
Portable Embedded GUI

PEG WindowBuilder Manual
PEG Pro/PEG+ Library Release 2.x

Rev. 4
May 2011

© Copyright 2007-2008, 2011
Swell Software, LLC. All rights reserved.

Copyright 2007–2008, 2011
Swell Software, LLC. All rights reserved.

© Copyright 2007–2008, 2011
Swell Software, LLC.

6501 William Cannon Drive West
Austin, TX 78735

PH: (810) 385-2893
FAX: (810) 385-2947

info@swellsoftware.com

No part of the document may be reproduced in any form without the
express written consent of Swell Software, LLC.

All rights reserved.

PEG is a registered trademark of Swell Software, LLC, Reg. U.S.
Pat. & Tm. Off. C/PEG, PEG Pro, PEG+, and PEG Windowbuilder

are trademarks of Swell Software LLC. All other product or
service names are the property of their respective owners.

CHAPTER 0FORWARD

We at Swell Software thank you for choosing PEG!

PEG is by far the most used, best supported, and most adaptable graphical
interface software available. Our industry-leading real-time operating
system support, hardware integration, and develpment tool compatibility
allow complete flexibility as you and your team create next-generation
products.

The PEG library and development tools have today been used to create
several thousand unique products, and those products have shipped
shipped many hundreds of millions of units. The applications utilizing the
PEG software cover a broad spectrum including various consumer
electronics, medical instrumentation, video games, military
communications, aeronotics, office equipment, and even desktop
applications.

We hope that your own efforts will be equally successful, and we
encourage you to utilize our technical support if you run into any speed-
bumps along the way.

In addition to the PEG software package, Swell Software provides
consulting and contract programming services to clients in a wide diversity
of industries. These services range from one-day on-site evaluations and
tutorials to complete screen prototyping and development. We encourage
you to take advantage of these services as early as possible in your project
cycle. If you have purchased or are evaluating the PEG library, you can of
course contact us at any time via phone or email to answer your technical
questions.

How are the manuals organized

Your documentation set includes four separate manuals:

1) The QuickStart Guide.
2) The Programming Manual.
3) This PEG WindowBuilder User’s Manual.
4) The API Reference Manual.
Swell Software, LLC Forward i

Forward
The Quickstart Guide is a short tutorial enabling you to easily begin working
with WindowBuilder and create and run your own application in one of our
supported desktop environments.

This programming manual provides an ‘under the hood’ view of the PEG
software library internals and introduces basic concepts that are needed to
fully understand how PEG works. This is followed by descriptions of the
fundamental PEG classes.

The WindowBuilder User’s Manual is a guide to the operation of our
WindowBuilder WYSIWYG development tool and resource manager.

The API Reference Manual provides extensive information about the
fundamental PEG classes. This manual details the Application
Programming Interface (API) of the PEG graphics library.

Each of these manuals are provided in both printed and electronic (PDF)
formats. The PDF format manuals are always the most recent manual
updates, while for practical reason the printed manuals can sometimes be a
few months out of date.

Whenever the electronic manuals are updated they are posted to the Swell
Software www site. The online manuals are found at the following address:

http://www.swellsoftware.com/download/documentation.php.

Username and password are required to download the manuals.

What PEG IS

PEG is an acronym for Portable Embedded GUI. We chose this name
because we believe it accurately reflects the design and motivation that
went into the creation of our software.

PEG is Portable

We have designed our software to be portable to any target hardware that
is capable of graphical output. PEG does not expect or require any
underlying software components in order to do its job. If you have a C++
compiler and hardware capable of graphical output, you can run PEG.
ii PEG WindowBuilder Manual Swell Software, LLC

What PEG is NOT
PEG is Embedded

This statement is rather vague, because it means so many different things
to different people. The bottom line is that PEG is, and will always be,
targeted primarily at custom embedded systems. This distinction is so
important that we felt it should be included in the name of our library.

PEG is GUI

The PEG class library provides the building blocks for a powerful and
extensible graphical user interface. Extensive thought and research have
gone into the design of our product to insure that you are receiving a library
that is fully capable of supporting all of the advanced GUI features you
need today, while also accommodating future enhancements.

In addition to the class library, PEG provides tools for generating graphical
fonts, processing, optimizing, and compressing graphical images,
designing screens and child controls, creating custom colors, and
maintaining multi-lingual string data.

What PEG is NOT

PEG is not an operating system. While PEG can run completely
standalone, the library does not provide software for system boot-up, task
switching, file system, or any of the other operating-system level functions
your product may require.

PEG is not an application program. The PEG library, by itself, will provide
an end user with absolutely zero in terms of useful interaction or information
display. It is your job to create the windows, dialogs, and other objects that
will be used to retrieve input from and display information to the end
user. Of course, the whole point to using PEG is that our library provides
the tools and components that make creating your application level
interface a manageable task.

Library Updates

Library updates are posted on the Swell Software www site roughly every
90 days. If you are a new PEG customer, you are entitled to a minimum of
three months of technical support and library updates. The Download/
Updates page on the Swell Software Website is password protected. If you
Swell Software, LLC Forward iii

Forward
do not know the password, please email support@swellsoftware.com and
request the current password.

The http://www.swellsoftware.com/download/updates.php page lists the
most recent changes or library enhancements, and also allows you to
download the latest release of PEG library source code, supporting utilities,
and documentation.
iv PEG WindowBuilder Manual Swell Software, LLC

Overview
C H A P T E R 1

CHAPTER1PEG WINDOWBUILDER™

1.1 Overview

WindowBuilder™ is a rapid prototyping and design tool used to
quickly create your PEG windows and dialogs. PEG WindowBuilder
is also instrumental in organizing and maintaining the resources
(Images, Fonts, Colors, and Strings) you will use in your application
program. PEG WindowBuilder is provided as a Win32 or X11
executable program, depending on your chosen development
environment.

1.1.1 How this manual is organized

This manual first describes each screen area of the WindowBuilder
program in general terms, and provides a quick overview of each of
three ‘modes of operation.’ The idea is to give you a quick general
overview before diving into the details of each command and
operating mode. The middle sections describe each menu command
and operation of WindowBuilder in detail. Finally, at the end of this
manual we put everything into practice by using WindowBuilder to
create a simple but complete graphical application.

1.1.2 WindowBuilder Project Files

All the work that you do while running PEG WindowBuilder is saved
in an internal structure called your WindowBuilder Project. When
saved to disk this data structure is written in XML format and
becomes your WindowBuilder Project File. WindowBuilder project
files have the extension ‘.wbx.’
Swell Software, LLC PEG WindowBuilder™ 1

PEG WindowBuilder™
The project file accurately maintains information about the source
files, target system, images, strings, fonts, and so on used by your
application program. You can save your work at any time, and later
re-open the project file and modify your target screens.

1.1.3 Project Path Information

All project file path information, such as the location of image files
referenced by your project, is maintained in a relative path format.
This means that you can easily copy your WindowBuilder project files
from one computer to another as long as you also copy all related
font and image files and maintain the same subdirectory structure for
your project (if any) in all cases.

Optionally, if WindowBuilder does not find a required image or font
file using the relative path information, WindowBuilder always
attempts to find the required file in the directory containing the
WindowBuilder project. This makes it possible to ‘package’ a project
and the supporting image and font files in any common directory.
WindowBuilder will find the image and font files even if the relative
path information is incorrect if the file resides in the same directory as
the project itself.

1.1.4 Source Output Files

The goal of WindowBuilder is to produce C or C++ source files,
depending on the version of the PEG library you are using (PEG is
available in both ANSI C and C++ forms). These source files are
intended to be ready to compile and run on your target system. All of
the layout, property settings, images, fonts, etc. that you use while
running PEG WindowBuilder will at some point be exported in the
form of C/C++ source files.

For most .cpp source files, PEG WindowBuilder also creates a
corresponding header file. These header files contain class
2 PEG+ Development Toolkit Manual Swell Software, LLC

Overview
prototypes, message definitions, control IDs, string IDs, and other
definitions required for your application software to compile and run.

Some of the source files produced by WindowBuilder are designed to
be edited or modified outside of the WindowBuilder environment.
These are the screen files or modules that define each of your
display screens. Later in this manual we will describe in detail how
these files can be edited by you and also updated by WindowBuilder
without losing any of your changes.

Other files generated by WindowBuilder, specifically the
configuration and resource files, should never be edited by hand and
should only be modified by regenerating them with WindowBuilder. It
is very important as you read this manual to remember which files
are ‘hands off’ and which files can be edited by hand as well as being
updated or modified by WindowBuilder.

1.1.5 Screen Layout

When you run WindowBuilder, you will see a screen similar to the
screen shown below. This is the default appearance of the PEG
WindowBuilder application.
Swell Software, LLC PEG WindowBuilder™ 3

PEG WindowBuilder™
The WindowBuilder environment contains three main windows or
screen areas. We refer to these windows as the Project window, the
Properties window, and the Target window.

The Project window is the upper left display window. This window
provides a high-level view of the information in your project. The
Project window appearance changes form depending on which of the
three mode tabs is selected, but it is always a high-level view of
various parts of your application.

The Properties window is the lower-left display area. This window
normally allows you to change the properties associated with the
selected item.
4 PEG+ Development Toolkit Manual Swell Software, LLC

Operating Modes
The Target window takes various forms depending on the operating
mode. In general, the Target window displays detailed information
related to what has been chosen in the Project window.

1.2 Operating Modes
There are three general modes for the WindowBuilder application,
chosen by selecting one of the three tabs on the Project window.
These modes are Configuration mode, Application mode, and
Resource mode.
Swell Software, LLC PEG WindowBuilder™ 5

PEG WindowBuilder™
1.2.1 Configuration mode

Configuration mode is chosen by selecting the ‘Configuration’ tab at
the top of the project view window. Configuration mode looks like
this:

In configuration mode, you are configuring WindowBuilder and your
PEG library according to the requirements of your target system. This
is where you select the screen driver, color depth, screen x,y
dimensions, and other settings for optional features that can be
included in your PEG library.

When you make configuration changes it immediately affects the
operation of WindowBuilder. For example, if you configure for 16bpp
6 PEG+ Development Toolkit Manual Swell Software, LLC

Operating Modes
(65K) colors, all the images used in your application are immediately
resampled and converted to 16-bpp color depth.

Whenever you make configuration changes, you must use the
Project|Generate|Configuration Header menu command to
regenerate the pconfig.hpp header file that is included by all of your
PEG library source files. You must also rebuild the PEG library for
those configuration changes to take effect on your target system. If
your application looks correct in the WindowBuilder environment, but
does not look correct when running on your target system, this is
often caused by failing to generate the pconfig.hpp configuration file
or failing to rebuild the PEG library.

When you create a new project, you will generally want to run
through each setting in configuration mode before moving on to
defining your application screens or application resources. For this
reason, WindowBuilder always starts in Configuration mode when
you create a new project.

Each configuration setting is described in section 3.3.

1.2.2 Application Mode

Application mode is selected by clicking on the Application tab of the
Project view window. Application mode looks like this:
Swell Software, LLC PEG WindowBuilder™ 7

PEG WindowBuilder™
Application mode allows you to create screens, lay out the child
elements of each screen, define screen navigation, and perform a
large number of additional operations all related to creating and
modifying what your application will display.

The Project view in this mode displays a tree structure representing
each of your screens and each of those screens child controls.

When in the application mode, the Target window displays a
WYSIWYG screen of your application. The Target window is actually
creating, modifying, and drawing PEG library objects as you edit the
8 PEG+ Development Toolkit Manual Swell Software, LLC

Configuration Settings
screen. Screen editing in general is done using typical drag-and-drop
editing techniques within the Target window.

The lower-left window in the Application mode becomes an ‘object
properties’ window. This window allows you to quickly and easily
change the style, font, border, ID, etc. of any graphical object. Details
of working in Application mode are described in a later section of this
manual.

1.2.3 Resource Mode

Most, if not all, PEG application programs utilize various images,
fonts, colors, and string data as part of the application. PEG
commonly refers to all of these as Resources. Resources are
external to the application software itself, but are called on when
needed. Resources are referenced by Resource ID, and are
managed at run time on your target by the PEG Resource Manager.
Resources can be changed, both at compile time and at run time,
without any modification to the application software.

A large part of implementing any graphical application is defining and
organizing the resources used by that application. WindowBuilder
resource mode is implemented to accomplish exactly that. In
Resource Mode you can create fonts, organize images, define color
schemes, define any number of languages in which your software will
run, and generate a Resource File that will be linked to your
application to make these resources available at run time.

Resource Mode is selected by clicking the ‘Resources’ tab in the
project view window. In this mode you can add, delete, modify, and
generate resource files for your project resources.

1.3 Configuration Settings
In this section, we will detail each of the PEG library configuration
settings. Because each of the PEG software libraries are
Swell Software, LLC PEG WindowBuilder™ 9

PEG WindowBuilder™
continuously improving and updating, your configuration screens
may not look exactly like those displayed here. Also, certain settings
are supported only in certain versions of the PEG libraries. For this
section, we will describe the most complete set of configuration
settings which are those for the PEG Pro library. If you are using the
C/PEG or PEG+ library, some of these settings will not be available
to you.

1.3.1 Directories

This dialog allows you to assign the directory path into which
WindowBuilder will write generated files. Directory names can be
absolute or relative to the project location. The default directories
when you create a new project are ‘.\,’ which means all files are
written to the same directory as the project itself.

 Source Path

The directory into which WindowBuilder will write source (.cpp) files.

 Header Path

The directory into which WindowBuilder will write header (.hpp) files.
This can be the same as the Source Path.

 PEG Path

The directory into which your PEG distribution was installed. This is
used to locate the pconfig.hpp header file when configuration
changes are made.
10 PEG+ Development Toolkit Manual Swell Software, LLC

Configuration Settings
 Backup Dir

The directory into which WindowBuilder will back up your project file.
Whenever your project is saved, WindowBuilder creates a backup of
the previous project in the Backup Dir.

1.3.2 Target CPU

This section allows you to define your target CPU. Certain PEG
screen drivers and input drivers are modified depending on the target
CPU type. If your CPU is not listed, simply choose ‘other.’ Also,
select if your target CPU is BIG (i.e. 68K) or LITTLE (i.e. x86) endian.

1.3.3 RTOS

The Desktop Environment setting allows you to define the
environment you are using for desktop development. The main
desktop development environments are Windows and Linux/X11.
There are also desktop simulator versions of several supported
RTOSs.

The Target Environment tells PEG which RTOS you will be running
with on your target, including standalone operation (no RTOS).

The Ticks Per Second setting specifies how often the
PegTimerManger::TimerTick function is called. As delivered, most
RTOS integrations call the PegTimerManager::TimerTick function 20
times / second, for a resolution of 50 ms. This setting is exported as
the ONE_SECOND definition which is used by PEG objects and may
be used by your application for timing purposes. If you modify your
RTOS integration and change the frequency of the call to TimerTick,
you will need to modify this setting.
Swell Software, LLC PEG WindowBuilder™ 11

PEG WindowBuilder™
Priority is the PEG task priority. This can be a numeric value or an
RTOS-defined priority definition. This setting should match your
RTOS priority definition methodology.

The value of this setting is up to you. As a general guide, PEG should
be set to run at a higher priority than noncritical tasks, but a lower
priority than critical real-time tasks.

If you are running PEG standalone, the Priority setting has no effect.

Heap Size is the size of dynamic memory heap. This setting only has
an effect if you are using the PEG heap manager.

Stack Size is the PEG task stack size.

1.3.4 Screen Driver

This dialog allows you to specify both your desktop and target screen
driver and various options that may be supported by that screen
driver.

Desktop Screen Driver specifies the color depth you will be running
in your desktop environment. It should match your target system
color depth for WYSIWYG operation.

H-Res and V-Res are the screen physical x,y dimensions in pixels.

Screen Rotation indicates whether your screen is mounted in native
orientation or rotated from the native display mode. If you are using
an LCD display that is natively 320W × 240H pixels, but you mount
the display such that the user observes 240W × 320H pixels, you
must select a screen rotation. If the screen is mounted in native
orientation, select None.

Target Environment specifies the screen driver you will be running
on your target hardware. It might be the same driver you are using on
12 PEG+ Development Toolkit Manual Swell Software, LLC

Configuration Settings
the desktop, but most commonly it is a driver written specifically for
your target hardware.

The drop-down list allows you to select from a list of drivers that were
installed as part of your PEG package, which is determined by your
installation key.

If the screen driver you intend to use is not shown in the drop-down
list, or if you have created your own driver from one of the PEG driver
templates, select ‘custom’ and type the name of the driver header file
in the edit field to the right of the custom button.

The additional settings at the bottom of this dialog are used to
configure options of your screen driver. Refer to your screen driver
documentation to learn which options are supported in the screen
driver you intend to use.

1.3.5 Color Depth

This dialog allows you to specify the color depth of your system and
various color format options.

1.3.6 Input/Output

This dialog allows you to specify what type of I/O devices are
supported on your target system. A keypad, touch screen, or mouse
are common input devices. If your target system supports a file
system, PEG can use that file system for loading resources. In that
case, turn on File I/O support and the type of file system.

File Dialog and Directory Browser are specialized PEG classes for
displaying file and directory information. If your system supports File
I/O, you can turn on these options to include these classes in your
PEG library.
Swell Software, LLC PEG WindowBuilder™ 13

PEG WindowBuilder™
1.3.7 Drawing Options

These settings configure support for various drawing functions and
specialized classes. You can turn these on or off as desired to meet
the requirements of your application.

The Horizontal and Vertical scroll bar configuration dialogs allow you
to specify the default appearance of scroll bars that are automatically
placed on PegWindow-derived display objects when scrolling is
enabled.

The padding and whitespace settings are defaults used to position
text on various PEG library control types.

1.3.8 Image Conversion

This dialog allows you to specify whether or not various runtime
image decoders are included in your PEG library. The run time image
decoders allow you to process JPG, GIF, BMP, and PNG images
read from an external source and display them within your PEG
application. If all of your images are included as resources, and
generated by WindowBuilder, you do NOT need the run-time image
decoders.

1.3.9 Fonts

This dialog allows you to specify the default font used by various
control types. As part of the source code generation process,
WindowBuilder will assign custom fonts to your controls when
needed. This dialog allows you to specify the default font used for
each object type, which allows WindowBuilder to recognize when a
custom font assignment is required.
14 PEG+ Development Toolkit Manual Swell Software, LLC

Configuration Settings
1.3.10 Strings

This dialog allows you to specify how strings are to be encoded in
your application and whether or not PEG will provide the common
string API functions (strcpy, strlen, etc.).

If you are creating a multilingual application, you will want to enable
Unicode support unless all of your languages characters are in the
Latin and Latin 1 code Unicode code pages.

When Unicode support is enabled, your strings can be encoded as
raw 16-bit Unicode or they can use UTF8 encoding. UTF8 encoding
can marginally reduce the const data size of your string table if you
have a large amount of string data. If the size of your string table is
not a concern, you will have slightly better runtime performance if you
use raw Unicode encoding.

The LTOA function is a non-ANSII run-time library function utilized by
PEG. PEG optionally provides its own implementation of this
function. If your compiler provides the LTOA function, you can
disable the PEG implementation by turning off this option.

The remaining options include or exclude support for localized (non-
Unicode) string encodings.

 Miscellaneous

This dialog is a catch-all for configuration settings that do not fit well
in other categories.

The User Defined options allow you to type any number of additional
#defines that will be included in your pconfig.hpp header file. You can
use this to create your own conditionals that will be utilized in your
application software. The data that you type in this edit box will be
appended to the end of pconfig.hpp header file, so normal C++
syntax rules apply.
Swell Software, LLC PEG WindowBuilder™ 15

PEG WindowBuilder™
1.4 Working with Resources
There are four types of resources: strings, bitmaps, fonts, and colors.
Resources are referenced in your application software using
Resource IDs. This makes it possible to modify your resources and
change the appearance of your user interface without modifying your
application software.

Resource IDs are prefixed with a three character identifier to make it
easy to identify each resource type. The ID prefixes are SID_, BID_,
FID_, and CID_ corresponding to String ID, Bitmap ID, Font ID, and
Color ID.

WindowBuilder is used to create and manage your resources. Even if
you choose not to use WindowBuilder for screen design and layout,
you will still use WindowBuilder to create and manage your
application resources.

To view and modify your project resources, click on the Resources
tab of the project view. When you click on the top node of the
resource view, you will see the Resource Generation dialog:
16 PEG+ Development Toolkit Manual Swell Software, LLC

Working with Resources
This dialog is used to specify what is included in your resource file
and various other options.

The File Format specifies the format of the resource file that will be
generated. Most commonly you will use the Source Code Format
resource file. This produces a C++ file that you will compile and link
with your application files. You can also produce a Binary resource
file.

A Binary resource file is used when you want to support the
installation of new resources at run time. For example, you may ship
your product supporting only the English language. You can then add
Swell Software, LLC PEG WindowBuilder™ 17

PEG WindowBuilder™
additional languages by generating a Binary resource file containing
Spanish, Russian, and French. You can then install this binary
resource file on your running system (assuming your target has a file
system).

As another example, you might produce Binary resource files
containing new ‘Themes’ (themes are described in a later section)
and allow your customers to download those themes from your
company website.

1.4.1 String Resources

PEG applications use a table of strings, fittingly called the
StringTable, to hold all constant string literals. Even if your
application will initially only support one language, it will still use a
string table. This makes it easy to extend the application to multiple
languages at any time.

The string table is managed by the String Table Editor. You open the
String Table Editor by clicking on the Resources tab of the Project
View, then click on the String Table node of the project. You will see
a screen similar to this:
18 PEG+ Development Toolkit Manual Swell Software, LLC

Working with Resources
You can maximize the StringTableEditor within the window by
clicking on this button:

The string table editor displays string ID, string literal, and various
other information related to each string. The toolbars at the top are
used to add new strings, remove strings, and configure the number
of languages included in the string table.
Swell Software, LLC PEG WindowBuilder™ 19

PEG WindowBuilder™
The table can be viewed in two column mode (StringID and one
Language) or three column mode (StringID, Reference Language,
and Second Language).

The Notes field allows you to enter descriptive text associated with
each string. This text is included in the string table export to assist
translators in making accurate string translations.

The Current Width and Limit Width fields indicate the string width in
the chosen font, and an optional limit to aid translators in making
translations that will fit within the control to which the string is
assigned.

The Number Of References field indicates how many times that
string is used in the application, at least that part of the application
that has been created within WindowBuilder.

Once you have added custom fonts to your project, you can choose
any of those fonts to display the table itself and each individual string.
This will be necessary once you add strings that cannot be displayed
using the Latin character pages, which are the only characters
included in the two PEG default fonts.

Whenever you make a change to the string table, it is important that
you regenerate the resource file. The resource file contains all of
your string table data (along with other resources). To generate your
resource file, click on the top node of the Resource view, and click on
the Generate Resource File button.

1.4.2 Themes

Themes are collections of bitmaps, colors, and fonts. Themes are
used to change the look of your application at run time.
20 PEG+ Development Toolkit Manual Swell Software, LLC

Working with Resources
Bitmap, font, and color resources are organized into themes. Your
application will usually begin with one theme. You can add additional
themes at any time.

When you create a new project, it will have one theme named
‘Default Theme.’ You can give the theme any name you prefer by
clicking on the theme name and typing a new name in the theme
properties window in the lower left.

To create a new theme, you select the current theme by clicking on it
in the project view and clicking on the ‘Clone Theme’ button in the
lower left, or by right-clicking on the theme and using the Clone
Theme menu command.

When you clone a theme, you are creating an exact copy of the
current theme. You can then modify the bitmaps, colors, and fonts in
the cloned theme to create a new theme. If your project has multiple
themes, any additions or deletions you make in one theme are
automatically reflected in the other themes. In other words, all
themes are forced to have exactly the same number of bitmaps,
fonts, and custom colors.

Within each theme, there are nodes for image groups, colors, and
fonts. You can create as many image groups as you like within each
theme. Image groups are used to organize your bitmaps into different
folders, because a project may contain several hundred images and
it becomes important to organize those images into different groups
to make it easy to locate them. For example, you might create an
image group named ‘Backgrounds’ to contain various wallpapers or
window backgrounds, another image group named ‘buttons’ that
contains various button images, and a third bitmap group named
‘icons’ to contains static display icons.

When you click on a theme, the lower left properties window display
information about that theme. The ‘Include Theme in Resource File’
check box is an important selection. You can opt to include or
Swell Software, LLC PEG WindowBuilder™ 21

PEG WindowBuilder™
exclude any theme from your resource file. This feature is used to
create run-time installable themes. We will describe this more in a
later section.

1.4.3 Bitmap Resources

Bitmaps or images are another type of application resource. Bitmaps
are added to image groups. Once you have added a bitmap to your
project, you can assign that bitmap to any PEG display object that
supports bitmap drawing.

To add new bitmaps to your project, click on the desired Image
Group and use the right-click menu or the button labelled ‘Add New
Image To Group.’ This brings up a file browse dialog that allows you
to select any JPG, GIF, PNG, or BMP type source image.

Once you select a source image, WindowBuilder reads the source
image and color-converts the image to your target color depth. The
image can be displayed by clicking on the image ID name.

When you select a specific image within an image group, the lower-
left properties window displays the image properties. You can
change the image name, bitmap id, and conversion settings.

Whenever you modify your bitmap resources, you must generate a
new resource file to contain your new bitmap data.

1.4.4 Font Resources

Fonts are also application resources. You can create new fonts and
add new fonts to your project by clicking on the Fonts node of any
Theme in the Resource View.
22 PEG+ Development Toolkit Manual Swell Software, LLC

Working with Resources
Creating fonts and adding fonts to your project are two distinct and
separate operations. Fonts are created by running the FontCapture
utility within WindowBuilder and saving the fonts you create to your
hard drive as ‘Peg Binary Font’ or ‘.pbf’ font files.

Fonts are added to your project by clicking the Add PegFont to
Theme button or right-click menu command. You can only add *.pbf
PEG binary fonts to your project.

 Step 1: Creating a new font

To create a new font, click on the Fonts node within any Theme and
click on the Create New PegFont button. You should see a screen
similar to this:
Swell Software, LLC PEG WindowBuilder™ 23

PEG WindowBuilder™
This is the FontCapture utility. FontCapture allows you to create any
number of PegFonts from any TrueType or BDF font file. You can
also open and edit previously-created PegFonts within this utility.

The Source Font group allows you to select the source font type.
FontCapture supports the conversion of MS Windows TrueType
fonts or Adobe Postscript Glyph Bitmap Distribution (BDF) fonts. If
you select TrueType as your source font type, the Select… button
can be used to invoke the ChooseFont Windows common dialog
(Note: this option is only available when running FontCapture on a
MS Windows host). If you select the BDF source font format, the
Select button allows you to select the actual .bdf file from your
development station file system.

The Char Range group allows you to specify precisely the
characters you want to include in your PegFont. For example, the
desired range for a certain font may include only numeric characters
to reduce the resulting font size. For multi-lingual applications, you
may need to specify a complex set of character ranges to support all
languages included in your system. This sometimes involves using
Unicode character encoding, which will be described in detail in later
paragraphs. The simplest Char Range to specify is the ASCII
character range. This includes characters 0x00 to 0x7f. For any other
character range, you must specify in detail the range or ranges of
character you want to include using the range configuration dialog
described below.

The Output Format group allows you to select between normal
bitmapped font output, outlined font format, or anti-aliased font
format. ‘Normal’ format is a 1-bpp on-or-off format. This format
requires the least storage space, but also produces the least
readable font. The Outline format is a 2-bpp format, where each
character is outlined in a color different than the character fill color.
The anti-aliased font format is a 4-bpp grayscale format. This format
requires the most disk space, but produces the most readable text on
24 PEG+ Development Toolkit Manual Swell Software, LLC

Working with Resources
your system. Anti-aliased fonts can be drawn in any foreground/
background color combination.

The Outline checkbox can be used to generate a font with an added
single pixel wide outline of each glyph. This is NOT the typical font
type used in PEG applications, but is supported for the minority of
applications that require an outlined font capability. When the Outline
box is selected, PegFontCapture encodes the output PegBitmap in a
2-bpp format, where bitmap value 0 indicates that the pixel should be
the foreground color, bitmap value 1 indicates that the pixel should
be in the outline color, and bitmap value 2 indicates that the pixel
should be either the background color or transparent, depending on
the PegColor.uFill value passed to the text drawing function.

While FontCapture can generate 2-bpp fonts, you should not attempt
to use them unless your PegScreen interface class supports this font
format. The Win32 screen interface class PegWinScreen includes
this functionality as a reference for users who desire to display
outlined fonts.

The Binary output format is used when you want to create a binary
PegFont file, rather than the more common C source file.

The Solid and Add Space check boxes are modifiers for the outline
font generation mode. The Solid checkbox causes the font outline to
appear somewhat heavier than the default outline. The Solid choice
is beneficial when working with large fonts. The Add Space option
adds a single pixel of spacing between each generated character
when generating an outline font. This is beneficial when working with
very small outlined fonts. The Solid and Add Space modifiers are
ignored if the Outline checkbox is not selected.

The Generate PegFont button causes FontCapture to convert the
source font into a PegFont. This process may occur very quickly for a
small font, or it may take several minutes for a very large font
Swell Software, LLC PEG WindowBuilder™ 25

PEG WindowBuilder™
containing many thousands of characters. You can capture as many
fonts as you like within one session of running FontCapture.
After converting the source font, FontCapture will display the window
below to preview the resulting PegFont:

You can use this window to examine the PegFont produced, and
even compare multiple fonts to find the best appearance. Once you
are satisfied with the appearance of your font, you can use the Save
As… button on this window to save the font to a file of your choosing.

1.4.5 Configuring Character Range

The Char Range group allows you to specify the range of character
glyphs that will be encoded in the output font. When the ASCII option
is selected, the range of characters is fixed to ASCII-0 through
ASCII-127, which is the normal range for single language
applications.

PEG Font Capture also allows you to specify a custom range of
characters to be encoded. When you select the Custom option, the
Configure… option becomes active, allowing you to fully define the
range of glyphs that will be recorded in the output file.

It is often the case that a particular font is only used to display a
certain range of characters; for example you may define one font that
26 PEG+ Development Toolkit Manual Swell Software, LLC

Working with Resources
will be used only for displaying numbers. In this case, you do not
need or want to encode the entire ASCII character range in the
output file. Instead, you can enter a limited character range by
selecting the ‘Custom’ button and entering the range of characters in
the Range Configuration dialog, shown here:

The First Char and Last Char fields allow you to define the start and
ending characters to be encoded. Using the numerical example
above, you could enter ‘0030’ (i.e. ASCII-‘0’) as the first character,
and ‘0039’ (i.e. ASCII-‘9’) as the last character. This will save a
significant amount of memory over capturing the entire ASCII
character set.

1.4.6 Multilingual Support and UNICODE

A more advanced use of the Range Configuration dialog deals with
UNICODE fonts. When you select the UNICODE option on this
dialog, the dialog appearance changes as shown below:
Swell Software, LLC PEG WindowBuilder™ 27

PEG WindowBuilder™
Before we can fully understand how to configure custom UNICODE
character ranges, we must first examine what UNICODE is, the
options available for supporting multiple languages, and the trade-
offs involved with each approach.

 What is UNICODE?

If you are a software developer from North America, you may only be
vaguely familiar with UNICODE and what it means for your software.
UNICODE is a standard definition of 16-bit character encoding that
encompasses all characters used for all of the most prominent writing
structures. For example, the UNICODE standard defines character
encodings for characters used to record Latin (~English), Japanese,
Korean, and Georgian writings.

To really understand what the UNICODE is, a little clarification in
terminology is required. We often confuse or mix the terms
‘language,’ ‘alphabet,’ ‘character,’ and ‘glyph.’ A glyph is a shape
representing a character. For example, ‘A,’ ‘A,’ and ‘A’ are three
28 PEG+ Development Toolkit Manual Swell Software, LLC

Working with Resources
individual and unique glyphs, however they are all the same
character: ‘Capital Letter A.’

UNICODE defines a unique encoding for each character. UNICODE
does not define a font, style, size, or any other attributes for a
character. Since there are far more recognized characters in the
world (> 28,000) than can be encoded using an 8-bit representation,
UNICODE uses 16-bit values to encode each character.

 Further Reading

To learn more about the UNICODE standard, we encourage you to
purchase The Unicode Standard, Version 3.0 (ISBN 0-201-48345-9).

 PEG Character Encoding

The UNICODE font range selection dialog allows you to specify the
groups, or code pages, of characters you want to encode. If you
select multiple code pages for one font, FontCapture will generate at
least one PegFont page for each code page you enable. In all cases,
the resulting fonts use Unicode character encoding, even if your code
page selections leave ‘holes’; i.e., even if you select a non-
contiguous set of character pages. However the multi-page PegFont
encoding scheme allows the final font to simply skip any unused
range(s) of characters, eliminating memory use for those
unsupported code pages.

 Font Range Configuration

As stated above, PEG FontCapture allows you to specify precisely
the code pages and ranges of characters you need for your
application. You enable or disable each code page by selecting the
corresponding check box for each page. The numeric range for a
code page that is not enabled is ignored.
Swell Software, LLC PEG WindowBuilder™ 29

PEG WindowBuilder™
For each code page that is enabled, you can specify an exact
window of character values to capture. These character ranges are
entered in hexadecimal format, consistent with Unicode encoding.

The ability to capture limited windows within each code page is very
useful for multilingual applications that attempt to produce a minimal
memory footprint. This enables you to select the specific code pages
and ranges of characters required in your application, without
capturing all of the characters in each page. For example, you may
want to capture code page 1 (Basic Latin) indexes 0020 through
0080, code page 2 (Latin 1) characters 0090 through 0100, and a few
additional characters from code page 9 (Cyrillic). You may thus
create a custom font containing  256 characters, but still containing
all of the glyphs you need for your multilingual application.

Even if you are using 16-bit character encoding, you will very likely
not want to attempt to capture the entire UNICODE character set.
Such a character set would require a huge amount of memory, and it
is highly unlikely that you will find a font containing anywhere near
the entire UNICODE character set. PEG FontCapture allows you to
specify exactly which code pages you want to capture from the
selected font.

Once you have entered the range configuration, PEG FontCapture
saves the configuration (or ‘profile’) to a binary file for later retrieval.
The next time you start the PEG FontCapture program, it will
automatically default to the set of ranges defined in the previous
usage.

 Applying Custom Character Filters

FontCapture also allows you to specify a custom range of characters
to be encoded by using a character filter file. On the Range dialog
you may select the Use Custom Filter File checkbox. When this
checkbox is selected, you can type the path and filename of a file to
be used as a final character filter. In other words, characters selected
30 PEG+ Development Toolkit Manual Swell Software, LLC

Working with Resources
above will be verified against the filter list and only those characters
listed in the filter will be included in the output font.

The custom filter file should have one hexadecimal character
encoding per line. An example is shown here:

0x3456 // you can put comments
0x3467 // or other notes after the character encoding
0x3786 // as shown here

This file format was chosen because it works perfectly with the
encoding tables provided with the Unicode Standard. The Unicode
standard accepts that many character encoding “standards” are in
existence and provides tables to map the alternate character
encodings to the Unicode encoding. These table can be directly
supplied to PEG FontCapture as filter files, allowing you to generate
Unicode encoded fonts containing only those characters defined by a
previous standard.

 Should You Use UNICODE?

If you are working on an application that must support many
languages, this is of course the question you are anxious to answer.
Supporting multiple languages does not always imply using multiple
alphabets or using a single character set containing all of the
characters required for each language. All common North American
and most Western European languages can be supported very well
by using a single 256-character alphabet. There are, of course,
exceptions.

If the number of characters contained in ANY single font file exceeds
256, you will need to run PEG in UNICODE mode, meaning that all
PEG strings will be encoded using 16-bits/character.

The advantages of the UNICODE approach are that each character
encoding is unique and unambiguous, and very large character sets
Swell Software, LLC PEG WindowBuilder™ 31

PEG WindowBuilder™
are accommodated with no extra programming effort beyond what is
required when first stepping into UNICODE.

1.4.7 Color Resources

Colors are the final type of application resource. To view and edit
colors, you select the Color node within any theme in the Resources
view.

Within the Color node, you will find three color groups. These are the
fixed colors, default colors, and custom colors.

PEG defines a fixed set of 16 ‘VGA Palette colors.’ These colors
cannot be changed or modified. These are the Fixed colors.

The Default colors are colors PEG widgets use as defaults if you do
not specifically assign a color to a particular object. There are a large
number of default colors corresponding to things like window fill
color, button fill color, scroll bar fill color, scroll bar thumb color, etc.
You can change any of these default colors to your requirements.

Changing the default colors is more efficient than assigning a custom
color to every object, both in terms of code size and, marginally, in
terms of run-time performance. PEG objects will always initialize
themselves to use the default colors. If you specify a custom color for
particular object, this default is then overridden to use your custom
color. Of course, you will nearly always need to assign particular
colors to particular objects at one point or another, which is easily
done in the WindowBuilder environment.

To edit any default color, simply right-click on the color thumbnail to
bring up the color editor (described below).
32 PEG+ Development Toolkit Manual Swell Software, LLC

Working with Resources
 Custom Colors

Custom Colors are colors you define for your application to use. To
define a custom color, click on the Custom color node within a color
group, and click on the Edit Custom Colors button in the properties
window. You will see a screen similar to this:

This is the color editor. If you invoked the color editor by clicking on
an existing color, it will initialize to the selected color value.

To add a new color, click the Add New Color button and type a color
ID name. Colors use IDs just like all other application resources.
After typing the color ID name, hit ‘enter.’ You can now use the
controls of this editor to define your color.
Swell Software, LLC PEG WindowBuilder™ 33

PEG WindowBuilder™
You should use Color ID names that describe where the color is
used, rather than describing the ‘look’ of the color. For example,
ColorID names like ‘BUTTON_FILL’ and ‘MENU_TEXT’ are good
color names. ColorID names like ‘VERY_LIGHT_GREEN’ are not
good ColorID names. The reason for this is that if/when you create
multiple themes for your application, you will very likely change some
or all of your custom colors for each theme. However, the ColorID will
not change from one theme to another. Therefore, the ColorID
should indicate where and how the color is used, not the appearance
of the color.

Clicking on one of the Basic Colors thumbs initializes your new color
to some known starting point. You can then adjust the hue,
saturation, luminance, or red/green/blue values of your color to
create the exact color you require.

The transparency value is only used if you are running with 16-bit +
Alpha or 24-bit + Alpha screen driver. In this case, Transparency
value 0 is fully transparent, and transparency value 255 is opaque.
You can set the transparency value for your color to any value within
this range.

1.4.8 Generating Resource Files

Whenever you make changes to the fonts, colors, string, or bitmaps
included in your project, you need to generate a new resource file.
This new resource file will either be compiled/linked with your
application (a Source format resource file) or installed on a running
application (a Binary format resource file).

To generate a global resource file containing all Themes, click on the
top node of the resource view in the Resources view window to
display the Resource File Generation Options. To generate a
resource file that contains only one theme, click on that theme name
in the Resource View.
34 PEG+ Development Toolkit Manual Swell Software, LLC

Application Mode
The resource file is by default given the name of your project, with
‘_res’ appended. When you generate a source format resource file,
both a .cpp and a .hpp file will be created. Note that any previous
resource file of the same name is overwritten. For this reason, you
should never edit your resource file by manual editing.

Click on the items you want to include in your resource file, and click
on the Generate Resource File button.

Each Theme and Image Group have their own include/exclude
checkbox. A Theme or ImageGroup will NOT be included in your
resource file unless the “Include In Resource File” checkbox is
checked.

If you generated a source-format resource file, you simply need to
build your application using the new resource file. If you generated a
binary resource file, the PEG API function ‘LoadBinaryResourceFile’
is provided to install the binary resource file into your running
application.

1.5 Application Mode
The third WindowBuilder operating mode is Application Mode. Once
you have configured your target and (optionally) added resources to
your project, you are ready to begin creating your graphical
application. Application mode allows you to easily and quickly design
your screens and child controls that will become your application.

You enter application mode by clicking on the Application tab of the
Project View.
Swell Software, LLC PEG WindowBuilder™ 35

PEG WindowBuilder™
1.5.1 Creating Modules

PEG WindowBuilder organizes your application program, containing
possibly hundreds of unique application windows, into unique
modules. Each module corresponds to one window or dialog, and
produces one source file and one include file.

In Application Mode, the Project View window displays a
PegTreeView depicting each of the modules included in the current
project. Each module is listed in alphabetical order by class name.
Each top-level node of the PegTreeView control represents a top-
level class constructed with WindowBuilder. If you expand a top-level
node, you will see the corresponding source and header file
associated with that top-level class. If you select a source module by
left clicking with the mouse, the Target window will display the PEG
objects defined within that source module.

The Target window always operates on the selected module. If no
module is selected, none of the Target window editing commands
are operational.

At any time, you can create a new module by selecting the Project|
Add Module command. You will be presented with a dialog window
shown below, prompting you to enter the required information, after
which the new source module will be added to your project.
36 PEG+ Development Toolkit Manual Swell Software, LLC

Application Mode
The Filename field allows you to specify the output filename for the
source file PEG WindowBuilder will generate for this new module.
Any valid filename may be entered into this field. You do not need to
specify an extension, as PEG WindowBuilder will automatically write
both a .cpp and a .hpp file for this module.

The ClassName field allows you to specify a name for the
PegWindow-derived class you are creating, i.e. the name of the class
which will define the window or screen you are developing.

The Parameters field allows you to specify any user-defined
parameters you would like to pass to the class constructor (in
addition to the parameters PEG WindowBuilder will always pass to
the constructor). If you want to pass extra parameters, you should
type them on this line exactly as they should appear in the
constructor prototype, i.e. Type-Name, Type Name, etc. for each
parameter.
Swell Software, LLC PEG WindowBuilder™ 37

PEG WindowBuilder™
The Startup Window check box specifies that this window will be the
first displayed when your application executes. When this check box
is selected, PEG WindowBuilder automatically writes the
PegAppInitialize function in this module such that this window is
created and added to PegPresentationManager during program
startup.

The Class Name field allows you to specify the name of the new
window class you are creating.

The Base Name field allows you to specify which PEG library class
will be the base class for your new Window. This will usually be
PegDialog, but could also be PegWindow or PegDialog. If you have
created your own derived class to serve as the base class for this
window, you can enter the name of that class in this field.

The Overrides group is used to tell WindowBuilder which function of
the base class will be overridden by the class you are defining. Only
two options are supported by WindowBuilder (although you can of
course add your own function overrides to the completed class: the
Message function and the Draw function. The default setting of this
field indicates that you will override the Message() function (to catch
signals from child controls) but will not override the Draw() function.
This is the most common situation.

The Absolute Position checkbox allows you to use an alternate
form for the class definition. Normally, PEG WindowBuilder produces
a class that accepts a left-top corner position as the first two
incoming parameters. The window and all child controls are
positioned relative to this left-top position. If desired, you can produce
a class that is absolutely postponed; i.e., there are no left-top
incoming parameters and the window and child controls use absolute
pixel positioning.

When you have completed entering in the required information, a
new object of the selected type is created and displayed in the
38 PEG+ Development Toolkit Manual Swell Software, LLC

The Target Window
Target window, and the new source file is added to the source page
tree view control.

To remove a source module and its associated objects from your
project, select the source module in the tree control and press the
‘Delete’ key on your keyboard. Following confirmation, the source
module is removed from the current project. Note that the actual
source files corresponding to the selected node are NOT deleted
from your hard drive. PEG WindowBuilder simply removes all
information about the source file from the current project.

To modify the parameters associated with a source module after the
module has been created, you can right-click on the module name in
the Project tree view. This will bring up a dialog window allowing you
to change the module name, file name, and other module
parameters.

Note that you are not allowed to delete sub-nodes from the
PegTreeView displayed within the source page of the notebook. This
is accomplished by individually deleting objects from within the
Target window, described below.

In order to begin designing your application screens, you must
create and add at least one module to your project.

1.6 The Target Window
In Application Mode, the WindowBuilder Target window displays as
accurately as possible a representation of the target system display
screen. This representation is completely accurate in terms of pixel
placement of graphical objects and colors used by each object. The
Target window does not correct for differences in aspect ratio (i.e.
pixel squareness) between your PC screen and your target screen.
Swell Software, LLC PEG WindowBuilder™ 39

PEG WindowBuilder™
When you create objects within the target window, you are actually
defining new instances of PEG objects. These objects are
dynamically constructed and added to the Target window, and
operate just as any normal PEG objects. This is important to
remember. As you create your windows and dialogs within PEG
WindowBuilder, you are creating a working PEG program. You can at
any time interact with the objects you have created, just as the end
user of your system software will interact with the final system.

The Target window becomes active when a source module is
selected in the project view window. If no modules are included
in your project, you must first create a new module before you
will be able to do editing in the target window.

When you create a new source module, a default object of the type
defined in the new source module is generated and is the initial
object displayed in the target window. After this step has been
completed you will be able to use the Target window to modify and/or
add children to the initially defined object.

1.6.1 Selecting Objects in the Target Window

Objects in the Target window are selected and edited using the
mouse. When you click on an object in the Target window, a red
border is drawn around the object to indicate that it has been
selected. You can re-size any object by dragging the dark border with
the left mouse button held down until the desired size is obtained.

You can move an object by either dragging a selected object with the
mouse, or by using the keyboard arrow keys.

Multiple objects can be selected by holding the <ctrl> key down while
right-clicking on additional objects. When multiple objects are
selected, the selection box expands to contain all selected objects.
40 PEG+ Development Toolkit Manual Swell Software, LLC

The Target Window
When you select an object, the objects properties are displayed in
the lower-left Properties window. You use the properties window to
assign fonts, give your objects IDs, assign bitmaps, and perform
various other properties setting for each object type.

1.6.2 Target Window Menu Commands

The target window menu commands always operate on the
currently selected object. You should select an object or group of
objects before selecting one of the menu commands. The Target
window menu commands are:

 Add|Button

This selection brings up a sub-menu of common button objects.
These include:

• TextButton

• MLTextButton

• BitmapButton

• DecoratedButton

• CheckBox

• RadioButton

• SpinButton

• Icon

Selecting any of these command adds an object of the selected type
to the current selected object. In this case, the current selected
object would usually be the top-level window or dialog, or possibly a
PegGroup

 Add|Text
Swell Software, LLC PEG WindowBuilder™ 41

PEG WindowBuilder™
This selection brings up a sub-menu of common text display objects.
These include:

• Prompt

• VertPrompt

• String

• TextBox

• EditBox

Selecting any of these commands adds an object of the selected
type to the current selected object. In this case, the current selected
object would usually be the top-level window or dialog, or possibly a
PegGroup

 Add|Indicator

This selection brings up a sub-menu of indicator style gadgets.
These include:

• Finite Dial

• Bitmap Dial

• Light

• Bitmap Light

• Linear Scale

• Bitmap Scale

Selecting any of these commands adds an object of the selected
type to the current selected object. In this case, the current selected
object would usually be the top-level window or dialog, or possibly a
PegGroup
42 PEG+ Development Toolkit Manual Swell Software, LLC

The Target Window
 Add|Slide/Scroll

This selection brings up a sub-menu of slider/scroll bar objects. This
list includes:

• Slider

• VScroll

• HScroll

Note that adding a Vertical Scroll or Horizontal Scroll using this menu
command adds a client area scroll bar. This is a user-defined scroll
bar rather than a scroll bar which acts to scroll the window client
area. Normal non-client-area scroll bars are added by adjusting the
window properties.

 Add|Container

This selection brings up a sub-menu of container style controls, that
is, controls that are used to contain or group other child gadgets.
These include:

• PegGroup

• ComboBox

• VertList

• HorzList

 Add|Chart

This selection brings up a sub-menu of PegChart-derived classes
that can be added to the current object. These include:

• PegLineChart

• PegStripChart
Swell Software, LLC PEG WindowBuilder™ 43

PEG WindowBuilder™
• PegMultiLineChart

 Add|Window

This selection brings up a sub-menu of PegWindow-derived classes
that can be added to the current object. These include:

• PegWindow

• PegNotebook

• PegTreeView

• PegTable

• PegSpreadSheet

 Edit|Properties

This command invokes a properties dialog for the selected object.
One and only one object must be selected in order for this menu
command to be active. You can also invoke the edit properties
dialog window by right-clicking with the mouse on the selected
object.

The properties dialog is context sensitive depending on the type of
object that has been selected. In general, you can adjust the border
style, system status flags, and style flags for a given object by
selecting each page of the properties dialog notebook control. Many
object types have additional settings that can be controlled using the
properties dialog.

The properties dialog is also where you specify the text string
associated with many object types such as PegPrompt or PegString.
For text-based control types, the properties dialog extended
properties page includes a field labeled ‘Initial Text’ that allows you to
type in a string or, if the String Table is enabled, select the string ID
44 PEG+ Development Toolkit Manual Swell Software, LLC

The Target Window
associated with an object. This string ID is a member of the string
table maintained by PEG WindowBuilder. You can view and edit the
string table by selecting the Project|String Table command in the
project window.

If you have disabled the use of the PEG WindowBuilder string table
in the Project|Configure|Language dialog, the String page of the
properties notebook allows you to directly enter the ASCII string used
to initialize a control.

 Edit|Copy

Copies the selected object or objects, including all status and style
flags. Only one object can be selected when the Edit|Copy command
is issued; however, that object can have any number of children.
When an object such as a PegGroup is copied, and the PegGroup
has a number of children, the Group AND all of the group children
are copied.

When this command is selected, PEG WindowBuilder automatically
changes the selection box to contain the parent of the current object.
This allows you to quickly copy and paste an object into the objects
parent, which is the most common operation.

Likewise, you can select an object, copy it, and then select an
entirely different object to paste the copy into.

 Edit|Paste

This command pastes an exact copy of the copied objects into the
center of the selected object. PEG WindowBuilder automatically
selects the parent of the copied object as the target for the paste
command. You can override this operation by selecting any other
parent before selecting the paste command.

 Edit|Delete
Swell Software, LLC PEG WindowBuilder™ 45

PEG WindowBuilder™
 Layout|Align|Left

 Layout|Align|Right

 Layout|Align|H-Center

 Layout|Align|Top

 Layout|Align|Bottom

 Layout|Align|V-Center

This group of commands is used to evenly align any number of child
controls. Before activating this command any number of child
controls should first be selected using the method described above.
The above group of commands can then be used to exactly align the
group of objects as desired.

 Layout|Move To Front

This command adjusts the order in which child objects are added to
the parent. The Move To Front command makes the object that last
object added to its parent. This is useful for adjusting the tab-order of
controls added to a parent window.

 Layout|Move To Back

This command adjusts the order in which child objects are added to
the parent. The Move To Back command makes the object that first
object added to its parent. This is useful for adjusting the tab-order of
controls added to a parent window.

 Layout|Equal Height
46 PEG+ Development Toolkit Manual Swell Software, LLC

The Target Window
 Layout|Equal Width

 View|Test Mode

This command places the target window in test mode. In test mode,
all of the PEG WindowBuilder windows are hidden, leaving only your
newly created window or dialog on the screen. While in this mode,
your new window or dialog will operate exactly as on the final target
system, although any message processing code you have added to
the window or dialog will not be operational from within PEG
WindowBuilder.

While in test mode, you will not be able to select and edit objects.
You can exit edit mode by closing the window or dialog under test, or
by pressing the ‘Stop’ button placed in the lower right hand corner of
the screen.

If you have defined a product background image and hot spots
(described below), you can click on the product hot spots while in test
mode to navigate through your UI screens, fully simulating the
operation of your interface within the WindowBuilder environment.

 View|Zoom Scale

This command allows you to zoom in on the target window. This is
useful when your target screen is very small and it is easier to do
layout and modification in an enlarged view of your target screen.

 View|Product Image|Select Image

This command allows you to select a background image to wrap your
target screen. This can give you a good representation of the ‘look
and feel’ of your final device. Any background image may be
selected; however, you must take care to ensure that the background
image is scaled correctly to fit the target screen. In other words, the
background image should include a pixel-for-pixel screen area. You
Swell Software, LLC PEG WindowBuilder™ 47

PEG WindowBuilder™
can adjust the actual position of the WindowBuilder screen display
within this background image.

 View|Product Image|Edit Hotspots

When a background product image has been defined, this command
brings up the hotspot editor dialog. This dialog allows you to define
areas on the product that will produce input messages into the
PegMessageQueue. A common example would be a product that
provides the end user with up/down/right/left and select type
navigation keys. You can use the hotspot editor to define the areas
within the background image the are selected to produce each of
these input message types.

Hotspots are utilized when you use the View|Test Mode command
within WindowBuilder. In this mode, you can click on the product
background image hotspots to navigate through your UI. This allows
you to fully exercise each screen of your UI design without ever
producing source code or compiling to produce your actual PEG
executable program.

 View|Product Image|Remove Background Image

This command is used to remove a previously assigned product
background image.

1.6.3 Generating Application Source Code

WindowBuilder produces the C++ source code you will use to display
your application screens. You will need to edit and add your own
program logic to the source files produced by WindowBuilder.
Most significantly you will need to add program logic to catch signals
generated by your child controls. You may also need to make any
48 PEG+ Development Toolkit Manual Swell Software, LLC

The Target Window
number of other additions and changes to the source files produced
by WindowBuilder.

You generate your application source code by either right-clicking on
the module name in the Project view and selecting the ‘Update
Current Source Module’ command, or by using the Project|Generate|
Application command to update all modified source modules.

You will want to be able to run PEG WindowBuilder again and again
to modify your screens and update the source files without losing any
of your hand-coded changes. This is not difficult to do as long as you
understand how WindowBuilder updates your source files and follow
a few simple rules described below.

When you instruct PEG WindowBuilder to produce/update the source
files, WindowBuilder first looks to see if the source file already exists.
If it does, WindowBuilder enters ‘Merge Mode.’ In Merge Mode,
WindowBuilder is very careful not to lose any of your custom
modifications.

A snippet of the source module produced by WindowBuilder may
look like this:

/*---*/
/*---*/
// Source file originally created by PegWindowBuilder
//
// Class Name: MainScreen
//
// Copyright (c) Swell Software, Inc.
// www.swellsoftare.com
//
// All Rights Reserved
//
// Notes:
/*---*/
/*---*/
Swell Software, LLC PEG WindowBuilder™ 49

PEG WindowBuilder™
/* WB Auto-Generated Start (1) */
#include "peg.hpp"
extern PegResourceTable Default_Theme_ResourceTable;
/* WB Auto-Generated End (2) */

/*---*/
/*---*/
/* WB Auto-Generated Start (3) */
void PegAppInitialize(PegPresentationManager *pPresent)
{
 PegResourceManager::InstallResourcesFromTable(
 &Default_Theme_ResourceTable);
 MainScreen *pWin = new MainScreen(0, 0);
 pPresent->Center(pWin);
 pPresent->Add(pWin);
 /* WB Auto-Generated End (4) */

}

To avoid losing your changes, never make any manual edits
between the markers WB Auto-Generated Start and WB Auto-
Generated End.

These Auto-Generated Start and Auto-Generated End markers are
placed in strategic locations within the source file produced by
WindowBuilder. You can make any changes you like to the source
file, as long as you do not make changes within a section delimited
with these start and end markers.

PEG WindowBuilder also searches for the Message() member
function, if present, and updates this function to contain any new
PEG_SIGNAL cases not already present. PEG WindowBuilder will
NOT remove case statements from your Message function, even if
the control which generated a specific PEG_SIGNAL is no longer a
child of the window. In short, deleting obsolete sections from your
source files is your responsibility, in the interest of safety
WindowBuilder will not delete source lines from your Message
function.
50 PEG+ Development Toolkit Manual Swell Software, LLC

The Target Window
Any and all code outside of the class constructor and Message
function is maintained without modification during the source code
merge process. That is, any other editing that you have done will be
preserved entirely during the source file update process.

1.6.4 Pointer Name Control

You can control the type and name of the pointer (if any) used when
each child object of the top-level window is created. Controlling how
pointers are used is done by adjusting the basic properties, using the
properties dialog, for each child control. There are four types of
pointers used by WindowBuilder during code generation: member
pointers, automatic named pointers, automatic temporary pointers,
and implicit pointers. We will describe each type below and describe
how you can control the use of pointers in the generated source
code.

 Implicit Pointers

The most basic pointer type is the implicit pointer. An implicit pointer
is used by WindowBuilder when no references to an object are made
after the object has been created and you have not chosen to create
a member or automatic pointer. In this case WindowBuilder does not
need to keep the address of the newly created child in any variable,
and therefore uses an in-line, ‘implicit’ pointer to pass the child’s
address to the Add() function. The following is an example of source
code produced by WindowBuilder that uses an implicit pointer:

Add(new PegPrompt(ChildRect, “Text”));

Note that the return value from the new operator is not saved, but is
passed directly to the Add() function. When no other pointer type is
needed, this is the default pointer style used by WindowBuilder.

 Temporary Pointers

Next up in the WindowBuilder source code generation process is the
temporary pointer. This type of pointer is used by WindowBuilder
Swell Software, LLC PEG WindowBuilder™ 51

PEG WindowBuilder™
when reference to an object is required after it has been created, but
you have not requested an automatic or member pointer be created.
In this case, PEG WindowBuilder will create a temporary automatic
pointer to hold the address of the child object instance. The
temporary pointer is called ‘Automatic’ because it is created on the
execution stack; i.e., space for the pointer is allocated automatically
by the compiler on the stack, and the space is destroyed when the
function (in this case the class constructor) returns.

A common example of this might be a PegGroup container added to
the top-level window. During code generation, PEG WindowBuilder
needs to maintain the address of the PegGroup instance while
creating and adding child controls to the group. WindowBuilder will
default to using a temporary pointer for this purpose, which produces
source code with the following appearance:

PegThing *pChild1;

pChild1 = new PegGroup(…..); // keep temp pointer to object

pChild1->Add(….); // add second-generation children to object
pChild1->Add(….); // ditto

Add(pChild1); // add object to top-level window

WindowBuilder will always use the generic names pChildx for
temporary automatic pointers. WindowBuilder will reuse the
temporary pointers for new objects if needed and available during
code generation. In some cases, multiple temporary pointers are
required simultaneously, in which case WindowBuilder will create
and use many temporary object pointers as are needed.

 Automatic Named Pointers

Similar to automatic temporary pointers, Automatic Named pointers
are created on the execution stack and only exist during the class
constructor. Named pointers are created by typing a name into the
‘Pointer Name’ field in the object properties dialog basic properties
page and unchecking the ‘Member Pointer’ box. Note that the name
52 PEG+ Development Toolkit Manual Swell Software, LLC

The Target Window
must be a valid C++ variable name or your compiler will flag an error
when you compile the generated module (no name checking is done
by PEG WindowBuilder!).

Automatic Named pointers are very handy to you, the developer,
when you want to modify the object created by WindowBuilder in
ways that are not supported by the WindowBuilder properties pages.
An Automatic Named pointer is used only for the object in question,
and more importantly is still valid and available to you at the end of
the class constructor (i.e. after the “/* WB Auto-Generated End */”
marker). This allows you to further modify an object by calling class
member functions via the named pointer prior to returning from the
class constructor.

Named pointers also help to improve the syntax and eliminate
casting when PEG WindowBuilder must call member functions of a
class. For example, if PEG WindowBuilder must call the ‘SetFont’
function for a PegPrompt, it will cast a temporary automatic pointer
as follows:

((PegPrompt *) pChild1)->SetFont(…..);

If an automatic named pointer is used, it will be a pointer to the
desired type and no casting is required:

PegPrompt *MyPrompt;

MyPrompt = new PegPrompt(….)
MyPrompt->SetFont(….);

This can greatly improve the appearance and readability of the
constructor source code produced by PEG WindowBuilder.

 Member Pointers

The final pointer option is the member pointer. A member pointer is a
pointer to a child object which is maintained as a member variable of
the parent window class. This pointer is initialized in the class
Swell Software, LLC PEG WindowBuilder™ 53

PEG WindowBuilder™
constructor and used at all times to reference the child object. You
can instruct WindowBuilder to create a member pointer for a child
object by checking on the ‘Member Pointer’ checkbox in the
properties dialog and typing a name in the ‘Pointer Name’ field. Note
that the name must be a valid C++ variable name or your compiler
will flag an error when you compile the generated module (no name
checking is done by WindowBuilder!).

1.7 Example 1: Creating a simple PegDialog
window
In this example we will walk step-by-step through the procedure
required to create a new window builder project, create a new source
module, and create a simple PegDialog derived window. This
example takes about 15 minutes to complete.

 The Example Dialog:

These instructions will take you systematically through the process of
creating the simple dialog window shown below. In the following
instructions, we will call this the ‘reference dialog’:
54 PEG+ Development Toolkit Manual Swell Software, LLC

Example 1: Creating a simple PegDialog window
You may find it helpful to refer to the appearance of this dialog as you
follow the instructions below.

1.7.1 Creating and Configuring a Project:

Under MS Windows 95/98/NT/2000, start the PEG WindowBuilder
executable program, pwinbld.exe. :

For this example, we want to begin a new project, so you should
select the New Project button on the startup screen.

 Step 1- Configure Project and Directories

Whenever you begin a new project, WindowBuilder asks you to enter
some basic project information such as the project name and where
to keep the project file on your computer. PEG WindowBuilder
presents the following dialog window to allow you to enter this
information:
Swell Software, LLC PEG WindowBuilder™ 55

PEG WindowBuilder™
In the project name field of this dialog, type ‘DemoProj.’ Your project
file will be saved to this name. In the project path field, type any valid
drive and directory name. If the directory does not exist, PEG
WindowBuilder will create it when you save your project.

You can also enter your company name and address, although this is
not required. If you do enter this information, WindowBuilder will
include copyright notifications in the header area of the generated
source files.

After you have entered in the required information, select the ‘OK.’

You will next want to run through the configuration dialogs,
specifically the Directories dialog, to configure where your source
and header files will be written to your computer hard drive.
56 PEG+ Development Toolkit Manual Swell Software, LLC

Example 1: Creating a simple PegDialog window
When a new project is created, the target window begins to display
the target screen. The default target screen resolution is 240 × 320
pixels with 16-bit (65K) colors. This can be modified to any supported
color depth and resolution using the Configuration dialogs.

 Step 2- Add a new Module

You are now ready to create a new module. Each WindowBuilder
module contains a unique class declaration and class
implementation. Click on the Application tab in the Project view, and
select the Project|Add Module menu command. You will now see a
dialog asking you to enter information about the new class to be
created, shown here:

In the filename field, type ‘DemoDlg.’ This is the name that will be
assigned to the source and header files produced for this class. In
the Class Name field, type ‘DemoDialog.’ This name will be
assigned to the generated class. In the Parameters field, type ‘int
iCount.’ Any information typed into the parameters field is passed
Swell Software, LLC PEG WindowBuilder™ 57

PEG WindowBuilder™
directly to the dialog constructor. While this demo will not actually use
the incoming parameter, it is useful to see how this affects the
generated source code.

Click on the Startup Window checkbox to turn it on. This will cause
PEG WindowBuilder to generate a default PegAppInitialize function
for us that will display our example window. Leave the remaining
dialog fields at their default values and select ‘OK.’

You will now see that your project tree contains a new node, with the
name DemoDialog. When child objects are added to the dialog they
will be listed underneath the module name in the tree view.

Click on the DemoDialog icon, and the target window now displays
the default dialog window that has been created.

1.7.2 Editing the Module:

 Step 3- Modifying position and size.

You can select the default dialog by left clicking with the mouse
anywhere in the dialog window. When the dialog is selected, a dark
box is drawn around the dialog window to indicate that it has been
selected. You can now use the left-mouse button ‘click-and-drag’
operation to move the dialog window, and you can use the arrow
keys on your keyboard to move the dialog window to any position on
the target screen. Note that if the dialog is the same size as the target
screen, you will not be able to move it anywhere by dragging it. You
can only drag it within the boundaries of the target screen.

If you position the mouse pointer over the dark border around the
dialog, the mouse pointer will change shape to indicate that you can
also re-size the dialog. You should experiment with moving and
resizing the dialog until you are familiar with these operations.
58 PEG+ Development Toolkit Manual Swell Software, LLC

Example 1: Creating a simple PegDialog window
Resize the dialog window under the Width field at the bottom of the
screen which is approximately equal to ‘354,’ and the height is
roughly ‘232.’ You don’t have to be exact, but these are the
approximate dimensions of the reference dialog window we are
creating in this example.

 Step 4- Modifying Properties

Click on the dialog window in either the Project window or the Target
window to insure it is selected.

The first properties page is called the ‘Basic’ properties. These
properties are always available, no matter what type of PEG object
you are working with. In this case we can leave the Basic properties
at the current settings.

Now select the ‘Extended’ tab. This page of properties allows you to
adjust parameters that are specific to the dialog window. In the Title
field, type ‘Demo Dialog Window.’ This assigns the dialog window
title.

 Step 5- Add a PegGroup to the Dialog

Make sure that the dialog window is selected, and then select the
menu command Add|Container|PegGroup. This will add a new
PegGroup control to the dialog window. The Add menu command
always adds the selected object type to the previously selected
parent. In this case, the parent is the dialog window and the new
object type is a PegGroup control.

Use the mouse and arrow keys to size the group control so that it is
similar in position and size to the reference example. Edit the group
properties by going to the Extended properties page and enter
Swell Software, LLC PEG WindowBuilder™ 59

PEG WindowBuilder™
‘Select Day’ in the Text field. This assigns the text value that is
displayed as the group title.

 Step 6- Add Radio Buttons to the Group

Once you have the PegGroup in position, ensure that you select it by
left-clicking inside the group with the mouse. Now select the Add|
Button|PegRadioButton command. Following this, a new
PegRadioButton is added to the center of the PegGroup. This is the
general operation of the Add command, in that the selected type of
object is created with a default size and positioned at the center of
the object’s parent area.

Use the arrow keys to move the radio button to the upper left corner
of the group box, and then edit the radio button properties by right-
clicking in the radio button client area. On the Basic properties page,
enter ‘IDRB_MONDAY’ in the ID field. On the extended properties
page, enter ‘Monday’ in the Text field. The ID value is the value you
will use to identify the radio button during program operation. This
value is saved in a list of enumerated control IDs in the generated
class header file.

Repeat the above procedure to add the two additional radio buttons.
Make sure you select the PegGroup parent object before adding
each radio button, to insure that the radio buttons are children of the
group object. For these buttons, assign the first the ID value
‘IDRB_TUESDAY’ and the Text ‘Tuesday.’ For the last radio button,
assign the ID value ‘IDRB_WEDNESDAY’ and the text
‘Wednesday.’

You can use the mouse and arrow keys to position the radio buttons
in the approximate order and position you want them to be in. You
don’t have to be exact, we will use the Layout commands to insure
that the radio buttons are perfectly aligned.
60 PEG+ Development Toolkit Manual Swell Software, LLC

Example 1: Creating a simple PegDialog window
 Step 7- Using Layout commands.

To ensure that the radio buttons are equally aligned, we can use the
Layout commands. The layout commands effect collections or
groups of objects. In this case, we want to select all three radio
buttons before using layout command.

To select the three radio buttons, first select the top radio button with
the text value Monday by left-clicking on that radio button. Next, hold
down the <ctrl> key and left click on the ‘Tuesday’ and ‘Wednesday’
radio buttons in turn. You will see that the selection box grows to
enclose all three radio buttons.

Now we want to use the Layout|Align|Left command to align the left
edge of the radio buttons. After selecting this command, you should
see that the radio button are all exactly aligned at the left border.

Note that while you have multiple-objects selected, you can use the
mouse and arrow keys to move all of the objects as a group. Use the
arrow keys now to slide the three radio buttons into a position that
‘looks right.’

 Step 8- Add remaining children to Group.

You can add the two checkbox objects to the group by first selecting
the Group box, and then selecting the Add|Button|PegCheckBox
command. Position the check boxes using the same methods
described above. Assign the first check box the ID ‘IDCB_HOLIDAY’
and the Text ‘Holiday.” Assign the second check box the ID
‘IDCB_WORKDAY’ and the Text ‘Workday.’

Again select the group box, and select the Add|Slide/Scroll|
PegSlider command. This adds a PegSlider control to the group box.
Use the mouse and arrow keys to position and size the slider control
Swell Software, LLC PEG WindowBuilder™ 61

PEG WindowBuilder™
as shown in the reference diagram. You do not need to assign any
additional properties to the PegSlider control.

 Step 9- Add PegTextBox

Click on an unused portion of the dialog window to select the window.
Be sure that the dark border encloses the entire dialog window. A
common mistake is to click inside of the group box, in which case the
group box is selected rather than the dialog window. Now select the
Add|Text|PegTextBox command. A default size textbox is
positioned at the center of the dialog window. You will need to reduce
the height of the textbox using the mouse or properties dialog, and
move the text box so that it is underneath the group. You can also
use the properties dialog to enter an initial text value, such as ‘Hello
World.’

 Step 10- Add TextButtons

Repeating the above procedures, click on an unused portion of the
dialog window, and then select the Add|Button|PegTextButton
command to add a new button to the dialog window. The button will
again appear at the center of the dialog, and you will need to use the
mouse or arrow keys to move the button into position.

Create the three buttons at the bottom of the dialog one at a time,
repeating the above process. Use the edit properties command to
assign the Text values ‘OK,’ ‘Cancel,’ and ‘Apply’ to each button.
Likewise, assign the ID values ‘IDB_OK,’ ‘IDB_CANCEL,’ and
‘IDB_APPLY’ to each button, respectively.

You can use the Layout|Align|Top command to insure that the
buttons are vertically aligned, and move them as a group until they
are centered on the dialog window.
62 PEG+ Development Toolkit Manual Swell Software, LLC

Example 1: Creating a simple PegDialog window
You are now done creating the dialog window!!

1.7.3 Saving Your Work:

 Step 11- Save the project

At this point you should select the Project|Save command to save
your project. This will save your work to the ‘DemoDlg.wbx’ project
file. Once you have saved your project, you can later open it at any
time and modify this dialog or add any number of additional modules
to the project.

 Step 12- Generate Source Code

Make sure the module ‘DemoDialog’ is selected in the project tree (it
should be highlighted). If it is not, left-click with the mouse in the
project source tree or use the arrow keys to select the DemoDialog
module. Now right-click on the module name and select the ‘Update
Current Module’ command. After the source code has been
generated, PEG WindowBuilder should inform you that the source or
header file has been updated.
Swell Software, LLC PEG WindowBuilder™ 63

PEG WindowBuilder™
64 PEG+ Development Toolkit Manual Swell Software, LLC

	PEG WindowBuilder Manual
	Forward
	What PEG IS
	What PEG is NOT
	Library Updates

	PEG WindowBuilder™
	1.1 Overview
	1.1.1 How this manual is organized
	1.1.2 WindowBuilder Project Files
	1.1.3 Project Path Information
	1.1.4 Source Output Files
	1.1.5 Screen Layout

	1.2 Operating Modes
	1.2.1 Configuration mode
	1.2.2 Application Mode
	1.2.3 Resource Mode

	1.3 Configuration Settings
	1.3.1 Directories
	1.3.2 Target CPU
	1.3.3 RTOS
	1.3.4 Screen Driver
	1.3.5 Color Depth
	1.3.6 Input/Output
	1.3.7 Drawing Options
	1.3.8 Image Conversion
	1.3.9 Fonts
	1.3.10 Strings

	1.4 Working with Resources
	1.4.1 String Resources
	1.4.2 Themes
	1.4.3 Bitmap Resources
	1.4.4 Font Resources
	1.4.5 Configuring Character Range
	1.4.6 Multilingual Support and UNICODE
	1.4.7 Color Resources
	1.4.8 Generating Resource Files

	1.5 Application Mode
	1.5.1 Creating Modules

	1.6 The Target Window
	1.6.1 Selecting Objects in the Target Window
	1.6.2 Target Window Menu Commands
	1.6.3 Generating Application Source Code
	1.6.4 Pointer Name Control

	1.7 Example 1: Creating a simple PegDialog window
	1.7.1 Creating and Configuring a Project:
	1.7.2 Editing the Module:
	1.7.3 Saving Your Work:

