
CSi-Mon User’s Guide i

CSi-Mon™

User’s Guide

Version 5.0
February 1998

ii CSi-Mon User’s Guide

Copyright and Trademark Information

Copyright 1998 United States Software Corporation. All rights
reserved. No part of this publication may be reproduced, translated
into another language, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of United
States Software Corporation.

CSi-Mon is a trademark of United States Software Corporation.
*Other brands and names are marked with an asterisk and are the
property of their respective owners.

United States Software Corporation makes no warranty of any kind
with regard to this material, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose.
United States Software Corporation assumes no responsibility for any
errors that may appear in this document. United States Software
Corporation makes no commitment to update or to keep current the
information contained in this document.

Concurrent Sciences, Inc. is a whole subsidiary of United States
Software Corporation.

United States Software Corporation
Concurrent Sciences Division
205 East 5th Street, Suite 6

Moscow, ID 83843
Telephone: 208.882.0445

Fax: 208.882.9774
E-Mail: tech@debugger.com

CSi-Mon User’s Guide iii

2

3

4

5

6

1

A

B

C

Quick Contents

Quick Contents

1. INSTALLATION ... 1-1

2. PREPARATION .. 2-1

3. DEMONSTRATION ... 3-1

4. CONFIGURATION... 4-1

5. COMBINING THE MONITOR AND YOUR APPLICATION ... 5-1

6. TROUBLESHOOTING .. 6-1

APPENDIX A: CSI-MON COMMANDSA-1

APPENDIX B: REGISTER TABLES ... B-1

APPENDIX C: BREAKPOINT HANDLE TABLES.....................C-1

iv CSi-Mon User’s Guide

Documentation Conventions

Computer output and code examples: Courier , usually in a
separate paragraph.

Function names and command names: Bold italic, functions are
followed by parentheses, as in main() function.

Variables: Courier 11 italic (mt_busy).

File names: Times bold (the file usrclk.asm), in lower case.

Key names: Initial capital, in angle brackets, as in press <Enter>.

Menu names and selections, dialog box names, screen titles,
window titles: Times bold, as in File menu.

Notes: Indicate important information.

Cautions: Indicate potential damage to hardware or data.

Warnings: Indicate potential injury to users.

Revision History

Revision Number History Date

2.0 Second Edition June 1996

Documentation Conventions

CSi-Mon User’s Guide v

D

I

Quick Contents

Quick Contents

APPENDIX D: CSI-BOOT ERROR MESSAGES.........................D-1

INDEX .. I-1

vi CSi-Mon User’s Guide

CSi-Mon User’s Guide vii

Contents

Contents

PREFACE.. XIII
About this Manual .. xiii
Technical Support ... xv

How to contact Technical Support: .. xvi

GETTING STARTED .. 1-1

1. INSTALLATION ... 1-1
Installing CSi-Mon ... 1-2
CSi-Mon Source Files .. 1-2

2. PREPARATION .. 2-1
Tools Required .. 2-2
Why Is a Locator Needed? ... 2-2
Hardware Resources ... 2-3

ROM/RAM Resources ... 2-3
Processor Resources ... 2-3
Communication Resources ... 2-4

3. DEMONSTRATION ... 3-1
Loading/Installing a Monitor .. 3-2

PC Absolutely Located Monitors ... 3-2
DOS EXEDBG ... 3-5
Embedded Targets .. 3-5

Testing the Monitor .. 3-6
Rebuilding the Monitor .. 3-10

viii CSi-Mon User’s Guide

Contents

4. CONFIGURATION... 4-1
Before You Start ... 4-2
Configuring a Monitor .. 4-3

Target Hardware ... 4-4
Configuring Monitor Extensions .. 4-5
Communication Configuration ... 4-6

Select a UART .. 4-6
Polling Communication .. 4-6
Interrupt-Driven Communication ... 4-7
Configuring Interrupt Controllers for National and Intel UARTs....... 4-9
Specify MAPI Functions .. 4-10
Selecting Tools...4-11
Locate the Monitor in Memory .. 4-12

USER REFERENCE .. 5-1

5. COMBINING THE MONITOR AND YOUR APPLICATION 5-1
When To Make CSi-Mon a Library and When Not To 5-2
Combining Your Application with the CSi-Mon Library 5-3
Merging the Source of Your Application and CSi-Mon 5-5
Common Pitfalls ... 5-13

6. TROUBLESHOOTING .. 6-1
Incorrect I/O Addresses for Communication Device 6-2
Incompatible Baud Rates .. 6-3
Code Configured for Wrong Target .. 6-3
Monitor Not Compiled Correctly ... 6-4
Monitor Not Properly Located ... 6-4

APPENDIX A: CSI-MON COMMANDSA-1
Monitor Command Syntax ...A-1

CSi-Mon User’s Guide ix

Contents

Command Syntax Elements ...A-1
Monitor Commands ..A-2
Command Tables ..A-12

APPENDIX B: REGISTER TABLES ... B-1
Stack Register Masks ... B-2

APPENDIX C: BREAKPOINT HANDLE TABLES.....................C-1

APPENDIX D: CSI-BOOT ERROR MESSAGES.........................D-1

INDEX .. I-1

x CSi-Mon User’s Guide

CSi-Mon User’s Guide xi

Figures

Figures

Tables

4. CONFIGURATION.. 4-1
Figure 4-1: Target hardware options .. 4-4
Figure 4-2: Monitor extension options ... 4-4
Figure 4-3: Communications options ... 4-7
Figure 4-4: Communication system specifications, 16450 UART .. 4-8

2. PREPARATION ... 2-1
Table 2-1: Processors supported by CSi-Mon 2-3
Table 2-2: Devices supported by CSi-Mon 2-5

APPENDIX A: CSI-MON COMMANDS ..A-1
Table A-1: Breakpoint types...A-5
Table A-2: Execution commands ...A-12
Table A-3: Memory commands ..A-12
Table A-4: Register commands ..A-13
Table A-5: Miscellaneous commands ..A-13

APPENDIX B: REGISTER TABLES .. B-1
Table B-1: General purpose and tasking registers B-1
Table B-2: Protection controls and debug registers B-2
Table B-3: Coprocessor stack registers .. B-3
Table B-4: Miscellaneous coprocessor registers B-4
Table B-5: Configuration table entries ... B-4

xii CSi-Mon User’s Guide

Tables

APPENDIX C: BREAKPOINT HANDLE TABLES......................C-1
Table C-1: breakpoint handles ... C-1

CSi-Mon User’s Guide xiii

Preface
Thank you for purchasing CSi-Mon™ monitor for Soft-Scope®
debugger. CSi-Mon is a monitor that can be embedded in a remote
target for use with Soft-Scope to aid in debugging an embedded
application.

About this Manual

This manual provides a reference to the features and functions of
CSi-Mon for Soft-Scope. We have organized the manual into three
sections with several chapters in each section. The Preface (this
section) contains information about the manual. Getting Started
contains everything necessary to get a monitor running on a target.
The User Reference contains advanced topics not covered in Getting
Started. To make the best use of this manual, read the chapters in
Getting Started in their entirety. The User Reference contains a
collage of stand alone chapters that can be read independently of each
other. A brief description of the chapters in each section follows:

Preface
About this Manual provides a road map to this manual, describing
major sections.

Technical Support describes how to reach Technical Support and
when to contact them.

xiv CSi-Mon User’s Guide

Getting Started
Installation explains how to install CSi-Mon.

Preparation lists the tools you need to build the monitor and lists the
resources the monitor will use.

Demonstration provides an introductory guide to building, installing,
and testing a monitor on a target.

Configuration provides step-by-step instructions on configuring a new
monitor.

User Reference
Combining the Monitor and your Application explains two methods
for merging the monitor and your application.

Troubleshooting lists common problems and their solutions; things to
try before contacting Technical Support.

Appendices
CSi-Mon Commands details the format and purpose of all the
commands between Soft-Scope and CSi-Mon.

Register Tables describes each register and how CSi-Mon
communicates it to Soft-Scope.

Breakpoint Handle Tables defines how breakpoints are stored and
communicated.

CSi-Boot Error Messages lists and defines CSi-Boot error messages.

About this Manual

CSi-Mon User’s Guide xv

Technical Support

Concurrent Sciences, Inc. provides technical support to its customers
via phone, FAX, E-mail, and the World Wide Web. Before you contact
us, ensure that you have done the following:

• Be sure the information isn’t already covered in the manual or in
the readme.doc on the installation disks.

• If the problem is related to source changes, be ready to provide an
example that reproduces the problem.

When you do contact us, be sure to provide:

• Your name

• The name of your company

• A method to contact you after we have researched the problem
(phone number, FAX number, or E-mail address)

• Version of the monitor (found at the top of CSICFG and on the
installation diskettes)

• Serial number for the monitor (found on the installation diskettes)

• Processor type

• Tool chain(s) used to build the monitor with version of each tool

• The csicfg.cfg file that was used to build the monitor should the
technician request it

• A description of the problem and your efforts to solve it

Technical Support

xvi CSi-Mon User’s Guide

Technical Support

How to contact Technical Support:

Phone: 208.882.0445 (between 9 AM and 5 PM Pacific Time)

FAX: 208.882.9774

E-mail: tech@debugger.com

World Wide Web: http://www.debugger.com

CSi-Mon User’s Guide 1

Getting Started

G
et

tin
g

S
ta

rt
ed

2 CSi-Mon User’s Guide

CSi-Mon User’s Guide 1-1

11. Installation
Before you can begin using CSi-Mon™, you need to install the
software. We suggest having at least 3 megabytes of disk space
available on the hard disk: 2 megabytes for the installation and 1
megabyte for building the new monitor.

Installing CSi-Mon ... 1-2
CSi-Mon Source Files .. 1-2

Chapter Contents

1-2 CSi-Mon User’s Guide

Installing CSi-Mon

CSi-Mon is installed at the DOS prompt. You will create a directory
on the hard disk for CSi-Mon. In this example, we will create a
directory called CSIMON on the C: partition.

1 At the DOS prompt from the root of your C: partition, type
MKDIR CSIMON and press <Enter>.

2 Move to the CSIMON directory. At the DOS prompt type CD
CSIMON and press <Enter>.

3 Insert the installation disk in the floppy disk drive from which you
will install CSi-Mon and type A:INSTALL A: and press <Enter>.

4 Insert additional diskettes when prompted until the installation is
completed.

5 Refer to the file contents.doc in the CSIMON directory to ensure
that all files are present.

CSi-Mon Source Files

Except for some start-up code written in assembly language, CSi-Mon
is written in C. The assembly code is found in six files.

The monitor source is found in the SRC subdirectory. The following
is a list of the source files and a description of each:

break.c—Breakpoint management code

common.asm—Common (to protected and real modes) low-level
monitor support code

csicfg.h—(Generated by the CSi-Config configuration utility)
Contains configuration information needed by C files

Installing CSi-Mon Installation

CSi-Mon User’s Guide 1-3

1

csicfg.inc—(Generated by the CSi-Config configuration utility)
Contains configuration information needed by assembly files

csiloc.inc—Macros for CSi-Locate and CSi-Link™ support

csimon.h—Monitor definitions used by all C files

csimon.inc—Monitor definitions used by all assembly files

environ.h—Special directives for various compilers

extend.c—User extensions to monitor management code

extend.h—Prototypes of extension management; also location for
user defined extensions of the monitor

main.c—Command processor and dispatch code

mapi.c—MAPI management code

mapi.h—Provide macro support for MAPI to the user

memory.c—Memory management (read, write, move, linear to
logical translation, logical to linear translation, etc.)

ns486sxf.asm—NS486SXF processor startup code

pic.c—PIC controller management software

pmonitor.asm—Protected-mode specific low-level monitor support
code

promice.c—Monitor communications management using Grammer
Engine’s PromICE

pstart.asm—General protected-mode processor startup code

register.c—Register management code

rmonitor.asm—Real-mode specific low-level monitor support code

rstart.asm—General real-mode processor startup code

siuart.c—Monitor communications management using various
UARTs

CSi-Mon Source FilesInstallation

1-4 CSi-Mon User’s Guide

xlate.c—Translation of communications content to something usable
(ASCII decimal to binary decimal and vice versa)

CSi-Mon Source Files Installation

CSi-Mon User’s Guide 2-1

2
2. Preparation

The purpose of this chapter is to describe what resources are required.
The first section describes what tools are needed to build the monitor
along with what tool suites are supported. A common question asked is
“Why do I need a locator?” Because of this, the second section is
dedicated to this topic. The last section details the hardware resources the
monitor requires and works with.

Tools Required .. 2-2
Why Is a Locator Needed? ... 2-2
Hardware Resources ... 2-3

ROM/RAM Resources ... 2-3
Processor Resources ... 2-3
Communication Resources ... 2-4

Chapter Contents

2-2 CSi-Mon User’s Guide

Tools Required

As with any application, tools are required to build it. The monitor is
written in MASM compliant assembly and in ANSI-C. Both
assembly and C source make heavy use of macros and conditional
statements to allow the most flexibility both for tools and for
portability. The following tool suites are supported (see readme.doc
found on the installation diskettes for the exact versions tested):

Assemblers: Microsoft’s MASM/ML*, Borland’s
TASM*, Pharlap’s 386|ASM*

Compiler suites: Microsoft Visual C*, Borland C*, Watcom
C*, MetaWare’s HighC*

Linkers/Locators: Concurrent Sciences’ CSi-Locate,
Concurrent Sciences’ CSi-Link™, Pharlap’s
LinkLoc*

Librarians: Microsoft’s LIB*, Borland’s TLIB*,
Pharlap’s 386|LIB*

Why Is a Locator Needed?

When working in an embedded environment the developer generally
needs to bootstrap the processor and related hardware into a known
state. There isn’t necessarily any loader or operating system that has
already done this. Linkers, on the hand, combine the objects of an
application into a relocatable format with the assumption there is an
operating system that will place it where it wants it. The locator does
the final job that an operating system would normally do by resolving
the finished application into a physical location where it will always
load.

The monitor is adept to this type of environment. It contains the
startup code necessary to initialize the hardware as well as code
necessary to move ROM data into RAM space. Because of this, it is
designed to be burned into PROMs. However, to burn a PROM, a

Tools Required Preparation

CSi-Mon User’s Guide 2-3

2

.hex file needs to be generated, which is an absolutely located piece
of code that is accomplished by the locator.

Hardware Resources

ROM/RAM Resources

The monitor requires roughly 8K of RAM and 20K of ROM. These
values will vary widely depending upon what tools you use and what
memory model is selected.

Processor Resources

The monitor will work with just about any x86 processor. The
following is a list of processors supported as of this writing. The
readme.doc on the installation diskettes should contain any newly
included processors not listed below.

Table 2-1: Processors supported by CSi-Mon™

:straPletnI :straPletnI :straPletnI :straPletnI :straPletnI

6808 68208 67308 XD68308 XD68408 muitneP

8808 XS68308 XS68408

88108 881C08 AE88108 BE88108 CE88108 LX88108

68108 681C08 AE68108 BE68108 CE68108 LX68108

:straPDMA :straPDMA :straPDMA :straPDMA :straPDMA

ME881 XE881 RE881

ME681 SE681 RE681

Hardware ResourcesPreparation

2-4 CSi-Mon User’s Guide

Table 2-1: Continued

The standard 80x87 coprocessors are also supported.

The monitor also requires resources contained within the processor
(varies depending on the above chosen processor). These include
GDT space, IDT space, task register, IRQs, and debug registers. The
number of GDT and IDT slots that the monitor uses varies with
different configurations. You should reserve GDT[0..63] and
IDT[0..39] to ensure compatibility with future monitor upgrades.

Communication Resources

The readme.doc will contain any new means of communication
support more recent than this writing.

Serial Communications
In a typical installation, CSi-Mon communicates with Soft-Scope via
a serial port on the target board. This communication is usually done
with a UART, baud rate generator, and a Programmable Interrupt
Controller (PIC). All of these are configurable. The following is a
list of devices supported:

Hardware Resources Preparation

:traProtcudnocimeSlanoitaN :traProtcudnocimeSlanoitaN :traProtcudnocimeSlanoitaN :traProtcudnocimeSlanoitaN :traProtcudnocimeSlanoitaN

FXS684SN

:straPCEN :straPCEN :straPCEN :straPCEN :straPCEN

02V 03V 04V 05V

CSi-Mon User’s Guide 2-5

2

Table 2-2: Devices supported by CSi-Mon

NOTE: Those processors listed previously that have serial
capabilities integrated within them are also supported
(e.g., 186EB).

ROM Emulator
CSi-Mon can also communicate with Soft-Scope via a ROM socket
using the PromICE ROM emulator from Grammar Engine. This is
useful if your target board does not have a serial port. When building
the monitor, use the promice.c module in place of siuart.c. See the
promice.doc located in the SRC directory for instructions on building
a monitor for the PromICE.

Hardware ResourcesPreparation

:STRAU :STRAU :STRAU :STRAU :STRAU

:straPlanoitaN :straPlanoitaN :straPlanoitaN :straPlanoitaN :straPlanoitaN
:straPletnI

0528
1528

05461
4728

05561

:rotareneGetaRduaB :rotareneGetaRduaB :rotareneGetaRduaB :rotareneGetaRduaB :rotareneGetaRduaB

:traPletnI :traPletnI :traPletnI :traPletnI :traPletnI 4528

:rellortnoCCIP :rellortnoCCIP :rellortnoCCIP :rellortnoCCIP :rellortnoCCIP

:traPletnI :traPletnI :traPletnI :traPletnI :traPletnI 9528

2-6 CSi-Mon User’s Guide

CSi-Mon User’s Guide 3-1

3

3. Demonstration
The purpose of this chapter is to demonstrate how to set up and run a
monitor. The purpose is twofold. First, we want you to have the tools
to perform a “sanity check.” That is, we want to provide you with a
quick method to discover that our product works. The second reason
is to present a methodology for building, testing, and loading the
monitor using working examples.

This chapter consists of three sections: Loading/Installing a Monitor,
Testing the Monitor, and Rebuilding the Monitor. The first section
will guide you through the process of loading or installing a stock
monitor onto various targets. Once you have the monitor installed,
the second section will give you tips, hints, and suggestions on how to
test the monitor to determine if it is working properly. The third
section will list step-by-step instructions on rebuilding the stock
monitor with your tools.

Loading/Installing a Monitor .. 3-2
PC Absolutely Located Monitors ... 3-2
DOS EXEDBG ... 3-5
Embedded Targets .. 3-5

Testing the Monitor .. 3-6
Rebuilding the Monitor .. 3-10

Chapter Contents

3-2 CSi-Mon User’s Guide

Loading/Installing a Monitor

You will find several stock monitors in the standard directory on the
installation diskettes. Please read the readme.doc found in this
directory, as it contains information on each monitor included. This
information details which targets the monitors were built for in
addition to important configuration information (e.g., communication
parameters). The readme.doc also contains information about
monitors included on the diskettes but not listed in the manual.

Because monitors are capable of working on a variety of targets, we
recommend that you try installing a monitor on a standard PC target
before moving onto your own hardware. The following sections
demonstrate both PC absolutely located monitors, the DOS EXEDBG
monitor, and embedded monitors.

PC Absolutely Located Monitors

The easiest and quickest way to see a monitor work is to install one
on a PC. The hardware is generally standard and therefore known,
unlike embedded targets which vary. However, once loaded the
monitor does control the PC, thus there are some restrictions to
consider before loading and executing the monitor.

First, be sure that your PC is strictly in DOS mode. If it is not, the
monitor will conflict with a multitasking operating system. You
cannot install the monitor from within a DOS window (such as from
Microsoft Windows* or OS/2*).

Second, for best results boot your machine without any device drivers
or TSRs (they’ll be useless after the monitor is loaded anyway). This
is particularly true of EMM386, which interferes with serial
communications.

Third, test your serial communications between the PC you will use
for the monitor as a target and the PC that will act as the host. You
will probably be using a NULL modem cable to connect the two. Be
certain that you note which serial port of the target machine you are

Loading/Installing a Monitor Demonstration

CSi-Mon User’s Guide 3-3

3

using! Once you are sure that the two machines are capable of
communicating, select the stock monitor appropriate for your needs.

We have included four monitors (two protected-mode and two real-
mode) on the installation diskettes. (See the readme.doc for
information on each monitor and for a listing of monitors included on
the diskettes but not listed in the manual.) All of the monitors are
configured identically except for the processor mode and the serial
port used. All monitors are configured to communicate at 9600bps.
The following is a description of the PC-based monitors:

r86com1.hex A real-mode, absolutely located monitor with no
NPX support, configured for COM1. This monitor
will run on most processors.

r86com2.hex A real-mode, absolutely located monitor with no
NPX support, configured for COM2. This monitor
will run on most processors.

p386com1.hex A protected-mode, absolutely located 386 monitor
with no NPX support, configured for COM1. This
monitor will run on any processor greater than the
386.

p386com2.hex A protected-mode, absolutely located 386 monitor
with no NPX support, configured for COM2. This
monitor will run on any processor greater than the
386.

Once you have decided which monitor to load, use the utility CSi-
Boot (located in the UTIL directory) to load the monitor. To do so,
enter the following at the DOS prompt:

csiboot r86com1.hex

(Replace r86com1.hex with the monitor you have chosen to use.)

Loading/Installing a MonitorDemonstration

3-4 CSi-Mon User’s Guide

Something similar to the following should appear on the target’s
screen:

CSi-Boot V3.0 Concurrent Sciences, inc. (C) 1990-1994

Load File name: r86com1.hex

Start location: 747c:0200

Hex file image: 00070000P to 000749c4P, 18830 bytes used, 0% unused

Loader address: 00039cc0P to 00049e20P

Scratch memory: 00010000P to 0001ffffP, 64K at 1000:0000

Booting...

Each line is described below:

Load file name is the name of the monitor .hex file.

Start location is the memory address where the monitor begins
execution.

HEX file image defines the area of memory where the monitor is
located, the number of bytes it uses, and how much
memory is available for other uses.

Loader address defines the memory where the CSi-Boot utility is
located.

Scratch memory defines temporary memory where the monitor is
placed while it configures the target before booting.
This memory is available after the boot is complete.

When the load program prints the message “Booting...” on the screen,
the monitor is ready to use with Soft-Scope. It has taken over control
of the processor and is unable to write any further messages to the
screen indicating that the boot process is complete. To reboot CSi-
Mon, restart the target PC and repeat the process described above.

NOTE: CSi-Boot cannot load a CSi-Mon monitor into a
memory location above 1MB nor can it load monitors
that exceed 64K.

Loading/Installing a Monitor Demonstration

CSi-Mon User’s Guide 3-5

3

If monitor loading/installation was successful, you may proceed to the
next section Testing the Monitor.

DOS EXEDBG

exedbg.exe is a DOS-loadable .exe application. It will only debug
real-mode DOS applications.

First, your PC must be in DOS mode. Do not install the monitor from
within a DOS window (such as from Microsoft Windows* or OS/2*),
as we have found this type of installation to act erratically and
unpredictably with the operating system.

Second, for best results, boot your machine without device drivers or
TSRs. This is particularly true of EMM386, which interferes with
serial communications.

Third, test your serial communications between the PC you will use
for the monitor as a target and the PC that will act as the host. You
will probably be using a NULL modem cable to connect the two.
Know which serial port of the target machine you are using! Once
you are certain the two machines can communicate, select the stock
DOS EXEDBG monitor (currently, only one is provided; see the
readme.doc to note the serial port configuration).

Run exedbg.exe at the DOS prompt. Next, run the application you
wish to debug (see Debugging .exe Executable Files as described in
the Soft-Scope User’s Guide).

NOTE: You must run the application before testing the
monitor. The application will activate the monitor.

Embedded Targets

Because there are a variety of vendors and evaluation boards
available, we have included several monitors. See the readme.doc
for information on each monitor and for a listing of monitors included

Loading/Installing a MonitorDemonstration

3-6 CSi-Mon User’s Guide

on the diskettes but not listed in the manual. Review the
documentation from your vendor on how to place the monitor on the
evaluation board.

Testing the Monitor

The bootstrap process of setting up and running a monitor can be
stressful. This section will give you a method for quickly evaluating
whether the monitor is functioning properly. Initially, use the same
terminal program on your host that you used to ensure the
connectivity of the PC, as described in previous sections. This
information also applies for embedded monitors. Again, make sure
the baud rates are correct. If the terminal program is up when the
monitor first starts, you should see the following (or similar) sign-on
string:

CSiMON-386DXP - Loaded PC/AT V5.01 (386DX PROTECTED MODE)

>

If you don’t see this string, press the <Enter> key to see if the prompt
(‘>’) appears. Occasionally the sign-on string may get discarded
depending on the board you are using. (If you are using the TSR
version, nothing will appear until after the application is executed.
The ss_brk function embedded in the application will trigger
CSi-Mon. See your Soft-Scope manual for more information.).

To troubleshoot, look for the following items:

• If no sign-on string appears and no prompt (‘>’) can be initiated
with repeated presses of the <Enter> key, check the hardware
(cabling, ports, etc.) and configuration (proper baud rate, port,
IRQ, etc.). You may also need to ensure that the GDT table and
pointer are located correctly and that the lgdt instruction has the
appropriate segment override.

Testing the Monitor Demonstration

CSi-Mon User’s Guide 3-7

3

• If the sign-on string appears but there is no apparent response
when the <Enter> key is pressed, check the hardware (cabling,
ports, etc.).

• If the prompt (‘>‘) appears but no sign-on string is present, this
may still be acceptable.

Once you have a prompt that can be initiated with the <Enter> key,
the next step is to check the functionality of the monitor. Although
the monitor is communicating, it is possible that other problems can
occur due to misconfiguration.

NOTE: See CSi-Mon Commands in the Appendix to learn the
commands to further test the monitor.

At the prompt type a ‘v’ and press the <Enter> key as follows:

>v
CSiMON-386DXP - Loaded PC/AT V5.01 (386DX PROTECTED MODE)

>

You should see the same string as the initial sign-on string as when
the monitor first came up. If you don’t see the string, trouble shoot a
second time by looking for the following:

• If the prompt appears but the sign-on string is either nonexistent
or useless data, check that the monitor RAM memory is located in
actual RAM space (look at the memory map in your locator’s map
file).

Try the command ‘V’ and press the <Enter> key.

>V
80010110
>

This command tells SoftScope the parameters of the monitor. The
leading ‘8’ tells Soft-Scope that the monitor is interrupt driven. If you
are using a non-interrupt driven monitor, you may only see a ‘10110’.
The importance of this command will become clear later when you
actually run Soft-Scope.

Testing the MonitorDemonstration

3-8 CSi-Mon User’s Guide

• If a <02> returns or the monitor immediately hangs, you may have
a problem with improperly setup segments (CS != DS) for flat
model monitors. Some compilers will embed the jump table
within the code segment. When the monitor attempts to evaluate
the switch statement (within the monitor code) for the command
processor, useless data is read and an error is returned, thus the
monitor assumes that any command entered is incorrect.

Next, try the series of extension commands: attempt E0-E4. A
discussion will follow each command.

>E0

Code=70000,75E70 Data=75E80,76CF0 Stack=75E90,76290,2C8

The first extension ‘E0’ simply displays where the code, data, and
stack start and stop are located in memory. This command is used to
confirm that the command processor is working properly. It also
further proves that the monitor is properly located (you may want to
confirm this is correct by checking it against the map file created by
your locator).

>E1
CSiMON extension number 1.
>E2
CSiMON extension 2 line 1.
CSiMON extension 2 line 2.

These commands are the first to test whether RAM initialization
worked properly. The version string is located in the code segment,
not the data segment, and therefore does not need to be moved during
the RAM initialization process. The output of the ‘E0’ command is
accomplished by statically sending a single character at a time (you
may want to refer to extend.c). However, the above strings are those
stored in the data segment (possibly BSS depending on your
compiler) and as such need to be copied from ROM to RAM before
being used.

• If you receive useless data or no string at all and if the monitor is
ROM based, you may have a problem with the RAM initialization

Testing the Monitor Demonstration

CSi-Mon User’s Guide 3-9

3

(the process of copying the initialization records from ROM into
the RAM space upon startup).

>E3
0,0,0,0

Displays the configuration values.

>E4
<02>

This display is actually the expected result as ‘E4’ is not a valid
command in a stock monitor.

The next group of commands is used to test memory reading and
writing coupled with manipulation of the register scratch area. Since
we aren’t switching to a live application, the registers are never
updated. However, since the scratch area is in RAM, using these
commands will test whether the linear to logical address translations
are occurring correctly.

>r3c
0,0,0,0
>R3c,1,2,3,4
>r3c
1,2,3,4
>

The first command, ‘r3c’, attempts to read some registers (see
CSi-Mon Commands and Register Tables in the Appendix). Which
registers the monitor attempts to read does not matter. The second
command, ‘R3c,1,2,3,4’, attempts to write values to those registers.
The third command attempts to read the values from the registers.

• If any errors occur during these operations and you are using a
protected-mode monitor, ensure that L2L_SRC and L2L_DST
selectors are located in the RAM area. Because the monitor is
designed to be flexibly built as segmented or not, it continues to

Testing the MonitorDemonstration

3-10 CSi-Mon User’s Guide

use selectors for translation whether the CODE/DATA is flat or
not.

The next important command to try before starting Soft-Scope is the
‘z’ command.

>z
>

The ‘z’ command resets the monitor as if it had just come up from a
power up. Occasionally a few bytes of useless data appear before the
prompt—this is acceptable. The troubleshooting comments discussed
earlier in this section apply here as well; be aware that initialization
occurs in two locations in the code.

Lastly, repeat your attempt of the ‘r3c’ command to determine that
memory has been reinitialized (all of the register values should be
zero).

Now you can close your terminal program and bring up Soft-Scope.
Download one of the sample applications provided and do some
sample debugging to further ensure that the monitor is working
properly.

Rebuilding the Monitor

Now that you have set up and run a stock monitor, rebuild it using
your own tools. The purpose of this exercise is to ensure that your
tools are configured properly and compatible with the monitor. Once
you have rebuilt the stock monitor, be assured that porting the monitor
to your target board will go smoothly. To reduce the number of
possible errors, we recommend that you initially only change the
configuration of the tools.

Rebuilding the Monitor Demonstration

CSi-Mon User’s Guide 3-11

3

For each of the stock monitors provided, there is a corresponding .cfg
file. This file contains the configuration information that was used by
the CSi-Config monitor configuration utility to build each monitor.
Copy the appropriate .cfg file to the location of the monitor source.

Startup CSi-Config using the configuration file of the stock monitor
you just tested on your target as follows:

CSICFG P386COM1.CFG

Using the <PgDn> key, scroll down to the section marked in red,
Specify the compiler to build CSi-Mon. From there, use the <Tab>
key (or <Shift+Tab>) to move the cursor to the desired compiler
option. Once the cursor is located where you want, press the spacebar
to select the option.

Repeat the process for your assembler in the following section,
Specify the assembler to build CSi-Mon, marked in red.

Once you have selected your assembler, repeat the process to select a
memory model in the next section, Specify the memory model for
CSi-Mon. Depending on your compiler, small or flat is really all that
is necessary.

Next, move your cursor to the Path to library files: entry field.
Delete the stock path and replace it with the path to the location of
your compiler’s libraries.

Lastly, repeat the process once more to select your linker/locator in
the last section, Specify the link/locate tools to build CSi-Mon.

Once you have completed these steps, press the <Esc> key. A box
will appear giving you three options. Press ‘G’ to generate the new
files given the options you have selected. This will create four files:
csicfg.inc, csicfg.h, build.bat, and makefile. Both the build.bat and
makefile assume your tools are in your path. The makefile should
work with any make utility as it specifically avoids a particular
vendor’s features.

If your tools are not in your path, you may need to edit either
build.bat or makefile. All that is left is to build the new monitor.

Rebuilding the MonitorDemonstration

3-12 CSi-Mon User’s Guide

Once the monitor is built, you can repeat the process described in this
chapter to load/install and test the new monitor.

Congratulations! Now that you have enabled the monitor to work
using your tools, see the chapter Configuration for a thorough
discussion of the CSi-Config utility.

Rebuilding the Monitor Demonstration

CSi-Mon User’s Guide 4-1

4

4. Configuration
CSi-Config is an interactive configuration utility in which you fill out
an online form describing requirements for the monitor you want to
build. Unless your target has unusual, special requirements, there is
no need to edit a batch file or write special code.

If your target has special requirements, the distribution diskettes
contain a copy of the CSi-Mon source code.

Before You Start ... 4-2
Configuring a Monitor .. 4-3

Target Hardware ... 4-4
Configuring Monitor Extensions .. 4-5
Communication Configuration ... 4-6

Select a UART .. 4-6
Polling Communication .. 4-6
Interrupt-Driven Communication ... 4-7
Configuring Interrupt Controllers for National and Intel UARTs....... 4-9
Specify MAPI Functions .. 4-10
Selecting Tools...4-11
Locate the Monitor in Memory .. 4-12

Chapter Contents

4-2 CSi-Mon User’s Guide

Before You Start

Each section in this chapter corresponds to a configuration step in
CSi-Config, and each section describes technical information that is
not hard to find, but may not be handy without prior preparation.

In some sections, especially the one on communications, some
options listed may not apply to your hardware. It isn’t necessary for
you to read those options, although we recommend you carefully
review each item and have the necessary information before
beginning configuration of the monitor. Following is a brief summary
of what you will do in each step:

1 Select an option defining the target’s CPU and numeric
coprocessor, if any. Specify the operating mode of the target,
either real or protected; what hardware configuration it has; and
what kind of monitor you want to use, absolutely located or
ROMmed, for example. (Step 1 includes the sections Configuring
a Monitor and Target Hardware.)

2 Specify #defines, equates, module names, and libraries for
monitor extensions. (Step 2 includes the section Configuring
Monitor Extensions.)

3 Define the specifications and capabilities of your target-hardware
communications device. (Step 3 includes the sections:
Communication Configuration, Select a UART, Polling
Communication, Interrupt-Driven Communication, National
Semiconductor 16450/16550, Configuring Interrupt Controllers
for National and Intel UARTs, and Intel 8251 or 8274 UARTs.)

4 Configure application I/O through CSi’s Monitor Application
Programming Interface (MAPI). (Step 4 includes the section
Specify MAPI Functions.)

5 Tell CSi-Config which of the tools you are using as listed in the
chapter Preparation. (Step 5 includes the section Selecting Tools.)

Before You Start Configuration

CSi-Mon User’s Guide 4-3

4

6 Define where in the target computer’s memory you want the
monitor located. (Step 6 includes the section Locate the Monitor
in Memory.)

Most descriptions of these steps are accompanied by an applicable
example of the CSi-Config screen. Because the contents of each
screen depend on previous configuration choices, the screens shown
in the manual may not exactly match the screens you see when
running the configuration utility.

Configuring a Monitor

During installation of CSi-Mon, the monitor configuration program
was placed in the CSIMON\SRC subdirectory. To run the monitor
configuration, type the following at the DOS prompt while in that
directory:

csicfg [filename]

When the monitor has completed configuration, CSi-Config creates a
file to store the specifications. The default name for this file is
csicfg.cfg, and you can recall the file to build a new monitor or to
make changes in the specifications of the existing monitor. To recall
the file, include the filename on the invocation line shown above.

CSi-Config outputs the following four files:

csicfg.inc Assembly and C include file containing
specifications

csicfg.h Assembly and C include file containing
specifications

build.bat Batch file to compile and link the monitor

makefile Makefile equivalent to the above batch file for use
with make utilities

Configuring a MonitorConfiguration

4-4 CSi-Mon User’s Guide

The description of CSi-Config configuration options follows.

Target Hardware

You need to know the configuration of your target hardware. This
includes whether a numeric processor exists and the CPU and
numeric coprocessor types. Also, know whether your target is a PC or
a custom target board.

Things to consider when configuring your monitor:

• Monitors for Pentium, 80486, 80386, and 80286 processors can be
built to run in real or protected mode.

• If you are going to debug real-mode applications, indicate Real,
no matter what your target CPU is.

• If you are going to debug protected-mode software, select
Protected.

• Use one of the PC configurations if you are using an IBM PC or
compatible motherboard. For all custom boards, use the OTHER
configuration option.

Figure 4-1: Target hardware options

Configuring a Monitor Configuration

CSi-Mon User’s Guide 4-5

4

Configuring Monitor Extensions

The User’s Configuration Options make it easy to extend your
CSi-Mon monitor.

The options offered by CSi-Config follow:

Name Allows you to include information in the CSi-Mon
sign-on string. This feature is helpful when keeping
track of a series of monitors as they evolve, for
example.

User (1..4) Allows you to specify #defines and equates in
csicfg.h and csicfg.inc. You can then use the
#defines for any additional needs you have when
extending the monitor.

Comments box Allows you to put remarks in the include file.

Modules Allows you to specify module names and paths.

Library Allows you to specify additional libraries for
linking to the monitor.

Figure 4-2: Monitor extension options

Configuring Monitor ExtensionsConfiguration

4-6 CSi-Mon User’s Guide

Communication Configuration

The topics below will help you configure your monitor’s
communication system. Each value in CSi-Config has a default value
already entered.

You may need to consult the documentation for your target board to
determine whether your target will support the default values. Refer
to the vendor documentation of the part for the proper values.

CAUTION: CSi-Mon and Soft-Scope have been tested at 115200
baud. You can operate at this rate if your system can
be configured to do so. However, systems running at
high baud rates that do not have a National
Semiconductor 16550-FIFO UART sometimes lose
characters and cause Soft-Scope to malfunction.

Select a UART

If your board uses one of the standard UARTs listed in CSi-Config,
the following tips apply:

• The National Semiconductor 16450 family of UARTs has internal
baud-rate generators. Unless special circumstances require an
external baud-rate generator for boards with one of these UARTs,
select None in the baud-rate generator section.

• Default configuration values are based on PCs where applicable.

Polling Communication

Although we do not recommend it, you can configure the monitor for
polled communications. When the monitor uses polled
communications, Soft-Scope does not utilize many features (stopping
the application while running, viewing variables while running, etc.).

Communication Configuration Configuration

CSi-Mon User’s Guide 4-7

4

However, using polled communications is an option when interrupt
capabilities are not available (e.g., using Grammer Engines’
PromICE).

Interrupt-Driven Communication

To stop target execution with the Code/Stop command or examine
memory while the target executes, configure your monitor with
interrupt-driven communication.

IBM and compatible PCs have two interrupt controllers. Custom
boards may only have one. If your system has two interrupt
controllers, selecting both the master/slave and slave configuration
options, as shown below, enables your application to use the slave
controller and Soft-Scope to use the master/slave system:

8259M Configure a master/slave or single PIC system
8259S Configure a slave PIC

Figure 4-3: Communications options

Communication ConfigurationConfiguration

4-8 CSi-Mon User’s Guide

National Semiconductor 16450/16550 UART
• You will need the base port address of the UART. If your target is

a PC, the following values are valid:

COM1 0x03f8 COM3 0x03e8
COM2 0x02f8 COM4 0x02e8

• You will need the address delta between ports. To avoid having to
multiplex a 16- or 32-bit data bus into an 8-bit peripheral, some
hardware is addressed by ignoring low address lines. An 8-bit
peripheral located on the lower data lines of a 16-bit bus uses a
delta of 2. On a 32-bit bus, the delta is 4. Standard PC hardware
maintains compatibility with 8-bit buses so the delta is 1 whatever
the bus width is.

• Specify the UART’s serial data clock input rate. For PCs, this
value is usually 1843200.

• Specify the baud rate; be sure to use the same rate as configured
for Soft-Scope.

• To determine the communication interrupt vector, add the IRQ
and the base vector together. For example, if you are using
COM1 and IRQ 4, and the base vector is 0x08, the interrupt
vector would be 0x0C.

Figure 4-4: Communications system specifications, 16450 UART

Communication Configuration Configuration

CSi-Mon User’s Guide 4-9

4

Configuring Interrupt Controllers for National
and Intel UARTs

To set up the master and slave Programmable Interrupt Controllers
(PICs) you will need to know the following:

• Master and slave addresses

• Delta

• Base vector

• Slave mask

• Master channel

The values for PICs can be system specific. If your target is not a PC,
see your hardware specifications to determine whether the default
values will work.

Intel 8251 or 8274 UARTS
If the target is using Intel 8251 or 8274 UARTs:

• Know the base-port address of the UART.

• Know the address delta between ports. To avoid having to
multiplex a 16- or 32-bit data bus into an 8-bit peripheral, some
hardware is addressed by ignoring low address lines. An 8-bit
peripheral located on the lower data lines of a 16-bit bus uses a
delta of 2. On a 32-bit bus, the delta is 4. Standard PC hardware
maintains compatibility with 8-bit buses, so the delta is 1
whatever the bus width is.

• Supply an acceptable input rate from an external source if the
UARTs on the target does not have internal baud rate generators.
Intel 8254 timers convert the rate of an external clock into an
acceptable communication baud rate by dividing the clock rate by
a number n. You do not need to know the value of n, but you must
know which channel of the timer (0, 1, or 2) will be used.

Communication ConfigurationConfiguration

4-10 CSi-Mon User’s Guide

• Know the base-port address of the Intel 8254 timer.

• Know the baud rate of the external clock that provides the timer
with an initial value, and the baud rate you want the UART to use
when communicating with the host computer. Be sure to specify
the same rate as configured for Soft-Scope.

• Configure your Programmable Interrupt Controllers (PICs) as
specified in the section Configuring interrupt controllers for
National and Intel UARTs.

Specify MAPI Functions

The Monitor Application Programing Interface (MAPI) provides
application I/O functions that communicate on the same serial channel
Soft-Scope uses. The functions perform the following tasks:

CSIMON_CO Console output. Writes a single character to CSi-
Mon’s communications channel. When Soft-Scope
is present, output is queued for display in the
Application I/O or Message windows.

CSIMON_CI Console input. Reads a single character from CSi-
Mon’s communication channel.

When the message, “Console input wait” displays at
the top of the Code window, press <F10> to toggle
the keyboard from Soft-Scope to application I/O
mode before inputting from the keyboard. Press
<F10> again to toggle back to Soft-Scope mode
after inputting.

CSIMON_CP Poll function. Tells the caller if data is available
through CSIMON_CI.

CSIMON_MO Message output. Sends messages to Soft-Scope. A
message is a series of characters terminated by a
zero. This is ignored if Soft-Scope is not present.

Communication Configuration Configuration

CSi-Mon User’s Guide 4-11

4

These routines are contained in an assembly module that you will
need to include in your application. Although you may need to
modify it slightly to meet your application’s specific needs, we have
included the files mapi.asm, mapi.a38, and the header file mapi.h,
which can be found in the directory SSWIN\CSIMON\MAPI.
Sample programs showing how to use these routines can be found in
SSWIN\SAMP\MAPI86 and SSWIN\SAMP\MAPI386.

You can choose to run your application with or without Soft-Scope
disabled:

X Uppercase X, entered from Terminal mode (enabled by
typing TERMINAL in the Command line dialog box)
causes your application to run, but CSi-Mon doesn’t
know that Soft-Scope is present, so buffering is turned
off.

Control-R Tell CSi-Mon that Soft-Scope is running. Pressing any
other key sequence will confuse CSi-Mon because it
has no knowledge of Soft-Scope until after this
command is given.

Selecting Tools

Select the tools you intend to use to build the monitor. See the
chapter Preparation for tools we support. If you are using tools that
are not listed, edit the batch file build.bat and/or the makefile to
configure the monitor.

Although you can independently select the compiler, assembler,
linker, locator, and librarian, all combinations are not guaranteed to
work. Review the notes in the readme.doc on the installation
diskettes for known combinations that cause problems.

You have the option of selecting the memory segmentation model you
want to use when building a CSi-Mon monitor. The monitor does not
have to be the same model as your application. Unless you plan to
combine the monitor (as described in Combining the Monitor and

Communication ConfigurationConfiguration

4-12 CSi-Mon User’s Guide

Your Application), it does not matter which model you use.
Generally, small or flat is sufficient to build the monitor.

Also, know the path to your target’s C library such as the following:

C:\msc\libs\

Locate the Monitor in Memory

Know the physical starting and ending addresses of the PROM and
RAM portions of the monitor—this is important—you need to know
the physical address. The values entered into CSi-Config are physical
addresses. The comma is used only to separate the high word from
the low word. It is important to locate the monitor in memory that is
not used by your application. The reset segment is normally 64k
below the top of the processor’s addressable memory.

The starting RAM and ROM addresses should be paragraph aligned
(16-byte). If you want to test the monitor on a PC before you burn it
into a PROM, the following addresses should work:

• Starting RAM = 0x0000,0400

• Starting ROM = 0x0007,0000

• Reset address = 0x0007,FFF0

CAUTION: CSi-Mon should not be configured so that its data area
is located below 0x0000,0400 in memory because it
will overwrite the interrupt vector table. Soft-Scope
uses interrupts to perform some of its commands, and
locating CSi-Mon below 0x0000,0400 may cause you
to lose functionality of the debugger.

For processors that use a peripheral control block and/or chip selects,
CSi-Config provides a means to enter the appropriate values. The
default values are those from popular evaluation boards. Refer to the
vendor documentation of your processor to ensure the proper values
are entered.

Communication Configuration Configuration

CSi-Mon User’s Guide RM

User Reference

U
se

r
R

ef
er

en
ce

2 CSi-Mon User’s Guide

CSi-Mon User’s Guide 5-1

5

5. Combining the Monitor and
Your Application

This chapter describes the mechanics of combining the monitor with
your application. In the first section we describe the differences
between using a library with your application and actually making
changes to the monitor to merge it with your application. In the
second section we explain the process of making the monitor a library
and linking it with your application. In the last section we describe
how to modify the protected-mode monitor source and merge it with a
sample application.

When To Make CSi-Mon a Library and When Not To 5-2
Combining Your Application with the CSi-Mon Library 5-3
Merging the Source of Your Application and CSi-Mon 5-5
Common Pitfalls ... 5-13

Chapter Contents

5-2 CSi-Mon User’s Guide

When To Make CSi-Mon a Library and
When Not To

There are two methods for combining the monitor with your
application: combining your application with the CSi-Mon library
and merging the source of CSi-Mon with your application. Which
method you use depends on why you want to combine the monitor
with your application and how you plan to install the final product.

Are you going to use the startup code CSi-Mon provides? Are you
going to build a ROM or RAM based application? Your answers to
these questions will help you decide the best method to use.

First, let’s explain the library (see the chapter Configuration for
creating a library). When the monitor is built as a library, it relies on
your application for preparing the processor and peripherals. The
only peripherals the library will configure are the UART and PIC.
The library version of the monitor is easy to link to RAM based
applications.

Many users develop the application and then wish to take advantage
of CSi-Mon’s startup code and port initialization. The library version
of the monitor is not suited for ROM applications because of how the
monitor is built. Therefore, if you want to make a ROMmable
program, you do not want to make CSi-Mon a library. In this case,
you might consider merging your application and CSi-Mon source.

Whether you are combining your application with the CSi-Mon
library or CSi-Mon source, you should configure CSi-Mon to use
interrupt-driven communications with Soft-Scope. This configuration
allows Soft-Scope to talk to CSi-Mon while your application is
running. Combining your application with CSi-Mon allows you to
invoke Soft-Scope/CSi-Mon and inspect your application. If CSi-
Mon is configured to use polling communications, Soft-Scope cannot
send commands to CSi-Mon until your application stops. Addition-
ally, if CSi-Mon is configured to use polling communications and no
breakpoints are set, the monitor will never regain control of your
application.

When To Make CSi-Mon a Library and
When Not To

Combining the Monitor and
Your Application

CSi-Mon User’s Guide 5-3

5

The following section describes how to combine the library version of
the monitor and your application.

Combining Your Application with the CSi-
Mon Library

This section describes how to combine your application with the CSi-
Mon library (csimon.lib). Steps to guide you through the necessary
changes are provided below.

Step 1. Configure and make the CSi-Mon library
Create a library version of the monitor.

Step 2. Modify your application
Your application has set up the processor and is ready to continue
executing. The processor, peripherals, and application have
completed initialization. Now it is necessary for you to manually
initialize the monitor. This is done by placing a call to csimon() early
in your application. To place a call to csimon(), type the following
after main():

main()
{
 csimon();
 .
 .
 .
}

Combining the Monitor and
Your Application

Combining Your Application with the
CSi-Mon Library

5-4 CSi-Mon User’s Guide

Step 3. Initiate a break to evoke the monitor
Once the monitor has been initialized, you may want to immediately
stop your application so that you can start debugging it. To do this,
you need to create a separate file to stop your application.

brkexe.asm:

name brkexe

include csicfg.inc ; Generated with CSi-Cfg utility.

 ; Let us handle generic use of code segment

@ISEG_BEG ; Side affect of CSICFG.INC,

@ISEG_END ; it assumes this is defined.

@CSEG_BEG ; Start of CODE segment

public _ss_brkexe

_ss_brkexe proc far ; Debug break procedure.

 pushf

 pop ax

 or ax,100h ; Set single step flag

 push ax

 popf ; Cause a single step over ret

 ret ; Return to caller.

_ss_brkexe endp

@CSEG_END ; End of CODE segment

end

Once you have the above assembly file included with your link, you
can call ss_brkexe() to evoke the monitor.

Combining Your Application with the
CSi-Mon Library

Combining the Monitor and
Your Application

CSi-Mon User’s Guide 5-5

5

main()
{
 csimon();
 ss_brkexe();
 .
 .
 .
}

Because of how ss_brkexe() works, when you invoke Soft-Scope (see
the Soft-Scope User’s Guide), it will be ready to debug at the
instruction following the call. Now you are ready to debug your
application.

Merging the Source of Your Application
and CSi-Mon

This section describes how to combine a sample application with the
CSi-Mon source. We recommend you attempt the merging of the
source for CSi-Mon and the sample application before doing so on
your application. We only cover how to make changes to the
protected-mode monitor in this example. However, you should be
able to derive the necessary changes for the real-mode version. Steps
to guide you through the necessary changes are provided below.

Step 1. Adding forward references
Add forward references to the sample application’s startup code in the
file main.c.

main.c:

extern void app_start(void);

Combining the Monitor and
Your Application

Merging the Source of Your Application
and CSi-Mon

5-6 CSi-Mon User’s Guide

Step 2. Calling the sample application
Modify CSi-Mon source file main.c so the sample application will be
called after the monitor has been initialized. Modifying the sample
application also enables the monitor to interrupt the sample
application after it has started. Note, for clarity, the following text is
bold face for lines that need to be added and italicized for lines that
need to be changed.

Update the XE_BOOT case statement in main.c (~line 343):

main.c:

case XE_BOOT:
debug_mode = 1;
which = BRK_RUNNING;
si_pic(SI_PIC_ENABLE);
sendctrl(‘*’);
for (i=0; csi_version[i]; i++)

sendctrl(csi_version[i]);
sendack();
app_start();
break;

Step 3. Creating a sample application in appmain.c
appmain.c:

void main(void)
{

volatile int x;
volatile int y;
y = 0;
while (1) {

x = 999;
y += x;

 };
}

void _main(void)
{
 main();
}

Merging the Source of Your Application
and CSi-Mon

Combining the Monitor and
Your Application

CSi-Mon User’s Guide 5-7

5

Some compilers may automatically add the leading underscore while
others do not. From the assembler, we assume that main() will have a
leading underscore added by the compiler. If the compiler does not
add the leading underscore, it will call the second routine, which will
then, in turn, call the entry point we wish. If leading underscores are
generated, the second routine will never be called. Either way, we get
to where we want. Of course, you can modify both the assembly and
“C” sources to suit your specific needs.

Step 4. Override the check of task register
Before you begin this step, a quick discussion is needed about the tr
register and how it relates to the code below. CSi-Mon only uses the
tr register for the application it loads, not for itself. Therefore, CSi-
Mon assumes that the tr register is zero. However when the monitor
is combined with your application, Soft-Scope needs to know if the tr
register is valid for it to debug your application. The code
implemented by Step 3 circumvents this confirmation by Soft-Scope
by checking that the tr register is zero and skipping the code. This all
works provided the tr register is not modified.

Unfortunately, some flashloaders and other loaders jump into
protected mode and back to real mode before executing CSi-Mon.
When this occurs the flashloaders may change the tr register from a
non-null value. Thus, when CSi-Mon starts running with the
combined application, it may report to Soft-Scope “invalid tr”. Since
CSi-Mon was originally designed to accept downloaded programs
instead of being combined with an application, encountering an
invalid tr register has not been a problem. More customers are
combining applications with the CSi-Mon source, so we are looking
at alternatives for handling the tr register. None are available as of
this writing.

Now that you understand how we interact with the tr register, it is
time to override the check of task register. Open the file
pmonitor.asm and find the “mov mon_fault,
BRK_WAS_MONITOR” instruction in the procedure init_var (~line
1212). Change the instruction as shown below (again, we use italics
to denote the line that needs to be changed):

Combining the Monitor and
Your Application

Merging the Source of Your Application
and CSi-Mon

5-8 CSi-Mon User’s Guide

pmonitor.asm:

;

; Local variables.

;

 mov mon_fault, 0
 mov xe_nmi, 0

Also, find the “lldt” instruction in the procedure xe_cute (~line 1571)
of the file pmonitor.asm. Add the text shown in bold below:

pmonitor.asm:

lldt treg.reg_ldtr ; Load ldtr.

cmp reg_tr, 0

je tr_skip2

mov mon_fault, BRK_WAS_TR_BAD

mov es, cs_sys_gdt

mov di, reg_tr ; es:di -> tss entry?

test di, 4

jnz tr_load ; Invalid tr selector.

and di, 0fffch ; Mask rpl bits.

mov al, es:[di].attr

and al, 10111B

cmp al, 00011B

jne tr_load ; It is not a busy TSS descriptor.

and es:[di].attr, 11111101b ; Clear busy bit.

tr_load:ltr reg_tr

tr_skip2:nop

Step 5. Adding startup code
This step shows the modifications necessary to incorporate the sample
application’s assembly language startup code into the CSi-Mon’s
assembly language code. These changes let Soft-Scope recognize that
it is already running a valid application when it gains control of the
sample application.

Merging the Source of Your Application
and CSi-Mon

Combining the Monitor and
Your Application

CSi-Mon User’s Guide 5-9

5

As part of the typical C runtime startup code, constant data must be
copied from flash or EPROM to RAM. Data must be initialized. The
stack must also be initialized. Much of this data and stack
initialization as part of the C runtime startup code has already been
done to get CSi-Mon running. At this point, you need to create a
separate stack for the sample application. To do this, you will create a
separate startup module for initializing the sample application.

NOTE: The following description uses csicfg.inc to determine
how to create the separate startup module. Thus, the
following code uses macros that allow the separate
startup module to work generically regardless what
model or tool suite is used.

appstart.asm:

 name appstart

include csicfg.inc ; Generated with CSi-Cfg utility.

; Let us handle generic use of code segment

@ISEG_BEG ; Side affect of CSICFG.INC,

@ISEG_END ; it assumes this is defined.

@APP_STACK macro ; Determine segment type for stack.

IF(@FLAT)

APP_STACK segment para public use32 ‘STACK’

ELSE

APP_STACK segment para public use16 ‘STACK’

ENDIF

endm

@APP_STACK ; Define Stack for the application to use

dw 2048 dup (?)

app_tos dw ?

APP_STACK ends

@CSEG_BEG ; Start of CODE segment

extrn _main:FAR

(Continued on next page)

Combining the Monitor and
Your Application

Merging the Source of Your Application
and CSi-Mon

5-10 CSi-Mon User’s Guide

public app_start ; Make sure “C” can find app_start with

public _app_start ; either leading “_” or not.

_app_start proc far ; Stub with leading “_” just in case

_app_start endp

app_start proc far ; Actual application initialization code

mov ax, APP_STACK

mov ss, ax

mov @SP, offset APP_STACK:app_tos

sti

call main ; Note, we call assuming with leading “_”,

; However, stub in appmain.c will catch it

; if compiler doesn’t generate them.

; Otherwise, here is where the application

; is executed!

app_start endp

@CSEG_END ; End of CODE segment

end

Step 6. Sharing memory space
CSi-Mon will not let Soft-Scope write to its memory space.
However, when an application and CSi-Mon are combined they must
share memory space. Make the changes described below to
memory.c to allow memory sharing.

Look in memory.c for the function mem_log2lin (~line 623).
Comment out the entire “if” statement block by entering the two lines
that are in boldface. This code fragment, once modified, should look
something like this (bold depicts lines that need to be added):

Merging the Source of Your Application
and CSi-Mon

Combining the Monitor and
Your Application

CSi-Mon User’s Guide 5-11

5

memory.c:

#if 0 /*#* Allow Soft-Scope to modify monitor.*#*/

if(write) {

 /* Protect the monitor from requests that overwrite monitor

 ** memory or attempt to place breakpoints within monitor

 ** resources.

 */

if((*linear + len - 1L) >= data_start && (*linear) <= data_end)

 return ME_PROTECT; /* Attempt to overwrite monitor data.*/

if((*linear + len - 1L) >= code_start && (*linear) <= code_end)

 return ME_PROTECT; /* Attempt to overwrite monitor code.*/

if((*linear + len - 1L) >= stack_start && (*linear) <=

 stack_end)

 return ME_PROTECT; /* Attempt to overwrite monitor stack.*/

#if(MON_PROT && (MON_ROM || MON_ABS))

 if((*linear + len - 1L) >= reg_gdb && (*linear) <= (reg_gdb +

 GDT_LEN * 8L - 1L))

 return ME_PROTECT; /* Attempt to overwrite descriptors.*/

#endif

 }

#endif

Step 7. Build scripts
The final step requires modifications to the build.bat or makefile
which affect the modules built and the generation of the locator
command file (csimon.cmd). For this example, we will limit our
discussion to the makefile and to the CSi-Loc/CSi-Link command
script.

You need to make two sets of changes in makefile. The first set is to
build modules appstart and appmain and link them to CSi-Mon.

Combining the Monitor and
Your Application

Merging the Source of Your Application
and CSi-Mon

5-12 CSi-Mon User’s Guide

Find the following lines in makefile:

#

Minimum object files necessary to create a monitor.

#

OBJECTS=pstart.obj pmonitor.obj common.obj main.obj register.obj break.obj \

memory.obj xlate.obj pic.obj mapi.obj extend.obj siuart.obj

Add the two new object files for the sample application. Enter the text
shown in bold as follows:

#

Minimum object files necessary to create a monitor.

#

OBJECTS=pstart.obj pmonitor.obj common.obj main.obj register.obj break.obj \

 memory.obj xlate.obj pic.obj mapi.obj extend.obj siuart.obj \

 appstart appmain

Next, it is necessary to add the new stack segment to the locator
command script so that it is properly located. Look for the following:

echo ram DATA_FIRST DATA_LAST L2L_SRC L2L_DEST >>csimon.cmd

echo locate DATA_FIRST class DATA class BSS >>csimon.cmd

echo + DATA_LAST L2L_SRC L2L_DEST::00000400P >>csimon.cmd

Add the text shown in bold, changing the lines to read:

echo ram DATA_FIRST DATA_LAST L2L_SRC L2L_DEST APP_STACK >>csimon.cmd

echo locate DATA_FIRST class DATA class BSS >>csimon.cmd

echo + DATA_LAST L2L_SRC L2L_DEST APP_STACK:: 00000400P >>csimon.cmd

Finally, rebuild the newly combined application/monitor.

Merging the Source of Your Application
and CSi-Mon

Combining the Monitor and
Your Application

CSi-Mon User’s Guide 5-13

5

Common Pitfalls

1 The application runs, but Soft-Scope does not display the Code
Stop menu item. If this menu item does not appear, you did not
build an interrupt-driven monitor. CSi-Mon must be built as an
interrupt-driven monitor to take full advantage of combining your
application with the monitor (see the chapter Configuration).

2 The application runs, but Soft-Scope cannot stop the target (Code
Stop and the Stop Toolbar button have no effect). Make sure you
changed si_pic(SI_PIC_DISABLE) to si_pic(SI_PIC_ENABLE)
as shown in Step 2 of Merging the source of your application and
CSi-Mon. The Peripheral Interrupt Controller (PIC) must be
enabled to allow Soft-Scope to communicate with CSi-Mon.

3 Soft-Scope reports monitor overwrite error messages. Normally,
Soft-Scope will reject any attempt to read or write to the address
space of the monitor. However, when you combine the monitor
with your application, the monitor will think that attempts to read
or write to your application’s address space are attempts to access
the monitor’s address space. If you are getting monitor overwrite
error messages, you should check to make sure you made the
changes outlined in Step 6 of Merging the source of your applica-
tion and CSi-Mon.

Combining the Monitor and
Your Application

Common Pitfalls

5-14 CSi-Mon User’s Guide

CSi-Mon User’s Guide 6-1

6

6. Troubleshooting
The information in this section may help you get the monitor running,
if the monitor did not work after following the steps outlined in the
chapters under Getting Started. Let’s assume the batch file has been
built and the monitor modules have been compiled and linked
successfully, producing a csimon.hex or csimon.abs file.

If you still have no idea what is causing the problem, we suggest you
start at the beginning of the configuration program and carefully
check each value, one-by-one.

Incorrect I/O Addresses for Communication Device 6-2
Incompatible Baud Rates .. 6-3
Code Configured for Wrong Target .. 6-3
Monitor Not Compiled Correctly ... 6-4
Monitor Not Properly Located ... 6-4

Chapter Contents

6-2 CSi-Mon User’s Guide

The most common causes of failure with the monitor are:

• Incorrect I/O addresses for communication device

• Incompatible baud rates

• Code configured for wrong target microprocessor

• Monitor not compiled correctly

• Monitor not located properly

• PROM access split on boundaries

Each of these causes are described in the following sections. Read on
for more details.

Incorrect I/O Addresses for
Communication Device

If your communication devices are not specified correctly, Soft-Scope
and the target will not be able to communicate. Soft-Scope will
probably display one of the error messages associated with this
problem such as

Remote - target not responding

Have you tested Soft-Scope with a PC version of the monitor as
described in the chapter Demonstration? If you have conducted the
test and it worked fine, the problem is probably in how one of the
following items is specified:

• The UART’s timing mechanism, which varies according to the
particular UART that your target has

• The base port address of your UART or timer device

• The address delta between ports

Incorrect I/O Addresses for Communica-
tion Device

Troubleshooting

CSi-Mon User’s Guide 6-3

6

Check the specifications of each of these items and try running the
monitor again.

Incompatible Baud Rates

If the communication between Soft-Scope and the target is garbled–
there is no output or there are only random characters output from the
target–make sure the baud rate of the host and the baud rate specified
in the configuration program (see the chapter Configuration) are the
same. Some hardware may have trouble operating at the maximum
baud rate (115200), so it may be necessary to lower the baud rate both
in the configuration program for CSi-Mon and the settings of Soft-
Scope (see the Soft-Scope User’s Guide for details on lowering the
baud rate).

Code Configured for Wrong Target

If you have accidentally specified a CPU different than the target, the
possible symptoms could range from no recognizable problem to a
hung target. In some cases, the monitor will run without problems,
and you may not even realize anything is wrong until you load an
application. In other cases, the monitor may run until it tries to access
a CPU-specific feature or structure that is not available. Sometimes,
the target will simply crash.

The general rule is that 8086 and real-mode monitors will run on
80286/386/486/Pentium machines, 80286 monitors will run on 80386/
486/Pentium machines, and 80386 monitors will run on 80486/
Pentium machines. These requirements are not reversible. For
example, 80386, 32-bit protected-mode monitors will not run on
80286 machines. Additionally, the 80186/188 monitors will run on
8086 machines, but, because the 80186/188 CPU requires that the

Incompatible Baud RatesTroubleshooting

6-4 CSi-Mon User’s Guide

Peripheral Control Block be specified, 8086 monitors may not run on
80186/188 CPUs.

Monitor Not Compiled Correctly

If your monitor has unresolved symbols or error messages during
compilation (such as output from tool suite or files generated from
tools such as the map file), check the path you specified for the
configuration program to access your tools library.

Another possibility is that one or more of the files on the source disk
did not install properly, or was not included in the compilation. Find
the file contents.doc on the installation diskettes that were provided
with the software. This file contains the layout of the subdirectory
tree and the files that reside in each subdirectory after installation is
complete. Check to be sure that all files were installed properly on
your computer.

Monitor Not Properly Located

If the monitor is not located properly in memory, it will be completely
unpredictable. The monitor may crash when you try to install it, or it
may appear to work fine until you load an application and discover
the application is trying to load in the same memory as the monitor.

Inspect the final map file generated by your linker and locator to
make sure the monitor is located correctly, and verify the following
items:

Monitor Not Compiled Correctly Troubleshooting

CSi-Mon User’s Guide 6-5

6

• For all monitors except library versions
All data segments (except L2L_SRC and L2L_DST for protected
mode monitors) should be contained between DATA_FIRST and
DATA_LAST for all monitors except library versions.

CODE_FIRST and CODE_LAST should similarly bracket all code
segments (except RESTART).

These segments are used by CSi-Mon to identify which memory
ranges to protect from overwriting. The architecture of the processors
does not provide a way to prevent your application from overwriting
CSi-Mon, but we can detect and prevent downloading of an
application over the monitor.

Since the library version of CSi-Mon shares the code and data
segments with the application it is linked with, it does not have this
protection.

• For absolutely located monitors, which will have all
segments contiguous and located in system RAM
The restart code is not located at any special place for absolutely
located monitors. It will be the responsibility of the loader to start
execution at the correct address.

Absolutely located monitors are intended to be loaded into RAM by
some custom method when your system boots.

• For ROMmed monitors, which will be burned into ROM
The public symbol hardware_reset should be located at your
processor’s hardware reset address.

ROMmed monitors will initialize their own data space. Data
segments should be located in RAM.

Monitor Not Properly LocatedTroubleshooting

6-6 CSi-Mon User’s Guide

• For library versions of CSi-Mon that are intended to be
linked to the application to be debugged and that are
loaded into RAM with that application
The library version provides no automatic initialization of its RAM
area.

We recommend you don’t use the library version with a ROM-based
application. (See the chapter Combining the Monitor and Your
Application).

• PROM access split on boundaries
It is almost impossible to predict what will happen if your PROM is
not programmed correctly. Some code within the monitor may
actually execute, but it may not function as expected. The most
common mistake made when programming a PROM is to forget to
split the hex file so it will work with 16- and 32-bit buses.

Most PROMs are 8 bits wide. To accommodate wider bus structures
a program is normally split into separate PROMs. For example, on a
16-bit bus, bytes 0, 2, 4, 8 . . . are placed into the low-byte PROM
and bytes 1, 3, 5 . . . are placed into the high-byte PROM. Your
PROM programmer software should provide a method for splitting
the file.

Monitor Not Properly Located Troubleshooting

CSi-Mon User’s Guide A-1

A

Appendix A: CSi-Mon
Commands

This appendix contains the Monitor Command Syntax, the detailed
information on the Monitor Commands, as well as related Command
Tables.

Monitor Command Syntax

Command Syntax Elements

count An unsigned 32-bit integer. Specifies number of times
to repeat.

dest_offset An unsigned 32-bit integer. If the segment value is 0,
then the offset represents either a physical or linear
address depending on the value last configured for the
‘c’ command (see index number 7 in Register Tables in
the Appendix). If the segment is nonzero, the offset
represents a logical-address offset.

dest_segmentAn unsigned 32-bit integer. The segment portion of a
logical address. If the segment value is 0, then the
offset represents either a physical or linear address
depending on the value last configured for the ‘c’
command (see index number 7 in Register Tables in
the Appendix). If the segment is nonzero, the offset
represents a logical-address offset.

handle An unsigned 32-bit integer. Specifies an entry in the
monitor breakpoint table.

index An unsigned 32-bit integer. Specifies an entry in a

A-2 CSi-Mon User’s Guide

table.

length An unsigned 32-bit integer. Specifies the size or
number of data elements to be read from or written to
the target.

offset An unsigned 32-bit integer.

port An unsigned 32-bit integer. Specifies an input or
output port.

register_maskAn unsigned 32-bit integer. Specifies a register. See
Register Tables in the Appendix for a list of registers
and their masks.

segment An unsigned 32-bit integer. Contains 0 if offset
specifies a physical address.

src_offset An unsigned 32-bit integer. If the segment value is 0,
then the offset represents either a physical or linear
address depending on the value last configured for the
‘c’ command (see index number 7 in Register Tables in
the Appendix). If the segment is nonzero, the offset
represents a logical-address offset.

src_segment An unsigned 32-bit integer. The segment portion of a
logical address.

value An unsigned 32-bit integer.

Monitor Commands

B Permanent breakpoint
B [segment,offset,handle,count]

Monitor Command Syntax Appenidix A: CSi-Mon Commands

CSi-Mon User’s Guide A-3

A

The ‘B ’ command sets a permanent breakpoint at the segment and
offset specified. Handle specifies an index into the monitor
breakpoint table where information on this breakpoint is stored. B
without parameters clears breakpoints.

Errors
5 ME_ARGS Too few or invalid arguments specified

6 ME_RESOURCE Breakpoint out of range

10 ME_SEGFAULT Segmentation fault

11 ME_NOT_RAM Location is not in RAM

C Initialize configuration table
C address, config

0
,config

1
, . . ., config

n

address Address of configuration table in monitor. Currently not
used.

config
x

Field in configuration table. The entire table must be
specified.

The ‘C’ command initializes the configuration table. If you need to
set just one entry in this table, use the ‘c’ command.

Error
5 ME_ARGS Too few or invalid arguments specified

c Set configuration table entry
c index,value

The ‘c’ command assigns a value to the table entry specified by index.
If you need to set several configuration table entries, use the ‘C’
command. The indices and their values are listed in Register Tables
in the Appendix.

Monitor CommandsAppendix A: CSi-Mon Commands

A-4 CSi-Mon User’s Guide

Error
5 ME_ARGS Too few or invalid arguments specified

D Data breakpoint
D segment,offset,handle,count,type,length

type An unsigned 32-bit integer. Specifies a breakpoint type.

The ‘D’ command sets a permanent data breakpoint in memory at the
segment and offset location specified. Handle specifies an index into
the monitor breakpoint table where information on this breakpoint is
stored. The type field specifies the kind of hardware breakpoint being
set.

Possible types are listed in this Appendix and in csimon.h in the
monitor source. The length field specifies the range of memory where
you want the breakpoint set.

These codes cannot be changed without modification to Soft-Scope.

The monitor verifies that there are data registers available and returns
an error (ME_RESOURCE) if it is unable to set the breakpoint. Refer
to Breakpoint Handle Tables in the Appendix for information on data
breakpoints.

NOTE: This command is useful only with the 80386/486/
Pentium protected-mode monitor.

Errors
5 ME_ARGS Too few or invalid arguments specified.

6 ME_RESOURCE One of several errors may have
occurred. Either the handle is out of
range, the length is too large (greater
than 16) or there are not enough data
registers available to set the breakpoint.

10 ME_SEGFAULT Segmentation fault.

Monitor Commands Appenidix A: CSi-Mon Commands

CSi-Mon User’s Guide A-5

A

11 ME_NOT_RAM Location is not in RAM.

12 ME_MISC You have specified an illegal type or
some other error has occurred.

E Monitor extensions
E [char] [data]

char Any character

data User-defined data which includes a command name and
parameters

The ‘E’ command allows the monitor user to add commands to the
monitor. Data can be any type desired. All of the data must be
parsed by the monitor extension.

Monitor CommandsAppendix A: CSi-Mon Commands

epyTtniopkaerB epyTtniopkaerB epyTtniopkaerB epyTtniopkaerB epyTtniopkaerB eulaVedoC eulaVedoC eulaVedoC eulaVedoC eulaVedoC noitpircseD noitpircseD noitpircseD noitpircseD noitpircseD

RAELC_EPYTKB 0000x0
rep(tniopkaerbraelC

)eldnah

YFIDOM_EPYTKB 1000x0
notniopkaerbateS

etirwsserdda

YLNODR_EPYTKB 2000x0
atadnotniopkaerbateS

daer

SSECCA_EPYTKB 3000x0
atadnotniopkaerbateS

ssecca

HCTEF_EPYTKB 4000x0
notniopkaerbateS

noitcurtsni

Table A-1: Breakpoint types

A-6 CSi-Mon User’s Guide

F Fill pattern in memory
F segment,offset,length,value

value Defines a byte

The ‘F’ command fills a range of memory with a byte starting at the
specified segment and offset.

Errors
5 ME_ARGS Too few or invalid arguments specified

7 ME_VERIFY If verification was requested, a byte read
from memory did not match the value
written

10 ME_SEGFAULT Segmentation fault

f Return an offset
f segment,offset,length,value

value Defines a byte

The ‘f’ command compares memory starting at the given address of
segment and offset looking for the given byte value. If found, the
offset from the starting address is returned.

Errors
5 ME_ARGS Too few or invalid arguments specified

10 ME_SEGFAULT Segmentation fault

I Port output
I port,value

The ‘I’ command writes data to a port. The width depends on the
current setting for granularity. See the ‘c’ command and Register
Tables in the Appendix.

Monitor Commands Appenidix A: CSi-Mon Commands

CSi-Mon User’s Guide A-7

A

Errors
5 ME_ARGS Too few or invalid arguments specified

8 ME_BUSFAULT Bus error

i Port input
i port

The ‘i’ command reads data value from a port. The width depends on
the current setting for granularity. See the ‘c’ command and Register
Tables in the Appendix.

Errors
5 ME_ARGS Too few or invalid arguments specified

8 ME_BUSFAULT Bus error

O Copy memory
O dest_segment,dest_offset,src_segment,src_offset,length

The ‘O’ command copies memory starting at src_segment and
src_offset to memory starting at dest_segment and dest_offset for
length bytes.

Errors
5 ME_ARGS Too few or invalid arguments specified

7 ME_VERIFY If verification was requested, a byte read
from memory did not match the value
written

10 ME_SEGFAULT Segmentation fault

Monitor CommandsAppendix A: CSi-Mon Commands

A-8 CSi-Mon User’s Guide

o Compare memory
o src_segment,src_offset,dest_segment,dest_offset,length

The ‘o’ command compares memory starting at src_segment and
src_offset with memory starting at dest_segment and dest_offset for
length bytes. The offset of the first byte from the starting address that
does not match is returned.

Errors
5 ME_ARGS Too few or invalid arguments specified

10 ME_SEGFAULT Segmentation fault

Q Binary memory write
Q segment,offset,datablock

datablock A group of binary-encoded bytes, terminated with an
end-of-block character (0x14)

The ‘Q’ command writes the binary data in datablock to memory
starting at the address specified by segment and offset.

Errors
5 ME_ARGS Too few or invalid arguments specified

7 ME_VERIFY If verification was requested, a byte read
from memory did not match the value
written

q Binary memory read
q segment,offset,length

The ‘q’ command reads memory starting at the address segment and
offset for length bytes. The data read is returned in binary format as a
block.

Monitor Commands Appenidix A: CSi-Mon Commands

CSi-Mon User’s Guide A-9

A

Errors
5 ME_ARGS Too few or invalid arguments specified

10 ME_SEGFAULT Segmentation fault

R Write register
R register_mask,value [,value]

The ‘R’ command writes a value to a register associated with the
given register_mask. See Register Tables in the Appendix for valid
mask values.

Errors
1 ME_PGM Error in register_mask or value

arguments

5 ME_ARGS Too few or invalid arguments specified

r Read register
r register_mask

The ‘r’ command reads a register associated with the given
register_mask. The monitor returns the contents of each register
specified. See Register Tables in the Appendix for valid mask values.

Errors
4 ME_ILLREG Undefined register specified

5 ME_ARGS Too few or invalid arguments specified

S Step an instruction
S count

The ‘S’ command single steps count instructions.

Monitor CommandsAppendix A: CSi-Mon Commands

A-10 CSi-Mon User’s Guide

Error
5 ME_ARGS Too few or invalid arguments specified

s Stop target execution
s

The ‘s’ command stops the target.

V Report version identification
V

The ‘V’ command returns a number that is compared with a value
stored internally in Soft-Scope.

Note: Bit 0x80000000L informs Soft-Scope whether the
monitor is interrupt driven or not. If set, the monitor is
interrupt driven, otherwise, the monitor is polled.

Error
5 ME_ARGS Too few or invalid arguments specified

v Report version
v

The ‘v’ command returns an ASCII string that identifies the monitor.
The string is reported by Soft-Scope when connection is made with
the monitor.

Error
5 ME_ARGS Too few or invalid arguments specified

Monitor Commands Appenidix A: CSi-Mon Commands

CSi-Mon User’s Guide A-11

A

w Which breakpoint stopped target
w

The ‘w’ command returns the handle of the breakpoint that was
triggered. A negative handle returned indicates that either a special
breakpoint was hit or the breakpoint was of unknown origin. See
Breakpoint Handle Tables in the Appendix for a list of breakpoint
handles.

Error
5 ME_ARGS Too few or invalid arguments specified

x Execute the target with breakpoints
x

The ‘x’ command starts the target running. This command assumes
breakpoints are set and downloads breakpoints into memory. An error
will be reported if an exception occurs during execution.

Error
5 ME_ARGS Too few or invalid arguments specified

z Reset the monitor
z

The ‘z’ command resets target registers and descriptor tables. Issuing
this command causes the monitor to be reinitialized.

Error
5 ME_ARGS Too few or invalid arguments specified

Monitor CommandsAppendix A: CSi-Mon Commands

A-12 CSi-Mon User’s Guide

Command Tables

Table A-2: Execution commands

Table A-3: Memory commands

Monitor Commands Appenidix A: CSi-Mon Commands

dnammoC dnammoC dnammoC dnammoC dnammoC demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF

B yromematatniopkaerbnoitucexetnenamrepasteS
noitacol

D noitacolyromematatniopkaerbatadtnenamrepasteS

S emitatanoitcurtsnienosetucexE

w sawtniopkaerbhcihwgnibircsednoitamrofnisnruteR
dereggirt

x teserastniopkaerb,erawtfostegratehtsetucexE

dnammoC dnammoC dnammoC dnammoC dnammoC demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF

F yromemniegnaraslliF

f yromemnietybasdniF

I tropO/InaotatadsetirW

i tropO/InamorfatadsdaeR

O noitacolrehtonaotyromemfokcolbaseipoC

o yromemfoskcolbowtserapmoC

Q
setirwdnategratehtottamrofyranibniatadstimsnarT

yromemotti

q mrofyranibniatadstimsnartdnayromemtegratsdaeR

CSi-Mon User’s Guide A-13

A

Command Tables

Table A-4: Register commands

Table A-5: Miscellaneous commands

Appendix A: CSi-Mon Commands

dnammoC dnammoC dnammoC dnammoC dnammoC demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF

R sretsigerUPCtegratsteS

r sretsigerUPCtegratsdaeR

dnammoC dnammoC dnammoC dnammoC dnammoC demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF demrofrePnoitcnuF

C elbatnoitarugifnocsezilaitinI

c yrtneelbatnoitarugifnocenooteulavasngissA

E snoisnetxerotinoM

V edocytilibitapmocnoisrevstropeR

v rotinomrofgnirtsnoisrevstropeR

z rotinomehtsteseR

A-14 CSi-MonUser’s Guide

CSi-MonUser’s Guide B-1

B

Appendix B: Register Tables

Table B-1: General purpose and tasking registers

retsigeR retsigeR retsigeR retsigeR retsigeR ksaM ksaM ksaM ksaM ksaM UPCelbacilppA UPCelbacilppA UPCelbacilppA UPCelbacilppA UPCelbacilppA

XAE/XA 40000000x0 srossecorpllA

XBE/XB 80000000x0 srossecorpllA

XCE/XC 01000000x0 srossecorpllA

XDE/XD 02000000x0 srossecorpllA

PBE/PB 04000000x0 srossecorpllA

ISE/IS 08000000x0 srossecorpllA

IDE/ID 00100000x0 srossecorpllA

SC 00200000x0 srossecorpllA

SD 00400000x0 srossecorpllA

SS 00800000x0 srossecorpllA

SE 00010000x0 srossecorpllA

SF 00020000x0 muitneP/684/683

SG 00040000x0 muitneP/684/683

sgalfE/sgalF 00080000x0 srossecorpllA

PIE/PI 00001000x0 srossecorpllA

PSE/PS 00002000x0 srossecorpllA

RT 00000400x0 ylnoedomdetcetorP

B-2 CSi-Mon User’s Guide

Table B-2: Protection controls and debug registers

Stack Register Masks

The coprocessor stack register masks are stored as 80-bit floating
point values divided into three sections. For example, for ST0:

retsigeR retsigeR retsigeR retsigeR retsigeR ksaM ksaM ksaM ksaM ksaM UPCelbacilppA UPCelbacilppA UPCelbacilppA UPCelbacilppA UPCelbacilppA

LDG 10000018x0 ylnoedomdetcetorP

BDG 20000018x0 ylnoedomdetcetorP

LDI 80000018x0 ylnoedomdetcetorP

BDI 01000018x0 ylnoedomdetcetorP

TDL 04000018x0 ylnoedomdetcetorP

WSM 00010018x0 ylnoedomdetcetorP

0RC 00010018x0 ylnomuitneP/684/683,edomdetcetorP

2RC 00040018x0 ylnomuitneP/684/683,edomdetcetorP

3RC 00080018x0 ylnomuitneP/684/683,edomdetcetorP

0RD 00001018x0 muitneP/684/683

1RD 00002018x0 muitneP/684/683

2RD 00004018x0 muitneP/684/683

3RD 00008018x0 muitneP/684/683

6RT 00000118x0 ylnomuitneP/684/683,edomdetcetorP

7RT 00000218x0 ylnomuitneP/684/683,edomdetcetorP

6RD 00000418x0 muitneP/684/683

7RD 00000818x0 muitneP/684/683

Stack Register Masks Appendix B: Register Tables

CSi-MonUser’s Guide B-3

B

0x84000001 will access bits 0 through 31

0x84000002 will access bits 32 through 63

0x84000004 will access bits 64 through 79

These registers are applicable to systems with numeric coprocessors
only.

Table B-3: Coprocessor stack registers

Stack Register MasksAppendix B: Register Tables

retsigeR retsigeR retsigeR retsigeR retsigeR ksaM ksaM ksaM ksaM ksaM

0TS ,13..0=10000048x0
,36..23=20000048x0

97..46=40000048x0

1TS ,13..0=80000048x0
,36..23=01000048x0

97..46=02000048x0

2TS ,13..0=04000048x0
,36..23=08000048x0

97..46=00100048x0

3TS 13..0=00200048x0
,36..23=00400048x0

97..46=00800048x0

4TS ,13..0=00010048x0
,36..23=00020048x0

97..46=00040048x0

5TS ,13..0=00080048x0
,36..23=00001048x0

97..46=00002048x0

6TS ,13..0=00004048x0
,36..23=00008048x0

97..46=00000148x0

7TS ,13..0=00000248x0
,36..23=00000448x0

97..46=00000848x0

B-4 CSi-Mon User’s Guide

Table B-4: Miscellaneous coprocessor registers

Table B-5: Configuration table entries

Stack Register Masks Appendix B: Register Tables

retsigeR retsigeR retsigeR retsigeR retsigeR ksaM ksaM ksaM ksaM ksaM UPCelbacilppA UPCelbacilppA UPCelbacilppA UPCelbacilppA UPCelbacilppA

WC 10000038x0 srossecorpocciremunhtiwsmetsyS

WS 20000038x0 srossecorpocciremunhtiwsmetsyS

WT 40000038x0 snoisserpxeciremunhtiwsmetsyS

xednI xednI xednI xednI xednI noitpircseD noitpircseD noitpircseD noitpircseD noitpircseD seulaV seulaV seulaV seulaV seulaV

0
yromemyfireV

setirw
yfirev=rehto,ffo=0

1 edomohcE eviecerretcarahcohce=3,ffo=0

4 ytiralunarG drowd=4,drow=2,etyb=1

7 lacisyhp/raeniL

tesffo:tnemges=0
;sserddalacisyhpsisserdda,0=eulavtnemgesfI

tesffo:tnemges=rehto
sserddaraenilsisserdda,0=eulavtnemgesfI

CSi-Mon User’s Guide C-1

C

Appendix C: Breakpoint
Handle Tables

eldnaH eldnaH eldnaH eldnaH eldnaH eulaV eulaV eulaV eulaV eulaV noitpircseD noitpircseD noitpircseD noitpircseD noitpircseD

PUTRATS_SAW_KRB 0000x0 kaerbputratsrotinoM

NWONKNU_SAW_KRB 1000x0- 1-ebsyawlatsuM

TESER_SAW_KRB 2000x0- tesertegratdeludehcsnU

KSAT_SAW_KRB 3000x0- kaerbdesuachctiwsksaT

GUBED_SAW_KRB 4000x0- sgerRDhtiwkcumotdeirttegraT

SSECCALLI_SAW_KRB 5000x0- esuerutufrofdevreseR

ETIRWLLI_SAW_KRB 6000x0- esuerutufrofdevreseR

RESU_SAW_KRB 7000x0- toobdlocrodnammocpotSresU

PETS_SAW_KRB 8000x0- gnippets-elgnisereweW

0TNI_SAW_KRB 01000x0- rorreediviD

1TNI_SAW_KRB 11000x0- petS

2TNI_SAW_KRB 21000x0- IMN

3TNI_SAW_KRB 31000x0- 3tpurretnidedoc-draH

4TNI_SAW_KRB 41000x0- wolfrevO

5TNI_SAW_KRB 51000x0- kcehcsdnuoB

6TNI_SAW_KRB 61000x0- edocpodilavnI

7TNI_SAW_KRB 71000x0- elbaliavatonrossecorpoC

8TNI_SAW_KRB 81000x0- tluafelbuoD

9TNI_SAW_KRB 91000x0- nurrevotnemgesrossecorpoC

Table C-1: Breakpoint handles

C-2 CSi-Mon User’s Guide

Table C-1: Continued

Breakpoint Handle Tables Appendix C

eldnaH eldnaH eldnaH eldnaH eldnaH eulaV eulaV eulaV eulaV eulaV noitpircseD noitpircseD noitpircseD noitpircseD noitpircseD

aTNI_SAW_KRB a100x0- SSTdilavnI

bTNI_SAW_KRB b100x0- tneserptontnemgeS

cTNI_SAW_KRB c100x0- noitpecxekcatS

dTNI_SAW_KRB d100x0- tluafnoitcetorplareneG

eTNI_SAW_KRB e100x0- tluafegaP

fTNI_SAW_KRB f100x0- 51tpurretnI

01TNI_SAW_KRB 0200x0- rorretniopgnitaolF

11TNI_SAW_KRB 1200x0- rorretnemngilA

DAB_RTDL_SAW_KRB 01100x0- eulavRTDLdilavnI

DAB_RT_SAW_KRB 11100x0- eulavRTdilavnI

DAB_SC_SAW_KRB 21100x0 eulavPIE/PI:SCdilavnI

DAB_SS_SAW_KRB 31100x0 eulavPSE/PI:SSdilavnI

DAB_SD_SAW_KRB 41100x0 eulavSDdilavnI

DAB_SE_SAW_KRB 51100x0 eulavSEdilavnI

DAB_SF_SAW_KRB 61100x0 eulavSFdilavnI

DAB_SG_SAW_KRB 71100x0 eulavSGdilavnI

KCATS_SAW_KRB 81100x0 hctiwstxetnocrofllamsootkcatS

DAB_SST_SAW_KRB 91100x0 stnetnocSSTdilavnI

CSi-Mon User’s Guide D-1

D

Appendix D: CSi-Boot Error
Messages

< Absolute OMF86 not supported - Use OH86 to generate hex file. >

OMF86 is not supported.

An object to HEX converter, such as the OH86, LinkLoc, CSi-Locate,
or CSi-Link™ with the HEX or -HEX32 switch, can be used to create
a CSi-Boot loadable HEX file.

< Address ######## - Not writable RAM >

The given address is not writable. Either it is not a RAM location or
the RAM is defective.

Check your target documentation to make sure the RAM you
specified in CSi-Config is valid.

< Filemark ######## - Invalid record >

The record starting at the given filemark was found to be invalid.

< Filemark ######## - Unexpected end of file >

An unexpected end of file was encountered in the record located at
the specified filemark.

D-2 CSi-Mon User’s Guide

< Line: #### - Expected end of file >

When CSi-Boot tried to boot your monitor.hex file, it encountered
the end of the file but not a termination record.

< Line: #### - Invalid hex file >

The given line number in your monitor.hex file contains an invalid
record.

< Line ### - Line too long >

The given line in your monitor.hex file is too long to process.

< Load image above real-mode addressing range >

CSi-Boot can only load applications in the real-mode addressable
range.

< Load image spans more than #### bytes >

CSi-Boot loads from a contiguous buffer. Either your monitor is too
large to accommodate, or ROM and RESET must be located closer
together.

< No data loaded >

The file you specified on the CSi-Boot invocation line appeared to be
empty.

< No scratch memory found >

CSi-Boot was unable to locate 64K of scratch pad memory.

CSi-Boot Error Messages Appendix D

CSi-Mon User’s Guide D-3

D
< System: File does not exist: “filename” >

The file you specified when you invoked CSi-Boot cannot be found.

< Unknown file format >

CSi-Boot does not understand the format of the file you entered on
the invocation line. The supported formats are Intel 8086/386 .hex
and 80286/386 absolutely located.

< Usage: CSiBOOT filename >

CSi-Boot requires either an Intel 8086/386 .hex or 80286/386
absolutely located file to load.

CSi-Boot Error MessagesAppendix D

D-4 CSi-Mon User’s Guide

CSi-Mon User’s Guide Index-1

I

Index

Index

Symbols

16450/16550.See UARTs
8251/8274.See UARTs

A

AMD parts, supported by CSi-Mon 2-3
ANSI-C 2-2
applications

calling 5-6
combining with the monitor 5-2–5-12
creating 5-6
forward references 5-5
merging source and CSi-Mon 5-5–5-12
modifying 5-3
ROM-based 6-6

assemblers 2-2
selecting 3-11

assembly files 5-4

B

baud rate
generator, and Soft-Scope 2-4–2-5

devices supported 2-5, T2-2
high 4-6
specifying 4-8
testing the monitor 3-6
troubleshooting 6-3

bootstrapping 2-2
processor and hardware 2-2

break initialization 5-4
breakpoint

commands A-2–A-3
errors A-3, A-4–A-5

F indicates figure reference

T indicates table reference

Index-2 CSi-Mon User’s Guide

Index

executing target A-11
handles C-1–C-2, TC-1
setting 5-2, A-4–A-5
triggered A-11
types of A-5, TA-1

building monitor 3-10–3-12, 4-3

C

calling an application 5-6
changing a monitor 4-3
chip selects 4-12
combining applications with CSi-Mon library 5-2–5-3
command tables A-12–A-13
commands 3-6–3-10, A-1–A-13

breakpoint types A-5, TA-1
execution A-12, TA-2
extension 3-8, 3-9
memory A-12, TA-3

reading and writing 3-9
miscellaneous 3-10, A-13, TA-5
register 3-9–3-10, A-13, TA-4
reset the monitor 3-10
syntax A-1–A-2

communication 4-6–4-12
configuration

8274 UARTs 4-9
Intel 8251 4-9
interrupt controllers 4-9
interrupt-driven 4-7
options 4-7
polling 4-6–4-7, 5-2
selecting tools 4-11
specifying MAPI functions 4-10–4-11

device 6-2–6-3
interrupt driven 5-2
interrupt vector 4-8
options 4-7, F4-3
parameters 3-2

CSi-Mon User’s Guide Index-3

I

Index

resources 2-4
ROM emulator 2-5
serial communications 2-4

serial communications 3-2–3-3
system specifications 4-8, F4-4

compiler suites 2-2
configuration 3-11, 4-1

communication.See communication
custom boards 4-4
interrupt controllers

National UARTs 4-9
interrupt-driven communication 4-7
library 3-11, 4-5, 4-12, 5-2–5-5
locating monitor in memory 4-12
monitor extensions 4-5, F4-2
National Semiconductor 16450/16550 UART 4-8
PC 4-4
polling communication 4-6–4-7, 5-2
running, of the monitor 4-3
selecting a UART 4-6
summary of 4-2–4-12
table A-3–A-4
table entries B-4, TB-5
target 6-3–6-4
target hardware 4-4, F4-1
testing the monitor 3-6–3-10

configuring a monitor 4-3–4-4
target hardware 4-4

coprocessor
miscellaneous registers B-4, TB-4
stack registers B-3, TB-3
supported 2-4

CPU. See processor
creating sample application 5-6–5-7
CSi-Boot Utility

error messages D-1–D-3
loading/installing a monitor 3-3, 3-4

CSi-Config Utility 3-11, 4-1–4-12
monitor location in memory 4-12

Index-4 CSi-Mon User’s Guide

Index

CSi-Loc/CSi-Link 5-11, D-1
custom board, as target

configuration 4-4
hardware 4-4
interrup controllers 4-7

D

debug registers 2-4, B-2, TB-2
protected-mode software 4-4
real-mode software 4-4

device
communication

I/O address 6-2–6-3
drivers

DOS EXEDBG 3-5
loading/installing a monitor 3-2

supported by CSi-Mon 2-5, T2-2
DOS mode

DOS EXEDBG 3-5
loading monitor on a PC 3-2

E

embedded targets, creating 3-5–3-6
error messages 6-4

CSi-Boot D-1–D-3
Soft-Scope 5-13, 6-2

testing the monitor 3-6–3-10
execution commands A-12, TA-2
extension commands 3-8–3-9
extensions, monitor A-5

configuring 4-5

F

flash loaders 5-7
forward references

adding 5-5

CSi-Mon User’s Guide Index-5

I

Index

G

GDT space 2-4
general registers B-1, TB-1
Getting Started xiii, xiv, 1-1

H

handles, breakpoint C-1–C-2, TC-1
harware resources, list of 2-3–2-5
host

baud rate 6-3
serial communications 3-2–3-3, 3-5

I

I/O addresses 6-2–6-3
IDT space 2-4
initialze monitor 5-3
installation, CSi-Mon software 1-1–1-2

required disk space 1-1
installing a monitor.See loadling/installing
instructions, step A-9–A-10
Intel parts

devices supported 2-5, T2-2
processors supported 2-3, T2-1

Intel UARTs, configuration of 4-9–4-10
interrupt controllers 4-7

configuring 4-9–4-10
interrupt vector table, overwriting of 4-8, 4-12
interrupt-driven communication

configuration 4-7
National Semiconductor 16450/16550 UART 4-8
Soft-Scope 5-2

interrupt-driven monitor 3-7
combining application with a monitor 5-13

IRQs 2-4

L

librarians 2-2

Index-6 CSi-Mon User’s Guide

Index

library
combining with applications 5-2–5-3
configuring 3-11, 4-5, 4-12
function of 5-2
loaded into RAM 6-6
use with ROM-based applications 6-6

linkers/locators 2-2
defined, when needed 2-2–2-3
problems locating the monitor 6-4
selecting 3-11

loadling/installing a monitor 3-2–3-6
DOS EXEDBG 3-5
embedded targets 3-5–3-6
PC absolutely located monitors 3-2–3-5

M

MAPI functions, specifying 4-10–4-11
MASM complaint assembly 2-2
memory

binary read 3-9, A-8–A-9
binary write 3-9, A-8
commands 3-10, A-12, TA-3
comparing A-6, A-8
copying A-7
fill in pattern A-6
model, selecting of 3-11
monitor location 4-12, 6-4–6-6
segmentation, selection of 4-11
space, sharing 5-10–5-11
testing 3-9

merging source and CSi-Mon 5-5–5-12
miscellaneous commands A-13, TA-5
monitor

absolulutely located 6-5
building new 4-3
changing 4-3
combining with applications 5-1–5-12
configuration 4-3–4-4

CSi-Mon User’s Guide Index-7

I

Index

data segments 6-5
error messages 6-4
extensions

commands A-5
configuration of 4-5
options 4-5, F4-2

flat model 3-8
identification A-10
interrupt-driver

combining with application 5-13
testing 3-7

loading/installing.See loadling/installing a monitor
located in memory 4-12, 6-4–6-6
merging with application 5-5–5-12
PROM address 4-12
protected-mode 3-3, 5-5

memory read and write 3-9
RAM address 4-12
real-mode 3-3, 5-5
rebuilding 3-10–3-12
resetting A-11
ROM based 3-8
serial number xv
source 1-2
stock 3-2, 3-3
testing 3-6–3-10

non-interrupt driven 3-7
version xv, 4-5

multitasking operating systems 3-2, 3-5

N

National Semiconductor 16450/16550 UART 4-8
National Semiconductor parts

devices supported 2-5, T2-2
processors supported 2-4, T2-1

National UARTs, configuration of 4-6, 4-9
NEC parts, processors supported 2-4, T2-1
non-interrupt driven monitor 3-7

Index-8 CSi-Mon User’s Guide

Index

P

PC configurations 4-4
peripheral control block 4-12
PIC controller

configuring interrupt controllers 4-9, 4-10
devices upported 2-5, T2-2
serial communications 2-4–2-5, T2-2
Soft-Scope 2-4–2-5, 5-13
when monitor is a library 5-2

polling communication 4-6–4-7, 5-13, 6-2–6-3
PromICE 4-7

port
address delta 4-8, 6-2
input and output A-6–A-7

processor
Pentium 4-4
protected-mode, target hardware 4-4
real-mode, target hardware 4-4
resources, list of 2-3–2-4
supported by CSi-Mon 2-3–2-4, T2-1

PROM 6-6
PROM address 4-12
PromICE

polled communications 4-7
ROM emulator 2-5

protected-mode monitors
configuration 6-3
memory reading 3-9
memory writing 3-9
merging application 5-5
PC based 3-3

protected-mode processors, target hardware 4-4
protection control registers B-2

R

RAM initialization 3-8–3-9
RAM-based applications and library, 5-2

CSi-Mon User’s Guide Index-9

I

Index

memory location 3-7
real-mode monitor

configuration 6-3–6-4
merging application 5-5
PC based 3-3

real-mode processors, target hardware 4-4
reboot CSi-Mon 3-4
rebuilding the monitor 3-10–3-12

configuration 3-11
register

commands A-13, TA-4
debug 2-4
read A-9
stack B-2
tables B-1

configuration B-4, TB-5
coprocessor stack B-3, TB-3
debug B-2, TB-2
general purpose B-1, TB-1
protection controls B-2, TB-2

tasking B-1, TB-1
write A-9

report
identifying monitor A-10
identifying version A-10

resetting the monitor 3-10, A-11
ROM emulator 2-5
ROM-based

addresses 4-12
applications 5-2
monitor 3-8–3-9

ROM/RAM resources 2-3
ROMmed monitors 6-5

S

script building
merging source and application 5-11–5-12

serial communications

Index-10 CSi-Mon User’s Guide

Index

DOS EXEDBG 3-5
PC absolutely located monitors 3-2
resources 2-4

serial number, of monitor xv
serial port, absence of 2-5
setup segments 3-8
sign-on string 3-6

tracking monitors 4-5
Soft-Scope

baud rate 4-6, 4-8
CSi-Mon

location in memory 4-12
MAPI functions 4-10
serial communications 2-4–2-5

determining parameters of monitor 3-7
error messages 5-13, 6-2
interrupt-driven communications 5-2
memory space 5-10
PIC controller 5-13
polling communication 5-2
running application with/without 4-11
stopping target 5-13
task register 5-7
tr register 5-7

source code 4-1
merging with application 5-2, 5-5–5-12

source files, list of 1-2–1-4, 6-4
stack register, coprocessor B-3, TB-3
startup code

adding 5-8–5-10
and monitor 2-2–2-3
forward references 5-5

stock monitors 3-2
DOS EXEDBG 3-5
embedded targets 3-5–3-6
list of PC based 3-3
rebuilding 3-10–3-12

syntax of commands A-1–A-2

CSi-Mon User’s Guide Index-11

I

Index

T

table entries, configuration B-4, TB-5
target

code configuration 6-3–6-4
communication configuration 4-6–4-12
embedded 3-5–3-6
executing with breakpoints A-11
hardware options 4-4, F4-1
serial communications 3-2–3-3, 3-5
stopping A-10

task register 2-4, B-1, TB-1
combining application (overriding check register) 5-7–5-8

technical support xiii, xv
testing the monitor 3-6–3-10

extension commands 3-8–8-9
memory reading 3-9
memory writing 3-9
resetting 3-10
troubleshooting 3-6–3-10

tools
selecting of 3-11, 4-11–4-12
suites supported, list of 2-2

tr register 5-7–5-8
troubleshooting 5-13, 6-1–6-6

testing the monitor 3-6–3-10
TSR

DOS EXEDBG 3-5
loading/installing a monitor 3-2
testing the monitor 3-6

U

UARTs
base port address 6-2
configuration of interrupt controllers

Intel 4-9
National 4-9

data clock input rate 4-8

Index-12 CSi-Mon User’s Guide

Index

devices supported 2-5, T2-2
Intel 8251 or 8274 4-9
selecting 4-6
serial communications 2-4, 2-5, T2-2
Soft-Scope 2-4–2-5
timing mechanism 6-2
when monitor is a library 5-2

User Reference xiii, xiv, 5-1

V

version, of monitor xv

	1. Installation
	2. Preparation
	3. Demonstration
	4. Configuration
	5. Combining the Monitor and Your Application
	6. Troubleshooting
	Appendix A: CSi-Mon Commands
	Appendix B: Register Tables
	Appendix C: Breakpoint Handle Tables
	Appendix D: CSi-Boot Error Messages
	Index
	Preface
	About this Manual
	Technical Support
	How to contact Technical Support:
	Getting Started
	1. Installation
	Installing CSi-Mon
	CSi-Mon Source Files
	2. Preparation
	Tools Required
	Why Is a Locator Needed?
	Hardware Resources
	ROM/RAM Resources
	Processor Resources
	Communication Resources
	3. Demonstration
	Loading/Installing a Monitor
	PC Absolutely Located Monitors
	DOS EXEDBG
	Embedded Targets
	Testing the Monitor
	Rebuilding the Monitor
	4. Configuration
	Before You Start
	Configuring a Monitor
	Target Hardware
	Configuring Monitor Extensions
	Communication Configuration
	Select a UART
	Polling Communication
	Interrupt-Driven Communication
	Configuring Interrupt Controllers for National and Intel UARTs
	Specify MAPI Functions
	Selecting Tools
	Locate the Monitor in Memory
	User Reference
	5. Combining the Monitor and Your Application
	When To Make CSi-Mon a Library and When Not To
	Combining Your Application with the CSi-Mon Library
	Merging the Source of Your Application and CSi-Mon
	Common Pitfalls
	6. Troubleshooting
	Incorrect I/O Addresses for Communication Device
	Incompatible Baud Rates
	Code Configured for Wrong Target
	Monitor Not Compiled Correctly
	Monitor Not Properly Located
	Appendix A: CSi-Mon Commands
	Monitor Command Syntax
	Command Syntax Elements
	Monitor Commands
	Command Tables
	Appendix B: Register Tables
	Stack Register Masks
	Appendix C: Breakpoint Handle Tables
	Appendix D: CSi-Boot Error Messages
	Index
	Installing CSi-Mon
	CSi-Mon Source Files
	Tools Required
	Why Is a Locator Needed?
	Hardware Resources
	ROM/RAM Resources
	Processor Resources
	Communication Resources
	Loading/Installing a Monitor
	PC Absolutely Located Monitors
	DOS EXEDBG
	Embedded Targets
	Testing the Monitor
	Rebuilding the Monitor
	Before You Start
	Configuring a Monitor
	Target Hardware
	Configuring Monitor Extensions
	Communication Configuration
	Select a UART
	Polling Communication
	Interrupt-Driven Communication
	Configuring Interrupt Controllers for National and Intel UARTs
	Specify MAPI Functions
	Selecting Tools
	Locate the Monitor in Memory
	When To Make CSi-Mon a Library and When Not To
	Combining Your Application with the CSi-Mon Library
	Merging the Source of Your Application and CSi-Mon
	Common Pitfalls
	Incorrect I/O Addresses for Communication Device
	Incompatible Baud Rates
	Code Configured for Wrong Target
	Monitor Not Compiled Correctly
	Monitor Not Properly Located

