..o 1-2
CSIi-MON SOUICE FIlES ..oeiieeii e 1-2

CSi-Mon User’s Guide 1-1

Installing CSi-Mon Installation

Installing CSi-Mon

CSi-Mon is installed at the DOS prompt. You will create a directory
on the hard disk for CSi-Mon. In this example, we will create a
directory called CSIMON on the C: partition.

1

At the DOS prompt from the root of your C: partition, type
MKDIR CSIMON and press <Enter>.

Move to the CSIMON directory. At the DOS prompt type CD
CSIMON and press <Enter>.

Insert the installation disk in the floppy disk drive from which you
will install CSi-Mon and type A:INSTALL A: and press <Enter>.

Insert additional diskettes when prompted until the installation is
completed.

Refer to the fileontents.docin the CSIMON directory to ensure
that all files are present.

CSi-Mon Source Files

Except for some start-up code written in assembly language, CSi-Mon
is written in C. The assembly code is found in six files.

The monitor source is found in the SRC subdirectory. The following
is a list of the source files and a description of each:

break.c—Breakpoint management code

common.asm—Common (to protected and real modes) low-level
monitor support code

csicfg.h—(Generated by the CSi-Config configuration utility)
Contains configuration information needed by C files

1-2

CSi-Mon User’s Guide

Installation CSi-Mon Source Files

csicfg.inc—(Generated by the CSi-Config configuration utility)
Contains configuration information needed by assembly files

csiloc.inc—Macros for CSi-Locate and CSi-Link™ support
csimon.h—Monitor definitions used by all C files 1

csimon.inc—Monitor definitions used by all assembly files
environ.h—Special directives for various compilers
extend.c—User extensions to monitor management code

extend.h—Prototypes of extension management; also location for
user defined extensions of the monitor

main.c—Command processor and dispatch code
mapi.c—MAPI management code
mapi.h—Provide macro support for MAPI to the user

memory.c—Memory management (read, write, move, linear to
logical translation, logical to linear translation, etc.)

ns486sxf.asm-NS486SXF processor startup code
pic.c—PIC controller management software

pmonitor.asm—~Protected-mode specific low-level monitor support
code

promice.c—Monitor communications management using Grammer
Engine’s PromICE

pstart.asm—General protected-mode processor startup code
register.c—Register management code

rmonitor.asm—Real-mode specific low-level monitor support code
rstart.asm—General real-mode processor startup code

siuart.c—Monitor communications management using various
UARTs

CSi-Mon User’s Guide 1-3

CSi-Mon Source Files Installation

xlate.c—Translation of communications content to something usable
(ASCII decimal to binary decimal and vice versa)

1-4 CSi-Mon User’s Guide

2. Preparation

The purpose of this chapter is to describe what resources are required.
The first section describes what tools are needed to build the monitor
along with what tool suites are supported. A common question asked is
“Why do | need a locator?” Because of this, the second section is
dedicated to this topic. The last section details the hardware resources the
monitor requires and works with.

Chapter Contents

TOOIS REQUITEA ... 2-2

Why Is a Locator Needed? ..o 2-2

Hardware RESOUICEScivueiiiiiiiieeee ettt e et 2-3
ROM/RAM RESOUICEScevviiiiiiiieeei e e ee e e e e e aaae s 2-3
ProCeSSOr RESOUICESuivniiiiiiiie et 2-3
CommuNICAtiON RESOUICESuuciviiiiiieiieeeeee e e e e e 2-4

CSi-Mon User’s Guide 2-1

Tools Required Preparation

Tools Required

As with any application, tools are required to build it. The monitor is
written in MASM compliant assembly and in ANSI-C. Both
assembly and C source make heavy use of macros and conditional
statements to allow the most flexibility both for tools and for
portability. The following tool suites are supported (s=gime.doc
found on the installation diskettes for the exact versions tested):

Assemblers: Microsoft's MASM/ML*, Borland’s
TASM*, Pharlap’s 386|ASM*

Compiler suites: Microsoft Visual C*, Borland C*, Watcom
C*, MetaWare’s HighC*

Linkers/Locators: Concurrent Sciences’ CSi-Locate,
Concurrent Sciences’ CSi-Link™, Pharlap’s
LinkLoc*

Librarians: Microsoft’s LIB*, Borland’s TLIB?,

Pharlap’s 386|LIB*

Why Is a Locator Needed?

When working in an embedded environment the developer generally
needs to bootstrap the processor and related hardware into a known
state. There isn’'t necessarily any loader or operating system that has
already done this. Linkers, on the hand, combine the objects of an
application into a relocatable format with the assumption there is an
operating system that will place it where it wants it. The locator does
the final job that an operating system would normally do by resolving
the finished application into a physical location where it will always
load.

The monitor is adept to this type of environment. It contains the
startup code necessary to initialize the hardware as well as code
necessary to move ROM data into RAM space. Because of this, it is
designed to be burned into PROMs. However, to burn a PROM, a

2-2 CSi-Mon User’s Guide

Preparation Hardware Resources

.hexfile needs to be generated, which is an absolutely located piece
of code that is accomplished by the locator.

Hardware Resources

ROM/RAM Resources

The monitor requires roughly 8K of RAM and 20K of ROM. These
values will vary widely depending upon what tools you use and what
memory model is selected.

Processor Resources

The monitor will work with just about any x86 processor. The
following is a list of processors supported as of this writing. The
readme.docon the installation diskettes should contain any newly
included processors not listed below.

Table 2-1: Processors supported by CSi-Mon™

Intel Parts:

8086 80286 |80376 80386DX | 80486DX | Pentium

8088 80386SX | 80486SX

80188 80C188 | 80188EA | 80188EB | 80188EC | 80188XL
80186 80C186 | 80186EA | 80186EB | 80186EC | 80186XL
AMD Parts:

188EM 188EX | 188ER

186EM 186ES | 186ER

CSi-Mon User’s Guide 2-3

Hardware Resources Preparation
Table 2-1: Continued
National Semiconductor Part:
NS486SXF
NEC Parts:
V20 V30 V40 V50

The standard 80x87 coprocessors are also supported.

The monitor also requires resources contained within the processor
(varies depending on the above chosen processor). These include
GDT space, IDT space, task register, IRQs, and debug registers. The
number of GDT and IDT slots that the monitor uses varies with
different configurations. You should reserve GDT[0..63] and
IDT[0..39] to ensure compatibility with future monitor upgrades.

Communication Resources

Thereadme.docwill contain any new means of communication
support more recent than this writing.

Serial Communications

In a typical installation, CSi-Mon communicates with Soft-Scope via
a serial port on the target board. This communication is usually done
with a UART, baud rate generator, and a Programmable Interrupt
Controller (PIC). All of these are configurable. The following is a

list of devices supported:

2-4

CSi-Mon User’s Guide

Preparation Hardware Resources
Table 2-2: Devices supported by CSi-Mon
UARTS:
National Parts: 8250 16450 16550
Intel Parts: 8251 8274
Baud Rate Generator:
Intel Part: 8254
PIC Controller:
Intel Part: 8259
NOTE: Those processors listed previously that have serial

capabilities integrated within them are also supported

(e.g., 186EB).

ROM Emulator

CSi-Mon can also communicate with Soft-Scope via a ROM socket
using the PromICE ROM emulator from Grammar Engine. This is

useful if your target board does not have a serial port. When building

the monitor, use thpromice.c module in place ofiuart.c. See the

promice.doclocated in the SRC directory for instructions on building

a monitor for the PromICE.

CSi-Mon User’s Guide

2-6

CSi-Mon User’s Guide

3. Demonstration

The purpose of this chapter is to demonstrate how to set up and run a
monitor. The purpose is twofold. First, we want you to have the tool
to perform a “sanity check.” That is, we want to provide you with a
quick method to discover that our product works. The second reas

is to present a methodology for building, testing, and loading the
monitor using working examples.

This chapter consists of three sectiohsading/Installing a Monitor
Testing the MonitgrandRebuilding the Monitar The first section

will guide you through the process of loading or installing a stock
monitor onto various targets. Once you have the monitor installed,
the second section will give you tips, hints, and suggestions on how to
test the monitor to determine if it is working properly. The third
section will list step-by-step instructions on rebuilding the stock
monitor with your tools.

Chapter Contents

Loading/Installing @& MONITOXcooiiiiiiiiiieiiieeeeeei e 3-2
PC Absolutely Located MONItOrSccooevveeeiiiiiiieieeiiiiiiiiinnn 3-2
DOS EXEDBG ...ccvviiiiiiiieieeee ettt e e e e e e e e e e e 3-5
Embedded Targets ... 3-5

Testing the MONITOTuuiiiiee e 3-6

Rebuilding the MONItOrcooviiiiiiiiii e 3-10

CSi-Mon User’s Guide 3-1

Loading/Installing a Monitor Demonstration

Loading/Installing a Monitor

You will find several stock monitors in the standard directory on the
installation diskettes. Please readrd@dme.docfound in this
directory, as it contains information on each monitor included. This
information details which targets the monitors were built for in
addition to important configuration information (e.g., communication
parameters). Theadme.docalso contains information about
monitors included on the diskettes but not listed in the manual.

Because monitors are capable of working on a variety of targets, we
recommend that you try installing a monitor on a standard PC target
before moving onto your own hardware. The following sections
demonstrate both PC absolutely located monitors, the DOS EXEDBG
monitor, and embedded monitors.

PC Absolutely Located Monitors

The easiest and quickest way to see a monitor work is to install one
on a PC. The hardware is generally standard and therefore known,
unlike embedded targets which vary. However, once loaded the
monitor does control the PC, thus there are some restrictions to
consider before loading and executing the monitor.

First, be sure that your PC is strictly in DOS mode. If it is not, the
monitor will conflict with a multitasking operating system. You
cannot install the monitor from within a DOS window (such as from
Microsoft Windows* or OS/2*).

Second, for best results boot your machine without any device drivers
or TSRs (they’ll be useless after the monitor is loaded anyway). This
is particularly true of EMM386, which interferes with serial
communications.

Third, test your serial communications between the PC you will use
for the monitor as a target and the PC that will act as the host. You
will probably be using a NULL modem cable to connect the two. Be
certain that you note which serial port of the target machine you are

3-2 CSi-Mon User’s Guide

Demonstration Loading/Installing a Monitor

using! Once you are sure that the two machines are capable of
communicating, select the stock monitor appropriate for your needs.

We have included four monitors (two protected-mode and two real-
mode) on the installation diskettes. (Seereadme.docfor

information on each monitor and for a listing of monitors included on
the diskettes but not listed in the manual.) All of the monitors are
configured identically except for the processor mode and the serial
port used. All monitors are configured to communicate at 9600bps.
The following is a description of the PC-based monitors:

r86coml.hex A real-mode, absolutely located monitor with no
NPX support, configured for COM1. This monitor 3
will run on most processors.

r86com2.hex A real-mode, absolutely located monitor with no
NPX support, configured for COM2. This monitor
will run on most processors.

p386coml.hex A protected-mode, absolutely located 386 monitor
with no NPX support, configured for COM1. This
monitor will run on any processor greater than the
386.

p386com2.hex A protected-mode, absolutely located 386 monitor
with no NPX support, configured for COM2. This
monitor will run on any processor greater than the
386.

Once you have decided which monitor to load, use the utility CSi-
Boot (located in the UTIL directory) to load the monitor. To do so,
enter the following at the DOS prompt:

csiboot r86com1.hex
(Replaca86coml.hexwith the monitor you have chosen to use.)

CSi-Mon User’s Guide 3-3

Loading/Installing a Monitor Demonstration

Something similar to the following should appear on the target's
screen:

CSi-Boot V3.0 Concurrent Sciences, inc. (C) 1990-1994

Load File name: r86com1.hex

Start location: 747c:0200

Hex file image: 00070000P to 000749c4P, 18830 bytes used, 0% unused
Loader address: 00039ccOP to 00049e20P

Scratch memory: 00010000P to 0001ffffP, 64K at 1000:0000

Booting...

Each line is described below:
Load file name is the name of the monitloexfile.

Start location is the memory address where the monitor begins
execution.

HEX file image defines the area of memory where the monitor is
located, the number of bytes it uses, and how much
memory is available for other uses.

Loader address defines the memory where the CSi-Boot utility is
located.

Scratch memory defines temporary memory where the monitor is
placed while it configures the target before booting.
This memory is available after the boot is complete.

When the load program prints the message “Booting...” on the screen,
the monitor is ready to use with Soft-Scope. It has taken over control
of the processor and is unable to write any further messages to the
screen indicating that the boot process is complete. To reboot CSi-
Mon, restart the target PC and repeat the process described above.

NOTE: CSi-Boot cannot load a CSi-Mon monitor into a
memory location above 1MB nor can it load monitors
that exceed 64K.

3-4 CSi-Mon User’s Guide

Demonstration Loading/Installing a Monitor

If monitor loading/installation was successful, you may proceed to the
next sectiornresting the Monitar

DOS EXEDBG

exedbg.exas a DOS-loadableexeapplication. It will only debug
real-mode DOS applications.

First, your PC must be in DOS mode. Do not install the monitor from
within a DOS window (such as from Microsoft Windows* or OS/2%*),

as we have found this type of installation to act erratically and
unpredictably with the operating system. 3

Second, for best results, boot your machine without device drivers o
TSRs. This is particularly true of EMM386, which interferes with
serial communications.

Third, test your serial communications between the PC you will use
for the monitor as a target and the PC that will act as the host. You
will probably be using a NULL modem cable to connect the two.
Know which serial port of the target machine you are using! Once
you are certain the two machines can communicate, select the stock
DOS EXEDBG monitor (currently, only one is provided; see the
readme.docto note the serial port configuration).

Runexedbg.exet the DOS prompt. Next, run the application you
wish to debug (seBebugging .exe Executable Filas described in
the Soft-Scope User’s Guide).

NOTE: You must run the application before testing the
monitor. The application will activate the monitor.

Embedded Targets

Because there are a variety of vendors and evaluation boards
available, we have included several monitors. Seestidme.doc
for information on each monitor and for a listing of monitors included

CSi-Mon User’s Guide 3-5

Testing the Monitor Demonstration

on the diskettes but not listed in the manual. Review the
documentation from your vendor on how to place the monitor on the
evaluation board.

Testing the Monitor

The bootstrap process of setting up and running a monitor can be
stressful. This section will give you a method for quickly evaluating
whether the monitor is functioning properly. Initially, use the same
terminal program on your host that you used to ensure the
connectivity of the PC, as described in previous sections. This
information also applies for embedded monitors. Again, make sure
the baud rates are correct. If the terminal program is up when the
monitor first starts, you should see the following (or similar) sign-on
string:

CSIMON-386DXP - Loaded PC/AT V5.01 (386DX PROTECTED MODE)
>

If you don't see this string, press the <Enter> key to see if the prompt
(">’) appears. Occasionally the sign-on string may get discarded
depending on the board you are using. (If you are using the TSR
version, nothing will appear until after the application is executed.
Thess_brkfunction embedded in the application will trigger

CSi-Mon. Seegour Soft-Scope manual for more information.).

To troubleshoot, look for the following items:

* If no sign-on string appears and no prompt (‘>") can be initiated
with repeated presses of the <Enter> key, check the hardware
(cabling, ports, etc.) and configuration (proper baud rate, port,
IRQ, etc.). You may also need to ensure that the GDT table and
pointer are located correctly and that the Igdt instruction has the
appropriate segment override.

3-6 CSi-Mon User’s Guide

Demonstration Testing the Monitor

» If the sign-on string appears but there is no apparent response
when the <Enter> key is pressed, check the hardware (cabling,
ports, etc.).

* If the prompt (*>) appears but no sign-on string is present, this
may still be acceptable.

Once you have a prompt that can be initiated with the <Enter> key,
the next step is to check the functionality of the monitor. Although
the monitor is communicating, it is possible that other problems can
occur due to misconfiguration.

NOTE: SeeCSi-Mon Commands the Appendix to learn the
commands to further test the monitor. 3

At the prompt type a/ and press the <Enter> key as follows:

>V
CSIMON-386DXP - Loaded PC/AT V5.01 (386DX PROTECTED MODE)
>

You should see the same string as the initial sign-on string as when
the monitor first came up. If you don’t see the string, trouble shoot a
second time by looking for the following:

» If the prompt appears but the sign-on string is either nonexistent
or useless data, check that the monitor RAM memory is located in
actual RAM space (look at the memory map in your locator’s map
file).

Try the command V'’ and press the <Enter> key.

>V
80010110
>

This command tells SoftScope the parameters of the monitor. The
leading ‘8’ tells Soft-Scope that the monitor is interrupt driven. If you
are using a non-interrupt driven monitor, you may only see a ‘10110’
The importance of this command will become clear later when you
actually run Soft-Scope.

CSi-Mon User’s Guide 3-7

Testing the Monitor Demonstration

» If a <02> returns or the monitor immediately hangs, you may have
a problem with improperly setup segments (CS != DS) for flat
model monitors. Some compilers will embed the jump table
within the code segment. When the monitor attempts to evaluate
the switch statement (within the monitor code) for the command
processor, useless data is read and an error is returned, thus the
monitor assumes that any command entered is incorrect.

Next, try the series of extension commands: att&OgE4. A
discussion will follow each command.

>EQ
Code=70000,75E70 Data=75E80,76CF0 Stack=75E90,76290,2C8

The first extensionEQ’ simply displays where the code, data, and

stack start and stop are located in memory. This command is used to
confirm that the command processor is working properly. It also
further proves that the monitor is properly located (you may want to
confirm this is correct by checking it against the map file created by
your locator).

>El

CSIMON extension number 1.
>E2

CSIMON extension 2 line 1.
CSIMON extension 2 line 2.

These commands are the first to test whether RAM initialization
worked properly. The version string is located in the code segment,
not the data segment, and therefore does not need to be moved during
the RAM initialization process. The output of ti0* command is
accomplished by statically sending a single character at a time (you
may want to refer textend.g. However, the above strings are those
stored in the data segment (possibly BSS depending on your

compiler) and as such need to be copied from ROM to RAM before
being used.

* If you receive useless data or no string at all and if the monitor is
ROM based, you may have a problem with the RAM initialization

3-8 CSi-Mon User’s Guide

Demonstration Testing the Monitor

(the process of copying the initialization records from ROM into
the RAM space upon startup).

>E3
0,0,0,0

Displays the configuration values.

>E4
<02>

This display is actually the expected resultee is not a valid 3
command in a stock monitor.

The next group of commands is used to test memory reading and
writing coupled with manipulation of the register scratch area. Since
we aren’t switching to a live application, the registers are never
updated. However, since the scratch area is in RAM, using these
commands will test whether the linear to logical address translations
are occurring correctly.

>r3c

0,0,0,0
>R3c,1,2,3,4
>r3c

1,2,3,4

>

The first commandr3c’, attempts to read some registers (see
CSi-Mon CommandandRegister Tables the Appendix). Which
registers the monitor attempts to read does not matter. The second
command, R3c,1,2,3,4 attempts to write values to those registers.
The third command attempts to read the values from the registers.

» If any errors occur during these operations and you are using a
protected-mode monitor, ensure that L2L_SRC and L2L_DST
selectors are located in the RAM area. Because the monitor is
designed to be flexibly built as segmented or not, it continues to

CSi-Mon User’s Guide 3-9

Rebuilding the Monitor Demonstration

use selectors for translation whether the CODE/DATA is flat or
not.

The next important command to try before starting Soft-Scope is the
‘Z command.

>Z
>

The ‘Z command resets the monitor as if it had just come up from a
power up. Occasionally a few bytes of useless data appear before the
prompt—this is acceptable. The troubleshooting comments discussed
earlier in this section apply here as well; be aware that initialization
occurs in two locations in the code.

Lastly, repeat your attempt of the8¢’ command to determine that
memory has been reinitialized (all of the register values should be
zero).

Now you can close your terminal program and bring up Soft-Scope.
Download one of the sample applications provided and do some
sample debugging to further ensure that the monitor is working

properly.

Rebuilding the Monitor

Now that you have set up and run a stock monitor, rebuild it using
your own tools. The purpose of this exercise is to ensure that your
tools are configured properly and compatible with the monitor. Once
you have rebuilt the stock monitor, be assured that porting the monitor
to your target board will go smoothly. To reduce the number of
possible errors, we recommend that you initially only change the
configuration of the tools.

3-10 CSi-Mon User’s Guide

Demonstration Rebuilding the Monitor

For each of the stock monitors provided, there is a correspordiing
file. This file contains the configuration information that was used by
the CSi-Config monitor configuration utility to build each monitor.
Copy the appropriatefg file to the location of the monitor source.

Startup CSi-Config using the configuration file of the stock monitor
you just tested on your target as follows:

CSICFG P386COM1.CFG

Using the <PgDn> key, scroll down to the section marked in red,

Specify the compiler to build CSi-Mokrom there, use the <Tab>

key (or <Shift+Tab>) to move the cursor to the desired compiler

option. Once the cursor is located where you want, press the spact 3
to select the option.

Repeat the process for your assembler in the following section,
Specify the assembler to build CSi-Morgrked in red.

Once you have selected your assembler, repeat the process to select a
memory model in the next sectiddpecify the memory model for
CSi-Mon Depending on your compiler, small or flat is really all that

iS necessary.

Next, move your cursor to theath to library files entry field.
Delete the stock path and replace it with the path to the location of
your compiler’s libraries.

Lastly, repeat the process once more to select your linker/locator in
the last sectior§pecify the link/locate tools to build CSi-Mon

Once you have completed these steps, press the <Esc> key. A box
will appear giving you three options. Pre&sto generate the new
files given the options you have selected. This will create four files:
csicfg.ing csicfg.h build.bat, andmakefile. Both thebuild.bat and
makefile assume your tools are in your path. Tiekefile should

work with any make utility as it specifically avoids a particular
vendor’s features.

If your tools are not in your path, you may need to edit either
build.bat or makefile. All that is left is to build the new monitor.

CSi-Mon User’s Guide 3-11

Rebuilding the Monitor Demonstration

3-12

Once the monitor is built, you can repeat the process described in this
chapter to load/install and test the new monitor.

Congratulations! Now that you have enabled the monitor to work
using your tools, see the chap@anfigurationfor a thorough
discussion of the CSi-Config utility.

CSi-Mon User’s Guide

4. Configuration

CSi-Config is an interactive configuration utility in which you fill out
an online form describing requirements for the monitor you want to
build. Unless your target has unusual, special requirements, there is
no need to edit a batch file or write special code.

If your target has special requirements, the distribution diskettes
contain a copy of the CSi-Mon source code.

Chapter Contents

Before YOU STartooooviiiiiiiiiiie e 4-2
Configuring @ MONIEOTooiiiiee e 4-3
Target HardWareuueeiiiiiiieee e 4-4
Configuring Monitor EXENSIONScoiviiiieeeeiieiieeeeeeiiiiiie e 4-5
Communication Configurationccooiviiiiiiiiiiiiii e 4-6
SeleCt A UART ..o 4-6
Polling CommuNICatiONoeviiiiiiiiiiie e 4-6
Interrupt-Driven Communicationouuvveiiiiiiiineeeeeeeeeeee. 4-7
Configuring Interrupt Controllers for National and Intel UARTS.. 4-9
Specify MAPI FUNCHONSueiiiiiiieieeeeieeeeeeei e 4-10
Selecting TOOIS......cooiiiiieee s 4-11
Locate the Monitor in MEMOIYuueeiiiniieeeeeeeieeeeeeeeieiienens 4-12

CSi-Mon User’s Guide 4-1

Before You Start Configuration

Before You Start

Each section in this chapter corresponds to a configuration step in
CSi-Config, and each section describes technical information that is
not hard to find, but may not be handy without prior preparation.

In some sections, especially the one on communications, some
options listed may not apply to your hardware. It isn’t necessary for
you to read those options, although we recommend you carefully
review each item and have the necessary information before
beginning configuration of the monitor. Following is a brief summary
of what you will do in each step:

1

Select an option defining the target's CPU and numeric
coprocessor, if any. Specify the operating mode of the target,
either real or protected; what hardware configuration it has; and
what kind of monitor you want to use, absolutely located or
ROMmed, for example. (Step 1 includes the secti@msiguring

a MonitorandTarget Hardware

Specify #defines, equates, module names, and libraries for
monitor extensions. (Step 2 includes the sed@ionfiguring
Monitor Extensiong

Define the specifications and capabilities of your target-hardware
communications device. (Step 3 includes the sections:
Communication Configuratigrselect a UAR/TPolling
Communicationinterrupt-Driven CommunicatigrNational
Semiconductor 16450/165500onfiguring Interrupt Controllers

for National and Intel UARTsandIntel 8251or 8274 UARTS

Configure application I/O through CSi's Monitor Application
Programming Interface (MAPI). (Step 4 includes the section
Specify MAPI Functions

Tell CSi-Config which of the tools you are using as listed in the
chapterPreparation (Step 5 includes the sectiSelecting Tool$

CSi-Mon User’s Guide

Configuration Configuring a Monitor

6 Define where in the target computer’s memory you want the
monitor located. (Step 6 includes the sectionate the Monitor
in Memory.)

Most descriptions of these steps are accompanied by an applicable
example of the CSi-Config screen. Because the contents of each
screen depend on previous configuration choices, the screens shown
in the manual may not exactly match the screens you see when
running the configuration utility.

Configuring a Monitor

During installation of CSi-Mon, the monitor configuration program 4
was placed in the CSIMON\SRC subdirectory. To run the monitor
configuration, type the following at the DOS prompt while in that
directory:

csicfg[filename]

When the monitor has completed configuration, CSi-Config creates a
file to store the specifications. The default name for this file is
csicfg.cfg and you can recall the file to build a new monitor or to
make changes in the specifications of the existing monitor. To recall
the file, include the filename on the invocation line shown above.

CSi-Config outputs the following four files:

csicfg.inc Assembly and C include file containing
specifications

csicfg.h Assembly and C include file containing
specifications

build.bat Batch file to compile and link the monitor

makefile Makefile equivalent to the above batch file for use

with make utilities

CSi-Mon User’s Guide 4-3

Configuring a Monitor

Configuration

The description of CSi-Config configuration options follows.

Target Hardware

You need to know the configuration of your target hardware. This
includes whether a numeric processor exists and the CPU and
numeric coprocessor types. Also, know whether your target is a PC or

a custom target board.

Things to consider when configuring your monitor:

* Monitors for Pentium, 80486, 80386, and 80286 processors can be
built to run in real or protected mode.

» If you are going to debug real-mode applications, indiBata|
no matter what your target CPU is.

* If you are going to debug protected-mode software, select

Protected

» Use one of the PC configurations if you are using an IBM PC or
compatible motherboard. For all custom boards, us®@THER

configuration option.

Specify the processor and coprocessor.
88286 8A386DE 8A486DH
88376 8A3865E 8A4865H
8AC186 88186EA S8PA186EBR
88C188 88188EA SO188EBR
186EHM 18BES 186ES
u3ia u4a usa

8187 88287 8A387

Pentium

NS4865XF

80186EC
8018BEC

188ER

No NPX

Specify your monitor's operating environment.

Real mode operation.
Protected mode operation.

Standard PC-AT harduware.
Standard PC/XT hardware.

8@386EX

80186XL
8018BXL

186ER

Figure 4-1:. Target hardware options

4-4

CSi-Mon User’s Guide

Configuration

Configuring Monitor Extensions

Configuring Monitor Extensions

The User’s Configuration Options make it easy to extend your
CSi-Mon monitor.

The options offered by CSi-Config follow:

Name

User (1..4)

Comments box Allows you to put remarks in the include file.

Modules
Library

User's configuration options

LEOYS Custom]

USER1: Comment .
USER2: Comment .
USER3J - @ipNalslals EBBB Comment .
USER4 - JrFs]5]5]S 5]5]5]5) Comment .

Modules:
Lihrary:

Specify the communications device.

Allows you to include information in the CSi-Mon
sign-on string. This feature is helpful when keeping
track of a series of monitors as they evolve, for
example.

Allows you to specify #defines and equates in
csicfg.handcsicfg.inc You can then use the
#defines for any additional needs you have when
extending the monitor. 4

Allows you to specify module names and paths.

Allows you to specify additional libraries for
linking to the monitor.

Mational 825M,.1645%8.16558 UART.
Intel 8251 UART.
Intel 8274 UART.
Other UART types.
Other non—serial communications.

Figure 4-2: Monitor extension options

CSi-Mon User’s Guide 4-5

Communication Configuration Configuration

Communication Configuration

The topics below will help you configure your monitor’s
communication system. Each value in CSi-Config has a default value
already entered.

You may need to consult the documentation for your target board to
determine whether your target will support the default values. Refer
to the vendor documentation of the part for the proper values.

CAUTION: CSi-Mon and Soft-Scope have been tested at 115200
baud. You can operate at this rate if your system can
be configured to do so. However, systems running at
high baud rates that do not have a National
Semiconductor 16550-FIFO UART sometimes lose
characters and cause Soft-Scope to malfunction.

Select a UART

If your board uses one of the standard UARTSs listed in CSi-Config,
the following tips apply:

* The National Semiconductor 16450 family of UARTSs has internal
baud-rate generators. Unless special circumstances require an
external baud-rate generator for boards with one of these UARTS,
selectNonein the baud-rate generator section.

» Default configuration values are based on PCs where applicable.

Polling Communication

Although we do not recommend it, you can configure the monitor for
polled communications. When the monitor uses polled
communications, Soft-Scope does not utilize many features (stopping
the application while running, viewing variables while running, etc.).

4-6 CSi-Mon User’s Guide

Configuration Communication Configuration

However, using polled communications is an option when interrupt
capabilities are not available (e.g., using Grammer Engines’
PromICE).

Interrupt-Driven Communication

To stop target execution with tlkde/Stopcommand or examine
memory while the target executes, configure your monitor with
interrupt-driven communication.

IBM and compatible PCs have two interrupt controllers. Custom
boards may only have one. If your system has two interrupt
controllers, selecting both the master/slave and slave configuration
options, as shown below, enables your application to use the slave
controller and Soft-Scope to use the master/slave system:

8259M Configure a master/slave or single PIC system
8259S Configure a slave PIC

Specify the communications dewvice.

Mational 8258.164%8.16558 UART.
Intel B251 UART.
Intel 8274 UART.
Other UART types.
Other non—serial communications.

Mot interrupt—driven <not recommended?.
8257 (Master). . . . Configure single B257.
8257 (Master-8lave). Configure B259 master-slave.

16458 address: CCOM1 . .4: AIFE.B2f8 . 03e8,.02e8)
16458 delta : <1 for IBM>

16458 clock : (1.843.208 on IBM>

Baud rate 8

Comm int wect:

Comm IRQ line:

Master 8259

4
Address HE GxHA2H
Delta 8 1

Figure 4-3: Communications options

CSi-Mon User’s Guide 4-7

Communication Configuration Configuration

National Semiconductor 16450/16550 UART

You will need the base port address of the UART. If your target is
a PC, the following values are valid:

COM1 0x03f8 COM3 0x03e8
COM2 0x02f8 COM4 0x02e8

You will need the address delta between ports. To avoid having to
multiplex a 16- or 32-bit data bus into an 8-bit peripheral, some
hardware is addressed by ignoring low address lines. An 8-bit
peripheral located on the lower data lines of a 16-bit bus uses a
delta of 2. On a 32-bit bus, the delta is 4. Standard PC hardware
maintains compatibility with 8-bit buses so the delta is 1 whatever
the bus width is.

Specify the UART's serial data clock input rate. For PCs, this
value is usually 1843200.

Specify the baud rate; be sure to use the same rate as configured
for Soft-Scope.

To determine the communication interrupt vector, add the IRQ
and the base vector together. For example, if you are using
COML1 and IRQ 4, and the base vector is 0x08, the interrupt
vector would be 0OxOC.

Mot dinterrupt—driven ¢(not recommended).
8259 (Master>. . . . Configure single 8259.
8259 (Master~-85lave>. Configure 8259? master~slave.

16458 address: CCOM1..4: B3If8.02f8.83el B2el)
16458 delta : ¢1 for IBM>
16458 clock : . . ¢1.843.288 on IBM>
Baud rate 3
Comm int vect:
Comm IRQ line:
Mazter 8259
Address
Delta H
Base wvector:
Slave mask :
8lave B259
Address
Delta
Base wvector:
Master chan:

Figure 4-4: Communications system specifications, 16450 UART

4-8

CSi-Mon User’s Guide

Configuration Communication Configuration

Configuring Interrupt Controllers for National
and Intel UARTs

To set up the master and slave Programmable Interrupt Controllers
(PICs) you will need to know the following:

The values for PICs can be system specific. If your target is not a B
see your hardware specifications to determine whether the default 4
values will work.

Master and slave addresses
Delta

Base vector

Slave mask

Master channel

Intel 8251 or 8274 UARTS
If the target is using Intel 8251 or 8274 UARTS:

Know the base-port address of the UART.

Know the address delta between ports. To avoid having to
multiplex a 16- or 32-bit data bus into an 8-bit peripheral, some
hardware is addressed by ignoring low address lines. An 8-bit
peripheral located on the lower data lines of a 16-bit bus uses a
delta of 2. On a 32-bit bus, the delta is 4. Standard PC hardware
maintains compatibility with 8-bit buses, so the delta is 1
whatever the bus width is.

Supply an acceptable input rate from an external source if the
UARTS on the target does not have internal baud rate generators.
Intel 8254 timers convert the rate of an external clock into an
acceptable communication baud rate by dividing the clock rate by
a numbemn. You do not need to know the valuenpbut you must
know which channel of the timer (0, 1, or 2) will be used.

CSi-Mon User’s Guide 4-9

Communication Configuration Configuration

* Know the base-port address of the Intel 8254 timer.

* Know the baud rate of the external clock that provides the timer
with an initial value, and the baud rate you want the UART to use
when communicating with the host computer. Be sure to specify
the same rate as configured for Soft-Scope.

» Configure your Programmable Interrupt Controllers (PICs) as
specified in the sectioBonfiguring interrupt controllers for
National and Intel UARTSs

Specify MAPI Functions

The Monitor Application Programing Interface (MAPI) provides
application 1/0O functions that communicate on the same serial channel
Soft-Scope uses. The functions perform the following tasks:

CSIMON_CO Console output. Writes a single character to CSi-
Mon’s communications channel. When Soft-Scope
is present, output is queued for display in the
Application 1/0 or Message windows.

CSIMON_CI Console input. Reads a single character from CSi-
Mon’s communication channel.

When the message, “Console input wait” displays at
the top of the Code window, press <F10> to toggle
the keyboard from Soft-Scope to application I/O
mode before inputting from the keyboard. Press
<F10> again to toggle back to Soft-Scope mode
after inputting.

CSIMON_CP Poll function. Tells the caller if data is available
through CSIMON_CI.

CSIMON_MO Message output. Sends messages to Soft-Scope. A
message is a series of characters terminated by a
zero. This is ignored if Soft-Scope is not present.

4-10 CSi-Mon User’s Guide

Configuration Communication Configuration

These routines are contained in an assembly module that you will
need to include in your application. Although you may need to
modify it slightly to meet your application’s specific needs, we have
included the filesnapi.asm mapi.a38 and the header filmapi.h,

which can be found in the directory SSWIN\CSIMON\MAPI.

Sample programs showing how to use these routines can be found in
SSWIN\SAMP\MAPI86 and SSWIN\SAMP\MAPI386.

You can choose to run your application with or without Soft-Scope
disabled:

X Uppercase X, entered from Terminal mode (enabled by
typing TERMINAL in the Command line dialog box)
causes your application to run, but CSi-Mon doesn’t
know that Soft-Scope is present, so buffering is turned

off.
Control-R Tell CSi-Mon that Soft-Scope is running. Pressing ara
other key sequence will confuse CSi-Mon because it
has no knowledge of Soft-Scope until after this
command is given.

Selecting Tools

Select the tools you intend to use to build the monitor. See the
chapterPreparationfor tools we support. If you are using tools that
are not listed, edit the batch fibeild.bat and/or themakefile to
configure the monitor.

Although you can independently select the compiler, assembler,
linker, locator, and librarian, all combinations are not guaranteed to
work. Review the notes in tmeadme.docon the installation
diskettes for known combinations that cause problems.

You have the option of selecting the memory segmentation model you
want to use when building a CSi-Mon monitor. The monitor does not
have to be the same model as your application. Unless you plan to
combine the monitor (as describeddambining the Monitor and

CSi-Mon User’s Guide 4-11

Communication Configuration Configuration

Your Application, it does not matter which model you use.
Generally, small or flat is sufficient to build the monitor.

Also, know the path to your target’s C library such as the following:

C:\msc\libs\

Locate the Monitor in Memory

Know the physical starting and ending addresses of the PROM and
RAM portions of the monitor—this is important—you need to know
thephysicaladdress. The values entered into CSi-Config are physical
addresses. The comma is used only to separate the high word from
the low word. It is important to locate the monitor in memory that is
not used by your application. The reset segment is normally 64k
below the top of the processor’s addressable memory.

The starting RAM and ROM addresses should be paragraph aligned
(16-byte). If you want to test the monitor on a PC before you burn it
into a PROM, the following addresses should work:

e Starting RAM = 0x0000,0400
» Starting ROM = 0x0007,0000
e Reset address = 0x0007,FFFO

CAUTION: CSi-Mon should not be configured so that its data area
is located below 0x0000,0400 in memory because it
will overwrite the interrupt vector table. Soft-Scope
uses interrupts to perform some of its commands, and
locating CSi-Mon below 0x0000,0400 may cause you
to lose functionality of the debugger.

For processors that use a peripheral control block and/or chip selects,
CSi-Config provides a means to enter the appropriate values. The
default values are those from popular evaluation boards. Refer to the
vendor documentation of your processor to ensure the proper values
are entered.

4-12 CSi-Mon User’s Guide

User Reference

D
O
-
)
| -
)
(O el
D
ad
| -
()]
(7))
D

CSi-Mon User’s Guide

CSi-Mon User’s Guide

5. Combining the Monitor and
Your Application

This chapter describes the mechanics of combining the monitor with
your application. In the first section we describe the differences
between using a library with your application and actually making
changes to the monitor to merge it with your application. In the
second section we explain the process of making the monitor a library
and linking it with your application. In the last section we describe

how to modify the protected-mode monitor source and merge it with a
sample application.

Chapter Contents

When To Make CSi-Mon a Library and When Not To 5-2
Combining Your Application with the CSi-Mon Library 5-3
Merging the Source of Your Application and CSi-Mon 5-5
CommMON PIaAIIS ... 5-13

CSi-Mon User’s Guide 5-1

When To Make CSi-Mon a Library and Combining the Monitor and
When Not To Your Application

When To Make CSi-Mon a Library and
When Not To

There are two methods for combining the monitor with your
application: combining your application with the CSi-Mon library
and merging the source of CSi-Mon with your application. Which
method you use depends on why you want to combine the monitor
with your application and how you plan to install the final product.

Are you going to use the startup code CSi-Mon provides? Are you
going to build a ROM or RAM based application? Your answers to
these questions will help you decide the best method to use.

First, let’'s explain the library (see the chag@enfigurationfor

creating a library). When the monitor is built as a library, it relies on
your application for preparing the processor and peripherals. The
only peripherals the library will configure are the UART and PIC.
The library version of the monitor is easy to link to RAM based
applications.

Many users develop the application and then wish to take advantage
of CSi-Mon’s startup code and port initialization. The library version
of the monitor is not suited for ROM applications because of how the
monitor is built. Therefore, if you want to make a ROMmable
program, you do not want to make CSi-Mon a library. In this case,
you might consider merging your application and CSi-Mon source.

Whether you are combining your application with the CSi-Mon
library or CSi-Mon source, you should configure CSi-Mon to use
interrupt-driven communications with Soft-Scope. This configuration
allows Soft-Scope to talk to CSi-Mon while your application is
running. Combining your application with CSi-Mon allows you to
invoke Soft-Scope/CSi-Mon and inspect your application. If CSi-
Mon is configured to use polling communications, Soft-Scope cannot
send commands to CSi-Mon until your application stops. Addition-
ally, if CSi-Mon is configured to use polling communications and no
breakpoints are set, the monitor will never regain control of your
application.

5-2 CSi-Mon User’s Guide

Combining the Monitor and Combining Your Application with the
Your Application CSi-Mon Library

The following section describes how to combine the library version of
the monitor and your application.

Combining Your Application with the CSi-
Mon Library

This section describes how to combine your application with the CSi-

Mon library csimon.lib). Steps to guide you through the necessary
changes are provided below.

Step 1. Configure and make the CSi-Mon library
Create a library version of the monitor.

Step 2. Modify your application 5
Your application has set up the processor and is ready to continue

executing. The processor, peripherals, and application have
completed initialization. Now it is necessary for you to manually
initialize the monitor. This is done by placing a caltstmon()early

in your application. To place a call¢simon() type the following
aftermain():

main()
{

csimon();

CSi-Mon User’s Guide 5-3

Combining Your Application with the Combining the Monitor and
CSi-Mon Library Your Application

Step 3. Initiate a break to evoke the monitor

Once the monitor has been initialized, you may want to immediately
stop your application so that you can start debugging it. To do this,
you need to create a separate file to stop your application.

brkexe.asm

name brkexe
include csicfg.inc ; Generated with CSi-Cfg utility.
; Let us handle generic use of code segment

@ISEG_BEG : Side affect of CSICFG.INC,
@ISEG_END ; it assumes this is defined.
@CSEG_BEG ; Start of CODE segment

public _ss_brkexe
_ss_brkexe proc far ; Debug break procedure.

pushf

pop ax

or ax,100h ; Set single step flag

push ax

popf ; Cause a single step over ret
ret : Return to caller.

_ss_brkexe endp

@CSEG_END ; End of CODE segment
end

Once you have the above assembly file included with your link, you
can callss_brkexe(}o evoke the monitor.

5-4 CSi-Mon User’s Guide

Combining the Monitor and Merging the Source of Your Application
Your Application and CSi-Mon

main()

{
csimon();
ss_brkexe();

} :

Because of hows_brkexe(works, when you invoke Soft-Scope (see
the Soft-Scope User’s Guiylat will be ready to debug at the
instruction following the call. Now you are ready to debug your
application.

Merging the Source of Your Application

and CSi-Mon

This section describes how to combine a sample application with the
CSi-Mon source. We recommend you attempt the merging of the
source for CSi-Mon and the sample application before doing so on
your application. We only cover how to make changes to the
protected-mode monitor in this example. However, you should be

able to derive the necessary changes for the real-mode version. Steps
to guide you through the necessary changes are provided below.

Step 1. Adding forward references

Add forward references to the sample application’s startup code in the
file main.c.

main.c:

extern void app_start(void);

CSi-Mon User’s Guide 5-5

Merging the Source of Your Application Combining the Monitor and
and CSi-Mon Your Application

Step 2. Calling the sample application

Modify CSi-Mon source filanain.c so the sample application will be
called after the monitor has been initialized. Modifying the sample
application also enables the monitor to interrupt the sample
application after it has started. Note, for clarity, the following text is
bold face for lines that need to be added and italicized for lines that
need to be changed.

Update the XE_BOOT case statementiain.c (~line 343):
main.c:

case XE_BOOT:
debug_mode =1;
which = BRK_RUNNING;
Si_pic(SI_PIC_ENABLE);
sendctrl(**");
for (i=0; csi_version[i]; i++)
sendctrl(csi_version[i]);
sendack();
app_start();
break;

Step 3. Creating a sample application in appmain.c
appmain.c:

void main(void)
{
volatile int x;
volatile int y;
y=0;
while (1) {
X =999;
y+=x
3
}

void _main(void)
{

main();

}

5-6 CSi-Mon User’s Guide

Combining the Monitor and Merging the Source of Your Application
Your Application and CSi-Mon

Some compilers may automatically add the leading underscore while
others do not. From the assembler, we assumentna() will have a
leading underscore added by the compiler. If the compiler does not
add the leading underscore, it will call the second routine, which will
then, in turn, call the entry point we wish. If leading underscores are
generated, the second routine will never be called. Either way, we get
to where we want. Of course, you can modify both the assembly and
“C” sources to suit your specific needs.

Step 4. Override the check of task register

Before you begin this step, a quick discussion is needed abdut the
register and how it relates to the code below. CSi-Mon only uses the

tr register for the application it loads, not for itself. Therefore, CSi-

Mon assumes that theregister is zero. However when the monitor

is combined with your application, Soft-Scope needs to know if the
register is valid for it to debug your application. The code

implemented by Step 3 circumvents this confirmation by Soft-Scope

by checking that the register is zero and skipping the code. This all
works provided thér register is not modified. 5

Unfortunately, some flashloaders and other loaders jump into
protected mode and back to real mode before executing CSi-Mon.
When this occurs the flashloaders may changér tregister from a
non-null value. Thus, when CSi-Mon starts running with the
combined application, it may report to Soft-Scope “invalid tr". Since
CSi-Mon was originally designed to accept downloaded programs
instead of being combined with an application, encountering an
invalid tr register has not been a problem. More customers are
combining applications with the CSi-Mon source, so we are looking
at alternatives for handling thieregister. None are available as of
this writing.

Now that you understand how we interact withttheegister, it is

time to override the check of task register. Open the file
pmonitor.asm and find the “mov mon_fault,

BRK_WAS_MONITOR?” instruction in the proceduinat_var (~line
1212). Change the instruction as shown below (again, we use italics
to denote the line that needs to be changed):

CSi-Mon User’s Guide 5-7

Merging the Source of Your Application Combining the Monitor and
and CSi-Mon Your Application

lidt
cmp
je
mov
mov
mov
test
jnz
and
mov
and
cmp
jne
and

pmonitor.asm:

; Local variables.

mov mon_fault, 0
mov xe_nmi, 0

Also, find the “lldt” instruction in the proceduxe_cute(~line 1571)
of the filepmonitor.asm. Add the text shown in bold below:

pmonitor.asm:

treg.reg_|ldtr ; Load Idtr.
reg_tr, 0
tr_skip2
mon_fault, BRK_WAS_TR_BAD
es, cs_sys_gdt

di, reg_tr ; es:di -> tss entry?
di, 4
tr_load : Invalid tr selector.
di, Offfch ; Mask rpl bits.
al, es:[di].attr
al, 10111B
al, 00011B
tr_load ; Itis not a busy TSS descriptor.

es:[di].attr, 11111101b ; Clear busy bit.

tr_load:ltr reg_tr
tr_skip2:nop

Step 5. Adding startup code

This step shows the modifications necessary to incorporate the sample
application’s assembly language startup code into the CSi-Mon’s
assembly language code. These changes let Soft-Scope recognize that
it is already running a valid application when it gains control of the
sample application.

5-8 CSi-Mon User’s Guide

Combining the Monitor and Merging the Source of Your Application

Your Application

and CSi-Mon

As part of the typical C runtime startup code, constant data must be
copied from flash or EPROM to RAM. Data must be initialized. The
stack must also be initialized. Much of this data and stack
initialization as part of the C runtime startup code has already been
done to get CSi-Mon running. At this point, you need to create a
separate stack for the sample application. To do this, you will create a
separate startup module for initializing the sample application.

NOTE: The following description usesicfg.incto determine
how to create the separate startup module. Thus, the
following code uses macros that allow the separate
startup module to work generically regardless what

model or tool suite is used.

appstart.asm:

name appstart
include csicfg.inc ; Generated with CSi-Cfg utility.
; Let us handle generic use of code segment

@ISEG_BEG ; Side affect of CSICFG.INC,
@ISEG_END ; it assumes this is defined.
@APP_STACK macro ; Determine segment type for stack.
IF(@FLAT)
APP_STACK segment para public use32 ‘STACK’
ELSE
APP_STACK segment para public usel6 ‘STACK’
ENDIF
endm
@APP_STACK ; Define Stack for the application to use
dw 2048 dup (?)
app_tos dw ?
APP_STACK ends
@CSEG_BEG ; Start of CODE segment

extrn _main:FAR

(Continued on next page)

CSi-Mon User’s Guide

5-9

Merging the Source of Your Application Combining the Monitor and

and CSi-Mon Your Application

public app_start ; Make sure “C” can find app_start with
public _app_start ; either leading “_" or not.

_app_start proc far ; Stub with leading “_" just in case

_app_start endp

app_start proc far ; Actual application initialization code
mov ax, APP_STACK
mov SS, ax

mov @SP, offset APP_STACK:app_tos

sti

call main ; Note, we call assuming with leading “_",
; However, stub in appmain.c will catch it
; if compiler doesn’t generate them.
; Otherwise, here is where the application
; Is executed!

app_start endp

@CSEG_END ; End of CODE segment

end

Step 6. Sharing memory space

CSi-Mon will not let Soft-Scope write to its memory space.

However, when an application and CSi-Mon are combined they must
share memory space. Make the changes described below to
memory.cto allow memory sharing.

Look in memory.cfor the functiormem_log2lin(~line 623).

Comment out the entire “if” statement block by entering the two lines
that are in boldface. This code fragment, once modified, should look
something like this (bold depicts lines that need to be added):

5-10 CSi-Mon User’s Guide

Combining the Monitor and Merging the Source of Your Application

Your Application

memory.c

#if 0 [*#* Allow Soft-Scope to modify monitor.*#*/
if(write) {
/* Protect the monitor from requests that overwrite monitor
** memory or attempt to place breakpoints within monitor
** resources.
*/
if((*linear + len - 1L) >= data_start && (*linear) <= data_end)
return ME_PROTECT,; /* Attempt to overwrite monitor data.*/
if((*linear + len - 1L) >= code_start && (*linear) <= code_end)
return ME_PROTECT,; /* Attempt to overwrite monitor code.*/
if((*linear + len - 1L) >= stack_start && (*linear) <=
stack_end)
return ME_PROTECT,; /* Attempt to overwrite monitor stack.*/

#if(MON_PROT && (MON_ROM || MON_ABS))
if((*linear + len - 1L) >=reg_gdb && (*linear) <= (reg_gdb +
GDT_LEN *8L-1L))
return ME_PROTECT,; /* Attempt to overwrite descriptors.*/
#endif

}
#endif

Step 7. Build scripts

and CSi-Mon

The final step requires modifications to théld.bat or makefile
which affect the modules built and the generation of the locator
command file ¢gsimon.cmd. For this example, we will limit our
discussion to the makefile and to the CSi-Loc/CSi-Link command

script.

You need to make two sets of changesiakefile. The first set is to
build modulesappstartandappmainand link them to CSi-Mon.

CSi-Mon User’s Guide

5-11

Merging the Source of Your Application Combining the Monitor and
and CSi-Mon Your Application

Find the following lines irmakefile:

#

Minimum object files necessary to create a monitor.

#

OBJECTS=pstart.obj pmonitor.obj common.obj main.obj register.obj break.obj \
memory.obj xlate.obj pic.obj mapi.obj extend.obj siuart.obj

Add the two new obiject files for the sample application. Enter the text
shown in bold as follows:

#

Minimum object files necessary to create a monitor.

#

OBJECTS=pstart.obj pmonitor.obj common.obj main.obj register.obj break.obj \
memory.obj xlate.obj pic.obj mapi.obj extend.obj siuart.obj \
appstart appmain

Next, it is necessary to add the new stack segment to the locator
command script so that it is properly located. Look for the following:

echo ram DATA_FIRST DATA_LAST L2L_SRC L2L_DEST >>csimon.cmd
echo locate DATA_FIRST class DATA class BSS >>csimon.cmd
echo+ DATA_LAST L2L_SRC L2L_DEST::00000400P >>csimon.cmd

Add the text shown in bold, changing the lines to read:

echo ram DATA_FIRST DATA_LAST L2L_SRC L2L_DEST APP_STACK>>csimon.cmd
echo locate DATA_FIRST class DATA class BSS >>csimon.cmd
echo+ DATA_LAST L2L_SRC L2L_DEST APP_STACK:: 00000400P >>csimon.cmd

Finally, rebuild the newly combined application/monitor.

5-12 CSi-Mon User’s Guide

Combining the Monitor and Common Pitfalls
Your Application

Common Pitfalls

1 The application runs, but Soft-Scope does not displag tlae
Stop menu item. If this menu item does not appear, you did not
build an interrupt-driven monitor. CSi-Mon must be built as an
interrupt-driven monitor to take full advantage of combining your
application with the monitor (see the chagenfiguratior).

2 The application runs, but Soft-Scope cannot stop the talgee(
Stop and theStop Toolbar button have no effect). Make sure you
changedsi_pic(SI_PIC_DISABLE)to si_pic(SI_PIC_ENABLE)
as shown in Step 2 derging the source of your application and
CSi-Mon The Peripheral Interrupt Controller (PIC) must be
enabled to allow Soft-Scope to communicate with CSi-Mon.

3 Soft-Scope reports monitor overwrite error messages. Normally,
Soft-Scope will reject any attempt to read or write to the address
space of the monitor. However, when you combine the monitor
with your application, the monitor will think that attempts to read
or write to your application’s address space are attempts to accd 5
the monitor’s address space. If you are getting monitor overwritd
error messages, you should check to make sure you made the
changes outlined in Step 6 Merging the source of your applica-
tion and CSi-Mon

CSi-Mon User’s Guide 5-13

5-14 CSi-Mon User’s Guide

6. Troubleshooting

The information in this section may help you get the monitor running,
if the monitor did not work after following the steps outlined in the
chapters undeBetting Started Let's assume the batch file has been
built and the monitor modules have been compiled and linked
successfully, producing@imon.hexor csimon.absfile.

If you still have no idea what is causing the problem, we suggest you
start at the beginning of the configuration program and carefully
check each value, one-by-one.

Chapter Contents

Incorrect 1/0O Addresses for Communication Device 6-2
Incompatible Baud Ratescoooiiiiiiiiiiiiiieii e 6-3
Code Configured for Wrong Targeteuveeiiiiiinieeeeeeeeeeeeeeeienns 6-3
Monitor Not Compiled COrrectlycccooevveeeiieiiiiiiiiien 6-4
Monitor Not Properly Located ... 6-4

CSi-Mon User’s Guide 6-1

Incorrect 1/0 Addresses for Communica- Troubleshooting
tion Device

The most common causes of failure with the monitor are:
* Incorrect I/O addresses for communication device

* Incompatible baud rates

» Code configured for wrong target microprocessor

* Monitor not compiled correctly

* Monitor not located properly

* PROM access split on boundaries

Each of these causes are described in the following sections. Read on
for more details.

Incorrect I/O Addresses for
Communication Device

If your communication devices are not specified correctly, Soft-Scope
and the target will not be able to communicate. Soft-Scope will
probably display one of the error messages associated with this
problem such as

Remote - target not responding

Have you tested Soft-Scope with a PC version of the monitor as
described in the chaptBemonstratio? If you have conducted the
test and it worked fine, the problem is probably in how one of the
following items is specified:

* The UART’s timing mechanism, which varies according to the
particular UART that your target has

* The base port address of your UART or timer device
* The address delta between ports

6-2 CSi-Mon User’s Guide

Troubleshooting Incompatible Baud Rates

Check the specifications of each of these items and try running the
monitor again.

Incompatible Baud Rates

If the communication between Soft-Scope and the target is garbled—
there is no output or there are only random characters output from the
target—-make sure the baud rate of the host and the baud rate specified
in the configuration program (see the chagtenfiguratior) are the

same. Some hardware may have trouble operating at the maximum
baud rate (115200), so it may be necessary to lower the baud rate both
in the configuration program for CSi-Mon and the settings of Soft-
Scope (see th8oft-Scope User’s Guider details on lowering the

baud rate).

Code Configured for Wrong Target

If you have accidentally specified a CPU different than the target, tﬂ
possible symptoms could range from no recognizable problem to a

hung target. In some cases, the monitor will run without problems,

and you may not even realize anything is wrong until you load an
application. In other cases, the monitor may run until it tries to access

a CPU-specific feature or structure that is not available. Sometimes,
the target will simply crash.

The general rule is that 8086 and real-mode monitors will run on
80286/386/486/Pentium machines, 80286 monitors will run on 80386/
486/Pentium machines, and 80386 monitors will run on 80486/
Pentium machines. These requirements are not reversible. For
example, 80386, 32-bit protected-mode monitors will not run on
80286 machines. Additionally, the 80186/188 monitors will run on
8086 machines, but, because the 80186/188 CPU requires that the

CSi-Mon User’s Guide 6-3

Monitor Not Compiled Correctly Troubleshooting

Peripheral Control Block be specified, 8086 monitors may not run on
80186/188 CPUs.

Monitor Not Compiled Correctly

If your monitor has unresolved symbols or error messages during
compilation (such as output from tool suite or files generated from
tools such as the map file), check the path you specified for the
configuration program to access your tools library.

Another possibility is that one or more of the files on the source disk
did not install properly, or was not included in the compilation. Find
the file contents.docon the installation diskettes that were provided
with the software. This file contains the layout of the subdirectory
tree and the files that reside in each subdirectory after installation is
complete. Check to be sure that all files were installed properly on
your computer.

Monitor Not Properly Located

If the monitor is not located properly in memory, it will be completely
unpredictable. The monitor may crash when you try to install it, or it
may appear to work fine until you load an application and discover
the application is trying to load in the same memory as the monitor.

Inspect the final map file generated by your linker and locator to
make sure the monitor is located correctly, and verify the following
items:

6-4 CSi-Mon User’s Guide

Troubleshooting Monitor Not Properly Located

» For all monitors except library versions

All data segments (except L2L_SRC and L2L_DST for protected
mode monitors) should be contained betwe&TA FIRSTand
DATA_LASTor all monitors except library versions.

CODE_FIRSTandCODE_LASTshould similarly bracket all code
segments (exceRESTARY.

These segments are used by CSi-Mon to identify which memory
ranges to protect from overwriting. The architecture of the processors
does not provide a way to prevent your application from overwriting
CSi-Mon, but we can detect and prevent downloading of an
application over the monitor.

Since the library version of CSi-Mon shares the code and data
segments with the application it is linked with, it does not have this
protection.

» For absolutely located monitors, which will have all
segments contiguous and located in system RAM
The restart code is not located at any special place for absolutely

located monitors. It will be the responsibility of the loader to start
execution at the correct address.

Absolutely located monitors are intended to be loaded into RAM by
some custom method when your system boots.

e For ROMmed monitors, which will be burned into ROM

The public symbohardware_reseshould be located at your
processor’s hardware reset address.

ROMmed monitors will initialize their own data space. Data
segments should be located in RAM.

CSi-Mon User’s Guide 6-5

Monitor Not Properly Located Troubleshooting

» For library versions of CSi-Mon that are intended to be
linked to the application to be debugged and that are
loaded into RAM with that application

The library version provides no automatic initialization of its RAM
area.

We recommend you don’t use the library version with a ROM-based
application. (See the chaptéombining the Monitor and Your
Application).

* PROM access split on boundaries

It is almost impossible to predict what will happen if your PROM is
not programmed correctly. Some code within the monitor may
actually execute, but it may not function as expected. The most
common mistake made when programming a PROM is to forget to
split the hex file so it will work with 16- and 32-bit buses.

Most PROMs are 8 bits wide. To accommodate wider bus structures
a program is normally split into separate PROMs. For example, on a
16-bit bus, bytes 0, 2, 4, 8 ... are placed into the low-byte PROM
and bytes 1, 3,5 ... are placed into the high-byte PROM. Your
PROM programmer software should provide a method for splitting
the file.

6-6 CSi-Mon User’s Guide

Appendix A: CSi-Mon
Commands

This appendix contains the Monitor Command Syntax, the detailed
information on the Monitor Commands, as well as related Command
Tables.

Monitor Command Syntax

Command Syntax Elements

count An unsigned 32-bit integer. Specifies number of times
to repeat.

dest_offset An unsigned 32-bit integer. If the segment value is 0O,
then the offset represents either a physical or linear
address depending on the value last configured for the
‘c’ command (see index number 7Register Tablem

the Appendix). If the segment is nonzero, the offset
represents a logical-address offset.
dest_segmenAn unsigned 32-bit integer. The segment portion of a A
logical address. If the segment value is 0, then the
offset represents either a physical or linear address
depending on the value last configured for‘the
command (see index number 7Register Tablem

the Appendix). If the segment is nonzero, the offset
represents a logical-address offset.

handle An unsigned 32-bit integer. Specifies an entry in the
monitor breakpoint table.

index An unsigned 32-bit integer. Specifies an entry in a

CSi-Mon User’s Guide A-1

Monitor Command Syntax Appenidix A: CSi-Mon Commands

length

offset
port

table.

An unsigned 32-bit integer. Specifies the size or
number of data elements to be read from or written to
the target.

An unsigned 32-bit integer.

An unsigned 32-bit integer. Specifies an input or
output port.

register_maskAn unsigned 32-bit integer. Specifies a register. See

segment

src_offset

Register Tables the Appendix for a list of registers
and their masks.

An unsigned 32-bit integer. Contains O if offset
specifies a physical address.

An unsigned 32-bit integer. If the segment value is 0,
then the offset represents either a physical or linear
address depending on the value last configured for the
‘c’ command (see index number Ragister Tablem

the Appendix). If the segment is nonzero, the offset
represents a logical-address offset.

src_segment An unsigned 32-bit integer. The segment portion of a

value

logical address.
An unsigned 32-bit integer.

Monitor Commands

B Permanent breakpoint
B [segment,offset,handle,count]

A-2

CSi-Mon User’s Guide

Appendix A: CSi-Mon Commands Monitor Commands

The'B’ command sets a permanent breakpoint asédggnenand
offsetspecified. Handle specifies anndexinto the monitor
breakpoint table where information on this breakpoint is staBed.
without parameters clears breakpoints.

Errors
5 ME_ARGS Too few or invalid arguments specified

6 ME_RESOURCE Breakpoint out of range
10 ME_SEGFAULT Segmentation fault
11 ME_NOT_RAM Location is not in RAM

C Initialize configuration table

C address, config »config ..., config

1’ n

address Address of configuration table in monitor. Currently not
used.

config Field in configuration table. The entire table must be
specified.

The‘C’ command initializes the configuration table. If you need to
set just one entry in this table, use ttiecommand.

Error
5 ME_ARGS Too few or invalid arguments specified

C Set configuration table entry
c index,value
The'‘c’ command assignsvalueto the table entry specified lrydex
If you need to set several configuration table entries, us€the

command. The indices and their values are listé&kigister Tables
in the Appendix.

CSi-Mon User’s Guide A-3

Monitor Commands Appenidix A: CSi-Mon Commands

Error
5 ME_ARGS Too few or invalid arguments specified

D Data breakpoint
D segment,offset,handle,count,type,length

type An unsigned 32-bit integer. Specifies a breakpoint type.

The‘D’ command sets a permanent data breakpoint in memory at the
segmenandoffsetlocation specified Handlespecifies an index into

the monitor breakpoint table where information on this breakpoint is
stored. Theypefield specifies the kind of hardware breakpoint being
set.

Possible types are listed in this Appendix andsimon.hin the
monitor source. Thkengthfield specifies the range of memory where
you want the breakpoint set.

These codes cannot be changed without modification to Soft-Scope.

The monitor verifies that there are data registers available and returns
an error (ME_RESOURCE) if it is unable to set the breakpoint. Refer
to Breakpoint Handle Tablas the AppendiXor information on data
breakpoints.

NOTE: This command is useful only with the 80386/486/
Pentium protected-mode monitor.

Errors

5 ME_ARGS Too few or invalid arguments specified.

6 ME_RESOURCE One of several errors may have
occurred. Either the handle is out of
range, the length is too large (greater

than 16) or there are not enough data
registers available to set the breakpoint.

10 ME_SEGFAULT Segmentation fault.

A-4 CSi-Mon User’s Guide

Appendix A: CSi-Mon Commands

11 ME_NOT_RAM

12 ME_MISC

Monitor Commands

Location is not in RAM.

You have specified an illegal type or
some other error has occurred.

Table A-1: Breakpoint types

Breakpoint Type | Code Value |Description
BKTYPE CLEAR 0x0000 Clear breakpoint (per
- handle)
BKTYPE MODIFY 0x0001 Set a breakpoint on
- address write
BKTYPE RDONLY 0x0002 Set a breakpoint on data
- read
BKTYPE ACCESS 0x0003 Set a breakpoint on data
- access
BKTYPE_FETCH 0x0004 | Setabreakpoint on
- instruction
E Monitor extensions
E [char] [data]
char Any character
data User-defined data which includes a command name and

parameters

The‘E’ command allows the monitor user to add commands to the

monitor. Data can be any type desired. All of thatamust be
parsed by the monitor extension.

CSi-Mon User’s Guide

A-5

Monitor Commands Appenidix A: CSi-Mon Commands

F

Fill pattern in memory
F segment,offset,length,value

value Defines a byte

The‘F’ command fills a range of memory with a byte starting at the
specifiedsegmenandoffset

Errors

5 ME_ARGS Too few or invalid arguments specified

7 ME_VERIFY If verification was requested, a byte read
from memory did not match the value
written

10 ME_SEGFAULT Segmentation fault

Return an offset
f segment,offset,length,value

value Defines a byte

The‘f” command compares memory starting at the given address of
segmenandoffsetlooking for the given bytgalue If found, the
offset from the starting address is returned.

Errors
5 ME_ARGS Too few or invalid arguments specified

10 ME_SEGFAULT Segmentation fault

Port output
| port,value
The‘l’ command writes data topart. The width depends on the

current setting for granularity. See tbecommand an&egister
Tablesin the Appendix.

A-6 CSi-Mon User’s Guide

Appendix A: CSi-Mon Commands Monitor Commands

Errors
5 ME_ARGS Too few or invalid arguments specified

8 ME_BUSFAULT Bus error

i Port input
i port
The'i’ command reads dataluefrom aport. The width depends on

the current setting for granularity. See ttiecommand an&egister
Tablesin the Appendix.

Errors
5 ME_ARGS Too few or invalid arguments specified

8 ME_BUSFAULT Bus error

@) Copy memory
O dest_segment,dest_offset,src_segment,src_offset,length
The'O’ command copies memory startingsat_segmerand

src_offseto memory starting atest_segmeranddest_offsetor
length bytes.

Errors

5 ME_ARGS Too few or invalid arguments specified

7 ME_VERIFY If verification was requested, a byte read
from memory did not match the value
written

10 ME_SEGFAULT Segmentation fault

CSi-Mon User’s Guide A-7

Monitor Commands Appenidix A: CSi-Mon Commands

0 Compare memory

0 src_segment,src_offset,dest_segment,dest_offset,length
The‘o’ command compares memory startingrat segmenand
src_offsewith memory starting atest_segmeranddest_offsefor

length bytes. The offset of the first byte from the starting address that
does not match is returned.

Errors
5 ME_ARGS Too few or invalid arguments specified

10 ME_SEGFAULT Segmentation fault

Q Binary memory write
Q segment,offset,datablock

datablock A group of binary-encoded bytes, terminated with an
end-of-block character (0x14)

The'Q’ command writes the binary datadatablockto memory
starting at the address specifieddggmenandoffset

Errors
5 ME_ARGS Too few or invalid arguments specified
7 ME_VERIFY If verification was requested, a byte read
from memory did not match the value
written
q Binary memory read

g segment,offset,length

The'q’ command reads memory starting at the addregsienand
offsetfor length bytes. The data read is returned in binary format as a
block.

A-8 CSi-Mon User’s Guide

Appendix A: CSi-Mon Commands Monitor Commands

Errors
5 ME_ARGS Too few or invalid arguments specified

10 ME_SEGFAULT Segmentation fault

R Write register
R register_mask,value [,value]

The‘R’ command writes a value to a register associated with the
givenregister_mask SeeRegister Tables the Appendix for valid

mask values.
Errors
1 ME_PGM Error in register_mask or value
arguments
5 ME_ARGS Too few or invalid arguments specified
r Read register

r register_mask

The‘r command reads a register associated with the given
register_mask The monitor returns the contents of each register
specified. Se®egister Tables the Appendix for valid mask values.

A

Errors

4 ME_ILLREG Undefined register specified

5 ME_ARGS Too few or invalid arguments specified
S Step an instruction

S count

The'S’ command single steg®untinstructions.

CSi-Mon User’s Guide A-9

Monitor Commands Appenidix A: CSi-Mon Commands

S

Error
5 ME_ARGS Too few or invalid arguments specified

Stop target execution
S

The's’ command stops the target.

Report version identification
v

The'V’ command returns a number that is compared with a value
stored internally in Soft-Scope.

Note: Bit 0x80000000L informs Soft-Scope whether the
monitor is interrupt driven or not. If set, the monitor is
interrupt driven, otherwise, the monitor is polled.

Error
5 ME_ARGS Too few or invalid arguments specified

Report version
\
The'v’ command returns an ASCII string that identifies the monitor.

The string is reported by Soft-Scope when connection is made with
the monitor.

Error
5 ME_ARGS Too few or invalid arguments specified

A-10 CSi-Mon User’s Guide

Appendix A: CSi-Mon Commands Monitor Commands

w Which breakpoint stopped target
W

The‘w’ command returns the handle of the breakpoint that was
triggered. A negative handle returned indicates that either a special
breakpoint was hit or the breakpoint was of unknown origin. See
Breakpoint Handle Tablas the Appendix for a list of breakpoint

handles.

Error

5 ME_ARGS Too few or invalid arguments specified
X Execute the target with breakpoints

X

The‘x’ command starts the target running. This command assumes
breakpoints are set and downloads breakpoints into memory. An error
will be reported if an exception occurs during execution.

Error
5 ME_ARGS Too few or invalid arguments specified

z Reset the monitor
Z

The'z’ command resets target registers and descriptor tables. Issui
this command causes the monitor to be reinitialized.

Error
5 ME_ARGS Too few or invalid arguments specified

CSi-Mon User’s Guide A-11

Monitor Commands Appenidix A: CSi-Mon Commands

Command Tables

Table A-2: Execution commands

Command Function Performed
B Sets a permanent execution breakpoint at a memory
location
D Sets a permanent data breakpoint at a memory location
S Executes one instruction at a time
w Returns information describing which breakpoint was
triggered
X Executes the target software, breakpoints are set
Table A-3: Memory commands
Command Function Performed
F Fills a range in memory
f Finds a byte in memory
I Writes data to an 1/O port
[Reads data from an 1/O port
@) Copies a block of memory to another location
o] Compares two blocks of memory
0 _Transmits data in binary format to the target and writes
it to memory
q Reads target memory and transmits data in binary form
A-12 CSi-Mon User’s Guide

Appendix A: CSi-Mon Commands Command Tables

Table A-4: Register commands

Command Function Performed
R Sets target CPU registers
r Reads target CPU registers

Table A-5: Miscellaneous commands

Command Function Performed
C Initializes configuration table
c Assigns a value to one configuration table entry
E Monitor extensions
\% Reports version compatibility code
v Reports version string for monitor
z Resets the monitor

CSi-Mon User’s Guide A-13

A-14 CSi-MonUser’s Guide

Appendix B: Register Tables

Table B-1: General purpose and tasking registers

Register Mask Applicable CPU
AXIEAX 0x00000004 | All processors
BX/EBX 0x00000008 All processors
CX/ECX 0x00000010 | All processors
DX/EDX 0x00000020 | All processors
BP/EBP 0x00000040 | All processors
SI/ESI 0x00000080 | All processors
DI/EDI 0x00000100 | All processors

Cs 0x00000200 | All processors

DS 0x00000400 | All processors

SS 0x00000800 | All processors

ES 0x00001000 | All processors

FS 0x00002000 386/486/Pentium
GS 0x00004000 | 386/486/Pentium
Flags/Eflags | 0x00008000 All processors
IP/EIP 0x00010000 All processors
SP/ESP 0x00020000 All processors

TR 0x00400000 Protected mode only

CSi-MonUser’s Guide

Stack Register Masks Appendix B: Register Tables

Table B-2: Protection controls and debug registers

Register | Mask Applicable CPU

GDL 0x81000001 | Protected mode only

GDB 0x81000002 | Protected mode only

IDL 0x81000008 | Protected mode only

IDB 0x81000010 | Protected mode only

LDT 0x81000040 | Protected mode only

MSW 0x81001000 | Protected mode only

CRO 0x81001000 | Protected mode, 386/486/Pentium only
CR2 0x81004000 | Protected mode, 386/486/Pentium only
CR3 0x81008000 | Protected mode, 386/486/Pentium only
DRO 0x81010000 | 386/486/Pentium

DR1 0x81020000 | 386/486/Pentium

DR2 0x81040000 | 386/486/Pentium

DR3 0x81080000 | 386/486/Pentium

TR6 0x81100000 | Protected mode, 386/486/Pentium only
TR7 0x81200000 | Protected mode, 386/486/Pentium only
DR6 0x81400000 | 386/486/Pentium

DR7 0x81800000 | 386/486/Pentium

Stack Register Masks

The coprocessor stack register masks are stored as 80-bit floating
point values divided into three sections. For example, for STO:

B-2 CSi-Mon User’s Guide

Appendix B: Register Tables Stack Register Masks

0x84000001 will access bits 0 through 31
0x84000002 will access bits 32 through 63
0x84000004 will access bits 64 through 79

These registers are applicable to systems with numeric coprocessors
only.

Table B-3: Coprocessor stack registers

Register Mask

STO 0x84000001=0..31,
0x84000002=32..63,
0x84000004=64..79

ST1 0x84000008=0..31,
0x84000010=32..63,
0x84000020=64..79

ST2 0x84000040=0..31,
0x84000080=32..63,
0x84000100=64..79

ST3 0x84000200=0..31
0x84000400=32..63,
0x84000800=64..79

ST4 0x84001000=0..31,
0x84002000=32..63,
0x84004000=64..79

ST5 0x84008000=0..31,
0x84010000=32..63,
0x84020000=64..79

ST6 0x84040000=0..31,
0x84080000=32..63,
0x84100000=64..79

ST7 0x84200000=0..31,
0x84400000=32..63,
0x84800000=64..79

CSi-MonUser’s Guide B-3

Stack Register Masks

Appendix B: Register Tables

Table B-4: Miscellaneous coprocessor registers

Register | Mask Applicable CPU

Cw 0x83000001 | Systems with numeric coprocessors

SW 0x83000002 | Systems with numeric coprocessors

TW 0x83000004 | Systems with numeric expressions

Table B-5: Configuration table entries
Index | Description |Values
0 Vgrify memory 0=off, other=verify
writes

1 Echo mode 0=off, 3=echo character receive

4 Granularity 1=byte, 2=word, 4=dword
O=segment:offset _ _

7 Linear/physical gtﬁigzngzgtrxear!l:%?fg,e?ddress is physical address;
If segment value=0, address is linear address

B-4 CSi-Mon User’s Guide

Appendix C: Breakpoint

Handle Tables

Table C-1: Breakpoint handles

Handle Value Description

BRK_WAS STARTUP 0x0000 Monitor startup break
BRK_WAS_UNKNOWN -0x0001 Must always be -1
BRK_WAS_RESET -0x0002 Unscheduled target reset
BRK_WAS_TASK -0x0003 Task switch caused break
BRK_WAS DEBUG -0x0004 Target tried to muck with DR regs
BRK_WAS _ILLACCESS -0x0005 Reserved for future use
BRK_WAS_ILLWRITE -0x0006 Reserved for future use
BRK_WAS USER -0x0007 User Stop command or cold boot
BRK_WAS_STEP -0x0008 We were single-stepping
BRK_WAS_INTO -0x00010 | Divide error

BRK_WAS_INT1 -0x00011 | Step

BRK_WAS_INT2 -0x00012 | NMI

BRK_WAS INT3 -0x00013 | Hard-coded interrupt 3
BRK_WAS_INT4 -0x00014 | Overflow

BRK_WAS INT5 -0x00015 | Bounds check

BRK_WAS_INT6 -0x00016 | Invalid opcode

BRK_WAS_INT7 -0x00017 | Coprocessor not available
BRK_WAS_INT8 -0x00018 | Double fault

BRK_WAS _INT9 -0x00019 | Coprocessor segment overrun

CSi-Mon User’s Guide

C-1

Breakpoint Handle Tables Appendix C

Table C-1: Continued

Handle Value Description
BRK_WAS_INTa -0x001a Invalid TSS
BRK_WAS_INTb -0x001b Segment not present
BRK_WAS_INTc -0x001c Stack exception
BRK_WAS _ INTd -0x001d General protection fault
BRK_WAS INTe -0x001e Page fault
BRK_WAS_INTf -0x001f Interrupt 15
BRK_WAS_INT10 -0x0020 Floating point error
BRK_WAS_INT11 -0x0021 Alignment error

BRK_WAS_LDTR_BAD | -0x00110 Invalid LDTR value

BRK_WAS_TR_BAD -0x00111 Invalid TR value
BRK_WAS CS BAD 0x00112 Invalid CS:IP/EIP value
BRK_WAS_SS BAD 0x00113 Invalid SS:IP/ESP value
BRK_WAS_DS BAD 0x00114 Invalid DS value
BRK_WAS_ES BAD 0x00115 Invalid ES value
BRK_WAS_FS_BAD 0x00116 | Invalid FS value
BRK_WAS_GS_BAD 0x00117 | Invalid GS value

BRK_WAS_STACK 0x00118 Stack too small for context switch
BRK_WAS TSS BAD 0x00119 Invalid TSS contents

C-2 CSi-Mon User’s Guide

Appendix D: CSi-Boot Error

Messages ﬂ

< Absolute OMF86 not supported - Use OH86 to generate hex file. >
OMF86 is not supported.

An object to HEX converter, such as the OH86, LinkLoc, CSi-Locate,
or CSi-Link™ with the HEX or -HEX32 switch, can be used to create
a CSi-Boot loadable HEX file.

< Address #####H## - Not writable RAM >

The given address is not writable. Either it is not a RAM location or
the RAM is defective.

Check your target documentation to make sure the RAM you
specified in CSi-Config is valid.

< Filemark ####### - Invalid record >

The record starting at the given filemark was found to be invalid.

< Filemark ####HH#H# - Unexpected end of file >

An unexpected end of file was encountered in the record located at
the specified filemark.

CSi-Mon User’s Guide D-1

CSi-Boot Error Messages Appendix D

< Line: #### - Expected end of file >

When CSi-Boot tried to boot younonitor.hex file, it encountered
the end of the file but not a termination record.

< Line: #### - Invalid hex file >

The given line number in younonitor.hex file contains an invalid
record.

< Line ## - Line too long >

The given line in youmonitor.hex file is too long to process.

< Load image above real-mode addressing range >

CSi-Boot can only load applications in the real-mode addressable
range.

< Load image spans more than #### bytes >

CSi-Boot loads from a contiguous buffer. Either your monitor is too
large to accommodate, or ROM and RESET must be located closer
together.

< No data loaded >

The file you specified on the CSi-Boot invocation line appeared to be
empty.

< No scratch memory found >

CSi-Boot was unable to locate 64K of scratch pad memory.

D-2 CSi-Mon User’s Guide

Appendix D CSi-Boot Error Messages

< System: File does not exist: “filename” >

The file you specified when you invoked CSi-Boot cannot be foun

< Unknown file format >

CSi-Boot does not understand the format of the file you entered on
the invocation line. The supported formats are Intel 8086/386
and 80286/386 absolutely located.

< Usage: CSiBOOT filename >

CSi-Boot requires either an Intel 8086/386x or 80286/386
absolutely located file to load.

CSi-Mon User’s Guide D-3

D-4

CSi-Mon User’s Guide

Symbols

16450/16550.SeeUARTSs
8251/8274.SeeUARTs

A

AMD parts, supported by CSi-Mon 2-3
ANSI-C 2-2
applications
calling 5-6
combining with the monitor 5-2-5-12
creating 5-6
forward references 5-5
merging source and CSi-Mon 5-5-5-12
modifying 5-3
ROM-based 6-6
assemblers 2-2
selecting 3-11
assembly files 5-4

B

baud rate

generator, and Soft-Scope 2-4-2-5

devices supported 2-5, T2-2

high 4-6

specifying 4-8

testing the monitor 3-6

troubleshooting 6-3
bootstrapping 2-2

processor and hardware 2-2
break initialization 5-4
breakpoint

commands A-2-A-3

errors A-3, A-4-A-5

CSi-Mon User’s Guide

Index

F indicates figure reference
T indicates table reference

Index-1

executing target A-11
handles C-1-C-2, TC-1
setting 5-2, A-4-A-5
triggered A-11
types of A-5, TA-1

building monitor 3-10-3-12, 4-3

C

calling an application 5-6
changing a monitor 4-3
chip selects 4-12
combining applications with CSi-Mon library 5-2-5-3
command tables A-12—-A-13
commands 3-6-3-10, A-1-A-13
breakpoint types A-5, TA-1
execution A-12, TA-2
extension 3-8, 3-9
memory A-12, TA-3
reading and writing 3-9
miscellaneous 3-10, A-13, TA-5
register 3-9-3-10, A-13, TA-4
reset the monitor 3-10
syntax A-1-A-2
communication 4-6—4-12
configuration
8274 UARTs 4-9
Intel 8251 4-9
interrupt controllers 4-9
interrupt-driven 4-7
options 4-7
polling 4-6-4-7, 5-2
selecting tools 4-11
specifying MAPI functions 4-10—4-11
device 6-2—-6-3
interrupt driven 5-2
interrupt vector 4-8
options 4-7, F4-3
parameters 3-2

Index-2

Index

CSi-Mon User’s Guide

Index

resources 2-4
ROM emulator 2-5
serial communications 2-4
serial communications 3-2—3-3
system specifications 4-8, F4-4
compiler suites 2-2
configuration 3-11, 4-1
communication.Seecommunication
custom boards 4-4
interrupt controllers
National UARTs 4-9
interrupt-driven communication 4-7
library 3-11, 4-5, 4-12, 5-2-5-5
locating monitor in memory 4-12
monitor extensions 4-5, F4-2
National Semiconductor 16450/16550 UART 4-8
PC 4-4
polling communication 4-6-4-7, 5-2
running, of the monitor 4-3
selecting a UART 4-6
summary of 4-2—4-12
table A-3-A-4
table entries B-4, TB-5
target 6-3-6-4
target hardware 4-4, F4-1
testing the monitor 3-6-3-10
configuring a monitor 4-3-4-4
target hardware 4-4
coprocessor
miscellaneous registers B-4, TB-4
stack registers B-3, TB-3
supported 2-4
CPU. Seeprocessor
creating sample application 5-6-5-7
CSi-Boot Utility
error messages D-1-D-3
loading/installing a monitor 3-3, 3-4
CSi-Config Utility 3-11, 4-1-4-12
monitor location in memory 4-12

CSi-Mon User’s Guide Index-3

CSi-Loc/CSi-Link 5-11, D-1
custom board, as target
configuration 4-4
hardware 4-4
interrup controllers 4-7

D

debug registers 2-4, B-2, TB-2
protected-mode software 4-4
real-mode software 4-4
device
communication
I/O address 6-2—6-3
drivers
DOS EXEDBG 3-5
loading/installing a monitor 3-2
supported by CSi-Mon 2-5, T2-2
DOS mode
DOS EXEDBG 3-5
loading monitor on a PC 3-2

E

embedded targets, creating 3-5-3-6
error messages 6-4

CSi-Boot D-1-D-3

Soft-Scope 5-13, 6-2

testing the monitor 3-6-3-10

execution commands A-12, TA-2
extension commands 3-8-3-9
extensions, monitor A-5

configuring 4-5

F

flash loaders 5-7
forward references
adding 5-5

Index-4

Index

CSi-Mon User’s Guide

Index

G

GDT space 2-4
general registers B-1, TB-1
Getting Started xiii, xiv, 1-1

H

handles, breakpoint C-1-C-2, TC-1
harware resources, list of 2-3-2-5
host

baud rate 6-3

serial communications 3-2-3-3, 3-5

I/O addresses 6-2—6-3
IDT space 2-4
initialze monitor 5-3
installation, CSi-Mon software 1-1-1-2
required disk space 1-1
installing a monitor.Sedoadling/installing
instructions, step A-9-A-10
Intel parts
devices supported 2-5, T2-2
processors supported 2-3, T2-1
Intel UARTS, configuration of 4-9-4-10
interrupt controllers 4-7
configuring 4-9-4-10
interrupt vector table, overwriting of 4-8, 4-12
interrupt-driven communication
configuration 4-7
National Semiconductor 16450/16550 UART 4-8
Soft-Scope 5-2
interrupt-driven monitor 3-7
combining application with a monitor 5-13
IRQs 2-4

L

librarians 2-2

CSi-Mon User’s Guide Index-5

library
combining with applications 5-2-5-3
configuring 3-11, 4-5, 4-12
function of 5-2
loaded into RAM 6-6
use with ROM-based applications 6-6
linkers/locators 2-2
defined, when needed 2-2-2-3
problems locating the monitor 6-4
selecting 3-11
loadling/installing a monitor 3-2—3-6
DOS EXEDBG 3-5
embedded targets 3-5-3-6
PC absolutely located monitors 3-2-3-5

M

MAPI functions, specifying 4-10-4-11
MASM complaint assembly 2-2
memory

binary read 3-9, A-8-A-9

binary write 3-9, A-8

commands 3-10, A-12, TA-3

comparing A-6, A-8

copying A-7

fill in pattern A-6

model, selecting of 3-11

monitor location 4-12, 6-4-6-6

segmentation, selection of 4-11

space, sharing 5-10-5-11

testing 3-9
merging source and CSi-Mon 5-5-5-12
miscellaneous commands A-13, TA-5
monitor

absolulutely located 6-5

building new 4-3

changing 4-3

combining with applications 5-1-5-12

configuration 4-3-4-4

Index-6

Index

CSi-Mon User’s Guide

Index

data segments 6-5
error messages 6-4
extensions
commands A-5
configuration of 4-5
options 4-5, F4-2
flat model 3-8
identification A-10
interrupt-driver
combining with application 5-13
testing 3-7
loading/installing. Seeloadling/installing a monitor
located in memory 4-12, 6-4-6-6
merging with application 5-5-5-12
PROM address 4-12
protected-mode 3-3, 5-5
memory read and write 3-9
RAM address 4-12
real-mode 3-3, 5-5
rebuilding 3-10-3-12
resetting A-11
ROM based 3-8
serial number xv
source 1-2
stock 3-2, 3-3
testing 3-6—3-10
non-interrupt driven 3-7
version xv, 4-5
multitasking operating systems 3-2, 3-5

N

National Semiconductor 16450/16550 UART 4-8
National Semiconductor parts

devices supported 2-5, T2-2

processors supported 2-4, T2-1
National UARTS, configuration of 4-6, 4-9
NEC parts, processors supported 2-4, T2-1
non-interrupt driven monitor 3-7

CSi-Mon User’s Guide Index-7

P

PC configurations 4-4
peripheral control block 4-12
PIC controller
configuring interrupt controllers 4-9, 4-10
devices upported 2-5, T2-2
serial communications 2-4-2-5, T2-2
Soft-Scope 2-4-2-5, 5-13
when monitor is a library 5-2
polling communication 4-6—4-7, 5-13, 6-2—-6-3
PromICE 4-7
port
address delta 4-8, 6-2
input and output A-6—-A-7
processor
Pentium 4-4
protected-mode, target hardware 4-4
real-mode, target hardware 4-4
resources, list of 2-3-2-4
supported by CSi-Mon 2-3-2-4, T2-1
PROM 6-6
PROM address 4-12
PromICE
polled communications 4-7
ROM emulator 2-5
protected-mode monitors
configuration 6-3
memory reading 3-9
memory writing 3-9
merging application 5-5
PC based 3-3
protected-mode processors, target hardware 4-4
protection control registers B-2

R

RAM initialization 3-8-3-9
RAM-based applications and library, 5-2

Index-8

Index

CSi-Mon User’s Guide

Index

memory location 3-7
real-mode monitor
configuration 6-3-6-4
merging application 5-5
PC based 3-3
real-mode processors, target hardware 4-4
reboot CSi-Mon 3-4
rebuilding the monitor 3-10-3-12
configuration 3-11
register
commands A-13, TA-4
debug 2-4
read A-9
stack B-2
tables B-1
configuration B-4, TB-5
coprocessor stack B-3, TB-3
debug B-2, TB-2
general purpose B-1, TB-1
protection controls B-2, TB-2
tasking B-1, TB-1
write A-9
report
identifying monitor A-10
identifying version A-10
resetting the monitor 3-10, A-11
ROM emulator 2-5
ROM-based
addresses 4-12
applications 5-2
monitor 3-8-3-9
ROM/RAM resources 2-3
ROMmed monitors 6-5

S

script building
merging source and application 5-11-5-12
serial communications

CSi-Mon User’s Guide Index-9

DOS EXEDBG 3-5
PC absolutely located monitors 3-2
resources 2-4
serial number, of monitor xv
serial port, absence of 2-5
setup segments 3-8
sign-on string 3-6
tracking monitors 4-5
Soft-Scope
baud rate 4-6, 4-8
CSi-Mon
location in memory 4-12
MAPI functions 4-10
serial communications 2-4-2-5
determining parameters of monitor 3-7
error messages 5-13, 6-2
interrupt-driven communications 5-2
memory space 5-10
PIC controller 5-13
polling communication 5-2
running application with/without 4-11
stopping target 5-13
task register 5-7
tr register 5-7
source code 4-1
merging with application 5-2, 5-5-5-12
source files, list of 1-2-1-4, 6-4
stack register, coprocessor B-3, TB-3
startup code
adding 5-8-5-10
and monitor 2-2—2-3
forward references 5-5
stock monitors 3-2
DOS EXEDBG 3-5
embedded targets 3-5-3-6
list of PC based 3-3
rebuilding 3-10-3-12
syntax of commands A-1-A-2

Index-10

Index

CSi-Mon User’s Guide

Index

T

table entries, configuration B-4, TB-5
target
code configuration 6-3-6-4
communication configuration 4-6—4-12
embedded 3-5-3-6
executing with breakpoints A-11
hardware options 4-4, F4-1
serial communications 3-2—-3-3, 3-5
stopping A-10
task register 2-4, B-1, TB-1
combining application (overriding check register) 5-7-5-8
technical support Xxiii, xv
testing the monitor 3-6—3-10
extension commands 3-8-8-9
memory reading 3-9
memory writing 3-9
resetting 3-10
troubleshooting 3-6-3-10
tools
selecting of 3-11, 4-11-4-12
suites supported, list of 2-2
tr register 5-7-5-8
troubleshooting 5-13, 6-1-6-6
testing the monitor 3-6-3-10
TSR
DOS EXEDBG 3-5
loading/installing a monitor 3-2
testing the monitor 3-6

U

UARTs
base port address 6-2
configuration of interrupt controllers
Intel 4-9
National 4-9
data clock input rate 4-8

CSi-Mon User’s Guide Index-11

Index

devices supported 2-5, T2-2
Intel 8251 or 8274 4-9
selecting 4-6
serial communications 2-4, 2-5, T2-2
Soft-Scope 2-4-2-5
timing mechanism 6-2
when monitor is a library 5-2
User Reference xiii, xiv, 5-1

Vv

version, of monitor xv

Index-12 CSi-Mon User’s Guide

	1. Installation
	2. Preparation
	3. Demonstration
	4. Configuration
	5. Combining the Monitor and Your Application
	6. Troubleshooting
	Appendix A: CSi-Mon Commands
	Appendix B: Register Tables
	Appendix C: Breakpoint Handle Tables
	Appendix D: CSi-Boot Error Messages
	Index
	Preface
	About this Manual
	Technical Support
	How to contact Technical Support:
	Getting Started
	1. Installation
	Installing CSi-Mon
	CSi-Mon Source Files
	2. Preparation
	Tools Required
	Why Is a Locator Needed?
	Hardware Resources
	ROM/RAM Resources
	Processor Resources
	Communication Resources
	3. Demonstration
	Loading/Installing a Monitor
	PC Absolutely Located Monitors
	DOS EXEDBG
	Embedded Targets
	Testing the Monitor
	Rebuilding the Monitor
	4. Configuration
	Before You Start
	Configuring a Monitor
	Target Hardware
	Configuring Monitor Extensions
	Communication Configuration
	Select a UART
	Polling Communication
	Interrupt-Driven Communication
	Configuring Interrupt Controllers for National and Intel UARTs
	Specify MAPI Functions
	Selecting Tools
	Locate the Monitor in Memory
	User Reference
	5. Combining the Monitor and Your Application
	When To Make CSi-Mon a Library and When Not To
	Combining Your Application with the CSi-Mon Library
	Merging the Source of Your Application and CSi-Mon
	Common Pitfalls
	6. Troubleshooting
	Incorrect I/O Addresses for Communication Device
	Incompatible Baud Rates
	Code Configured for Wrong Target
	Monitor Not Compiled Correctly
	Monitor Not Properly Located
	Appendix A: CSi-Mon Commands
	Monitor Command Syntax
	Command Syntax Elements
	Monitor Commands
	Command Tables
	Appendix B: Register Tables
	Stack Register Masks
	Appendix C: Breakpoint Handle Tables
	Appendix D: CSi-Boot Error Messages
	Index
	Installing CSi-Mon
	CSi-Mon Source Files
	Tools Required
	Why Is a Locator Needed?
	Hardware Resources
	ROM/RAM Resources
	Processor Resources
	Communication Resources
	Loading/Installing a Monitor
	PC Absolutely Located Monitors
	DOS EXEDBG
	Embedded Targets
	Testing the Monitor
	Rebuilding the Monitor
	Before You Start
	Configuring a Monitor
	Target Hardware
	Configuring Monitor Extensions
	Communication Configuration
	Select a UART
	Polling Communication
	Interrupt-Driven Communication
	Configuring Interrupt Controllers for National and Intel UARTs
	Specify MAPI Functions
	Selecting Tools
	Locate the Monitor in Memory
	When To Make CSi-Mon a Library and When Not To
	Combining Your Application with the CSi-Mon Library
	Merging the Source of Your Application and CSi-Mon
	Common Pitfalls
	Incorrect I/O Addresses for Communication Device
	Incompatible Baud Rates
	Code Configured for Wrong Target
	Monitor Not Compiled Correctly
	Monitor Not Properly Located

