
Portable Embedded GUI

PEG Pro/PEG+ Programming Manual
PEG Pro/PEG+ Library Release 2.x

Rev. 3
May 2011

© Copyright 2007-2008, 2011
Swell Software, LLC. All rights reserved.

Copyright 2007–2008, 2011
Swell Software, LLC. All rights reserved.

© Copyright 2007–2008, 2011
Swell Software, LLC.

6501 William Cannon Drive West
Austin, TX 78735

PH: (810) 385-2893
FAX: (810) 385-2947

info@swellsoftware.com

No part of the document may be reproduced in any form without the
express written consent of Swell Software, LLC.

All rights reserved.

PEG is a registered trademark of Swell Software, LLC, Reg. U.S.
Pat. & Tm. Off. C/PEG, PEG Pro, PEG+, and PEG Windowbuilder

are trademarks of Swell Software LLC. All other product or
service names are the property of their respective owners.

CHAPTER 0FORWARD

We at Swell Software thank you for choosing PEG!

PEG is by far the most used, best supported, and most adaptable graphical
interface software available. Our industry-leading real-time operating
system support, hardware integration, and develpment tool compatibility
allow complete flexibility as you and your team create next-generation
products.

The PEG library and development tools have today been used to create
several thousand unique products, and those products have shipped many
hundreds of millions of units. The applications utilizing PEG software cover
a broad spectrum including various consumer electronics, medical
instrumentation, video games, military communications, aeronautics, office
equipment, and even desktop applications.

We hope that your own efforts will be equally successful, and we
encourage you to use our technical support if you run into any speed-
bumps along the way.

In addition to the PEG software package, Swell Software provides
consulting and contract programming services to clients in a wide variety of
industries. These services range from one-day on-site evaluations and
tutorials to complete screen prototyping and development. We encourage
you to take advantage of these services as early as possible in your project
cycle. If you have purchased or are evaluating the PEG library, you can of
course contact us at any time via phone or email to answer your technical
questions.

How the manuals are organized

Your documentation set includes four separate manuals:

1) The QuickStart Guide
2) The Programming Manual
3) The WindowBuilder User’s Manual
4) This API Reference Manual
Swell Software, LLC Forward iii

Forward
The Quickstart Guide is a short tutorial enabling you to easily begin working
with WindowBuilder and to create and run your own application in one of
our supported desktop environments.

This programming manual provides an ‘under the hood’ view of the PEG
software library internals and introduces basic concepts that are needed to
fully understand how PEG works. This is followed by descriptions of the
fundamental PEG classes.

The WindowBuilder User’s Manual is a guide to the operation of our
WindowBuilder WYSIWYG development tool and resource manager.

The API Reference Manual provides extensive information about the
fundamental PEG classes. This manual details the Application
Programming Interface (API) of the PEG graphics library.

Each of these manuals are provided in both printed and electronic (PDF)
formats. The PDF format manuals are always the most recent manual
updates, while for practical reason the printed manuals can sometimes be a
few months out of date.

Whenever the electronic manuals are updated, they are posted to the Swell
Software website. The online manuals can be found at the following
address:

http://www.swellsoftware.com/download/documentation.php.

A username and password are required to download the manuals.

What PEG IS

PEG is an acronym for Portable Embedded GUI. We chose this name
because we believe it accurately reflects the design and motivation that
went into the creation of our software.

PEG is Portable

We have designed our software to be portable to any target hardware that
is capable of graphical output. PEG does not expect or require any
underlying software components in order to do its job. If you have a C++
compiler and hardware capable of graphical output, you can run PEG.
iv PEG Pro API Reference Manual Swell Software, LLC

What PEG is NOT
PEG is Embedded

This statement is rather vague, because it means so many different things
to different people. The bottom line is that PEG is, and will always be,
targeted primarily at custom embedded systems. This distinction is so
important that we felt it should be included in the name of our library.

PEG is GUI

The PEG class library provides the building blocks for a powerful and
extensible graphical user interface. Extensive thought and research have
gone into the design of our product to ensure that you are receiving a library
that is fully capable of supporting all of the advanced GUI features you
need today, while also accommodating future enhancements.

In addition to the class library, PEG provides tools for generating graphical
fonts, processing, optimizing, and compressing graphical images,
designing screens and child controls, creating custom colors, and
maintaining multi-lingual string data.

What PEG is NOT

PEG is not an operating system. While PEG can run completely
standalone, the library does not provide software for system boot-up, task
switching, file system maintenance, or any of the other operating-system
level functions your product may require.

PEG is not an application program. The PEG library, by itself, will provide
an end user with absolutely zero in terms of useful interaction or information
display. It is your job to create the windows, dialogs, and other objects that
will be used to retrieve input from and display information to the end
user. Of course, the whole point of using PEG is that our library provides
the tools and components that make creating your application level
interface a manageable task.

Library Updates

Library updates are posted on the Swell Software website roughly every 90
days. If you are a new PEG customer, you are entitled to a minimum of
three months of technical support and library updates. The Download/
Updates page on the Swell Software website is password protected. If you
Swell Software, LLC Forward v

Forward
do not know the password, please email support@swellsoftware.com and
request the current password.

The http://www.swellsoftware.com/download/updates.php page lists the
most recent changes or library enhancements, and also allows you to
download the latest release of PEG library source code, supporting utilities,
and documentation.
vi PEG Pro API Reference Manual Swell Software, LLC

Installing PEG
C H A P T E R 1

CHAPTER1INSTALLING AND BUILDING THE PEG LIBRARY

1.1 Installing PEG
PEG is installed by running the PEG Installer. Your installation key, which is
unique to your distribution, is a hexadecimal number encoded to unlock
features specific to your distribution. You must enter your installation key
each time you run the PEG installer. Installation keys are obtained from the
Swell Software sales department, sales@swellsoftware.com.

The PEG installer installs the PEG software library (in source and/or binary
formats, depending on your install key), the PEG manuals, example
programs, and the WindowBuilder executable program.

PEG can be installed to any destination drive and directory. During the
installation process, the PEG installer records the selected installation path
for reference later when generating the PEG library configuration header.

1.2 Building the PEG library
The PEG software is comprised of a large number of C++ source files. You
can compile and link these source files as part of your monolithic
application build process; however, most commonly PEG users compile the
PEG source files and archive the resulting object code into an object library,
similar to the C run time library or other third-party software libraries. This
library is then linked with your application software to produce the final
binary image.

Building the library is very simple, although you may need to create a make
file or project file specific to your build tools. All of the required PEG+
source files are in the directory \peg\source. Likewise, the header files
are in the directory \peg\include.

The library is configured via inclusion of the header file ‘peg\include\
pconfig.hpp.’ This header file is automatically generated by WindowBuilder
by making your configuration selections; therefore, you should not
manually edit the pconfig.hpp header file.
Swell Software, LLC Installing and Building the PEG Library 1

Installing and Building the PEG Library
If you have just installed the PEG software, the pconfig.hpp header file is
configured to build the PEG library for either the Win32 or X11 desktop
environment. You can reconfigure the library at any time to build for your
intended target.

This chapter describes each of the library source files and their contents.
Several of the source files are optional and only included if required for your
target system.

The last section of this chapter describes the preconfigured library make
files that are included in your PEG+ or PEG Pro distribution.

 Library Code Size
The code size of the library can vary dramatically depending on which
resources your application is using and how you have configured the
library. A full build of the PEG class library currently generates
approximately 200K of ROM-able code when all options and modules are
included. The size of the generated code varies depending on the compiler,
optimization levels, and CPU being used. The total code size of the library
continues to grow over time as various new classes and control types are
introduced. This does NOT mean that your system code size will increase
when or if you update to a newer version of the PEG library, since only
those classes which you are actually using are linked into your system
software.

There are developers who prefer to include in the library only what is
actually used, and others who place everything in the library and depend on
the linker to extract only what is needed. The second approach is taken by
the pre-configured make files, however the following information will allow
you to build the library any way you prefer.

 File Naming Conventions
Every effort has been made to ensure that all PEG source files and
documentation files are named in a consistent manner to avoid problems
encountered when moving between Windows, Linux/X11, or other
development environments. All source file names use lowercase letters
exclusively to avoid case differences when running on Unix or Linux
systems.
2 PEG Pro Programming Manual Swell Software, LLC

Build Options
Finally, the PEG installation program converts CR+LF sequences to the
standard Unix CR line end when installing on Unix/Linux/X11 development
hosts.

1.3 Build Options
The library is shipped configured for Win32 or Linux/X11 desktop
development. This allows you to quickly build the PEG library and begin
using the PEG API without concern for hardware porting issues. We
recommend that if you are new to PEG, you begin your development in one
of these desktop environments. Rest assured that your work will be 100%
portable to your final target.

There are many build options and configuration flags, allowing you to
precisely tune the PEG library to your requirements. The designers of PEG
intentionally structured the library such that many decisions are made at
‘compile time’ rather than at ‘runtime’ to improve overall system
performance. Configuration flags are also used to tune the library ROM
footprint by excluding features that are not required for your application.

To reconfigure the PEG library, you need to run the WindowBuilder
program, modify the configuration settings, generate a new pconfig.hpp
header file, and recompile each of the PEG source files to generate a new
PEG library archive. Refer to the WindowBuilder User’s Manual for a
complete description of each build option and instructions on generating a
new pconfig.hpp header file.

Remember that whenever you change your configuration settings, you
need to generate a new pconfig.hpp header file and do a ‘clean build’ of the
PEG library to ensure that your configuration changes have taken effect.

1.4 Library Source Files
This section describes each of the PEG library source files.

The PEG software is distributed with all of the source and header files
required to build the library. You only need to include in your make/project
file the source files for classes you will be using. Many files can be excluded
from your library depending on your system requirements.
Swell Software, LLC Installing and Building the PEG Library 3

Installing and Building the PEG Library
While it is possible to simply include the PEG source files in with your
application modules as part of your make process, most people prefer to
build PEG as a library for the following reasons:

• You will not often (if ever!) be required to change any of the PEG
source files, so you will have faster build times if PEG is linked as a
library.

• A good linker will not include PEG components that are not used by
your application.

• If you include the PEG object files individually in your linker command
line, they will generally all be included in your system software whether
they are actually referenced or not.

You will likely find additional source files in your distribution that are not
documented here. These source files are specific to the operating system
and target hardware that you have requested, and they are documented in
your distribution’s hardware/RTOS integration notes. This section
documents only those source files that are common to every distribution,
named the ‘core source files.’

 Source File Overview
The following source files are included in your PEG distribution:

Source File Contents
p2dpoly.cpp Peg2DPolygon class
pal256.cpp Generic 256 entry color palette
panimate.cpp PegAnimation class
panimwin.cpp PegAnimationWindow class
paniprmt.cpp PegAnimatedPrompt class
pbig5map.cpp Chinese Big5 to Unicode character mapping

tables and API functions
pbitmaps.cpp Built-in bitmap images for system buttons

and mouse pointers
pbmpconv.cpp Run time image conversion for BMP source
pbmprot.cpp Run time image rotation functions (PEG Pro

Only)
pbmpwrit.cpp Run time bitmap writer
pbprompt.cpp PegBitmapPrompt class
pbrush.cpp PegBrush class implementation.
pbutton.cpp Various button classes implementation
pcbdial.cpp PegCircularBitmapDial class
pcdial.cpp PegCircularDial class
pchart.cpp PegChart class
pcombo.cpp PegComboBox class
pdecbtn.cpp PegDecoratedButton class
4 PEG Pro Programming Manual Swell Software, LLC

Library Source Files
pdecwin.cpp PegDecoratedWindow class
pdial.cpp PegDial class
pdialog.cpp PegDialog class
pdirbwr.cpp PegDirectoryBrowser class
peditbox.cpp PegEditBox class
peditfld.cpp PegEditField class
peggrad.cpp PegGradient class
pegheap.cpp PegHeapManager class
peginit.cpp PegCreateFrameWork and PegDestroyFramework

functions
pegpci.cpp PEG PCI-bus access functions
pfbdial.cpp PegFiniteBitmapDial class
pfdial.cpp PegFiniteDial class
pfdialog.cpp PegFileDialog class
pfile.cpp PegFile filesystem encapsulation
pgifconv.cpp PegGifConvert class
pgroup.cpp PegGroup class
phelpbtn.cpp PegHelpButton class
picon.cpp PegIcon class
pimgconv.cpp PegImageConvert class
pjpgconv.cpp PegJpgConvert class
plist.cpp PegList, PegHorzList, PegVertList classes
pliteral.cpp PEG string constants
plnchart.cpp PegLineChart class
pmenfont.cpp PegMenuFont
pmenu.cpp PegMenu, PegMenuBar, PegMenuButton classes
pmesgwin.cpp PegMessageWindow class
pmessage.cpp PegMessageQueue class
pmlchart.cpp PegMultiLineChart class
pmlmsgwn.cpp PegMultiLineMessageWindow class
pmltbtn.cpp PegMultiLineTextButton class
pnotebk.cpp PegNotebook class
ppngconv.cpp PegPngConvert class
ppresent.cpp PegPresentationManager class
pprint.cpp PegPrinter interface class
pprogbar.cpp PegProgressBar class
pprogwin.cpp PegProgressWindow class
pprompt.cpp PegPrompt class
ppwdfld.cpp PegPasswordField class
pquant.cpp PegQuant class
prect.cpp PegRect class
presmgr.cpp PegResourceManager class
pscreen.cpp PegScreen class (partial)
pscrline.cpp PegScreen line, polygon functions
pscrnarc.cpp PegScreen Arc, Circle, Chord functions
pscroll.cpp PegHScroll and PVScroll
psincos.cpp Fixed-point sin/cos implementation
psjmap.cpp Shift-JIS to Unicode mapping tables
pslider.cpp PegSlider class
Swell Software, LLC Installing and Building the PEG Library 5

Installing and Building the PEG Library
 Header File Overview

Most source files also have a corresponding header file that prototypes the
class. There are additional header files included in your distribution for
configuring the PEG library options, defining the PEG data types, etc.

Applications that reference the PEG library need only include the header
file ‘peg.hpp.’ This header file first includes pconfig.hpp and conditionally
includes the remaining header files required to build the PEG library or to
build your application.

1.4.1 Additional files

There are many files in addition to the core library source files listed above.
These additional files are related to hardware integration, compiler make/
project files, RTOS integration, screen driver, touch driver, and keyboard
driver files. The specific set of additional files included in your installation is
dependent on your installation key and cannot be listed here.

For example, if you have ordered PEG for RTOS ‘myRtos’ and compiler
‘myCompiler’ and CPU evaluation board ‘myHardware,’ your installation
key will unlock many additional files specific to your RTOS, compiler, and
target hardware in addition to the core library files.

pspin.cpp PegSpinButton class
pspread.cpp PegSpreadSheet class
psprompt.cpp PegScrollPrompt class
pstatbar.cpp PegStatusBar class
pstchart.cpp PegStripChart class
psysfont.cpp System Font
ptable.cpp PegTable
ptextbox.cpp PegTextBox
pthing.cpp PegThing
ptimer.cpp PegTimerManager class
ptitle.cpp PegTitle
ptoolbar.cpp PegToolBar class
ptree.cpp PegTreeView
ptxtthng.cpp PegTextThing class
pvecfont.cpp PegVectorFont
pvprompt.cpp PegVPrompt
pvvlist.cpp PegVirtualVertList class
pwindow.cpp PegWindow
pzip.cpp PegZip/PegUnzip
6 PEG Pro Programming Manual Swell Software, LLC

Library Source Files
 Screen Driver
There are many derived versions of the PegScreen class, not all of which
are included in the standard source code distribution. Many versions of
PegScreen are available for specific video controllers used in embedded
systems and CPUs with built-in video controller functionality. If you are
using a video controller not specifically supported by one of the derived
PegScreen classes in your source code distribution, contact Swell
Software regarding the availability of a version for your specific controller.

You should always include the pscreen.cpp file in your PEG library build.
You should also include the PEG screen driver template matching your
target system color depth. Finally, you must also include one target-specific
screen interface class that depends on the platform for which you are
building the library.

The screen driver source files provided with your distribution are in the
directory peg\source\screendrv. The files in this directory will usually
include a set of desktop-oriented screen drivers (i.e. screen drivers for
running PEG on Windows or Linux/X11), in addition to screen drivers
specific to your target hardware.

 Additional files that may be required
The touch/mouse driver source files provided with your distribution are in
the directory \peg\source\touchdrv.

The operating system specific source files provided with your distribution
are in the directory \peg\source\rtos.

The preconfigured make/project files for building the PEG library are
provided under \peg\build.

Hardware-specific example applications are provided in the directory \peg\
targets. Files in this directory should not be included in your PEG library.
These files are typically example applications and target configuration files
and should be compiled and linked to make an example executable image.
Swell Software, LLC Installing and Building the PEG Library 7

Installing and Building the PEG Library
1.5 Preconfigured Make/Project Files

1.5.1 Building PEG for Windows Desktop

Project files are provided for building the PEG library for execution on a
Windows desktop in the \peg\build\win32 directory. Each folder under this
directory represents a compiler. Microsoft (many versions), Borland, Green
Hills, and possibly other compilers will be listed under this root folder.

 Building PEG for DOS
A Borland command line makefile and the necessary configuration files for
Borland C++ version 4.52 are provided in the directory \peg\build\dos. The
Borland make file, as delivered, will build the DOS development version of
PEG.

The batch file ‘makpeg.bat’ builds the PEG library for DOS, using the
makefile dospeg.mak. The batch file ‘maklib.bat’ creates a library file from
the PEG object files that can then be linked with your application level
software.

 Building PEG for X11 Desktop
PEG can be built to run under the X11 windowing environment under Linux.
To build for this environment switch to the peg/build/x11/linux directory and
type ‘make.’

 Building for Other Integrated RTOS
Build procedures for other RTOS products are provided in a separate
document. Please refer to the document entitled Integration Notes
included in your PEG distribution. If you purchased PEG for use with an
RTOS supported by Swell Software, you should have complete instructions
for configuring and building the library for use with your RTOS, in addition
to an example program preconfigured for a specific compiler and target.

 Building PEG for other targets
For most distributions, there will also be a folder under \peg\build that is
labelled with your RTOS and target compiler name. Under this folder, you
will find the correct project/make file to build PEG for your target hardware.

We suggest that you first build PEG to run in one of the preconfigured
environments. This will allow you to experiment with the library and become
familiar with the program startup sequence. You can also begin coding as
8 PEG Pro Programming Manual Swell Software, LLC

Preconfigured Make/Project Files
much or as little of your application-level software as you desire, as your
application level software will NOT have to be modified to run on your final
target. After you have read the remainder of this manual and experimented
with PEG, you will find it very straightforward to port PEG to run on a
custom hardware and software platform. If you have any questions during
this process, we encourage you to contact Swell Software for assistance.
We are generally able to have customers up and running on their target
platforms within one or two working days!
Swell Software, LLC Installing and Building the PEG Library 9

Installing and Building the PEG Library
10 PEG Pro Programming Manual Swell Software, LLC

Notes for users new to C++
C H A P T E R 2

COMMON TERMS AND CONCEPTS

This chapter introduces some of the basic concepts that are common to
C++ programming and graphical windowing interfaces. If your are an
experienced C++ programmer, you can safely skip ahead to Chapter 3.

The first section of this chapter introduces a few C++ programming
concepts that may be new to some users who have limited experience with
C++ programming. PEG is designed such that only a basic understanding
of C++ is required to make effective use of the library, and often developers
who have only limited ‘C’ programming experience are able to quickly begin
using PEG.

Users who are familiar with the EC++ (Embedded C++) standard should
note that PEG is fully compliant with EC++. PEG does not use C++
Exceptions, Templates, or RTTI (RunTime Type Identification). PEG does
not utilize multiple-inheritance.

The second section of this chapter describes the relationship between
objects that compose a graphical interface. Understanding this relationship
is vital to making your user interface work the way you intend, while also
working as efficiently as possible.

2.1 Notes for users new to C++
If your programming experience to date has focused primarily on ‘C’ and
assembly languages, you have chosen a terrific means for adding to your
programming skills. While C++ does not fit well in all programming tasks,
GUI development is one area, perhaps the best area, for application of the
C++ object-oriented programming methodology.

While it is not our goal to do a full tutorial on C++ programming, this section
of the manual will introduce you to a few critical concepts which must be
understood before you can effectively develop programs using PEG. After
working through the included examples, you will be well on your way to
productive use of the C++ language. We also recommend that you
continue to advance your knowledge of the C++ language through the
Swell Software, LLC Common Terms and Concepts 11

Common Terms and Concepts
study of any one of several excellent books on the subject. In particular,
Teach Yourself C++ (Herbert Schildt, McGraw-Hill) is a terrific and easy to
read tutorial. The C++ Programming Language (Stroustrop), while an
excellent reference for advanced users, is of more use to someone
contemplating writing a C++ compiler than to someone searching to gain
insight into practical use of the language. Many additional references fill
the void between beginning and advanced C++ language instruction.

 Objects
Put simply, objects are data structures and associated methods for
manipulating those structures. You define an object for the C++ compiler
by using the ‘class’ keyword. The data and functions defined within a class
declaration are called the class members. If you are a ‘C’ programmer and
you are familiar with defining your own data types via the ‘typedef struct’
syntax, you already understand the basics of defining and using objects. In
fact, the C++ keyword ‘class’ is interpreted almost identically to the keyword
‘struct,’ and the C++ standards committee had heated discussion regarding
removing the keyword ‘struct’ entirely since the two were basically
identical. The only difference, as any C++ user is aware, is that functions
and data members of a struct are by default public and members of a class
are by default private.

For example, the following two declarations are identical:

typedef struct // the ‘C’ (or C++) version
{
 int Count;
 char foo;
 long bar;
} Simple;

class Simple // the equivalent C++ declaration
{
 public: // makes everything ‘public’
 int Count;
 char foo;
 long bar;
};

The neat feature that C++ adds is the ability to include functions in your
objects, rather than just data. Of course, in the C language you can
manually maintain pointers to functions within your structures, and this is
really all that C++ is doing. The C++ compiler does all of the tricky bits of
storing indirect function pointers for you.
12 PEG Pro Programming Manual Swell Software, LLC

Notes for users new to C++
 Encapsulation
Encapsulation simply means that when you define an object you can
protect its internals from rogue outsiders by defining all or a subset of the
class members as ‘private.’ When you tell the C++ compiler that data and
methods are private, the compiler will not allow other code (other objects, C
functions, or whatever) access to those members. In addition, the term
encapsulation is intended to convey the idea that an object is self
contained; i.e., you as the user of an object have no need or desire to know
exactly how the object goes about its business, you only care that the
object does what it is supposed to do.

In addition to public and private members, a third group of members can be
defined as protected, which is somewhere between public and
private. When a class member is defined as protected, this tells the C++
compiler that unrelated classes or code cannot access the protected
member; however, classes derived from the class containing the protected
member can access the protected member function(s) and/or data.
If at some point you begin to examine the PEG library header files, you will
notice that the class declarations all follow a similar style. The public class
members, which are the class members the application-level software can
call, are always listed first in the declaration. Protected members (if any)
are listed next, followed by private members. Only the public and protected
members of the PEG library classes are documented in the API Reference
Manual, since you are prevented from direct access of the private member
functions and variables.

 Constructors
The first and most common member function you will encounter is called
the constructor. You recognize a constructor function by the fact that its
name is the same as the name of the class of which it is a member.
Constructors allow the designer of a class to specify exactly how the class
members should be initialized when an instance of an object is created.

Using the structure example above, when working in ‘C’ you could create a
new copy of struct Simple either by declaring an automatic (space for
Simple is made on the stack) or by using malloc() to allocate enough
memory to hold a Simple structure. The problem with this is that, in either
case, you do not know what values the data members of Simple will contain
when Simple is created. If you want all of the members to be initialized to
zero, you have to do this yourself (possibly by using a call to memset())
after you create storage space for Simple.
Swell Software, LLC Common Terms and Concepts 13

Common Terms and Concepts
C++ constructors overcome this problem. Every time a class of type
Simple is created, the constructor for class Simple (if one is defined) is
called to initialize the object. In fact, the designer of class Simple can
define many alternate constructors, and the appropriate version is called
depending on what parameters you pass when you create the object.

 Inheritance
When working with a C++ class library, it is very common to read the
documentation of a particular class and say to yourself ‘Gee, class xyz is
almost exactly what I need.’ C++ provides a critical method for handling
this situation, through the concept of inheritance. Inheritance allows you to
create new classes based on other classes. You are telling the compiler ‘I
want to define a new class that is nearly the same as class xyz, but I want
to change a few things.’ One way to change things is by overriding member
functions of the original class. To override a function means that in your
new class you define a function that has the same name as the function in
the original class. At run time, when the function is called, your
replacement version will automatically be called instead of the original.
Classes created in this way—that is, classes that are based on other
classes—are called derived classes. Derived classes are said to inherit
from their predecessors, hence the term inheritance. The predecessor
class is called the base class. There is nothing unique about a base class,
and, in fact, a derived class can serve as the base class for yet another
derived class. In addition to overriding functions, you can also add
completely new functions and/or additional data members in your derived
classes. You will have the opportunity to create your own derived classes
later in this manual as you work through the programming examples.

In the case of a class library such as PEG, the relationship among the
classes (called the class hierarchy) that compose a class library is very
important, and, since there are a large number of classes, it can also be
difficult to remember. A diagram or written description of the inheritance
structure is therefore very important for new users. The PEG class
hierarchy diagram is included later in this manual.

PEG uses inheritance heavily in the design of the class library. This allows
PEG to do some very powerful things very easily, and minimizes the size of
the PEG code because functions for performing certain tasks are used and
reused by all classes in the library.
14 PEG Pro Programming Manual Swell Software, LLC

Windowing Interface Terminology
 Inlining
The concept of function inlining is familiar to most users of ‘C.’ Inlining
allows the programmer to instruct the compiler to place the actual
instruction sequence generated by a function in place of a call to the
function. C++ extends this concept to allow a class definition to specify
functions that should be inlined. While the C++ standard does not enforce
this capability on C++ compiler vendors, all clever C++ compilers do a good
job of supporting function inlining. PEG uses inlining heavily to improve
performance.

2.2 Windowing Interface Terminology
This section introduces some terms that may be new to you if this is your
first experience with graphical programming.

 Window and Control
These terms are very loose in definition, and you should not read too much
into their use when you see them in this manual. These terms are only
used for convenience when describing program operation as an alternative
to itemizing long lists of actual class names. It is sometimes convenient to
group the PEG classes into two broad areas, the Window classes and the
Control classes. This does not always imply that a Window class is derived
from PegWindow or that a Control class is not derived from PegWindow,
although that is most often the case. The term Window implies only a
background object that contains other objects. The term Control is used to
refer to an object that is normally a child of a Window, or an object that the
end user may interact with directly.

In PEG, there is actually very little difference between a Window and a
Control. A Window can be a child of a Control, and Control can contain a
Window. Certain features, such as scrolling, are normally associated with
Windows, while other features such as notification messages are normally
associated with Controls. This does not mean that a control cannot scroll,
or that a Window cannot send a notification message. These terms are
only used to describe the general case. An application can modify and
extend this general case at will.

When you see the term Window, infer only that the documentation is
referring to any PEG object that is normally used as a background
container for other objects. Likewise, when you see the term Control, this is
simply a shorthand method of denoting the group of PEG classes that most
Swell Software, LLC Common Terms and Concepts 15

Common Terms and Concepts
often do not contain other objects, and are generally used directly by the
end user.

 Parent, Child, Sibling
These terms refer to the relationship between the windows, controls, and
other items that are all part of your interface. A control that is attached to a
window is termed a Child of that window. Likewise, the window that
contains the control is termed the Parent window. If there are several
controls attached to the same window, those controls refer to each other as
siblings.

While we have just described the most common case, there is nothing
internal to PEG that prevents a window class such as PegWindow from
being the child of a control, such as a PegButton. In fact, it is often very
useful to construct custom objects using exactly this type of parent-child
relationship.

Some GUI platforms place restrictions on the number of parent-child
generations that can be nested within the same window, or even within a
single application. PEG imposes no such restrictions, nor will anything
prevent an object that is a parent object in one case from becoming a child
of another object in a different case. This is a powerful feature of PEG,
because it allows you to reuse custom objects that you create in a variety of
different ways.

 Base, Derived, Inherited
The parent-child relationship described above is often confused with the
class hierarchy, which describes a completely different relationship among
the classes comprising your graphical interface. Some of this confusion
results from sloppy terminology, in that people often use the terms parent
and child when what they are really referring to is base and derived.

The term Base or base class is a relative term, indicating the named class
is the foundation for a class that is derived from it. A class that is called a
base class in one case could easily also be a derived class, inheriting data
and methods from an even more fundamental object.

It is especially important to remember the distinction between these terms
when you are reading the description of PEG message flow and message
handling. We have made every effort to ensure that the correct terminology
is used in all cases.
16 PEG Pro Programming Manual Swell Software, LLC

Windowing Interface Terminology
 Modal Execution
A window is said to be executed modally when that window must be closed
or completed by the end user before other windows are allowed to receive
any user input. This is most often used for executing a ‘Modal Dialog,’
which is a dialog window that must be closed before any other open
windows can receive user input such as a mouse click.

In PEG, any window can be executed modally. In fact, there can be several
modal windows operating at one time in multitasking environments. Modal
windows capture all input devices, preventing other windows and controls
from being active while the modal window is executing.
Swell Software, LLC Common Terms and Concepts 17

Common Terms and Concepts
18 PEG Pro Programming Manual Swell Software, LLC

PegPoint
C H A P T E R 3

FUNDAMENTAL DATA TYPES

This chapter introduces the custom data types defined by PEG. These data
types include simple 8-, 16-, and 32-bit data storage types, and more
complex types for passing information such as color, position, and bitmap
data. After you have been using PEG for a while, these data types will
become second nature and you will use them as easily as you now use
char or int. You will find the source code for the following definitions in the
file pegtypes.hpp. In general, definitions and constants that globally
affect all objects are contained in this file. Definitions and constants that are
specific to an object type are contained in the header file specific to that
object.

The following simple data types are used instead of the intrinsic data types
defined by the compiler to avoid conflicts when running on CPUs with
differing basic word length and data manipulation capabilities. In all cases,
longer bit length types on those machines that do not accommodate 8- or
16-bit data values may replace shorter bit length types. The following
definitions, contained in the file pegtypes.hpp, may need to be modified to
match the word length of your target CPU. The comment next to each data
type describes the storage requirements PEG requires for each type:

PEGBYTE signed 8-bit value
PEGUBYTE unsigned 8-bit value
PEGINT signed native int (size unspecified)
PEGUINT unsigned native int (size unspecified)
PEGSHORT signed 16-bit value
PEGUSHORT unsigned 16-bit value
PEGLONG signed 32-bit value
PEGULONG unsigned 32-bit value
PEGCHAR 8- or 16-bit character storage type
PEGBOOL TRUE/FALSE value
PEGCOLOR color storage type, size dependent on hardware config

3.1 PegPoint
PegPoint is a basic pixel address data type. The x,y position is always
relative to the top-left corner of the screen. PegPoint is defined as:
Swell Software, LLC Fundamental Data Types 19

Fundamental Data Types
struct PegPoint
{
 PEGSHORT x;
 PEGSHORT y;
};

Note that PegPoint contains PEGSHORT (signed 16-bit) data values. This
means that it is perfectly normal and acceptable during the operation of
PEG for at least some portion of an object to have negative screen
coordinates. This simply means that the object has been moved partially or
entirely off the visible screen. Of course, PEG clipping methods prevent the
object from trying to access the nonexistent area of video memory.

3.2 PegRect
A large part of your programming tasks in working with a graphical interface
revolve around defining and calculating rectangular areas on the screen. By
providing a very complete set of operators and miscellaneous member
functions, the PegRect class is designed to facilitate these types of
operations. PegRect is defined as:

struct PegRect
{
 void Set(PEGINT x1, PEGINT y1, PEGINT x2, PEGINT y2)
 {
 iLeft = x1;
 iTop = y1;
 iRight = x2;
 iBottom = y2;
 }

 void Set(PegPoint ul, PegPoint br)
 {
 iLeft = ul.x;
 iTop = ul.y;
 iRight = br.x;
 iBottom = br.y;
 }

 PEGBOOL Contains(PegPoint Test);
 PEGBOOL Contains(PEGINT x, PEGINT y);
 PEGBOOL Contains(PegRect &Rect);
 PEGBOOL Overlap(PegRect &Rect);
 void MoveTo(PEGINT x, PEGINT y);
 void Shift(PEGINT xShift, PEGINT yShift);
 PegRect operator &=(PegRect &Other);
 PegRect operator |= (PegRect &Other);
 PegRect operator &(PegRect &Rect);
 PegRect operator ^= (PegRect &Rect);
 PegRect operator +(PegPoint &Point);
 PegRect operator ++(int x);
20 PEG Pro Programming Manual Swell Software, LLC

PegBrush
 PegRect operator += (PEGINT);
 PegRect operator --(int x);
 PegRect operator -= (PEGINT);
 PEGBOOL operator != (PegRect &Rect);
 PEGBOOL operator == (PegRect &Rect);
 PEGINT Width(void) {return (iRight - iLeft + 1);}
 PEGINT Height(void) { return (iBottom - iTop + 1);}

 PEGSHORT Left;
 PEGSHORT Top;
 PEGSHORT Right;
 PEGSHORT Bottom;
};

3.3 PegBrush
A PegBrush is a simple data type passed to drawing functions. A
PegBrush contains the LineColor, FillColor, Pattern, Width, and Style for
your drawing. The PegBrush class is defined as shown:

class PegBrush
{
 friend class PegScreen;

 public:
 PegBrush();
 PegBrush(PEGCOLOR LColor, PEGCOLOR FColor,
 PEGINT BStyle = PBS_NO_ALIAS,
 PEGINT LWidth = 1);

 ~PegBrush();

 void Set(PEGCOLOR LColor, PEGCOLOR FColor,
 PEGINT BStyle = PBS_NO_ALIAS,
 PEGINT LWidth = 1)
 {
 LineColor = LColor;
 FillColor = FColor;
 Style = BStyle;
 Width = LWidth;
 }

 PEGCOLOR LineColor;
 PEGCOLOR FillColor;
 PEGULONG Pattern;
 PEGINT Width;
 PEGINT Style;
 PegBitmap *pBitmap;

 private:
 PegBitmap *pSysMap;
};

The LineColor is the foreground color for drawing text, polygons, etc.
Swell Software, LLC Fundamental Data Types 21

Fundamental Data Types
The FillColor is the color used to fill rectangles, polygons, etc.
Width is the outline width for Polygons, Rectangles, etc.
Style is a set of bitwise combined flags to modify the drawing style. The
Style flags are:

PBS_SOLID_FILL
The drawing shape (circle, rectangle, etc.) is solid filled.

PBS_BMP_FILL
The drawing shape (circle, polygon, etc.) is filled with a bitmap pattern. The
bitmap pattern is specified in the Brush.pBitmap field.

PBS_NO_ALIAS
Text and lines are drawn without anti-aliasing.

PBS_SIMPLE_ALIAS
Text and lines are anti-aliased to a fixed background color.

PBS_TRUE_ALIAS
Text and lines are anti-aliased to the actual background pixel color (PEG
Pro only).

PBS_UNDERLINE
Text is underlined.

PBS_ROUNDED0
Lines are drawn with round ends.

PBS_CENTER_LINE
If the Brush.Width field > 1, this flag indicates that the border should be
centered on the object perimeter. If this flag is not set, the border is drawn
inside the object perimeter.

PBS_PATTERN
This flag is used to draw a patterned rather than solid outline.

3.4 PegMessage
PegMessage defines the format of messages passed within the PEG
environment. PegMessage is defined as:
22 PEG Pro Programming Manual Swell Software, LLC

PegTimer
struct PegMessage
{
 PegThing *pTarget;
 PegThing *pSource;
 PEGUSHORT Type;
 PEGUSHORT Param;
 PegMessage *Next;

 union
 {
 PegRect Rect;
 PegPoint Point;
 PEGLONG ExtParams[2];
 void *pData;
 PEGLONG UserLong[2];
 PEGSHORT UserShort[4];
 PEGUSHORT UserUShort([4];
 PEGUBYTE UserUByte[8];
 };
};

On most machines, each PegMessage requires 24 bytes of RAM if
structure packing is enabled.

For user-defined messages, all but the Type and pTarget message fields
can be used in any way desired. There is much more information about
sending and receiving messages in Chapter 4, ‘PegMessageQueue.’

3.5 PegTimer
PEG timers provide a simple means for you to receive periodic timer
messages in your windows or controls. Any PEG graphical object can start
any number of individual timers. When the timer expires, that object will
receive a PM_TIMER message from PEG. The message Param member
will contain the ID of the timer that expired. If the timer is started with a non-
zero reset value, the timer will automatically load itself with the reset value
and begin a new timeout.

PEG timers are maintained by PegTimerManager. In order for PEG timers
to function, your system software must call the PegTimerManager member
function TimerTick periodically to indicate to PEG that one tick time has
expired. This is normally accomplished in the target specific implementation
of PegTask. For versions of PEG which have already been customized for
a particular real-time operating system, PegTimer is fully integrated with
the operating system timer services such that an unlimited number of
PegTimers are driven by a single OS timer.
Swell Software, LLC Fundamental Data Types 23

Fundamental Data Types
The TimerTick mechanism serves two purposes. First, it insulates PEG
from knowing anything about your target hardware time base. Second, it
allows you to tailor the frequency in which you strobe the PEG timer. For
example, very often it is not necessary for your GUI timers to be nearly as
accurate as your low-level timer interrupt. Let’s say that you want your PEG
timers to be accurate to 50 milliseconds, while your low-level timer interrupt
occurs every ten milliseconds. In that case, you would simply call the
PegMessageQueue::TimerTick() function once for every 5 interrupts
received.

You (or your operating system integration) determine the time base for
PEG timers. Therefore, the value loaded in a PEG timer is simply a number
of ticks, rather than any absolute time value. PEG defines the constant
“ONE_SECOND,” which should be set by you to equal the number of
PEG timer ticks that will occur in one second. When you load a PEG timer,
you should calculate the tick value based on this ONE_SECOND
definition. This way if your time-base changes during program
development, you will not have to track down every location where you are
using a PEG timer and modify the tick value used.

You start a PegTimer by calling the PegTimerManager member function
SetTimer(PEGUSHORT ID, PEGINT Initial, PEGINT Repeat). The
parameters allow you to specify a timer ID value, the first timeout period,
and successive timeout periods. The timer ID value can be any number
greater than zero. If you have one window or control that creates many
timers, you will probably want to assign them unique ID values so that you
can recognize each timer expiration message.

The Initial and Repeat timeout periods determine how many timer ticks will
expire before the timer ‘times out,’ and these can be the same value. If the
Repeat value is zero, the timer will time out only once and delete itself. This
is a one-shot timer.

While you have an active timer running, you will receive a PM_TIMER
message in your Message() handling function each time the timer expires.
When you want to stop a timer, you use the PegTimerManager member
function KillTimer(PEGSHORT Id). If you pass an ID value of zero to the
KillTimer function, all timers owned by the calling object are deleted.

SetTimer() can be called at any time after an object has been constructed
to start a PegTimer. All active timers should be deleted with a call to
KillTimer() prior to an object being destroyed. Further information about
24 PEG Pro Programming Manual Swell Software, LLC

PegBitmap
the PegTimer interface functions is provided in the PegMessageQueue
class reference, and an example using PegTimer is provided in Chapter 9
of this manual.

Your application level code should never instantiate a PegTimer directly.
PegTimerManager provides all of the interface functions you will need to
create and use PegTimers. However, for completeness, the definition of
PegTimer is shown below:

struct PegTimer
{
 PegTimer() {pNext = NULL; pTarget = NULL;}
 PegTimer(PEGLONG Cnt, PEGLONG Res)
 {
 pNext = NULL;
 pTarget = NULL;
 Count = Cnt;
 Reset = Res;
 }

 PegTimer(PegTimer *Next, PegThing *Who, PEGUSHORT Id,
 PEGLONG Cnt, PEGLONG Res)
 {
 pNext = Next;
 pTarget = Who;
 lCount = Cnt;
 lReset = Res;
 wTimerId = wId;
 }

 PegTimer *pNext;
 PegThing *pTarget;
 PEGLONG Count;
 PEGLONG Reset;
 PEGUSHORT TimerId;
};

3.6 PegBitmap
PegBitmap is a structure used to pass bitmap data to the PegScreen
bitmap drawing functions. PEG supports bitmaps in 1-bpp (2 color), 2-bpp
(4 color), 4-bpp (16 color), 8-bpp (256 color), 16-bpp (65536 colors) 24-bpp
(8-8-8 RGB), and 32-bpp ARGB formats. Further, PEG bitmaps may be
compressed or uncompressed and may have an alpha channel. PEG uses
RLE compression techniques for compressed bitmaps.
Swell Software, LLC Fundamental Data Types 25

Fundamental Data Types
PegBitmap data structures are created by WindowBuilder and saved in
your resource file. Your application software utilizes Bitmap IDs, which are
converted to PegBitmap data structures by the PegResourceManager.

The PegBitmap structure is defined as:

struct PegBitmap
{
 PEGUBYTE uFlags; // compressed, transparent, etc.
 PEGUBYTE uBitsPix; // 2, 4, or 8
 PEGUSHORT wWidth; // in pixels
 PEGUSHORT wHeight; // in pixels
 PEGULONG dTransColor; // transparent color for bmps > 8bpp
 PEGUBYTE *pStart; // address of bitmap data
};

Most PegBitmap structures used in your application will probably be
generated prior to compiling with WindowBuilder. However, PegBitmap
structures can also be created at run time using various means. The PEG
run-time image conversion classes allow an application to read and
decompress PNG, GIF, JPG, and BMP files into PegBitmap structures at
run time.

3.7 PegFont
A PegFont is a data structure that contains information to allow the PEG
software to draw text. PegFont data structures are generated by
WindowBuilder and saved in your application resource file. Your application
usually uses font IDs rather than directly referencing PegFont data
structures. Font IDs are converted to PegFont data structures by the
PegResourceManager.

The PegFont data structure is defined as:

struct PegFont
{
 PEGUBYTE Type; // bit-flags defined below
 PEGUBYTE Ascent; // Ascent above baseline
 PEGUBYTE Descent; // Descent below baseline
 PEGUBYTE CharHeight; // total height of character
 PEGUBYTE PreSpace; // leading space
 PEGUBYTE PostSpace; // trailing space
 PEGUBYTE LineHeight; // total height with pre and post
 PEGUSHORT BytesPerLine; // total width of one scanline
 PEGUSHORT FirstChar; // first character present in font
 PEGUSHORT LastChar; // last character present in font
26 PEG Pro Programming Manual Swell Software, LLC

PegCapture
 PEGUSHORT *pOffsets; // bit-offsets for variable-width font
 PegFont *pNext; // page link pointer
 PEGUBYTE *pData;
};

This structure contains all of the information needed by the PEG screen
driver to draw text on the graphical screen.

The PegFont.pData member points to a block of constant data that
describes the bitmap or rendering of each character. Several formats for
this data block are supported, and the specific format is indicated by the
PegFont.Type data field.

The PegFont.Type data field bits include:

PFT_VARIABLE // variable width font
PFT_OUTLINE // 2-bpp outline font format
PFT_ALIASED // 4-bpp anti-aliased font format
PFT_ZIPPED // LZW compressed font data
PFT_BMPFONT // 8-bpp bitmap font format
PFT_DROPSHADOW // 4-bpp drop-shadow font format

To summarize, you will not be manually creating or editing PegFont data
structures. That is the job of the font generation and editing facilities that
are included within the WindowBuilder program. This section is only for
reference and to provide some insight into the inner workings of PEG text
drawing capabilities.

3.8 PegCapture
The PegCapture data type is used by PEG to copy a rectangular region of
the screen pixel values to or from video memory. This is used by PEG to
hide and restore the mouse pointer and for various other operations, but
can also by the application level software whenever an area of the screen
needs to be saved and later restored. The PegCapture type is defined as:

class PegCapture
{
 public:
 PegCapture(void);
 ~PegCapture();
 PegRect &Pos(void) {return mRect;}
 PegPoint Point(void);

 void SetPos(PegRect &Rect);
Swell Software, LLC Fundamental Data Types 27

Fundamental Data Types
 PEGBOOL IsValid(void);
 void SetValid(PEGBOOL bValid);
 void Realloc(PEGLONG Size);
 void Reset(void);
 void MoveTo(PEGINT Left, PEGINT Top);
 void Shift(PEGINT xShift, PEGINT yShift)
 {mRect.Shift(xShift,yShift);}
 PegBitmap *Bitmap(void);

 private:

 PegRect mRect;
 PegBitmap mBitmap;
 PEGLONG mDataSize;
 PEGBOOL mValid;
};
28 PEG Pro Programming Manual Swell Software, LLC

C H A P T E R 4

CHAPTER4PEG EXECUTION MODEL

This chapter introduces the PEG execution model and describes how the
fundamental PEG classes work together to create a working interface. This
chapter focuses on establishing a macro view of the internal components of
a graphical presentation created with PEG, while the following chapters
detail actual class descriptions, public functions, and class usage.

You should be aware that this chapter and those immediately following
contain a large amount of important information, and much of this
information is not trivial. We are now going to dive under the hood and
examine how PEG works. We therefore encourage you to take a break,
stretch your legs, and then settle in for some concentrated reading. When
you reach the programming examples, you will be well on your way to
becoming a PEG power user!

Since many of the topics covered in this chapter are interdependent, it is
unavoidable we must occasionally introduce terms or refer to PEG classes
that have not yet been fully defined. For this reason, we recommend that
you read chapters 3, 4, and 5 straight through from top to bottom the first
time, and then return and review each section to solidify your
understanding. These chapters are followed by several programming
examples, which will help you to put it all together.

PEG supports three general execution models, the single-threaded or
standalone model, the Multithread model, and the PRESS model. In order
to avoid confusion, most of the information presented in this chapter
assumes that you are running in the Multithread model, which means that
you are running PEG within some operating system environment such as a
hard-real-time RTOS, or possibly Linux or WinCE.

You can of course also run PEG standalone or in a multiprocessor
distributed environment. All of the concepts presented are valid regardless
of your execution model. A complete discussion of multitasking as it relates
to PEG and the supported execution models is included in the ‘PEG
Multitasking’ chapter.
Swell Software, LLC PEG Execution Model 29

PEG Execution Model
4.1 Overview
The components of PEG that control the execution of your interface are
PegTask, PegMessageQueue, PegPresentationManager,
PegTimerManager, PegResourceManager, and PegScreen. These
components work together to ensure that your interface operates in a well-
defined, predictable, and fault-tolerant manner. These components are also
central to ensuring that your PEG application is portable to a variety of
embedded systems. In this chapter, we will describe the overall software
architecture and PegTask. In the following chapters, we will fully investigate
PegPresentationManager, PegTimerManager, PegMessageQueue,
PegResourceManager, and PegScreen.

PegTask provides the interface between PEG and the real-time operating
system. When running standalone or in a single-threaded environment,
PegTask is simply the entry point to the main program loop. PegTask is not
a function name, but rather a conceptual thread of execution.

PegMessageQueue provides a FIFO-style message queue for sending
information between PEG objects. PegMessageQueue provides the
mechanism for sending user input events to PEG.

PegTimerManager provides a simple interface for low-resolution timing
operations.

PegResourceManager organizes and controls access to your application
resources. Resources include strings, bitmaps, fonts, and colors.

PegPresentationManager keeps order on the visible screen. This involves
keeping track of which window(s) are on top of other windows, maintaining
the status of each object, and remembering which object should receive
user input.

Finally, PegScreen provides a layer of insulation between PEG and the
physical display device. PegScreen does the dirty work of drawing on the
display, and provides all of the low-level drawing functions PEG objects
need to present themselves to the user.

4.1.1 Software Block Diagram

A software block diagram of an executing PEG application is shown on the
following page. This drawing depicts input device(s), PegMessageQueue,
30 PEG Pro Programming Manual Swell Software, LLC

Overview
PegPresentationManager, miscellaneous graphical objects added to the
PresentationManager, and the PegScreen driver. These are the
components of every user interface built using PEG.
Swell Software, LLC PEG Execution Model 31

PEG Execution Model
4.2 Program Startup
PEG startup is very simple. In PegTask (or in your main function if running
standalone), the function named PegCreateFramework() is called to create
and initialize each of the above required components.
PegCreateFramework() constructs PegPresentationManager,
PegMessageQueue, PegTimerManager, PegResourceManager, and
the derived version of PegScreen that is required for the target system.
These components are required for any PEG application to run.

After the PEG framework is initialized, PegTask calls the user-supplied
function named PegAppInitialize(). This is the entry point from the
application-level software perspective. The PegAppInitialize() function can
be created by WindowBuilder or it can be handwritten.

PegTask is tailored to the execution environment, while PegAppInitialize()
is application defined and does not change from one environment to
another. This segmentation follows the PEG philosophy of insulating all
application-level software from the target environment, allowing your
application software to run without modification when moving from one of
the predefined development environments to the final target system.

PegAppInitialize() is where you, the user interface designer, create and
display the windows, dialogs, or other graphical elements that will be
displayed immediately after system startup. The contents of
PegAppInitialize() are entirely up to you. You can initially display only one,
several, or even no graphical elements at all. It is most common to initially
display at least one application window, and then allow subsequent
windows and dialogs to appear as defined by the user interface menu and
user input actions. As a preview, here is an example of what
PegAppInitialize() might look like in your application software:

void PegAppInitialize(PegPresentationManager *pPresent)
{
 // install resource used by your application:

 PegResourceManager::InstallResourcesFromTable(&MyResTable);

 // create and add your first window
 pPresent->Add(new MyWindow());
}

We have not covered all of the information you need to fully understand this
example, so don’t worry about the details. In the above example, we first
32 PEG Pro Programming Manual Swell Software, LLC

Program Startup
install or register the resources (fonts, bitmaps, etc.) used by the
application with PegResourceManger. This resource table is generated by
WindowBuilder.

Next, the function constructs an instance of a window class named
‘MyWindow,’ and added that window to PegPresentationManager by
calling the PegPresentationManager member function ‘Add.’ This is a
typical implementation of the PegAppInitialize() function.

After calling PegAppInitialize(), PegTask calls the
PegPresentationManager member function Execute(). This is where the
central message-processing loop of PEG begins. We will investigate
message processing as it relates to PEG in the following chapter,
‘PegMessageQueue.’

4.2.1 PegTask

The graphical interface should be viewed conceptually as a continuous low-
priority task in the overall multitasking system. During execution, messages
are dispatched from PegMessageQueue to PegPresentationManager,
and PegPresentationManager in turn routes messages to the various
graphical objects for processing. While the graphical interface is not truly
running continuously in a multitasking system, the multitasking aspects are
transparent to the entire graphical interface with the exception of PegTask.

PegTask is a conceptual thread of execution and is implemented in various
ways dependent on the underlying operating system. When running in a
standalone environment such as DOS, PegTask is simply the function
main().

The following pseudo-‘C’ code illustrates a typical implementation of
PegTask. The actual implementation will vary slightly from one RTOS
integration to another:

void PegTask(void)
{
 // Initialize the PEG framework:

 PegRect ScreenSize;
 Rect.Set(0, 0, 639, 479);

 PegCreateFramework(ScreenSize);

 // call application initialization function:
Swell Software, LLC PEG Execution Model 33

PEG Execution Model
 PegAppInitialize(pPresentation);
 pPresentation->Execute(); // run PEG

 // returns only if the application is terminated
 // delete PEG foundation objects
 PegDestroyFramework();
}

The example above is generally all that is required to run PEG as a single
task in any real time operating system environment.

4.2.2 PegIdleFunction

Note that PegIdleFunction() is not required and is not called by
versions of PEG which integrated with a commercial RTOS.

In a standalone, single-threaded environment, a second user-supplied
function named PegIdleFunction() is called by PEG when there are no
longer any messages in the message queue that require processing. In this
case, the graphical interface is up to date and does not need the CPU.
PegIdleFunction() is defined by you, and is typically where you insert calls
to external system functions that do the real work of your embedded
system. Note that PegIdleFunction must return periodically to allow PEG to
check for input messages and keep the screen updated. It is not
permissible to enter an endless loop within PegIdleFunction().

Versions of PEG that have been integrated by Swell Software with a
commercial RTOS do not use this callback mechanism; instead, they
automatically suspend or block the PegTask(s) when no messages are
available for processing.

Below is an example implementation of PegIdleFunction for a system in
which all input devices are polled. The following is the DOS version of
PegIdleFunction() contained in the file dospeg.cpp:

void PegIdleFunction(void)
{
 PollTime(); // see if time has changed
 PollMouse(); // see if mouse has changed
 PollKeyboard(); // see if keyboard has changed
}

been selected to receive input events.
34 PEG Pro Programming Manual Swell Software, LLC

Program Startup
You can also override the user’s input selection and manually command
PegPresentationManager to move the input focus at any time by calling
the PegPresentationManager::MoveFocusTree() function. This function
will set input focus to the indicated object by sending PM_NONCURRENT
messages to objects that are no longer members of the input focus branch,
and PM_CURRENT messages to objects that are members of the new
input focus branch. The effect is that non-directed input messages will be
sent to the newly designated input object. In most circumstances, you will
not be required to manually adjust the input focus; however, this capability
is available when you need to use it.

When a new window is added to PegPresentationManager, that window
automatically receives input focus. Likewise, if that window has any child
objects, the window will (by default) search for the top-left most child object
capable of receiving input focus. This continues until a leaf node (an object
with no children) is found, and that is the object which will initially have input
focus when a new window is displayed.
Swell Software, LLC PEG Execution Model 35

PEG Execution Model
36 PEG Pro Programming Manual Swell Software, LLC

C H A P T E R 5

CHAPTER5PEGMESSAGEQUEUE

PegMessageQueue is a simple encapsulated FIFO message queue with
member functions for queue management.

How do messages get into the PegMessageQueue? They are placed in
the message queue from one of three sources:

• Input devices, such as a mouse, touch screen, or keyboard.

• Any other task in the multitasking system.

• From PEG objects themselves.

The messages placed in PegMessageQueue are the driving force behind
the graphical interface. These messages contain notifications and
commands that cause the graphical elements to redraw themselves,
remove themselves from the screen, resize themselves, or perform any
number of various other tasks. Messages can also be user-defined,
allowing you to send and receive a nearly unlimited number of messages
whose meaning is defined by you. For example, it would be very common
to have a graphical element send a message to another task in the system
requesting data for display. The target task receives the request and
responds, sending the response message back to the graphical element.

PEG defines its own message format. The PEG message format never
changes from one operating system to another or when running on the
desktop vs. running on your target. When running with a real-time operating
system, PEG implements the PegMessageQueue by utilizing the
underlying operating system services. To your application level software, it
always appears simply as PEG messages running through the
PegMessageQueue, regardless of the underlying implementation. This of
course helps to make your application software completely portable across
operating systems.
Swell Software, LLC PegMessageQueue 37

PegMessageQueue
5.1 PEG Message Definition
PegMessage is a data structure that contains members indicating the
source, target, and content of the message. The definition of this data
structure is shown below:

struct PegMessage
{
 PEGUSHORT Type;
 PEGUSHORT Param;
 PegThing *pTarget;
 PegThing *pSource;
 PegMessage *Next;

 union
 {
 PEGLONG ExtParams[2];
 PegRect Rect;
 PegPoint Point;
 void *pData;
 PEGLONG UserLong[2];
 PEGULONG UserULong[2];
 PEGSHORT UserShort[4];
 PEGUSHORT UserUShort[4];
 PEGUBYTE UserUByte[8];
 };
};

On most systems, each PegMessage structure requires 24 bytes of
memory. Note that the PegMessage structure contains a union, and these
union data fields overlap in memory. You can only assign values to one
member of the union.

Messages are identified by the member field Message.Type. This is a 16-
bit unsigned integer value that allows 65,535 unique message types to be
defined. Currently PEG reserves the first 0x4000 message type values for
internal messages, which leaves message values 0x4000 through 0xffff
available for user definition. The number of messages reserved for use by
PEG may change slightly in future releases, and the library therefore
provides a #define indicating the first message value that is available for
user definition. This #define is called FIRST_USER_MESSAGE.

 Message Flow and Routing
PEG follows a bottom-up message flow philosophy. This means that
whenever possible messages pulled from PegMessageQueue are sent
directly to the lowest level object that should receive the message. If the
38 PEG Pro Programming Manual Swell Software, LLC

PEG Message Definition
object does not act on the message, it is passed ‘up the chain’ to its parent,
which may be any other type of object, such as a PegGroup or PegWindow.
This flow continues until either an object processes the message, or the
message arrives at PegPresentationManager. If a user-defined message
arrives at PegPresentationManager, it will either be passed to a callback
function that you define, or if no callback function is defined, the message
will be discarded. This occurrence is usually an indication that you forgot to
catch a message in one of your window classes.

To define a default message handler that will process all user-defined
messages that arrive at PegPresentationManager, you must call the
PegPresentationManger::SetUserMessageHandler(...) function, which is
fully defined in the API reference manual.

Many messages, especially user-defined messages, may be directed
towards a particular object by the pTarget message field or by the message
Param field. If pTarget is anything other than NULL, the message is always
sent directly to the object pointed to by pTarget. This type of message is
called a directed message.

Other messages do not have a particular object as their target. Examples of
these messages include mouse, touch screen, and keyboard messages. In
these cases, the pTarget member of the message is set to NULL, and it is
the responsibility of PegPresentationManager to determine which object
should receive the message. Messages of this type are referred to as
undirected messages. We will talk more about directed and undirected
messages when we discuss the multitasking capabilities of PEG in a later
chapter.

When a user-defined message is pulled from the message queue and it
has a pTarget value of NULL, the message routing functions assume
that the message Param field contains the ID of the object that should
receive the message. This means that there are two ways of directing
user-defined messages to particular objects. You can load the message
pTarget field with an actual pointer to the destination object, which always
takes precedence, or you can load the pTarget field of the message with
NULL and PegPresentationManager will route the message to the first
object found with an ID value matching the message Param member. If you
want to route user-defined messages using object ID values, those objects
should have globally-defined object IDs to ensure that there are never
multiple objects visible with duplicate ID values.
Swell Software, LLC PegMessageQueue 39

PegMessageQueue
When a PEG object sends a system-defined message to its parent, the
message contains a pointer to the object that sent the message. This
pointer is contained in the message field called pSource. This makes it
very easy to identify the sender of the message and perform operations
such as modifying the appearance of the object, interrogating the object for
additional information, and so on.

 PEG System Messages
PEG messages can be divided into two types: PEG system messages,
which are generated internally by PEG to control and manipulate PEG
objects, and USER_DEFINED messages, which are defined and used by
your application program. Whether a message is a system message or a
user message is determined by the value of the Message.Type field. This is
a 16-bit unsigned value. PEG reserves Message.Type values 1-
FIRST_USER_MESSAGE - 1. This leaves message types 0x4000 through
0xffff available for user definition.

PEG uses messages internally to command objects to perform certain
operations. These internally-generated messages are called the system
messages. PEG system messages are no different from user-defined
messages, with the exception that the Type values of these messages are
between 1 and FIRST_USER_MESSAGE. The definition of these
messages is determined by PEG, and PEG objects understand what to do
when they receive various system messages.

In addition to defining your own messages, it is very common to want to
receive and process system messages that are generated internally by
PEG. This is sometimes called ‘intercepting’ a message, because you can
catch a message that PEG has sent to an object and change the
interpretation of the message, or even cause the object to ignore the
message entirely. Working examples of how to do this are provided in the
programming chapter of this manual.

While at first you may want to avoid intercepting system messages, as your
confidence in working with the library grows, you will find that this is often
the most convenient way to accomplish many tasks. A complete list of the
PEG system messages is shown below. If you are reading this chapter of
the manual for the first time, we suggest that you continue on to the next
section. After you have gained an overall understanding of this material,
you should examine the system message definitions and read how each
message is used.
40 PEG Pro Programming Manual Swell Software, LLC

PEG Message Definition
 System Message List
The following, while not a complete list of the PEG system messages, are
the system messages that would potentially be of interest in the application-
level software. Additional control-specific messages are documented in the
section of the reference manual that describes each particular control.

Message Description
PM_ADD This message can be issued to add an object

to another object. The message pTarget field
should contain a pointer to the parent object,
and the message pSource filed should contain
a pointer to the child object.

PM_ADDICON This message is sent to a parent window when
a child window has been minimized. This tells it
to draw an icon at the bottom of the parent
window representing the child window. The
pData field contains the PegIcon to add.

PM_BEGIN_MOVE This message is sent by a PegTitle or
PegStatusBar object to their parent window. It
tells it that the user has started moving the
window. The Point field of the message
represents the originating point before the
move.

PM_CLOSE Recognized by PegWindow derived objects,
and causes the recipient to remove itself from
its parent and delete itself from memory.

PM_CURRENT This message is sent to an object when it
becomes a member of the branch of the
presentation tree which has input focus.

PM_CUT This message is sent to cut text from a
PegTextThing object.

PM_DESTROY This message is sent to
PegPresentationManager to destroy an
object. The pSource member of the message
should point to the object to be destroyed.
Swell Software, LLC PegMessageQueue 41

PegMessageQueue
PM_DIALOG_NOTIFY This message is sent to the owner of a
PegDialog when the dialog window is closed if
the dialog window is executed non-modally.
The message iData member will contain the ID
of the button used to close the dialog window.

PM_DRAW This message can be sent to an object to force
that object to redraw itself.

PM_EXIT This message is sent to
PegPresentationManager to cause
termination of the application program.

PM_GAINED_KEYBOARD This message is sent to an object when it gains
keyboard input focus. This is only used when
PEG_KEYBOARD_SUPPORT is enabled.

PM_HIDE This message is sent to an object whenever it
is removed from a visible parent.

PM_HSCROLL This message is sent to a window to tell it to
scroll its client area left or right. The Param
field contains the current scroll position and the
ExtParams[0] field contains the new scroll
position.

PM_KEY This message is sent to the current input object
when keyboard input is received. The message
Param member contains the corresponding
ASCII character code, if any, and the lData
member of the message contains the keyboard
scan code, if available.

PM_KEY_RELEASE This message is sent to the current input object
when the user has released a key on the
keyboard. This is analogous to a
PM_LBUTTONUP message with mouse clicks.
The message Param member contains the
corresponding ASCII character code, if any,
and the Param member of the message
contains the keyboard scan code, if available.

PM_LANGUAGE_CHANGEThis message is sent to all PegTextThing
objects whenever the language changes by
calling SetCurrentLanguage(). This is only
used when PEGSTRING_IS_ID is enabled.
42 PEG Pro Programming Manual Swell Software, LLC

PEG Message Definition
PM_LBUTTONDOWN This message is sent to an object when the
user generates left mouse click input.
PegPresentationManager routes mouse input
directly to the lowest child object containing the
click position. If the child object does not
process mouse input, the message is passed
up to the parent object. This process continues
until an object in the active tree processes the
message, or the message ends up back at
PegPresentationManager. The position of the
mouse click is included in the message Point
field.

PM_LBUTTONUP This message is sent to an object when the
user releases the left mouse button. The flow
of this message is identical to
PM_LBUTTONDOWN.

PM_LOST_KEYBOARD This message is sent to an object when it loses
keyboard input focus. This is only used when
PEG_KEYBOARD_SUPPORT is enabled.

PM_MAXIMIZE This message can be sent to any PegWindow-
derived object. If the target window is sizeable
(as determined by the PSF_SIZEABLE status
flag), it will resize itself to fill the client rectangle
of its parent.

PM_MINIMIZE Similar to PM_MAXIMIZE, this message can
be sent to any PegWindow-derived object. If
the window is sizeable, it will create a proxy
PegIcon, add the icon to the parent window,
and remove itself from its parent.

PM_MWCOMPLETE This message is sent to the owner of a
PegMessageWindow when the message
window is closed if the message window is
executed non-modally. The message Param
member will contain the ID of the button used
to close the message window.

PM_NONCURRENT This message is sent to an object when it loses
membership in the branch of the presentation
tree which has input focus.
Swell Software, LLC PegMessageQueue 43

PegMessageQueue
PM_PARENTSIZED This message is sent to all children of a
PegWindow-derived object if the window is
resized. This makes it very easy for child
windows that want to maintain a certain
proportional spacing or position within their
parent to catch this message and resize
themselves whenever the parent window is
sized.

PM_POINTER_ENTER This message is sent to an object when the
mouse pointer (if any) passes over an object.

PM_POINTER_EXIT This message is sent to an object when the
mouse pointer (if any) leaves the object.

PM_POINTER_MOVE This message is sent to an object whenever
the mouse pointer moves over the object.

PM_REMOVETHING This message is sent to an object to tell it to
remove another object. The pSource field
points to the object that will be removed.

PM_RESTORE This message is sent to a window to tell it to
restore its dimensions to the previous settings
before it became maximized.

PM_SHOW This message is sent to an object when it is
added to a visible parent, before the object is
first drawn. This allows an object to perform
any necessary initialization prior to drawing
itself on the screen.

PM_SIZE This message is sent to an object to cause it to
resize. This is equivalent to calling the Resize()
function. Note that PEG does not differentiate
between moving an object and resizing an
object. Both are accomplished via the Resize
operation. The new size for the object is
included in the message Rect field.

PM_RBUTTONDOWN This message is sent in systems that support
right mouse button input. PEG objects do not
process right mouse button messages.

PM_RBUTTONUP This message is sent in systems that support
right mouse button input. PEG objects do not
process right mouse button messages.
44 PEG Pro Programming Manual Swell Software, LLC

PEG Message Definition
 User-Defined Messages

User-defined messages are message types you create for your own
purposes. You may have other tasks in the system that send user-defined
messages to your PEG task, or you may have one PEG window or control
send a user-defined message to another window or control.

There are many other reasons you will want to define your own messages,
and it will become clearer as you begin using the library. As an example to
get you thinking in messaging terms, suppose your interface has, at some
point, two separate but related windows visible on the screen. Let us call
these windows WindowA and WindowB. WindowA displays several data
values, in alphanumeric format, that can be modified by the user. WindowB
displays these same data values as a line chart. When the user modifies a
data value in WindowA, we want WindowB to update the line chart to reflect
the new value. One way of accomplishing this is to define a new message
that contains the altered data value. When WindowA is notified by one of its
child controls that a value has been changed, it builds an instance of the
newly defined message, places the data value into the message, and
sends the message to WindowB. When WindowB receives the message,
WindowB realizes that the line chart should be redrawn using the new data
value.

When you define your own messages, we suggest that you do so by using
an enumeration, and that you assign the value of the first enumeration
equal to FIRST_USER_MESSAGE. For example, the following class
declaration includes the typical method of defining messages for use by
your application:

class MyWindow::public PegWindow
{

PM_TIMER This message is sent to an object that has
started a timer via the PegMessageQueue
TimerSet function when that timer expires. The
ID of the timer is included in the Param
member of the message.

PM_VSCROLL This message is sent to a window to tell it to
scroll its client area up or down. The
ExtParams[1] field contains the current scroll
position and the ExtParams[0] field contains
the new scroll position.
Swell Software, LLC PegMessageQueue 45

PegMessageQueue
 public:

 enum ThisWindowMessages // my user-defined messages
 {
 TURN_BLUE = FIRST_USER_MESSAGE, // always start with this
 TURN_GREEN,
 TURN_INVISIBLE
 };
}

The above example illustrates a common way of defining your own
messages. We have implied in this example that you can reuse message
values over and over again since the message number enumeration is a
member of the class, rather than a global enumeration. This is in fact the
case. As long as the object receiving the message can clearly identify what
the message means, you don’t have to worry about reusing the same
message numbers at various points in your application.

There are three ways to send a message from one object to another. First,
you can call the destination object’s message handling function directly,
passing your message as a parameter. Second, you can load the message
pTarget field with the address of the object (or any object) that should
receive the message and push the message into PegMessageQueue.
Finally, you can load the message pTarget field with NULL, the message
Param member with the ID of the target, and push the message into
PegMessageQueue. The last method is most often preferred.

If you load message pTarget values with pointers to application objects,
you must ensure that the object is not deleted before the message arrives.
When a user-defined message contains a non-NULL pTarget value, there
is no verification that the pTarget field of the message is a valid object
pointer. For this reason, in most situations it is better to use NULL pTarget
values and route messages using object IDs. If PegPresentationManager is
unable to locate an object with the indicated ID, the message is simply
discarded.

There are also differences between these methods in terms of the order in
which things are done. If you push a message into PegMessageQueue,
the sending object immediately continues processing, and the target object
will receive and process the new message after the sending window returns
from message processing. If you call the receiving object’s message
handling function directly, it will immediately receive and process the
message, in effect preempting the current execution thread. While these
46 PEG Pro Programming Manual Swell Software, LLC

Signals
differences are generally inconsequential for user-defined messages, they
can be very important for PEG system messages.

5.2 Signals
Messages are used to issue commands or send other information between
objects that are part of your user interface. The most common use of a
message is for a child object to notify the object’s parent that is has been
modified. For example, a button will notify its parent window that it has been
clicked, or a slider control will notify its parent that the slider value has been
changed. This usage is so common that PEG defines a special syntax for
these notification messages. This syntax is called Signaling, and the
messages sent and received via Signaling are called Signals. Signals are
designed to simplify your programming effort by reducing the complexity
associated with handling child notifications:

• Very often a single window, such as a modal dialog window, will have a
large number of child objects. It can be very difficult to remember all of
the unique messages associated with each of these objects.

• Complex control types, such as PegEditField or PegComboBox, can be
modified in several different ways. The result of this is that either multiple
message types must be sent by the control to the parent window, or the
receiver of a single notification message would have to further
interrogate the control to determine exactly why it sent a message.

• Although a control may define several different types of modification, you
may not be interested in every type of control modification that can occur.
In that case, you do not want the control to waste processing time by
generating messages in which you are not interested.

• Finally, to facilitate the implementation of a RAD window prototyping tool
such as PEG WindowBuilder, a consistent, simple, and robust message
definition method must be in place.

PEG signaling solves each of these problems. Basically, signaling is
nothing more than allowing an object to automatically generate and use
multiple message types based on a single ‘object ID’ value. As you create a
control object that uses signaling, you can further define which signals you
are interested in and which you are not. This prevents the object from
generating unnecessary messages and wasting CPU time.
Swell Software, LLC PegMessageQueue 47

PegMessageQueue
A further advantage of the PEG signaling syntax is that all message values
related to signaling are calculated at compile time, and signaling therefore
adds no overhead to the run-time performance of PEG.

When you define an object that uses signaling, you only have to specify the
object’s ‘ID’ value (which can and should be an enumerated ID name) and
which signals you are interested in. In order to process signals generated
by that object, you only have to remember the object’s ID. In the chapter
titled ‘Programming with PEG,’ the example ‘PEG Signals’ illustrates the
use of PEG signaling.

PEG defines many different signals, or notification messages, that can be
monitored for each control. Whenever the control is modified by the user,
the control checks to see if you have configured it to notify you of the
modification. If you have, the control automatically generates a unique
message number based on the control ID and the type of notification. The
message source pointer is loaded to point to the control, and the message
is then sent to your parent window or dialog.

To receive a signal, PEG defines the PEG_SIGNAL macro, which is used
in your parent window message-processing function. The parameters to the
PEG_SIGNAL macro are the object ID and the notification message in
which you are interested. The PEG_SIGNAL macro is a shorthand
method for determining the exact message number sent by a control with a
given ID and corresponding to one of the possible notification types.

Not all notification signals are needed or supported by all controls. For this
reason, the reference documentation for each control type that uses
signaling includes a list of the notification messages supported by that
control.

 Control ID definition and signal processing example
The example on the following page illustrates the use of signals in the
definition and run-time processing of a typical dialog window. Since we
have not yet discussed all of the information you need to know to fully
understand this example, we don’t want you to be concerned with the
details. Instead, simply examine the syntax for defining the control object
IDs for each of the dialog controls and the message processing statements
corresponding to each control.

We present the message handling function of the dialog window here as a
preview allowing you to observe the syntax of PEG signaling.
48 PEG Pro Programming Manual Swell Software, LLC

Signals
The first bit of code is from the header file for the dialog window. Each child
control is assigned an enumerated ID, as in ‘USER_NAME’ and
‘HAS_EMAIL.’ In the second code segment, we find the message
processing function, where notifications from these controls are caught
using the PEG_SIGNAL macro. The parameters to the PEG_SIGNAL
macro are the ID of the control and the notification type that we are
interested in catching. This syntax has the further advantage of making the
code self documenting, since as you become familiar with this syntax you
will quickly be able to recognize the control type and notification that each
case statement is processing.

// Excerpt from MyDialog dialog window header file:

class MyDialog : public PegDialogWindow
{
 private:

 enum MyChildControls
 {
 USER_NAME = 1, // string control ID
 HAS_EMAIL, // check box ID
 EMAIL_ADDRESS, // email address string ID
 };

};

// excerpt from MyDialog message processing function:

 switch (Mesg.Type)
 {
 case PEG_SIGNAL(USER_NAME, PSF_TEXT_EDITDONE):
 // add code for user name modification here:
 break;

 case PEG_SIGNAL(USER_NAME, PSF_FOCUS_RECEIVED):
 // add code here to bring up help for user name:
 break;

 case PEG_SIGNAL(EMAIL_ADDRESS, PSF_TEXT_EDITDONE):
 // add code for email address change here:
 break;

 case PEG_SIGNAL(HAS_EMAIL, PSF_CHECK_ON):
 // add code for checkbox turned on:
 break;

 case PEG_SIGNAL(HAS_EMAIL, PSF_CHECK_OFF):
 // add code for checkbox turned off:
 break;
Swell Software, LLC PegMessageQueue 49

PegMessageQueue
50 PEG Pro Programming Manual Swell Software, LLC

C H A P T E R 6

CHAPTER6PEGPRESENTATIONMANAGER

PegPresentationManager keeps track of all of the windows and sub-
objects present on the display device. In addition,
PegPresentationManager keeps track of which object has the input focus
(i.e. which object should receive user input such as keyboard input), and
which objects are ‘on top’ of other objects. Since there is no limit to the
number of window and controls and other objects that may be present on
the screen at one time, this quickly becomes a complex task.

How does PegPresentationManager keep track of all of those windows
and their children and grandchildren? By using tree structured lists. Intrinsic
to the design of PEG, all objects that can be displayed are derived at some
point in their hierarchy from a common base class named PegThing. We
will give you the details of the PegThing class in a later chapter, but for
now two important members of PegThing are a pointer to each
PegThing’s first child object, and a second pointer to each PegThing’s
next sibling. Using these two pointers, PegPresentationManager
maintains all objects in lists, as shown below
Swell Software, LLC PegPresentationManager 51

PegPresentationManager

PegPresentationManager is also derived from PegWindow, which is
derived from PegThing. This means that PegPresentationManager is more
or less just another window, although in this case the window has no
border, can often appear invisible, and always fills the entire screen or
display. In essence, PegPresentationManager is the great-great-
grandfather of all windows, dialogs, and controls you will display during the
execution of your system software. We often use the term ‘top level
window’ to indicate a window that has been added directly to
PegPresentationManager. To the end user, a top-level window appears to
be standalone, and appears to have no parent. You now know, however,
that there is actually an invisible window that is the parent of all top level
windows, and that window is named PegPresentationManager.

In just a little while you will be reading more about a very basic and
important PEG class, class PegThing. When you read about PegThing,
always remember that PegPresentationManager derives at some point
from PegThing, and so all of the PegThing member functions are available
when you are working with PegPresentationManager. Of special interest
are the functions Add(), Remove(), Parent(), First(), and Next(). These
52 PEG Pro Programming Manual Swell Software, LLC

Event-Driven Programming
are the functions you will use in your software to modify and examine the
tree-structured list of visible objects. Stated another way, these are the
functions you will use to add windows to and remove windows from
PegPresentationManager.

6.1 Event-Driven Programming
PEG is message-driven, which may also be called event-driven. This
means that real processing is normally done in response to messages
received from the outside world. PEG follows the event-driven
programming paradigm. Controls and Windows respond to input events,
and are largely defined by which input events they process and how they
process those events.

The objects you create and use will be able to send and receive messages.
You will be able to invent your own messages and interpret them however
you want in order to make your objects do the work you want them to do. In
general, you want to keep your messages simple, and the corresponding
message processing short, to prevent any one object from dominating your
available CPU time. You will work through an example of how to set up your
message handling functions later in this manual.

There are several advantages to a message-driven implementation. The
fact that PEG objects communicate with each other via messages
eliminates the problems associated with callback functions or similar
implementations. One PEG object can communicate easily with another
without worrying about how to physically address that object. In the large
view, you could accurately state the message-driven systems are
distributed systems, and objects can actually be miles apart from each
other (physically!) and talk as if they are both running from the same ROM.

PegButtons, PegStrings, PegPrompts, and other control types also use
messaging to notify you when the control has been modified. The
messages generated by these types of objects are determined by the
object’s ID, which is a member variable of every PEG class. This makes the
flow of information throughout a PEG-based application very predictable
and robust. This type of message passing is so common that PEG defines
a unique syntax for handling control notification messages, called signals.
Signals are described in detail in the chapter titled PegMessageQueue.

PegPresentationManager supplies the overall control of your PEG
application. PegPresentationManager::Execute() enters a continuos loop
Swell Software, LLC PegPresentationManager 53

PegPresentationManager
popping messages from PegMessageQueue and routing those messages
to graphical objects. In many embedded systems, Execute() never returns
to the caller, since the graphical interface is intended to run forever. Of
course, in a multitasking system you don’t really want PEG to execute
continuously; rather, you want it to execute only when there is real work to
do, and even then only when no higher-priority tasks are ready to run. In a
multi-tasking environment, PEG automatically suspends itself when there is
no work to do.

6.2 Input Focus Tree
An additional task of PegPresentationManager is message routing. Many
system messages, such as mouse and keyboard input messages, are not
directed to any particular object when they are placed in
PegMessageQueue. For this reason, PegPresentationManager internally
maintains a pointer to the object that was last selected by the user through
the mouse or other input means. This object is called the ‘current’ or ‘input’
object, meaning that by default this object will receive input messages.

PEG views each displayed window and child objects of each window as
branches in a tree. When input focus moves from object to object,
PegPresentationManager ensures the entire branch of the tree up the
actual input object has input focus. You can detect if an object is a member
of the input focus branch of the presentation tree at any time by testing the
PSF_CURRENT system status flag:

if (StatusIs(PSF_CURRENT))
{
 // this object is in the branch of the display tree that has
 // input focus.
}

Just because an object is a member of the input focus tree does not mean
that the object is the end or leaf of the input focus branch. You can obtain a
pointer to the final input object by calling the
PegPresentationManager::GetCurrentThing() function. This function will
return a pointer to the actual default input object, or NULL if no object has
been selected to receive input events.

You can also override the user’s input selection and manually command
PegPresentationManager to move the input focus at any time by calling
the PegPresentationManager::MoveFocusTree() function. This function
will set input focus to the indicated object by sending PM_NONCURRENT
54 PEG Pro Programming Manual Swell Software, LLC

Input Focus Tree
messages to objects that are no longer members of the input focus branch,
and PM_CURRENT messages to objects that are members of the new
input focus branch. The effect is that non-directed input messages will be
sent to the newly designated input object. In most circumstances, you will
not be required to manually adjust the input focus, however this capability is
available when you need to use it.

When a new window is added to PegPresentationManager, that window
automatically receives input focus. Likewise, if that window has any child
objects, the window will (by default) search for the top-left most child object
capable of receiving input focus. This continues until a leaf node (an object
with no children) is found, and that is the object which will initially have input
focus when a new window is displayed.

 Keyboard Input Handling
Closely related to the input focus tree are PEG keyboard input handling
methods. One of the main reasons for keeping track of which object has
input focus is to know which control should be sent keypress messages
when the user operates an interface that has some form of keyboard or
keypad input device.

Keyboard input is received by PEG objects when the library is built with the
PEG_KEYBOARD_SUPPORT option turned on.
PEG_KEYBOARD_SUPPORT does not imply that you need to have a full
100+ key keyboard. Many PEG users have a very limited keypad with
directional and/or select keys available. This type of input will work just fine
with a PEG application, since PEG requires only a very limited set of input
key types to navigate through screens and select controls

We will fully describe the format of PEG messages in a later section;
however, it is useful to describe the format of keyboard or keypad input
messages here. Keyboard input arrives in the form of PM_KEY messages,
meaning that the Message.Type field == PM_KEY. The actual key value is
passed in the Mesg.Param data field, and the key flags such as shift key
state, control key state, etc. are passed in the Mesg.ExtParams[0]
parameter. Keyboard messages are undirected, meaning that the message
contains no information about which object should receive the message.
This makes it the responsibility of PegPresentationManager to know which
object should receive keyboard input messages as they arrive from your
input device driver.
Swell Software, LLC PegPresentationManager 55

PegPresentationManager
The paragraphs below describe the key values PEG objects are watching
for to allow the user to navigate through the graphical interface. The key
values are designed to closely follow desktop standards for keyboard input.
This does NOT imply that your target system must actually have keys such
as TAB or CTRL; it only means that PEG is watching for these key values.
If your target system has, for example, four arrow keys and an ‘enter’ key,
you simply need to map these keys to the best-match key values PEG is
watching for. In some cases, you may need to send different key values for
a common input key depending on the type of object with which the user is
interacting.

 Mouse or Touch Screen Input Handling
Mouse input is also handled, at least initially, by
PegPresentationManager. Mouse and touchscreen input message are
also undirected, meaning that they are not targeted to any specific object.
Mouse and touchscreen input message do, however, contain position
information for each touch, release, or drag message. This allows
PegPresentationManager to quickly determine which object should
receive each mouse or touchscreen input message.

PK_TAB When this key value is received, PEG attempts to move
focus to the next child of the current window. If the
current child is the last child, focus wraps back to the first
child of the current window. If the Shift key is pressed
(i.e. the KF_SHIFT flag is set in the PM_KEY message
ExtParams[0] member), the tab direction is reversed.

<ctrl> +
PK_TAB

This key combination is used to cycle through top-level
windows.

PK_CR The carriage return key is used to select the item which
has focus. If this is a button object, the object will
become active or toggle.

PK_F1 This key moves focus to the first menu item of a menu
bar added to the current window.

PK_LNUP,
PK_LNDN,
PK_LEFT,
PK_RIGHT

These keys (the arrow keys) move focus from sibling to
sibling, and are also used to navigate through PegMenu
items.

PK_ESC This key is used to close an open menu or to escape
from a PegEditField edit operation.

<ctrl> + PK_F4 The key combination is used to close the current window
56 PEG Pro Programming Manual Swell Software, LLC

C H A P T E R 7

CHAPTER7PEGTIMERMANAGER

PEG provides a simple and easy-to-use timer facility for use by the
graphical application. PegTimerManager is responsible for creating,
deleting, and ticking high-level user-interface (UI) related timers. UI timers
are high-level, low-resolution timers useful for graphical operations. They
are not directly linked to hardware-level timer interrupts. PegTimerManager
can create any number of active timers simultaneously. Each timer is linked
to the timer creator, and the timer creator will receive PM_TIMER
message(s) when the timer expires. Timers can be configured for either
one-shot or continuous (repeating) operation.

In a multitasking system, PegTimerManager usually receives input from
one RTOS level timer to serve as the time base for all UI timers. The
PegTimerManager::TimerTick() function must be called periodically to
serve as the time base for all UI timers. PEG distributions for specific
operating systems are already configured to perform the RTOS initialization
required to driver the high-level PegTimer facility.

When a PEG object is destroyed, PegTimerManager automatically
destroys any timers linked to that object. PegTimerManager also supports a
single object creating multiple timers, each identified with a unique timer ID.

PegTimers are created and started by calling

PegTimerManager::SetTimer(TIMER_ID, INIT_VALUE,
REPEAT_VALUE);

If you are within the scope of a PegThing-derived class, you can omit the
class scope resolution operator and simply type this:

SetTimer(TIMER_ID, INIT_VALUE, REPEAT_VALUE);

The TIMER_ID is any integer value you define. This value is passed back
to you when the timer expires and you receive a PM_TIMER message. The
TIMER_ID value is passed back in the Message.Param field.
Swell Software, LLC PegTimerManager 57

PegTimerManager
The INIT_VALUE is the initial timeout value. The actual value of this time
depends on how often the PegTimerManager::TimerTick() function is
called. The default frequency is ONE_SECOND / 20, or 50 ms per tick.

The repeat value can be zero or any non-negative integer value. A repeat
value of zero indicates that the timer is a ‘one shot’ timer. It will expire once
and destroy itself. If the repeat value is not 0, the timer will run continuously,
sending repeated PM_TIMER message to the timer owner until the timer is
stopped.

A timer can be stopped at any time by calling:

KillTimer(TIMER_ID);

If the TIMER_ID is not zero, only that timer is stopped. To stop all timers
owned by an object, pass zero (0) as the TIMER_ID.

An object that starts a timer receives timer expiration message(s). It is
important to remember to check the TIMER_ID of a timer message and to
ensure that it is a timer you created in your application. If the timer is not
your own, you must pass the timer message down to your base class, as
several PEG classes create and use their own timers. Consequently, they
will not function correctly if you prevent your base class from receiving timer
expiration messages. This is an example of a timer message handler:

#define MY_TIMER 1

PEGINT MyClass::Message(const PegMessage &Mesg)
{
 switch (Mesg.Type)
 {
 case PM_TIMER:
 if (Mesg.Param == MY_TIMER)
 {
 // do timer event handling here
 }
 else
 {
 // It’s not my timer, so
 // pass the timer even message down to my base class:
 MyBaseClass::Message(Mesg);
 }
 }
}

58 PEG Pro Programming Manual Swell Software, LLC

Any object can create any number of simultaneous timers. Each timer
should be created with a unique timer ID value.
Swell Software, LLC PegTimerManager 59

PegTimerManager
60 PEG Pro Programming Manual Swell Software, LLC

FIDs, BIDs, CIDs, and SIDs
C H A P T E R 8

CHAPTER8PEGRESOURCEMANAGER

The fonts, bitmaps, strings, and colors you use in your application are
called Resources. In many ways, resources are independent of your
application software. You can change and modify your resources to change
your user interface without making any changes to your application
software. You can even change your resources ‘on the fly’ as the system is
running. An example of this would be a change to the active language or to
the color theme of your application.

PegResourceManager manages your system resources.
PegResourceManager allows you to add, remove, and modify resources
at compile time and at run time. Resources are registered with the
ResourceManager, at which time they are assigned a resource ID. Your
application software always refers to a resource using the resource ID
rather than using a direct reference to a font, bitmap, or string. This
abstraction is what makes it possible to easily modify your resources
without requiring any changes to your application software.

8.1 FIDs, BIDs, CIDs, and SIDs

Resources and their corresponding resource IDs come in four flavors,
corresponding to each resource type. The resource type is indicated by the
prefix of the resource ID. Font resource IDs are always prefixed with FID_
(Font ID). Likewise, bitmaps are prefixed with BID_, colors prefixed with
CID_, and strings with SID_. This makes it easy to recognize what type of
resource is being referred to as you write and examine your application
software.

The remainder of the resource ID is any ‘C’ language compatible variable
name that you type as the resource ID name. Examples might include
‘BID_BATTERY_ICON,’ ‘FID_MENU_ITEM,’ and ‘CID_SLIDER_FILL.’
Resource IDs become members of enumeration lists produced by
WindowBuilder in your resource header file.
Swell Software, LLC PegResourceManager 61

PegResourceManager
8.2 Registering Resources
The ResourceManager creates tables to track your resources and
resource IDs. Before you can use a resource, it must be registered with the
ResourceManager. Resources are registered with the ResourceManger
by calling this function

 PegResourceManager::AddResource(
 PEGUINT RES_ID,
 Resource *,
 PEGUINT Flags,
 PEGBOOL Replace);

All public functions of the ResourceManager are static functions, meaning
that they can be accessed from anywhere in your source code without
having a pointer to the ResourceManger instance.

The RES_ID parameter is the numeric resource ID. This ID is generally
enumerated for you by PEG WindowBuilder, but you can also create your
own resource IDs.

The second parameter is a pointer to the resource itself. This will be a
pointer to a PegFont, PegBitmap, PegString, or color value depending on
the type of resource being registered.

The Flags parameter is used in different ways by different resource types.
The Flags indicate special consideration, such as accelerating a bitmap by
placing the bitmap in graphics memory, or accelerating a font by placing the
font in graphics memory.

The Replace parameter indicates that if a resource already exists in this
table position, the ResourceManager should delete the old resource when
replacing it with the new resource. If this parameter is FALSE, the old
resource is not deleted from memory and it is the responsibility of the
application software to remove the old resource from memory if and when it
is no longer needed.

The above AddResource function can be used to register resources
individually or one at a time. Resources can also be registered in blocks or
multiple resources added en masse. This is the method used by
WindowBuilder. WindowBuilder simplifies the process of registering your
resources by creating a ResourceTable which is a list of multiple resources
62 PEG Pro Programming Manual Swell Software, LLC

String Tables
of each time. All resources in the ResourceTable can be registered at one
time by calling this function:

PegResourceManager::InstallResourcesFromTable(
 PegResourceTable *pTable,
 PEGBOOL DeleteOld = FALSE
);

WindowBuilder will automatically insert this call to install the application’s
resources in the PegAppInitialize startup function if instructed to do so.

WindowBuilder will create resource tables for you, in either source or binary
format. Source format is used if you want to compile and link your
resources with your application to produce a self-contained binary image.
The binary format resource table is used if you want to load your resources
from a filesystem. Note that PEG never requires your target to support a
filesystem, so both methods are supported.

8.3 String Tables
A string table is an array of string resources. A string table is a two-
dimensional array, with each row holding one string entry and each column
representing on language. A string table can have between 1 and N rows
(string entries), and between 1 and M columns (languages).

PegResourceManager keeps track of the active string table and the active
language within that table. The active language is changed by calling
PegResourceManager::SetCurrentLanguage(PEGINT LanguageId).
When the active language is changed, PegResourceManager sends a
message to all visible PEG objects to inform them that the language has
changed. Each object that is aware of its string ID automatically retrieves its
new string value and invalidates itself; i.e., the object is redrawn. This
makes it very easy to change languages at run time.

String Tables are created and maintained by the WindowBuilder String
Table Editor. WindowBuilder can also export and import the string table in
UNITEXT and XLIFF (an XML specification for string data exchange)
formats.

When you generate a resource file with WindowBuilder, you can choose to
include or exclude the string table. If the string table is included, you can
Swell Software, LLC PegResourceManager 63

PegResourceManager
additionally choose which languages to include. This makes it possible to
create a binary image that supports a base language or set of languages,
and to allow the run-time installation of additional language support.

StringTables are managed by PegResourceManager in ‘pages.’
StringTable pages can be concatenated to form the global string table. This
can be useful when multiple developers are working on different
components of an application, and each developer creates a string table
page specific to his or her application component. Each developer is given
a base StringID to serve as the starting point for his string table page. At
compile time (or run time), these string table pages are each registered with
PegResourceManager.

Another option is to merge the string tables created by different developers
into one ‘master project.’ The WindowBuilder String Table Editor provides a
facility to merge string tables from multiple projects into one master table
specifically for this purpose.

8.3.1 Dynamically Created Strings

Nearly all applications use a combination of both statically defined strings,
which are included in the string table, and dynamically defined strings,
which are created in memory during program execution.

Dynamic strings can be created using any of the standard methods C
programmers are familiar with such as using sprintf or PegLtoA (a unicode
compatible version of the ltoa() function). These strings are created at run
time in some user-defined memory area such as heap memory or possibly
on the program stack. All PEG objects that support string display (i.e. all
object types derived from PegTextThing) support string assignment via
either a StringID or a pointer to a string. If the string is assigned via a
StringID, the object is aware of this StringID and will automatically switch its
string display value if the active language is changed.

If a string is assigned to an object using a string pointer, the object in that
case does not have a string ID and the object will NOT change its display
string when the active language is changed. Many times this is not an
issue, because dynamically generated strings are often numerical display
fields that do not change with the language. However, if the string does
need to change when the language is changed, the application software in
64 PEG Pro Programming Manual Swell Software, LLC

Themes
this case is responsible for generating a new string when the active
language is changed.

Note also that all PEG object that support string display support a style flag
named ‘TT_COPY,’ which stands for TEXT_THING_COPY. This style flag
indicates that the object should make and maintain its own copy of the
string assigned to the object. If the string is in the string table, the object
has no need to make its own copy of the string and the TT_COPY style is
not used. If the string created dynamically is volatile memory, the object
must make its own copy of the string when the string assignment is made.
In this case, the object should be given TT_COPY style when it is created.

8.4 Themes
Themes are collections of font, bitmap, and color resources. Themes can
be changed at run time, allowing your to ‘re-theme’ your application on the
fly. Multiple themes can be compiled into your application, or themes can
be installed at run time using a filesystem or other storage means. Of
course, at the designer’s discretion an application might only have one
theme and not support run time theme changes.

WindowBuilder supports generating resource tables that contain one
theme, all themes, or any combination of themes. Normally, one resource
table is generated for each theme. To change themes, the application
simply calls the PegResourceManager::InstallResourcesFromTable
function with the address of a new resource table.

Note that most themes will NOT contain a string table. The string table used
by your application is usually changed independently of the color theme. In
other words, most applications treat changing languages as a different
operation than changing the color theme. WindowBuilder therefore does
not generate a separate string table for each theme; rather, it creates one
master string table that can contain any number of languages.

A theme can contain any subset of the full system resources Any resources
not replaced when a new theme is installed simply continue to use the
existing resource.

When you are using WindowBuilder to create your themes, WindowBuilder
requires that every theme contain exactly the same number of images,
fonts, and colors. These resources will have the same ID in each theme.
However, each resource can have its own definition.
Swell Software, LLC PegResourceManager 65

PegResourceManager
For example, a bitmap in the first theme may have the ID
‘BID_BATTERY_ICON.’ If you duplicate this theme, the second theme will
also have a bitmap resource with ID BID_BATTERY_ICON. However, the
actual image link for this resource can refer to a unique source file in the
second theme, meaning that the actual bitmap displayed for this ID differs
between the two themes.

8.4.1 Resource ID Name Considerations

WindowBuilder allows you to type any ID name you desire for each
instance of each resource type. A few hints might be helpful in this regard:

Resource ID names are converted into simple enumerations in your
resource header file. Therefore, in order to avoid compile problems, the
name you type should follow standard C variable naming conventions and
not use special characters like ‘*’ or ‘(‘.

ResourceIDs should indicate how or where the resource is used, not what it
looks like. For example, a color ID name like ‘CID_WINDOW_FILL’ would
be a good name, and a name like ‘CID_BRIGHT_RED’ would be
discouraged. This is because the purpose of using Resources is that they
allow you to change the definition of the color without modifying anything
else. If you changed the window fill color from bright red to green, the
CID_BRIGHT_RED ID name would not fit any longer. However, this is still
the WINDOW_FILL color. If your application supports two themes, the
name ‘CID_WINDOW_FILL’ will apply equally to both themes, regardless of
the actual color appearance.

Similarly, font ID names like ‘BoldItalic20Point’ are discouraged, and a
name like ‘FID_MENU_ITEM’ or ‘FID_CHART_TITLE’ are more useful.

8.4.2 Compressing Resource Data

Resource files produced by WindowBuilder can be in source code format or
binary format. They can also be compressed or raw format.
66 PEG Pro Programming Manual Swell Software, LLC

Themes
Source code format allows the resource data to be compiled and linked with
your application image. Binary format resource files are usually loaded from
a filesystem and installed at run time.

Compressed format is used to save file system or nonvolatile memory
space. Before a resource can be used it must be decompressed, so there
must be enough dynamic memory to hold the uncompressed resources for
at least one theme for an application to function properly.

Compressed format can be beneficial if an application supports multiple
themes. Only one theme can be active at any given time, so only one
theme needs to be decompressed in RAM at any given time.

In a similar fashion, different fonts may be required to support different
languages. Since only one language is active at any moment in time, only
the font(s) required to support that language need to be decompressed in
memory.

To produce compressed resource files, WindowBuilder performs LZW
compression on Bitmap and Font data. This compression can dramatically
reduce the size of both the application image and the binary resource file;
however, it comes with a cost. Before the resource (font or bitmap) can be
used, it must be uncompressed in RAM.

Resources can be uncompressed either on first use, or when registered
with PegResourceManager. The install flag RF_COMPRESSED indicates
to the ResourceManager that the resource is in compressed form. The flag
RF_DCOMP_ALWAYS indicates the resource should be decompressed
when it is registered with ResourceManger. The flag
RF_DCOMP_ON_USE indicates that ResourceManager will decompress
the resource data the first time the resource is used. These flags are
included in the PegResourceTable data structure and are passed to the
PegResourceManager::AddResource() API function.

Decompression of compressed resources requires CPU time. This can be a
relatively lengthy (~ hundreds of milliseconds) time if you are using large
bitmaps and fonts. The exact amount of time required can only be
discovered by actual execution on your hardware using your resources. Be
aware, however, that using the RF_COMP_ON_USE decompression
method will add processing time when a new bitmap or font is displayed on
a screen for the first time.
Swell Software, LLC PegResourceManager 67

PegResourceManager
8.5 Retrieving Resources
You will often need to obtain direct information from a resource by retrieving
the resource from PegResourceManager. The APIs used to retrieve a
resource are:

PegResourceManager::GetBitmap(PEGUINT ResId);
PegResourceManager::GetFont(PEGUINT ResId);
PegResourceManager::GetColor(PEGUINT ResId);

Additional API functions are provided to get specific details about a
particular resource. The following two code snippets are two methods for
getting the width and height of a bitmap resource with id BID_ICON:

Example 1:

PEGUINT ImgWidth;
PEGUINT ImgHeight;

PegResourceManager::GetBitmapWidthHeight(BID_ICON, &ImgWidth,
&ImgHeight);

Example 2:

PEGUINT ImgWidth;
PEGUINT ImgHeight;
PegBitmap *pMap;

pMap = PegResourceManager::GetBitmap(BID_ICON);
ImgWidth = pMap->Width;
ImgWidth = pMap->Height;

All of the PEG screen driver drawing primitives accept resource IDs as
input parameters, and translate to actual resource pointers by calling the
ResourceManager when required.

However, when initializing PegBrush color fields, it is important to note that
the PegBrush requires color values, not color IDs. A PegBrush.LineColor
and PegBrush.FillColor fields are initialized like this:

PegBrush MyBrush;

MyBrush.LineColor = PegResourceManager::GetColor(CID_LINECOLOR);
MyBrush.FillColor = PegResourceManager::GetColor(CID_FILLCOLOR);
68 PEG Pro Programming Manual Swell Software, LLC

Retrieving Resources
This, of course, assumes that colors have been registered with color IDs
CID_LINECOLOR & CID_FILLCOLOR.

The full PegResourceManager API is documented in the PEG API
Reference Manual.
Swell Software, LLC PegResourceManager 69

PegResourceManager
70 PEG Pro Programming Manual Swell Software, LLC

C H A P T E R 9

CHAPTER9PEGSCREEN

PegScreen is the PEG class that provides the drawing primitives used by
the individual PEG objects to draw themselves on the display device. PEG
window and controls never directly manipulate video memory, but instead
use the PegScreen member functions to draw lines, text, bitmaps, etc.
Most importantly, PegScreen provides a layer of isolation between the
video hardware and the rest of the PEG library, which is required to ensure
that PEG is easily portable to any target environment.

PegScreen is an abstraction, meaning the PegScreen class is an abstract
class that defines the functions and function parameters instantiable
PegScreen derived target-specific interface classes must provide. The
term abstract class is a C++ term that means the class contains one or
more pure virtual functions. Pure virtual functions are simply placeholders
in the class definition. They tell the compiler that all classes derived from
the PegScreen base class must provide working versions of the virtual
functions. In addition to the virtual functions, PegScreen also provides
functionality that is common to all implementations.

PegScreen may interface to a large variety of display devices. Standard
VGA displays, super-VGA displays, LCD panels, and even printers may be
driven by PegScreen-derived interface classes. Custom implementations
may of course extend the required functionality. Depending on the
hardware platform you specified when you ordered the PEG software, there
will be several working examples of PegScreen-derived interface classes
for your specific hardware. These are described in more detail in the
following sections.

At this point, it should be clearer why the build procedures at the start of this
manual instruct you to include different PegScreen-derived classes
depending on your target environment. There are many different
PegScreen-derived classes for different hardware graphics controllers,
different color depths, and different screen orientations. You will normally
include only one PegScreen class in your library build, except for special
cases where multiple screen drivers are required because of run time
changes to screen orientation or graphics hardware.
Swell Software, LLC PegScreen 71

PegScreen
 Screen Coordinates

PEG screen coordinates are in pixels. When you define the position of a
window, button, or any other object, the position is in pixels.

PEG screen coordinates are relative to the upper left corner of the screen,
which is 0,0. While this does not follow trigonometric conventions, it is a
consistent definition among graphical environments and will be familiar to
users who have done previous GUI programming. PEG screen coordinates
are not relative to the client area of an object, the client area of an object’s
parent, or relative to some abstract convention of a fraction of an inch. PEG
screen coordinates are relative to the upper left corner of the screen, which
is 0,0.

If, at some point, you create custom objects with custom drawing routines,
you will need to ensure that you always use some corner of the object’s
client rectangle as the reference point for your drawing routines. This
ensures that your drawing will be done correctly no matter where your
window or other object is positioned on the screen.

9.1 Graphics Controllers
PEG is designed to be completely independent of the target system video
display channel. In order to accomplish this, the abstract PegScreen
interface class is defined to allow all PEG objects to use a common set of
display output functions when drawing to the screen.

PEG can be used with display devices supporting any combination of x,y
pixel resolutions, color depths, and color formats. PEG screen derived
classes have been created for a wide variety of color depths and pixel data
formats. Examples include monochrome, grayscale, 8-bit palette mode, 8-
bit packed-pixel (3:3:2), 16-bit 5:6:5 RGB, 16-bit 5:5:5 RGB, 16-bit 4:4:4:4
(ARGB), 24-bit RGB, 24-bit BGR, and 32-bit ARGB and BGRA data
formats.

 How Graphics Controllers Work
Regardless of your target’s color depth and screen resolution, all graphics
output controllers operate in a somewhat similar fashion. The graphics
controller is responsible for reading pixel data from some memory area,
translating that data into pixel color and intensity values, and driving the
display device with signals representing these values.
72 PEG Pro Programming Manual Swell Software, LLC

Graphics Controllers
The memory area that contains the pixel information is called the frame
buffer. This term is derived from the fact that the video memory storage
area usually must contain at least enough memory for one complete
refresh, or frame, of the display device. Some systems have multiple
frames, meaning that there is enough video memory available to store
multiple pages of full-screen pixel data.

The pixel data stored in the frame buffer and later translated into the analog
or digital values used to drive the display device is dependent on the type of
display and the mode of the video controller. After determining the color or
intensity value for each pixel, an analog video controller usually has a DAC
or series of DACs that convert the digital color and intensity information into
the analog value sent to the display. A digital interface routes the binary
pixel data values directly to the display device, such as an 18-bit 6:6:6
format TFT LCD display device.

If a graphics controller is operating in a palette mode, the pixel data stored
in the frame buffer is used to retrieve color values from a set of palette
registers internal to the video controller chip. The values retrieved from the
palette registers are then shifted to the display device.

For color systems, the values stored in the palette registers determine the
intensity of the red, green, and blue components of each pixel. These
individual color components can be specified to varying resolutions; i.e., the
palette registers themselves may be from 8 to 32 bits wide.

Graphics controllers must also provide synchronization signals to the
display device to specify the start and end of each graphics frame.

Graphics controllers come in many varieties. They may be an internal
submodule of your core CPU, they may be an external dedicated module,
or they may be ‘fabricated’ using nothing more than a set of GPIO lines
from your main CPU and some very fast timers and DMA shift controllers.

The fact that graphics controllers come in so many varieties is the reason
the PegScreen class is really an API definition class, and derived classes
are created to accommodate the requirements of each target hardware
system.
Swell Software, LLC PegScreen 73

PegScreen
9.1.1 Porting PEG to Your Graphics Hardware

For most targets, PEG is delivered with a fully-optimized graphics controller
driver. However, in some cases customers decide to do the work of
creating a custom PEG driver class for their particular hardware. The
remainder of this chapter is intended only for those customers creating or
writing their own PEG screen driver.

Porting PEG to run on a custom or semi-custom target platform requires
that a new driver class is created by deriving from one the PEG screen
driver templates. The screen driver templates are software implementations
of each required drawing function, each driver template class being specific
to one color depth or frame buffer data format.

Once you have defined your own driver class derived from one of the
provided templates, you need to add the following: 1) Software to configure
your graphics controller and 2) Software to optimize each drawing primitive
to make the best use of your hardware capabilities.

This does not mean that you are required to invent algorithms to meet the
requirements of the drawing primitive functions. The required algorithms
are provided in the working PegScreen examples and templates provided
with the library. You should always use the nearest provided PegScreen
implementation as the basis for your custom screen driver.

Graphics controller chips are generally not designed to work with only one
type of display. All graphics controllers contain programmable registers that
must be initialized to make the controller function in a way that is
compatible with your display device. This process of programming the
graphics controller registers is called configuring the graphics controller.

The graphics controller and the display device stay ‘in sync’ with each other
via horizontal and vertical sync timing signals. The most difficult portion of
video controller configuration is ensuring that the vertical and horizontal
timing signals generated by the controller are within the requirements of the
screen being used. This requires that the timing information provided by the
screen or LCD display manufacturer be closely correlated with the registers
on the graphics controller that control the sync timing signals. The
remainder of a typical controller configuration involves informing the
controller of the memory configuration, color values, etc. that you intend to
use.
74 PEG Pro Programming Manual Swell Software, LLC

Graphics Controllers
9.1.2 PegScreen Driver Templates

Several PegScreen-derived screen driver templates are provided in your
PEG distribution. These templates are general-purpose drivers
accommodating a wide range of color depths and screen resolutions. The
provided template drivers contain everything you need to run PEG on your
target. If you are using a high-end hardware-accelerated graphics
controller, these template drivers will not take full advantage of hardware
acceleration features, but they will allow you to get your system up and
running quickly. Optimizing the driver to take advantage of hardware
acceleration can be accomplished as your project development progresses.

Note that these general-purpose drivers do not configure the video
controller, and you will need to add the controller configuration before you
can use one of these general drivers. All of the necessary drawing routines
are provided and ready to run. You simply have to add the graphics
controller configuration code and initialize the graphics frame buffer
address. Graphics controller configuration is, of course, specific to the
controller in use as the controller frame rate and pixel clock must be
matched to the display timing specifications.

Controller configuration is performed either by your system software prior to
starting PEG, or in the function named ConfigureController(), which is a
member function (an empty shell) in each template driver.

If you are using an external graphics controller with a relatively slow
(compared to CPU-data bus speeds) interface, it is generally most efficient
to create a frame buffer in memory local to the CPU that PEG will draw
within. This local frame buffer (or the modified portion thereof) is then
transferred to the external controller. This transfer happens in the function
named MemoryToScreen(), which is provided in each driver template.

The template screen drivers are organized by color resolution, or bits-per-
pixel. Each of the drivers accepts a PegRect parameter to the class
constructor, which defines the target system x-y pixel resolution. The
template screen drivers can generally accommodate any screen resolution
of the indicated color depth.

The individual template drivers are described below.
Swell Software, LLC PegScreen 75

PegScreen
 Monoscrn (.cpp, .hpp)
These modules implement a 1-bit-per-pixel (bpp) monochrome screen
driver. This driver class is named MonoScreen. If your target system is
monochrome, you should derive your driver class from this template.

 L2scrn (.cpp, .hpp)
These modules implements a 2-bpp, 4 grays screen driver. If your target
system uses 2-bpp output, you should begin with this driver template. This
driver class is named L2Screen.

 L4scrn (.cpp, hpp)
These modules implement a linear 4-bpp screen driver template for use
with systems that support 16 grayscales or 16 colors. This driver is named
L4Screen.

If your target system uses a 4-bpp graphics data format, you should use
this driver template.

 L8scrn (.cpp, .hpp)
These modules implement a linear 8-bpp screen driver template. This
template can be configured for either palette mode or 3:3:2 format packed
pixel frame buffer data format.

 L16scrn (.cpp, .hpp)
These modules implement a 16-bpp screen driver template, supporting
either 5:6:5 or 5:5:5 data formats. If your target system uses a 16-bpp
graphics data format, you should use this driver template.

 L24scrn (.cpp, .hpp)
These modules implement a 24-bpp screen driver template, supporting
both R:G:B and B:G:R data formats. If your target system uses a 24-bpp
graphics data format, you should use this driver template.
76 PEG Pro Programming Manual Swell Software, LLC

Graphics Controllers
 L32scrn (.cpp, .hpp)
These modules implement a 32-bit ARGB or BGRA format screen driver
template. If your target system uses 32-bit graphics data format, you should
begin your driver by deriving from this template.

 PegScreen Templates for Screen Rotation
A second complete set of screen driver templates are provided for use with
display devices which have been physically rotated 90 degrees clockwise
or counter-clockwise. For example, consider a 320 (wide) × 240 (high)
monochrome display screen. There is no mechanical reason why this
screen cannot be mounted so as to present a 240 (wide) × 320 (high)
display to the end user. We refer to this as Profile mode, and the native
display mounting as Landscape mode, regardless of relative x,y
dimensions of your display.

In many cases the target hardware will support this screen rotation either
via video controller configuration or jumper settings of the actual display. In
other cases, software rotation of the displayed data must be accomplished.

The rotated screen driver templates are provided for those systems in
which the graphics data must be rotated in software.

Each of the profile mode screen driver header files include settings to
define either clockwise or counter-clockwise screen rotation.

 Accelerated PEG Screen Driver classes
A number of hardware accelerated PegScreen-derived classes are
available for popular graphics controllers. Of course, the list of popular
graphics controllers changes weekly, or so it seems. It is a constant effort
for the engineers at Swell Software to create and maintain optimized driver
classes for hardware accelerated graphics controllers.

An optimized/accelerated driver is a driver customized to take advantage of
hardware acceleration capabilities. Drawing primitives are no longer
implemented completely in software as in the templates, but are instead
customized to use the hardware capabilities to achieve much faster
implementations.

For a list of currently supported accelerated screen drivers contact
sales@swellsoftware.com
Swell Software, LLC PegScreen 77

PegScreen
9.1.3 PEG Palette Considerations

PEG passes color information to the screen interface class through the
PegBrush. The PegBrush structure contains data fields of type
PEGCOLOR. The PEGCOLOR data type is defined to meet the needs of
the target system running at a specified color depth. In other words,
PEGCOLOR may be defined as 8, 16, or 32 bits depending on the color
depth of the target.

When running with a graphics configuration that supports 16 colors or less,
PEG always defines a fixed system palette that is programmed into the
video controller palette registers, or simply intrinsic if the video controller
has no palette registers (as is the case for a monochrome screen driver).
These color values may be found in the header file \peg\include\
pegtypes.hpp.

For 256 color systems, PEG can operate with a predefined fixed palette, a
custom palette generated with WindowBuilder, or in packed-pixel mode.
The fixed system palette, defined in the header file \peg\include\
pal256.hpp, is defined such that the first 16 colors in this palette are
identical to the fixed 16-color palette of VGA systems. The next 216 entries
in the system palette are equal-spaced color values covering the spectrum
of RGB values from black (0, 0, 0) to white (256, 256, 256). The following
16 entries are varying grayscale levels.

Custom palettes for use in 256 color systems can be generated using
WindowBuilder. Installing and using custom palettes is the responsibility of
the application-level software; i.e., PEG does not implement a palette
manager.

 Double-Buffered Graphics Output
Double buffering is a term meaning that there are two frame buffers, and
the graphics controller is dynamically switched to display data from one or
the other buffer. All optimized/accelerated PEG screen drivers utilize
double buffering.
Double buffering prevents ‘tearing,’ or the appearance of artifacts on a
display that is updating rapidly. In a single-buffered system, the graphics
controller is shifting data out to the display device from the same memory
area into which you are drawing. Depending on timing, this means that the
display may, for at least 1/2 of a frame period, receive part of the previous
graphics data and part of the updated graphics data. Double-buffering
78 PEG Pro Programming Manual Swell Software, LLC

Graphics Controllers
prevents this from happening by synchronizing the presentation of new
graphics data with the graphics controller EOF (End Of Frame) interrupt.

In a double-buffered system, there are two frame buffers referred to as the
‘working’ buffer and the ‘display’ buffer. The display buffer is the buffer
actively shifted to the display device. The working buffer is the buffer into
which your drawing operations occur.

When drawing operations are completed, the PEG screen driver swaps the
two frame buffers. The working buffer becomes the display buffer, and the
display buffer becomes the working buffer. This buffer swapping operation
is synchronized with the graphics controller EOF (End Of Frame) interrupt.

The two frame buffers must always be kept ‘in sync’ by PEG. This is
because only the modified portion of each buffer is updated during drawing
operations. So after each buffer switch, the PEG screen driver copies the
modified portion of the new display buffer into the working buffer. This copy
is usually done using BitBlt or DMA operations for maximum speed.
Swell Software, LLC PegScreen 79

PegScreen
80 PEG Pro Programming Manual Swell Software, LLC

PegScreen for Desktop Simulation
C H A P T E R 1 0

CHAPTER10DESKTOP SIMULATION

Though designed for embedded devices, PEG is delivered with a set of
screen drivers, operating system integration files, and project/build files that
that allow you to run the PEG library and your application software on your
standard PC desktop. Currently, Microsoft Windows and Linux/X11
desktops are supported. Additional desktop environments may be added in
the near future.

These environments allow you to quickly begin using the PEG software on
your desktop, and are often used for an extended period while you wait for
the arrival of your target hardware.

For the Windows desktop, Microsoft compilers version 6, version 7 (.NET)
and version 8 (2005) are supported. For Linux desktop, the GNU toolchain
is supported.

Remember that you will not have to modify your application level code
to move from one of these desktop environments to your final target.
You will simply replace the PegScreen and PegTask implementations with
versions supporting your target hardware and OS.

PEG is also sometimes used for cross-platform desktop application
development. In other words, the desktop simulation environment and the
final product are one and the same. This allows you to write an application
once, and run it in several different desktop environments. It should be
noted that the PEG WindowBuilder application program is a PEG
application program utilizing the desktop simulation environment. This
allows WindowBuilder to run on Windows, Linux/X11, or other desktop
environments to be supported in the future.

10.1 PegScreen for Desktop Simulation

When building the PEG library for your desktop, you must include the base
PegScreen class contained in the file pscreen.cpp. The base class, while
abstract, does provide functionality that is required by all implementations.
Swell Software, LLC Desktop Simulation 81

Desktop Simulation
In addition, you will include one PEG screen driver template in your PEG
library build: the template that corresponds to your desired color depth and
pixel data format. Finally, one derived PegScreen class implementation for
either Windows or Linux/X11 is included in your library build.

The templates and desktop drivers are named according to desktop OS
and color depth. You should include ONLY ONE template driver and ONLY
ONE desktop simulation driver in your library build project or makefile.

The template file l8scrn.cpp and driver file winscr8.cpp are used to run in 8-
bit color depth under MS Windows.

The template file l16scrn.cpp and driver file winscr16.cpp are used to run in
16-bit color depth under MS Windows.

The template file l24scrn.cpp and driver file winscr24.cpp are used to run in
24-bit color depth under MS Windows.

The template file l32scrn.cpp and driver file winscr32.cpp are used to run in
32-bit color depth under MS Windows.

The template file l16scrn.cpp and driver file x11scr16.cpp are used to run in
16-bit color depth under Linux/X11.

The template file l24scrn.cpp and driver file x11scr24.cpp are used to run in
24-bit color depth under Linux/X11.

The template file l32scrn.cpp and driver file x11scr32.cpp are used to run in
32-bit color depth under Linux/X11.

10.2 Desktop OS Integration Modules
To build and run with the MS Windows operating system, you should
include the file winpeg.cpp in your PEG library build. This integration
module supports both single-threaded and multi-threaded operating
modes, as determined by the PEG_MULTITHREAD configuration flag.

To build and run with the Linux operating system, you should include the
file linuxpeg.cpp in your PEG library build. The Linux integration module
supports only multi-threaded execution mode.
82 PEG Pro Programming Manual Swell Software, LLC

Desktop OS Integration Modules
10.2.1 Drawing in the desktop environments

When running in desktop simulation mode, all PEG drawing actually occurs
to a privately allocated memory buffer. After each drawing operation, the
PEG screen driver then transfers the updated portion of the private frame
buffer to the visible desktop window using a simple bit-blitting operation.

A benefit of this implementation of the PEG screen drivers for desktop
simulation is that true WYSIWYG performance is guaranteed. Since PEG is
not using the underlying desktop graphics system, everything you see on
your desktop appears exactly as it will appear on your final target system.

10.2.2 Tuning your development environment

It is usually desirable to configure you desktop environment to match your
final target system as accurately as possible, and PEG includes built-in
facilities to support accurate target system emulation.

Screen Size

When running on your desktop, PEG will create a native OS window such
that the ‘client area’ of the native window matches exactly your target
system screen size and resolution. The default size of this window client
area is determined by the x and y resolution settings contained in the
pconfig.hpp file. These settings are set in WindowBuilder by editing the
Configure|Screen Driver dialog settings.

The size of the target screen can also be specified on the command line
when you run your PEG application. The command line syntax for
specifying the screen size is:

/XSIZE=xxxx /YSIZE=yyyy

where xxxx and yyyy are the x and y screen resolution of your target
system, in decimal pixels. The command line parameters are case
sensitive.

Product Skin

You can display an image or wrapper around your simulated screen when
running in the desktop environment. This allows more realism in that you
can observe your user interface within the frame of your physical product.
Swell Software, LLC Desktop Simulation 83

Desktop Simulation
You must first obtain or create an image of your product in BMP or JPG
format. This can usually be obtained from marketing literature, technical
drawings, or by using a digital camera. The image must be scaled
appropriately so that the area reserved for your screen is exactly the correct
size.

When using a product skin image, you will usually need to specify an offset
from the top-left corner of the skin image to the top-left corner of the display
screen. In other words, the display screen is not usually at the very top left
corner of your product; instead, there is usually some border area or
mounting. The offset between the skin image top left corner and the display
screen corner is specified in pixels. The command line syntax for using a
product image and screen offset is:

/SKIN=pathname.bmp /XOFFSET=xx /YOFFSET=yy

The pathname is the path and filename of the BMP or JPG product image.
The x and y offsets for the screen within this product image are entered in
decimal pixels.

An example of using a command line to specify screen size, product image,
and screen offset is provided in the \wb\proj\example\run.bat batch file
included in your PEG distribution.

Catching user input on Product Skin

When using a product skin to wrap your emulated screen on your desktop,
a natural extension is to allow the user to click on the input buttons of the
product skin and process those input events in an identical fashion as they
will be processed when running on your final target.

For example, suppose your final product will provide the user with a
navigation input pad supporting up, down, left, right, and center select
buttons. When you display an image of your product with your screen
placed within this image, you would like to be able to click on the navigation
pad buttons of the product image and observe the operation of your user
interface, navigating from screen to screen and selecting items exactly as
this will function on your final target.

Since PEG cannot know the desired operation of your product’s input pad,
the library provides a callback mechanism to allow you to handle input
clicks in the product skin area. In other words, if you click within the screen
area, PEG will handle these clicks normally (assuming
84 PEG Pro Programming Manual Swell Software, LLC

Desktop OS Integration Modules
PEG_MOUSE_SUPPORT is enabled). When you click on the product skin,
PEG passes these clicks to your callback function.

Your callback function can then translate the click position into an input
message and send it to PEG. In this way, you are emulating the operation
of your navigation input pad driver on the final target system.

The prototype of your callback function must match this signature:

void (*SkinCallbackFunc) (PEGUSHORT wType, PEGINT X, PEGINT Y);

To assign your callback function, you must #define
SKIN_CALLBACK_FUNC in your pconfig.hpp file. You can do this by using
the Configure|Miscellaneneous dialog, and clicking on the User Defined
button. This brings up a dialog which allows you to enter any miscellaneous
parameters that will be included in your pconfig.hpp configuration file.

For example, supposing that your callback function is named
‘MySkinCallback,’ you would enter the following in your configuration file:

#define SKIN_CALLBACK_FUNC MySkinCallback.

You would then implement your callback function like this:

void MySkinCallback(PEGUSHORT Type, PEGINT x, PEGINT y)
{

}

The parameters to your callback function are the input event type, and the
x,y position of the input event. The input event will normally be one of three
message types: PM_LBUTTONDOWN, PMLBUTTONUP, or
PM_POINTERMOVE.

Your callback function must translate the x,y position of the input event into
presses of the keys of your product input keypad. This is normally done by
creating a table that defines a bounding rectangle for each button, and the
message type you will send to PEG for each button press.

An example of a skin callback function is provided in the example \peg\wb\
proj\example\callback.cpp.
Swell Software, LLC Desktop Simulation 85

Desktop Simulation
86 PEG Pro Programming Manual Swell Software, LLC

C H A P T E R 1 1

CHAPTER11PEG MULTITASKING

PEG supports three different execution models that can be tailored to your
requirements. These execution models are called the Standalone model,
the Multithreaded model, and the PRESS (Peg Remote Screen Server)
model. This chapter presents an overview of what these models are, how to
view the overall system in each model, and how to use PEG effectively
whichever model you choose.

In the Standalone model, PEG runs as a simple super-loop in a standalone
system. PEG implements its own message queue facilities and memory
management facilities. In this model, PEG calls the user-supplied function
named PegIdleFunction() when the message queue is empty and PEG has
nothing to do. This allows you to branch to other parts of your application
software that are not related to the user interface.

The second model is the Multithread model. This model is used when
running with an RTOS or, optionally, when running with a desktop operating
system. In the Multithread model, any number of tasks can directly
create, display, and manipulate graphical objects. Under this model, any
task can directly draw to the screen. Message processing for each
graphical object usually occurs in the thread of the task that displays the
object. Each GUI task can be thought of as an entirely separate application
program, running independently of any other GUI tasks.

PEG is fully aware of resource protection and critical code section
protection when running in the Multithread execution model. PEG utilizes
mutexes or semaphores of the underlying operating system to protect
critical code sections when running in the Multithread model. In addition,
PEG often uses the intertask communications facilities of the underlying
operating system to implement the PegMessageQueue interface.

Task-safe execution in the multi-threaded model is the reason an operating
system integration module is required when running the PEG software with
any RTOS. The integration modules are normally provided as part of your
PEG software package when you order PEG for a particular operating
system.
Swell Software, LLC PEG Multitasking 87

PEG Multitasking
The final execution model is the PRESS model. Under this model, each
process running on the target may execute in a unique, virtual address
space. Processes running on the target may even be executed on
physically remote processors. The PRESS model details are very specific
to the target operating systems under which the PRESS model has been
designed. Further details on building and running under the PRESS
execution model are available in the document titled PEG Remote
Screen Server Technical Overview.

11.1 Multi-threaded Model Overview
Under the Multithread model, any number of tasks can create and directly
display windows or any type of graphical objects at any time. These tasks
can also directly manipulate and update the graphical objects. This model
can simplify the structure and layout of tasks that must interact with the GUI
presentation. The only drawback to this model is that a small amount of
overhead is added by PEG to ensure that everything works correctly, and
additional message queues are required to ensure that all message
processing occurs within the thread of the task that owns a particular
window.

When running in the MULTITHREAD model it is still very common to have
only one task that runs PEG. The other system tasks take care of jobs that
are not related to the user interface. When the other system tasks need to
cause a change in the user interface, they do so by sending messages
into the PegMessageQueue, rather than by directly creating graphical
objects or directly calling PEG drawing functions.

To summarize, even though PEG allows any number of tasks to create and
display windows in the Multithread model, the best system design often
utilizes only one UI task and messaging passing between the UI task and
the other system tasks.

The display screen must be treated like any other single-user I/O device,
such as a serial port or printer port. It is not acceptable to have one task
sending data to a printer, while a second task preempts the first and begins
using the same printer. The final printout would have information from each
task printed on the same page, or may even cause a totally unreadable
output.

Likewise, the display screen can only be used by one task at a time. The
reasons for this are actually more complex than the printer example, but it
88 PEG Pro Programming Manual Swell Software, LLC

Multi-threaded Model Overview
is sufficient to state that while any number of tasks can directly access the
screen, only one task at a time can actively draw to the screen. Of course,
in a multitasking system this exclusion is transparent to the end user, and it
appears that many operations are happening simultaneously.

When running under the Multithread model, PEG internally protects the
display screen with a semaphore to ensure that only one task can draw to
the screen at a time. Stated another way, PEG prevents any task from pre-
empting a drawing task and attempting to do its own drawing. The second
task will be suspended or blocked until the first task finishes the drawing
operation. The time period during which the second higher-priority task is
blocked waiting for the first task to complete is referred to as ‘priority
inversion.’ Priority inversion should normally be avoided. The solution to
prevent priority inversion is to organize your tasks such that the higher
priority tasks never do drawing, and only tasks of lower priority directly
create and interact with the user interface.

The following diagram depicts PEG running under the Multithread model in
a system that uses messages to communicate between high-priority critical
tasks the UI task(s), and also has multiple tasks that are directly updating
the user interface.
Swell Software, LLC PEG Multitasking 89

PEG Multitasking
The diagram above depicts a complex system with several critical real-time
tasks, I/O drivers, and GUI related tasks. The arrows indicate the general
direction of message flow. Note that the critical high-priority tasks
communicate with PEG by sending messages.

The above diagram also depicts multiple GUI tasks, meaning that multiple
tasks are creating and displaying windows. This level of complexity may not
be required for your system, but it is supported by PEG. Your system many
only require one GUI task, which is the default PegTask created during
system started.

As shown above, even time-critical tasks can participate in the graphical
presentation via messaging. However, time-critical tasks do not directly
manipulate the display or execute windows. Time-critical tasks must limit
themselves to sending messages to any of the GUI tasks in order to
guarantee that the response time of the critical task is not affected by
competing for the screen resource.
90 PEG Pro Programming Manual Swell Software, LLC

Multi-threaded Model Overview
11.1.1 Modal Window Overview

A PegWindow or PegWindow-derived object (such as PegDialog or
PegMessageWindow) may be executed modally by calling the PegWindow
member function Execute(). Modal execution means that the user can only
interact with this window. The window captures all user input and is forced
to stay at the top of the presentation.

A window executing modally can display and modally execute another
modal window. For example, a modal dialog window can create and display
a modal message window, as in ‘Are you sure you want to close this
dialog?”

When the PegWindow::Execute() function is called, the call does not
return until the model window is closed. The Execute function actually
enters its own local message processing loop. The Execution function does
not return to the calling function until message processing returns a non-
zero value, which is the value returned to the caller.

In the Multithread model it is possible to have several tasks each
executing a modal window (i.e. multiple tasks have called the
PegWindow::Execute() function). Modal windows are modal only to the
calling thread of execution, not globally modal to all tasks. Think of each
task as a completely independent user interface application.

11.1.2 Window Display Under PegTask Thread

When any window is added to PegPresentationManager by calling the
PegPresentationManager::Add(Window *MyWin) function, that window
is executed under PegTask, regardless of which task actually created and
displayed the window. All message processing, including input message
processing, is performed from within the PegTask execution thread. This
form of window creation is useful for tasks that need to display information
but cannot become fully involved in GUI interactions and message
processing.

A task that presents a window in this way is free to do any non-GUI related
processing as required, without worrying about responding to user input
events.
Swell Software, LLC PEG Multitasking 91

PEG Multitasking
 Counter Task Example 1

The following is an example of a task that creates and displays a window
under the Multithread model, but allows PegTask to handle all subsequent
message processing. This example is taken from the standard PEG
multitasking demo:

/*--*/
void CounterTask(void)
{
 PegRect Rect;
 Rect.Set(400, 360, 600, 478);

 TaskWindow *pt = new TaskWindow(Rect, "Counter Task", 0);

 pt->Presentation()->Add(pt); // present the window

 while (1)
 {
 Sleep(pt->SliderVal()); // periodically update
 pt->IncCount(); // counter value
 }
}

In this example, the task CounterTask creates a new window called
TaskWindow. The window is presented by calling
PegPresentationManager::Add, in which case the window executes from
within the PegTask thread.

The task then begins normal execution. In this example, the task simply
sleeps, but it could perform any other type of processing just as well.
Periodically, the task wakes up and directly updates a field displayed by
TaskWindow by calling a member function of the TaskWindow class
named ‘IncCount()’. The source code for the IncCount() function is shown
below:

/*---*/
void TaskWindow::IncCount(void)
{
 PEGCHAR cTemp[34];
 mlCount++; // increment task count variable
 ltoa(mlCount, cTemp, 10);
 CountPrompt->DataSet(cTemp);
 CountPrompt->Draw(); // draws to the screen from secondary
 // thread!
}

92 PEG Pro Programming Manual Swell Software, LLC

Modal Execution
11.2 Modal Execution
A window can also be executed from within a new task rather than from
within the PegTask thread. In this execution mode, the top-level window
should be thought of as an entirely new application, possibly running
alongside any number of other applications, all within a single PEG
presentation.

When a window is executed from a secondary task (i.e. a task other than
PegTask), all message processing for that window occurs within the
thread of the calling task. This is also true for any subsequent windows
created by the first or top-level window.

This mode of execution is invoked by calling the PegWindow member
function Execute() from a secondary task. In this case, the window should
not be explicitly added to PegPresentationManager by the secondary
task; this will happen automatically when the Execute() function is called.

The following is an example of creating and executing a window from within
a secondary task:

void ModalTaskWindow(void)
{
 while(1)
 {
 // do any type of processing here....

 // now create and execute a window:
 PegRect Rect;
 Rect.Set(400, 360, 600, 478);
 TaskWindow *pt = new TaskWindow(Rect, "Counter Task", 0);
 pt->Execute(); // does not return until window closes!

 // do any type of processing here....
 }
}

In the above example, the task directly executes the window. All message
processing for the window occurs within the thread of ModalTaskWindow.
The actual PegWindow object is destroyed before control returns to the
point of calling the Execute() function. The return value indicates the ID of
the button or other object used to close the modal window.

The operation of the Execute() function must be understood before
executing a window in this way. Execute() begins modal window
Swell Software, LLC PEG Multitasking 93

PEG Multitasking
execution, and does not return until the window is closed. This does
not mean that your task is somehow ‘locked-up’ or disabled; rather, the task
resumes execution at the PegWindow::Message() function as messages
are received by the window.

The Execute() function is modal only to the calling thread when running
under the Multithread model. This is a natural extension of the
Multithread model, and further gives the end user the appearance that
each task is a separate application, rather than just separate windows
within a single application.

NOTE: The PegWindow::Execute() function does not return
until the window is closed. A task that is involved with real-
time control operations should never call the
PegWindow::Execute function.

Sometimes it is desirable to have a window that is ‘globally modal’; i.e., the
user can only interact with this window no matter how many other tasks
may also be displaying modal windows. In that case, the function
PegWindow::GlobalModalExecute() is used. The GlobalModalExecute()
function makes a window globally modal, no matter how many tasks are
concurrently displaying modal windows.

If you only have one task that displays user-interface windows, there is no
difference between the Execute() and GlobalModalExecute() functions.

11.3 Multithread Execution on the Win32
Development Platform
The Multithread capabilities of PEG are available on the Win32
Development Platform for those developers who wish to either simulate
their target environment or are planning to deploy their application on a
version of the Win32 platform. All of the functionality and threading
paradigms discussed in the previous section are applicable to this platform.
For instance, every thread of execution has a private PEG message queue
that contains PEG messages pertinent to only this thread and vital PEG
resources are protected by Win32 style synchronization objects to allow for
re-entrancy and thread safe execution.
94 PEG Pro Programming Manual Swell Software, LLC

Multithread Execution on the Win32 Development Platform
We’ll begin by first looking at a simple example of this execution model,
we’ll then discuss the programming issues involved with making this model
work on the Win32 platform.

The screen shot below contains four instances of a simple
PegDecoratedWindow-derived object, MultiThreadWindow. This window
has PegRadioButtons for setting the priority of the thread on which it is
running, a PegSlider for setting a sleep delay, and PegPrompts for
displaying the current sleep delay in milliseconds and current counter
value. The counter value is actually being updated from an ancillary thread,
one thread for each window. This thread is also retrieving its sleep time
from the value in the PegPrompt object that it uses as a delay between
updates to the counter value.

You can find the source code for this example in your PEG distribution in
the \peg\examples\win32mt directory. You may find it helpful to browse
some of this code while you are reading through this explaination.

You will notice that the PegTitle object on each window is displaying a
thread ID number of the thread on which it is executing. Two of the windows
are executing within the context of the main PegTask, while the other two
are operating within the context of ancillary threads. This demonstrates that
any thread may add top level windows to the application at any time and
either directly interact with the PEG object, and/or allow other threads to
operate on the object.
Swell Software, LLC PEG Multitasking 95

PEG Multitasking
Two of these MultiThreadWindow instances were added to the
PegPresentationManager in the PegAppInitialize function, another was
added from an ancillary thread, and the fourth was added by calling the
Execute method of the window from it’s own thread. We’ll take a look at the
code behind this to clarify some of these ideas.

First, two instances of the MultiThreadWindow are added to the
PegPresentationManager in the PegAppInitialize function as outlined in the
following piece of code:

void PegAppInitialize(PegPresentationManager* pPresent)
{
 // Add a window right to the presentation manager that will
 // run in the context of the main PEG thread
 MultiThreadWindow* pWin = new MultiThreadWindow(10, 10, 0,
 TRUE);
 pWin->SetColor(PCI_NORMAL, CID_LIGHTGRAY);
 pPresent->Add(pWin);
96 PEG Pro Programming Manual Swell Software, LLC

Multithread Execution on the Win32 Development Platform
 // Even though we're not using the return value of the thread
 // ID given in the 6th parm to CreateThread, we still have to
 // include a pointer to a DWORD for compatibility with
 // Win95/98/Me since these OSes explicitly need this parm. If
 // this is not included, the call to CreateThread would hang.
 // In a production system, you would want to check this value
 // as well as check the value of the CreateThread return.
 DWORD dwThreadParm;

 // Start up a counter thread for it using the Win32 API
 // function call.
 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)CountThreadProc,
 (LPVOID)pWin, 0, &dwThreadParm);

 // Start up a secondary thread that will add it's own
 // window using the Win32 API function call.
 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)OtherThreadProc,
 NULL, 0, &dwThreadParm);

 pWin = new MultiThreadWindow(290, 10, 0, TRUE);
 pWin->SetColor(PCI_NORMAL, CID_GREEN);
 pPresent->Add(pWin);
 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)CountThreadProc,
 (LPVOID)pWin, 0, NULL);

 // Start up another window that will execute in it's own thread
 // and start up a counter thread for itself.
 CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE)AnotherThreadProc,
 (LPVOID)pWin, 0, &dwThreadParm);
}

You will notice that the first two windows are added directly to the
PegPresentationManager. This implies that these windows will execute in
the context of PegTask. We then start up an ancillary thread for each
window, whose callback function, CountThreadProc, will then interact with
the window.

Next, we create another thread whose callback function is
OtherThreadProc. And, finally, yet another thread whose callback function
is AnotherThreadProc.

To clarify this code a little further, the CreateThread function is a Win32 API
service that allows multiple paths of execution in a single Win32 process.
An in-depth discussion of this function is beyond the scope of the manual. If
you are new to Win32 threading techniques, consult the documentation that
accompanied your compiler, the Microsoft Knowledge Base, or any number
of third party books from authoritative publishers such as the Waite Group
Press or O’Reilly and Associates.
Swell Software, LLC PEG Multitasking 97

PEG Multitasking
Let’s take a look at the first callback function, CountThreadProc. Here is the
code:

DWORD WINAPI CountThreadProc(LPDWORD lpData)
{
 MultiThreadWindow* pWin = (MultiThreadWindow*)lpData;
 //In order to get the REAL handle of the current thread, (not
 //the psuedo handle that GetCurrentThread returns), we have to
 //duplicate the handle. This gives us the thread handle that we
 //can pass to the window that we're controlling so that the
 //window will terminate this thread when the window is deleted.
 HANDLE tCurHandle = GetCurrentThread();
 HANDLE tDupHandle;
 DuplicateHandle(GetCurrentProcess(), tCurHandle,
 GetCurrentProcess(), &tDupHandle, 0, FALSE,
 DUPLICATE_SAME_ACCESS);
 pWin->SetChildThreadHandle(tDupHandle);
 DWORD dwCount = 0;
 DWORD dwSleep = 0;

 while (1)
 {
 pWin->SetCount(++dwCount);
 dwSleep = pWin->GetSleep();
 Sleep(dwSleep);
 }

 return(0);
}

You’ll first notice the lpData parameter is cast to a MultiThreadWindow
pointer. We passed this over in the call to CreateThread. For reasons we’ll
discuss later, we have to do a bit of Win32 API magic to get the true
resource handle of the current thread. It is important that the
MultiThreadWindow instance have a handle to the thread that is updating
the objects on the window, because once the window is deleted, the pointer
the thread has to the window will no longer be valid. Obviously, we have to
consider this situtation.

The small loop that simply increments a counter and updates the data
displayed in the window is the real work the thread is doing. Consider that
this is only an example of what an ancillary thread is able to do. In a real
world application, this thread may, for example, be responsible for pulling
data from a serial buffer that is connected to some piece of hardware and
passing that data into a PEG object. It would not be prudent for the PEG
object to do this type of processing for reasons already discussed in
previous sections.
98 PEG Pro Programming Manual Swell Software, LLC

Multithread Execution on the Win32 Development Platform
Before we move on, let’s take a look at what the
MultiThreadWindow::SetCount method does. Here is the code:

DWORD MultiThreadWindow::SetCount(DWORD dwNewCount)
{
 EnterCriticalSection(&mtCountCS);

 DWORD dwOldCount = mdwCount;
 mdwCount = dwNewCount;

 PEGCHAR cBuff[20];
 ltoa(mdwCount, cBuff, 10);
 mpCount->DataSet(cBuff);
 mpCount->Draw();

 LeaveCriticalSection(&mtCountCS);

 return(dwOldCount);
}

We have abstracted the setting of the MultiThreadWindow::mpCount
member into this method. This allows for thread safe updating of the value
displayed by the object. The entire method is wrapped with a
synchronization object (the Win32 API CRITICAL_SECTION object,
mtCountCS). This ensures that any other thread of execution will not
corrupt the mdwCount member variable. The important point here is that
we have not burdened the ancillary thread with this type of issue. It has no
idea about how the data is being updated. We have made the owner of the
data responsible for keeping the data safe.

Next, the thread calls the MultiThreadWindow::GetSleep method. Here is
the code for that method:

DWORD MultiThreadWindow::GetSleep()
{
 EnterCriticalSection(&mtSleepCS);

 DWORD dwCurSleep = mdwSleep;

 LeaveCriticalSection(&mtSleepCS);

 return(dwCurSleep);
}

Again, we have protected the data with a CRITICAL_SECTION object. This
is important here because the MultiThreadWindow can update the value of
mdwSleep when it receives a PegMessage from the PegSlider object
Swell Software, LLC PEG Multitasking 99

PEG Multitasking
informing the window the value of the slider has changed. Here is a look at
part of the MultiThreadWindow::Message method:

PEGINT MultiThreadWindow::Message(const PegMessage& Mesg)
{
.
.
.
 switch(Mesg.wType)
 {
 case PEG_SIGNAL(IDC_SLEEP, PSF_SLIDER_CHANGE):
 EnterCriticalSection(&mtSleepCS);
 mdwSleep = Mesg.lData;
 PEGCHAR uBuff[20];
 ltoa(mdwSleep, uBuff, 10);
 mpTick->DataSet(uBuff);
 mpTick->Draw();
 LeaveCriticalSection(&mtSleepCS);
 break;
 }
.
.
.
}

Here, too, we operate on the mdwSleep member variable, so we wrap the
usage in the same CRITICAL_SECTION object as the previous method.
The concept to note here is that the PegMessage pump is executing within
the context of the thread in which the instance of the MultiThreadWindow is
executing; furthermore, the ancillary thread that is reliant on this data
obviously has a separate path of execution so the data must therefore be
protected.

Now that we have discussed how ancillary threads may operate on PEG
objects, we’ll take a quick look at the remaining two thread callback
functions to briefly discuss optional ways to add top level windows to the
PegPresentationManager.

First, the contents of the callback OtherThreadProc:

DWORD WINAPI OtherThreadProc(LPDWORD lpData)
{
 MultiThreadWindow* pWin = new MultiThreadWindow(10, 210, 0,
 TRUE);
 pWin->SetColor(PCI_NORMAL, BROWN);
 // Duplicate the thread handle to get the REAL handle to pass
 // to the window that we're controlling
 HANDLE tCurHandle = GetCurrentThread();
100 PEG Pro Programming Manual Swell Software, LLC

Multithread Execution on the Win32 Development Platform
 HANDLE tDupHandle;
 DuplicateHandle(GetCurrentProcess(), tCurHandle,
 GetCurrentProcess(), &tDupHandle, 0, FALSE,
 DUPLICATE_SAME_ACCESS);
 pWin->SetChildThreadHandle(tDupHandle);
 pWin->Presentation()->Add(pWin);

 DWORD dwCount = 0;
 DWORD dwSleep = 0;

 while (1)
 {
 pWin->SetCount(++dwCount);
 dwSleep = pWin->GetSleep();
 Sleep(dwSleep);
 }

 return(0);
}

Much of this is familiar from the CountThreadProc discussion, with the
exception of how the MultiThreadWindow instance is created. You’ll
remember that in the CountThreadProc code we were passed in an
instance of an existing MultiThreadWindow. Here, we create one for
ourselves. This demonstrates that any thread can create and display
objects within the PEG Multithread framework.

The last callback is detailed here:

DWORD WINAPI AnotherThreadProc(LPDWORD lpData)
{
 MultiThreadWindow* pWin = new MultiThreadWindow(290, 210, 0,
 TRUE);
 pWin->SetColor(PCI_NORMAL, CID_RED);

 // Start up a counter thread for it.
 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)CountThreadProc,
 (LPVOID)pWin, 0, NULL);

 // Execute the window, don't just add it to the presentation
 // manager. When this returns, the window will have been
 // closed,and the counter thread will have been canceled,
 // so we can safely return.
 pWin->Execute();

 return(0);
}

This function is an example of yet another way to work with top level PEG
windows. Here, we create an instance of a MultiThreadWindow, then create
Swell Software, LLC PEG Multitasking 101

PEG Multitasking
another thread that will run the CountThreadProc callback, to which we
pass a pointer to our new window. We then call the window’s Execute
method, which effectively gives up control in this thread to the PEG object.
When Execute returns, we know the window has been removed from the
PegPresentationManager and has been destroyed, so, we may safely
return at that point.

The last programming concept we will cover here is the relationship
between a PEG object, in this case the MultiThreadWindow, and ancillary
threads. We touched on this issue earlier while we were looking at the code
for the CountThreadProc. Since this thread has a pointer to an object that is
executing within the context of another thread, the ancillary thread is taking
for granted that the pointer is valid when it works on the object. This is
obviously a problem.

There are several techniques available to the Win32 programmer to
circumvent this issue. We have chosen here to let the MultiThreadWindow
have the power to terminate the thread when it sees fit. This may or may
not be the best solution, but for the purposes of this example, it is sufficient
to allow for reliable operation.

For the MultiThreadWindow to have the power to terminate the ancillary
thread, it must first know how to address the thread. This is why we go
through the trouble of getting the ‘real’ thread handle from the operating
system in the first few lines of code in the CountThreadProc. By calling the
Win32 API function, DuplicateHandle, Windows returns to us the true
handle of the thread as opposed to the pseudo handle we receive in the
GetCurrentThread function. (Again, consult your Win32 API documentation
regarding this phenomenon.)

We then call MultiThreadWindow::SetChildThreadHandle with the thread
handle we are returned. This gives the instance of the window knowledge
of the ancillary thread that is updating its PEG child objects.

Here’s the code for the MultiThreadWindow’s destructor:

MultiThreadWindow::~MultiThreadWindow()
{
 if (mhChildThread && mbKillChildOnExit)
 {
 EnterCriticalSection(&mtCountCS);
 TerminateThread(mhChildThread, 0);
 LeaveCriticalSection(&mtCountCS);
 }
102 PEG Pro Programming Manual Swell Software, LLC

OS Porting Advanced Topics
}

Here, we simply call TerminateThread. Once again, consult your Win32 API
reference documentation regarding the pitfalls of calling this function before
you decide to use it in a production system. (The Waite Group Press book,
Win32 API SuperBible, warns of dire consequences that could significantly
compromise the robustness of your application.)

To summarize, the PEG Win32 Development Platform affords all of the
functionality associated with the PEG Multithread execution model and
allows for extensive flexibility when designing your system. It is always best
to process real-time or time-critical aspects of your system in ancillary
threads rather than within the context of a PEG GUI thread. Finally, be sure
to protect your data against corruption.

11.4 OS Porting Advanced Topics
Porting PEG to a new operating system involves devising means for
servicing input devices, transferring messages between PEG and other
system tasks, providing a periodic timer tick, servicing ANSI C++ memory
allocation and de-allocation calls, and devising means for supporting the
Multithread model (if required).

 Input Devices

Input devices are generally a touch screen, keyboard, joystick, mouse, or
membrane keypad. Other devices can also be incorporated. Incorporating
input devices into your PEG system requires two distinct areas of effort.
First, the low-level hardware interface must be completed, which usually
involves hardware-specific operations and/or an interrupt handler specific
to the input device.

Second, the data returned by the low-level interface must be enclosed in a
PegMessage and the resulting PegMessage must be placed in the
PegMessageQueue.

PEG input message types are intentionally very generic, which allows you
to incorporate any type of input device and decide which type of device
action should correspond to each of the device actions. PEG defines input
messages for mouse and keyboard input only. Using another input device,
such as a touch screen or joystick, requires that you logically map the input
device input events to the closest matching mouse or keyboard events.
This is usually very straightforward.
Swell Software, LLC PEG Multitasking 103

PEG Multitasking
As an example, consider a target system that uses a membrane keypad. A
common situation is to place keypad buttons at a regular interval around
one or more edges of the screen. Graphics (such as PegTextButton or
PegBitmapButton) are then drawn on the screen at locations corresponding
to each membrane keypad button. The graphics at each button location are
changed as the user moves from screen to screen or from one operating
mode to another. This is commonly called ‘softkey’ operation.

The above example is easily accomplished using the standard PEG mouse
input messages. The keypad input handler must simply create PEG
PM_LBUTTONDOWN and PM_LBUTTONUP messages corresponding to
each keypad button. The PegPoint member variable of PEG mouse input
messages contains the mouse pointer location. For this example, we will
simply pass a point on the screen for each keypad button which roughly
corresponds to the center position of the graphic on the screen
corresponding to each button. The effect is that PEG is tricked into thinking
a mouse was clicked over the graphic button, when in fact no mouse exists!

All types of input devices encountered to date are handled using similar
means. During the porting process the target input devices are logically
mapped to PEG mouse and/or keyboard devices. If you are concerned
about using a particular input device with PEG, we encourage you to
contact Swell Software to discuss the possible approaches.

 Periodic Timer Service

This service is required for the operation of PegTimers. This is generally
very easy to implement with a commercial RTOS. The PEG timer service is
built on top of a single RTOS timer. As part of the RTOS timer service
routine, a PM_TIMER message is generated with a NULL target and sent to
PegTask. PegTask interprets the NULL targeted PM_TIMER message as a
timer tick, and calls PegMessageQueue::TimerTick to check for and
dispatch actual target specific PM_TIMER messages.

 Memory Management Services

PEG uses the standard C++ memory management services, new, new[],
delete, and delete[]. Supporting these services on an embedded target is
specific to the RTOS and compiler being used. Some compilers provide
very good documentation of how to hook these services, while others do
not. Likewise, many RTOS venders now provide their own hooks for these
operations for each supported compiler. Check with your RTOS vendor and
104 PEG Pro Programming Manual Swell Software, LLC

OS Porting Advanced Topics
compiler documentation for information about supporting these memory
management services in a thread-safe manner.

 MULTITHREAD support

When the PEG_MULTITHREAD define is enabled, PEG supports the
capability of multiple tasks to create windows and interact with the graphical
interface. In order to support this programming model, several internal data
structures must be protected during critical code sections in order to ensure
that they are not corrupted. These critical code sections use macros
defined in \peg\include\peg.hpp to invoke semaphore protection of each
internal data structure. These macros are named ‘LOCK_resource_name’
and ‘UNLOCK_resource_name’ for each protected resource.

Macros are used to ease the porting effort required when integrating PEG
with a new RTOS. You do not have to find each occurrence in the PEG
source code where resource locking is required; you simply have to define
the implementation of the protection macros to invoke the proper operation
with your RTOS.

 Resource Protection Macros

The protected structures and associated protection macros are shown
below:

PegMessageQueue

PegMessageQueue is protected with the macros
‘LOCK_MESSAGE_QUEUE’ and ‘UNLOCK_MESSAGE_QUEUE.’ This
semaphore is used to prevent corruption of a FIFO linked list of queued
messages maintained by PegMessageQueue.

PegTimerList

The high-level timer list is protected via the macros ‘LOCK_TIMER_LIST’
and ‘UNLOCK_TIMER_LIST.’ This semaphore prevents corruption of the
linked list of active timers.

PegPresentationTree

This refers to the tree of visible objects, along with the physical screen.
These resources are locked with LOCK_PEG and unlocked with
Swell Software, LLC PEG Multitasking 105

PEG Multitasking
UNLOCK_PEG macros. They must be defined and implemented to obtain
and release a semaphore or mutex on the target system.

The Presentation resource locking can be nested, so the protection
mechanism must allow recursive or counted calls to the lock/unlock
mechanism from within the same thread. For example, this resource may
receive a sequence such as LOCK/LOCK/LOCK - UNLOCK/UNLOCK/
UNLOCK and should handle this sequence appropriately.

 Additional requirements for MULTITHREAD support

In addition to the above resource protection macros, supporting the
MULTITHREAD model on a new RTOS often requires customization of
PegMessageQueue and the addition of several functions used by
PegPresentationManager and PegWindow to properly construct and use
message queues for each GUI task.

The default PegMessageQueue implementation cannot be used in a
MULTITHREAD environment because there are no services for
dynamically creating additional queues on an as-needed basis.

These additional macros required for support of the MULTITHREAD model
include:

CREATE_MESG_QUEUE

This macro calls a user- or integration-defined function to create a new
message queue. This macro is invoked by PegPresentationManager when
a secondary task calls the PegWindow::Execute function. The called
function should return a PEG_QUEUE_TYPE *.

DELETE_MESSAGE_QUEUE(a)

This macro calls a user- or integration-defined function to delete a
previously created message queue. This macro should return void and
accept a PEG_QUEUE_TYPE *.

ENQUEUE_TASK_MESSAGE(a, b)

This macro calls a user- or integration-defined function to send a message
to a specific queue. The first parameter is a pointer to the message, and the
second parameter is a pointer to the desired queue.
106 PEG Pro Programming Manual Swell Software, LLC

OS Porting Advanced Topics
CURRENT_TASK

This macro should return a PEG_TASK_TYPE indicating the current
execution thread. This is typically an RTOS defined task control block
pointer.

PEG_TASK_PTR

This macro should return a PEG_TASK_TYPE indicating the PegTask
execution thread. This value is typically saved during PegTask startup for
later reference.

As you can see, supporting the MULTITHREAD model can become quite
complex and requires a solid understanding of both PEG and the target
operating system. Assistance with integrating a new RTOS with PEG is
available from Swell Software.
Swell Software, LLC PEG Multitasking 107

PEG Multitasking
108 PEG Pro Programming Manual Swell Software, LLC

C H A P T E R 1 2

CHAPTER12THE MIGHTY THING
In this chapter you will learn about the most fundamental and important
class in all of the PEG library, class PegThing. This chapter describes the
overall capabilities of class PegThing, the individual public member
functions of the class, and provides several small programming examples
illustrating the most common PEG programming operations. This chapter
complements the information found in the API reference manual; i.e., here
we concentrate on useful examples, while the primary goal of the API
reference is to provide a quick lookup for function names and argument
lists. A full class hierarchy diagram is also provided in the PEG class
reference.

The first half of this chapter is a rather formal class reference, covering the
constructors and member functions of the PegThing class. The second half
of this chapter covers various important topics explaining the purpose of
PegThing member variables and demonstrating the use of PegThing
member functions to accomplish small programming tasks. The following
chapter continues in this vein, providing more complete programming
examples that will have you well on the way to using PEG to create your
graphical interface.

PegThing is the base class from which all viewable PEG objects are
derived. While you may never create an instance of a actual PegThing in
your application, it is very possible that you will derive your own custom
control types from PegThing. In any event, every window and control you
will use is based on PegThing, so you will be using the public functions of
PegThing often when programming with PEG.

A basic precept in the design of PEG is that all graphical objects, from the
most complex tabbed notebook or table to the simplest bitmapped button,
share a small but significant set of properties. Some of these basic
properties include: whether or not the object is visible, if the object has a
parent and who that parent is, if the object has children and who those
children are, if the user should be allowed to interact with an object, and so
on. These and other properties define how each object will participate in
your graphical presentation. It is class PegThing that maintains this
information about each PEG object.
Swell Software, LLC The Mighty Thing 109

The Mighty Thing
The following sections describe in detail the public functions and data
members of PegThing. With this information, you will gain a clear
understanding of how PEG works, and you will even be able to anticipate
how objects will work together when combined to perform complex
interfaces.

12.1 PegThing Members
This section describes each public member function and public variable of
class PegThing. Rather than focusing entirely on formal function
declarations, parameter descriptions, and return values (as in the PEG Pro
API Reference Manual), this section of the manual includes many code
fragments and useful examples that illustrate how each of the member
functions can be used.

This reference does NOT include every member function of the PegThing
class. Please refer to the API reference manual for an alphabetical list of all
PegThing member functions.

12.1.1 Constructor(s)

 PegThing(const PegRect &Rect, PEGUSHORT Id = 0,
PEGULONG Style = FF_NONE)
This constructor is used when the desired initial position of the object on the
screen is known at the time of object creation. Rect contains the starting
screen coordinates, in pixels, for the object. The Style parameter indicates
the object’s initial drawing style; FF_NONE indicates that the object will be
drawing with no frame (FF_NONE stands for Frame Flag NONE).

 PegThing(PEGUSHORT wId = 0, PEGULONG Style =
FF_NONE)
This constructor is used when the object position is not known at the time of
object creation. When this is the case, it is necessary to define the object’s
position some time between when the object is created and when the object
is drawn on the screen. This can be done in a derived class constructor, or
when the object receives the PM_SHOW message.

The easiest way to set an object’s position is to call the member function
Resize(), which accepts a PegRect argument that should contain the
110 PEG Pro Programming Manual Swell Software, LLC

PegThing Members
desired screen coordinates. Calling Resize() is the only acceptable way to
set an objects size or position after the object is visible.

A more direct method of setting an object’s position and size is to directly
modify the object’s mReal (the absolute bounding rectangle of an object)
and mClient (the inside client area of an object) variables. This method
must be used with caution since PEG base classes often must ensure that
mClient remains correctly positioned relative to mReal. Also, you should
never directly modify mReal or mClient after an object is visible, since this
will usually not have the desired result due to PEG clipping enforcement.

12.1.2 Public Functions

 virtual PEGINT Message(const PegMessage &Mesg)
This function is called by PegPresentationManager to allow an object to
process a message. This is the most commonly overridden of all PEG
functions, because customizing object behavior is done by adding your own
message types and message handling code to the default operation
performed by PEG.

Messages can be those defined internally by PEG (system messages), or
they can be new messages defined by you, the application developer (user-
defined messages). PEG system messages are recognized by the
PegMessage.Type field, which is < FIRST_USER_MESSAGE for PEG
system messages. For this reason, you should always ensure that your
user message types are greater than FIRST_USER_MESSSAGE. A
complete list of all PEG system messages is contained in the section of this
manual entitled PegMessageQueue.

The majority of the work of creating a graphical interface using PEG is done
by implementing the Message function for your top-level windows. This
Message function will receive input events from the child controls of each
window, and act on those input events usually by calling additional PEG
API functions.

For normal message processing, the Message function returns zero. If a
window is executing modally, a non-zero return value indicates to PEG that
the window is closing and modal execution should stop. The non-zero
return value of the Message function is returned to the caller who invoked
the modal window by calling the Window->Execute() function.
Swell Software, LLC The Mighty Thing 111

The Mighty Thing
 virtual void Draw(const PegRect &Invalid)
This function is called by PegPresentationManager when an object needs
to draw or redraw itself. This is the second most commonly overridden
function in custom classes created by PEG users, because by overriding
this function you can define a custom object appearance.

You have many options when overriding the Draw() function of your base
class. Often when you override the Draw() function you will first call the
base class Draw() function to do normal drawing, then you will add your
own custom drawing ‘on top’ of the base class drawing. If you want your
customization to appear ‘on-top’ (which is usually the case), you should call
the base class draw function before you do your own drawing.

In some cases, you may not want to invoke the base class Draw() function
at all. This is perfectly OK, as long as you remember a few rules:

1) Start your draw function with a call to BeginDraw().
2) After you have done your custom drawing, call DrawChildren() to
ensure child objects get their chance to draw.
3) After everything is done, call EndDraw().

The calls to BeginDraw() and EndDraw() should actually be included
regardless of whether or not you call the base class draw function. These
calls inform the PegScreen driver when a drawing sequence begins and
ends. When you override the Draw() function and call the base class draw
function during your drawing routine, the BeginDraw() calls become nested.
This is expected by the PegScreen driver, which keeps track of the nesting
level and recognizes when the total drawing operation is complete by
tracking this BeginDraw()-EndDraw() nesting.

The incoming parameter to the Draw() function is the rectangular area that
PegPresentationManager has calculated needs to be refreshed. You will
pass this rectangle to the BeginDraw() function to inform the screen driver
the area to which you will be drawing. All of your subsequent low-level
drawing operations will be clipped to this invalid rectangle.

It is normal and acceptable for an object to ignore the incoming Invalid
rectangle and always attempt to draw the entire object, regardless of
whether the invalid rectangle encompasses the entire object. The screen
driver will prevent drawing (and the associated wasted CPU drawing
cycles) outside the invalid rectangle. However, for complex graphical
objects it is often useful to check the incoming parameter to see which
112 PEG Pro Programming Manual Swell Software, LLC

PegThing Members
portions of the object need to be redrawn. The choice of ‘attempt to draw
everything’ or ‘just draw what’s needed’ is up to you.

PegPresentationManager calls the Draw() function when an object or part
of an object has been invalidated. This call does not happen immediately
when the object is invalidated, but happens instead only after all input
messages have be processed (refer to the Deferred Drawing section in the
PegPresentationManager chapter).

If you want to force an object to update itself, you invalidate the object.

SomeThing->AddStatus(PSF_ENABLED); // change the object status
SomeThing->Invalidate(); // invalidate the objec

PEG objects invalidate themselves automatically when you use the
DataSet or SetColor API functions. For other API functions, such as
changes to status or style, you must manually invalidate the object. This is
because PEG cannot know which status or style changes cause the object
to draw differently, so PEG cannot assume that any status or style change
should cause a redraw. PEG always works to prevent time wasted in
redrawing objects that do not need to be updated.

 virtual void Add(PegThing *Who, PEGBOOL DoShow =
TRUE)
This function adds Who to the current object. Who thus becomes a child of
this. This function is used to make windows and controls members of the
presentation tree.

If the object Who is already a member of the current object’s child list, Who
is not added again to the child list, but instead Who is simply moved to the
front of the child list.

If Who is not visible at the time this function is called, the object this is
visible, and DoShow = TRUE, a PM_SHOW message will be sent to Who
to inform it that it has become visible. If the calling object is not visible at the
time Who is added, and the calling object later becomes visible (by addition
to a visible object), PM_SHOW messages will be sent at that time to the
calling object and all of its children.
Swell Software, LLC The Mighty Thing 113

The Mighty Thing
When constructing complex windows and dialogs, it is best to first add all of
the child objects to the main window or dialog, and then add the main
window or dialog to PegPresentationManager. This is slightly more
efficient than adding each child object to a window or dialog that is already
visible.

 virtual void AddToEnd(PegThing *Who, PEGBOOL
DoShow = TRUE)
Similar to the Add() function in all respects, except this function makes Who
the last child object of this. This is useful for controlling the order of child
objects in a list, such as when adding child objects to a PegVerticalList or
PegComboBox.

 virtual PegThing *Remove(PegThing *)
This function removes a child object from the current object’s child list. This
function is the opposite of Add(). Attempting to remove an object that is not
in the child list has no effect. When an object is removed from a visible
parent, it will receive a PM_HIDE message to notify it that it has been
removed from the screen.

Remove() does not delete the object after is has been removed. In fact, the
purpose of Remove() is to allow you to remove objects from the screen
without deleting them, allowing you to later re-display the object simply by
re-adding it to a visible window. If you want to remove and delete an object,
the PegThing member function Destroy() is provided for that purpose.

 const PEGCHAR *Version(void)
This function returns a pointer to the PEG library version string.

 virtual PegThing *Find(PEGUSHORT Id, PEGBOOL
Recursive = TRUE)
This function can be used to find any object based on the object ID value.
For example, you may create a PegDialog window that has many child
controls. If you need to modify the status of those controls as the dialog is
manipulated, you will need to keep or obtain pointers to those child
controls. There are two ways you could obtain a pointer to each child
control. You could add member pointers to the dialog window that are
initialized as each child control is constructed. This is faster than using the
Find() function to locate child controls, but it requires more memory to store
114 PEG Pro Programming Manual Swell Software, LLC

PegThing Members
all of the child control pointers. An alternative is to use Find() to obtain a
pointer to a child control when the pointer is needed.

The following example illustrates using Find() to locate a child PegEditField
control and testing to see if the PegEditField has a non-NULL string value.
If the string has a null value, the dialog OK button will not close the dialog.
For this example, we assume the desired string has the enumerated ID
value IDS_MY_STRING:

PEGINT MyDialog::Message(const PegMessage &Mesg)
{
 PegEditField *pString;

 switch (Mesg.Type)
 {
 case PEG_SIGNAL(IDB_OK, PSF_CLICKED):

 pString = (PegEditField *) Find(IDS_MY_STRING);

 if (pString->DataGet()) // Does string contain text??
 {
 return PegDialog::Message(Mesg);
 }
 break;
 }

 return 0;
}

The Recursive parameter of the Find function indicates whether or not
Find() should drill down into children of child objects. For example, to find a
top-level window of the PegPresentationManager, without looking at
children of the top-level windows, you might do this:

PegWindow *pWin = (PegWindow *) Presentation()->Find(ID_SOME_WIN,
FALSE);

The FALSE parameter tells the Find() function to search only the immediate
child object of PegPresentationManager, not children of children.
Therefore, the above example will return only a top-level window added to
PegPresentationManager, and never a nested child object.

 virtual void SetColor(PEGUBYTE Index, PEGUINT
ColorId)
SetColor is called to override at run time an object’s default color values.
Every PEG object has at least four color indexes, any of which can be reset
Swell Software, LLC The Mighty Thing 115

The Mighty Thing
using the SetColor function. The color indexes that can be passed in Index
are defined as follows:

PCI_NORMAL The normal client area fill color.
PCI_SELECTED The fill color when the object is selected.
PCI_NTEXT The normal text color for the object.
PCI_STEXT The text color to use when the object is selected.

The second parameter, the color ID, is a color ID registered with
PegResourceManager. Normally, these color IDs are enumerated in your
resource header file, which is generated by PEG WindowBuilder.

Many PEG objects such as PegButton and PegTable have additional color
indexes associated with them because they require more than 4 unique
colors to draw themselves. The API reference manual list the color IDs
supported by each object type.

 virtual void DrawChildren(const PegRect &Invalid)
This function tells each child of the current object to draw itself by calling
the individual child object Draw functions. In your derived classes, you do
not usually need to call this function since this is normally handled
automatically by PEG when you call the base class drawing function.
However, if you choose not to call the base class drawing function in your
custom Draw() function, you will usually want to call DrawChildren() at
some point in your drawing routine to ensure that objects that have been
added to your class draw themselves.

 virtual void Resize(const PegRect &Size)
Any PEG object can resize itself or any other object at any time by calling
the Resize() function. The new screen coordinates for the object are
passed in the parameter Size. If you maintain or find a pointer to another
object, you can also resize that object by calling the same function. The
following example illustrates this concept:

PegRect Rect(10, 10, 40, 40);
PegButton *MyButton = new PegTextButton(Rect, 0, “Hello”);
.
. // at any time, to resize MyButton:
.
Rect.Set(20, 20, 60, 60);
MyButton->Resize(Rect);
116 PEG Pro Programming Manual Swell Software, LLC

PegThing Members
If an object is visible when it is resized, it will automatically perform the
necessary invalidation and drawing. It is also perfectly OK to resize an
object that is not visible.

 virtual void Center(PegThing *Who)
This function will adjust the screen coordinates of Who such that Who is
horizontally and vertically centered over the client area of this. Who does
not necessarily have to be a child of this, although this is the most common
case. The following example demonstrates centering an object on the
screen:

PegRect Rect;
Rect.Set(0, 0, 99, 99); // create 100x100 pixel window
PegWindow *MyWin = new PegWindow(Rect);
Presentation()->Center(MyWin); // center window on the screen
Presentation()->Add(MyWin); // make the window visible

 void Destroy(PegThing *Who)
This function is called to remove an object from view and delete the
memory associated with that object. If the object has no parent, it has
already been removed from view, in which case Destroy() simply deletes
the object. In the case that Who == this, Destroy() will post a message to
PegPresentationManager to delete the calling object.

Using Destroy is the only acceptable method of removing an object from
memory. The Destroy function performs several housekeeping tasks, such
as making sure any timers owned by the object are stopped and also
ensuring that no messages targeted for the object remain in
PegMessageQueue.

 PegThing *Parent(void)
Returns a pointer to the parent object, or NULL if the object has no parent
(i.e. the object is not visible).

 PegThing *First(void)
Returns a pointer to the first child object in the current object’s tree.

 PegThing *Next(void)
Returns a pointer to the current objects next sibling, or NULL if the current
object is the end node of the current branch of the object tree.
Swell Software, LLC The Mighty Thing 117

The Mighty Thing
 PEGUSHORT GetType(void)
Returns the object’s enumerated type, held in the private member variable
mType. This variable is used to determine the class of an object.

 void Type(PEGUSHORT Type)
Assigns the value of the object’s private mType member. This is normally
done by the constructor of the PEG object, although you can define new
types for your derived objects.

 void SetId(PEGUSHORT)
Assigns the value of the object’s mId member. The default value is zero.
Object Ids are used by PEG signaling classes to determine the message
number associated with notification messages. For all other class types,
muId has no effect on the internal operation of PEG, but can be useful to
the application-level software for identifying objects at run time.

 PEGUSHORT GetId(void)
Returns the value of the object’s ID member. The ID value is not used by
PEG directly, but it is useful to the application software for keeping track of
individual controls or other objects when a window such as a complex
dialog has several instances of a particular object type associated with it.
By assigning IDs to each object, the application can determine precisely the
source of a control notification by requesting the control’s ID value.

Object IDs are also used to send and receive signals. The message
number associated with a particular signal is calculated based on the object
ID and the signal being sent.

 PEGBOOL StatusIs(PEGULONG Mask)
This function is used to test individual bits of an object’s private mStatus
variable. This variable contains system status flags common to all PEG
classes. Generally, an application program should never attempt to modify
these flags; however, it is sometimes useful to read this value to test for
certain object states. The system status flags, defined in the header file
pegtypes.hpp, are shown below.

• PSF_VISIBLE: The object is visible on the screen. This flag should not
be modified by the application-level software. Clearing or setting this flag
will not have the effect of removing or displaying the object. The
PegThing member functions Add and Remove are used for that
purpose.
118 PEG Pro Programming Manual Swell Software, LLC

PegThing Members
• PSF_CURRENT: This flag indicates that the object is in the current
branch of the display tree. If the object is a leaf object (i.e. it has no
children) and it is current, then it is the object that will receive keyboard
input messages.

• PSF_SELECTABLE: This flag is tested by PegPresentationManager to
determine if an object is enabled and allowed to receive input messages.
The application-level software can modify this flag.

• PSF_SIZEABLE: This flag determines whether or not an object can be
resized. The application-level software can modify this flag.

• PSF_MOVEABLE: This flag determines whether or not an object can be
moved. The application-level software can modify this flag.

• PSF_NONCLIENT: This flag, when set, allows a child object to draw
outside the client area of its parent. The application-level software can
modify this flag after the object is constructed but before the object is
displayed.

• PSF_ALWAYS_ON_TOP: This flag ensures that the object is always on
top of its siblings. The application-level software can modify this flag.

• PSF_ACCEPTS_FOCUS: This flag indicates that the object will become
the receiver of input events when selected. The application-level
software can modify this flag, but normally this is not advised. If this flag
is modified for a particular object, it is important for correct operation that
‘breaks’ in the tree of objects accepting focus are avoided. In other
words, if a parent window cannot accept focus, then neither should any
of the window’s child objects be allowed to accept focus.

• PSF_VIEWPORT: This flag, when set, instructs
PegPresentationManager that the object should be given a private
screen viewport. Objects that have a viewport are drawn differently than
objects that do not have a viewport. In general, large objects or objects
which have a very complex drawing routine should be given viewports,
while small or simple objects should not. By default all PegWindow-
derived objects receive viewports, and all other objects do not. This flag
should not be changed except immediately after the object is
constructed.

 void AddStatus(PEGULONG Mask)
This function can be used to modify an object’s mStatus flags. AddStatus
will logically OR the Mask parameter with the object’s mStatus variable.
This function is often used by the PEG foundation objects to modify the
state of visible window or control, but it is rarely used by the application-
level software.
Swell Software, LLC The Mighty Thing 119

The Mighty Thing
 void RemoveStatus(PEGULONG Mask)
The opposite of AddStatus(), RemoveStatus() can be used to clear
individual bits or a combination of bits in an object’s mStatus variable. This
function will logically AND the complement of Mask with the object’s
mStatus variable.

 PegScreen *Screen(void)
This function returns a pointer to the screen interface object. The screen
interface object provides all of the drawing functions you will use in custom
drawing routines. For information about how to draw on the screen, refer
the PegScreen class reference in the API documentation, and to the
examples which follow.

 PegPresentationManager *Presentation(void)
This function returns a pointer to the application’s instance of
PegPresentationManager. This value is required in order to interact
directly with the top-level presentation. That is, in order to add a new
window to the screen you would add the window to
PegPresentationManager as shown:

PegWindow *MyWindow = new PegWindow(Rect);
Presentation()->Add(MyWindow);

 PegMessageQueue *MessageQueue(void)
This function returns a pointer to the application’s instance of
PegMessageQueue. You will need to use this function in order to post
messages to other windows or objects that are part of the application, and
to make use of PegTimer facilities.

 void FrameStyle(PEGULONG Style)
This function can be used to modify the appearance of the frame for most
PegThing-derived objects. This function is provided for convenience and is
nearly identical to the Style() function shown below, with the exception that
it guarantees that only the object’s frame style is modified, whereas the
Style() function can modify all style flags. The available frame styles are:

FF_NONE // no frame
FF_THIN // thin black frame
FF_RAISED // 3D raised frame
FF_RECESSED // 3D recessed frame
120 PEG Pro Programming Manual Swell Software, LLC

PegThing Members
FF_THICK // 3D thick frame

 PEGUSHORT FrameStyle(void)
This functions returns the current frame style of an object.

 void SetStyle(PEGULONG Style)
This function is used to set the style flags for an object. The available style
flags are shown on the following page. Not all style flags are supported by
all classes. In all cases, the desired style flags can be ‘OR’ed together to
form one style parameter.

As an aid in remembering the names of the style flags, the flags are
grouped into different categories, and the name of each flag starts with an
abbreviation of that category. For example, the frame flag names start with
‘FF’ for Frame Flag, and the button flags start with ‘BF’ for Button Flag.

The Style flags supported by each object type are documented in the API
reference manual.

 void RemoveStyle(PEGULONG Mask)

This function removes the style bit(s) contained in the Mask parameter from
the object’s internal mStyle variable.

 PEGULONG GetStyle(void)
This function returns the current style flags for an object.

 void SetSignals(PEGUSHORT SendMask)
This function is used to modify which notification messages a signaling
control should send to its parent. The mask value should be created by
using the SIGMASK macro. This enables multiple signals to be enabled
with one call to SetSignals, similar to the object style flags.

The API Reference Manual lists which signals are supported by each object
type. Note that there is a difference between supported and enabled
signals. Note that not all supported signals are enabled (by default) for
every object type.

For example, an object type may support the PSF_FOCUS_RECEIVED
signal type (all objects in fact support this signal type), but by default this
Swell Software, LLC The Mighty Thing 121

The Mighty Thing
signal notification is not enabled. If you actually want to be notified when
this child object received input focus, you have to enable this notification by
calling the SetSignals function for that child object.

The available signal masks are.

PSF_CLICKED // default button select notification
PSF_FOCUS_RECEIVED // sent when the object receives input focus
PSF_FOCUS_LOST // sent when the object loses input focus
PSF_TEXT_SELECT // sent when the user selects all or a portion
 // a textobject
PSF_TEXT_EDIT // sent each time the text object string is
 // modified
PSF_TEXT_EDITDONE // sent when a text object modification is
 // complete
PSF_CHECK_ON // sent by check box and menu button when
 // checked
PSF_CHECK_OFF // sent by check box and menu button when
 // unchecked
PSF_DOT_ON // sent by radio button and menu button when
 // selected
PSF_DOT_OFF // sent by radio button and menu button when
 // unselected
PSF_SCROLL_CHANGE // sent by non-client PegScroll-derived objects
PSF_SLIDER_CHANGE // sent by PegSlider-derived objects
PSF_SPIN_MORE // sent by PegSpinButton when up or right arrow
 // is selected
PSF_SPIN_LESS // sent by PegSpinButton when down or left arrow
 // selected
PSF_LIST_SELECT // sent by PegList derived objects, including
 // PegComboBox
PSF_COL_SELECT // sent when PegTable column(s) are selected
PSF_ROW_SELECT // sent when PegTable row(s) are selected
PSF_CELL_SELECT // sent when PegTable cell(s) are selected
PSF_COL_UNSELECT // sent when a PegTable column is unselected
PSF_ROW_UNSELECT // sent when a PegTable row is unselected
PSF_CELL_UNSELECT // sent when a PegTable cell is unselected
PSF_PAGE_SELECT // sent by PegNotebook when a new page is
 // selected
PSF_NODE_SELECT // sent by PegTreeView when TreeNode is selected
PSF_NODE_DELETE // sent by selected TreeNode when ‘Delete’ key
 // is received
PSF_NODE_OPEN // sent by selected TreeNode if opened by user
PSF_NODE_CLOSE // sent by selected TreeNode if closed by user
PSF_KEY_RECEIVED // sent when an input key that is not supported
 // is received
PSF_SIZED // sent when the object is moved or sized

12.2 Public Inline Functions
Class PegThing contains a number of inline functions designed to improve
the API syntax and reduce the amount of typing required when calling
122 PEG Pro Programming Manual Swell Software, LLC

Public Inline Functions
public functions of the PegScreen, PegTimerManager,
PegResourceManager, and PegMessageQueue classes. These should
be thought of as pseudo-functions. They do no real work, but they are
convenient and reduce unnecessary typing effort.

Since it is important to remember that these functions are actually
implemented by PegScreen and PegMessageQueue, only a brief
description of these functions is provided here. Complete descriptions of
the actual functions are found in the respective class descriptions.

12.2.1 Wrapper function listing

This is a list of primitive functions that are wrapped for convenience by
inline functions within class PegThing. There are many additional drawing
operations for which no wrapper is provided. Refer to the PegScreen API
Reference Manual.

 PEGBOOL BeginDraw(const PegRect &Invalid)
Calls PegScreen::BeginDraw(this, Invalid);

 void EndDraw(void)
Calls PegScreen::EndDraw();

 void Line(PEGINT XStart, PEGINT YStart, PEGINT
XEnd, PEGINT YEnd, PegBrush &Brush)
Calls PegScreen::Line(this, wXStart, wYStart, wXEnd, wYEnd, Brush);

 void Rectangle(const PegRect &Rect, PegBrush
&Brush)
Calls PegScreen::Rectangle(this, Rect, Brush);

 void Bitmap(PegPoint Where, PegBitmap *Getmap)
Calls PegScreen()->Bitmap(this, Where, Getmap, bOnTop);

 void Bitmap(PegPoint Where, PEGUINT BID)
Calls PegScreen::Bitmap(this, Where,
 PegResourceManager::GetBitmap(BID));
Swell Software, LLC The Mighty Thing 123

The Mighty Thing
 void BitmapFill(PegRect Rect, PegBitmap *Getmap)
Calls PegScreen::BitmapFill(this, Rect, Getmap);

 void RectMove(PegRect Get, PegRect ClipTo, PEGINT
xShift, PEGINT yShift)
Calls PegScreen::RectMove(Get, ClipTo, xShift, yShift);

 void DrawText(PegPoint Where, const PEGCHAR
*Text, PegBrush &Brush, PegFont *Font, PEGINT
Count = -1)

 void DrawText(PegPoint Where, const PEGCHAR
*Text, PegBrush &Brush, PEGUINT FontId, PEGINT
Count = -1)

Calls PegScreen::DrawText(this, Where, Text, Color, Font, Count);

 PEGINT TextHeight(PegFont *Font)

 PEGINT TextHeight(PEGUINT FontId)

Calls PegScreen::TextHeight(Text, Font);

 PEGINT TextWidth(const char *Text, PegFont *Font)

 PEGINT TextWidth(const char *Text, PEGUINT FontId)

Calls PegScreen::TextWidth(Text, Font);

 void Invalidate(const PegRect &Rect)
Calls PegPresentationManager::Invalidate(this, Rect);

 void Invalidate(void)
Calls PegPresentationManager::Invalidate(this, mReal);
124 PEG Pro Programming Manual Swell Software, LLC

Public Data Members
 void SetPointerType(PEGUBYTE bType)
Calls PegScreen::SetPointerType(bType);

12.3 Public Data Members

 PegRect mReal
This rectangle defines the outer limits of an object, inclusive. Objects are
never allowed to draw themselves outside of this rectangle (unless drawing
to an unmanaged surface).

 PegRect mClient
This rectangle defines the client area of a window or control. In some
cases, mClient may be equal to mReal, but generally mClient is at least a
border width of pixels smaller than mReal. Child objects are not allowed to
draw outside of their parent’s mClient unless they have PSF_NONCLIENT
system status.

12.4 Using PegThing Member Functions
In this section, we will examine several common programming tasks and
illustrate the use of the PegThing class member functions. Remember that
nearly all PEG classes are derived at some point from class PegThing, and
therefore these operations can be performed from within any member
function of a derived class.

The following code fragments are not complete programs! These fragments
are short usage illustrations. In most cases, these fragments assume that
they are executed from with a function that is a member of a class derived
from one of the PEG base classes.

 Determining the position of an object
One of the most basic properties of all PEG objects is the object’s position
on the screen. PegThing maintains this information, along with clipping and
Z-ordering information, to ensure that objects are only allowed to draw to
the areas of the screen that are ‘owned’ by the object. An object’s position
is held in the PegThing member variable mReal, which is a value of type
PegRect. You can always determine where an object is at any time by
examining the object’s mReal data member. PegThing also maintains a
separate but related member called mClient, which is an additional
Swell Software, LLC The Mighty Thing 125

The Mighty Thing
PegRect member that indicates the client rectangle of the object. For many
objects, the client area and the real area are one and the same.

For example, by using the mReal variables and the PegRect::Overlap
function, we can easily determine if two objects overlap using the following
code segment:

PegThing *pThing1 = First();
PegThing *pThing2 = pThing1->Next();

if (pThing1->mReal.Overlap(pThing2->mReal))
{
 // objects overlap
}
else
{
 // objects do not overlap
}

 Obtaining a Pointer to PegPresentationManager
It is very common to require a pointer to PegPresentationManager during
program execution, as you will see in the examples that follow. The
PegThing member function Presentation() is provided for this purpose. For
example, the following code segment could be used to determine if a
window is a top-level window (i.e. a child of PegPresentationManager):

if (Presentation() == Parent())
{

// Current object is a top-level object
}

 Adding PEG objects
The PegThing member function Add() is used to attach one object to
another. When an object is added to another, it becomes a child of the
object to which it has been added. Referring to the ‘tree of visible objects’
described in the PegPresentationManager chapter, the Add() function adds
a new node to the linked list of children of the current object.

When an object is added to PegPresentationManager, it becomes visible. If
other objects are then added to this ‘top level’ window, they also become
visible as they are added. An alternative and preferred method for
constructing complex windows or dialogs is:

1) Create the top-level object.
2) Add the children to the top-level object.
3) Add the top-level object to PegPresentationManager.
126 PEG Pro Programming Manual Swell Software, LLC

Using PegThing Member Functions
Using the sequence above, the top-level window and all of its children
become visible at the same time when the top level window is added to
PegPresentationManager.

The following code segment creates a button, and adds that button directly
to PegPresentationManager:

PegTextButton *pButton = new PegTextButton(10, 10, 80, “Hello”);
Presentation()->Add(pButton);

The following code segment creates a window, adds a button to the
window, and then adds the window to PegPresentationManager:

PegRect WinRect;
WinRect.Set(10, 10, 200, 180);
PegWindow *pWin = new PegWindow(WinRect, FF_THICK);
pWin->Add(new PegTextButton(20, 20, 80, “Hello”));
Presentation()->Add(pWin);

 Removing Objects
The PegThing member function Remove() is used to detach an object
from the object’s parent. This is the opposite of Add(). In addition, the
PegThing member function Destroy() is similar to Remove(), although
Destroy() both removes the object and deletes the object from memory.

The following example removes the object pointed to by pChild from the
object’s parent:

Remove(pChild);

The following example removes ‘pChild’ from the object’s parent, and
deletes ‘pChild’:

Destroy(pChild);

 Finding an object’s parent
The PegThing member function Parent() returns a pointer to the parent of
the current object. The returned pointer is also a pointer to a PegThing. If
the object has no parent (i.e. the object has not been Add()-ed to another
object), the Parent() function will return a NULL pointer.
Swell Software, LLC The Mighty Thing 127

The Mighty Thing
 Finding an object’s children
The first child of any object can be found using the function First(). This
returns a pointer to the head of a linked-list of child objects. The linked list
can be traversed using the Next() function.

For example, an object could count the number of siblings (i.e. object’s with
the same parent) it has using the following code sequence:

PegThing *pTest = Parent()->First(); // first child of my parent
PEGINT iSiblings = 0;

while (pTest)
{
 if (pTest != this)
 {
 iSiblings++;
 }
 pTest = pTest->Next();
}

 PegThing System Status Flags
All PEG objects also have certain system status flags associated with them.
The system status flags are important to the correct operation of the library,
but are generally not often needed by the application software. In any
event, PegThing maintains an object’s system status flags, and provides
public functions which allow you to examine and/or modify the system
status flags for an object. The system status flags have names that start
with PSF_, which stands for PEG System Flag. The system status flags
and the meaning of each are listed in the function reference.

The following code segment can be used to discover which child of the
current object has input focus:

PegThing *pTest = First();

while (pTest)
{
 if (pTest->StatusIs(PSF_CURRENT))
 {
 break; // this object has input focus
 }
 pTest = pTest->Next();
}

128 PEG Pro Programming Manual Swell Software, LLC

Using PegThing Member Functions
 PegThing Style Flags
All PEG objects also have a set of ‘style’ flags associated with them. The
style flags are very important to you as a user of the library, in that these
flags allow you to easily modify many things related to how an object
appears and functions. The style flags are interpreted different ways by
different object types, and some style flags apply only to certain types of
objects. PegThing provides functions that will allow you to read or modify
an object’s style flags at any time. The style flags supported by each object
type are listed in each class description.

While the library provides much diversity in allowing you to easily modify
the default appearance and/or operation of an object, it is often not enough
to simply modify the style flags for an object. In cases where you need to
make modifications that are not controlled by the style flags, you can simply
derive new classes from the base classes provided by PEG. To modify an
object’s operation, you will override the Message() function for an object.
To modify an object’s appearance, you will override the object’s Draw()
function.

The following code segment can be used to set the AF_ENABLED style
flag for a button. Note: this is an example only. The PegButton class
provides member functions specifically for accomplishing this task.

PegButton *pChild = (PegButton *) First();
pChild->SetStyle(pChild->GetStyle() | AF_ENABLED);

 Using Object Types
All PEG objects have a member variable called Type, which is a logical
type indicator. You can retrieve an object’s Type value by calling the Type()
function.

If you create your own class by deriving from a PEG base class, that class
will be assigned the object type of the base class. You can override this
value if desired by re-assigning the object type after calling the base class
constructor.

Object Type values are divided into two groups. One group is for classes
derived from PegWindow, and the other group is for all other object types.
When assigning your own object types, you should use the value
FIRST_USER_WINDOW_TYPE or FIRST_USER_CONTROL_TYPE as
the base for your own custom type values. This ensures that your private
type values will be unique and will not overlap on the PEG class types. If
Swell Software, LLC The Mighty Thing 129

The Mighty Thing
your derived class has PegWindow as one of its base classes, and you
assign a custom type value to this derived class, the custom value should
be  FIRST_USER_WINDOW_TYPE. For all other classes, use the value
FIRST_USER_CONTROL_TYPE as the base offset for custom object
types.

This can be useful when you are searching your child object list for objects
of a certain type, for example PegEditField objects. This value is also useful
when debugging since, at times, you may have a pointer to a PegThing
and wish to know exactly what type of PegThing the pointer points to. After
checking the muType member of a PegThing, you can safely upcast a
PegThing pointer to a pointer to a specific PEG object type. The possible
return values of the Type() function are defined in the header file
pegtypes.hpp.

The following code fragment illustrates one possible method of locating the
status bar attached to a window:

PegThing *pTest = First(); // get pointer to first child object

while (pTest) // search to the end of list if necessary
{
 if (pTest->Type() == TYPE_STATUS_BAR)
 {
 PegStatusBar *pStatBar = (PegStatusBar *) pTest;

 // use pStatBar to call member functions or
 // change attributes

 break; // found the status bar, exit the loop
 }
 pTest = pTest->Next(); // continue down the list of children
}

Of course, it is simpler to call the PegWindow member function StatusBar(),
which does exactly what is shown above and returns a pointer to the
PegStatusBar object if one is found. However, in many cases, complex
windows have no way of knowing what children are present without
searching for them. The above example illustrates that this is a very simple
process.

 Using Object IDs
A few object ID values are reserved by PEG for proper operation of dialog
boxes and message windows. Therefore, you should always begin your
private control enumeration with a value of 1, so as not to overlap the
130 PEG Pro Programming Manual Swell Software, LLC

Using PegThing Member Functions
reserved ID values, which are at the very top of the valid ID range. The
reserved object IDs are:

enum PegButtonIds {
IDB_CLOSE = 1000,
IDB_SYSTEM,
IDB_OK,
IDB_CANCEL,
IDB_APPLY,
IDB_ABORT,
IDB_YES,
IDB_NO,
IDB_RETRY,

};

Buttons with the IDs listed above are given special treatment by dialog and
message window classes. For further information, see PegDialog and
PegMessageWindow.

Valid user object ID’s are in the range between 1 and 999.

Object ID values can be used to identify an object. When an object sends a
notification signal to a parent window, the object ID is contained in the
Param member of the notification message.

At any time, you can locate a child object using the object’s ID with the
Find() function. Find will search the child list of the current object for an
object with an ID value matching the passed-in value.

Object IDs are also useful for identifying top-level windows. It is often the
case that one window needs to locate another window, and one window
does not know if the other window actually displayed. The following code
segments illustrate using Window ID values to locate a top-level window:

Window1::Window1(…) : PegDecoratedWindow(…)
{
 Id(ID_WINDOW1);
}

PegDecoratedWindow *Window2::FindWindow1(void)
{
 return Presentation()->Find(ID_WINDOW1);
}

Swell Software, LLC The Mighty Thing 131

The Mighty Thing
 Signals
All PEG objects support a basic set of signals which are listed below.
PegThing provides storage for the object ID, the signal mask, and member
functions for modifying the signal mask.

Derived control types add additional signals unique to each control type.
Some signals are turned on by default when an object is assigned a non-
zero ID value, and the default signals are detailed in each class description.
The full list of available signals and the meaning of each is listed in the
description of the SetSignals() member function. The signals supported by
all PegThing derived objects include:

• PSF_SIZED

• PSF_FOCUS_RECEIVED

• PSF_FOCUS_LOST

• PSF_KEY_RECEIVED

• PSF_CLICKED

• PSF_RIGHTCLICK

Signaling is never enabled if an object has an ID value of 0, since the
message number is determined by the object ID and signal type.

 Overriding the Message() function
Overridden message functions should in most cases return a result of 0. A
non-zero return value is used to terminate modal window execution.
PegWindow-derived classes such as PegDialog and PegMessageWindow
return non-zero results when a signal from a child control is received that
causes the window to close. In all other cases, Message() should return 0
for normal operation.

In cases where you override a PEG class’s Message() function, you should
make sure that you pass the messages you are not interested in down to
the base class to ensure that normal default operation occurs, (unless of
course you are specifically intercepting a message to prevent some default
operation!). In fact, if you decide to act on the receipt of a PEG system
message, you should generally pass the system message down to the
base class before you perform your own processing.
132 PEG Pro Programming Manual Swell Software, LLC

Using PegThing Member Functions
A typical Message() function for a derived class would appear as follows
(assuming in this example that the class is derived from PegWindow):

PEGINT MyClass:Message(const PegMessage &Mesg)
{
 switch (Mesg.wType)
 {
 case PM_SHOW:
 PegWindow::Message(Mesg);

 // add your own code here:
 break;

 case USER_DEFINED_MSG1:
 // code for your user message
 break;

 case USER_DEFINED_MSG2:
 // code for another user defined message:
 break;

 case PEG_SIGNAL(IDB_OK, PSF_CLICKED):
 // code for OK button clicked:
 break;

 default:
 // pass all other messages down to the base class:

 return (PegWindow::Message(Mesg));
 }
 return 0;
}

 Overriding the Draw() function
You can create a custom interface appearance by deriving your own control
types from the PEG control types. For example, you may want to define a
button type that has an appearance different than the standard PEG button
types provide.

The following code listings illustrate how to create a new PegButton-derived
class, and overriding the Draw() function to generate a custom button
appearance. In this case, we are going to draw a wide button border, and
use custom colors for the button client area and text. This example code
can also be found in the example program file \peg\examples\robot\
robobutn.cpp. You can view the appearance of this custom button class by
running the example program \peg\examples\robot\winrobot.exe.

The following is the class definition for the RoboButton class:
Swell Software, LLC The Mighty Thing 133

The Mighty Thing
class RoboButton : public PegButton
{
 public:
 RoboButton(PegRect &, PEGUSHORT wId, char *Text);
 virtual void Draw(const PegRect &Invalid);

 private:
 PEGCHAR *mpText;
};

The above class definition tells the compiler that we are defining a new
class. The new class will be derived from the PegButton class. This
definition also informs the compiler that we are going to override the
PegButton Draw() function, since we have defined a function named Draw()
with the same return type and parameters as are defined in the virtual
PegButton Draw() function. Note that if your parameter list does not match
the base class parameter list, the compiler will assume that your are
overloading, not overriding, a base class function.

The following listing is the Draw() function implementation for the
RoboButton class:

void RoboButton::Draw(const PegRect &Invalid)
{
 PegBrush Brush;
 BeginDraw(Invalid); // note 1

 if (GetStyle() & BF_SELECTED) // note 2
 {
 Brush.LineColor = CLR_BLACK;
 }
 else
 {
 Brush.LineColor = CLR_LIGHTGRAY;
 }
 Brush.Width = 3;

 // draw the top:

 Line(mReal.iLeft, mReal.iTop, mReal.iRight, mReal.iTop,
 Brush); // note 3

 // draw the left:

 Line(mReal.iLeft, mReal.iTop, mReal.iLeft, mReal.iBottom,
 Brush);

 if (Style() & BF_SELECTED) // note 4
 {
134 PEG Pro Programming Manual Swell Software, LLC

Using PegThing Member Functions
 Brush.LineColor = CLR_LIGHTGRAY;
 }
 else
 {
 Brush.LineColor = CLR_BLACK;
 }
 Brush.Width = 1;

 // draw the right shadow:
 Line(mReal.iRight, mReal.iTop, mReal.iRight,
 mReal.iBottom - 2, Brush);
 Line(mReal.iRight - 1, mReal.iTop + 1, mReal.iRight - 1,
 mReal.iBottom - 2, Brush);
 Line(mReal.iRight - 2, mReal.iTop + 2, mReal.iRight - 2,
 mReal.iBottom - 2, Brush);

 // draw the bottom shadow:
 Line(mReal.iLeft, mReal.iBottom, mReal.iRight,
 mReal.iBottom, Brush);
 Line(mReal.iLeft + 1, mReal.iBottom - 1, mReal.iRight,
 mReal.iBottom - 1, Brush);
 Line(mReal.iLeft + 2, mReal.iBottom - 2, mReal.iRight,
 mReal.iBottom - 1, Brush);

 // fill in the button client area:

 Brush.LineColor = CLR_LIGHTRED;
 Brush.FillColor = CLR_DARKGRAY;
 Brush.Style = PBS_SOLID_FILL;
 Brush.Width = 1;

 Rectangle(mClient, Brush); // note 5

 // draw the text centered:

 PegPoint Put;
 Put.x = (mClient.iLeft + mClient.iRight) >> 1;
 Put.x -= TextWidth(mpText, FID_SYSFONT) >> 1;
 Put.y = mClient.iTop + 1;

 if (Style() & BF_SELECTED)
 {
 Put.x++;
 Put.y++;
 }

 Brush.LineColor = CLR_WHITE;
 Brush.FillColor = CLR_BLACK;
 Brush.Width = 1;
 DrawText(Put, mpText, Brush, FID_SYSFONT); // note 6

 // Draw child objects
 DrawChildren(Invalid); // note 7
 EndDraw(); // note 8
}

Swell Software, LLC The Mighty Thing 135

The Mighty Thing
In the above listing, there are several points to notice. We have marked the
interesting lines with ‘note xx’ for reference.

Note 1: Always start a custom drawing function with BeginDraw(). This call
informs the screen driver that drawing is about to begin, and to where you
will be drawing. If this button is being drawn as part of a larger window
drawing operation, the screen driver will recognize that this is a nested call
to BeginDraw().

Note 2: This if statement is testing the button style flag BF_SELECTED to
determine if the button is depressed. If the button is depressed, we want to
draw the button shadow on the top and left, instead of on the right and
bottom. This provides the 3D action desired for this button class.

Note 3: This statement is using the ‘Line()’ wrapper function of PegThing to
call the PegScreen::Line() function. The line endpoints and brush style are
passed to the Line() function. In this case, we are drawing a 3-pixel wide
line to create a wide button border.

Note 4: We are again testing the button style flag BF_SELECTED to toggle
the border colors.

Note 5: On this line, we are using the wrapper function Rectangle() to draw
a rectangle on the screen. The rectangle will have a RED border, and will
be filled with the color DARKGRAY. This will fill the client area of the button.
In this example, we are configuring the brush using only predefined color
names, rather than color ID values. There are 16 predefined color names,
corresponding to the VGA color palette. If we wanted to use other colors,
we would need to make a resource file using WindowBuilder, install the
color table with PegResourceManager, and use the color IDs when
configuring the brush.

Note 6: After calculating where to draw the button text, this call writes the
text for the button on the button face using the PEG font SysFont. Any other
custom font could be used just as well.

Note 7: After the button has completed it’s custom drawing, it calls the
PegThing member function DrawChildren() to draw any child objects.

Note 8: The Draw() function must end with a call to EndDraw() to inform the
screen driver that drawing is complete. A common mistake is to forget to
136 PEG Pro Programming Manual Swell Software, LLC

Using PegThing Member Functions
call the EndDraw() function, which can cause unpredictable results in terms
of screen appearance.

You can expand on this example to create custom classes of any type.
Once you define a custom class, you can use that class just like the stock
PEG classes at any point in your application software. Once you become
comfortable with creating your own classes, you will find that defining a new
class such as the RoboButton class can be accomplished within an hour or
two of coding and testing.
Swell Software, LLC The Mighty Thing 137

The Mighty Thing
138 PEG Pro Programming Manual Swell Software, LLC

C H A P T E R 1 3

CHAPTER13PROGRAMMING WITH PEG
This chapter presents examples to help you on your way to using the PEG
library effectively. In this chapter, you will learn the fundamentals of
creating PEG objects such as PegWindow and PegDialog and make them
appear on the display. You will also learn how to customize the appearance
and behavior of PEG either by modifying object flags or by creating your
own derived classes. We will also practice responding to signals generated
by buttons and menu buttons.

We begin by covering a few miscellaneous topics such as the PEG variable
and procedure naming conventions, memory ownership rules, and how to
draw on the screen. This is followed by systematic programming examples
which will allow you to begin using PEG effectively regardless of your
previous level of graphical programming experience.

 PEG Naming Conventions
PEG data types and class names all begin with ‘Peg.’ This serves two
purposes: it prevents PEG class names from conflicting with your own or
with those of another included library, and it also makes it very easy to
distinguish the GUI sections of your application code from those sections
that have nothing to do with the graphical interface. The remaining words in
a variable or procedure name always begin with a capital letter, and the rest
in lowercase, as in PegMessageQueue. We believe this is a very readable
format.

An attempt is made to provide meaningful information about a variable by
preceding variable names with one or two identifying letters. While this
convention does not fully identify every variable type you will use when
programming with PEG, we do not believe preceding a variable name with
something like ‘lpszf,’ as is done in other environments, is very useful
either.

Pointer variables are always preceded with a lowercase ‘p,’ no matter what
type of data they point to.

Class member variables are always preceded by a lowercase ‘m,’ as in
mStatus (member) or mpNext (member pointer). This makes it easy to
Swell Software, LLC Programming with PEG 139

Programming with PEG
determine if a variable is a class member, as opposed to an automatic or
global variable. Global variables, which are very few in PEG, are preceded
with a single lowercase ‘g.’ Any variables not preceded with an ‘m’ or a ‘g’
are by the process of elimination automatic variables.

Constants, #defines, and macros are always in full uppercase to make
them easily recognizable and distinguishable from variables and functions.

PEG procedure and variable names tend to be longer than you might be
accustomed to. We feel that the added readability makes the long names
worth a little bit of extra typing.

 Source and Header files
Most PEG objects are defined in a unique header file, and the
implementation of each object is contained in a unique source file. A few
closely related classes share common header and source files. This makes
it very easy to remove those components that are not necessary to your
application when you are building the PEG library. This does not mean that
you have to include 40+ PEG header files in each of your application
modules that use PEG. The header file peg.hpp includes all of the
individual PEG header files, in the correct order; it also contains the
definitions used to control the build attributes of the PEG library. The
header file peg.hpp is the only file you should need to include in
your application modules in order to use PEG.

A few header files are not specific to class implementations but are globally
utilized by the PEG library. For example, the header file pegtypes.hpp
contains various definitions used globally by all PEG objects. This file also
contains the default color definitions used for the various states of each
PEG object. You do not have to include pegtypes.hpp separately in your
source files, this header is automatically included when you include the
“peg.hpp” header file.

 Static/Global classes
If you are an experienced ‘C’ programmer, you have most likely
encountered the start-up routines that are typically required to initialize non-
zero global data values before your program enters ‘main()’. In C++, the
situation gets more complicated because not only does the memory
storage for global classes need to be allocated, the class constructor, if
defined, must also be called for each global or static class to properly
initialize the member variables. Depending on the quality of the
documentation provided with your C++ compiler, properly executing this
140 PEG+ Programming Manual Swell Software, LLC

Rules Of Memory Ownership
startup code can be a significant technical hurdle. For this reason, PEG
defines no global or static class instances, which means that you can safely
forget about this portion of your startup code unless your application
defines global or static class instances.

 Program Startup Review
In order for your PEG application to run, the PegPresentationManager,
PegMessageQueue, PegScreen, PegResourceManager, and
PegTimerManager objects must be created. This is usually done in
PegTask by calling the function PegCreateFramework().

After the required PEG support classes have been created, your function
named PegAppInitialize() will be called by the PEG startup code. This
architecture allows you to easily move from one of the PEG development
environments to your target platform without modifying any of your
application level software. PegAppInitialize is your UI software’s ‘main.’

PegAppInitialize() is where you install your initial resources, and create
the first object or objects that will be displayed by your application. This first
object or objects are then added to PegPresentationManager to create
the initial UI display. This might be a temporary splash screen or it may, for
example, be the main screen of your application.

13.1 Rules Of Memory Ownership
This section is a brief tutorial regarding the memory management technique
employed within PEG. This is required to ensure that your system software
does not suffer from memory leaks or other common memory problems

In our experience, it seems that most memory problems result from a lack
of clear documentation of how and when allocated memory should be
deleted and by whom.

For PEG objects, the rules are simple. When an object is added (i.e.
attached) to another object, PEG owns that object. You do not have to
worry about deleting that object as long as you have passed it on to PEG.
PEG ensures that all children of an object, along with the object itself, are
deleted when the parent object is destroyed. We use the term ‘destroyed’ to
mean that you invoke the PegThing::Destroy() function to delete the
dialog object. This is the function you should always use to remove PEG
objects from memory.
Swell Software, LLC Programming with PEG 141

Programming with PEG
For example, suppose you create a dialog window using the new memory
allocation operator. After creating the dialog, you also create a dozen or so
controls and add them to the dialog. At this point, all of the controls are
owned by the dialog. All that you need to do to delete all of the allocated
memory is destroy the dialog object.

Next, assume that you add the dialog to PegPresentationManager (i.e.
the dialog is now visible). At this point, you have given up all ownership of
the dialog and the dialog’s child controls. PEG is now responsible for
ensuring that the dialog and its child controls are deleted from memory
when the dialog is closed.

Finally, assume that you manually Remove() the dialog from
PegPresentationManager without allowing the dialog to close itself in
response to user input. In this case, you again own the dialog, because
PegPresentationManager no longer has any knowledge of the dialog’s
existence once it has been removed (by calling the Remove function).
However, the controls that were added to dialog are still owned by the
dialog, so once again all that needs to be done to delete all memory
associated with the dialog and its controls is to destroy the dialog by calling
the Destroy() function.

13.2 Creating PegThings
As you will notice when you review the PEG class hierarchy, all viewable
PEG classes are derived at some point from PegThing. PegThing doesn’t
really do much in terms of what you see on the screen, but it is this common
foundation that allows PegPresentationManager, PegScreen, and
PegMessageQueue to perform their tasks easily.

PegThing contains information about the physical location of the objects on
the screen, the client area of an object, the clipping area of an object, the
system status flags for the object (selected, sizeable, etc.), and pointers
used to maintain the object’s position in the presentation tree.

PegThing provides the member function Add(PegThing *what), which is
how you add one control or window or any PEG object to another. When
you call Add(PegThing *what), you are inserting what into the current
object’s child list. If the current object is visible, the newly added object
becomes visible. The best way to create a complex window is to create the
window, create all of the window’s child objects, add them to the window,
142 PEG+ Programming Manual Swell Software, LLC

Creating PegThings
and, finally, add the window to PegPresentationManager. In this way the
window and all of the child objects become visible at the same time.

PegPresentationManager is also a PegThing. This means that internally
to PEG there is no difference between adding a complex window to
PegPresentationManager and adding a simple button to a dialog. In both
cases, you are simply adding one object to another, with the object added
to becoming the parent of the object being added.

A further result of the PEG class hierarchy is that it perfectly reasonable to
create a PEG object that you would normally consider to be a self-
contained bottom level object, such as a PegPrompt, and add another
object, such as a PegButton, to the PegPrompt. The result is a PegPrompt
that first displays the text associated with the prompt, and then allows its
child objects to draw themselves. In this example, the PegButton would
appear next to or over the prompt text, depending on the Prompt
dimensions and text justification flags. You should see from this that it is
very easy to combine different types of PEG objects to create unique
appearance. You can ‘build up’ combinations of display widgets.

You can also derive your own version of PegPrompt or any other PEG
display class. Using derivation, you create powerful new object types very
easily, by overriding the Message and/or Draw functions (and maybe
others) of your base PEG class.

The following code fragment illustrates the ease of creating and displaying
new windows using PEG. The window created will have a title, menu bar,
and status bar:

// from within another PEG object message handling function,
// or from within PegAppInitialize():
.
.
PegRect WinSize;
WinSize.Set(10, 10, 120, 200);
Presentation()->Add(new AppWindow(WinSize, “My First Window”));
.
.

AppWindow::AppWindow (PegRect Rect, PEGCHAR *Title)
 : PegDecoratedWindow(Rect)
{
 Add(new PegTitle(Title)); // add a title to myself
 Add(new PegMenuBar(MainMenu)); // and a menu bar
Swell Software, LLC Programming with PEG 143

Programming with PEG
 PegStatusBar *pStat = new PegStatusBar();
 pStat->AddTextField(80, "Hello");
 pStat->AddTextField(20, "How are you today?");
 Add(pStat); // and a status bar
}

13.3 Deleting/Removing PEG Things
For some reason, deleting objects often causes more confusion and
programming errors than creating them in the first place. PEG attempts to
make removing and deleting your GUI objects as painless and mistake-free
as possible.

The first thing to understand is that removing a PegThing (i.e. a window,
button, dialog, or other PegThing-derived object) from its parent is not the
same as deleting (Destroying) the object. Removing an object means that
you are taking that object out of the active display tree. After being
removed, the object no longer has a parent, and it will not be visible. It is
possible, even common, to later re-add the object to a visible PegThing
and use it over again.

You remove a PegThing by calling the PegThing member function
Remove(PegThing *What). It doesn’t matter if you tell the parent object to
remove the child, or if you tell the child to remove itself, because the
Remove() function properly handles either case. That is, it is perfectly
acceptable to use the following statement:

Remove(this);

when an object decides based on some message input it is time to go
away.

While Remove() can be useful, it is more common to want to both remove
the object from its parent, as well as delete the object from memory. There
are two acceptable ways to remove and delete a PEG object:

1) Send a PM_DESTROY message to PegPresentationManager.
The pSource member of the PM_DESTROY message should point
to the object that is to be destroyed. This method is most often used
when deleting PEG objects from tasks outside of PEG.

2) Call the PegThing member function Destroy(PegThing *Who). Any
PegThing can destroy any other PegThing, including itself. This
does not mean that the Destroy() function will end up executing a
delete(this) statement. The Destroy function checks to see if Who
144 PEG+ Programming Manual Swell Software, LLC

Deleting/Removing PEG Things
== this, and if so automatically sends a PM_DESTROY message to
PegPresentationManager to finish the job.

In no cases should you ever execute a delete(this) statement. When in
doubt, it is always safe to call Destroy(), as PEG ensures the rules of
good C++ memory cleanup are followed.

It is not necessary to manually delete the individual children of a PegThing.
In fact, it will cause errors if you attempt to do this. If you are not clear on
this subject, you should re-read the section of this document entitled ‘Rules
of Memory Ownership.’

13.3.1 Drawing to the Screen

You can draw on the screen at any time by calling the PegScreen class
drawing functions. This is most often done from within an overridden
Draw() function, as was described in the previous chapter. When you
override a Draw() function, you simply start with a call to BeginDraw(), do
any amount of drawing, and complete your drawing by calling EndDraw().
When PEG recognizes that an object needs to be re-drawn (i.e. the object
was just Add()-ed, or the object has been moved), it re-draws the object by
calling the object’s Draw() function.

You can also write functions that draw on the screen outside of the Draw()
function. These functions must be members of a PegThing-derived class,
or at least have access to a PegThing object, since all of the PegScreen
drawing functions require as a parameter a pointer to the PegThing object
calling the drawing function. PegScreen requires this pointer to ensure that
an object is not allowed to draw outside of the area it ‘owns’ on the screen.

PegScreen only allows drawing to occur to areas of the screen that have
been invalidated. Areas of the screen are invalidated by calling the
Invalidate() function, which is a member of PegScreen but also provided in
inline form as a member of PegThing. Under most circumstances the
screen invalidation is handled automatically by PEG as the user moves
things around on the screen, or as your program adds and removes visible
objects. If all of your drawing is done from with an overridden Draw()
function, you don’t need to worry about screen invalidation, since your
Draw() function is called specifically because an area of the screen has
been invalidated.

If you need to draw on the screen outside at random times, or, for example,
based on a periodic timer, you can either invalidate the area you wish to
Swell Software, LLC Programming with PEG 145

Programming with PEG
have redrawn, in which case PEG will call your Draw() function
automatically, or you can call a function to do drawing directly.

If you want to draw directly, without using PEG’s deferred drawing
mechanism, you have to calculate the invalid rectangle into which you want
to draw, and pass this invalid rectangle as the parameter to your call to
BeginDraw().

If you are using deferred drawing, and you want to be allowed to draw
anywhere within the client area of your object, you can simply call the
Invalidate() function with no parameters, which invalidates the area of the
screen corresponding to an object’s client area. You can also calculate and
specify a more limiting rectangle to clip your drawing, and pass that
rectangle to the Invalidate() function. No matter how large the invalidated
rectangle on the screen, you are never allowed to draw outside of an
object’s borders.

The following function is an example function that could be used to directly
draw a series of lines to the screen at any time. This example will paint the
entire client area of the object black and then fill the client area of the object
with RED horizontal lines 1 pixel wide, spaced 4 pixels apart.

void MyObject::DrawLines(void)
{
 PegBrush LineBrush(CLR_RED, CLR_BLACK, PBS_SOLID_FILL);
 PEGINT yPos = mClient.Top;

 BeginDraw(mClient); // prepare for drawing

 LineBrush.Width = 0;
 Rectangle(mClient, LineBrush); // fill with black

 LineBrush.Width = 1;

 while (yPos <= mClient.iBottom)
 {
 // draw red lines:
 Line(mClient.iLeft, yPos, mClient.iRight, yPos, LineBrush);
 YPos += 4;
 }
 EndDraw();
}

13.3.2 Drawing to Memory

An alternative to drawing directly to the screen is to draw to an off-screen
bitmap. Once you have drawn to an off-screen bitmap, you can display that
146 PEG+ Programming Manual Swell Software, LLC

Deleting/Removing PEG Things
bitmap on the screen at any time, at any location, by calling the PegScreen
Bitmap() member function. This is the preferred method of displaying
flicker-free animation, and can be used for many other purposes as well.

In PEG, drawing to memory works exactly like on-screen drawing. You
simply create a DrawingSurface that is a memory bitmap and draw to this
surface rather than drawing to a visible surface.

Before you can draw to an off-screen bitmap you must of course create a
drawing surface for this purpose. You do this by calling the PegScreen
member function CreateDrawSurface(). CreateDrawSurface() returns a
surface ID, as you would expect. The full prototype for the
CreateDrawSurface function is:

PEGINT CreateDrawSurface(PEGINT Type, PEGINT Width, PEGINT
Height, PEGINT xOffset, PEGINT yOffset, PEGINT HardLayer = -1,
PegThing *pNotify = NULL)

Type is the drawing surface type. To create a memory surface, use
PEG_DST_SIMPLE as the Type parameter. If you want drawing to this
surface to be clipped to the caller’s limits, use PEG_DST_SIMPLE|
PEG_DST_CLIPPED as the Type parameter.

Width and Height are the drawing surface dimensions in pixels.

xOffset and yOffset are the drawing surface display offsets relative to the
upper-left corner of the screen. For Memory surfaces, you would generally
use 0 for both x and y offsets.

The HardLayer parameter is the hardware graphics layer to associate with
this surface. For Memory surfaces, this is not normally used and should be
set to -1.

The pNotify parameter is an optional pointer to an object to be notified
when this surface is modified. If this parameter is not NULL, the object
pointed to will receive a PM_DRAW_NOTIFY message when the surface is
modified. This can be useful if you have one task or object that draws to the
surface, and a second task or object that displays the surface bitmap on the
visible screen.

Once you have created a memory surface, you can draw into that surface
at any time. You draw into the surface by specifying the surface ID when
you call the BeginDraw() function:
Swell Software, LLC Programming with PEG 147

Programming with PEG
PEGINT BeginDraw(const PegRect &Invalid, PEGINT Surface);

When you call BeginDraw(), the Surface parameter defaults to your
object’s mSurface member variable. However, you can specify any drawing
surface when you call the BeginDraw function, and to draw to your memory
surface you simply specify that surface ID when you call the BeginDraw
function.

After you have drawn to an off-screen memory surface, at some point you
normally will want to draw the content of this off-screen surface to the
visible screen. You do this by retrieving the PegBitmap associated with the
off-screen surface, then drawing the bitmap at any location to a visible
drawing surface.

The bitmap associated with a drawing surface is retrieved by calling the
PegScreen::GetSurfaceBitmap(PEGINT Surface) or
PegScreen::GetSurfaceBitmapAndClose(PEGINT Surface) functions.
The difference between these functions is that the first leaves the off-
screen surface active, meaning you can continue to draw to and update the
memory surface. The second function retrieves the surface bitmap and
closes the memory surface, freeing all memory associated with the memory
surface object. You would use the first version if you will be continuously
updating the off-screen drawing area, and the second version if you will
only drawing to this memory area once.

The following example is a code fragment demonstrating off-screen
drawing:

void DrawUsingMemSurface(void)
{
 // Create a simple off-screen drawing surface:

 PEGINT MemSurface =
 Screen::CreateDrawSuface(PEG_DST_SIMPLE,
 100, 100, 0, 0, -1, NULL);

 // Open drawing to this surface:

 PegRect DrawRect;
 DrawRect.Set(0, 0, 99, 99);
 BeginDraw(DrawRect, MemSurface);
148 PEG+ Programming Manual Swell Software, LLC

Object Boundaries
 DrawToMem(); // function that does actual drawing

 EndDraw(); // done drawing to memory

 // now put the offscreen bitmap on the screen:

 PegBitmap *pMap =
 Screen()->GetSurfaceBitmapAndClose(MemSurface);

 // Open drawing to visible screen:

 BeginDraw(mReal); // open drawing to visible screen
 PegPoint Put;
 Put.x = mReal.Left;
 Put.y = mReal.Top;

 Bitmap(Put, pMap); // draw mem-surface bitmap to visible screen

 EndDraw(); // done drawing
}

// end example code

In the above example, the function DrawToMem() is a user-defined function
that invokes any combination of drawing API functions to draw to the
memory surface. The purpose of the above example code is not to
demonstrate actual drawing of which there is an infinite possible variety, but
the process and steps needed to draw to an off-screen surface and then
transfer this off-screen surface bitmap to the visible screen.

13.4 Object Boundaries
All PegThing derived classes have two rectangles associated with them,
named mReal and mClient. The rectangle mReal defines the outermost
limits of an object. The object and all children of the object are prevented
from drawing outside the mReal rectangle.

The mClient rectangle defines the interior boundaries of an object. The
mClient rectangle is always a subset of the mReal rectangle. All children of
an object are clipped to the parent’s mClient rectangle, unless the children
have PSF_NONCLIENT system status, in which case they are clipped to
the parent’s mReal rectangle.
Swell Software, LLC Programming with PEG 149

Programming with PEG
For simple objects such as PegButton and PegEditField, the mClient
rectangle is smaller than the mReal rectangle only by the width of the object
border. If the object has no border, the mClient and mReal rectangles are
identical.

For PegWindow and derived classes, the mClient rectangle is further
reduced by the size of the non-client decorations such as a title bar, menu
bar, status bar, and horizontal and vertical scroll bars. In other words, non-
client children are positioned in the region between the mClient rectangle
limits and the mReal rectangle limits.

The rectangle you pass to most PEG object constructors defines the
outermost limits of the object, hence this rectangle becomes the mReal
member rectangle. PEG objects initialize their mClient area by calling the
PegThing member function InitClient(), which reduces the mClient area by
the object border width. PegWindow performs further operations to reduce
the mClient area as decorations are added to the window.

You can create your own non-client area decorations and add them to PEG
objects. When you do this, you will also need to add the necessary logic to
the parent of these objects to ensure that the mClient rectangle is reduced
correctly to allow space for your new non-client area decorations.

The following diagram illustrates the relationship between the mReal and
mClient member rectangles:
150 PEG+ Programming Manual Swell Software, LLC

Viewports
13.5 Viewports
PEG uses the concept of viewports to improve drawing efficiency and to
allow background drawing operations to occur without overwriting
foreground graphics.

Viewports are rectangular areas of the screen owned by certain objects.
Each viewport has only one owner, while one object may own several
viewports. The diagram below should clarify this concept:
Swell Software, LLC Programming with PEG 151

Programming with PEG
In the diagram above, a typical run-time screen is shown. The black area is
the screen background, covered by PegPresentationManager. The two
white areas are PEG windows, named WindowA and WindowB. WindowB
is on top and partially covering WindowA. In this diagram, the solid outlines
depict the viewports owned by PegPresentationManager. In this case,
PresentationManager owns viewports V1-V6. WindowA is divided into two
viewports, V7 and V8. Finally, WindowB is on top and has one viewport,
V9.

PEG maintains the screen viewports, and you do not ordinarily have to
concern yourself with how they work. There is one exception, however, of
which you may need to be aware. Normally, only PegWindow-derived
objects have viewport status. This means other smaller objects like
PegButton and PegIcon do not own viewports, and simply inherit the
viewport(s) of their parent window.

The viewport management algorithm employed by PEG does not allow
there to be breaks in the viewport tree. That is, an object that owns
viewports (i.e. a PegWindow-derived object) should only be added to
another object that owns viewports. This does not mean you cannot add
PegWindow-derived objects to objects that are not derived from
PegWindow, because you can. However, when you do this you should set
the PSF_VIEWPORT status flag of the parent object, to make it a viewport
owner.
152 PEG+ Programming Manual Swell Software, LLC

Programming Examples
An example should clarify this concept. Suppose you want to create a
simple object container class. This container class will serve as a parent for
a group of lists, windows, and other controls. This is a common thing to do,
as it allows you to add and remove the entire group of objects at any time
simply by adding or removing the container. Since the container class does
not need to actually draw anything, you decide to derive it from PegThing,
the most basic PEG class. Since at least some of the children of the
PegThing container are PegWindow derived objects, you will need to make
the PegThing container class a viewport owner. If you don't do this, the
PegWindow-derived children of the container class won't show up on the
screen. You can make the PegThing container class a viewport owner by
adding the PSF_VIEWPORT system status in the container class
constructor:

AddStatus(PSF_VIEWPORT);

Now your container class will work correctly, and both PegWindow-derived
children and simple children will be displayed when the parent container
class is displayed.

Transparent or partially transparent objects should NOT have
PSF_VIEWPORT status. PegWindow-derived objects automatically
remove PSF_VIEWPORT status when they have AF_TRANSPARENT
style.

13.6 Programming Examples
The following example programs will allow you to put all you have learned
to use. These examples are intentionally not as complex as most real-world
applications, allowing you to concentrate on the concepts being presented.
However, these examples are fully functional and can be useful as
references when developing your own custom application.

In order to gain the most benefit from the following examples, you will need
to have a supported compiler and be ready to build and execute these
programs. Before you proceed, you should ensure that you are able to build
and execute the PEG demo application found in \peg\examples\pegdemo.

This chapter contains several working example programs with complete
descriptions of how each program works. The example programs start very
simply and progress to the point of deriving custom windows and dialogs.
Swell Software, LLC Programming with PEG 153

Programming with PEG
These examples, while small, are representative of real-world applications
in terms of complexity. Large application programs can generally be
reduced to using the following techniques repeatedly. In other words, this is
‘as tough as it gets,’ and there are no hidden programming tips or secret
functions you still need to learn. After you work through these examples,
you will know all that is needed to be very productive using the PEG library.

The use of PEG WindowBuilder makes it possible to create PEG
application programs without ever hand-coding many of the functions and
techniques we will present here. You might wonder, therefore, why we are
presenting things from the ground up. We feel that you should understand
everything about how your PEG application program runs, regardless of
whether you are hand-coding your windows and controls or using PEG
WindowBuilder to define them for you. In the end, you should understand
how the source code generated by WindowBuilder works.

The instructions in the following examples assume you are using the MS
VC++ development environment. You can use any environment you prefer;
however, you will have to translate the build instructions into instructions
that work for your environment.

13.6.1 Example 1—Getting Started

In this example, we will create a PegMessageWindow and add the window
to PegPresentationManager. This will familiarize you with the PEG startup
procedure and give you a chance to verify that you are able to build and run
correctly.

For this example, you should create or open a new workspace. The
workspace should contain only the PEG library project file. If your
workspace contains additional projects, remove them before continuing.

Using your favorite editor or the editor included in the MSVC++
environment, create a file named ‘startup.cpp’ and enter the following lines
into the file:

#include “peg.hpp”

enum StringIds {
 SID_HELLO = FIRST_USER_STRING,
 SID_FIRST_WIN
};
154 PEG+ Programming Manual Swell Software, LLC

Programming Examples
PEGCHAR HelloString[] = {‘H’,’e’,’l’,’l’,’o’,’
‘,’W’,’o’,’r’,’l’,’d’, 0};

PEGCHAR FirstString[] = {‘M’,’y’,’ ‘,’F’,’i’,’r’,’s’,’t’,’
‘,’W’,’i’,’n’,’d’,’o’,’w’, 0};

void PegAppInitialize(PegPresentationManager *pPresent)
{

 PegResourceManager::AddResource(SID_HELLO, HelloString);
 PegResourceManager::AddResource(SID_FIRST_WIN, FirstString);

 PegMessageWindow *pWin = new PegMessageWindow(SID_HELLO,
 SID_FIRST_WIN, FF_RAISED|MW_OK); // note 1
 pPresent->Center(pWin); // note 2
 pPresent->Add(pWin); // note 3
}

Save the file and insert a new project into your workspace named ’pegstart.’
Add the file ‘startup.cpp’ to your project, and build. If all goes well,
startup.cpp will compile, link with the PEG library, and generate the
executable file pegstart.exe. You can now run the program to verify how it
works.

In the above example we have written a very simple version of
PegAppInitialize. PegAppInitialize is called during PEG startup to allow
you to define the initial window or windows that will be displayed. In this
case, we have created an instance of the stock PegMessageWindow and
used that as our first window (note 1).

The first thing to be done in the PegAppInitialize function is to register the
resources we are going to use with PegResourceManager. When you
build real applications, you will use WindowBuilder to generate your
resource tables. In this example, we simply registered, manually, two string
resources with the resource manager. These are the only resources the
Hello World application requires.

In the source code line labeled ‘note 2,’ we call the PegThing function
‘Center.’ Since PegPresentationManager is derived from PegThing, all of
the public PegThing member functions are also member functions of
PegPresentationManager. The Center() function centers the message
window within PegPresentationManager, which effectively centers the
window on the screen.

The last line of the PegAppInitialize function adds the new window to
PegPresentationManager. This is how we make the window visible. When
Swell Software, LLC Programming with PEG 155

Programming with PEG
you run the program, you see the message window centered within the
screen. When you click on the OK button, the window closes and the PEG
application program terminates.

You should note there are a lot of things you did not have to do to create
this little program. You did not actually create the OK button, you did not tell
the window to close, and you did not tell the window how to draw itself.
These functions are all built into PEG and the PegMessageWindow class
you used. All you had to do is create an instance of PegMessageWindow,
display it, and let PEG do the rest. Wasn’t that easy??

13.6.2 Example2—Using PegTimer

For this example, you will create a derived PegDecoratedWindow class. In
this derived window class, you will override the Message() function to
provide custom functionality. The custom operation is to start a periodic
PegTimer and wait for timer expiration messages to arrive. The window will
change colors each time the timer expires.

Modify the startup.cpp file you created in example 1 to contain the
following:

#include “peg.hpp”
#include “startup.hpp”

void PegAppInitialize(PegPresentationManager *pPresent)
{
 PegRect WinRect;
 WinRect.Set(0, 0, 100, 100);
 MyWindow *pWin = new MyWindow(WinRect);
 pPresent->Center(pWin);
 pPresent->Add(pWin);
}

// This is the derived window class constructor:

MyWindow::MyWindow(const PegRect &Rect)
 : PegDecoratedWindow(Rect, FF_THIN)
{
 RemoveStatus(PSF_SIZEABLE);
 mColor = 0;
}

// This is the overridden message handling function:

PEGINT MyWindow::Message(const PegMessage &Mesg)
{
 switch(Mesg.wType)
156 PEG+ Programming Manual Swell Software, LLC

Programming Examples
 {
 case PM_SHOW:
 PegDecoratedWindow::Message(Mesg);
 SetTimer(1, ONE_SECOND * 2, ONE_SECOND / 2);
 break;

 case PM_TIMER:
 if (Mesg.Param == 1) // is this my timer?
 {
 SetColor(PCI_NORMAL, mColor);
 Invalidate();
 mColor++;
 mColor &= 0x0f;
 }
 else
 {
 // not my timer, pass message to base class
 PegDecoratedWindow::Message(Mesg);
 }
 break;

 case PM_HIDE:
 KillTimer(1);
 PegDecoratedWindow::Message(Mesg);
 break;

 default:
 return PegDecoratedWindow::Message(Mesg);
 }
 return 0;
}

In the above Message() function, our derived window class catches three
different messages. These are the system messages PM_SHOW and
PM_HIDE, and the PM_TIMER messages generated by our timer. The
source code entered for each message type is often called a ‘message
handler’; i.e., it is the code we want to run to handle each message we are
listening for.

The PM_SHOW message is received when the window is first displayed.
This is a convenient place to start the timer. In this case, we set the timer to
wait 2 seconds before the first timeout and to expire every 500 ms
(ONE_SECOND / 2) thereafter.

This timer ID value is simply set to ‘1.’ If you are using many timers, you will
probably want to enumerate the timer ID values, but in this case we are
only using one timer and so we simply hard-coded the timer ID value. Note
that the PM_SHOW message handler also passes the message on down to
the base PegDecoratedWindow class. It is important to pass system
Swell Software, LLC Programming with PEG 157

Programming with PEG
messages on down to the base class in case the base class is also
catching the message.

The PM_HIDE message is received when the window is removed. This is a
convenient place to stop the timer. Since a window is always removed
before it is deleted, the PM_HIDE system message handler is an excellent
place to stop any active timers. If the window is destroyed, PEG will
automatically kill any timers associated with the Window.

The PM_TIMER message handler is where we change the window color
and redraw the window. A member variable has been defined named
mColor, and we will use this variable to keep track of which color to display
next. There are always 16 predefined color IDs automatically installed in
the resource manager, corresponding to the 16 standard VGA colors; so,
for this example, we did not create a color table and register the color table
with PegResourceManager. We are simply using the 16 predefined color
IDs.

Note that after changing the window color by using the SetColor() function,
we have to tell the window to redraw. The window does not automatically
redraw since you may make several changes to the window and you do not
want each change to cause a window redraw operation.

We tell the window to redraw by calling the Invalidate() function. By
invalidating the window, we are telling PEG that the window needs to be
redrawn.

After making these changes to the file ‘startup.cpp,’ save and close the file.
Create a new file in the same directory called ‘startup.hpp,’ and enter the
following lines:

class MyWindow : public PegDecoratedWindow
{
 public:
 MyWindow(const PegRect &Rect);
 virtual PEGINT Message(const PegMessage &Mesg);

 private:
 PEGINT mColor;
};

After you have entered these lines, save the file ‘startup.hpp.’
158 PEG+ Programming Manual Swell Software, LLC

Programming Examples
This header file defines the MyWindow class. As shown above, derived
classes do not have to be overly complex. In this case, we simply tell the
compiler that MyWindow is derived from PegDecoratedWindow, prototype
the class constructor function, and indicate that the Message function is
being overridden.

You can now build and execute this new version of startup.hpp. You may
want to use your debugger to place breakpoints at the PM_SHOW,
PM_HIDE, and PM_TIMER message handlers to verify when each
message is received.

13.6.3 Example 3—More Message Handling and
Signals

In this example you will create a new PegDialogWindow and override the
window Message() function to provide custom operation. You will also
learn to use Signals to make your dialog window operate interactively with
the dialog user.

In your source code distribution, you should find the directory \peg\
examples\dialog. This directory contains the source files required for this
example.

• Create a new Borland or Microsoft Win32 project, called ‘dialog.’

• Add the appropriate PEG library you built earlier to your project.

• Add the file dialog.cpp to your project.

• Make sure that you include path for your compiler contains the directory 
\peg\examples\dialog, or your compiler may not be able to find the
header file drawwin.hpp.

• Build the application to generate dialog.exe.

Execute dialog.exe. You should see a dialog window with several buttons
and other controls, as shown below:
Swell Software, LLC Programming with PEG 159

Programming with PEG
This dialog, while not very complex, illustrates how to catch messages
generated by PEG controls. When you click on the ‘Have Email’ check box,
the dialog box grows to include the email string, as shown below:

The dialog has changed size, and a new PegEditField field has been added
to allow the user to type in an email address.

Let’s examine the source code for this application. The first function
contained in the file dialog.cpp is PegAppInitialize(), shown below. As
described earlier, this is the entry point to your application program. In this
case we created a new window of type DialogWin, centered the window
within PegPresentationManager, and displayed the window by adding it to
PegPresentationManager. DialogWin is the newly-derived class we have
created to make this application operate as shown above.

/*--*/
// PegAppInitialize- called by the PEG library during
// program startup.
/*--*/
void PegAppInitialize(PegPresentationManager *pPresentation)
{

PegResourceManager::InstallResourcesFromTable(&Dialog_ResourceTable
);

 PegRect Rect;
160 PEG+ Programming Manual Swell Software, LLC

Programming Examples
 Rect.Set(0, 0, 240, 140);
 DialogWin *pWin = new DialogWin(Rect);
 pPresentation->Center(pWin);
 pPresentation->Add(pWin);
}

The next function contained in the file dialog.cpp is the constructor for the
newly derived class DialogWin. Since we want the new window to have the
general appearance of a PegDialog object, we have derived DialogWin
from PegDialog. The full source code for the DialogWin constructor is
shown below.

/*--*/
// DialogWin- example dialog window.
/*--*/

DialogWin::DialogWin(const PegRect &Rect) :
 PegDialog(Rect, SID_EDIT_USERINFO) /*"Edit User
Information" */
{
 RemoveStatus(PSF_SIZEABLE);

 // add the "Have Email" checkbox:

 PegPoint Put;
 PegRect tempRect;
 PEGSHORT BmpWidth, BmpHeight;

 PegResourceManager::GetBitmapWidthHeight(BID_CHECK_ON,
 BmpWidth, BmpHeight);
 BmpWidth += CBOX_SPACING + TextWidth(LS(SID_HAVE_EMAIL),
 mpFont) + 2;

 Put.Set(mClient.Left + 10, mClient.Bottom - 24);
 tempRect.Set(Put.x, Put.y, Put.x + BmpWidth,
 Put.y + BmpHeight + 2);
 Add(new PegCheckBox(tempRect, SID_HAVE_EMAIL, IDB_HAS_EMAIL));

 // add the phone number prompt and string:

 Put.y -= 34;
 tempRect.Set(Put.x, Put.y,
 Put.x + TextWidth(LS(SID_HEADER_PHONE),mpFont) + 2,
 Put.y + TextHeight(mpFont) + 2);
 Add(new PegPrompt(tempRect, SID_HEADER_PHONE));

 Put.x += 52;
 tempRect.Set(Put.x, Put.y, mClient.Width() - 72,
 Put.y + TextHeight(mpFont));
 Add(new PegEditField(tempRect, SID_THE_NUMBER));

 // add the "Title" prompt and string:
Swell Software, LLC Programming with PEG 161

Programming with PEG
 Put.y -= 24;
 Put.x -= 52;
 tempRect.Set(Put.x, Put.y,
 Put.x + TextWidth(LS(SID_HEADER_TITLE),mpFont) + 2,
 Put.y + TextHeight(mpFont) + 2);
 Add(new PegPrompt(tempRect, SID_HEADER_TITLE));

 Put.x += 52;
 tempRect.Set(Put.x, Put.y, mClient.Width() - 72,
 Put.y + TextHeight(mpFont)+ 2);
 Add(new PegEditField(tempRect, SID_THE_TITLE));

 // add the name prompt and string:

 Put.y -= 24;
 Put.x -= 52;
 tempRect.Set(Put.x, Put.y,
 Put.x + TextWidth(LS(SID_HEADER_NAME),mpFont) + 2,
 Put.y + TextHeight(mpFont) + 2);
 Add(new PegPrompt(tempRect, SID_HEADER_NAME));

 Put.x += 52;
 tempRect.Set(Put.x, Put.y, mClient.Width() - 72,
 Put.y + TextHeight(mpFont));
 Add(new PegEditField(tempRect, SID_THE_NAME));
}

The important thing to note in the above constructor function is the creation
of a PegCheckBox object with a user-defined ID value of IDB_HAS_EMAIL.
The ID value IDB_HAS_EMAIL is defined in the dialog.hpp header file. You
should examine this header file with your editor and observe how ID values
are usually defined within PEG. The ID value is contained within a private
enumeration of the class DialogWin. This method should be followed
whenever possible in order to ensure compatibility with PegWindowBuilder.
In this case, IDB_HAS_EMAIL is simply a value of 1. If the dialog had
contained any other controls we were interested in receiving messages
from, they would also be contained within this enumeration in the
DialogWindow class definition.

A final thing to notice in the DialogWin class definition (contained in
dialog.hpp) is the public prototype for the function Message(). The
Message() function is defined as a virtual function by class PegThing.
PegThing is the base class for PegWindow, which is the base class for
PegDialog, which is the base class for DialogWin. By including a
prototype for the Message() function in the DialogWin class definition, we
are telling the compiler that we want to override this function. This means
that whenever a control or even the PEG library calls the window’s
162 PEG+ Programming Manual Swell Software, LLC

Programming Examples
Message() function, the new version provided by our new class will be
called instead of the default version defined by class PegThing.

The new Message() function is shown on the following page. There are
three things to observe in this function. First, there are two messages we
are interested in, and all other messages arrive at the default: case. When
messages arrive at the default case, they are passed down to the base
class PegDialog for processing. This is a very important thing to remember.
If you don’t pass the messages you are not interested in (the PEG system
messages) down to the base class, your window or dialog will not work at
all!

Now let’s look at the first case label, which looks a little bit unusual the first
time you see the syntax shown. The first case label is making use of the
PEG_SIGNAL macro, which converts an object ID and object signal into a
unique message number for this dialog window. This is how we receive
messages from the checkbox, which was constructed to have the ID value
IDB_HAS_EMAIL. The first case label is checking for the checkbox to send
a message that is has been turned on. The code which follows resizes the
dialog window to make it taller, and then adds the email address string to
the dialog window. As shown, you do not have to pass messages received
from your user-defined objects down to PegDialog, since PegDialog
simply ignores all user-defined messages anyway.

The second case label is similar to the first, except in this case we are
watching for the checkbox to send a signal that it has been turned off.
When this signal is received, the code that follows makes the dialog window
smaller again, and deletes the email prompt and string via the Destroy()
function, which is a public member of class PegThing.

/*--*/
/*--*/
PEGINT DialogWin::Message(const PegMessage &Mesg)
{
 PegRect NewSize;

 switch(Mesg.Type)
 {
 case PEG_SIGNAL(IDB_HAS_EMAIL, PSF_CHECK_ON):

 // make myself taller:

 NewSize = mReal;
 NewSize.Bottom += 24;
 Resize(NewSize);

 // add the new email string:
Swell Software, LLC Programming with PEG 163

Programming with PEG
 PegRect tempRect;
 tempRect.Set(mClient.Left + 10, mClient.Bottom - 24,
 mClient.Left + 10 +
 TextWidth(LS(SID_HEADER_EMAIL),mpFont) + 2,
 mClient.Bottom - 24 + TextHeight(mpFont) + 2);

 mpEmailPrompt = new PegPrompt(tempRect, SID_HEADER_EMAIL);
 Add(mpEmailPrompt);

 PegPoint TopLeft;
 TopLeft.x = mClient.Left + 62;
 TopLeft.y = mClient.Bottom - 24;
 tempRect.Set(TopLeft.x, TopLeft.y,
 TopLeft.x + mClient.Width() - 72,
 TopLeft.y + TextHeight(mpFont) + 2);
 mpEmailString = new PegEditField(tempRect, SID_EMAIL_ADDR);
 Add(mpEmailString);
 break;

 case PEG_SIGNAL(IDB_HAS_EMAIL, PSF_CHECK_OFF):

 // make myself shorter:

 Parent()->Invalidate(mReal);
 NewSize = mReal;
 NewSize.Bottom -= 24;
 Resize(NewSize);

 // get rid of the email prompt and string:

 Destroy(mpEmailPrompt);
 Destroy(mpEmailString);
 break;

 default:
 return(PegDialog::Message(Mesg));
 }

 return 0;
}

13.6.4 Example 4—Deriving a Custom Window

While many of the PEG classes are often used directly as provided, you
won’t be taking advantage of the full power of PEG until you begin
customizing your windows and dialogs by deriving your own classes from
the base window and dialog classes provided. The best way to
demonstrate this is to work through an example. If you are an experienced
C++ programmer, you still may find this example useful as it illustrates a
164 PEG+ Programming Manual Swell Software, LLC

Programming Examples
very common PEG programming operation, which is overriding the
PegThing::Draw() member function.

In your source code distribution, you should find the directory \peg\
examples\drawwin. This directory contains the source files required for
this example. In this example, you are going to create a PEG application
program that displays one very simple window. You are then going to
derive a new window class that alters the default window drawing to display
a custom background.

• Create a new Borland or Microsoft Win32 project, called ‘drawwin.’

• Add the appropriate PEG library you built earlier to your project.

• Add the files drawwin.cpp and drawwin_res.cpp to your project.
Drawwin.cpp contains the C++ source code, and drawwin_res.cpp
contains the string and bitmap resources that are required by this
application.

• Make sure that your include path for your compiler contains the directory
\peg\examples\drawwin, or your compiler may not be able to find the
header file drawwin.hpp.

• Build the application to generate drawwin.exe.

• Execute drawwin.exe. As you can see, the program simply displays a
rather boring window on the screen. This window doesn’t do anything
except draw a thick border, fill in its client area, and support resizing via
the mouse.

• Open the source file drawwin.cpp with your editor.

You should find a function that looks like this:

/*---*/
void PegAppInitialize(PegPresentationManager *pPresentation)
{
 PegResourceManager::InstallResourcesFromTable(
 &drawwin_ResourceTable);

 PegRect Rect;
 Rect.Set(180, 80, 468, 300);
 pPresentation->Add(new DerivedWin(Rect));

}

The function PegAppInitialize is called automatically by PEG during
program startup. This allows you to do whatever user interface initialization
you need to do. In this case, we are registering the application resources
and creating an instance of the PEG class PegWindow. The important thing
Swell Software, LLC Programming with PEG 165

Programming with PEG
to gain from this function is that we have created an instance of a PEG
object, namely a PegWindow, and added it to PegPresentationManager,
which is how we made the window appear on the screen.

The source code for DerivedWindow is also included in the file
drawwin.cpp. The declaration of this class in found in the file
drawwin.hpp. Once you become familiar with the PEG library, you will
easily be able to define your own classes such as DerivedWindow, but for
this example we have provided all of the necessary source code.

This new class customizes the appearance of the window by overriding the
Draw() function of the base PegWindow class. All PegThing-derived
objects, including PegWindow, contain a Draw() function. This function is
called by PegPresentationManager when it is determined that an object
needs to draw or redraw itself on the screen.

Take a close look at our new Draw() function. You should see a line that
contains:

PegWindow::Draw(Invalid);

The ‘::’ symbol is called the scope resolution operator. It tells the C++
compiler which Draw() function we are talking about, in this case the
standard PegWindow Draw() function. The first thing our custom window
does is call the PegWindow::Draw() function. This is very common, in that
we want the default operation to occur, and then we want to draw
something else ‘on top’ of what the base class does.

The next line is where we provide custom operation. We are calling the
BitmapFill function, which is a public function of the PegScreen class, to fill
the client area of the window with the specified bitmap. The variable
mpScreen is a pointer to the PegScreen object instance. This pointer is
shared by all PegThings, because there can be only one PegScreen class
in use at a time.

Build and execute the application program with this modified source code.
You should now see the window drawn as before, except the client area of
the window is now filled in with our bitmap pattern. If you are new to C++,
congratulations are in order. You have just used inheritance and overridden
a public function!
166 PEG+ Programming Manual Swell Software, LLC

Programming Examples
 Further exercises
Create a new bitmap for filling the window client area using PEG
WindowBuilder. Generate a new resource file and run the program to
ensure that your new bitmap is now used to fill the client area.

13.6.5 Additional Example Programs

Your PEG library distribution contains several additional example
programs. The subdirectories under \peg\examples each contain a
complete PEG application program and a Microsoft project file for building
and running the example programs.

The example application programs are organized to provide a quick
overview of the stock PEG controls. The example applications will run
without any modification in each of the supported desktop environments
and project files and/or makefiles are provided to build each example using

In the base directory of each provided example program is a file named
‘readme.txt.’ This file describes the example program in terms of what the
program accomplishes and any special PEG library configuration settings
required to build the example.

13.6.6 Final Notes

In this chapter we have illustrated some of the most common PEG
programming tasks. As you will see when you begin using PEG
WindowBuilder, many of these tasks can be accomplished by simply setting
the appropriate configuration information from within PEG WindowBuilder.
However, you now know what is happening ‘under the hood,’ and you will
be able to extend the functionality provided by PEG WindowBuilder
whenever required.
Swell Software, LLC Programming with PEG 167

Programming with PEG
168 PEG+ Programming Manual Swell Software, LLC

	Portable Embedded GUI
	Forward
	What PEG IS
	What PEG is NOT
	Library Updates

	Installing and Building the PEG Library
	1.1 Installing PEG
	1.2 Building the PEG library
	1.3 Build Options
	1.4 Library Source Files
	1.4.1 Additional files

	1.5 Preconfigured Make/Project Files
	1.5.1 Building PEG for Windows Desktop

	Common Terms and Concepts
	2.1 Notes for users new to C++
	2.2 Windowing Interface Terminology

	Fundamental Data Types
	3.1 PegPoint
	3.2 PegRect
	3.3 PegBrush
	3.4 PegMessage
	3.5 PegTimer
	3.6 PegBitmap
	3.7 PegFont
	3.8 PegCapture

	PEG Execution Model
	4.1 Overview
	4.1.1 Software Block Diagram

	4.2 Program Startup
	4.2.1 PegTask
	4.2.2 PegIdleFunction

	PegMessageQueue
	5.1 PEG Message Definition
	5.2 Signals

	PegPresentationManager
	6.1 Event-Driven Programming
	6.2 Input Focus Tree

	PegTimerManager
	PegResourceManager
	8.1 FIDs, BIDs, CIDs, and SIDs
	8.2 Registering Resources
	8.3 String Tables
	8.3.1 Dynamically Created Strings

	8.4 Themes
	8.4.1 Resource ID Name Considerations
	8.4.2 Compressing Resource Data

	8.5 Retrieving Resources

	PegScreen
	9.1 Graphics Controllers
	9.1.1 Porting PEG to Your Graphics Hardware
	9.1.2 PegScreen Driver Templates
	9.1.3 PEG Palette Considerations

	Desktop Simulation
	10.1 PegScreen for Desktop Simulation
	10.2 Desktop OS Integration Modules
	10.2.1 Drawing in the desktop environments
	10.2.2 Tuning your development environment

	PEG Multitasking
	11.1 Multi-threaded Model Overview
	11.1.1 Modal Window Overview
	11.1.2 Window Display Under PegTask Thread

	11.2 Modal Execution
	11.3 Multithread Execution on the Win32 Development Platform
	11.4 OS Porting Advanced Topics

	The Mighty Thing
	12.1 PegThing Members
	12.1.1 Constructor(s)
	12.1.2 Public Functions

	12.2 Public Inline Functions
	12.2.1 Wrapper function listing

	12.3 Public Data Members
	12.4 Using PegThing Member Functions

	Programming with PEG
	13.1 Rules Of Memory Ownership
	13.2 Creating PegThings
	13.3 Deleting/Removing PEG Things
	13.3.1 Drawing to the Screen
	13.3.2 Drawing to Memory

	13.4 Object Boundaries
	13.5 Viewports
	13.6 Programming Examples
	13.6.1 Example 1-Getting Started
	13.6.2 Example2-Using PegTimer
	13.6.3 Example 3-More Message Handling and Signals
	13.6.4 Example 4-Deriving a Custom Window
	13.6.5 Additional Example Programs
	13.6.6 Final Notes

