CSi-Locate User's Guide

CSi-Locate™

User’s Guide

Version 2.0
June 1996

Copyright and Trademark Information

Copyright 1998 United States Software Corporation. All nghts reserved. No
part of this publication may be reproduced, translated into another language,

stored in a retrieval system, or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the pI'lOI'
written consent of United States Software Corporation.

CSi-Locate is a trademark of United States Software Corporation. *Other brands
and names are marked with an asterisk and are the property of their respective

OWNErS.

United States Software Corporation makes no warranty of any kind with regard
to this material, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose. United States Software
Corporation assumes no responsibility for any errors that may appear in this.

document. United States Software Corporation makes no commitment to update -
or to keep current the information contained in this document.

Concurrent Sciences, Inc. is a whole subsidiary of United States Software

Corporation.

__United States Software Corporation

7175 NW Evergreen Parkway ¢ Suite 100
Hillsboro, OR 97124
USA: 800-356-7097
TEL: 503-844-6614 « FAX: 503-844-6480
E-mail: info@ussw.com ¢ www.ussw.com

CSi-Locate User's Guide

Table of Contents

Introduction
Manual Organization.............ccceriniisnieenenccseeersesenisessssssssesessssssenns \4
How to Install CSi-LOCAtEccvecveireeercrreenrnsessetsaeeeinnsaesessessesesssesesens vi
Typographical Conventions Used in This Manualcceceueerueeunnnn.e. vi
1 - Locating with CSi-Locate 1
The Location PIOCESScocvuiuiinuceimecrceeeneeneetrensrssssssessssesesssesessnssesens 2
Features Of CSi-LOCAtEccoueremrurercrureenniiereneereaeeeisnnesssssassassesessnesenasens 4
CSi-Locate's Input and Outpuatc.ocvveeevrercnnnscnreereceeee e 5
Sample Conversion Map Fileeinienicnieeneeeeeneeeasessenennens 6
CSi-Locate and SOft-SCOPEcviiumrecerveimnercreerenrereresteesessesssesssessssssssnnes 8
Tools Chains and Memory Segmentation Modelscccoererercrrecences 9
Troubleshooting Location Problemscvececnneeneneninnccesenecunee ..10
2 - 16-bit Real-Mode Applications 13
16-bit Real-Mode Example to Be Run out of RAM......ccccceuerveureerrnrence 14
16-bit Real-Mode ROMmed Exampleccocovvirmmeccescnsuneecnsescnrcnsencs 20
Borland Tools ettt e ae st e e st st b ans s e s ne e aenerasassssase 24
MICTOSOft TOOIS ...ceeninniniiitietcniecnccesesesesesssee sttt es s sasesssnsesessasasnnes 25
WatCOTN TOOIS ...ttt e ese st s e s sssssasnsnsanans 26
3 - 16-bit Protected-Mode Applications 27
16-bit Protected-Mode Example..........ooiiemccnrnnciniicsiaciicsesnneecneane 28
MICLOSOft TOOIS ...ttt ettt sess s asessesn e sessnsaens 36
BOrland TOOLS «...ucuuiieiieierinincncienetsieetecce st ssasaesessesessasssssssssesesssens 38
4- 32-bit Protected-Mode Applications 39
32-bit Protected-Mode Example..........cococeetrieeureromcniccrerenceenenennaseeccncs 40
MICTOSOLt TOOIS ettt ne e eteasesanss e sas e essensssassenss 49
WatCOm TOOIS vttt et et e e se e e seaan 50
CSi-Locate ifi

5 - Command Reference 51
The .CMD Command Filecciinniniencteenenerrissessienessss e 52
.CMD Command File Organizationcceverevemeeessessssneesaasenssssnsenns 54
Command Syntax Elementsccoceeereeeionienninsienesensesennesnesensiesieane 56
Command SyntaxX SUMIMATYcccceeieererremieressnsssssssssssssssesssessssssssssonss 58
CSi-Locate Command Reference..........ccovuurermrereeeseseensiessnnsessssisssnenns 60

Appendix A - Error and Warning Messages 95
Fatal Error MeSSagesccouureurererersrrrssinsnsstessnsssssnsssessssasesinensassessscrssasicens 96
System EXTOr MeSSages.....cecveemmeusimrrusmssisrusnissessesennassassessssssissssessassssssssans 96
EITOT MESSAZES «.ovciurverernrrrnnriressissrsssssssrssasessstsessasesasssessesssassnssusansass 96
Syntax Error MESSagesccuurnrimmesrniessnmsensnusesssesnnstssissssssiassssssneasnns 103
Warning MeSSAZESceivuererereismrerniassisesnisssanssseesssesss st ssssassss 107

Appendix B - ROMming Protected-Mode Applicationsccecevscueeenee 115

Index 119

CSi-Locate

Manual Organization

CSi-Locate

This CSi-Locate User's Guide contains the following chapters:

1. Locating with CSi-Locate

This chapter describes the location process, explains features of
and how to use CSi-Locate, and gives troubleshooting guidance.

2.16-bit Real-Mode Applications

Look in this chapter to find worked-out examples of locating in
RAM (only) and in ROM (and RAM) 16-bit real-mode applica-
tions. There is significant overlap in chapters 2—4; reading one of
these three chapters will probably suffice as you get started.

3. 16-bit Protected-Mode Applications

Look in this chapter to find a worked-out example of locating in
RAM (only) a 16-bit protected-mode application. There is
significant overlap among chapters 2—4, so reading one of these
three chapters will probably suffice as you get started.

4. 32-bit Protected-Mode Applications

Look in this chapter to find a worked-out example of locating in
RAM (only) a 32-bit protected-mode application. There is
significant overlap among chapters 2—4, so reading one of these
three chapters will probably suffice as you get started.

5. Command Reference

The CSi-Locate .cMb command file helps make locating applica-
tions easy and fast. This chapter describes command files in
detail and also provides a detailed explanation of each of the 38
commands that can go into them.

Appendix A. Error and Warning Messages

This appendix explains the error and warning messages that CSi-
Locate generates.

Appendix B. ROMming Protected-Mode Applications

This appendix provides general guidance on how to ROM
protected-mode applications.

How to Install CSi-Locate/Typographical Conventions

1. Create a new subdirectory on the disk drive where you want
to install CSi-Locate. For explanatory purposes here and
throughout this manual, we will assume that the subdirectory
you create is CSILOC.

mkdir csiloc

2. Make it the current directory.

cd csiloc

3. Place the installation disk in the floppy drive from which you
want to install CSi-Locate.

4. Invoke the install program with the following command:

x:INSTALL x:

where x is the name of the floppy drive into which you have
inserted disk 1 (both xs are required in the command).

See the file FiLEs.DoC (an ASCII file that can be found in the direc-
tory where you installed CSi-Locate) for a list of files installed
during installation. Another file that you will want to look at is
the file READ.ME, which discusses known problems and restric-
tions, along with changes made to the software after this manual
went to press. This file can also be found in the directory where
you installed CSi-Locate.

Typographical Conventions Used in This Manual

FILENAME.EXT Directories, filenames, and filename
parts are set in small capitals

LOCATE Locator commands are in all capital
letters and set in bold Helvetica

debug Code and command examples are
set in bold Courier

vi

Step-by-step
installation DOS-
based instructions

CSi-Locate

CSi-Locate locates real-mode, protected-mode, and mixed-mode applications by
performing commands that you give to it in a sequential command file. When
combined with one of the popular compiler-linker combinations that it supports
(listed on page 4), the CSi-Mon monitor, and the Soft-Scope debugger, it becomes
- part of a complete solution for embedded-system development.

Since many programmers are new to the location process, we provide a general
description of this important process starting on the next page. Then we provide
an overview of the capabilities of CSi-Locate in the next section of this chapter,
highlighting its distinctive characteristics. The next topic is tool chains that CSi-
Locate supports, followed by a general discussion of the input CSi-Locate requires
and the output it produces. A .cM conversion map file is a sort of listing file always
generated by the locator and that file type is discussed next. The final section of
this chapter provides troubleshooting assistance.

Table of Contents

5

The Location Process................ ceereesn e bsanais rerserese s 2
Features of CSi-Locate v nies et s n 4
CSi-Locate's Input and Output ..
Sample Conversion Map File ..
CSi-Locate and Soft-Scope.......cocveurierurencane

Tools Chains and Memory Segmentahon Models veererenens 9
Troubleshooting Location Problems reeneensaeneniaes veerereaeaaas N .10

The Location Process

Linking/locating

Native vs.
embedded
development

Location units

The simple story of the linking-locating process is that linkers
order and link program segments together, while locators assign
addresses to them. Linkers in fact do more than that and
locators similarly have historically taken on more duties than just
address assignment. We will assume that you have a general
familiarity with what goes on in the linking process, but we will -
take a closer look at the location process here.

Native-development environments today shield the user almost
entirely from the locating process because native applications are
practically always relocatable. Embedded-system developers,
however, need to know about locating because their applications
must usually be absolutely located. The primary difference
between relocatable and absolutely located applications is that
the latter have fixed addresses.

When building an absolutely located application, you work with
the following three basic structures:

Segments Real-mode and 16-bit protected-mode segments
are blocks of code or data that can range in size
from 0 bytes to 64KB. Protected-mode 32-bit
segments can be as large as 4GB. Of the three
possible 80X86-family type of segments (namely,
data, code, and system), applications program-
mers create and work primarily with the data
and code segments. The locator can be used to
set up system segments (e.g., those containing
tables for the GDT, IDT, LDT, TSS, and the
various trap and interrupt gates), as well as
define code and data segments at location time
that don't exist until then, but are used by the
user's application.

Classes A collection of segments, either grouped together
according to user specifications or classed
together by the linker to organize modules. For
example, all of the segments in one class may
contain initialized data, and all the segments in
another class may contain initialization code or
code written in assembly language.

CSi-Locate

The Location Process

Groups Groups are also collections of segments, but each
of the segments in a group has the same segment
base. So, the entire group must be within the
segment-size limit defined by the processor
mode, which is 64KB for real mode and 16-bit
protected mode and 4GB for 32-bit protected
mode.

Consider the following when locating these structures in
memory:

You need to know the starting addresses and sizes of RAM and
ROM chips on your target board.

Segments that don't have load-image data (for example, the Stack
and BSS segments) can be located, but their contents will be

. undefined because no load-image data is present. If you use
LOCATE to specify that the data images of such segments be
written to the target, those data images will be set to zero. Also,
zero-length segments are not placed in the output .ABs, .HEX, or
.BIN files.

All segments not explicitly located using commands are located
in the order defined by the input MAP file or the order in which
they are created with the locator command CREATE.

Typically you will want to locate code in ROM and data in RAM.

The examples worked out in chapter 2—4 should help you get a
feel for using CSi-Locate and for the location process generally.

Chapter 1, Locating with CSi-Locate

Know where your
RAM and ROM are

Default location
order

Features of CSi-Locate

What CSi-Locate
does

Compilers
supported

Sets up protected-
mode strcutures

Supports initialized
RAM data

Other support
macros

CSi-Locate orders and absolutely locates in memory the segments,
classes, and groups that constitute 80x86-family (aka Intel Architec-
ture) executable programs, creating code that can be loaded into
RAM using the Soft-Scope debugger or burned into ROM to
create an embedded application.

CSi-Locate supports applications built with tool chains (that is,
assemblers, C/C++ compilers, and linkers) from the following
vendors, for both DOS and Microsoft Windows executables:

e Borland
e Microsoft
e Watcom

It can construct 16- and 32-bit protected-mode CPU structures,
including the GDT, IDT, LDT, gates, page tables, and TSSs, and it
supports multiple-mode or mixed-mode applications.

If your application has initialized data that you want to reside in
RAM, the locator can compress the segments containing it for
storage into ROM, and then at boot-up time your application's
startup code can uncompress the data and copy it into RAM by
using macros supplied with the locator. These uncompress-and-
copy macros are named raminit_16x (for 16-bit real mode),
raminit_16p (16-bit protected), and raminit_ 32P (32-bit
protected), and can be found in the file csoc\csioc.Ne.

Here is a list of other support macros (and what they do) that can
be found in the file csroc.INC just mentioned:

def_alias Define alias segments.

def_gate Define CALL/TASK/TRAP/Interrupt gates.
def_noentrygate Define gate w/out default entry point.
def_init Define ram init table segment.
def_tbl Define GDT, IDT, LDT, and page tables.
def_tss Define TSS segments.

sup_defseg Support macro for def_ ot macros.
sup_initlé Support for raminit_soot macros.
sup_init32 Support for raminit_soox macros.

CSi-Locate

CSi-Locate's Input and Output

To make CSi-Locate easy to use, all commands and options are
read from a sequential command file (see pp. 52-55 for a detailed
discussion of the .cMp command file), and the user controls the
ultimate output format.

Possible output formats of your located application are as follows:

Intel OMF86 absolute
Intel OMFE286 absolute
Intel OMF386 absolute
Intel extended 86 hex
Intel 32-bit hex

Binary

Default extensions for output files are as follows:

absolute .ABS
hex HEX
binary .BIN

A type of listing file, called a conversion map file (with cM exten-
sion), is always generated by CSi-Locate; see following pp. 6-7 for
an annotated example .cu file.

CSi-Locate requires access to the linker-generated executable and
map files. These files provide symbolics, load image, segment/
class/group names, and fixup information that CSi-Locate uses to
prepare your output files.

For ease of use, files are distinguished by their extension, which
makes it possible to use the same filename prefix for the execut-
able file, the map file, and the .cMp command file. For example,
each of our sample programs, which can be found in the
subdirectories of csnoc\samp, uses the following files:

csamp .exe
csamp .map
csamp.cmd

By default, CSi-Locate assumes that the executable and map files
have the same path and filename prefix that the command file
has. You can, however, specify different paths or names for those
files by means of the I/O locator commands EXEC and MAP,
described in chapter 5, pp. 70 and 80, respectively.

Chapter 1, Locating with CSi-Locate

Command-file
driven

Possible output
formats

Required input files

Sample Conversion Map File

|
- .o-re 1.1.
Conversion Conversion map listing file 2ug 23, 1995 09:14:05PM
map file
CSi-Locate embedded application locator, version 2.01
(c) Concurrent Sciences, inc. 1993-1996
Serial No. MANUAL
Header with the date, time, CSi-Locate
version number, copyright, and serial-
number information
Processing command file.
{1 7/
[2] // Microsoft C/C++ 386 32-bit flat model sample
[3]1 // This file is set up to work with the default
[4] // configuration of Concurrent Sciences' CSi-Mon
[5] // debug monitor and to operate out of RAM
{61 77/
{71
[8] cpu 386 // Target is 80386
[9] absolute // Produce output file in OMF386
[10] debug // Generate symbolics
Reading executable file.
[11] locate .text 8000p
Command file listing [12] create systss // Create segments to hold GDT,
[13] create sysgdt // GDT and IDT tables and
[14] create sysidt // initial TSS
[15] gdt sysgdt[3..64] reserve // CSi-Mon needs
//slots 3 to 64
[16] idt sysidt[0..40] reserve // Reserve for
//Intel CPU
[17] tss386 systss :: cs:eip=_boot ss:esp=start_tos
// Set up initial TSS values
[18] gdt sysgdt * // Enter all segments in GDT
[19] fixup selector start_data = group flat_d
[20] fixup far32 start_stack = start_tos
[21] fixup far32 start_code = _main
[22] fixup far32 start_init = raminit
CSi-Locate input/output files:
Command script: bigec.cmd
Input/Output file names Conversion map: bigc.cm
Input executable: bigc.exe (32-bit Windows executable)
Input map: bige.map
Absolute output: bigc.abs
Hex format output: (Not generated)
Binary output: (Not generated)

CSi-Locate

Sample Conversion Map File

Protected-mode segment map:
Logical Physical Length Name Class Group Memory

0208:00000000 00007000P 000000cO INIT_TEX CODE FLAT C ROM

:00001000 00008000P 000025fc .TEXT CODE FLAT C ROM
0210:0000 4000b000P 0000b0c8 .BSS DATA FLAT_D ROM
:00010000 00017000P 00000063 -RDATA DATA FLAT_ D ROM
:00013000 0001a000P 00004000 STACK DATA FLAT D ROM
:00017000 0001e000P 00000039 .EDATA DATA FLAT D ROM
0218:0000 00021000P 00068 SYSTSS ROM

Initial GDT: SYSGDT[0..67]

GDT[0] 0000 Empty 00000000L Lim=00000H DPL=0 gbp av
GDT[3] 0018 Reserved
GDT[4] 0020 Reserved

Initial TSS286: SYSTSS
gdt SYSGDT[65] 0208 Avail 286 TSS 00004390L Lim=0002bH DPL=0 gbP av

EAX=0000 EBX=0000 ECX=0000 EDX=0000

ESI=0000 EDI=0000 EBP=0000

DS=0000 ES=0000 FS=0000 GS=0000

LDTR=0000 LINK=0000

CS:EIP=0218:000E

SS:ESP=0220:4040

SS0:SEP0=0000:0000 S§S1:ESP1=0000:0000 SS2:ESP2=0000:0000
EFL=0000 [ac vm rf nt IOPL=0 of df if tf sf zf af pf cf]

Translating debug symbolics

Debug Symbolics Translation Complete:
Modules. 23

Procedures 42 Public symbol in-
Public Symbols . . 145 formation summary
Source Lines . . . 1175

Total Symbols. . . 263

Types. - . . - . . 308

Chapter 1, Locating with CSi-Locate

]

Located segment
map (partial)

]

Descriptor table
information (partial)

—

TSS informa-
tion (partial)

Figure 1.1.
Conversion
map file

CSi-Locate and Soft-Scope

CSi-Locate pro-
duces files for use
with Soft-Scope
source-level
debuggers

NOTE1

In addition to the output files mentioned above, CSi-Locate can
create symbolic .BuG files for real-mode applications and can add
symbolic information to protected-mode absolute files that make
it possible for you to debug your application using the Soft- Scope .
family of debuggers (see the DEBUG command, p. XX).

If you want to debug your application using Soft-Scope, it must
be prepared in one of the ways described in the tools sections at
the ends of chapters 2-4.

Soft-Scope debuggers were designed specifically for embedded
systems, and provide many of the features often associated with
emulators and logic analyzers. For example, Soft-Scope for the
CSi-Mon monitor can set software breakpoints, set hardware
breakpoints on all 80x86 processors 386 or greater, stop target
execution, view memory while the target is running, display a
software trace, and log data to a file.

In addition, using a Tektronix logic analyzer and CSi-Connect,
you can view your application’s symbols on the logic analyzer
and correlate the analyzer's hardware trace and powerful break-
point capabilities with Soft-Scope's easy to use source-code
interface.

Soft-Scope is also available in versions that support the Intel
iSDM and iM-III monitors.

CSi-Locate does not support debuggers other than Soft-Scope.

CSi-Locate

Tool Chains and Memory Segmentation Models

16-Bit Real-Mode Applications Table 1.1. 16-bit
PP Real-Mode
M Applications
Compiler | Assembler Linker Model(s) for
Applications
Borand Borland Borland
C/CrH+ | TASM TINK | Segmented
Microsoft | Microsoft Microsoft
C/Cr+ | MASM LINK Segmented
Waimm86v Watoom Watcom
C WASM WLINK Segmented
. . Table 1.2. 16-bit
16-Bit Protected-Mode Applications Protected-Mode
Memory Model Applications
Compiler | Assembler Linker for
Applications
Borland Borland Borland
C/Ct+ TASM TLINK Segmented
Microsoft Microsoft Microsoft
C/C++ | MASM LINK Segmented
Watc(c:)m 86 X‘/zlvatcom Watcom Seomented

32-Bit Protected-Mode Applications Table 1.3. 32-bit

Protected-Mode

Memory Memory
. . Model(s) for Model(s) for
Compiler | Assembler Linker RAM (only) ROMmed
Applications Applications
Boland | Bodand | Borland Flat o _Fat
C/Cts TASM TLINK Segmented (with paging
. Microsoft
Microsoft | Microsoft | 32-bit Flat or Flat
C/Ct MASM Executable Segmented (with paging)
Linker
Watcom Watcom Watcom Flat or Flat or
386C/C++ | WASM WLINK Segmented Segmented

Chapter 1, Locating with CSi-Locate

Applications

Troubleshooting Location Problems

1. Locked-together
segments

2. Group problems
in 16-bit
applications with
the Microsoft and
Borland compilers

10

Locked-together segments are segments that share the same
selector. They occur only in non-Windows executable files, and
under the following conditions:

e When the first segment's length is less than 16 bytes long and
the second segment is not paragraph aligned.

o When the first segment's length is zero, the second segment
will share the same selector even if the second segment is
paragraph aligned.

In the CSi-Locate .av conversion map file (see annotated example on

pp- 6-7) locked-together segments list the selector for the first segment in
the group, but the other segments locked to the first do not show their
selectors.

Here are three ways to avoid this problem:

1. pad the first segment with enough bytes to make it longer
than 16 bytes;

2. if the first segment's length is greater than zero, paragraph
align the second segment;

3. create a dummy public symbol, as in the following example
(note that the type LABEL requires no allocated memory), in
the segment(s) you want to locate separately:

public XYZ
XYZ label word

When the Microsoft and Borland compilers generates 16-bit non-
Windows executable files, they create insufficient group informa-
tion for segments that are not referenced by the application. CSi-
Locate places these segments in a group with the preceding
segment. Since the application doesn't reference these segments,
this is usually not a problem.

However, it is possible that under some circumstances grouping
segments in this manner would be undesirable.

CSi-Locate

Troubleshooting Location Problems

To resolve this problem create a reference to the segments
mistakenly included. Do this by putting the following statement
in the assembly startup code inside some random segment:

DW seg name

where,

seg_name is the segment mistakenly included in the
WIOng group

The INIT16P, INIT16R, and INIT32P commands compress data
and store it in ROM for initialization. For 16-bit applications, if
. the compressed data are larger than 64k you need to create two
- ROM segments and use the INIT16P or INIT16R command to
initialize both of them.

If a segment defined in assembly language gets located a few
bytes beyond where you specify with the LOCATE command in a
.cmp file, define the segment as paragraph aligned in your assem-
bly code to prevent such dislocation.

If the locator undesirably truncates a segment or segments that
have been padded with zero-bytes (or padded in some other
way), use the INTEGRITY command (see p. 77) to direct the
locator to preserve those padded bytes and not truncate those
segments.

Chapter 1, Locating with CSi-Locate

3. Compressed data
larger than 64KB in
16-bit applications

4. Assembly-
language segments
located incorrectly

5. Truncated
segments

11

Troubleshooting Location Problems

This is the only line of text on this page.

12 CSi-Locate

This chapter covers preparing and locating 16-bit real-mode applications. There are
three examples of such applications supplied with CSi-Locate and they can be
found in the following subdirectories:

csiLoc\samp\BCC16R (Borland)
csioc\saMp\Msc16rR (Microsoft)
csieoc\samp\wccieR (Watcom)

This chapter begins by discussing the example in csiLoc\samp\scci6r, which is built
to be run in RAM only. Then it disscusses a more complicated 16-bit real-mode
ROMmed example. These examples will illustrate how you can prepare and locate
your own 16-bit real-mode application. Tools for use with this type of application
are discussed in the last three sections of the chapter.

16-bit Real-Mode ROMmed Example rernreeerenans rerereeeisaresateas e 20
Borland Toolscoocvevivvercneeeennee reresreens eveeeveresnresareeaaenes verteessrrsarnersosnataras 24
Microsoft Tools eereesansannees reeeres reeereresaeeensteenrene rerrerereeeresenreesasesnns .25

Watcom TOOIS oovveeeveeeerereeereeeeeeeeseseesnns eeereessreresatrsssaeressnseenns verenee e 26

16-bit Real-Mode Example to be Run out of RAM

Step 1— Compile
and link using
Borland tools. For
other tool chains,
see the Tools
section on pp. 24—
25 of this chapter

Step 2—Examine
your application’s
MAP file for class,
segment, and group
information

14

We have used batch files to create the sample programs included
in all the csroc\samp subdirectories. For the sake of illustration

in this chapter, we will discuss the sample program found in
sAMP\BCC16R, which is composed of one assembly-language file
(B16RBCC.ASM) and two C files (cMamN.c and cuTiLs.C), and built with -
Borland tools. This application is designed to be downloaded by
Soft-Scope and run from RAM (see p. 8 for more on Soft-Scope).
The following is the file BUILD.BAT that assembles, compiles, links,
and locates the application.

: Batch file to create csamp.abs
: To use type ‘build’

Tools versions used:
Borland Turbo Assembler v4.l
Borland C++ v4.5
Borland Turbo Link v7.00
Concurrent Sciences CSi-Locate v2.02

tasm /Zi /mx blérbcc.asm

bee -ml -f -r- -v -0- -¢ cmain.c
bee -ml -f -r- -v -0- -c¢ cutils.c
tlink /m /s /v /Twe @Gcsamp.flt
¢siloc ¢samp.cmd

Our primary focus in this chapter will be on the command file
CSAMP.CMD on p. 16, but before we scrutinize it, we will discuss
the map file that plays an important role in the location process.

When you build your application, you need to direct your linker
to generate a map file because CSi-Locate requires one as one of
its inputs. The map file on the next page was generated as part
of the build process defined above. The detailed segment map
allows you to see the classes, segments, and groups that you need
to locate, and what their relationships are to each other. Some
linkers, e.g., Microsoft's, don't show group information, which
can prevent you from seeing locked-together segments (see pp.
10-11 for more on this type of problem).

In this case, since RAMINIT is the first segment among the
segments ordered by the linker, if this is the only segment you
locate, all the remaining segments will be located as a conse-
quence of their relationship with RAMINIT.

CSi-Locate

16-bit Real-Mode Example to be Run out of RAM

Start Length Name

0001:0000 0010H RAMINIT
0002:0000 0096H INIT_TEXT
0002:00A0 0403H RESET_TEXT
0002:04A3 002FH CMAIN_TEXT
0002:04D2 0199H CUTILS_TEXT
0003:0000 0048H _DATA
0003:0050 4000H STACK
0003:4050 000CH _BSS

Detailed map of segments

0001:0000 0010 C=INIT S=RAMINIT
0002:0000 0096 C=CODE S=INIT_TEXT
0002:00A0 0403 C=CODE S=RESET _TEXT
0002:04A3 002F C=CODE S=CMAIN_TEXT
0002:04D2 0199 C=CODE S=CUTILS_TEXT
0003:0000 0000 C=DATA S=_DATA
0003:0000 0000 C=DATA S=_DATA
0003:0000 0048 C=DATA S=_DATA
0003:0050 4000 C=STACK S=STACK
0003:4050 0004 C=BSS S=_BSS
0003:4054 0008 C=BSS S=_BSS

Address Publics by Name

0002:0420 idle HARDWARE_RESET
0001:0000 idle RAMINIT_INIT
0002:0000 idle START_CODE
0002:0004 idle START_DATA
0002:000A idle START_INIT
0002:0006 idle START_STACK
0003:4050 idle START_TOS
0002:000E idle _BOOT

0002:04D2 _C_DATA
0002:061B _DELAY
0002:05DB _DISPLAY_LIGHTS
0003:4054 idle _LIGHTS
0002:04A3 _MAIN

0003:4050 idle _PATTERN

Chapter 2, 16-bit Real-Mode Applications

Class
Fig. 2.1. MAP file
INIT CSAMP.MAP
CODE (modified format)
CODE
CODE
CODE
DATA
STACK
BSS
G=(none) M=Bl6RBCC.ASM ACBP=68
G=(none) M=B1l6RBCC.ASM ACBP=48
G=(none) M=Bl6RBCC.ASM ACBP=68
G=(none) M=CMAIN.C ACBP=28
G=(none) M=CUTILS.C ACBP=28
G=DGROUP M=B16RBCC.ASM ACBP=48
G=DGROUP M=CMAIN.C ACBP=48
G=DGROUP M=CUTILS.C ACBP=48
G=DGROUP M=B1l6RBCC.ASM ACRP=74
G=DGROUP M=CMAIN.C ACBP=48
G=DGROUP M=CUTILS.C ACBP=48
Address Publics by Value
0001:0000 idle RAMINIT_INIT
0002:0000 idle START_CODE
0002:0004 idle START DATA
0002:0006 idle START STACK
0002:000A idle START_INIT
0002:000E idle _BOOT
0002:04A0 idle HARDWARE RESET
0002:04A3 _MATN
0002:04D2 _C_DATA
0002:05DB _DISPLAY_LIGHTS
0002:061B _DELAY
0003:4050 idle _PATTERN
0003:4050 idle START_TOS
0003:4054 idle _LIGHTS

15

16-bit Real-Mode Example to be Run out of RAM

Step 3—Create a
command file

Example .CMD file

Explanation of
example .CMD file

16

Use an ASCII text editor to create a.cMb command file with the
commands that direct CSi-Locate to locate your application. Just
below is a (slightly) modified version of the file
samMP\BCClé6R\Csamp.cMD, which is about the simplest possible
example of a command file. We will begin to explain it in detail -
in numbered paragraphs immediately following it. The full story
of the locator's 38 commands and how to construct command
files with them occurs in chapter 5.

//

// Borland C++ real mode sample command file

// This file is set up to work with the default
// configuration of Concurrent Sciences CSi-Mon
// debug monitor

//

debug // Create debug file

absolute // Create OMF86 absolute file
print

cpu 386 // Target is a 386 running in

// real mode

locate raminit :: 4000p
// Locate the first segment at
// 4000 physical

1. Note that comments begin with double slashes and end with
a carriage return.

2. The order in which commands occur in the command file is
significant. It is helpful to think of CSi-Locate as though it
were an interpreter that processed each command as soon as
it read it in. To help you get started with ordering com-
mands, we provide general guidelines for command ordering
in .cMp files on pp. 54-55. In general, place I/O commands
first (the first four commands in the above example are I/O
commands) and location and table-construction commands
last.

3. The DEBUG command directs the locator to output symbolic
debugging information that is essential for the Soft-Scope

CSi-Locate

16-bit Real-Mode Example to be Run out of RAM

debugger. For real-mode applications, CSi-Locate puts that
information in a .BUG file that has the same name as the .cMD
file. For protected-mode applications, the symbolics are
placed in the .aBs absolute output file.

The ABSOLUTE command tells the locator to output an
absolute file in Intel OMF format. The precise OMF type is
determined by the application's mode (real or protected) and
the target CPU, which is made known to the locator by
means of the CPU command. See page 60 for further details
on how the locator determines the OMF type.

The PRINT command directs the locator to print symbolic
information about pubic symbols to the .cM conversion map
file, which is automatically produced by the locator. An
annotated example .cMm file is given on pp. 6-7.

The CPU command specifies the target CPU to the locator. A
list of possible values in the 80x86 family to be used with this
command is given in table 5.5 on p. 67. The value used in the
command partly determines the OMF type of absolute files
(see 4. above) and is used in other ways by the locator to
produce optimal output.

The LOCATE command plays perhaps the most crucial role
among all the locator commands, for obvious reasons. This
command tells the locator to absolutely locate one or more
segments at a given address, which in turn may cause other
segments (possibly all the segments in an application, as in
the example here) to be located. This kind of ripple location
effect results from the linker's relative ordering of segments:
once the first segment in an ordered collection of segments is
located, all subsequent segments as determined by the
linking process fall into place. The map file produced by the
linker can be used to see how segments are ordered.

The following command achieves the exact same effect:
locate * :: 4000P

In this context, the * (asterisk) refers to all segments that have
not yet been located, and the linker's ordering of segments is
the default ordering used by the locator here too.

Chapter 2, 16-bit Real-Mode Applications

Explanation of
example .CMD file
(continued)

17

16-bit Real-Mode Example to be Run out of RAM

Step 4—Invoke
CSi-Locate

[InCSAMP.CM]
Segment map that
shows located
segment addresses

18

To create a located application, use the following syntax at the
DOS prompt:

CSILOC filename

where filename is the command file (with default extension cmD)
that contains the locator commands, as in the following example:

csiloc csamp

If CSi-Locate locates your application as specified without error,
the output file(s) that you request with the commands ABSO-
LUTE, BINARY, HEX, and DEBUG (the last creates a .BUG file for
real-mode applications) are created, and a conversion-map file
FILENAME.CM, which is a sort of locator listing file, is also pro-
duced. If the locator encounters any errors while trying to locate
your application, the only output file is the .cM file, which shows
all warnings and error messages generated during the location
attempt.

Parts of the .cuM file produced for our example 16-bit real-mode
application are given below, with annotations. A more complete
.cM is illustrated on pp. 6~7.

Real-mode segment map:

Logical Physical Length Name Class Group Memory
0400:0000 00004000P 00010 RAMINIT INIT ROM
0401:0000 00004010P 00096 INIT_TEXT CODE ROM

:00a0 000040b0OP 00403 RESET_TEXT CODE ROM
:04a3 000044b3Pp 0002f CMAIN_TEXT CODE ROM
10442 000044e2p 00159 CUTILS_TEXT CODE ROM
0468:0000 00004680P 00048 _DATA DATA DGROUP ROM
:0050 00004640P 04000 STACK STACK DGROUP ROM
:4050 0000864d0P 0000c _BSs BSS DGROUP ROM

This should say

RAM instead of
ROM.

CSi-Locate

16-bit Real-Mode Example to be Run out of RAM

public
public
public
public
public
public
public
public
public
public
public
public
public
public

RAMINIT_INIT
START_CODE
START_DATA .
START_STACK.
START_INIT
_BOOT.

HARDWARE_RESET .

_MAIN.
C_DATA.

~DISPLAY_ LIGHTS.

_DELAY .
START_TOS.
_PATTERN .
_LIGHTS.

0400:0000
0401:0000
0401:0004
0401:0006
0401:000a
0401:000e
0401:04a0
0401:04a3
0401:0442
0401:05db
0401:061b
0468:4050
0468:4050
0468:4054

Debug Symbolics Translation Complete:

Modules.
Procedures

Public Symbols
Source Lines

Total Symbols.
Types.

3
6
14

212

47
56

]

[InCSAMP.CM]
Data on symbolics

Conversion complete, No errors or warnings.

[InCSAMP.CM]
Final statement

Chapter 2, 16-bit Real-Mode Applications

[InCSAMP.CM]
Public symbol
information
generated by
PRINT command

19

16-bit Real-Mode ROMmed Example

.CMD command file

Explaining the
command file

20

Below is a CSi-Locate command file used to locate a 16-bit real-
mode application in ROM and RAM (this particular application
is not included in any of the SAMP subdirectories, but the actual
code used is almost the same as the code in csILoc\samMp\MSsC16R.
Only the file Bl16rMsc.asM differs by containing code to initialize
386EX hardware). We will explain what each command in the
command file is directing the locator to do.

debug // Create debug file

absoclute csamp.abs // Create OMF86 absolute file

hex csamp . hex // Create Intel extended 86 hex file
cpu 386 // Target is a 386, which is

// running in real mode as the .EXE
// file shows

// These are the classes that need to be raminited

initlér raminit :: class data class far_data class begdata
+ : class const class stack class MSG
+ class BSS

// Locate reset_text Here
locate reset_text :: 84000p

// Locate raminited segments starting at 1000p
locate class far_data :: 1000p

// Locate the remaining segments in ROM at 80000p (code
'// segments).
locate init_text * :: 80000p

1. The first four commands are explained in the example on
pp. 16-17, so they will not be covered here (except to say that
if the command file's name would be csame.cMD, then the file
arguments to the ABSOLUTE and HEX commands would be
unnecessary).

2. The RAM-initialization command INIT16R is used to com-

press data from the segment classes specified after the "::
into the ROM segment raminit. The data is intended to be
initialized and located in RAM. The macros mentioned on

. CSi-Locate

16-bit Real-Mode ROMmed Example

P- 4 can be used to uncompress and copy the data from the Explaining the

ROM segment to its intended RAM-segment destination. command file
(continued)

3. Two of the LOCATE commands are used to locate data in low
RAM (locate class far_data :: 1000p), and code
in higher RAM (locate init_text * :: 80000p).

The segment map that is part of the .cM conversion map
output file, listed on p. 23, shows accurately the respective
locations of code and data.

The other use of LOCATE places the reset code at a higher
ROM address.

4. The map file generated by the linker on the next page shows
the various classes and groups of data segments, as well as
the other segments ordered by the linker. If you now look at
the located-segment map on p. 23, you will see how locating
the far_data segment causes all segments in the DGROUP to
be ordered after it, and how locating init_text causes all the
remaining segments (except reset_text, which was separately
located) to be located after it contiguously in memory accord-
ing to the linker's map-file ordering.

Chapter 2, 16-bit Real-Mode Applications 21

16-bit Real-Mode ROMmed Example

Map file for
ROMmed 16-bit real-
mode application

22

Start

000008
000BOH
004B4H
004F2H
Q07DEH
03490H
03492H
034A0H
034B0H
034BOH
034F2H
039E2H
039E2H
039E2H
039E2H
039E2H
039E4H
039F0H
039F0H
039F4H
039F4H
03A02H
03Aa02H
03A02H
03A02H
03a02H
03a02H
03A02H
03a02H
03a02H
03a02H
03A02H
03A02H
03A02H
03A02H
03a02H
03A1EH
03a26H
03B74H
03B76H
03B78H
03B8EH
03B8EH
03B8EH
03BSEH
03BBEH
03BBEH
03BS0H
03BBOH

Origin
034B:0

Stop

000ADH
004B2H
004F1H
007DDH
0348DH
03491H
03492H
034AFH
034B0H
034F1H
039E1H
039E2H
03%E2H
039E2H
039E2H
039E3H
039EFH
039F0H
039F3H
039F4H
03A01H
03A02H
03A02H
03A02H
03A02H
03A02H
03A02H
03A02H
03A02H
03A02H
03A02H
03a02H
03A02H
03A02H
03a02H
03A1DH
03A25H
03B73H
03B75H
03B76H
03B8DH
03B8EH
03B8EH
03BSEH
03BBEH
03BSEH
03BBEH
03BAlH
083AFH

Group

Length

O00AEH
00403H
0003EH
002ECH
02CBOH
00002KH
00000H
gooloH
00000H
00042H
004F0H
00000H
00000H
00000H
00000H
00002H
0000CH
00000H
00004
00000K
Q000EK
Q0000H
Q0000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H

‘00000

00000H
ooo00H
oooo0H
gooooH
0001CH
gooosH
0014eH
00002H
00001K

00016H _1

00000K
00000K
00000H

.00000K

00000H
00000K
00012H
04800H

DGROUP

Name

INIT_TEXT
RESET_TEXT
CMAIN_TEXT
CUTILS_TEXT
_TEXT
EMULATOR_TEXT
C_ETEXT
RAMINIT
EMULATOR_DATA
NULL

_DATA
XIFCB

XIFU

XIFL

XIFCE

XIQC
DEDATA

XIB

XI

XIE

CDATA

XIFB

XIF

XIFE

XPB

XP

XPE

XCB

XC

XCE

XCFB

XCFCRT

XCF

XCFE

. Class

CODE
CODE
CODE
CODE
CODE
CODE
ENDCODE
INIT
FAR_DATA
BEGDATA

CSi-Locate

16-bit Real-Mode ROMmed Example

Logical

Real-mode segment map:
Physical Length

Name

0100

8000
800b
800f
803d
8309

830a
8400

: 0000
: 0000
10042
:0532
:0532
: 0532
:0532
:0532
;0534
: 0540
: 0540
:0544
: 0544
:0552
10552
:0552
: 0552
10552
:0552
:0552
: 0552
: 0552
: 0552
:0552
: 0552
:0552
: 0552
:0552
:056e
:0576
:06c4
:06c6
:06c8
:06de
:06de
:06de
:06de
:06de
:06de
:06e0
: 0700
: 0000
: 0004
: 0002
:000e
: 0000
:0002
: 0000
: 0000

00001000P
00001000P
00001042P
00001532P
00001532P
00001532P
00001532P
00001532P
00001534P
00001540P
00001540P
00001544P
00001544P
00001552P
00001552P
00001552P
00001552P
00001552P
00001552P
00001552P
00001552P
00001552p
00001552P
00001552P
00001552P
00001552F
000015529
00001552P
0000156eP
00001576P
000016c4P
000016c6P
000016c8P
000016deP
000016deP
000016deP
000016deP
000016deP
000016deP
000016e0P
00001700P
00080000P
000800b4P
0oogo0f2p
000803deP
00083090P
00083092pP
000830a0P
00084000P

00000
00042
004f£0
00000
00000
00000
00000
00002
0000c
00000
00004
00000
0000e
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
oooo0
00000
00000
0001c
00008
0014e
00002
00001
00016
00000
00000
00000
00000
00000
00000
00012
04800
000ae
0003e
002ec
02chbo
00002
00000
004ad
00403

EMULATOR_DATA
NULL

_DATA
XIFCB

XIFU

XIFL

XIFCE

XIQC
DBEDATA

XIB

X1

XIE

CDATA

XIFB

XIF

XIFE

XPB

XP

XPE

XCB

XC

XCE

XCFB
XCFCRT

XCF

XCFE

XIFM

CONST

HDR

MSG

PAD

EPAD

_BSsS

XO0B

X0

XOE

XOFB

XOF

XOFE
C_COMMON
STACK
INIT_TEXT
CMAIN_TEXT
CUTILS_TEXT
_TEXT
EMULATOR_TEXT
C_ETEXT
RAMINIT
RESET_TEXT

Class Group Memory

FAR_DATA DGROUP RAM
BEGDATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
DATA DGROUP RAM
CONST DGROUP RAM
MSG DGROUP RAM
MSG DGROUP RAM
MSG DGROUP RAM
MSG DGROUP RAM
BSS DGROUP RAM
BSS DGROUP RAM
BSS DGROUP RAM
BSS DGROUP RAM
BSS DGROUP RAM
BSS DGROUP RAM
BSS DGROUP RAM
BSS DGROUP RAM
STACK DGROUP RAM

CODE ROM
CODE ROM
CODE ROM
CODE ROM
CODE ROM
ENDCODE ROM
INIT ROM
CODE ROM

Chapter 2, 16-bit Real-Mode Applications

Segment-map part
of .cu conversion
map file for
ROMmed 16-bit
real-mode
application

23

Borland Tools

Borland C/C++
compiler

Borland Turbo
assembler

Borland TLINK

24

Here are the controls to use when preparing your 16-bit real-
mode application with Borland tools and CSi-Locate for use with
Soft-Scope. '

Use these controls with the Borland compiler
-v Debug information.

-O- Disable optimization. You may remove this switch
when the module has been debugged.

-r- Don't use register variables.
-c Don’t link.
Example invocation

bece ~-v -0- -¢ -r- cmain.c

Use these controls with the Borland assembler

1Zi Provide debug information.
/mx orml Treat symbols as case sensitive.

Example invocation
tasm /Zi /mx blérbcc.asm

Use these controls with the Borland linker
/m Create a mapfile with publics.

Iv Provide debug information.
n Provide line numbers.
Is Create detailed segment map.

/Twe Create a 16-bit Windows .EXE file.

Example invocation
tlink /m /s /v /1 @csamp.rsp

A sample CSAMP.RSP response file is cSILOC\SAMP\BCC16R \CSAMP.FLT.

CSi-Locate

Microsoft Tools

Here are the controls to use when preparing your 16-bit real-
mode application with Microsoft tools and CSi-Locate for use
with Soft-Scope. See p. 75 for a note about Microsoft compilers.

Use these controls with the Microsoft compiler

/Zi Include symbolic information. Versions 7 and 8 use
IZ7 to perform this function.

/0d Disable optimization. You may remove this switch
when the module has been debugged. It is even
possible to leave this switch out, but we recommend
you do this only after you are comfortable using
Soft-Scope.

/Gs Remove run-time stack probes.
/GW Windows application.
/c Compile only--do not link.

Example invocation

cl /zi /0d /Gs /Gw /c cmain.c

Use these controls with the Microsoft linker

INOD Ignore default libraries.
INOE Ignore extended dictionaries.
/MAP Create a map file.

/CO Codeview symbolics.

Example invocation
link cmain.obj, csamp.exe', csamp .map/MAP/CO/NOD, 1libce.lib;

Use these controls with the Microsoft assembler

/Zd Include line number information in object file.
/Zi Generate Codeview symbolics in object file.
/ICp Make all symbols case sensitive.

I Compile only—do not link.

Example invocation
ml /zZd /Zi /Cp /¢ blérmsc.asm

Chapter 2, 16-bit Real-Mode Applications

Microsoft C/C++
compiler

Microsoft LINK

Microsoft ML

25

Watcom Tools

Watcom C/C++

Watcom WASM

Watcom WLINK

26

Here are the controls to use when preparing your 16-bit real-
mode application with Watcom tools and CSi-Locate for use with
Soft-Scope. '

Use these controls with the Watcom compiler

/s Remove stack overflow checking.
/d2 Create debug information.

Example invocation

wee /s /d2 cmain.c

Use this control with the Watcom assembler

-d1 Create debug information.

Example invocation

wasm -dl blérwcc.asm

Use these directives with the Watcom linker

option map Create a map file.
debug all Provide full debug information.
format dos Create a DOS EXE output file.

name csamp.exe Name the output file CSAMP.EXE.

Rather than attempt to put all the linker directives on one line,
you can put them all in an .INK directive file, one directive per
line. The directive file that was used to produce the sample
program provided with this software is the file
CSILOC\SAMP \WCC16R \ CSAMP.FLT.

Example invocation
wlink @csamp.lnk

CSi-Locate

This chapter covers preparing and locating 16-bit protected-mode applications.
There are three examples of such applications supplied with CSi-Locate and they
can be found in the following subdirectories:

csioc\samp\Bcci16p (Borland)
csiLoc\saMp\Msci6P (Microsoft)
csiLoc\sAMP \Msc16pF (Miscrosoft/with Floating point)

This chapter will discuss the example in csioc\samp\msciep to illustrate how you
can prepare and locate your own 16-bit protected-mode application.

. Table of Contents

16-bit Protected-Mode EXampleccuvceeurerererceercncnnuenensersnncesenseseseeeees 28
MICTOSOFE TOOLS .eveerreeereeiiieeietieeecie e eee e e sosecese e ssessaesatsensensonsesnssnsesse D2
BOTIANd TOOIS ..ccvevmeerreemieeeretiesreecnsesssssssesesesesessesaesseeseseesseeseesseamessnsenesaese S

16-bit Protected-Mode Example

Step 1—Compile
and link using
Microsoft tools.
For other tool
chains, see the
Tools section on
pp. 36-38 of this
chapter

Step 2—Examine
your application's
MAP file for class,
segment, and group
information

28

We have used batch files to create the sample programs included
in all the csroc\samp subdirectories. For the sake of illustration
in this chapter, we will discuss the program found in
saMp\Msc16p, which is composed of one assembly-language file
(B16PMsc.asM), and two C files (cMaN.C and cutiis.c), and built
with Microsoft tools. The following is the file BUILD.BAT that
assembles, compiles, links, and locates the application.

Batch file to create csamp.abs
To use type ‘build’

Tools versions used:
Microsoft ML v6.10
Microsoft C v8.00¢ (VCPP vl1l.51)
Microsoft Link v5.60.220
Concurrent Sciences CSi-Locate 2.02

ml /2d /Zi /Cp /c blépmsc.asm

cl /Zi /04 /Gs /c /G2 /AS cmain.c
cl /Zi /0d /Gs /c /G2 /AS cutils.c
link /NOD /MAP /CO @csamp.flt;
csiloc csamp.cmd

However you build your application, make sure that you direct
the linker to generate a map file, because CSi-Locate requires a
map file as one of its inputs. We will use the map file on the next
page as our reference map file in this illustration.

The detailed segment map allows you to see the classes and
segments that you need to locate, and what their relationships
are to each other. Since groups are not shown by the Microsoft
linker's map file, it is possible for there to be locked-together
segments that you are unaware of until after location (see

pp. 10-11 for more on this problem).

CSi-Locate

16-bit Protected-Mode Example

Start
0001:
0002:
0003
0004:
0005:
0005:
0005:
0006:
0006:
0006:
0006:
0006:
0006:
0006:
0006:
0006:

Origi
0006:

Addre

0005:
0005:
0005:
0001:
0005:
0005:
0005:
0005:
0006:
0002:
0003:
0004:
0005:
0005:
0005:
0005:
0006:
0005:
0006:
0000:

0000
0000

: 0000

0000
0000
00BO
04B4
0000
003c
003C
003cC
003cC
0040
4040
4040
4050

Length
00010H
00010H
00010H
00010H
000AEH
00403H
00224H
0003CH
00000H
00000H
00000H
00000H
04000H
00000H
00002H
0000AaH

n Group
0 DGROUP

Ss

04B0
000E
00B6
0000
0000
0004
000A
0006
4040
0000
0000
0000
0027
04EE
0664
05F6
4052
04B4
4050
0000

Abs

Name
raminit
sysgdt
sysidt
systss
init_text
reset_text
_TEXT
_data
XIFCB
XIFU

XIFL
XIFCE
STACK
CONST
_BSS
c_common

Publics by Name

hardware_reset
init_cpp
pt_init
raminit_init
start_code
start_data
start_init
start_stack
start_tos
sysgdt_tbl
sysidt_tbl
systss_tss
_boot

_c_data
_delay
_display_lights
_lights

_main
_pattern
__acrtused

Chapter 3, 16-bit Protected-Mode Applications

Class
INIT
TBL
TBL
TSS
CODE
CODE
CODE
DATA
DATA
DATA
DATA
DATA
STACK
CONST
BSS
BSS

Address

0000:
0001:
0002:
0003:
0004:
0005:
0005:
0005:
0005:
0005:
0005:
0005:
0005:
0005:
0005:
0005:
0005:
0006:
0006:
0006:

0000
0000
0000
0000
0000
0000
0004
0006
000a
000E
0027
00B6
04B0
04B4
04EE
05F6
0664
4040
4050
4052

Fig. 3.1 Sample
MAP file
(modified for
presentation)

Abs

Publics by Value

__acrtused
raminit_init
sysgdt_tbl
sysidt_tbl
systss_tss
start_code
start_data
start_stack
start_init
init_cpp

_boot

pt_init
hardware_reset
_main

_c_data
_display_lights
_delay
start_tos
_battern
_lights

Program entry point at 0005:0027

29

16-bit Protected-Mode Example

Step 3—Create a
command file

Example .CMD file

Explanation of
example .CMD file

30

Use an ASCII text editor to create a .cMp command file with the
commands that direct CSi-Locate to locate your application.
Below is a modified version of the file samp\Msc16P\csamp.cMp.
We will begin to explain it in detail in numbered paragraphs
immediately following it. The full story of the locator's 38
commands and how to construct command files with them
occurs in chapter 5.

/7

// Microsoft C++ 286 protected mode sample command file
// This file is set up to work with the default

// configuration of Concurrent Sciences CSiMON

// debug monitor

124
debug // Create debug file
absolute // Create OMF286 absolute file
cpu 286 // Taxrget is 286 running in
// protected mode
locate *::4000p // Locate first segment at 4000P

gdt sysgdt[3..64]::reserve // CSiMON needs slots 3 to 64
idt sysidt[0..40)::reserve // Reserve for Intel CPU
tss286 systss::es:ip=_boot

+ ss:sp=start_tos
// Create an initial TSS
gdt sysgdt::systss // Place initial tss in GDT

gdt sysgdt::*
integrity *

1. Note that comments begin with double slashes and end with
a carriage return.

2. The placement order of commands is significant. On pp.
54-55 in chapter 5, we provide general guidelines for the
relative ordering of the locator's 38 commands in .cmp files.
In general, place I/O commands first (the first three com-
mands in the above example are I/O commands).

3. DEBUG directs the locator to output symbolic debugging
information that is essential for the Soft-Scope debugger.
For protected-mode application, the symbolics are placed in
the actual absolute output file. For real-mode applications,
CSi-Locate puts that information in a .UG file that it sepa-
rately creates, with the same name as the .cMp file.

CSi-Locate

16-bit Protected-Mode Example

4. ABSOLUTE tells the locator to output an absolute file in Intel
OMF format. The precise OMF type is determined by the
application's mode (real or protected) and the target CPU,
which is made known to the locator by means of the CPU
command. See page 60 for further details on how the locator
determines the OMF type.

5. CPU specifies the target CPU to the locator. A list of possible
values in the 80x86 family is given in table 5.5 on p. 67. This
value partly determines the OMF type of absolute files (see 4.
above) and is used in other ways by the locator to produce
optimal output.

6. LOCATE plays perhaps the most crucial role among all the
locator commands, for obvious reasons. This command tells
the locator explicitly to absolutely locate one or more seg-
ments, which in turn may cause other segments to be located.
This kind of ripple location effect results from the linker's
relative ordering of segments: once the first segment in an
ordered collection of segments is located, all subsequent
segments as determined by the linking process fall into place.
The map file produced by the linker can be used to see how
segments are ordered. '

The use of the * (asterisk) here signifies that this command
applies to all segments, which actually means that the first
segment in the map file's ordering should be located at the
address specified. An equivalent command for this applica-
tion would be the following:

locate raminit ::4000p

7. GDT is used to set up the Global Descriptor Table (GDT). Step 4—Define

The command assumes that a segment to hold the GDT protected-mode
(sysgdt in this case) has already been created. For this structures

example, the segment was created by means of the macro
def_tbl (see p. 4); an alternative way to create the GDT's
segment is to use the locator's CREATE command (see p. 68).

The first use of the GDT command in the sample .cMp file
tells the locator that slots 3-64 are being used for some other
purpose, and so are not to be used for this application.

Chapter 3, 16-bit Protected-Mode Applications 31

16-bit Protected-Mode Example

32

10.

As the comment says, the CSi-Mon monitor requires those
slots for its use. The locator will thus begin addmg new
entries for this application at slot 65.

The second use of the command places the segment systss,
which is a Task State Segment (TSS) defined with the TSS286-
command just above it, into the first available slot, namely,
65. This segment, like sysgdt, was also created in the .asm
file with an assembler directive.

The final instance of the command places all remaining
segments, that is, all segments other than systss, in table
slots, starting at 66. You can look in the .cM conversion-map
file to see how the remaining segments were placed.

IDT is used to fill in the Interrupt Descriptor Table (IDT).
The command assumes that a segment to hold the IDT
(sysidt in this case) has already been created. In this
example, the segment was created by directive in the .Asm
file. The use of the command here tells the locator that some
other application is using slots 0—40, so it should begin
adding entries, if at all, at slot 41. The comment indicates
that the first 41 slots are reserved for use by the CPU. '

TSS286 is used to define the segment systss as a Task State
Segment (TSS), and to assign initial values to the instruction
pointer €S:IP and the stack pointer §s:SP. This com-
mand, like GDT and IDT, assumes that the segment it applies
to has already been created. You can see that there is a
directive in the file B16PMSC.AsM that creates systss.

INTEGRITY blocks the locator from truncating any segments
that have been padded by the linker or compiler.

CSi-Locate

16-bit Protected-Mode Example

To create a located application, use the following syntax at the
DOS prompt:

CSILOC filename

where filename is the command file (with default extension CMD)
that contains the locator commands, as in the following example:

csiloc csamp

If CSi-Locate locates your application as specified without error,
the output file(s) that you request with the commands ABSO-
LUTE, BINARY, and HEX are created, and a conversion-map file
FILENAME.CM, which is a sort of locator listing file, is also pro-
duced. If the locator encounters any errors while trying to locate
your application, the only output file is the .cM file, which shows
all warnings and error messages generated during the location
attempt. Parts of the .cum file produced for our example 16-bit
protected-mode application here are given below, with annota-
tions. A more complete .cM is illustrated on pp. 6-7 in chapter 1.

Step 5—Invoke
CSi-Locate

.CM conversion
map file always
output by locator

Protected-mode segment map:

Logical Physical Length Name Class Group
Memoxry
0210:0000 00004000P 00010 RAMINIT INIT
0008:0000 00004010P 00228 SYSGDT TBL
0010:0000 00004240P 00148 SYSIDT TBL
0208:0000 00004390P 0002c¢ SYSTSS 7SS
0218:0000 000043c0P 000ae INIT_TEXT CODE
:00b0 00004470P 00403 RESET_TEXT CODE
:04b4 00004874P 00224 _TEXT CODE
0220:0000 00004aal0P 0003c _DATA DATA DGROUP
:003¢c 00004adcP 00000 XIFCB DATA DGROUP
:003¢ 00004adcP 00000 XIFU DATA DGROUP
:003c 00004adcP 00000 XIFL DATA DGROUP
:003c 00004adcP 00000 XIFCE DATA DGROUP
: 0040 00004ae0P 04000 STACK STACK DGROUP
:4040 00008aelOP 00000 CONST CONST DGROUP
4040 00008aelP 00002 _BSs BSS DGROUP
4050 00008af0P 0000a C_COMMON BSS DGROUP

Should be
—RAM, not

ROM
ROM
ROM
ROM
ROM
ROM
ROM
igﬁ [in file csamp.cM]
ROM Segment map
ROM generated by the
ROM locator that shows

located addresses

ROM
ROM
ROM
ROM
ROM

Chapter 3, 16-bit Protected-Mode Applications

33

16-bit Protected-Mode Example

Initial GDT: SYSGDT[0. .68]
GDT [0] 0000 Empty 00000000L Lir=00000H DPL=0 gbp av
GDTI[1] 0008 Data WR 00004010L Lim=00227H DPL=0 gbP av
0008:00000000 SYSGDT TBL
GDT[2] 0010 Data WR 00004240L Lim=00147H DPL=0 gbP av
0010:00000000 SYSIDT TBL
GDTI[31] 0018 Reserved
GDT[4] 0020 Reserved
GDT[63] 01£f8 Reserved
GDT [64] 0200 Reserved
GDT[65] 0208 Avail 286 TSS 00004390L Lim=0002bH DPL=0 gbP av
0208:00000000 SYSTSS TSS
1 o P _ [In file csamp.cM]
GDT[66] 0210 Data WR 00004000L Lim=0000fH DPL=0 gbP av Paﬁmlnmpof
0210:00000000 RAMINIT INIT initial GDT table
GDT[671] 0218 Code RD 000043¢0L Lim=006d47H DPL=0 gbP av
0218:00000000 INIT_TEXT CODE
0218:000000b0 RESET_TEXT CODE
0218:000004b4 _TEXT CODE
GDT[681 0220 Data WR 00004aa0L Lim=04059H DPL=0 gbP av
0220:00000000 _DATA DATA DGROUP
0220:0000003¢c XIFCB DATA DGROUP
0220:0000003¢c XIFU DATA DGROUP
0220:0000003¢c XIFL DATA DGROUP
0220:0000003¢c XIFCE DATA DGROUP
0220:00000040 STACK STACK DGROUP
0220:00004040 CONST CONST DGROUP
0220:00004040 _BSS BSS DGROUP
0220:00004050 C_COMMON BSS DGROUP
Initial IDT: SYSIDT[O..40] —
IDT[O] 00 Reserved [In file csamp.cm]
.- Partial map of
IDT[39] 27 Reserved initial IDT table
IDT[40] 28 Reserved
34 CSi-Locate

16-bit Protected-Mode Example

Initial TSS286: SYSTSS

gdt SYSGDT[65] 0208 Avail 286 TSS 00004390L Lim=0002bH DPL=0 gbP av

AX=0000 BX=0000 CX=0000 DX=0000 SI=0000 DI=0000 BP=0000
DS=0000 ES=0000

LDTR=0000 LINK=0000

€CS:IP=0218:0027

SS:SP=0220:4040

SS0:SP0=0000:0000 SS1:SP1=0000:0000 S$S2:8P2=0000:0000

FL=0000 [nt IOPL=0 of df if tf sf zf af pf cf]

Translating debug symbolics

Debug Symbolics Translation Complete:
Modules. 4

Procedures 9)
Public Symbols . . 19 [In file csamp.cm] Data
Source Lines . . . 235 on symbolics and final
Total Symbols. . . 56 line of conversion map
Types. 154 file

Conversion complete, No errors or warnings.

Chapter 3, 16-bit Protected-Mode Applications

—

[In file csamp.cMm]
Initial TSS data

35

Microsoft Tools

Microsoft C/C++
compiler

Microsoft LINK

36

Here are the controls to use when preparing your 16-bit pro-
tected-mode application with Microsoft tools and CSi-Locate for
use with Soft-Scope. See p. 75 for a note on Microsoft compilers.

Use these controls with the Microsoft compiler

/Zi Include symbolic information. Versions 7 and 8 use
/Z7 to perform this function.

/0d Disable optimization. You may remove this switch
when the module has been debugged. It is even
possible to leave this switch out, but we recommend
you do this only after you are comfortable using
Soft-Scope.

/G2 Generate 80286-specific instructions.
/Gs Remove run-time stack probes.
/GW Windows application.

/c Compile only—do not link.

Example invocation
cl /zi /od /G2 /Gs /Gw /c cmain.c

Use these controls with the Microsoft linker

/INOD Ignore default libraries.
/MAP Create a map file.
/CO Codeview symbolics.
Example invocation
link /MAP/CO/NOD @csamp.flt

Here is an example .FLT file (\saMP\MSC16P \CSAMP.FLT):

blépmac.obj+

cmain.obj+

cutils.obj

csamp.exe,csamp.map, ,csamp.def;

CSi-Locate

Microsoft Tools

The file \samp\B16PMSC\CsaMP.DEF contains the following further
linker specifications:

NAME CSAMP
DESCRIPTION ‘CSAMP’
EXETYPE WINDOWS
CODE PRELOAD FIXED
DATA PRELOAD FIXED :
STACKSIZE 16384 ; Make this match the

; stack size in startup
; code, which is 16KB

Use these controls with the Microsoft assembler Microsoft ML

/Zd Include line number information in object file.
/Zi Generate Codeview symbolics in object file.
/Cp Make all symbols case sensitive.

/e Compile only—do not link.

Example invocation
ml /Zd /zZi /Cp /c blépmsc.asm

Chapter 3, 16-bit Real-Mode Applications 37

Borland Tools

Here are the controls to use when preparing your 16-bit
protected-mode application with Borland tools and CSi-Locate
for use with Soft-Scope. '

Borlaqd C/C++ Use these controls with the Borland compiler
compiler -v Debug information.
-2 Generate 16-bit 80286 protected-mode instructions.

-O- Disable optimization. You may remove this switch
when the module has been debugged.

-r- Don't use register variables.
.- Don’t link.
Example invocation

bee -v -2 -0- -¢ -r- cmain.c

Borland Turbo Use these controls with the Borland assembler
assembler

1Zi Provide debug information.

/mx orml Treat symbols as case sensitive.
Example invocation

tasm /Zi /mx blépbcc.asm

Borland TLINK Use these controls with the Borland linker
/m Create a mapfile with publics.
A% Provide debug information.
n Provide line numbers.

Is Create detailed segment map.
ITwe Create a 16-bit Windows .EXE file

Example invocation
tlink /m /s /v /1 @csamp.rsp

A sample CSAMP.RSP response file is CSILOC\SAMP\BCC16P \CSAMP.FLT.

38 CSi-Locate

This chapter covers preparing and locating 32-bit protected-mode applications.
There are two examples of such applications supplied with CSi-Locate and they can
be found in the following subdirectories:

csiLoc \samp\wccazp (Watcom)
csicoc\saMp\mscazp (Microsoft)

This chapter will discuss the example program in csieoc\samp\mscazp to illustrate
how you can prepare and locate your own 32-bit protected-mode application.

Table of Contents »'

32-bit Protected-Mode Examplecccovicreevcmcmccncnsnncesesceccncnscsencnnenes 40
MICTOSOFE TOOIS woeeveeereeeerieiieeiceeeeeeeeeeeeeeeeesseesseesssssesssessesassensessesssesnssseesss £
Watcom Tools .. revteeesreeeessnressnsenesssseesssessssstessssuesssssssssssnsassss D0

32-bit Protected-Mode Example

Step 1—Compile
and link using
Microsoft tools.
For other tool
chains, see the
Tools section on
pp. 49-50 of this
chapter

Step 2—Examine
your application's
MAP file for class,
segment, and group
information

Paging used with
this flat-model
application

40

We have used batch files to create the sample programs included
in all the csicoc\samp subdirectories. For the sake of illustration
in this chapter, we will discuss the program found in
samp\Msc32p, which is composed of one assembly-language file
(B32FPMsc.asM) and two C files (cMAIN.C and cutiis.c), and built
with Microsoft tools. The following is the file BUILD.BAT that
assembles, compiles, links, and locates the application.

Batch file to create csamp.abs
To use type ‘build’

Tools versions used:
Microsoft ML v6.10
Microsoft 32-Bit Compiler v8.00
Microsoft 32-Bit Executable Linker v1.00
Concurrent Sciences CSi-Locate 2.02

e o0 o0 0 s oo

. o

ml /Fl /c b32fpmsc.asm

cl /c /Zi /04 /G3 /X cmain.c
cl /c /zi /04 /G3 /X cutils.c
link @csamp.flt

csiloc csamp.cmd

Our primary focus in this chapter will be on the complex com-
mand file csamp.cMD ON p. 42, but before we scrutinize it, we will
discuss the map file that plays an important role in the location
process.

When you build your application, you need to direct your linker
to generate a map file because CSi-Locate requires one as one of
its inputs. The map file on the next page was generated as part
of the build process defined above. The detailed segment map
allows you to see the classes and segments (see pp. 10-11 for a
word about the lack of group information here) that you need to
locate, and what their relationships are to each other.

The Microsoft 32-bit compiler can build only flat-model applica-
tions. If you want to separate segments into RAM and ROM, you
will need to use paging, which is covered in this example.

Paging requires roughly 4-percent execution-time overhead.

CSi-Locate

32-bit Protected-Mode Exémple

csamp

Timestamp is 30bl024e (Mon Nov 20 14:33:50 1995)

Preferred load address is 00010000

Start Length Name
0001:00000000 000000elH INIT_TEX
0002:00000000 00000265H .text
0003:00000000 00000014H .bss
0004:00000000 00000063H .rdata
0005:00000000 00000048H .data
0006:00000000 00004000H STACK
0007:00000000 0000003aH .edata
0009:00000000 00000a02H .debug$C
0009:00000a04 00000000H .debug$G
0009:00000a04 00000008H .debug$H
0009:00000a0c 0000035aH .debug$s
0009:00000466 00000048H .debug$T
Address Publics by Value
0001:00000000
0001:00000006
0001:00000008
0001:0000000e

start_code
start_data
start_stack
start_init

0001:00000014 pbbr
0001:00000018 temp
0001:0000001c _boot
0001:0000001c _start
0002:00000000 _main
0002:00000048 _c_data
0002:00000176 _display_lights
0002:000001d5 _delay
0003:00000000 _lights
0003:00000008 _pattern
0007:00000000 CSAMP_MSC_EXPORTS
0006:00004000 start_tos

entry point at 0001:0000001c
Static symbols

0002:00000201
0002:0000022e

_delay_fine
_strcpy

FIXUPS: 2125 23 a8 32 fffffe02 e 8

Chapter 4, 32-bit Protected-Mode Applications

Class
CODE
CODE
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

Rva+Base

00011000
00011006
00011008
0001100e
00011014
00011018
0001101c
0001101c
00012000
00012048
00012176
00012145
00013000
00013008
0001a000
0001a000

£
£
£
£

Fig. 4.1
Complete
Sample MAP file
[csAmP.mAP]

Lib:Object

b32fpmsc.
b32fpmsc.
.obj
b32fpmsc.
b32fpmsc.
b32fpmsc.
.obj
.obj
cmain.obj

b32fpmsc

b32fpmsc
b32fpmsc

obj
obj

obj
obj
obj

cutils.obj
cutils.obj
cutils.obj

<common>
<common>

csamp . exp
b32fpmsc.

obj

00012201 £ cutils.obj
0001222e f cutils.obj

41

32-bit Protected-Mode Example

//

// Microsoft C++ 386 32bit flat model sample command file

// This file is set up to work with the default Fig- 4.2. Command
// configuration of Concurrent Sciences CSi-MON file csamp.cmpD
// debug monitor

!/

exec csamp.exp

debug // Create debug file

absolute // Create OMF386 absolute file

cpu 386 // Target is 386 running in protected mode
create dir_name // Create segment for page directory
create page_table // Create segment for page table

create raminit // Create segment for RAM init table
init32p raminit :: class data // Build init table for data segments

// set directory[0] to point to page_table
pagedirectory dir_name[0]::page_table

locate .text :: 8000p // Locate first segment at 8000 physical
locate .text :: 80001 // Locate physical/linear at same location
locate .data ::11000p // Locate data segment at 11000 physical
create systss // Create segment for initial TSS

create sysgdt // Create segment for GDT

create sysidt // Create segment for IDT

gdt sysgdt[3..64] :: reserve // CSi-MON needs slots 3 to 64

idt sysidt[0..40] :: reserve // Reserve for Intel CPU

tss386 systss :: cs:eip=_boot // Create an inital TSS

+ ss:esp=start_tos

fixup selector start_data = group flat_d

fixup far32 start_code = _main

fixup far32 start_stack = start_tos
fixup far32 start_init = raminit
fixup physical pbbr = dir_name

create csimon_rom::1limit=5000h // Create alias segment over csi-mon rom area
ram csimon_xrom // Don’t generate data in HEX file—CSi-Mon

// is already on target
locate csimon_rom::70000p // <- Check where CSi-Mon rom area is located

locate csimon_rom::700001

create csimon_ram::1imit=2000h // Create alias segment over csi-mon ram area

ram csimon_ram // Don’'t create segment in HEX file—-CSi-Mon
// is already on target

locate csimon_ram: :0p // <- Check where CSi-Mon ram area is located

locate csimon_ram::01 // Start at 0 because monitor writes into

// vector table
gdt sysgdt :: * // Put all segment descriptors in GDT

pagetable dir_name::* // Build page table entries for all
// segments

42 CSi-Locate

32-bit Protected-Mode Example

Use an ASCII text editor to create a .cMD command file with the Step 3—Create a
commands that direct CSi-Locate to locate your application. On command file
the opposite page is the command file sSAMP\MSC32P\CSAMP.CMD.
We will begin to explain it in detail in numbered paragraphs just
below. The full story of the locator's 38 commands and how to
construct command files with them occurs in chapter 5.

1. Note that comments begin with double slashes and end with
a carriage return.

2. The order in which commands occur in the command file is
significant. You can think of CSi-Locate as though it were an
interpreter that processed each command as it read it in. To
help you get started with ordering commands, we provide
general guidelines for command ordering in .cMD files on
pp- 54-55. In general, place I/O commands first (the first
four commands in the above example are I/O commands)
and location and table-construction commands last.

3. The EXEC command identifies an alternate to the default
input executable. The default's name matches the .cMmp file's
name and its extension is EXE.

4. DEBUG directs the locator to output symbolic debugging
information that is essential for the Soft-Scope debugger.
For protected-mode applications, the symbolics are placed in
the actual absolute output file. For real-mode applications,
CSi-Locate puts that information in a .BuG file that it sepa-
rately creates, with the same name as the .cmp file.

5. ABSOLUTE tells the locator to output an absolute file in Intel
- OMF format. The precise OMF type is determined by the
application's mode (real or protected) and the target CPU,
which is made known to the locator by means of the CPU
command. See page 60 for further details on how the locator
determines the OMF type.

6. CPU specifies the target CPU to the locator. A list of possible
values in the 80x86 family is given in table 5.5 on p. 67. This
value partly determines the OMF type of absolute files (see 5.
above) and is used in other ways by the locator to produce
optimal output.

Chapter 4, 32-bit Protected-Mode Applications 43

32-bit Protected-Mode Example

44

10.

CREATE creates a segment. It is useful for creating segments
for paging apparatus (page directory and page tables),
protected-mode structures (TSSs, GDT, IDT, and LDT),
RAM-initialization code (RAMINIT), and for alias segments
that are used to accommodate preexisting segments (for
example, the segments of the CSi-Mon monitor in both RAM
and ROM).

The INIT32P seg_name :: seg_list command specifies that the
segment seg_name will contain compressed data from the
segments in seg_list. This is useful for read-write data that
you want to be initialized at boot-up time. If you don't have
some place to store initialized data in ROM and then copy it
into RAM, all RAM-based data in your program will be
zeroed out. There are macros provided with CSi-Locate, in
file csioc.ING, that compress and then unpack and copy data
from ROM to RAM. For more details on these, see p. 4.

PAGEDIRECTORY identifies page-directory entries.
dir_name in the example is the page-directory segment, and
the first page table is here specified to be the segment
page_table.

LOCATE plays perhaps the most crucial role among all the
locator commands, for obvious reasons. This command tells
the locator explicitly to absolutely locate one or more seg-
ments, which in turn may cause other segments to be located.
This kind of ripple location effect results from the linker's
relative ordering of segments: once the first segment in an
ordered collection of segments is located, all subsequent
segments as determined by the linking process fall into place.
The map file produced by the linker can be used to see how
segments are ordered.

The first use locates the .TEXT segment at 8000P and then the
next use locates the same segment at 8000L. This double
locating of the same segment is used to bring physical and
linear addresses into alignment. Since INIT_TEXT isin the
class CODE with .TEXT, it too is located with this command,
but before . TEXT as it occurs in the ordering determined by
the linker, as shown in the map file.

CSi-Locate

32-bit Protected-Mode Example

11.

12.

13.

The DATA segment is located apart from the code.

GDT is used to fill in the Global Descriptor Table (GDT). The
command assumes that a segment to hold the GDT (sysgdt
in this case) has already been created. For this example, the
segment was created by a use of the locator's CREATE
command, though it is equally possible to explicitly create
the segment with a directive in an assembly file (see p. 4).

The first use of the command in the sample .cMp file tells the
locator that slots 364 are being used for some other purpose,
and so are not to be used for this application. As the com-
ment says, the CSi-Mon monitor requires those slots for its
use. The locator will thus begin adding new entries for this
application at slot 65.

The second use of the command places into the table begin-
ning at slot 65 all segments not already placed there, which in
this case is all segments since none has yet been placed there.
You can look in the .cm conversion-map file to see how the
segments were placed. That part of the cM file occurs just
below on p. 47.

IDT is used to fill in the Interrupt Descriptor Table (IDT).
The command assumes that a segment to hold the IDT
(sysidt in this case) has already been created. In this
example, the segment was created by the locator as a result
of a CREATE command. The use of the command here tells
the locator that some other application is using slots 040, so
it should begin adding entries, if at all, at slot 41. The com-
ment indicates that the first 41 slots are reserved for use by
the CPU.

TSS386 is used to define the segment systss as a Task State
Segment (TSS), and to assign initial values to the instruction
pointer CS:EIP and the stack pointer SS:ESP. This
command, like GDT and IDT assumes that the segment it
applies to has already been created; CREATE was used in
this case to make that segment.

Chapter 4, 32-bit Protected-Mode Applications

Step 4—Define
protected-mode
structures

45

32-bit Protected-Mode Example

Step 5—Invoke
CSi-Locate

A .cm conversion
map file always
output by locator

46

14. FIXUP provides a way for you to modify segments. The
examples here add a segment to a group, install addresses at
various memory locations, and set up the page table direc-
tory.

15. RAM is used to exclude segments from being output. Since -
alias segments are really just place holders for preexisting
segments and are not truly on a par with the other types of
segments created for code and data, they are best excluded
from inclusion with the application's bona fide segments.
That is what happens here with the two uses of the RAM
command.

16. Lastly, the PAGETABLE command builds page-table entries
for all segments, including alias segments.

To create a located application, use the following syntax at the
DOS prompt:

CSILOC filename

where filename is the command file (with default extension cmD)
that contains the locator commands, as in the following example:

csiloc csamp

If CSi-Locate locates your application as specified without error,
the output file(s) that you request with the commands ABSO-
LUTE, BINARY, and HEX are created, and a conversion-map file
FILENAME.CM, which is a sort of locator listing file, is also pro-
duced. If the locator encounters any errors while trying to locate
your application, the only output file is the .cM file, which shows
all warnings and error messages generated during the location
attempt. Parts of the .cM file produced for our example 32-bit
protected-mode application here are given below, with annota-
tions. A more complete .cMm is illustrated on pp. 6-7 in chapter 1.

CSi-Locate

32-bit Protected-Mode Example

Protected-mode segment map:

Logical Linear Physical Length Name Class Group Memory
0240:0000 00000000L. 00000000P 02001 CSIMON_RAM RAM
0208:00000000 00007000L 00007000P 000000el INIT_TEX CODE FLAT_C ROM

:00001000 00008000L 00008000P 00000265 .TEXT CODE FLAT_C ROM
0210:00002000 00009000L 00009000P 00000014 .BSS DATA FLAT_D RAM
:00003000 0000a000L 0000a000P 00000063 .RDATA DATA FLAT D RAM
:00004000 0000L000L 00011000P 00000048 .DATA DATA FLAT_D RAM
:00005000 0000c000L 0000c000P 00004000 STACK DATA FLAT_D RAM
:00009000 00010000L 00010000P 0000003a .EDATA DATA FLAT_D RAM
0218:0000 00013000L 00013000P 01000 DIR_NAME ROM
0220:0000 00014000L 00014000P 01000 PAGE_TABLE ROM
0228:0000 00015000L 00015000P 00102 RAMINIT ROM
0230:0000 00015110L 00015110P 00068 SYSTSS ROM
0008:0000 00015180L 00015180P 00248 SYSGDT ROM
0010:0000 00015340L 00015380P 00148 SYSIDT ROM
0238:0000 00070000L 00070000P 05001 CSIMON_ROM RAM
Initial GDT: SYSGDT[0..72]
GDT([0] 0000 Empty 00000000L Lim=00000H DPL=0 gbp av
GDT([1] 0008 Data WR 00015180L Lim=00247H DPL=0 gbP av
0008:00000000 SYSGDT
GDT[2] 0010 Data WR 000153d0L Lim=00147H DPL=0 gbP av
0010:00000000 SYSIDT
GDT[3] 0018 Reserved
GDT[64] 0200 Reserved
GDT[651] 0208 Code RD 00007000L Lim=0bfffH DPL=0 gBP av
0208:00000000 INIT_TEX CODE FLAT C
0208:00001000 .TEXT CODE FLAT_C
GDT[66] 0210 Data WR 00007000L Lim=0bfffH DPL=0 gBP av
0210:00002000 .BSS DATA FLAT_D
0210:00003000 .RDATA DATA FLAT_D
0210:00004000 .DATA DATA FLAT_D
0210:00005000 STACK DATA FLAT_D
0210:00009000 .EDATA DATA FLAT_D
GDT[67] 0218 Data WR 00013000L Lim=00f£fH DPL=0 gbP av
GDT[68]) 0220 Data WR 00014000L Lim=00££fH DPL=0 gbP av
GDT[69] 0228 Data WR 00015000L Lim=00101H DPL=0 gbP av
GDT[70] 0230 Avail 386 TSS 00015110L Lim=00067H DPL=0 gbP av
0230:00000000 SYSTSS
GDT([71) 0238 Empty 00070000L Lim=05000H DPL=0 gbP av
0238:00000000 CSIMON_ROM
GDT[72] 0240 Empty 00000000L Lim=02000H DPL=0 gbP av
0240:00000000 CSIMON_RAM

Chapter 4, 32-bit Protected-Mode Applications

Figure 4.3.
Conversion
map file

]

[InCSAMP.CM]
Segment map that
shows located
segment addresses

[In CSAMP.CM]
Partial initial GDT

47

32-bit Protected-Mode Example

Initial IDT:

SYSIDT[0..40]

IDT[O0] 00

IDT[40] 28

Reserved

Reserved

]

[In CSAMP.CM]

Initial IDT

Initial TSS386:

SYSTSS

gdt SYSGDT([70]

EAX=00000000
ESI=00000000
DS=0000
LDTR=0000
CS:EIP=0208:
SS:ESP=0210:
SS0:ESP0=000
SS1:ESP1=000
SS2:ESP2=000

IO_MAP=0000
TRAP=0

0230 Avail

386 TSS

EBX=00000000
EDI=00000000
ES=0000
LINK=0000

0000001C
00008000
0:00000000
0:00000000
0:00000000

00015110L Lim=00067H DPL=0 gbP av

ECX=00000000
EBP=00000000

FS=0000

EDX=00000000

GS=0000

EFL=00000000 [ac vm rf nt IOPL=0 of df if tf sf zf af pf cf]
CR3=00000000 [PDBR=0 pcd pwt]

[In CSAMP.CM]
Initial TSS

Page Directory:

DIR_NAME at 00013000P

]

{0} 00000000L 00014000P [d a us RW P] PAGE_TABLE [In CSAMP.CM]
[1..1023] 00400000L Empty Page Directory
Page Table from DIR_NAME[0]: PAGE_TABLE at 00014000
[0710..1] 00000000L 00000000P [d a us RW P] CSIMON_RAM
[01[2..6] 00002000L Empty
(01171 00007000L 00007000P [d a us rw P] INIT_TEX CODE
(o118l 00008000L 00008000P [d a us rw P] .TEXT CODE
(01191 00009000L 00009000P [& a us RW P] .BSS DATA
[07{10] 00002000L 0000a000P [& a us rw P] .RDATA DATA
{03111} 0000b000L 000110007 [d a us RW P] .DATA DATA
[01(12..15] 0000c000L 0000c000P [d a us RW P] STACK DATA
[01(16] 00010000L 00010000P [d a us rw P] .EDATA DATA [In CSAMP.CM]
[01(17..18] 00011000L Empty Page Table
[031119] 00013000L 00013000P [d a us RW P] DIR_NAME
[07120] 00014000L 00014000P [d a us RW P] PAGE_TABLE
[01{21] 00015000L 00015000P [d a us RW P] RAMINIT
[0][22..111] 00016000L Empty
[0][112..116] 00070000L 00070000P [d a us RW P | CSIMON_ROM
[0]{117..1023] 00075000L Empty
48
- -

CSi-Locate

Microsoft Tools

Here are the controls to use when preparing your 32-bit pro-
tected-mode application with Microsoft tools and CSi-Locate for
use with Soft-Scope. See p. 75 for a note on Microsoft compilers.

Use these controls with the Microsoft compiler

/Zi Include symbolic information. Versions 7 and 8 use
/Z7 to perform this function. .

/O0d Disable optimization. You may remove this switch
when the module has been debugged. It is even
possible to leave this switch out, but we recommend
you do this only after you are comfortable using Soft-
Scope.

/e Compile only—do not link.

Example invocation
cl /zZi /od /Gs /Gw /c cmain.c

Use these controls with the Microsoft 32-bit Executable Linker
/NODEFAULTLIB Ignore default libraries.

/MAP Create a map file.
/DEBUG Provide symbolics.
Example invocation

link @csamp.flt

See csiLoc\samMp\MsC32P\CsaMP.FLT for an example of this directive
file.

Use these controls with the Microsoft assembler

/Zd Include line number information in object file.
/Zi Generate Codeview symbolics in object file.
ICp Make all symbols case sensitive.

e Compile only—do not link.

Example invocation
ml /Zd /Zi /Cp /c b32fpmsc.asm

Chapter 4, 32-bit Protected-Mode Applications

Microsoft C/C++
compiler

Microsoft LINK

Microsoft ML

49

Watcom Tools

Watcom C/C++

Watcom WASM

Watcom WLINK

50

Here are the controls to use when preparing your 32-bit
protected-mode application with Watcom tools and CSi-Locate
for use with Soft-Scope. ‘

Use these controls with the Watcom compiler

/s Remove stack overflow checking.
/d2 Create debug information.

Example invocation

wee /s /d2 cmain.c

Use this control with the Watcom assembler

-d1 Create debug information.

Example invocation
wasm -dl b32pwcc.asm

Use these directives with the Watcom linker

option map Create a map file.

option dosseg Order segments in special way.

debug all Provide full debug information.

format phar seg Create a segmented Phar Lap Exp output
file.

name csamp.exp Name the output file csamp.Exp.

Rather than attempt to put all the linker directives on one line,
you can put them all in an .LNk directive file, one directive per
line. The directive file that was used to produce the sample
program provided with this software is the file

CSILOC \SAMP \WCC32P \CSAMP.FLT.

Example invocation
wlink @csamp.lnk

CSi-Locate

This chapter describes CSi-Locate's 38 commands and how you can use them to
locate your application in precisely the way that you want it located.

- The chapter begins with a description of the .cMp command file that you build to
contain commands that CSi-Locate follows to locate your application. Then there is
a set of command-ordering guidelines that are intended to assist you in organizing
the commands in your .cM command file. They are more heuristic in nature than
they are hard-and-fast rules.

Then you will find a two-page summary of the syntax element in commands,
followed by a two-page summary listing of the locator's 38 commands. The re-
mainder of the chapter consists of an alphabetically ordered command-reference
section containing a detailed explanation of each command.

Table of Contents

The .cmp Command File . .52
.CMD Command File Organization
Command Syntax Elementsccccoecueeureremrneruecurereenens
Command Syntax Summary ..

The .CMD Command File

52

CSi-Locate uses a sequential command file to control processing
action. Here are some of its general characteristics:

The default command-file extension is cMD.

The VERBOSE command, which is used to provide extra
information to you about what CSi-Locate is doing, can occur
anywhere in the command file. Turn on verbose mode by
adding the keyword ON to the command, and off by adding
OFF. Below is a part of a .cu file that exemplifies the sort of
messages that you receive in verbose mode:

[20] verbose on
[21] create startimp :: limit = 5
>>> Created segment: STARTJIMP.
>>> LIMIT=00000005 for STARTJMP
[22] fixup byte startimp:0 = Oxea
[23] fixup farl6é startjmp:1 = main
[24] locate startjmp :: OFFFFOD
>>> STARTJMP located at 000FFFFOL.

Commands that locate classes locate the entire class contigu-
ously according to the linker's default ordering of segments
within the class. If you want to locate a segment separately
from the rest of its class, you must place locating commands
for that segment before commands that locate the rest of the
class or use the EXCEPT keyword.

With the exception of public-symbol names, whose characters
must exactly match in case the names used to declare them in
application files, all names, identifiers, prefixes, and suffixes
in command files are not case sensitive. Thus, the following
examples are equivalent:

CREATE MY DATA :: LIMIT=0X50
create my data :: limit=0x50

This may cause problems if you have symbols that differ only
in case and you compile and link with a case-sensitivity
switch on.

CSi-Locate

The .CMD Command File

Blank lines and other white space are ignored and can be
used however you want.

Maximum command-line length is 222 characters.

Commands may span multiple lines. To continue a com-
mand on subsequent lines, use a plus sign (+) as the first
character on each continuation line:

tss386 tss_xxx :: cs:eip=main, ds=data_seg,
+ £fl.if=0x1

Comments can be placed anywhere in the command file. Use
double slashes to start a comment; a comment ends at the
end of the line that it starts on:

// This is a sample comment line
cpu 386 //This is another sample comment,
//which spans two lines

Command files should be structured according to the com-
mand-grouping guidelines given on the following pages
(54-55). These guidelines are not hard and fast rules for
command-file construction, as some of the example com-
mand files in earlier chapters testify to. In learning to use
CSi-Locate's 38 commands, you can use the guidelines to
provide order to an otherwise seemingly random command-
file construction process.

Chapter 5, Command Reference

53

.CMD Command File Organization

Recommended
ordering of
commands in
command file

VERBOSE can
occur freely
throughout the
.CMD file

54

We recommend that you order the commands in the .cMp com-
mand file according to the following groupings. Place com-
mands in Group-1 first, then place commands in Group-N+1
after commands in Group-N. Commands within the same group
can be ordered in any way you want.

Though these are just recommended guidelines, we strongly urge
that you learn to build your own locator command files by

- following them. Don't be surprised if you notice that the ex-

ample command files discussed in chapters 2—4 don't follow
these guidelines strictly. They abide by the essential rules, but
may diverge for less important ones.

Only commands in Group-1 absolutely must be placed before
commands in Group-3 and above, and Group-6 commands
should occur last. The Group-0 command can occur freely in the
file (see p. 94 below for more on the VERBOSE command).

Group-0 [CSi-Locate Debug Information]
VERBOSE

Group-1 [Input]

CPU
EXEC
MAP

Group-2 [Output]
ABS
BIN
DEBUG
HEX
PRINT

Group-3 [Segment Creation, Definition, and
Alteration]

ALIAS
ATTRIBUTE
CREATE

CSi-Locate

.CMD Command File Organization

Group-3 [Segment Creation, Definition, and

Alteration] (Continued)

FIXUP

INIT16P

INIT16R

INIT32P
PAGEDIRECTORY
PMODE

RAM

RMODE

Group-4 [Segment Location]

BASE
INTEGRITY
LOCATE
ROMBASE
ROMMOVE

Group-5 [Protected-Mode Structures]

CALL286
CALL386
INT286
INT386
TASKGATE
TRAP286
TRAP386
TSS286
TSS386

Group-6 [Table Constructors]

GDT

IDT

LDT
PAGETABLE

Chapter 5, Command Reference

Follow these
grouping guidelines
when you build
your .CMD
command file

55

Command Syntax Elements

Table 5.1.

Command syntax

elements

56

O

(]

addressL
addressP
assign
assign_list
attribute_list
class_name
cpu_name
dec_num
dir_name
filename
gate_options

group_name
hex_num

kind
num_value
number
ptr_value
pub_sym
range

Signifies all other segments that have not already been
explicitly located, modified, etc.

Separates mutually exclusive alternatives.

Enclose alternative entries (separated by "1"), as in the
following example:
CS=(number | seg_name | pub_sym)
is equivalent to,
CS=number | CS=seg_name | CS=pub_sym

Enclose optional entries.

hex_numL {linear address}

hex_numP {physical address}

field=(ptr_value | seg_value | num_value)

See tables 5.7 and 5.8 on pp. 92-93.

See table 5.3 on p. 62.

Character string that identifies a class.

See table 5.5 on p. 67.

Decimal number.

Name of segment where page-table directory is located.
DOS filename with optional extension.

DPL=number | COUNT=number |
(PRESENT INOTPRESENT) | ENTRY=ptr_value

Character string that identifies a group.

Hex number. Must have prefix Ox (or 0X) or suffix H
(or h). Numbers that begin with a letter (a..f) must have
a zero (0) prefix. If more than eight numbers are given,
the eight least significant digits are used.

See table 5.6 on p. 71.

(OFFSETOF pub_sym) | number
hex_num | dec_num

pub_sym | seg_value | num_value
Public symbol listed in the map file.
[number1|..number2]]

Beginning and ending brackets are required. If number2
is omitted, range has length 1 starting at number1.

CSi-Locate

Command Syntax Elements

seg_list

seg_name
seg_name_opt
seg_value

selector:offset

CLASS
COUNT
DPL
ENTRY
EXCEPT

GROUP
LENGTH

NOTPRESENT
OFF
OFFSETOF
ON

PRESENT
RESERVE
SEGMENT
SEGMENTOF

Segment list containing segments, classes, and groups,

arranged in any order and used as many times as you

want. Specify elements in any of the following ways

(optional commas can be used to separate entries, as in

first line below) :

seg_name_opt [[] seg_name_opt]*

GROUP group_name [EXCEPT seg_name_opt

[seg_name_opt]*]

CLASS class_name [EXCEPT seg_name_opt
[seg_name_opt]*]

* [EXCEPT seg_name_opt [seg_name_opt]*]

Character string that identifies a segment.

[SEGMENT] seg_name

SEGMENTOF pub_sym
GROUP group_name
seg_name_opt

A logical address consisting of two hex numbers
separated by a colon. Hex-number suffix or prefix is not
required, that is, any number before or after a colon is
automatically interpreted as a hex number.

Indicates following name is a class name
Gate-descriptor word count
Gate-descriptor privilege level

Gate entry point

Indicates exclusion of following segment(s),
class(es), or group(s).

Indicates following name is a group name

Indicates following number is the number of
bytes after the public symbol that PMODE or
RMODE applies to

Signifies gate-descriptor present flag is false
Signifies end of verbose mode

Indicates offset of following public symbol
Signifies start of verbose mode

Signifies gate-descriptor present flag is true
Indicates descriptor-table entries are reserved
Indicates following name is a segment name
Indicates segment of following public symbol

Chapter 5, Command Reference

Keywords used in
locator commands

57

Command Syntax Summary

Table 5.2.
Command syntax

58

ABS[OLUTE] [filename]

ALIAS seg_name_opt1 :: (seg_name_opt2 | .
(GROUP group_name))

ATTRIBUTE seg_list :: attribute_list
BASE seg_list :: addressL
BIN[ARY] [filename]

CALL286 seg_list :: gate_options
CALL386 seg_list:: gate_options

CPU cpu_name

CREATE seg_name [:: attribute_lisf]

DEBUG [filename]

EXEC filename

FIXUP kind ptr_value =(ptr_value | num_value | seg_value)
GDT seg_name [range] [:: (RESERVE | seg_list)]

IDT seg_name [range] [:: (RESERVE | seg_list)]

INIT16P seg_name :: seg_list
INIT16R seg_name :: seg_list
INIT32P seg_name :: seg_list

INT286 'seg_list :: gate_options
INT386 seg_list :: gate_options

INTEGRITYseg_list

LDT seg_name [range] [:: (RESERVE | seg_list)]
LOCATE seg_list :: (addressL | addressP)

MAP filename

PAGEDIRECTORY dir_name [range] :: seg_list
PAGETABLE dir_name :: seg_list

CSi-Locate

Command Syntax Summary

PMODE seg_list |
(pub_sym1 ((to pub_sym2) | (LENGTH number)))

PRINT
RAM seg_list

RMODE seg_list |
(pub_sym1 ((to pub_sym2) | (LENGTH number)))

ROMBASE seg_list :: addressP
ROMMOVE seg_list :: addressP
TASKGATE seg_list :: gate_options

TRAP286 seg_list :: gate_options
TRAP386 seg_list :: gate_options

- TSS286 seg_list :: assign_list
‘TSS386 seg_list :: assign_list

VERBOSE (ON | OFF)

For an explanation of the italicized syntax elements
(e.g., seg_list), see pp. 56-57.

Chapter 5, Command Reference

Italicized syntax
elements

59

CSi-Locate Command Reference

Output command ABS[OLUTE] [filename]

This command creates an .ass output file and can also be used to
change the file's name, which by default is the same as the .cMp
command file input to CSi-Locate.

e By default, no absolute, binary, or hex file is output. You
must use one of the three output commands (ABSOLUTE,
BINARY, or HEX) to generate output.

e These output commands can be used one at a time, all
together, or in any combination. Each command will gener-
ate one output file.

e The output format of absolute files is a function of both the
CPU command and the presence of protected-mode struc-
tures, according to the following conditions:.

OMF386: CPU >= 386 & protected-mode structures present
OMF286: CPU = 286 & protected-mode structures present
OME86: No protected-mode structures

These various OMF formats are extensions of Intel OMF
created by Concurrent Sciences for use with the Soft-Scope
source level debugger (see p. 8).

Examples absolute csamp.abs
absolute

absolute my file.out

60 CSi-Locate

CSi-Locate Command Reference

ALIAS [SEGMENT] seg_name1 :: Segment-modi-
((ISEGMENT] seg_name2) | fication pommand
(GROUP group_name))

This command makes seg_namel a protected-mode alias of
seg_name2 or group_name.

o seg_namel's base and limit are set to the base and limit of
seg_name2.

e seg_namel can have its own attributes and selector.

e Any data previously located in seg_namel is lost.

create 1ldt_alias :: limit=0f£f£ffh Example
alias 1ldt_alias :: sys_1ldto0
ldt sys_1dt0[1l] :: 1ldt_alias

Chapter 5, Command Reference 61

CSi-Locate Command Reference

Segment-modifi- ATTRIBUTE seg_list :: attribute_list
cation command

Use this command to alter the attributes of a protected-mode
segment.

e Only the attributes in attribute_list are changed. All other
descriptor fields are left intact.

e Use the items in table 5.3 just below to create an attribute_list.
Items may be used repeatedly and in any order. Separate
entries with commas or spaces.

Table 5.3. Segment

. Attribute Descriptor
attributes correspondence
DPL=number Set the privilege level in
descriptor for segment
LIMIT=number Set segment limit
LIMIT+=number Increase current limit

BYTEGRAIN | PAGEGRAIN Byte or page granularity used
for limit in descriptor

PRESENT | NOTPRESENT Present bit in descriptor

AVAILABLE | NOTAVAILABLE
Available bit in descriptor

USE32 | USE16 16- or 32-bit segment

RO | RW | ROED | RWED | EO | ER | CEO | CER
Set segment type in descriptor

PAGE.PRESENT | PAGE.NOTPRESENT

Page-present bit
PAGE.RO | PAGERW Read only or Read Write page
PAGE.USER | PAGE.SUPER User or supervisor protection
level

PAGE.ACCESSED | PAGE.NOTACCESSED
Page accessed bit

PAGE.DIRTY | PAGE.NOTDIRTY
Page dirty bit

62 CSi-Locate

CSi-Locate Command Reference

RO Read only, data segment

RW Read /Write, data segment

ROED Read only/Expand down, data segment
RWED Read /Write/Expand down, data segment
EO Execute only, code segment

ER Execute/Read, code segment

CEO Execute only/Conforming, code segment
CER Execute/Read/Conforming, code segment

You cannot use the LIMIT attribute to decrease the size of a
segment that is created by your application.

attribute init_text :: 1limit=1000H,
+ dpl=0,
+ present

Chapter 5, Command Reference

Segment-type
abbreviations

NOTE1

Example

63

CSi-Locate Command Reference

Segment-location
command

Example

64

BASE seg_list :: addressL
This command forces the descriptor base fora segment or group
to be the linear address given.

e The segment's physical and linear addresses are not affected,
but the offset of its logical address is shifted.

e This is typically used with flat-model applications to make
the offset into a segment match its physical address.

base init_text :: 4000L

CSi-Locate

CSi-Locate Command Reference

BIN[ARY] [filename]

This command creates a .BIN binary output file and can also be
used to change the name of the file, which by default is the same
name as the .cmp file that is the CSi-Locate input command file.

e By default, no absolute, binary, or hex file is output. You
must use one of the three output commands (ABSOLUTE,
BINARY, or HEX) to generate output.

e These output commands can be used one at a time, all
together, or in any combination. Each command will gener-
ate one output file.

bin test_app.bin
binary test_app
bin csamp.bnr

Chapter 5, Command Reference

Output command

Examples

65

CSi-Locate Command Reference

Protected-mode
segment command

Table 5.4.
Gate attributes

Example

66

CALL286 seg_list :: gate_options
CALL386 seqg_list :: gate_options

These commands create segments for call-gate descriptors that
can be accessed symbolically.

e Use the items in table 5.4, "Gate Attributes," just below to
form your gate_options. Items may be used in any order and
may be repeated, separated by a space or comma.

e DPL and COUNT both default to zero.
e PRESENT | NOTPRESENT defaults to PRESENT.

e ENTRY defaults to the address stored at offset 0 within
segment seg_name. You can use support macros to predefine
these values in your assembly module. See the macro file
csioc.INC, which is located in the directory where you
installed CSi-Locate (see p. 4 for a list of the macros).

Gate attributes Descriptor
correspondence

DPL=number DPL bits

COUNT=number Word count for call gate

PRESENT | NOTPRESENT Present bit

ENTRY=ptr_value Code location gate vectors to

The following example builds a 386 call-gate descriptor named
sys_init, and sets its address (selector:offset) to the logical
address of the public symbol init_regs with the following at-
tributes:

DPL=2
Word count field=3
Marked present

call386 sys init :: dpl=2 count=3 present entry=init_regs

CSi-Locate

CSi-Locate Command Reference

CPU cpu_name

This command is used to specify the exact processor of the target.

e This command must be placed near the beginning of the
command file, before any segment location or manipulation
commands.

e If this command is omitted, CSi-Locate defaults to the
following processors (CSi-Locate can determine from the
executable file what the application's mode is):

for a real-mode application 8086
for a protected-mode application 80386

e Use the terms in table 5.5 just below to specify cpu_name.

Pentium

486 486SX 486DX

386 386SX 386DX 386EX

376

286

188 C188 188EA 188EB 188EC 188XL
186 C186 186EA 186EB 186EC 186XL
88

86

V20 V30 V40 V50

cpu pentium
cpu C186

Chapter 5, Command Reference

Input command

Table. 5.5.
CPU names

Examples

67

CSi-Locate Command Reference

Segment-creation CREATE seg_name [:: attribute_lisf]
command

This command creates a segment with the given name and
optional attributes.

e Seg_name must not conflict with any name of a segment
already defined by the application.

e Attribute_list may contain any of the attributes in table 5.4 on
p- 66.

e Segments are placed in memory in the order in which they
are created unless they are explicitly located otherwise by the
user.

Example create csimon_rom :: limit=2000H

68 CSi-Locate

CSi-Locate Command Reference

DEBUG [filename]

DEBUG controls the generation of symbolic information. It has
the following characteristics:

If you want symbolics, you must use this command. By
default, CSi-Locate does not generate symbolics.

DEBUG generates a .BUG (APPLICATION.BUG) file for real-mode
applications. The .aBs file contains no debug information.

If a filename is used, the .BUG file generated will have the
specified name rather than the default name, which is the
same as the command file's name.

For protected-mode applications, symbolics are placed in the
absolute output file produced by CSi-Locate.

debug
debug c:\embed\new_app\progl.bug

Chapter 5, Command Reference

Output command

Examples

69

CSi-Locate Command Reference

Input command EXEC filename

This command is used to change the default file name and
extension of the executable file that is to be input to CSi-Locate. -
The default filename is the same as the input .cMmD file's name,

and the default extension is .Exe. MAP is the other "input-file
command."

e EXEC changes the default executable input file.

e MAP changes the default input map file.

e Both of these input-file commands must be placed at the
beginning of the command file, before any segment manipu-
lation and location commands.

Examples exec csamp.exe
exec c¢;\csiloc\csamp.exp

70 : CSi-Locate

CSi-Locate Command Reference

FIXUP kind ptr_value = (ptr_value |
num_value |
seg_value)

This command allows you to make simple modifications to your
application while using CSi-Locate.

e When using the startup code supplied with Soft-Scope, the

label cs_dgroup must be zeroed for your application to build.

Use the following to change the value of ¢s_dgroup:
fixup word cs_dgroup = group dgroup

e If you are not using Soft-Scope startup code, use FIXUP to
change the values of the symbols to set up your stack.

. o Use table 5.6 for values for kind:

KIND #BYTES KIND #BYTES
BYTE 1 NEARI16 2
DWORD 4

NEAR32 4
FARI16 4

PHYSICAL 4
FAR32 6

SELECTOR 2
LIMIT16 2

TABLE 6
LINEAR 4

e Here's a simple example taken from an actual .cum file. It
creates a segment startjmp, fixes it up so that it contains a
hard-coded jump to main (0xea is the opcode for JMP), and
then locates it at the address of the hardware reset.

[20] verbose on
[21] create startjmp :: limit = 5
>>> Created segment: STARTJIMP.
>>> LIMIT=00000005 for STARTJIMP
[22] fixup byte startjmp:0 = Oxea
[23] fixup farl6é startjmp:1 = main
[24] locate startijmp :: OFFFFOD
>>> STARTJMP located at O00OFFFFOL.

Chapter 5, Command Reference

Segment-modifi-
cation command

Example

Table 5.6 Fixup
kinds and their
byte sizes

Example

71

CSi-Locate Command Reference

Table-constructor
command

Example

Example

72

GDT seg_name [range] [:: (RESERVE | seg_list)]

This command is used to build the protected-mode GDT table.

e seg_name is where the table will be placed, and must be
defined in your application (one way to do this is to use the
macro def_tbl, mentioned on p. 4, in your startup code) or
created with the locator command CREATE.

If the only parameter used is seg_name, an empty table is
created except for the default null and alias slots.

e range specifies the starting and optional ending index. The
example below uses range to reserve slots for the CSi-Mon
monitor:

gdt sys_gdt[3..64] :: reserve

e RESERVE reserves the specified slots for system, monitor, or
other uses. These slots are set to zero.

e When a range is not specified for the GDT command, the
default starting slot is 3. GDT[0] is null, GDT[1] is the GDT
alias, and GDT[2] is the IDT alias.

e Not all gates can be placed in all tables. Only the following
can be placed in the GDT table:

286/386 call gates
Task gates

The following example places the first segment found in the
input map file at slot 5 of tmp_gdt. All other segments are
placed in default order starting at slot 6:

gdt tmp_gdt[5] :: *

CSi-Locate

CSi-Locate Command Reference

HEX [filename]

This command creates a .Hex output file and can also be used to
change the name of the file, which by default is the same name as
the .cmp file that is the CSi-Locate input command file.

e By default, no absolute, binary, or hex file is output. You
must use one of the three output commands (ABSOLUTE,
BINARY, or HEX) to generate output.

e These output commands can be used one at a time, all
together, or in any combination. Each command will gener-
ate one output file.

e The output format of hex files is a function of the CPU
command and the executable according to the following
conditions:

Intel 32-bit hex: CPU >= 386
Intel absolute 8086 hex: CPU < 386 and real mode

hex prom.hex
hex c:\newapp\eprom

Chapter 5, Command Reference

Output command

Examples

73

CSi-Locate Command Reference

Table-constructor
command

Example

Example

74

IDT seg_name [range] [:: (RESERVE | seg_list)]

This command is used to build the protected-mode IDT table.

seg_name is where the table will be placed, and must be
defined in your application (one way to do this is to use the
macro def_tbl, mentioned on p. 4, in your startup code) or
created with the locator CREATE command.

If the only parameter used with these commands is seg_name,
an empty table is created except for the default null and alias
slots.

range specifies the starting and optional ending index. The
example below uses range to reserve slots for the CSi-Mon
monitor:

idt sys_idt[0..40] :: reserve

RESERVE reserves the specified slots for system, monitor, or
other uses. These slots are set to zero.

GDTJ[2] is the IDT alias.

Not all gates can be placed in all tables. The following are
the gates that can be put in the IDT table:

286/386 trap gates
286/386 interrupt gates
Task gates

create int_114

int386 int_114 :: entry=timer_ interrupt, DPL=0
IDT sys_idt[41l] :: int_114

CSi-Locate

CSi-Locate Command Reference

INIT16R seg_name :: seg_list
INIT16P seg_name :: seg_list
INIT32P seg_name :: seg_list

These commands compress data from the segments in seg_list,
which are to be located in RAM, and store the compressed data
in the ROM segment seg_name. Use these commands when you
have constants or data that you want located in RAM and that
need to be initialized at boot-up time.

e INIT16R applies to 16-bit real-mode applications.
e INIT16P applies to 16-bit protected-mode applications.
e INIT32P applies to 32-bit protected-mode applications.

e The data is stored in a compressed form in ROM.

e The macros raminit_16r, raminit_16p, and
raminit_32p, which can be found in the file
CSILOC \CSILOC.INC, unpack the data and copy it into the RAM
segments in seg_list.

The following example compresses the data in all of the segments
in class data and the segment const and stores the compressed
data in the segment ram_init. You can use the macros that are
mentioned just above (in the last bulleted item) in your startup
code to unpack and copy the data back to class data and seg-
ment const.

initl6r ram_init :: class data segment const

If you are building an application with a Microsoft compiler, it
places data into a data segment even if your code does not. You
should initialize the data in this data segment with one of the
INIT commands described on this page.

Chapter 5, Command Reference

Segment-definition
command
Example
NOTE1
75

CSi-Locate Command Reference

Protected-mode INT286 seg_list :: gate_options
segment command INT386 seg_list :: gate_options

These commands create segments for interrupt-gate descriptors
that can be accessed symbolically. :

e They operate just like the CALL commands described above
on p. 66 with the following exception:

e The option COUNT is not used.

Example int286 int_gate :: dpl=0, present

76 CSi-Locate

CSi-Locate Command Reference

INTEGRITY seg _list

This command forces CSi-Locate to locate and include as part of
your application any empty spaces or padding within a segment.
This is quite helpful if your compiler writes extraneous data into
segments that CSi-Locate isn't otherwise aware of.

o The effect of this command is to preserve any existing
"padding” in segments.

e If you don't use this command, there are cases in which the
locator suppresses a certain amount of padding when locat-
ing a segment.

e Empty space can occur, for example, in the segments that you
declare for the GDT and IDT; use of this command would
preserve all of that space.

integrity *

Chapter 5, Command Reference

Segment-location
command

Example

77

CSi-Locate Command Reference

Table-constructor
command

Example

Example

Example

78

LDT seg_name [range] [:: (RESERVE | seg_list)]

This command is used to build the protected-mode LDT table.

seg_name is where the table will be placed, and must be
defined in your application (one way to do this is to use the
macro def_tbl, mentioned on p. 4, in your startup code) or
created with the locator command CREATE.

If the only parameter used with these commands is seg_name,
an empty table is created except for the default null and alias
slots.

range specifies the starting and optional ending index. The
example below uses range to reserve the first ten slots:

ldt sys_1dt[0..9] :: reserve

RESERVE reserves the specified slots for system, monitor, or
other uses. These slots are set to zero.

When a range is not specified for the LDT command, the
default starting slot is LDT[2]. LDT[0] is null, and LDT[1] is
its alias, which you need to set up in a way like the following:

create l1ldt_alias limit=0ff£fh
alias 1ldt_alias :: sys_1dt0
1dt sys_1dtO0[1] :: 1ldt_alias

Not all gates can be placed in all tables. The following are
the gates that can be put in the LDT table:

286/386 call gates

The following example places class code in 1dt_1 starting at slot
2, then places all segments except those in class code into 1dt_2,
starting at slot 2:

1ldt 1dt_1[2] :: class code
1dt 1dt_2 :: * except class code

CSi-Locate

CSi-Locate Command Reference

LOCATE seg_list :: (addressL | addressP) Segment-location
command

This command locates segments, classes, or groups in ROM or
RAM, beginning at the given address.

e LOCATE assigns an address to the first segment in seg_list. If
a class is given, the address is assigned to the first segment in
the class.

e Once a segment is located, its location is permanent.

e Multiple instances of this command can be used in a com-
mand file, locating different segments, groups, or classes..

e Individual segments in groups cannot be located without the
rest of the group.
e Individual segments in classes can be located by themselves.

@ addressL is a linear address must have an "L" suffix;
addressP is a physical address must have a "P" suffix;

Linear locate locates groups at specific addresses and main-
tains segments at adjacent linear addresses.

Physical locate places segments and allows nonadjacent
addresses for same-group segments.

The following example first locates segment seg1, which let us Example
assume is in class a_class, at 50000P, then locates the remaining
segments in the a_class class, and finally locates the segments
in d_class:

locate segl class a_class d_class :: 50000P

The next example uses the EXCEPT keyword to prevent segl Example
from being located with the rest of its class. A separate LOCATE
command or some other locator command would be needed to
locate seg1.

locate class a_class except segl :: 50000P

If a segment defined in assembly language gets located a
few bytes beyond where you specify with the LOCATE N7
command in a .cMD file, define the segment as paragraph ‘
aligned in your assembly code to prevent such dislocation.

Chapter 5, Command Reference 79

CSi-Locate Command Reference

Input command MAP filename

This command is used to change the default file name and
extension of CSi-Locate's input map file. The default filename is
the same as the input .cMp file's name, and the default extension .
is mar. EXEC is the other "input-file command."

e EXEC changes the default executable input file.

e MAP changes the default map input file.

e Both of these input-file commands must beiplaced at the
beginning of the command file, before any segment manipu-
lation and location commands.

Example map csamp.map

80 CSi-Locate

CSi-Locate Command Reference

PAGEDIRECTORY dir_name [range] :: seg_list

This command defines the given segment dir_name as a page
directory and the segments in seg_list as page tables.

e You must create the segment dir_name with the CREATE
command or in your startup code (see p. 4 for the mention of
a macro that can be used to create this segment) before you
use this command.

e It allocates the exact position of each page table within the
page directory.

e The full range of linear addresses used by the application
must be accounted for.

For more information, see next page's discussion about
- PAGETABLE.

pagedirectory dir_name[0] :: page_table

Chapter 5, Command Reference

Segment-definition
command
Example

81

CSi-Locate Command Reference

Table-constructor
command

Examples

82

PAGETABLE dir_name :: seg_list

This command specifies that the segments in seg_list are to be
mapped through the page directory dir_name.

The PAGEDIRECTORY range parameter defines the pagetable
range, as in table[1], table[2], table[3]..., and is useful when you
want to split your application into separate pieces, or if your
application is large.

This is because the page table and the linear address of a segment
are directly related—given a certain linear address, the physical
address associated with a segment will be placed in a specific
page table. The CPU controls this, and CSi-Locate can't alter it.

However, by controlling where a segment is located you can
control to some extent which page table it is associated with. 4
This is important because the CSi-Locate PAGEDIRECTORY and
PAGETABLE commands set up the page tables, and if they don't
set up a table that one of your segments is associated with, a fatal
error will occur. :

For those segments you don't locate explicitly, their location is
dependent upon the order in which they were created. So, if one
of your segments ends up in the wrong table, you can put it in
another table without explicitly locating it by creating it earlier in
the file.

The first example below takes advantage of this feature. The
range specified in the PAGEDIRECTORY command is [0], and as
long as the page tables needed are consecutive, CSi-Locate sets
them up. However, if you locate your segments so that you have
segments associated with table[0], then skip table[1] and have
segments associated with table[2], table[2] will not be set up.

In the second example below, because, let us suppose, some of
the segments are located at linear addresses 0f0000000L through
0f00000003L, we need page table [960].

pagedirectory dir_name[0] :: page_table
pagedirectory dir_name[960] :: page_tablel

CSi-Locate

CSi-Locate Command Reference

PMODE seg_list |
(pub_sym1 ((to pub_sym2) | (LENGTH number)))

RMODE and PMODE allow mixed-mode applications to be built
properly. Use them to change the assumed mode of segments or
parts of segments.

e Use PMODE seg_list to mark an entire segment as protected
mode.

e Any segment or segment portion marked as protected mode
will reference segments using their protected-mode selectors.

e All public symbols used in this command (as code bound- -
aries for specific purposes) must be in the same segment.

Given the following segments

DSEG -- real-mode segment
PSEG -- protected-mode segment
CODE_REAL -- real-mode segment .

with the following real-mode assembly code,

public prot_start
public prot_end

CODE_REAL segment eo;
mov ax, DSEG
xor ax, 2
prot_start:
mov bx, PSEG
mov cx, bx
prot_end:
inc bx
end CODE_REAL

The example below causes the instructions mov bx, PSEG and
mov cx, bx to have a protected-mode fixup:

pmode prot_start to prot_end

An alternate method is to use one public symbol to mark the
beginning of the section and then to use the LENGTH keyword
to specify how long it is. The following marks 10 bytes:

pmode prot_start length 10

Chapter 5, Command Reference

Segment-modifi-
cation command

Examples

83

CSi-Locate Command Reference

Output command PRINT

The PRINT command tells CSi-Locate to pri.ﬁt public-symbol
information to the .cM conversion map file.

e The name and location of each public symbol are listed
module by module. Public symbols include symbols declared
PUBLIC in assembly files, static C variables, global variables,
and names of procedures from user modules and libraries.

e No public symbolic information is put in the conversion map
file by default.

Example print

84) CSi-Locate

CSi-Locate Command Reference

RAM seg_list
Use this command to specify segments that you do —not want
placed in the output file.

e All segments not specified with this command will be put in
the output files requested by the ABSOLUTE, HEX, and BIN
commands.

Given the following segments:

data_seg, code_seg, stack seg, temp

The following example places all but data_seg and temp in the
output file:

- ram data_seg temp

Chapter 5, Command Reference

Segment-modifi-
cation command

Example

85

CSi-Locate Command Reference

Seqment-modifi- RMODE seg_list |
cation command (pub_sym1 ((to pub_sym2) | (LENGTH number)))

RMODE and PMODE allow mixed-mode applications to be built
properly. Use them to change the assumed mode of segments or. -
parts of segments.

o Use RMODE seg_list to mark an entire segment as real mode.

e Any segment or segment portion marked as real mode will
reference segments using their real-mode selectors.

e All public symbols used in this command must be in the
same segment. :

See the example use of PMODE on p. 83 above.

86 CSi-Locate

CSi-Locate Command Reference

ROMBASE seg_list :: addressP

This command allows you to decrease hex-record addresses to
set the base address of ROM.

e Use this command if you are burning your application into
ROM and your ROM programmer doesn't allow you to set
the ROM base address.

rombase init_text :: 4000P

Chapter 5, Command Reference

Segment-modifi-
cation command

Example

87

CSi-Locate Command Reference

Segment-modifi-
cation command

Example

88

ROMMOVE seg_list :: addressP

This command allows you to increase hex-record addresses.

e Use this command if you want to locate records out of RAM -
in ROM or locate records to a higher address entirely within
RAM or ROM.

rommove init_tex :: 2000P

CSi-Locate

CSi-Locate Command Reference

TASKGATE seg_list :: gate_options Protected-mode
segment command

This command sets up task-gate descriptors and operates like the
CALL commands on p. 66 above, with the following exceptions:

e The entry point must be a segment previously defined as a
TSS.

e The option COUNT is not used.

taskgate tss.taskl :: dpl=0 present
Example

Chapter 5, Command Reference 89

CSi-Locate Command Reference

Protected-mode TRAP286 seg_list :: gate_options
segment command | TRAP386 seg_list :: gate_options

These commands set up trap-gate descriptors and operate like
the CALL commands shown above on p. 66, with the following -
exception:

e The option COUNT is not used.

Example e When you define a trap gate using TRAP286 or TRAP386,
you must include a command to place the gate in the IDT.
The following example creates a segment, defines it as a trap
gate, then places it in slot 50 of the IDT (this assumes that the
segment idtsys has already been created):

create trap_gt

trap286 trap_gt :: dpl=1l present
+ entry=init_text
idt idtsys[50] :: trap_gt

90 CSi-Locate

CSi-Locate Command Reference

TSS286 seg_list :: assign_list
TSS386 seg_list :: assign_list

These commands set segments in seg_list as TSS segments and allow
you to specify TSS fields using assign_list.

e 16-bit segments may be defined in your application. 32-bit
segments must be created with the CREATE command.

e Aninitial TSS is created only for protected-mode applications,
and only when one of the commands above is used. The first
TSS defined in the command file is the initial TSS.

o Al fields not explicitly set are left intact.

e Use the SEGMENTOF and OFFSETOF keywords to specify
what part of a public symbol's address to use. See pp. 56-57
above for command syntax elements.

TSS descriptors can only be placed in the GDT. Attempting to
place them in the IDT or LDT results in an error.

The following example builds a TSS called tss_new. CS:EIP, DS,
and FL.IF are explicitly set, while all other fields are left unchanged
(note the use of the line-continuation character at the beginning of
the second line):

tss386 tss_new :: cs:eip=main, ds=data_seg,

+ £1.if=0x1

The next example builds an initial TSS, sets the CS:EIP, and sets
fields in two other TSS segments as well:

tss386 tss_init :: cs:eip=init_code
tss386 task_ 1 :: ax=2
tss386 task_2 :: efl.if=1

See tables 5.7 and 5.8 on the following pages for applicable TSS
fields.

Chapter 5, Command Reference

Protected-mode
segment command

NOTE1

Examples

91

CSi-Locate Command Reference

Table 5.7.
TSS286 fields

92

AX=number BX=number CX=number DX=number

Sl=number Dl=number BP=number

DS=(number | seg_name | pub_sym)

ES=(number | seg_name | pub_sym)

CS:IP=(number:number | seg_name | pub_sym)
CS=(number | seg_name | pub_sym)
IP=number

SS:SP=(number:number | seg_name | pub_sym)
SS=(number | seg_name | pub_sym)
SP=number

SS0:SP0=(number:number | seg_name | pub_sym)
SS0=(number | seg_name | pub_sym)
SPO=number

SS1:SP1=(number:number | seg_name | pub_sym)
SS1=(number | seg_name | pub_sym)
SP1=number

S52:SP2=(number:number | seg_name | pub_sym)
SS2=(number | seg_name | pub_sym)
SP2=number

LDTR=(number | seg_name | pub_sym)

LINK=(number | seg_name | pub_sym)

FL=number
FL.NT=number FL.IOPL=number
FL.OF=number FL.DF=number FL.IF=number
FL.TF=number FL.SF=number FL.ZF=number
FL.AF=number FL.PF=number FL.CF=number

CSi-Locate

CSi-Locate Command Reference

EAX=number EBX=number ECX=number EDX=number

ESI=number EDI=number EBP=number

DS=(number | seg_name | pub_sym)

ES=(number | seg_name | pub_sym)

FG=(number | seg_name | pub_sym)

GS=(number | seg_name | pub_sym)

CS:EIP=(number:number | seg_name | pub_sym)
CS=(number | seg_name | pub_sym)
EIP=number

SS:ESP=(number:number | seg_name | pub_sym)
SS=(number | seg_name | pub_sym)
ESP=number

SS0:ESPO=(number:number | seg_name | pub_sym)
SS0=(number | seg_name | pub_sym)
ESPO=number

SS1:ESP1=(number:number | seg_name | pub_sym)
SS1=(number | seg_name | pub_sym)
ESP1=number

SS2:ESP2=(number:number | seg_name | pub_sym)
SS2=(number | seg_name | pub_sym)
ESP2=number

LDTR=(number | seg_name | pub_sym)

LINK=(number | seg_name | pub_sym)

EFL=number
EFL.NT=number EFL.IOPL=number
EFL.OF=number EFL.DF=number EFL.IF=number
EFL.TF=number EFL.SF=number EFL.ZF=number
EFL.AF=number EFL.PF=number EFL.CF=number
EFL.RF=number EFL.VM=number EFL.CF=number

CR3=number

CR3.PDBR=number CR3.PCD=number CR3.PWT=number

IO_MAP=number TRAP=number

Chapter 5, Command Reference

Table 5.8.
TSS386 fields

CSi-Locate Command Reference

Locator-debugging
command

Example

94

VERBOSE (ON | OFF)

You can use this command to print additional information to the
conversion map file.

The default is VERBOSE OFF.

When ON, CSi-Locate prints detailed information to the
conversion map file as each command executes. The infor-
mation printed depends on the command. For example, if
the command just executed impacts segment location,
detailed information about where and how the segment was
located is placed in the conversion map file.

VERBOSE can be used anywhere in the command file, and
can be turned on or off as often as you wish in the same file.

VERBOSE can be used anywhere in the command file, and
can be turned on or off as often as you wish in the same file.

The following exemplifies the sort of output provided by
VERBOSE ON

[20] verbose on
[21] create startimp :: limit = 5
>>> Created segment: STARTJIMP.
>>> LIMIT=00000005 for STARTJIMP
[22] fixup byte startimp:0 = Oxea
[23] fixup farl6é startjmp:1l = main
[24] locate startjmp :: OFFFFOp
>>> STARTJIJMP located at 000FFFFOL.

CSi-Locate

CSi-Locate generates messages when it cannot execute a command or pro-
cess your application as specified.

There are five kinds of messages, organized in this chapter as follows:

1. Fatal errors Processing halts immediately—no output files
are generated.

2. System errors Processing halts immediately—no output files
are generated.

3. Errors Processing continues—no output files are
generated.

4. Syntax errors Processing halts after command file has been
interpreted—no output files are generated.

5. Warnings Processing continues until completed—output

files are generated.

Where possible, messages are listed in the following format:
1. *** message or <message>
2. Explanation that describes why the message was displayed

What to do to eliminate the problem here or avoid it in the future
s i % i

Table of Contents .

Fatal Error Messages. - cerrrereneresene s erensssaesssssesesnses D0
System Error Messages SR vererenns 96
Error Messagescccceeueeneuennnees vererennssrenenenesnaenesens 90
Syntax Error Messages ..

Warning Messages

Fatal Error, System Error, and Error Messages

#%* Fatal: Corrupted map listing file.
General error message.

Try recreating the map file with the linker.

< System - No such file or directory: "filename." >
The operating system can't find the file or directory specified.

Check to make sure the path and filename are correct.

< System - Permission denied: vfilepame." >

Filename may be write protected.

< System - Line too long: "filenmame." >

CSi-Locate encountered a line in filename that contains more than 222 characters.

Change the line length.

*** ERROR: Attempting to locate library module.

CSi-Locate does not support Windows library modules.

*%** ERROR: Bad fixup, segment:offset does not exist in file filename.

This means that a fixup was read out of the executable but the address to be fixed up does

not exist in the executable space.

Try regenerating the executable.

*** ERROR: Bad fixup segment reference, segment:offset.

The address contained at a fixup location points to a nonexistent segment:offset.

Regenerate the executable.

96

CSi-Locate

Error Messages

*** ERROR: Call gates and TSS descriptors are not allowed in IDT tables.

*kk

*k*k
*kk

dede ke
*kk

*kk

* %%
*kk

* ek

dekdk

Line #line number.

ERROR: Cannot ROM all of segment segment_ name.
Address address is over OfffffH (1MB).

The protected-mode segment being saved has an address greater than 1 MB.

ERROR: Cannot ROM all of segment segment name.
Address address is over O0ffffffH (16 MB).

The protected-mode segment being saved has an address greater than 16 MB.

ERROR: Corrupted fixup chain at segment:offset.

A particular fixup references a location past the end of the segment, or the fixup is a
duplicate fixup.

Regenerate the executable file.

ERROR: Duplicate gate name in gate gate_name, gate not built.
Line #line number.

Gate names must be unique when specifying them with the GATE command.

Rename the gate in question.

ERROR: First segment contains loader.

Your executable code contains Windows structures that CSi-Locate does not support.

ERROR: Fixup at selector:offset is in an unknown segment.

While processing a fixup from the executable, CSi-Locate could not determine which
segment the fixup was to be applied to.

In most cases this indicates a corrupted executable.

Appendix A, Error and Warning Messages 97

Error Messages

*dk

* %%

* %%

% k%
LX X3

% % %
*kk

hddk
* k%

sk
*dkdk

*dk
kK

dedk ok
%k ke

98

ERROR: Fixup at selector:offset references an unknown segment segment name.

While processing a fixup from the executable, CSi-Locate could not determine which
segment a fixup was referencing. In most cases this indicates a corrupted executable.

ERROR: Gate gate_name was previously assigned to GDT[index].
Line #line number.

ERROR: Gates cannot alias other segments.
Line #line number.

ERROR: Gates cannot be aliased.
Line #line number.

Gate descriptors cannot have other segments alias them.

ERROR: Index table_name[index] is reserved.
Line #line number.

ERROR: Interrupt/Trap gates are not allowed in GDT or LDT tables.
Line #line_number.

ERROR: Protected mode tables cannot be in groups.
Line #line number.

ERROR: Protected mode tables must be paragraph aligned.
Line #line number.

CSi-Locate

Error Messages

*** ERROR: Public symbol string is not in the same
*dkek segment as public symbol string.
*hk Line #line number

CSi-Locate cannot find a public symbol in the public symbol table that is given in the
command file.

All public symbols used within a single RMODE or PMODE command must be in the same
segment.

*** ERROR: Public symbol string not found.
*kdk Line #line number.

CSi-Locate cannot find a public symbol in the public symbol table that is given in the
command file.

Look in the map file to track down the problem. The symbol may have a ‘_’ appended to it,
it may be spelled incorrectly, the letters may be the wrong case, or it may be missing
altogether from the map file.

*** ERROR: Range goes beyond limit of the table.
dkk Line #line number.

A given GDT/IDT/LDT range exceeds the maximum number of slots available.

Either make the table larger or change the range given in the command file.

*** ERROR: Real-mode reference to segment is not possible.
A real-mode segment is referencing a protected-mode segment.

Use the PMODE command to fix the segment.

*** ERROR: Segment_name was previously assigned to GDT[index].
*hk Line #line number.

Appendix A, Error and Warning Messages 99

Error Messages

* bk
L X

*kk
*kk
*hk

*k*k
& %k

*kk
* k%

*kk
%* %%

*dkk
ek k

de de ke
ke ke

* ek
%k dk

*kk
*kk

ERROR: Segment_name was previously assigned to LDT[index].

Line #line number.

ERROR: Segment name was previously assigned to LDT table_name[index]
but table_name[index] is used.

Line #line number.

ERROR: Segment segment name has not been placed in a table.

Line #line number.

CSi-Locate is trying to build a protected-mode application, but can't find any tables to place
segments in.

Use the IDT, GDT, and LDT commands to build protected-mode tables.

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

100

Segment segment_name is already defined as a 286 TSS.

Line #line number.

Segment segment name i

Line #line number.

Segment segment_name i

Line #line number.

Segment segment_ name
Line #line number.

‘Segment segment name i

Line #line number.

Segment segment_name
Line #line number.

is

already defined

already defined

already defined

already defined

already defined

as

as

a 386 TSS.

a gate.

the GDT.

CSi-Locate

Error Messages

* K%
*kk

*dkk
*kk
bk

* gk
* %k

*kk

&k

*kk
* %k
*kk

* %k
* %k
*kk

&gk
* ke
*dkk

ERROR: Segment segment_name is an alias and cannot be located.
Line #line number.

ERROR: Segment segment namel is in the same segment
as segment segment name2. Cannot create the alias.
Line #line number.

ERROR: Segment segment_name is in a group and cannot be moved.
Line #line number.

ERROR: Segment segment_name shares a selector with segment segment_name.
Class class_name can’t be moved.
Line #line number.

ERROR: Segment segment name shares a selector with segment segment_name.
Group group_ name can’‘t be moved.
Line #line number.

ERROR: Segment segment name shares a selector with segment segment_name.
Segment segment name can’t be moved.
Line #line number.

ERROR: Slot[index] has a fixup referencing it,
and cannot make an assignment.
Line #line number.

Your code references the given table slot.

Remove the reference from your code or force a different slot assignment in the command
file.

Appendix A, Error and Warning Messages 101

Error Messages

*kk

*kk
* k%
ek k

*kk

o &k
ddk

* k%
%* %k

*kk
*dkk

dkk
ek dk

102

ERROR: String is an invalid file type.
An unrecognized output file type has been requested.

Replace with the proper file type keyword.

ERROR: Table_name segment_name is full.
No selector assigned for segment name.
Line #line number.

To correct, make the table larger by increasing the defined size in the assembly module.

ERROR: Table table_name cannot be a real-mode segment.

All tables must be protected-mode segments.

ERROR: Task gates and TSS descriptors are not allowed in LDT tables.
Line #line number.

ERROR: There is a directory named directory_name.
Append ‘.cmd’ to command file name.

The directory containing your command file has a subdirectory with the same name as the
command file. -

Either rename the directory, rename the command file, or append .CMD to the command
file name when invoking the locator.

ERROR: TSS segment name too small, must be at least 44 bytes.
Line #line number.

ERROR: TSS segment_name too small, must be at least 104 bytes.
Line #line number.

CSi-Locate

Messages

*** ERROR: TSS tables cannot be in groups.
&k Line #line number.

*** ERROR: TSS tables must be paragraph aligned.
*k% Line #line number.

*** ERROR: Unable to initialize register name register, segment:offset.

The initial segment value read from the executable for a particular register is invalid, i.e., it
references a nonexistent segment.

Regenerate executable.

*** SYNTAX: Class class name is an invalid class name.
ko Line #line number.

*** SYNTAX: CSi-Locate expected a seg list or pub_ sym.
*kk Line #line_number.

*** SYNTAX: CSi-Locate expected a TSS attribute list.
k% Line #line number.

*** SYNTAX: CSi-Locate expected attribute list.
kkk Line #line number.

*** SYNTAX: CSi-Locate expected colon in segment:offset expression.
k% Line #line number.

*** SYNTAX: CSi-Locate expected gate attr list.
* k% Line #line number.

Appendix A, Error and Warning Messages 103

Syntax Error Messages

*** SYNTAX: CSi-Locate expected TO or LENGTH keyword.
*kk Line #line number.

*** SYNTAX: Expected a ‘::’ separator.
*kk Line #line number.

*** SYNTAX: Expected a class name.
kK Line #line number.

*** SYNTAX: Expected a cpu name.
*kk Line #line_number.

**% SYNTAX: Expected a filename.
dkk Line #line number.

*** SYNTAX: Expected a gate néme or ‘::’.
deddk Line #line_number.

*** SYNTAX: Expected a group name.
ek Line #line number.

% SYNTAX: Expected a hex address.
*kk Line #line_number.

*** SYNTAX: Expected a segment name.
dkk Line #line number.

*** SYNTAX: Expected an ‘=’ in the attribute list parameter.
*hk Line #line number.

104 CSi-Locate

Syntax Error Messages

* kK
d* kK

d ke
% k%

*kk
*kk

* k%
% % %

*dkdk
k%

de ke ke
*kk

* &k
*kk

% &k
* k%

* Kk
*kk

*dkk
dedek

SYNTAX: Expected a Group, Class, or Segment keyword.
Line #line number.

SYNTAX: Expected Intel hex file type.
Line #line number.

SYNTAX: Expected ON or OFF switch.
Line #line_ number.

SYNTAX: Group group name is an invalid group name.
Line #line number.

SYNTAX: Invalid decimal number.
Line #line_number.

SYNTAX: Invalid hex number.
Line #line number.

SYNTAX: Invalid number format.
Line #line number.

SYNTAX: Invalid range parameter.
Line #line_ number.

SYNTAX: Limit is set too small. It must be at least number.
Line #line number.

SYNTAX: Seg gate_list parameter expected.
Line #line_ number.

Appendix A, Error and Warning Messages

105

Syntax Error Messages

*** SYNTAX: Seg list parameter expected.

EX X3

**%* SYNTAX: Segment segment name is an invalid segment name.

ddkk

Line #line number.

Line #line number.

% SYNTAX: String is an invalid attribute list parameter.

*dkk

Line #line number.

*** SYNTAX: String is an invalid cpu name.

&k *

Line #line number.

*** SYNTAX: String is an invalid gate attr_ list parameter.

*dkk

Line #line number.

*** SYNTAX: String is an invalid hex address.

XX

***SYNTAX:
*dkk

***SYNTAX:
*kk

***SYNTAX :
sk k

***SYNTAX:
dede ke

106

Line #line number.

String is an invalid ON or OFF switch parameter.
Line #line number.

String is an invalid output file type.
Line #line number.

String is an invalid TSsS286 field.
Line #line number.

String is an invalid TSS386 field.
Line #line number.

CSi-Locate

Syntax Error and Warning Messages

***SYNTAX: String is not a command.
*kk Line #line number.

*** WARNING:Class class_name has been previously located.
*kk Line line number.

*** WARNING:Constants not supported,
Tk :module_name.const_name discarded.

C-type constants are not supported.

- *** WARNING:DPL parameter greater than 3, defaulting to 3.

*** WARNING:Duplicate LDT segments/gates must have the same selector,
*kdk using LDT segment_name.
hkk Line line number.

An attempt was made to reassign a segment/gate to a different LDT slot.

The reassignment will not take place; the original assignment will remain intact.

*** WARNING:EXEC must come before any location commands.

*** WARNING:Group group name has been previously located.
*dek Line line_number.

*%** WARNING: Group names not in map listing, defaults used.
Each map file has a section where it displays group information.

Set the proper linker switches to correct this.

Appendix A, Error and Warning Messages 107

Warning Messages

*** WARNING:Initial RR=segment is not a known segment, 0000 used.

The initial value of the given segment register (RR) does not match any of the executables
segments.

% WARNING:Invalid TYPEDEF:string.
*kk Null used.

Call Concurrent Sciences, inc.

*** WARNING:Limit over 16 Meg for segment segment name,
*kk page granularity used.
%k Line line number.

An attempt was made to set the limit field of a descriptor whose granularity was set to byte
length.

CSi-Locate changes the descriptors granularity to page granularity and divides the limit
4096 to get the correct limit.

*** WARNING:Line :modulename_linenumber specified multiple times,
bl record ignored.

When the executable defines a single line number multiple times, CSi-Locate ignores the
second definition and processing continues.

%% WARNING:Linker detected errors.
There are errors, detected at link time, that remain.

Look in the map file for the error explanations, correct them, then relink the application.

*** WARNING:MAP must come before any location commands.

*** WARNING:New limit must be at least min limit.
*kk Line line number.

The limit must be at least as long as the segment length.

108 CSi-Locate

Warning Messages

* k%

* gk
*k %k

*kk

s dk

*kk

* &k
*kk

WARNING: No debug symbol records in input file.

The input executable contained no debug records. The output is still usable, but Soft-Scope
will not be capable of symbolic debugging.

WARNING:No logical address for :module_name.symbol_name,
Symbol discarded.

Symbols at absolute addresses are not yet supported.

WARNING:No logical address for symbol name, symbol discarded.

Symbols at absolute addresses are not yet supported.

WARNING:No public symbols in map listing.

Public symbols are not required in the map list, however, if you wish to use them, you
must set the appropriate linker switches to include public symbols.

WARNING: No symbolic records present, DEBUG command ineffectual.

The application was built without symbols, but a request is being made in the command
file to supply symbolic information to the locator output files.

Either remove the DEBUG command or recompile using the proper symbolic switches.

WARNING: Number exceeds maximum possible value of field field name.
Line line number.

An attempt was made to assign a larger value than a particular TSS or descriptor field
could hold.

Appendix A, Error and Warning Messages 109

Warning Messages

*** WARNING:Previously defined data in Table name [index] will be lost.
The specified table slot already has data in it.
CSi-Locate discards the previously defined data.

%% WARNING:Previously defined data in Table_name [index] will be lost.
*hk Line line_ number.

The specified table slot already has data in it.

**%* WARNING:Segment segment_name from executable not found in map listing.

Your map file is corrupted. CSi-Locate found a segment defined in the executable but not
in the map file.

Rebuild your appli;:ation.

*** WARNING:Segment segment_name has been previously located.
*kk Line line number.

**% WARNING: Segment segment name has not been located.
ok Line line_number.

% WARNING: Segment segment name is already an alias for segment segment name.

*** WARNING:Segment segment name is full, segment segment name can’t fit.

Make segment #1 larger or copy segment #2 to a different ROM segment.

% WARNING:Segment segment name is an alias, cannot define as a TSS.
ek Line line number.

110 CSi-Locate

Warning Messages

dekk
*kk

*kk

*kk
ke

dedek
ddek

*kk

%* %k

*kdk
dkdk

WARNING: Segment segment_name is an alias, cannot change to real mode.
Line line_number.

WARNING: Selector hex number is not a known segment, 0000 used.

Some symbolic record references selector hex_number, but this selector is not a known
segment.

Make segment #1 larger or copy segment #2 to a different ROM segment.

WARNING: Selector hex number is not a known segment,
0000 used.

Some symbolic record references selector hex_number, but this selector is not a known
segment.

WARNING: Symbolic name ‘string’ too long,
truncated to ‘string’.

A symbol name is too long and has been truncated. Soft-Scope will know it by the trun-
cated version.

WARNING: Symbols section corrupted for :module name.

The symbol records for the given module may be invalid.

WARNING: Table name [index]is not empty, using table_namel[index].
Line line number.

CSi-Locate found data in the specified table and substituted another table.

WARNING: The wordcount parameter is greater than 31, defaulting to 0.
Line #line number. .

Appendix A, Error and Warning Messages 111

Warning Messages

**%* WARNING:Translated TYPDEF’s exceed OxXFFFF,
*kk nnnn Types discarded.

The total number of type records is limited to 64K. When the record count exceeds this
amount, CSi-Locate has no choice but to throw out the excess type definitions.

%% WARNING: Translated TYPDEF’s exceed OxFFFF,
*kk nnnn types discarded.

The total number of type records is limited to 64K. When the record count exceeds this
amount, CSi-Locate has no choice but to throw out the excess type definitions.

**%* WARNING:Translated TYPDEF’s exceed OxXFFFF in :MODULENAME,
*hk nnnn types discarded.

**% WARNING: Translated TYPDEF’s exceed OxFFFF in :MODULENAME,
*dkdk nnnn types discarded.

**% WARNING: Typedef error_message, NULL type used.

Some problem occurred in translating a type record. Any symbols that reference this type,
Soft-Scope reports as NULL typed.

*** WARNING: Typedef error. message in :module_name, NULL type used.

*** WARNING:Unknown fixup type at segment:offset.

An unknown fixup type has been found. Contact Concurrent Sciences (see box on p. ii).

**%* WARNING:Unknown register for :module_name.procedure name.register. var,
hkk symbol discarded.

A register variable was defined using a code that CSi-Locate does not recognize. This could
be a corrupted executable, or a later addition to the object format.

112 CSi-Locate

Warning Messages

*** WARNING:Unsupported symbolics format.
CSi-Locate has detected an input symbolic format it does not recognize.

Reconfirm that the tools being used are supported by the locator.

*** WARNING:When attempting to assign a segment to a table slot, CSi-Locate
*dkk found the slot already contained data.

This could be from a previous assignment made in the command file or from data defined
in the assembly module where the table is set up.

In this case, the next available table slot is used.

Appendix A, Error and Warning Messages 113

Warning Messages

This is the only line of text on this page.

114 CSi-Locate

This appendix provides a sketch of what you need to do to ROM protected-
mode applications.

There is an example of a real-mode ROMmed application discussed on pp.
20-23. That example includes .cMp command file, map file, and located-
segment map part of the .cm conversion map file. The crucial RAM-initial-
ization command INIT16R is used in the command file. Any initialized
RAM data for a ROMmed application needs to be taken care of by means of
this important command in conjunction with the use of unpacking and
copying macros (see p. 4) that are found in csicoc\csiLoc.Nc. Most of the
sample .asM files in the subdirectories of \csioc\samp illustrate how these
macros are used.

Preparing to ROM a Protected-Mode Application

Preparing to ROM a
protected-mode
application

116

Two excellent discussions for preparing to ROM your protected-
mode application are the following: (1) James L. Turley, Advanced
80386 Programming Techniques (Berkeley, CA: Osborne McGraw-
Hill, 1988), pp. 414421 [Unhappily this source is out of print]. (2)
Pentium Processor User’s Manual. Volume 3: Architecture and ’
Programming Manual (Mt. Prospect, IL: Intel Corporation, Litera-
ture Sales, Order Number 241430, 1994), pp. 16-13-16-29.

The advice below on preparing to ROM your protected-mode
application is based on these two sources.

Bootstrap code at FFFFFFFOH usually contains a NEAR
(intrasegmental) JMP instruction to reset-initialization code

(the NEAR JMP means the code is placed within the last 64KB of
the 4 GB address space) that should do the following (see pp. 16-
15 of the Pentium manual for an algorithm for this, and pp. 16-
17-16-24 for actual assembly code for this):

(a) perform simple diagnostic testing, e.g., checking the 80386's
self-test signature in EAX and testing low memory before
building descriptor tables there;

(b) set up protected-mode data structures GDT and IDT by
copying them from bootstrap ROM into low RAM (load
IDTR as late as possible before switching to protected mode;
LDTs, TSSs, and paging apparatus can all be set up after the
processor is in protected mode);

(c) switch the processor to protected-mode by setting the
Protection Enable (PE) bit to 1;

(d) perform all or some of the following recommended actions
(Turley, pp. 419-420):

(i) do a NEAR JMP instruction to flush the prefetch queue so
that all subsequent instructions are interpreted as protected-
mode, not real-mode instructions;

(ii) load all 6 segment registers with protected-mode descrip-
tors as soon as possible;

(iii) initialize SS and ESP;
(iv) do a FAR JMP to initialize CS;
- (V) initialize task register TR;

CSi-Locate

Preparing to ROM a Real -Mode Application

(vi) then initialize LDTR.
(e) jump to startup code that typically does the following:
(i) Declares data and stack segments

(ii) Initializes data, which is not otherwise initialized to
zeroes, including stack.

(iii) Unpacks and copies initialized data from ROM to RAM.
The INIT16P/INIT16R/INIT32P locator commands (see
p- 75) set up the ROM segment(s) that are to hold the
data that needs to be copied. There are macros in the file
csioc \csILoc.INC. that can perform the unpacking and
copying of data from ROM to RAM (see p. 4).

(iv) Performs other initializations, e.g., floating-point emula-
tion software.

(v) Calls main.

If you are preparing to ROM a 16-bit real-mode application, take Preparing to ROM a
a look at the example discussed on pp. 20-23. The example n eal-{noqe

ROMs a 16-bit real-mode application that is to be run on the Intel | application

386EX board. The primary task that needs doing in setting it up
is setting up RAM-initialization code in ROM. You can define
the ROM segment to hold the RAM-initialization code as well as
the particular data segments or classes that need to be copied
into RAM by using the INIT16R locator command, as is done in
the example.

The example uses the startup code in SAMP\MSC16R \B16RMSC.ASM
with modifications to set up the 386EX hardware. The example's
.cMDp command file is given, followed by a brief explanation of it,
and then you will find the segment map of the located code from
the .cM conversion map file.

Appendix B, ROMming Your Application 117

ROMmed Applications

This is the only line of text on this page.

118 CSi-Locate

Index

This index is alphabetized word by word, where a
word is considered to be any contiguous string of
alphabetic characters. Thus, "arr_chg" precedes
"array,” and "sym.wordsize" precedes "symbol."

Symbols (ASCII ordered)
(O [command metasymbol: alternative or required part],

* [command metasymbol: (aka Kleene star) 0 or more
iterations],
[manual : file-extension separator]. See
individual extensions
[1 [command metasymbols: optional entries],
1 [command metasymbol: alternatives),

A

-ABS absolute output file 3,5,69
ABSOLUTE command 17,18,20,31,33,43,46,65,73,85
Defined 60
Absolute files 17,31,43
Absolutely locate 2,17
ALIAS command defined 61
Applications
Large 82
Mixed mode 83,86
Protected-mode v,2,3,49
ROMming 116
Real-mode v,2,3,4,9,13,18,23
ROMming 20,117
Split 82
16-bit v,2,3/4,9,10,23
32-bit v,2,34,9
Assembler 49
Command line switches
Borland 24
Microsoft
Watcom 26
Assembly language2
File 14
Segment 11
Assignaddresses 2
ATTRIBUTE command defined 62
AVATLABLE segment attribute 62

25,37

Index

B

Base addressof ROM 87

BASE command 64

Batch file 14

BINARY command 18,33,46,60,73,85
Defined 65

Binary output file 5,65

.BIN binary output file 3,5,65

Blank lines in command file 53

Breakpoints 8

BSS 3

Bootup 4,44,75

Borland 4,9,10,13,14,16,24

Compiler 24,38

TLINK 24,38

Turbo assembler 24,38
.BUG output file 8,17,18,69
Build process 14

Burned intoROM 4
BYTEGRAIN segmentattribute 62

C

C/C++ compilers 4
CALL286 command defined 66
CALL386 command defined 66
Call gate 78
Descriptors 66
Case sensitive symbols 24,25,36,38,49,52
CEOsegment attribute 62
CER segment attribute 62
Class 2,4,5,14,21,28,40,52,79
CLASSkeyword 57
.CM conversion map file 5,10,17,18,21,23,32,33,51,84
Defined 52
Detailed information ~ 94
Organization 54
.CMD command file
Example of
16-bit protected-mode 30
32-bit protected-mode 47
Organization 54
Conversion map file 5
COUNT keyword 57
CREATE command 3
Code
InhighRAM 21
InROM 3

5,11,14,16,20,45,46,51,52

119

Index

Segments 2 -
Codeview symbolics 25,36,37,49
Command
Input 67,70,80
Keyword 57
Line
Length 53
Switches
Borland tools 24
Microsoft tools 25
Reference 60
Syntax 56
Summary 58
Types
File 1,5,16,42,43,46,54
Comments 43,53
Groups 54
Ordering 43,53
Output 60,65,69,73,84
Table constructor 72,74,78,82
Comments in command file 53
Compiler 24,25
Supported 4,9
Compress ROM data 4,11,20,44,75
Controls 24
Conventions, typographical vi
Conversion map file 6-7,10,18
Copy data from RAM to ROM 21,44
CPU
Command 17,31,43,60,73
Defined 67
Structures4
CopyintoRAM 4
CREATE command 31,44,45,72,74,78,81
Defined 68
CSi-Connect 8
CSi-Locate
Invoke 3346
CSi-Mon monitor 8,32,45,72,74

D

Data
InRAM 3,21
Segment 21,45
DEBUG command 8,16,18,30,43
Defined 69
Debug information
Borland compiler 24,38

120

Command file 54

Microsoft compiler 25

Watcom compiler 26,50
Debug your application 8
Debugger support 8
Default

Extension 18

Location order3
Descriptorbase 64
DGROUP segment 21
Dictionaries

Microsoft 25
Disable optimization =~ 24
DOS4

Watcom .exe output file 26
DPL

Keyword 57

Segment attribute 62
Dummy publicsymbol 10

E

.exe file 24,26,38
80286 (generate instructions) 36,38
Embedded application 4
Emulator 8
ENTRY keyword 57
EOsegment attribute 62
ER segment attribute 62
Error messages 18,33,46
Explained 96
EXCEPT keyword 52,57,79
EXECcommand 5
Defined 70
Executable
File 5,70
Programs 4
Extended hex 5

F

Far_data segment 21
Fatal error 82

Messages explained 96
Features of CSi-Locate 4
Files.doc, list of installed files vi
File extension 5
Fixed addresses 2

CSi-Locate

Index

FIXUP command 46
Defined 71
Fixup information 5
Flat model 40,64

G

Gate4
Attribute 66
Interrupt 74
Task 74
Trap 74
GDT2,4,32
Mapof 34
Setup 31
Table 72
32-bit protected-mode example
GDT command31,45,72
] Defined 72
Global Descriptor Table (see GDT)
Group 3,4,5,14,21,28,40,79
Ordering 54
Problems 10
GROUP command 61
Keyword 57

H

Hardware trace 8

HEX command 18,20,33,46,60,65,85
Defined 73
Output file 3,573

I
IDT 2,4,72
Command 3245
Defined 74
Fillin 32
Mapof 34
Table 74

32-bit protected-mode example
I/Olocator commands 5
INIT16P command 11 .

Defined 75
INIT16R command 11,20

Defined 75

Index

47

48

INIT32P command 11,44
Defined 75

Initialization code 2

Initialize 386EX hardware 20

Initialized

Data2,4,44
RAM 4
Input

Command 67,70

File format 5,54

Map file 80
Installation instructions vi
Instruction pointer 45
INT286 command defined 76
INT386 command defined 76
INTEGRITY command 11

Defined 77

Segment truncation 32
Intel

Absolute 8086 hex file 73

Architecture 4

Monitors, iSDM, iM-III 8

OMF output 31,43

32-bit hex file 73
Interrupt

Descriptor Table (see IDT)

Gate 74

Descriptor 76

Invoke CSi-Locate 18,46

J

K

Keyword, command file 57
Known problems vi

L

Large application 82
LDT 24

Command defined 78
LENGTH keyword 57,83,86
Libraries

Microsoft 25,36,49
LIMIT segment attribute 62

121

Index

Line numbers
Borland 24,38
Microsoft 37,49
Linker 49,1417
Borland command line switches 24
Microsoft command line switches 25
Watcom command line switches 26
Linking/locating process 2
Listing file 18
Load imagedata 3,5
Into RAM 4
Locate
Absolute segments 21,31,44
Application 33
Command 3,11,17,21,31,44
Defined 79
Data to a higher addressinRAMorROM 88
Located segmentmap 21
Location
Process 1,2
Units 2
Locked together segments 10
Log data 8
Logic analyzer 8

M

MAP file 3,5,14,15,17,21,22
Borland compiler 24,38
Microsoft compiler 25,28,36,49
Watcom compiler 26,50

MAP command 5,70
Defined 80

Map file 21,31,44,72,80

Macros 4,20,44,66,72,75

Memory segmentation model 9

Microsoft 4,9,10,13,14
Assembler

Real-mode example
16-bit 25
Protected-mode example
16-bit 37
32-bit 49
Codeview symbolics 25
Command file42,43
Compiler
Real-mode example
16-bit 25
Protected-mode example

122

16-bit 28,36

32-bit 4049
Extended dictionaries = 25
Flatmodel 40

Linker
Real-mode example
16-bit 25
Protected-mode example
16-bit 36
32-bit 49
Map file 25,28,29
Paging 40

Mixed mode 4,83,86
Move data to a higher address in RAM or ROM
Multiple

Lines in command file 53

Mode (see mixed mode)

N

Native applications 2
Native vs. embedded development 2
NOTAVAILABLE segment attribute 62
NOTPRESENT

Keyword 57

Segment attribute 62

0)

OFFkeyword 57
OFFSETOF 57
OMEF format 17,31,43
OMF86 5
OMF286 5
OMF386 5
ONkeyword 57
Optimization switches
Borland compiler 24,38
Microsoft compiler 25,36,49
Ordering segments 17
Output
Command 60,73
File format 5,31,54,73

P

Pack data (see compress data)

CSi-Locate

88

Index

Padding, preserve empty spaces 77
PAGE.ACCESSED segment attribute 62
Page directory 44,81
32-bit protected-mode example 48
Page table4,81
Microsoft 40,46
32-bit protected-mode example 48
PAGE.DIRTY segment attribute 62
PAGE.NOTACCESSED segment attribute
PAGE.NOTDIRTY segment attribute 62
PAGE.NOTPRESENT segment attribute 62
PAGE.PRESENT segment attribute 62
PAGE.RO segment attribute 62
PAGE.RW segment attribute 62
PAGE.SUPER segment attribute 62
PAGE.USER segment attribute62
PAGEDIRECTORY command 44,82
Defined 81
PAGEGRAIN segment attribute 62
PAGETABLE command 46
Defined 82
Paragraph aligned 10
Phar Lap output file 50
PMODE command defined 83
PRESENT
Keyword 57
Segment attribute 62
PRINT command 17,19
Defined 84
Problems, known (see read.me file) vi
Processor
Mode 3
Target 67
Program segments 2
Protected-mode
Application 69
Example
16-bit
Borland 38
Microsoft 28,36
32-bit
Microsoft 40,49
Watcom 50
GDT table72
IDT table 74
LDT table 78
ROMming 116
Segment 62,66,76,89
16-bit v,2,3,4,89
Structures4,31,55

Index

62

32-bit v,2,3,4,89
Public symbol 17,19,84
Inmap file 24

Q

R

RAM 3,4,13,14,15,20,44,75
Command 46
Defined 85
Initialization 20,44,75
RAMINIT segment 14,20
Read.me file vi
Real mode
16-bit v,2,3,8,9,14,18
32-bit v,2,3,8,9
Application 18
16-bit 13,23
Borland tools 24
Microsoft tools25
Watcom tools 26

Example
ROMming 20,117
16-bit 14

Register variables 24
Relocatable 2
RESERVE
Command
Keyword 57
Reset code at high ROM address 21
Restrictions vi
RMODE command defined 86
RO segment attribute 62
ROED segment attribute 62
ROM 3,4,11,13,20,44
Baseaddress 87
Compresseddata 75
Segment 11,20
ROMBASE command defined 87
ROM example
Real-mode 20,117
Protected-mode 116
ROMMOVE command defined 88
Run-time stack probe switch (Microsoft) 25,36
RW segment attribute 62
RWED segment attribute 62

72,74,78

123

Index

S

Sample
Conversion map file6-7
Program 5,14
SEGMENT
Keyword 57,61
SEGMENTOF keyword 57
Segment 2,4,5,10,17,28,40
Attributes62
Base 3
Block truncation 32
Create 44,54,55,68
Definition54,55,75
Exclude 46,85
Locate 31,55,79
Map 14,18,21,23
Borland 24,38
Microsoft 28,33,41
Modification 46,54,55,61,62,71,83,86,87,88
Name 68
Order 50
Size limit 3
TSS 91
Type abbreviations 63
Selector 10
16-bit application
Protected-mode example
Borland 38
Microsoft 28,36
Real-mode example
Borland 24
Microsoft 25
Watcom 26
Split application 82
Soft-Scope 4,8,14,24,25,26,28,36,38,50,71
Software trace 8
Stack 3,71
Overflow checking using Watcom compiler
26,50
Pointer 45
Run-time probes using Microsoft compiler
25,36
Starting address 3
Startup code 4,71,72,74,75,81
Symbolic information 5,8,17,19,69
Borland assembler 38
Codeview25,36,37
Conversion map report 35
Microsoft
Assembler 37
Compiler 25,36,43,49

124

Linker 49
Output 30,43,69
Syntax
Command file58
Error messages explained 103
System error messages explained 96

T

Table constructor 55,72
Target
Board 3
CPU 17
Specify 31,43
Processor 67
TASKGATE command defined 89
Task gate 74
Descriptors 89
Task State Segment (See TSS)
Tektronix logic analyzer 8
Textsegment 44
32-bit application
Protected-mode
Microsoft 40,49
Watcom 50
386EX hardware 20
TLINK 24
Tool chain4,9
TRAP286 command defined 90
Fields 92
TRAP386 command defined 90
Fields 93
Trap gate 74
Descriptors 90

Troubleshooting location problems 10-12

Truncated segment 11
TSS 2,4

Initial data 35

Setup 324591

32-bit protected-mode example
TSS286 command 32

Defined 91
TSS386 command 45

Defined 91
Turbo assembler 24
Typographical conventions vi

U

Uncompress ROM data 4,21,44

48"

CSi-Locate

Index

Unpack ROM data (see uncompress)
USE16 segment attribute 62
USE32 segment attribute 62

Vv

VERBOSE command 52,54
Defined 94

W

Warning messages 18,33,46
Explained 108
WASM (see Watcom assembler)
Watcom 4,9,13,26
Assembler 26,50
Compiler
Protected-mode example
32-bit 50
Real-mode example
16-bit 26
Linker
Real-mode example
16-bit 26
Protected-mode example
32-bit 50
White space in command file 53
Windows executable 4,24,25,36,38
WLINK (see Watcom linker)

X

V4

Zero-length segments 3

Index

125

