
1

Portable Embedded GUI

API Reference Manual
PEG Pro/PEG+ Library Release

2.4.0

Rev. 5
Feb. 2014

© Copyright 2007-2008, 2011

Swell Software, LLC. All rights reserved.

2

Copyright 2007–2008, 2011

Swell Software, LLC. All rights reserved.

© Copyright 2007–2008, 2011

Swell Software, LLC.

6501 William Cannon Drive West

Austin, TX 78735

PH: (810) 385-2893

FAX: (810) 385-2947

info@swellsoftware.com

No part of the document may be reproduced in any form without the
express written consent of Swell Software, LLC.

All rights reserved.

PEG is a registered trademark of Swell Software, LLC, Reg. U.S.
Pat. & Tm. Off. C/PEG, PEG Pro, PEG+, and PEG Windowbuilder

are trademarks of Swell Software LLC. All other product or
service names are the property of their respective owners.

mailto:info@swellsoftware.com
mailto:info@swellsoftware.com

i

Table of Contents

Forward ii

Chapter 1 BASE CLASSES 1

Chapter 2 CONTROL CLASSES 77

Chapter 3 IMAGE CONVERSIONS 189

Chapter 4 WINDOW CLASSES 217

Chapter 5 CHARTING CLASSES 331

Chapter 6 HMI CLASSES 355

Chapter 7 MISCELLANEOUS 377

Chapter 8 PRINTER CLASSES 409

ii

FORWARD

We at Swell Software thank you for choosing PEG!

PEG is by far the most used, best supported, and most adaptable graphical

interface software available. Our industry-leading real-time operating

system support, hardware integration, and development tool compatibility
allow complete flexibility as you and your team create next-generation

products.

The PEG library and development tools have today been used to create

several thousand unique products, and those products have shipped many

hundreds of millions of units. The applications utilizing PEG software cover

a broad spectrum including various consumer electronics, medical

instrumentation, video games, military communications, aeronautics, office
equipment, and even desktop applications.

We hope that your own efforts will be equally successful, and we
encourage you to use our technical support if you run into any speed-

bumps along the way.

In addition to the PEG software package, Swell Software provides

consulting and contract programming services to clients in a wide variety of

industries. These services range from one-day on-site evaluations and

tutorials to complete screen prototyping and development. We encourage
you to take advantage of these services as early as possible in your project

cycle. If you have purchased or are evaluating the PEG library, you can of

course contact us at any time via phone or email to answer your technical

questions.

How the manuals are organized

Your documentation set includes four separate manuals:

1) The QuickStart Guide
2) The Programming Manual

3) The WindowBuilder User’s Manual

4) This API Reference Manual

ii PEG Pro API Reference Manual Swell Software, LLC

Forward

The Quickstart Guide is a short tutorial enabling you to easily begin working

with WindowBuilder and to create and run your own application in one of

our supported desktop environments.

This programming manual provides an ‘under the hood’ view of the PEG

software library internals and introduces basic concepts that are needed to

fully understand how PEG works. This is followed by descriptions of the
fundamental PEG classes.

The WindowBuilder User’s Manual is a guide to the operation of our

WindowBuilder WYSIWYG development tool and resource manager.

The API Reference Manual provides extensive information about the

fundamental PEG classes. This manual details the Application

Programming Interface (API) of the PEG graphics library.

Each of these manuals are provided in both printed and electronic (PDF)

formats. The PDF format manuals are always the most recent manual

updates, while for practical reason the printed manuals can sometimes be a
few months out of date.

Whenever the electronic manuals are updated, they are posted to the Swell

Software website. The online manuals can be found at the following

address:

http://www.swellsoftware.com/download/documentation.php.

A username and password are required to download the manuals.

What PEG IS

PEG is an acronym for Portable Embedded GUI. We chose this name

because we believe it accurately reflects the design and motivation that
went into the creation of our software.

PEG is Portable

We have designed our software to be portable to any target hardware that

is capable of graphical output. PEG does not expect or require any

underlying software components in order to do its job. If you have a C++

compiler and hardware capable of graphical output, you can run PEG.

http://www.swellsoftware.com/download/documentation.php

iv PEG Pro API Reference Manual Swell Software, LLC

PEG is Embedded

This statement is rather vague, because it means so many different things

to different people. The bottom line is that PEG is, and will always be,

targeted primarily at custom embedded systems. This distinction is so

important that we felt it should be included in the name of our library.

PEG is GUI

The PEG class library provides the building blocks for a powerful and
extensible graphical user interface. Extensive thought and research have

gone into the design of our product to ensure that you are receiving a library

that is fully capable of supporting all of the advanced GUI features you

need today, while also accommodating future enhancements.

In addition to the class library, PEG provides tools for generating graphical

fonts, processing, optimizing, and compressing graphical images,
designing screens and child controls, creating custom colors, and

maintaining multi-lingual string data.

What PEG is NOT

PEG is not an operating system. While PEG can run completely

standalone, the library does not provide software for system boot-up, task

switching, file system maintenance, or any of the other operating-system

level functions your product may require.

PEG is not an application program. The PEG library, by itself, will provide

an end user with absolutely zero in terms of useful interaction or information

display. It is your job to create the windows, dialogs, and other objects that

will be used to retrieve input from and display information to the end

user. Of course, the whole point of using PEG is that our library provides
the tools and components that make creating your application level

interface a manageable task.

iv PEG Pro API Reference Manual Swell Software, LLC

List of Examples:

PegCircularDial

PegDecoratedWindow

PegDialog

PegEditBox

PegFileDialog

PegFiniteDial

PegLineChart

PegMessageWindow

PegMLMessageWindow

PegMutiLineChart

PegNotebook

PegProgressWindow

PegRichTextBox

PegStatusBar

PegStripChart

PegVscroll

Peg Window

1 Swell Software, LLC Base Classes

C H A P T E R 1

BASE CLASSES

PegMessageQueue

PegPresentationManager

PegResourceManager

PegScreen

PegTextThing

PegThing

PegTimerManager

2 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.1 PegMessageQueue

1.1.1 Overview

PegMessageQueue is a simple encapsulated FIFO message queue with

member functions for queue management. PegMessageQueue provides

functions for sending and receiving PegMessage formatted messages.

PegMessageQueue also performs timer maintenance and miscellaneous

housekeeping duties.

PEG messages can be divided into two types. PEG system messages,
Which are generated internally by PEG to control and manipulate PEG

objects, and USER messages, which are defined and used by your

application program. Whether a message is a system message or a user

message is determined by the value of the message Type field. This is a
16-bit unsigned value. PEG reserves message Type values 1-
FIRST_USER_MESSAGE - 1, which is currently equal to 0x4000. Message
Type values which are greater than FIRST_SIGNAL (0x8000) are used for
signals, which will be defined later. This leaves message types 16384
(0x4000) through 32767 (0x8000) available for user definition.

Integrated versions of PEG provide PegMessageQueue functionality based
completely on the underlying RTOS message services. This

implementation is invisible to the external system software, allowing PEG

applications to be fully portable between development and real-time

environments.

1.1.2 System Message List

The following, while not a complete list of the PEG system messages, are

the system messages which would potentially be of interest in the

application-level software.

Message Description
PM_ADD This message can be issued to add an object to

another object. The message pTarget field should
contain a pointer to the parent object, and the
message pSource filed should contain a pointer to
the child object.

PM_ADDICON System message sent from a window to its parent
to add an icon for a minimized window.

3 Swell Software, LLC Base Classes

PegMessageQueue

Message Description
PM_BEGIN_MOVE System message sent from a title bar to its parent

window to begin moving the window. This message
can be sent by any child object to force the parent
window into ‘move mode.’

PM_CLOSE Recognized by PegWindow derived objects, and
causes the recipient to remove itself from its parent
and delete itself from memory.

PM_CLOSE_SIBLINGS
PM_COPY Sent by keyboard drivers to command a text copy

operation.
PM_CURRENT This message is sent to an object when it becomes

a member of the branch of the presentation tree
which has input focus.

PM_CUT Sent by keyboard drivers to command a text cut
operation.

PM_DESTROY This message is sent to PegPresentationManager
to destroy an object. The pSource member of the
message should point to the object to be destroyed.

PM_DIALOG_APPLY
PM_DIALOG_NOTIFY This message is sent to the owner of a PegDialog

when the dialog window is closed if the dialog
window is executed non-modally. The message
Param member will contain the ID of the button
used to close the dialog window.

PM_DRAW This message can be sent to an object to force that
object to redraw itself.

PM_EXIT This message is sent to PegPresentationManager
to cause termination of the application program.

PM_GAINED_KEYBOARD This message is sent to an object when it gains
keyboard input focus. This message is only defined
when PEG_KEYBOARD_SUPPORT is enabled.

PM_HIDE This message is sent to an object whenever it is
removed from a visible parent.

PM_HSCROLL This message is sent from a non-client scroll bar to
its parent window to effect scrolling of the window.

PM_KEY This message is sent to the current input object
when keyboard input is received. The message
Param member contains the corresponding ASCII
character code, if any, and the ExtParams[0]
member of the message contains the keyboard
scan code, if available.

PM_KEY_RELEASE This message is sent to the current input object
when keyboard input, indicating a key release, is
received. The message Param member contains
the corresponding ASCII character code, if any, and
the ExtParams[0] member of the message
contains the keyboard scan code, if available.

4 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

Message Description
PM_LANGUAGE_CHANGE This message is sent to all objects when the current

language changes. It informs the objects that they
need to update their text from the string table.

PM_LBUTTONDOWN This message is sent to an object when the user
generates mouse click input.
PegPresentationManager routes mouse input
directly to the lowest child object containing the
click position. If the child object does not process
mouse input, the message is passed up to the
parent object. This process continues until an
object in the active tree processes the message, or
the message ends up back at
PegPresentationManager. The position of the
mouse click is included in the message Point field.

PM_LBUTTONUP This message is sent to an object when the user
releases the left mouse button. The flow of this
message is identical to PM_LBUTTONDOWN.

PM_LOST_KEYBOARD This message is sent to an object when it loses
keyboard input focus. This message is only defined
when PEG_KEYBOARD_SUPPORT is enabled.

PM_MAXIMIZE This message can be sent to any PegWindow
derived object. If the target window is sizeable (as
determined by the PSF_SIZEABLE status flag), it
will resize itself to fill client rectangle of its parent.

PM_MINIMIZE Similar to PM_MAXIMIZE, this message can be sent
to any PegWindow derived object. If the window is
sizable, it will create a proxy PegIcon, add the icon
to the parent window, and remove itself from its
parent.

PM_MOVE_FOCUS This message is sent by PegPresentationManager
to itself when the top-level window which has input
focus is closed.

PM_MWCOMPLETE This message is sent to the owner of a
PegMessageWindow when the message window is
closed if the message window is executed non-
modally. The message Param member will contain
the ID of the button used to close the message
window.

PM_NONCURRENT This message is sent to an object when it loses
membership in the branch of the presentation tree
which has input focus.

PM_PARENTSIZED This message is sent to all children of a
PegWindow derived object if the window is resized.
This makes it very easy for child windows that want
to maintain a certain proportional spacing or
position within their parent to catch this message
and resize themselves whenever the parent window
is sized.

5 Swell Software, LLC Base Classes

PegMessageQueue

Message Description
PM_PASTE Sent by keyboard drivers to command a text paste

operation.
PM_POINTER_ENTER This message is sent to an object when the mouse

pointer (if any) passes over an object.
PM_POINTER_EXIT This message is sent to an object when the mouse

pointer (if any) leaves the object.
PM_POINTER_MOVE This message is sent to an object whenever the

mouse pointer moves over the object.
PM_SHOW This message is sent to an object when it is added

to a visible parent, before the object is first drawn.
This allows an object to perform any necessary
initialization prior to drawing itself on the screen.

PM_SIZE This message is sent to an object to resize it. This
is equivalent to calling the Resize() function. Note
that PEG does not differentiate between moving an
object and resizing an object. Both are
accomplished via the Resize operation. The new
size for the object is included in the message Rect
field.

PM_MOVE This is an obsolete message, replaced by
PM_SIZE.

PM_RESTORE This message can be sent to any sizable
PegWindow derived object to cause that window to
restore its size and position after it has been
maximized or minimized.

PM_RBUTTONDOWN This message is sent in systems that support right
mouse button input. PEG objects do not process
right mouse button messages.

PM_RBUTTONUP This message is sent in systems that support right
mouse button input. PEG objects do not process
right mouse button messages.

PM_REMOVETHING This message can be sent from one object to
another to remove the sending object from the
display. This is an indirect method of calling the
Remove() function, and can be useful if the target
object needs to know that the sender is being
removed.

PM_SLIDER_DRAG This message is sent from the slider button on a
PegSlider control to the PegSlider when the slider
button is operated by the user.

PM_VSCROLL This message is sent from a non-client scroll bar to
its parent window to effect scrolling of the window.

PM_TIMER This message is sent to an object that has started a
timer via the PegMessageQueue SetTimer
function when that timer expires. The ID of the timer
is included in the Param member of the message.

6 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.1.3 See Also

PegMessage

PegTimer

1.1.4 Derivation

PegMessageQueue is a PEG base class.

1.1.5 Constructors:

PegMessageQueue(void)

This is the only PegMessageQueue constructor. One instance of

PegMessageQueue is created during program startup, usually in PegTask.
This queue instance is referenced by all PEG objects.

1.1.6 Public Functions:

void Fold(PegMessage *pIn)

void Fold(PegMessage *pIn, PEG_QUEUE_TYPE
pQueue)

This function looks for a matching message in the queue, and, if one is
found, updates the existing message to contain the data values of In. If a
duplicate message is not found, Fold() calls Push() to place the message

at the end of the queue. Messages are determined to be equal if the
pTarget, Type, and pSource values of the messages are equivalent.The

second version of the function can be used when PEG_MULTITHREAD is

turned on. The value pQueue is the message queue that is searched.

PEGBOOL IsEmpty(void)

This returns TRUE if there are no messages waiting in the queue. If there

are messages in the queue it returns FALSE.

void Pop(PegMessage *pPut)

This retrieves the top message from the queue, and copies it into the

PegMessage pointer pPut.

7 Swell Software, LLC Base Classes

PegMessageQueue

void Purge(PegThing *pDel, PEGUSHORT Type = 0,
PEGUSHORT Id = 0)

This function removes messages from the queue which have a
Mesg.pTarget field matching pTarget. This is used to remove messages

from the queue which are destined for objects which have been deleted.
The messages that get purged can further be narrowed by specifying the

Type or Id fields which get compared with the Mesg.Type and Mesg.Param

fields respectively.

PEGBOOL Push(PegMessage *)

PEGBOOL Push(PegMessage &In)

These functions place a new message at the end of the queue. They return
TRUE if the message was successfully pushed, and FALSE otherwise.

1.1.7 Examples:

The following example creates and sends a new PegMessage. The

message will cause the target object to resize.

void SomeObject::ResizeWindow(PegWindow *pTarget, PegRect
NewSize)

{

PegMessage NewMessage(pTarget, NewSize);

MessageQueue()->Push(NewMessage);

}

The following example window creates a periodic timer when the window is

made visible, receives periodic timer messages, and destroys the timer

when the window is hidden:

MyWindow::Message(const PegMessage &Mesg)

{

switch(Mesg.Type)

{

case PM_SHOW:

SetTimer(TIMER_1, 100, 100);

PegWindow::Message(Mesg);

break;

case PM_HIDE:

KillTimer(TIMER_1

);

8 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

PegWindow::Message(Mesg);

break;

default:

return PegWindow::Message(Mesg);

}

return 0;

9 Swell Software, LLC Base Classes

PegPresentationManager

1.2 PegPresentationManager

1.2.1 Overview

PegPresentationManager is a transparent background window that can be

thought of as the desktop window for all PEG applications.

PegPresentationManager keeps track of all of the windows and sub-objects

present on the display device. In addition, PegPresentationManager keeps

track of which object has the input focus (i.e. which object should receive
user input such as keyboard input), and which objects are on top of other

objects.

There is no limit to the number of windows and/or controls that may be

present on the screen at one time.

PegPresentationManager::Execute() is the main execution loop for

your GUI interface. In many embedded systems, Execute() never returns

to the caller, since the graphical interface is intended to run forever. Of
course, in a multitasking system you do not really want PEG to execute
continuously, but rather only when there is real work to do, and, even then,
only when no higher priority tasks are ready to run.

PegPresentationManager accomplishes this by calling PegIdleFunction()

when there is nothing left for PEG to do.

1.2.2 See Also

Viewports

PegWindow

1.2.3 Derivation

PegPresentationManager derives from PegWindow.

1.2.4 Constructors:

PegPresentationManager(PegRect &Size)

This constructor determines the size in pixels of the PresentationManager

window. This determines the outer limits of all of your child windows and

controls. PegPresentationManager is normally sized to equal the pixel

dimensions of the display device.

10 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.2.5 Public Functions:

virtual void Add(PegThing *pWhat, PEGBOOL Show =
TRUE)

PegPresentationManager overrides the Add() function to set focus to

newly added top-level windows.

void BeginSubTaskExecute(PegThing *pWin)

This function creates a PegTaskInfo structure to keep track of which objects
belong to which task using which PegMessageQueue. It is called from the

Execute function. This is only available when PEG_MULTITHREAD is turned

on.

virtual void CapturePointer(PegThing *pWho)

This function can be called to capture all mouse pointer input. This is done

by modal windows, during resize and move operations, and can also be

done by the application-level software at any time. The application software

should call ReleasePointer() to end the CapturePointer() operation.

void ClearScratchPad(void)

This function resets the PresentationManager scratchpad buffer, and frees

the associated memory.

virtual PEGINT DispatchMessage(PegThing *pFrom,

PegMessage *pSend)

This function routes a message to the correct object. The routing follows a
predetermined precedence order:

1) If the message has a non-NULL pTarget, route to pTarget.

2) If the message is a mouse pointer message, route to lowest level
object that contains pointer position.

3) If the message is any other system message, route to object which
has focus.

4) If the message is a User-defined message, and the Param member is
not 0, Find() the object with ID matching Param and route to that
object.

11 Swell Software, LLC Base Classes

void DrawInvalid(void)

PegPresentationManager

This function is responsible for drawing all objects that have been
invalidated so far. It will be called automatically whenever the

MessageQueue is empty.

void EndSubTaskExecute(PegThing *pWin)

This function removes the current PegTaskInfo structure from the task info
list. If no other objects are using this object’s message queue, the queue

gets deleted. This function is only available when PEG_MULTITHREAD is

turned on.

virtual PEGINT Execute(PEGBOOL AutoAdd = TRUE)

PegPresentationManager overrides the PegWindow::Execute() function

to provide the main PEG message looping operation. The AutoAdd
parameter is ignored. It is just there to maintain compatibility with
PegWindow::Execute().

PegThing *FindLowestThingContaining(PegThing

*pStart, PegPoint Where)

This function determines the lowest child object that contains the point

Where. The object must be enabled and selectable. A pointer to the child

object is returned.

void FreeViewports(PegThing *pCaller)

This function is used to free all of the viewports used by the object pCaller
as well as all of its children.

void GenerateViewportList(PegThing *pStart)

This function dissects pStart into different rectangular regions, called

viewports, based on which viewport owners overlap it. This function is only
available if PEG_FULL_CLIPPING is turned on.

PEG_QUEUE_TYPE GetCurrentMessageQueue(void)

This function returns the pointer to the current task’s PegMessageQueue.

PegThing *GetCurrentThing(void)

This function returns a pointer to the leaf object that has input focus. This
function will return NULL if no object has received focus.

12 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

virtual PegScrollDrawInfo *GetHScrollDrawInfo(
void)

This returns a pointer to the current horizontal scrollbar drawing information

structure.

PegThing *GetPointerOwner(void)

This function returns a pointer to the object that has currently captured the
pointer.

const PEGCHAR *GetScratchPad(void)

This function returns a pointer to the text string that has been copied to the

scratchpad, or NULL if no string is available. The PresentationManager

scratchpad is used to cut, copy, and paste strings between PegEditField,
and PegEditBox classes.

virtual PegScrollDrawInfo *GetVScrollDrawInfo(

void)

This returns a pointer to the current vertical scrollbar drawing information

structure.

PegTaskInfo *GetTaskInfo(void)

This returns a pointer to the current PegTaskInfo.

PEG_QUEUE_TYPE GetThingMessageQueue(PegThing*

pTarget)

This returns the pointer to the PegMessageQueue used by pTarget.

PEGINT HScrollHeight(void)

This returns the height of the horizontal scrollbar.

void Invalidate(PegThing *pCaller, const PegRect

&Rect)

This function is called to notify PegPresentationManager that a rectangular

region of the screen needs to be redrawn. PegPresentationManager

manages a list of all the regions that have been invalidated, and then when

the MessageQueue becomes empty it redraws those regions. PEG objects

normally invalidate the correct areas of the screen when they are modified

via a resize, move, or other modification that requires the object to redraw
itself. In some cases you will be required to invalidate the client area of your

custom objects before they will be allowed to draw themselves.

13 Swell Software, LLC Base Classes

PegPresentationManager

PEGBOOL IsPointerCaptured(void)

Returns TRUE if the mouse pointer is captured, else FALSE.

PegThing *LastPointerOver(void)

Returns a pointer to the object the mouse pointer was last over.

void LastPointerOver(PegThing *pOver)

Sets the pointer to the object that the mouse pointer was last over.

virtual PEGINT Message(const PegMessage &Mesg)

PegPresentationManager overrides the Message() function to provide
additional input focus adjustment and shutdown services.

void MoveFocusTree(PegThing *pCurrent)

Makes pCurrent the input object, and forces the branch of the display tree

containing pCurrent to get focus. This function may be called at any time to
move the input focus to any visible object.

virtual void ReleasePointer(PegThing *pWho)

Releases a captured mouse pointer. This function should always be called

after the CapturePointer() function to return to normal operation.

virtual PegThing *Remove(PegThing *pWhat)

PresentationManager overrides the Remove function to check for the last

object being removed, which signals PresentationManager to return from
the Execute() function.

PEGBOOL RouteMessageToTask(PegMessage *pMesg)

This function determines where to send a message based on the pMesg-
>pTarget pointer and the pMesg->wType value. If it can find an object to
send it to, and if that object has a message queue associated with it, then it
pushed that message onto that queue. This function is only available if

PEG_MULTITHREAD is turned on.

PegThing *ScreenPop(void)

PegThing *ScreenPop(PegThing *pWho, PEGBOOL

Remove = TRUE, PEGBOOL Destroy = TRUE)

These functions remove an object from the screen stack and add it to the

Presentation. The parameter pWho should be a pointer to whatever object is

14 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

already visible on the Presentation. That object can either be removed from

the Presentation or destroyed.

PEGBOOL ScreenPush(PegThing *pOld, PegThing

*pNew, PEGBOOL RemoveOld = TRUE, PEGBOOL
Center = TRUE, PEGBOOL Modal = FALSE)

This function adds pOld to the screen stack and adds pNew to the

Presentation in its place. The options are removing pOld from the

Presentation, redrawing the screen, centering pNew on the Presentation,

and making pNew execute modally.

void ScreenStackReset(PEGBOOL Remove = FALSE,

PEGBOOL Destroy = TRUE, PEGBOOL Redraw =
TRUE)

This function clears the screen stack by either removing or destroying the

objects in it.

As stated, PresentationManager will terminate by sending a PM_EXIT

message to itself if the last window or control is removed from the screen.

When PresentationManager receives the PM_EXIT message it verifies no

top-level windows exist, and, if not, it terminates the message loop. This
operation can also be nullified by surrounding the call to

PegPresentationManager::Execute() with a while(1) loop:

void PegTask(void)

{

...

...

while(1)

{

}

...

...

}

Presentation->Execute();

void SetExitCallback(void (*pCallback)())

This function sets a pointer to a callback function that will be called when
PEG exits. This can be used to free up any loose memory that wouldn’t

normally be freed in an object’s destructors.

15 Swell Software, LLC Base Classes

PegPresentationManager

void SetHScrollDrawInfo(PegScrollDrawInfo
*pInfo)

This function assigns the horizontal scrollbar drawing information.

void SetScratchPad(const PEGCHAR *pText)

This function copies the indicated text string into the PresentationManager

scratchpad buffer. This is used by user-editable text objects to support cut,

copy, and paste operations.

void SetUserMessageHandler(PEGINT

(*pHandler)(const PegMessage &Mesg))

This provides a way to catch user-defined messages in the default

PresentationManager without needing to override it. A callback function

pointer is passed so that it can be called whenever the

PresentationManager receives a user-defined message.

void SetVScrollDrawInfo(PegScrollDrawInfo

*pInfo)

This function assigns the vertical scrollbar drawing information.

void ThingDestroyed(PegThing *pCurrent)

This searches through the PresentationManager’s list of invalid regions and

removes any entries that were owned by pCurrent. That way it will not

attempt to redraw that object after it has been destroyed.

void ThingRemoved(PegThing *pCurrent)

Resets the PresentationManager input focus status if pCurrent is the

object that has input focus. Also resets input focus if a child of pCurrent

object has input focus.

void ViewportChange(PegThing *pChanged)

This alerts the PresentationManager to the fact that the viewports have

changed, usually because of adding/removing child objects or because of

resizing.

PEGINT VScrollWidth(void)

This function returns the width of the vertical scrollbar.

16 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.2.6 Protected Members:

void AddViewport(PegThing *pTarget, PegRect
&NewRect)

This function assigns a viewport to the target object. It checks to see if the

viewport needs to be split because of a child object that also has viewport

status partially or fully covering this object.

void AllocateViewportBlock()

This function allocates a block of viewports which get added to the list of

free viewports.

void ChangeInputThing(PegThing *pWho)

This function gives the keyboard input device to the object referenced by

Who. The object will receive a PM_GAINED_KEYBOARD message. The object,

if any, that previously owned the keyboard will receive a

PM_LOST_KEYBOARD message.

void ConsolidateInvalidList()

This function reduces the number of entries in the list of invalid regions by

searching for any duplicate entries or overlapping child/parent entries. That

way PEG will try not to redraw the same portion of the screen multiple

times.

Viewport *GetFreeViewport()

This function returns a pointer to a viewport from the list of free viewports.

void InsureBranchHasFocus(PegThing *pCurrent)

This function ensures that pCurrent has input focus, and sends
PM_CURRENT messages to the new input object if required.

virtual void KillFocus(PegThing *pStart)

Removes input focus from the specified object. Also sends PM_NONCURRENT
messages if required.

virtual void SetFocus(PegThing *pStart)

Assigns input focus to the specified object. Also sends PM_CURRENT
messages if required.

17 Swell Software, LLC Base Classes

PegPresentationManager

virtual void SplitView(PegThing *pTarget,
PegRect Top, PegRect Bottom)

virtual void SplitView(PegThing *pTarget,

PegThing *pChild, PegRect Under)

These functions are responsible for dividing up the viewports of an object

due to the fact that it is being overlapped by another viewport owner.

PegThing *mpInputThing

Pointer to the object which has input focus, or NULL.

PegThing *mpLastPointerOver

Pointer to the object the mouse pointer was last over, or NULL.

PEGCHAR * mpScratchPad

Pointer to the current contents of the scratchpad buffer, or NULL.

PEGUBYTE mPointerCaptures

Indicates the current pointer capture nesting level. If there are no

outstanding pointer captures, mPointerCaptures is 0.

18 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.3 PegResourceManager

1.3.1 Overview

PegResourceManager is a class responsible for maintaining all of the

applications resources, which include its fonts, bitmaps, strings, and colors.

All resources are given an ID used to reference those resources in the

tables that the PegResourceManager uses. Most of the PEG library source

code will use these IDs in the APIs rather than direct pointers to the
resources themselves.

The main advantage to using IDs for everything is that it allows the user to

switch which resources to use without needing to modify the application

code. This is sometimes referred to as “skinning.” For instance, the

application could be designed to allow user-selectable color schemes. To
do that, the application would need to create different color resource tables

for the different color schemes. Then it would simply need to call

InstallResourcesFromTable() to start using a particular skin.

All of the functions of this class are static, so there is no need to ever create
an instance of the PegResourceManager class.

1.3.2 See Also

PegBitmap

PegFont

1.3.3 Derivation

None.

19 Swell Software, LLC Base Classes

1.3.4 Public Functions:

PegResourceManager

static void AddResource(const PegStringTablePage
*pPage, PEGBOOL DeleteOld = FALSE)

static void AddResource(PEGUINT BitmapId,

PegBitmap *pMap, PEGINT Flags = 0, PEGBOOL
DeleteOld = FALSE)

static void AddResource(PEGUINT ColorId,

PEGCOLOR Color)

static void AddResource(PEGUINT FontId, PegFont
*pFont, PEGUINT Flags = 0, PEGBOOL
DeleteOld = FALSE)

These functions are used to add resources to the PegResourceManager.
Bitmaps, fonts, colors, and string table pages can all be added. The
application can call these functions directly, but it is usually easier to build
up a PegResourceTable structure and call the

InstallResourcesFromTable() function. The Flags field is currently

unused.

static void DestroyBitmap(PEGUINT BitmapId)

This function destroys the bitmap with the specified ID.

static void DestroyFont(PegFont *pFont)

static void DestroyFont(PEGUINT FontId)

This function destroys a font based on either its ID or a direct pointer to it.

static void DestroyAll(void)

This function destroys all of the tables in the PegResourceManager. It does

not attempt to delete all of the actual resources because, usually, most of

those are not dynamically allocated.

static PegBitmap *GetBitmap(PEGUINT BitmapId)

This function retrieves a PegBitmap pointer based on the specified ID.

static PEGUSHORT GetBitmapHeight(PEGUINT

BitmapId)

This function returns the height of the bitmap with the specified ID.

20 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

static PEGUSHORT GetBitmapWidth(PEGUINT
BitmapId)

This function returns the width of the bitmap with the specified ID.

static void GetBitmapWidthHeight(PEGUINT

BitmapId, PEGUSHORT &Width, PEGUSHORT
&Height)

This function retrieves both the width and height of a bitmap with the

specified ID. This is a convenience function that does the same thing as

calling both GetBitmapHeight and GetBitmapWidth.

static PEGCOLOR GetColor(PEGUINT ColorId)

This function returns the color value based on the color ID.

static PEGUINT GetCurrentLanguage(void)

This function returns the current language index. This is only available if

PEG_STRING_TABLE is defined.

static char *GetLanguageName(PEGUINT Language)

This function returns the name of the language with the specified index.

This is only available if PEG_STRING_TABLE is turned on.

static PEGUINT GetNumLanguages(void)

This function returns the number of languages in the string table. This is

only available if PEG_STRING_TABLE is defined.

static PEGUINT GetFirstAvailableBitmapId(void)

This function returns the ID of the first empty slot found in the
PegResourceManager’s bitmap table.

static PEGUINT GetFirstAvailableColorId(PEGUINT

StartVal = 1)

This function returns the ID of the first empty slot found in the
PegResourceManager’s color table.

static PEGUINT GetFirstAvailableFontId(void)

This function returns the ID of the first empty slot found in the

PegResourceManager’s font table.

21 Swell Software, LLC Base Classes

PegResourceManager

static PegFont *GetFont(PEGUINT FontId)

This function returns a pointer to the font with the specified ID.

static PEGUSHORT GetStringResFontCount(void)

This function returns the number of fonts contained in the loaded string

resource file. This is only available if PEG_RUNTIME_RESOURCES is defined.

static char *GetStringResFontName(PEGUINT Index)

This function returns the name of a specified font in the loaded string

resource file. This is only available if PEG_RUNTIME_RESOURCES is defined.

static PEGUSHORT GetStringResStringCount(void)

This function returns the number of strings contained in the loaded string

resource file. This is only available if PEG_RUNTIME_RESOURCES is defined.

static char *GetStringResUserString(void)

This function returns the user string contained in the loaded string resource

file. This is only available if PEG_RUNTIME_RESOURCES is defined.

static PEGUSHORT GetStringResVersion(void)

This function returns the version number of the loaded string resource file.

This is only available if PEG_RUNTIME_RESOURCES is defined.

static void Initialize(void)

This function initializes all of the tables used by the PegResourceManager
by filling in the system colors, system fonts, and system bitmaps. This

function should be called once at startup from the PegTask.

static void InstallResourcesFromTable(

PegResourceTable *pTable, PEGBOOL DeleteOld
= FALSE)

This function takes a PegResourceTable structure as input and loads the

contained resources into the appropriate tables in the

PegResourceManager. The PegResourceTable structure is a container for

arrays of other structures containing the different types of resource data.
Those structures look like this:

typedef struct {

PegFont *pFont;

PEGUSHORT FontId;

PEGUBYTE Flags;

22 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

} PegFontTableEntry;

typedef struct {

PegBitmap *pBitmap;

PEGUSHORT BitmapId;

PEGUBYTE Flags;

} PegBitmapTableEntry;

typedef struct {

PEGCOLOR Color;

PEGUSHORT ColorId;

} PegColorTableEntry;

struct PegStringTablePage {

PEGUSHORT FirstSID;

PEGUSHORT LastSID;

PEGUSHORT NumLanguages;

const PEGCHAR ***pTable;

PegStringTablePage *pNext;

};

typedef struct {

const PegStringTablePage *pStringTable;

const PegFontTableEntry *pFontTable;

const PegBitmapTableEntry *pBitmapTable;

const PegColorTableEntry *pColorTable;

void *pSpare1;

void *pSpare2;

} PegResourceTable;

static PEGBOOL LoadResourceFile(char *pPathName,

PEGBOOL DeleteOld = FALSE)

This function loads a file from the file system at runtime that contains new

resource information. pPathName is the path and filename of the resource

file. This is only available if PEG_RUNTIME_RESOURCES is defined.

static const PEGCHAR *LookupString(PEGUINT Id)

This function returns a string pointer based on the string ID.

23 Swell Software, LLC Base Classes

PegResourceManager

static void SetCurrentLanguage(PEGUINT Language)

This function changes the current language. All objects on the screen will be

sent a PM_LANGUAGE_CHANGE message to notify them to update their text

from the string table. This is only available if PEG_STRING_TABLE is defined.

static PEGBOOL SetFontName(PEGUINT Index, char

*pName)

This function assigns a name to a font with the specified ID. This is only

available if PEG_RUNTIME_RESOURCES is defined.

static PEGBOOL SetLanguageName(PEGUINT Language,

char *pName)

This function assigns a name to language with the specified ID. This is only

available if PEG_STRING_TABLE is defined.

static void SetNumLanguages(PEGUINT Num)

This function resets the number of languages to Num and clears out all

language names.

24 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.4 PegScreen

1.4.1 Overview

PegScreen is the PEG class that provides the drawing primitives used by

the individual PEG objects to draw themselves on the display device. PEG

windows and controls never directly manipulate video memory, but instead
use the PegScreen member functions to draw lines, text, bitmaps, etc. Most

importantly, PegScreen provides a layer of isolation between the video

hardware and the rest of the PEG library, which is required to ensure that

PEG is easily portable to any target environment.

Class PegScreen is an abstract class from which the target specific

PegScreen classes are derived. This hierarchy ensures that a consistent
set of API functions are provided to PEG and application objects

independent of the target environment.

Most often, the PegScreen member functions are used to draw directly to
the video frame buffer. However, it is also possible to draw into a private

PegBitmap, and then use the PegScreen::Bitmap() function to transfer

the private PegBitmap to the video frame buffer. This technique is
commonly used for displaying animation sequences, or for drawing on top
of an image before displaying the image. The general sequence required
for off-screen drawing is:

• Call the CreateBitmap() function to allocate a PegBitmap.

• Call the second form of BeginDraw(..), passing in the bitmap you want
to draw to.

• Call any of the standard drawing functions to draw into the private
bitmap.

• Terminate the off-screen drawing by calling the second form of
EndDraw().

Once the above sequence is concluded, you have a PegBitmap that
contains whatever custom drawing you have invoked. You can then display
this PegBitmap at any location on the screen by calling the standard

PegScreen::Bitmap() function. Once you are done with the PegBitmap

and no longer need to display it, you should always use the

DestroyBitmap() function to free all memory associated with the

PegBitmap.

25 Swell Software, LLC Base Classes

PegScreen

When running with a video controller that supports extended video memory

and possibly a hardware bitblit engine, the PEG CreateBitmap function is

optimized to create the bitmap in non-visible video memory. The
PegScreen class contains a Video Memory Manager that keeps track of
used and free areas of non-visible video memory. A flag is set in the

PegBitmap structure to indicate that the bitmap resides in non-visible video
memory. When you display the bitmap, the PegScreen class knows to use
the video controller bitblit engine to display the bitmap rather than doing so
via processor memory copy operations.

It is important to remember that when drawing to an off-screen PegBitmap,
all drawing coordinates are relative to (0,0), which is the upper left corner

position of the bitmap.

Class PegThing provides wrapper functions for the most commonly used
PegScreen Drawing operations.

1.4.2 See Also

PegThing

1.4.3 Derivation

PegScreen is an abstract base class.

1.4.4 Constructors:

PegScreen(const PegRect &Size)

This constructor determines the size in pixels of the PegScreen frame

buffer. This does not have to be the same dimension as

PegPresentationManager, although this is the most typical case. One
instance of the target-specific PegScreen-derived interface class is created

during program startup. The PegScreen constructor is normally responsible

for configuring the target video controller and initializing other variables

used for improved drawing performance.

26 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.4.5 Public Functions:

PEGUBYTE AddPointerType(PegBitmap *pMap, PEGUINT
XOffset, PEGUINT YOffset)

This function can be called to define a new pointer type, meaning a new
pointer bitmap, when using a mouse or similar pointing device. The first
parameter is a pointer to a PegBitmap to display when this pointer type is

invoked via the SetPointerType() function. The x and y offset parameters

specify the distance, in pixels, from the upper left corner of the bitmap to the
bitmap ‘hotspot.’ The PEG screen drivers automatically position the pointer
so that the hotspot is centered over the current pointer position.

The number of pointer types that may be defined is indicated by the

definition USER_POINTER_TYPES in the header file pscreen.hpp. The return

value of this function is the index assigned to this pointer type. The
application must keep track of this index for subsequent calls to the

SetPointerType() function. The value 0 is returned if the pointer cannot

be installed.

virtual void Arc(PEGINT xc, PEGINT yc, PEGINT

XRadius, PEGINT YRadius, PEGINT
start_angle, PEGINT end_angle, PegBrush
&Brush, PEGINT width = 1)

This function draws a portion of an ellipse from start_angle to end_angle

(in degrees) at the indicated position and radius. The width parameter

determines the border width, if any. This function does not use any floating
point arithmetic. A pie-chart effect can be achieved by setting Brush.Style

to PBS_SOLID_FILL. This function is only available if PEG_ARC_GRAPHICS is

turned on.

virtual PEGINT BeginDraw(PegThing *pCaller,

const PegRect &Invalid, PEGINT Surface)

This function should be called at the beginning of every Draw() function.

This call prepares the screen for output by initializing the drawing context.

virtual void BeginPrint(void)

This method informs the screen that all subsequent drawing operations will

take place in the context of printer output, as well as creating a new

instance of the printer object. This function must first be called before any
work on the printer object is done.

27 Swell Software, LLC Base Classes

PegScreen

virtual void Bitmap(PegPoint Where, PegBitmap
*pMap)

This function draws a bitmap on the screen. The parameter Where defines

the upper left corner position of the bitmap on the screen. The parameter
pMap points to a bitmap generated with the PegImageConvert utility.

virtual void Bitmap(PegPoint Where, PegBitmap

*pMap, PegBitmap *pAlphaMap, PEGSHORT

AlphaX, PEGSHORT AlphaY)

This Peg Pro only function alpha blends a bitmap on the screen using an

alpha value map. The parameter Where defines the upper left corner

position of the bitmap on the screen. The parameter pMap points to a

bitmap generated with the PegImageConvert utility. The pAlphaMap

pointer is the alpha value map. The parameters AlphaX and AlphaY

define the starting offset within the alpha map.

virtual void BitmapFill(PegRect &Rect, PegBitmap
*pMap)

This function fills a rectangular area of the screen with tiled copies of the

bitmap pointed to by pMap. Rect defines the screen area to be filled,

inclusive.

virtual void Capture(PegCapture *pInfo, PegRect

&Rect)

This function captures a rectangular area of the screen and saves the copy

in a PegCapture object referenced by pointer Info.

virtual void Chord(PegRect &Bound, PegPoint p1,

PegPoint p2, PegBrush &Brush)

This function draws the intersection of an ellipse defined by Bound and the

line defined by p1 and p2. The Brush parameter determines the color and

border width. This function is only available if PEG_ARC_GRAPHICS is turned
on.

virtual void Circle(PEGINT xCenter, PEGINT

yCenter, PEGINT r, PegBrush &Brush)

This function draws a circle at the indicated position and radius. The

Brush.Width parameter determines the border width, if any. This function

is only provided if the definition PEG_FULL_GRAPHICS is turned on in the file \
peg\include\pconfig.hpp. This function does not use floating point math.

PEGBOOL ClipRect(PegRect &Rect)

27 Swell Software, LLC Base Classes

This function takes the intersection of Rect with the mpContext->Clip

rectangle. If the resulting rectangle has a positive area, then it returns
TRUE; otherwise, it returns FALSE.

virtual PegBitmap *CreateBitmap(PEGINT Width,

PEGINT Height, PEGINT Style = BMF_RAW|
BMF_HAS_TRANS)

This function is called to create a PegBitmap at run time. The bitmap is

normally formatted in the native pixel format of the active frame buffer;

28 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

however, this is transparent to the application software. A bitmap created in

this fashion can be used as a 'virtual screen,’ allowing drawing to the off-

screen bitmap instead of to the actual video memory.

virtual PEGINT CreateDrawSurface(PEGINT Type,

PEGINT Width, PEGINT Height, PEGINT

xOffset, PEGING yOffset, PEGINT HardLayer =
-1, PegThing *pNotify = NULL)

This function is called to create a drawing surface at run time. The surface

could be used as an offscreen buffer to draw into, or it could represent a
layer that gets displayed/blended on the screen.

virtual void DeleteFont(PegFont *pFont)

This function frees all memory associated with pFont. This function should

be called after the use of a font created with MakeFont is complete. The

DeleteFont function is only available if the definition PEG_VECTOR_FONTS is

enabled when the PEG library is built. PEG_VECTOR_FONTS is defined in the

file \peg\include\pconfig.hpp. The example program contained in \

peg\examples\vecfont illustrates the use of MakeFont and DeleteFont.

In this example, the font created at run time is assigned to a PegTextBox
object. The font size and style can be modified freely at run time, without
including additional bitmapped fonts (and the associated memory) in the
application program.

virtual void DestroyBitmap(PegBitmap *pBitmap)

Deletes the bitmap associated with the pBitmap pointer. This method takes

into account bitmaps that are using video memory directly, as opposed to
bitmaps that are in system memory. This is the preferred method for

deleting bitmaps that were created using the CreateBitmap method.

virtual void DestroyDrawSurface(PEGINT Surface)

Deletes the drawing surface associated with Surface. This is the preferred

method for deleting surfaces that were created using the

CreateDrawSurface method.

PEGUINT DrawNesting(void)

This function returns the current drawing nesting level.

29 Swell Software, LLC Base Classes

PegScreen

virtual void DrawAliasMap(PegPoint Where, const
PegBitmap *pMap, PegBrush &Brush)

This function uses the values in the bitmap pMap as alpha ratios to blend
the color Brush.LineColor with whatever is on the background of the
current surface.

void DrawLineEnds(PEGINT XStart, PEGINT YStart,

PEGINT XEnd, PEGINT YEnd, PegBrush &Brush)

This function draws the endpoints for line segments. If Brush.Style has the

PBS_ROUNDED style flag set, then it draws circular bitmaps at the ends. If
PBS_SIMPLE_ALIAS or PBS_TRUE_ALIAS are also set, it draws a

circular alias map to make the circle appear anti-aliased.

void DrawRotatedText(PegPoint Center, PEGINT

Angle, const PEGCHAR *pText, const PegFont
*pFont, PegBrush &Brush)

This function draws text on the screen at a specified angle of rotation.

Center determines the center pivot point of the rotation and Angle defines

the angle that the text is facing.

virtual void DrawText(PegPoint Where, const

PEGCHAR *pText, PegBrush &Brush, const
PegFont *pFont, PEGINT Count = -1)

This function draws text on the screen. Where determines the upper left

starting position for drawing the text. If Count is 0, a maximum of Count

characters will be drawn unless the string pointed to by pText is less than
Count in length. If Count is set to -1, the entire null terminated string is
drawn at the indicated position.

This is the only text drawing function provided by the screen driver. Various

font formats, including anti-aliased fonts and outlined-fonts, are drawn by

the driver by testing the font type flags. The application program does not

differentiate between drawing a simple binary font or drawing an anti-

aliased font; this happens automatically within the screen driver itself. This

enables the application program to change font types and styles simply by
referencing new font pointers; no other change is required.

PEGUBYTE *DumpWindowsBitmap(PEGULONG *PutSize,

PegRect &View)

This function creates a Microsoft Windows-compatible bitmap file in

memory. The bitmap file is an exact capture of the View rectangle. Since

30 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

PEG assumes no file I/O capabilities, this function returns a pointer of the

bitmap residing in memory. It is the caller's job to write the bitmap from

memory into permanent storage such as a floppy or hard disk drive for use

in a PC environment.

This function is only provided if the #define PEG_BITMAP_WRITER is enabled

in the configuration file pconfig.hpp when the PEG library is built.

This function is used primarily for testing and/or capturing screen shots on

the embedded target for use in promotional literature. This function is NOT

normally used for production software since its output format is the

Microsoft Windows bitmap format, not the PegBitmap format.

DumpWindowsBitmap returns a pointer to the bitmap image in memory. The

caller can then save the image using whatever storage is available on the
target system. The caller is responsible for freeing the memory associated
with the memory bitmap!! The file size (i.e. memory buffer size) is returned

in the location pointed to by PutSize, or a size of 0 to indicate failure.

virtual void Ellipse(const PegRect &Bound,

PegBrush &Brush)

This function draws an ellipse with the provided parameters. The ellipse is
bounded on all sides by Bound. The ellipse is filled if the Brush.Style value

includes PBS_SOLID_FILL. The ellipse may have a border, drawn in

Brush.LineColor, of Brush.Width pixels. If the ellipse is filled, it is filled

with Brush.FillColor.

The Ellipse function is not required internally by the PEG library, and is

therefore only provided if the #define PEG_ARC_GRAPHICS is turned on in the

header file \peg\include\pconfig.hpp.

virtual void EndDraw()

This function should be called at the end of every Draw() function. This call

notifies the PegScreen that drawing has been completed. It is used to

maintain the level of draw nesting and to then call the MemoryToScreen

function when all nesting levels are finished. On systems which utilize
multiple palettes, draw nesting is used to determine when a new palette
should be loaded into the palette buffer or video controller palette registers.

virtual void EndPrint(void)

This method informs the screen that all printer operations are complete and

all subsequent output will be to the screen. Once this method is called, the

31 Swell Software, LLC Base Classes

PegScreen

printer context is no longer valid and any reference from application code to

the printer object will result in unspecified behavior.

DrawSurface *FindSurface(PEGINT SurfaceId)

This function searches the list of used surfaces to find one that has the ID

indicated by SurfaceId. If one is found, a pointer to it is returned.

Otherwise it returns NULL.

virtual PEGCOLOR GetBitmapPixel(PEGINT x, PEGINT

y, PegBitmap *pMap)

Returns the PEGCOLOR associated with the pixel in the bitmap at coordinates

x, y. This function is only provided if the #define PEG_IMAGE_SCALING is

enabled in the configuration file pconfig.hpp when the PEG library is built.

virtual PEGUBYTE *GetPalette(PEGULONG *pPutSize)

Returns a pointer to the current palette, and writes the number of palette

entries to pPutSize. There will be 3 PEGUBYTE values for each palette entry.

These values are the Red, Green, and Blue components for each color
value.

virtual PEGCOLOR GetPixel(PEGINT x, PEGINT y)

Returns the PEGCOLOR associated with the pixel at screen coordinates x, y.

PegBitmap *GetPointer(void)

This method returns a PegBitmap pointer to the current mouse pointer

bitmap.

PegPoint GetPointerPos(void)

This method returns a PegPoint with x/y coordinates for the location of the

pointer.

PEGUBYTE GetPointerType(void)

This function returns the current pointer type. The available pointer types

are enumerated at the top of the file \peg\include\pscreen.hpp. The types

provided with PEG include:

PPT_NORMAL

PPT_VSIZE

PPT_HSIZE

PPT_NWSE_SIZ

E

32 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

PPT_NESW_SIZE

PPT_IBEAM

PPT_HAND

Additional pointer shapes can also be defined and added using

AddPointerType().

PegBitmap *GetSurfaceBitmap(PEGINT Surface)

This function returns a pointer to the PegBitmap used by the surface with ID

Surface.

PegBitmap *GetSurfaceBitmapAndClose(PEGINT

Surface)

This function returns a pointer to the PegBitmap used by the surface with ID

Surface. It also then destroys every part of the surface except the bitmap.

The caller is then responsible for deleting the bitmap.

PEGINT GetXPointerOffset(void)

Returns the X offset of the currently used mouse pointer.

PEGINT GetXRes(void)

Returns the horizontal screen resolution, in pixels.

PEGINT GetYPointerOffset(void)

Returns the Y offset of the currently used mouse pointer.

PEGINT GetYRes(void)

Returns the vertical screen resolution, in pixels.

virtual PegBitmap *InitHardwareSurface(PEGINT

Width, PEGINT Height, PEGINT xOffset,
PEGINT yOffset, PEGINT HardLayer, PEGINT
Alpha = 255))

This function, by default, just returns NULL. It is meant to be overridden in
screen drivers that support hardware layers. It should return a pointer to a
PegBitmap that is created using the parameters passed into it. This
function is not typically called by applications directly; instead, it is called

from the CreateDrawSurface function when the HardLayer parameter is

greater than -1.

33 Swell Software, LLC Base Classes

PEGBOOL IsPrinting(void)

PegScreen

This function can be used to check if the screen is currently directing output
to a printer. This function is only available if PEG_PRINTER_SUPPORT has

been defined in the library build.

void IsPrinting(PEGBOOL Printing)

This function sets PEG in printing mode if Printing is TRUE. This function

is only available if PEG_PRINTER_SUPPORT is turned on.

virtual void Line(PEGINT XStart, PEGINT YStart,

PEGINT XEnd, PEGINT YEnd, PegBrush &Brush)

This is the basic line drawing function. Optimizations are performed
internally for vertical and horizontal lines. The start and end points of the

line are inclusive.

virtual PegFont *MakeFont(PegFont *pSourceFont,

PEGUBYTE Height, PEGBOOL Bold = FALSE,
PEGBOOL Italic = FALSE, PEGINT ForceWidth =
0)

The MakeFont function is used to create a new bitmapped font at the

indicated point size and style. Normally, you should create fonts using
PegFontCapture. MakeFont and DeleteFont (above) are used to create
new fonts at run time. Because of rounding errors and limitations in the
vector font format, fonts generated using MakeFont are generally not as

visually appealing as fonts generated using PegFontCapture. The
MakeFont function is only available if the definition PEG_VECTOR_FONTS is

enabled when the PEG library is built. PEG_VECTOR_FONTS is defined in the

file \peg\include\peg.hpp.

virtual void PlotPointView(PEGINT x, PEGINT y,

PEGCOLOR c)

This function draws a single color value c at the position (x, y) on the

screen. This is only available if PLOTPOINTVIEW_AS_FUNCTION is defined in
your library build. Otherwise it is a macro function.

virtual void Polygon(PegPoint *pPoints, PEGINT

NumPoints, PegBrush &Brush)

This function draws a polygon on the screen. The polygon may be concave

or convex, filled or bordered. PEG objects do not use the polygon function,

and it is therefore optional in derived classes.

34 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

virtual void PolyLine(PegPoint *pPoints, PEGUINT
NumPoints, PegBrush &Brush)

This function draws a series of connected lines defined by the array of

points, pPoints.

virtual void PutBitmapPixel(PEGINT xPos, PEGINT

yPos, PegBitmap *pMap, PEGCOLOR Color)

This function plots a single point at the indicated x, y position in the

indicated color, in the bitmap pMap. This function is only provided if the
#define PEG_IMAGE_SCALING is enabled in the configuration file
pconfig.hpp when the PEG library is built.

virtual void PutPixel(PEGINT xPos, PEGINT yPos,

PEGCOLOR Color)

This function plots a single point at the indicated x, y position in the

indicated color.

virtual void Rectangle(const PegRect &Rect,

PegBrush &Brush)

This function draws a rectangle on the screen. The rectangle may have any
border width and may optionally be filled if the Brush.Style parameter is set

to PBS_SOLID_FILL. The rectangle border is drawn with Brush.LineColor

and, if the rectangle is filled, it is filled with Brush.FillColor.

void RectangleXOR(const PegRect &InRect)

This function inverts the pixel color values of the indicated rectangle.

virtual PEGBOOL RectMove(PegRect Get, PegRect

ClipTo, PEGINT xShift, PEGINT yShift)

When FAST_BLIT is enabled, PEG objects use this function to rapidly scroll.

For high-end video controllers with hardware accelerated bitblit capability,
this function directly invokes the hardware pixel move operation. This
function is software emulated when running with a low-end video controller.

virtual void ResetPalette(void)

This function resets the current color palette back to the default state.

35 Swell Software, LLC Base Classes

PegScreen

virtual PegBitmap *ResizeImage(PegBitmap *pSrc,
PEGINT Width, PEGINT Height)

This function creates a new PegBitmap from an existing PegBitmap. The

new bitmap is resized to Width x Height pixels regardless of the size of the

source bitmap. A PegBitmap created in this manner should be destroyed by
calling the DestroyBitmap() function.

virtual void Restore(PegCapture *pInfo, PEGBOOL

OnTop = FALSE)

This function restores a captured area of screen pixels.

virtual void SetPalette(PEGINT First, PEGINT

Num, const PEGUBYTE *pPal)

This function installs the palette indicated by pPal. The number of entries in

the palette is indicated by Num, and the first entry to be modified is indicated

by First. To install a custom 256 color palette, for example, you would call

SetPalette like this:

SetPalette(0, 256, &PalData);

PEG color palettes are simple 8-8-8 RGB color values. There should be (3*

Num) PEGUBYTE values in the array pointed to by pPal.

virtual void SetPointer(PegPoint Where)

This function sets the current position of the mouse pointer on the screen.

virtual void SetPointerType(PEGUBYTE Type)

This function is used to change the active pointer type. For example,
PegWindow objects change the pointer type during resize operations as an

indication to the user that the window border is being dragged. The

available pointer types are defined in the header file pscreen.hpp. They

include:

PPT_NORMAL

PPT_VSIZE

PPT_HSIZE

PPT_NWSE_SIZ

E

PPT_NESW_SIZ

E PPT_IBEAM

PPT_HAND

36 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

Most often an application will capture the mouse pointer before changing

the pointer type, and release the pointer after restoring the pointer to

normal.

void SetSurfaceAlpha(PEGINT Surface, PEGINT

Alpha)

This function sets the alpha blend ratio for the surface with ID Surface to
Alpha.

void SetSurfaceOffset(PEGINT Surface, PEGINT

xDrawOffset, PEGINT yDrawOffset)

This function modifies the x and y offsets used by the surface with ID

Surface.

void SetSurfaceSize(PEGINT Surface, PEGINT

xSize, PEGINT ySize, PEGINT xOffset, PEGINT
yOffset)

This function is used to modify an existing surface’s size and offset values.

virtual void ShowPointer(PEGBOOL Show)

This function is used to show and hide the pointer bitmap. Passing FALSE
to this function disables display of the pointer bitmap, and passing TRUE
enables display of the pointer bitmap. The pointer bitmap is displayed by

default after power up if PEG_MOUSE_SUPPORT is defined. Note that the

pointer still operates normally, including tracking pointer position and
sending click messages, even if the bitmap is not displayed.

void SurfaceToFront(PEGINT Surface)

This function adjusts the z-ordering of the visible surfaces by bringing the

surface with ID Surface to the front.

virtual PEGINT TextHeight(const PegFont *pFont)

virtual PEGINT TextHeight(PEGINT FontId)

This function returns the height, in pixels, of the indicated font. All

characters in a font are guaranteed to be the same height so there is no

need to pass a text string into this function. A PegFont pointer or a font ID
can be used.

37 Swell Software, LLC Base Classes

PegScreen

virtual PEGINT TextWidth(const PEGCHAR *pText,
const PegFont *pFont, PEGINT Len = -1)

virtual PEGINT TextWidth(const PEGCHAR *pText,

PEGINT FontId, PEGINT Len = -1)

This function returns the width, in pixels, of the indicated string up to a

maximum of Len characters using the indicated font. If Len is -1, the width

of the entire null terminated string is returned. A PegFont pointer or a font
ID can be used.

1.4.6 Protected Members:

virtual void AALine(PegThing *pCaller, PEGINT

XStart, PEGINT YStart, PEGINT XEnd, PEGINT
YEnd, PegBrush &Brush

Draws an anti-aliased (dithered) line between the start and end
coordinates. This is only supported for 16 or 24 bit color depths, and only if

the configuration flag PEG_AA_LINE is enabled in the pconfig.hpp

configuration file.

virtual void AALineView(PEGINT xStart, PEGINT

yStart, PEGINT xEnd, PEGINT yEnd, PegRect
&View, PegBrush &Brush)

This function draws an anti-aliased line, clipped to the View rectangle,

between the start and end coordinates. Applications typically do not call this

directly, but call AALine instead. This is a pure virtual function, so it must be

implemented in the screen driver. This function is only available if

PEG_AA_LINE is turned on.

virtual void ArcFill(PEGINT xc, PEGINT yc,

PEGINT XRadius, PEGINT YRadius, PEGINT
start_angle, PEGINT end_angle, PegBrush
&Brush, PegRect &View)

This function draws a filled arc shape using the specified center, x-radius
and y-radius, and start and end angles. The arc is clipped to the View

rectangle. Applications typically do no call this directly, but call Arc instead.

This function is only available if PEG_ARC_GRAPHICS is turned on.

38 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

virtual void ArcLine(PEGINT xs, PEGINT ys,
PEGINT xe, PEGINT ye, PegRect &View)

This is a line function used by the arc drawing algorithm. Applications

typically do not call this directly, but call Arc instead. This function is only

available if PEG_ARC_GRAPHICS is turned on.

virtual void ArcToView(PEGINT xc, PEGINT yc,

PEGINT radius, PEGINT start_angle, PEGINT
end_angle, PegBrush &Brush, PegRect &View)

This function clips an arc to the specified viewport. Applications typically do

not call this directly, but call Arc instead. This function is only available if

PEG_ARC_GRAPHICS is turned on.

virtual void ArcToViewSpecial(PEGINT xCen,

PEGINT yCen, PEGINT XRadius, PEGINT
YRadius, PEGINT StartAngle, PEGINT
EndAngle, PegBrush &Brush, PegRect &View)

This function is very similar to ArcToView, except that it handles the special

case when the start and end angles are in the same quadrant. Applications
typically do not call this directly, but call Arc instead. This function is only

available if PEG_ARC_GRAPHICS is turned on.

virtual void BitmapView(const PegPoint Where,

const PegBitmap *pMap, const PegRect &View)

This function draws the bitmap pMap at the point Where, clipped to the View
viewport rectangle. Applications typically do not call this directly, but call
Bitmap instead. This is a pure virtual function so it must be implemented in
the screen driver.

virtual void BitmapView(PegPoint Where, PegBitmap

*pMap, const PegRect &View, PegBitmap

*pAlphaMap, PEGSHORT AlphaX, PEGSHORT

AlphaY)

This Peg Pro only function alpha blends a bitmap on the screen using an

alpha value map. The parameter Where defines the upper left corner

position of the bitmap on the screen and the drawing is clipped to the

View viewport rectangle. The parameter pMap points to a bitmap

generated with the PegImageConvert utility. The pAlphaMap pointer is

the alpha value map. The parameters AlphaX and AlphaY define the

starting offset within the alpha map.

38 PEG Pro API Reference Manual Swell Software, LLC

 PegScreen

virtual void BoxLine(PEGINT xs, PEGINT ys,
PEGINT xe, PEGINT ye, PegBrush &Brush)

This function is used to draw a wide diagonal line between the start and end

points. Applications typically do not call this directly, but call Line instead.

void BoxLineView(const PegRect &LimitRect,

PegFixedPoint *pPoints, PegBrush &Brush)

This function is used to draw a wide diagonal line using the corner points in

pPoints, and clipped to LimitRect. Applications typically do not call this

directly, but call Line instead.

39 Swell Software, LLC Base Classes

PegScreen

void CalcEllipsePoints(PEGINT Angle, PEGINT asq,
PEGINT bsq, PEGINT &X, PEGINT &Y)

This function finds a specific x, y point on an ellipse at the specified angle.

Applications typically do not call this directly, but call Arc instead. This

function is only available if PEG_ARC_GRAPHICS is turned on.

virtual void ChordFill(PEGINT xCen, PEGINT yCen,

PEGINT XRadius, PEGINT YRadius, PEGINT
StartAngle, PEGINT EndAngle, PegBrush
&Brush, PegRect &View)

This function draws the filled portion of a chord shape on the screen. The
chord is defined by the center point, radii, and angles, and then clipped to

the View rectangle. Applications typically do not call this, but call Chord

instead. This function is only available if PEG_ARC_GRAPHICS is turned on.

virtual void ChordFillSpecial(PEGINT xCen,

PEGINT yCen, PEGINT XRadius, PEGINT
YRadius, PEGINT StartAngle, PEGINT

EndAngle, PegBrush &Brush, PegRect &View)

This function is very similar to ChordFill, except that it handles the special

case where the start and end angles are in the same quadrant. Applications
typically do not call this, but call Chord instead. This function is only

available if PEG_ARC_GRAPHICS is turned on.

virtual void Circle(const PegRect &LimitRect,

PEGINT xCenter, PEGINT yCenter, PEGINT
Radius, PegBrush &Brush)

This function draws a circle defined by the center coordinates and the
Radius. It is used in the standard circle drawing algorithm. Applications

typically do not call this function directly, but call the public Circle function

instead. This function is only available if PEG_FULL_GRAPHICS is turned on.

virtual void CircleFast(PEGINT xCenter, PEGINT

yCenter, PEGINT Radius, PegBrush &Brush)

This function draws a circle defined by the center coordinates and the
Radius. It is used in the standard circle drawing algorithm. Applications

typically do not call this function directly, but call the public Circle function

instead. This function is only available if PEG_FULL_GRAPHICS is turned on.

40 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

virtual void DrawAliasMapView(PegPoint Where,
const PegBitmap *pMap, PegBrush &Brush,
const PegRect &View)

This function uses the values in the bitmap pMap as alpha ratios to blend

the color Brush.LineColor with whatever is on the background of the

current surface. The drawing is clipped to the View rectangle.

virtual void DrawTextView(PegPoint Put, const

PEGCHAR *pText, PegBrush &Brush, const
PegFont *pFont, PEGINT Len, PegRect &View)

This function draws the specified text pText at the point Put, using the font

pFont, clipped to the rectangle View. Applications typically do not call this
function directly, but call DrawText instead.

virtual void EllipseFast(const PegRect &Bound,

PegBrush &Brush)

This function draws an ellipse defined by the rectangle Bound. It is used in
the standard ellipse drawing algorithm. Applications typically do not call this
function directly, but call Ellipse instead. This function is only available if

PEG_FULL_GRAPHICS is turned on.

virtual void EllipseToView(const PegRect &Bound,

PegBrush &Brush, PegRect View)

This function draws an ellipse defined by the rectangle Bound, and clipped

to the rectangle View. It is used in the standard ellipse drawing algorithm.

Applications typically do not call this function directly, but call Ellipse

instead. This function is only available if PEG_FULL_GRAPHICS is turned on.

void FastWideHLine(PEGINT xStart, PEGINT xEnd,

PEGINT yVal, PEGINT Width, PEGCOLOR

LineColor)

This function draws a solid horizontal line, clipped. Applications typically do

not call this function directly, but call Line instead.

void FastWideVLine(PEGINT yStart, PEGINT yEnd,

PEGINT xVal, PEGINT Width, PEGCOLOR

LineColor)

This function draws a solid vertical line, clipped. Applications typically do

not call this function directly, but call Line instead.

41 Swell Software, LLC Base Classes

virtual void FillCircle(const PegRect

PegScreen

&LimitRect, PEGINT xCenter, PEGINT yCenter,
PEGINT r, PEGCOLOR FillColor)

This function draws a filled circle using the specified center coordinates and
radius; clipping will be used. It is used in the standard circle drawing
algorithm. Applications typically do not call this function directly, but call

Circle instead. This function is only available if PEG_FULL_GRAPHICS is

turned on.

virtual void FillCircleFast(PEGINT xCenter,

PEGINT yCenter, PEGINT r, PEGCOLOR
FillColor);

This function draws a filled circle using the specified center coordinates and
radius; clipping will not be used. It is used in the standard circle drawing
algorithm. Applications typically do not call this function directly, but call

Circle instead. This function is only available if PEG_FULL_GRAPHICS is

turned on.

virtual void FillPolygon(PegRect &Bound,

PegPoint *pPoints, PEGINT NumPoints,
PEGCOLOR Color)

This function draws a filled polygon using the specified points. It is used in
the standard polygon drawing algorithm. Applications typically do not call

this function directly, but call Polygon instead. This function is only

available if PEG_FULL_GRAPHICS is turned on.

virtual void FillPolygonView(const PegRect
&View, PegPoint *pPoints,PEGINT NumPoints,
PEGCOLOR Color)

This function draws a filled polygon, clipped to the View rectangle, using the
specified points. It is used in the standard polygon drawing algorithm.
Applications typically do not call this function directly, but call Polygon

instead. This function is only available if PEG_FULL_GRAPHICS is turned on.

virtual PEGCOLOR GetPixelView(PEGINT x, PEGINT

y)

Returns the PEGCOLOR associated with the pixel at screen coordinates x, y.

Applications typically do not call this function directly, but call GetPixel

instead.

42 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

virtual void HidePointer(void)

This function is called to hide the mouse pointer.

virtual void HorizontalLine(PEGINT xStart,

PEGINT xEnd, PEGINT y, PEGCOLOR Color,
PEGINT Width)

This function draws a horizontal line between xStart and xEnd at the given

y coordinate. Applications typically do not call this function directly, but call
Line instead.

virtual void HorizontalLineXOR(PEGINT xs, PEGINT

xe, PEGINT y)

This function draws an inverted horizontal line between xs and xe at the

given y coordinate. This is mostly used for drawing the outline of a window
when it gets resized or moved.

virtual void InitVidMemManager(PEGUBYTE *pStart,

PEGUBYTE *pEnd)

This function is used to initialize the built-in video memory manager. This is

only available if PEG_VID_MEM_MANAGER is turned on in pconfig.hpp

virtual void LineView(PEGINT xStart, PEGINT

yStart, PEGINT xEnd, PEGINT yEnd, PegRect
&View, PegBrush &Brush)

This function draws a line between the points (xStart, yStart) and (xEnd,

yEnd), and clipped to the View rectangle. Applications typically do not call

this function directly, but call Line instead.

virtual void MemoryToScreen(void)

This function is used to transfer the local frame buffer data to the actual

video memory. This is a pure virtual function, so the actual implementation

is located in the screen driver.

PEGULONG mNumColors

Number of output colors. This is the number of colors supported by the

output device, rather than the number of colors in the current palette.

PEGINT mCurXOffset

Offset in x axis between upper-left corner of mouse pointer bitmap and
pointer hotspot.

43 Swell Software, LLC Base Classes

PEGINT mCurYOffset

PegScreen

Offset in y axis between upper-left corner of mouse pointer bitmap and
pointer hotspot.

PegBitmap *mpCurPointer

Address of current mouse pointer bitmap

PegPointer mpPointers[NUM_POINTER_TYPES]

Array of mouse pointer bitmap addresses. This array must be extended if

new pointer types are defined.

PEGUINT mDrawNesting

Nesting level within Draw functions

PEGINT mHRes

The horizontal screen resolution in pixels.

PEGINT mVRes

The vertical screen resolution in pixels.

virtual void OutlineCircle(const PegRect

&LimitRect, PEGINT xCenter, PEGINT yCenter,
PEGINT r, PEGCOLOR Color, PEGINT Width)

This function draws the outline of a circle with the given center point and

radius. Applciations typically do not call this directly, but call Circle

instead. This function is only available if PEG_FULL_GRAPHICS is turned on.

virtual void OutlineCircleFast(PEGINT xCenter,

PEGINT yCenter, PEGINT r, PEGCOLOR Color,

PEGINT Width)

This function draws a filled circle using the specified coordinates and
radius. It is used in the standard circle drawing algorithm. Applications

typically do not call this function directly, but call Circle instead. This

function is only available if PEG_FULL_GRAPHICS is turned on.

virtual void PatternFillPolygon(PegRect &Bound,

PegPoint *pPoints, PEGINT NumPoints,
PegBrush &Brush)

This function draws a filled polygon using the specified points. It is used in
the standard polygon drawing algorithm. Applications typically do not call

44 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

this function directly, but call Polygon instead. This function is only

available if PEG_FULL_GRAPHICS is turned on.

virtual void PatternFillPolygonView(const

PegRect &View, PegPoint *pPoints, PEGINT
NumPoints, PegBrush &Brush)

This function uses a bitmap to fill a polygon defined by the specified points

and clipped to the View rectangle. It is used in the standard polygon

drawing algorithm. Applications typically do not call this function directly,

but call Polygon instead. This function is only available if

PEG_FULL_GRAPHICS is turned on.

virtual void PatternLine(PEGINT XStart, PEGINT

YStart, PEGINT XEnd, PEGINT YEnd, PegBrush
&Brush)

This function draws a dashed line. The dash pattern is determined by the
Brush.Pattern value. For example, a pattern value of 0xf0f0f0f0 would

draw a line alternating between 4 pixels on and 4 pixels off. Applications
typically do not call this function directly, but call Line instead. This function

is only provided if the definition PEG_FULL_GRAPHICS is turned on in the file

pconfig.hpp.

virtual void PatternLineView(PEGINT XStart,

PEGINT YStart, PEGINT XEnd, PEGINT YEnd,
PegRect &Rect, PegBrush &Brush)

This function draws a dashed line, clipped to Rect. The dash pattern is

determined by the Brush.Pattern value. For example, a pattern value of
0xf0f0f0f0 would draw a line alternating between 4 pixels on and 4 pixels
off. Applications typically do not call this function directly, but call Line

instead. This function is only provided if the definition PEG_FULL_GRAPHICS

is turned on in the file pconfig.hpp.

virtual void PlotEllipsePoints(PegRect &Bound)

This function is used by the ellipse drawing algorithm to calculate the ellipse
points bounded by the Bound rectangle. Applications typically do not call

this function directly, but call Ellipse instead. This function is only

available if PEG_FULL_GRAPHICS is turned on in pconfig.hpp.

void PrepareBrush(PegBrush &Brush)

This function is used to create the bitmap used for endpoints when drawing
lines. The bitmap could be a solid circle, or an anti-aliased circle.

45 Swell Software, LLC Base Classes

PegScreen

virtual void RectangleView(const PegRect
&InRect, PegRect &View, PegBrush &Brush)

This function draws a rectangle defined by InRect and clipped to the View

rectangle. Applications typically do not call this function directly, but call the
public version of Rectangle instead.

virtual void RectangleXORView(const PegRect

&View)

This function inverts the pixel color values of the indicated rectangle.
Applications typically do not call this function directly, but call

RectangleXOR instead.

virtual void RectMoveView(const PegRect &View,

const PEGINT xMove, const PEGINT yMove)

When FAST_BLIT is enabled, PEG objects use this function to rapidly scroll.

For high-end video controllers with hardware accelerated bitblit capability,
this function directly invokes the hardware pixel move operation. This
function is software-emulated when running with a low-end video controller.

Applications typically do not call this function directly, but call RectMove

instead.

void SetSurfaceOffset(DrawSurface *pSurface,

PEGINT xOffset, yOffset)

This function adjusts the x and y offsets of pSurface. This is used, for

example, when a surface is moving across the screen. The offsets get
modified so that the caller does not need to modify the coordinates that it
uses to draw into the surface.

PEGINT SqRoot(PEGINT x)

This function returns the integer square root of x. This is used for the

ellipse calculations. This function uses a simple lookup table, which makes
it quite fast. It does not use any floating point numbers.

virtual void VerticalLine(PEGINT yStart, PEGINT

yEnd, PEGINT x, PEGCOLOR Color, PEGINT
Width)

This function draws a vertical line between yStart and yEnd at the

specified x coordinate. Applications typically do not call this directly, but call
Line instead.

46 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

virtual void VerticalLineXOR(PEGINT ys, PEGINT
ye, PEGINT x)

This function draws an inverted vertical line between ys and ye at the

specified x coordinate. This is mostly used for drawing the outline of a
window when it gets resized or moved.

1.4.7 Examples:

Draw() Function Example

The following example installs a custom palette. This palette would

normally be generated by PegImageConvert, although a palette can be
created using several means.

PEGINT MyWindow::Message(const PegMessage &Mesg)

{

switch(Mesg.Type)

{

case PM_SHOW:

Screen()->SetupPalette(PegCustomPalette, 256);

PegWindow::Message(Mesg);

break;

case PM_HIDE:

Screen()->ResetPalette();

PegWindow::Message(Mesg);

break;

default:

return PegWindow::Message(Mesg);

}

return 0;

}

47 Swell Software, LLC Base Classes

1.5 PegTextThing

PegTextThing

1.5.1 Overview

PegTextThing serves as a base class for all PEG objects that display or

manipulate text. This provides a common set of API functions for all PEG

classes that display text, such as PegTitle, PegTextButton, PegPrompt,
PegEditField, and others.

PegTextThing provides string storage and manipulation functionality for all

PegTextThing derived classes. This insulates the PEG classes from the

character encoding method, which enables PEG to support both 8-bit ASCII

and 16-bit UNICODE character encoding methods without dramatic

changes to any of the derived classes.

It is important to understand that, by default, PegTextThing does NOT copy
text strings when a string assignment is made. PegTextThing normally

copies only the pointer to the text string. If the TT_COPY style flag is

associated with the PegTextThing derived class, PegTextThing copies the
actual text string when an assignment is made.

For this reason, if you dynamically create a string that will be associated

with a PegTextThing derived class, you should use the TT_COPY style when

the class is constructed. For example, if you build up a string in an

automatic character array using a function like itoa or sprintf, the

storage for that character string is temporary storage, usually on the stack.
After the function returns, the storage is no longer valid. If you are using a

PegTextThing class in this way, the TT_COPY should be used.

If the string associated with an object is static, which is most often the case,
the TT_COPY flag should not be used. For example, when a PegTitle is

created like this:

PegTitle *pTitle = new PegTitle("Hello World");

the string is a string literal. The compile/linker will allocate storage space for

this string and the storage space will never be deleted. In this case, it is not

necessary for PegTextThing to copy the actual string data.

48 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.5.2 Derivation

PegTextThing is derived from PegThing. It is important to remember that all

public PegThing member functions are available to objects derived from

PegTextThing.

1.5.3 Style Flags

PegTextThing supports only the TT_COPY flag. Additional style flags are

passed to the base PegThing class.

1.5.4 Constructors:

PegTextThing(const PegRect &Rect, PEGUINT

StringId = 0, PEGUSHORT Id = 0, PEGULONG
Style = FF_NONE, PEGUINT FontIndex = 0)

PegTextThing(const PEGCHAR *pText, const PegRect

&Rect, PEGUSHORT Id = 0, PEGULONG Style =
TT_COPY|FF_NONE, PEGUINT FontIndex = 0)

PegTextThing(PEGUINT StringId, PEGUSHORT Id,

PEGULONG Style = FF_NONE, PEGUINT FontIndex
= 0)

PegTextThing(const PEGCHAR *pText, PEGUSHORT Id,

PEGULONG Style = TT_COPY|FF_NONE, PEGUINT
FontIndex = 0)

PegTextThing(PEGULONG Style = TT_COPY|FF_NONE)

1.5.5 Public Functions:

void DataClear(void)

This inline function sets the object’s text to NULL.

const PEGCHAR *DataGet(void)

This inline function returns a pointer to the text string associated with an
object.

49 Swell Software, LLC Base Classes

PegTextThing

virtual void DataSet(const PEGCHAR *pText)

This function is called to assign the string associated with any object

derived from PegTextThing.

virtual void DataSet(PEGUINT StringId)

This function is called to assign the string associated with any object
derived from PegTextThing. This version uses the string table to look up the

string ID and find the actual text.

const PegFont *GetFont(void)

This inline function returns the font associated with a PegTextThing-derived
object.

PEGUINT GetStringId(void)

Returns the current string ID

virtual PEGINT Message(const PegMessage &Mesg)

PegTextThing overrides the PegThing::Message function in order to

handle PM_LANGUAGE_CHANGE events.

void SetCopyMode(void)

This method allows copy mode to be set to true after the object has been
constructed. Once set to true, it cannot be set back to false. This forces the

object to behave as if you had passed the TT_COPY flag in the constructor in

that it makes a copy of the text and stores it internally.

virtual void SetFont(PEGUINT FontIndex)

This function assigns the font associated with any PegTextThing-derived

object.

PEGINT TextLength(void)

This inline function returns the number of characters in the string currently

associated with any PegTextThing-derived object.

void TextThingInit(PEGULONG Style, PEGUINT

StringId, const PEGCHAR *pText, PEGUINT
FontIndex)

Common initialization code called by all constructors.

49 Swell Software, LLC Base Classes

 PEGINT GetXShadow(void)

This function returns the X-axis offset of a text shadow.

 PEGINT GetYShadow(void)

This function returns the Y-axis offset of a text shadow.

 PEGCOLOR GetShadowColor(void)

This function returns the color value of a text shadow.

 PEGCOLOR GetShadowColorId(void)

This function returns the color Id of a text shadow.

 PEGINT GetShadowBlur(void)

This function returns the blur value of a text shadow.

 PEGSHORT GetShadowOpacity(void)

This function returns the opacity level of a text shadow.

 PEGUSHORT GetShadowScale(void)

This function returns the scale of a text shadow.

 PegShadowMode GetShadowMode(void)

This function returns the shadow mode of a text shadow.

 PEGUSHORT GetTextOpacity(void)

This function returns the opacity of the text drawn with a text
shadow.

 void SetXShadow(PEGINT XShadow)

This function sets the X-axis offset of a text shadow.

 void SetYShadow(PEGINT YShadow)

This function sets the Y-axis offset of a text shadow.

 void SetShadowColor(PEGCOLOR Color)

This function sets the color a text shadow to the PEGCOLOR value Color.

 void SetShadowColorId(PEGUINT ColorId)

This function sets the color of a text shadow to ColorId.

 void SetShadowBlur(PEGINT Blur)

This function sets the amount of blur of a text shadow.

 void SetShadowOpacity(PEGSHORT Opacity)

This function sets the opacity of a text shadow.

49 Swell Software, LLC Base Classes

 void SetShadowScale(PEGUSHORT Scale)

This function sets the amount the text shadow is scaled.

 void SetShadowMode(PegShadowMode Mode)

This function sets the shadow mode of a text shadow.

 void SetTextOpacity(PEGUSHORT Opacity)

This function sets the opacity of the text drawn with a text shadow.

virtual PegBitmap *CreateDropShadowText(PegPoint

Where, const PEGCHAR *pText, PegBrush &Brush,

 const PegFont *pFont, PegShadowEffect

*pShadowEffect, PEGINT Count)

The CreateDropShadowText function returns a PegBitmap of the

text string pText drawn with a drop shadow defined by

pShadowEffect. Like the DrawText function of PegScreen, Count

is the number of drawn characters if Count > 0 otherwise the

function draws the entire string.

virtual PegBitmap *CreateDropShadowText(PegPoint

Where, const PEGCHAR *pText, PegBrush &Brush,

PEGUINT FontId, PegShadowEffect *pShadowEffect,

PEGINT Count = -1)

Similar to the above CreateDropShadowText function except uses

the font ID FontId instead of a PegFont pointer.

50 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.5.6 Protected Members:

const PegFont *mpFont

Pointer to the PegFont associated with the object.

PEGCHAR *mpText

Pointer to the string associated with the object.

PEGUINT mFontIndex

ID of the PegFont associated with the object.

PEGINT mStrLen

Number of characters in the current assigned string.

PEGBOOL mCopy

TRUE/FALSE value indicating if the string copy mode is in effect.

1.5.7 Examples:

The following function creates a PegTextButton, which is a PegTextThing-

derived class, and assigns a custom font to the button. The font has the ID

labeled ‘CUSTOM_BTN_FONT.’ The button is then added to the parent

window.

void MyWindow::AddCustomButton(const PEGCHAR *pButtonText)

{

PegRect Rect;

Rect.Set(10, 10, 89, 59);

PegTextButton *pButton = new PegTextButton(pButtonText,

Rect);

pButton->SetFont(CUSTOM_BTN_FONT);

Add(pButton);

}

The following function obtains the string associated with a prompt. The
string is converted to an integer, a range check is made, and the modified

value is then reassigned to the prompt. Note that in this case, the prompt

should be created with the TT_COPY flag enabled.

void MyWindow::CheckPromptVal(PegPrompt *pPrompt, PEGINT Min,

51 Swell Software, LLC Base Classes

PegTextThing

PEGINT Max)

{

const PEGCHAR *pString = pPrompt->DataGet();

PEGBOOL Replace = FALSE;

if (pString)

{

PEGINT Val = PegAtoI(pString);

if (Val < Min)

{

Val = Min;

Replace = TRUE;

}

if (Val > Max)

{

Val = Max;

Replace = TRUE;

}

}

else

{

Val = Min;

Replace = TRUE;

}

if (Replace) // prompt is out of range?

{

PEGCHAR Temp[40];

PegLtoA(Val, Temp, 10);

pPrompt->DataSet(Temp); // re-assign string

}

}

52 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.6 PegThing

1.6.1 Overview

PegThing is the base class from which all viewable PEG objects are

derived. While you may never create an instance of an actual PegThing in

your application, it is very possible that you will derive your own custom
control types from PegThing. In any event, every window and control you

will use is based on PegThing, so you will be using the public functions of

PegThing often when programming with PEG.

Understanding and remembering the functions of class PegThing is vital to

using the PEG library. We encourage you to read the Programming Manual

chapter on class PegThing, which contains much more information about
the design and use of the PegThing class.

In addition to the true member functions, PegThing implements several

inline wrapper functions. These functions provide a simplified syntax for

calling member functions of the PegScreen and PegMessageQueue

classes. For example, you can always draw a line by calling the PegScreen

Line function directly:

Screen()->Line(.....)

However, for the most common operations PegThing provides an inline

wrapper function that eliminates the need to obtain the PegScreen instance

pointer. This improves the API syntax and eliminates typing effort. The

above function can be invoked more easily by using the wrapper function:

Line(...)

The public member functions and wrapper functions are listed in the
Members section of this reference.

PegThing objects are NOT viewport objects. If you are constructing a large
container class, you may want to derive that class from PegWindow, rather

than from class PegThing. For small custom gadgets, PegThing works well

as a foundation upon which to build your custom class.

53 Swell Software, LLC Base Classes

1.6.2 See Also

Viewports

PegThing

1.6.3 Derivation

PegThing is a PEG base class.

54 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.6.4 Member Functions

Public Functions

Add()

AddToEnd()

AddStatus()

Center()

Constructors

CenterOf()

CheckDirectionalMove()

CheckSignal()

DefaultKeyHandler()

Destroy()

Distance()

Draw()

DrawChildren()

Find()

FindNearest()

First()

FrameStyle()

GetId()

GetColor()

GetSignals()

GetStatus()

GetStyle()

Hide()

InitClient()

Invalidate()

IsDescendentOf()

KillFocus()

Message()

MessageChildren()

MessageQueue()

MoveToFront()

Next()

NextTabLink()

Parent()

ParentShift()

Presentation()

Previous()

PrevTabLink()

Printer()

Remove()

RemoveStatus()

RemoveStyle()

Resize()

Screen()

SendSignal()

SetColor()

SetDefaultTabLinks()

SetId()

SetMessageQueuePointer()

SetPrintPtr()

SetScreenPtr()

SetSignals()

SetStyle()

SetTabLink()

SetTabOrder()

SetTimer()

SetTimeManager()

StandardBorder()

StatusIs()

Type()

UpdateChildClipping()

Version()

/l%20
/l%20
/l%20
file:///F:/Profiles/b33211/gfx_2/docs/manuals/l

PegThing

WrapperFunctions

BeginDraw()

Bitmap()

Rectangle()

BitmapFill()

Circle()

CapturePointer()

DrawText()

EndDraw()

Invalidate()

KillTimer()

Line()

RectMove()

ReleasePointer()

SetPointerType()

SetTimer()

TextHeight()

TextWidth()

Public Data
mReal mClip mClient

1.6.5 Constructors:

PegThing(const PegRect &Rect, PEGUSHORT Id = 0,
PEGULONG Style = FF_NONE)

This constructor is used when the desired initial position of the object on the
screen is known at the time of object creation. Rect contains the starting

screen coordinates, in pixels, for the object. The Style parameter indicates

the object's initial drawing style.

PegThing(PEGUSHORT Id = 0, PEGULONG Style =

FF_NONE)

This constructor is used when the object position is not known at the time of
object creation. When this is the case, it is necessary to define the object's

position some time between when the object is created and when the object

is drawn on the screen. This can be done in a derived class constructor, or

when the object receives the PM_SHOW message.

The easiest way to set an object's position is to call the member function
Resize(), which accepts a PegRect argument which should contain the

Swell Software, LLC Base Classes 55

56 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

desired screen coordinates. Calling Resize() is the only acceptable way to

set an object's size or position after the object is visible.

A more direct method of setting an object's position and size is to directly
modify the object's mReal (the absolute bounding rectangle of an object)

and mClient (the inside client area of an object) variables. This method

must be used with caution since PEG base classes often must insure that
mClient remains correctly positioned relative to mReal. Also, you should

never directly modify mReal or mClient after an object is visible, since PEG

clipping enforcement will likely prevent the desired result.

virtual void Add(PegThing *pWho, PEGBOOL DoShow

= TRUE)

This function adds pWho to the current object. pWho thus becomes a child of

this. This function is used to make windows and controls members of the
presentation tree.

An object is normally drawn after being added to a visible parent. This

operation can be prevented, if desired, by passing a FALSE value as the

DoShow parameter to the Add function.

If the object pWho is already a member of the current object's child list, pWho

is not added again to the list. Instead, pWho is simply unlinked from the child

list and re-linked at the head of the child list. This action changes the order
of child objects, which may be the desired operation.

Objects are added to the parent according to the status of the object,

meaning that objects with PSF_VIEWPORT status or PSF_ALWAYS_ON_TOP

status are always maintained ahead of child objects which do not have this
status. These differences are maintained internally by PEG and are
necessary to ensure proper drawing; however, they are not normally the
concern of the application-level program.

If pWho is not visible at the time this function is called, and the object this is

visible, a PM_SHOW message will be sent to pWho to inform it that it has

become visible. If the calling object is not visible at the time pWho is added,

and the calling object later becomes visible (by addition to a visible object),
PM_SHOW messages will be sent at that time to the calling object and all of its

children.

When constructing complex windows and dialogs, it is best to first add all of

the child objects to the main window or dialog, and then to add the main

57 Swell Software, LLC Base Classes

PegThing

window or dialog to PegPresentationManager. This is slightly more efficient

than adding each child object to a window or dialog that is already visible.

virtual void AddStatus(PEGULONG OrVal)

This function can be used to modify an object's mStatus flags. AddStatus

will logically OR the OrVal parameter with the object's mStatus variable.

This function is often used by the PEG foundation objects to modify the
state of a visible window or control, but it is rarely used by the application-
level software. The system status flag list and definitions are found here.

virtual void AddStyle(PEGULONG OrVal)

This function can be used to modify an object's mStyle flags. AddStyle will

logically OR the OrVal parameter with the object's mStyle variable.

virtual void AddToEnd(PegThing *pWho, PEGBOOL

DoShow = TRUE)

This function adds pWho to the current object. pWho thus becomes a child of

this. This function is used to make windows and controls members of the

presentation tree.

The AddToEnd function works very much like the Add() function, except

that the added object is added to the end of the linked list of child objects
rather than being added to the head of the linked list. This is sometimes
useful when adding objects to PegList containers in order to correct the
child display order.

Like the Add() function, AddToEnd() operates within the constraints of

object status, meaning that objects with PSF_VIEWPORT status or

PSF_ALWAYS_ON_TOP status are always maintained ahead of child objects
which do not have this status.

void CapturePointer(void)

This function acts as a wrapper function, allowing access by a PegThing to

the PegPresentationManager member function of the same name. Use of

this function is equivalent to Presentation()->CapturePointer(this).

virtual void Center(PegThing *pWho)

This function will adjust the screen coordinates of pWho such that pWho is
horizontally and vertically centered over the client area of this. pWho does

not necessarily have to be a child of this, although this is the most

58 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

common case. The following example demonstrates centering an object on

the screen:

PegRect Rect;

Rect.Set(0, 0, 100, 100); // create 100x100 pixel window

PegWindow *MyWin = new PegWindow(Rect);

Presentation()->Center(MyWin); // center window on the screen

Presentation()->Add(MyWin); // make the window visible

virtual PegPoint CenterOf(PegThing *pWho)

This function returns the coordinates of the center of the object in a

PegPoint structure.

virtual PEGBOOL CheckDirectionalMove(PEGINT Key)

Default arrow key handling. Returns TRUE if the key was processed,
otherwise FALSE. This function is only provided if both #define

PEG_KEYBOARD_SUPPORT and #define PEG_ARROW_KEY_SUPPORT are

enabled in the configuration file pconfig.hpp.

PEGBOOL CheckSendSignal(PEGUBYTE Signal)

This function creates and sends a PegMessage with the appropriate

PEG_SIGNAL value loaded in Type, object ID loaded in Param, this loaded

in pSource, and Parent() loaded into the pTarget field of the message.

The boolean value TRUE is returned after the signal is sent. FALSE is
returned if the signal was not sent: either because the current object has no
parent, the object ID is 0, or the specified signal bit is currently disabled.

virtual PEGINT DefaultKeyHandler(const

PegMessage &InMesg)

This function is called by default when PM_KEY messages are received. It is

only provided when PEG_KEYBOARD_SUPPORT is defined.

This function checks for keys that cause an input focus change, such as
TAB and ARROW keys. If the key is not one of these keys, the function

then checks to see if the object signals require that a PSF_KEY_RECEIVED

signal be sent to the object parent. Finally, if none of these operations are
performed, the key is passed up to the parent of the current object.

59 Swell Software, LLC Base Classes

PegThing

This function may be overridden in derived classes to perform custom key
handling, although it is more common to simply catch PM_KEY messages in

derived classes.

void Destroy(PegThing *pWho)

This function is called to remove an object from view and delete the
memory associated with that object. If the object has no parent, it has
already been removed from view in which case Destroy() simply deletes

the object. In the case that pWho == this, Destroy() will post a message

to PegPresentationManager to delete the calling object.

PEGLONG Distance(PegPoint p1, PegPoint p2)

This function calculates the square of the distance between two PegPoints.

virtual void Draw(const PegRect &Invalid)

This function is called by PegPresentationManager when an object has
been previously invalidated. It can also be called by the application
software when an object has been modified, though this should be rare. An

example of overriding the Draw() function is provided in the PEG

programming manual.

virtual void DrawChildren(const PegRect

&Invalid)

This function tells each child of the current object to draw itself by calling

the individual child object Draw() functions. In your derived classes, you do

not usually need to call this function since PEG normally handles it
automatically when you call the base class drawing function. However, if
you choose not to call the base class drawing function in your custom

Draw() function, you will usually want to call DrawChildren() at some

point in your drawing routine to ensure that objects added to your parent
class draw themselves.

An example of overriding the Draw() function is provided in Overriding the
Draw() function.

virtual PegThing *Find(PEGUSHORT Id, PEGBOOL

Recursive = TRUE)

This function can be used to find any object based on the object ID value.

For example, you may create a PegDialog window that has many child

controls. If you need to modify the status of those controls as the dialog is

manipulated, you will need to keep or obtain pointers to those child

60 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

controls. There are two ways of obtaining a pointer to each child control.
You could add member pointers to the dialog window that are initialized as

each child control is constructed. This is faster than using the Find()

function to locate child controls, but requires more memory to store all of

the child control pointers. An alternative is to use Find() to obtain a pointer

to a child control when the pointer is needed.

The following example illustrates how to use Find() to locate a child

PegEditField control and to test to see if the PegEditField has a non-NULL
string value. If the string has a null value, the dialog OK button will not close
the dialog. For this example, we assume the desired string has the
enumerated ID value IDS_MY_STRING:

PEGINT MyDialog::Message(const PegMessage &Mesg)

{

switch (Mesg.Type)

{

case PEG_SIGNAL(IDB_OK, PSF_CLICKED):

{

PegEditField *pEdit = (PegEditField *)
Find(IDS_MY_STRING);

if (pEdit->DataGet()) // Does string contain text??

{

return PegDialog::Message(Mesg);

}

}

break;

defalt:

return PegDialog::Message(Mesg);

}

return 0;

}

virtual PegThing *FindNearestNeighbor(PEGINT
Key, PegThing *pStart, PegPoint CenterThis)

virtual PegThing *FindNearestNeighbor(PegThing
*pStart, PEGLONG *pPutDist, PEGINT Key,
PegPoint CenterThis, PEGBOOL Loose)

This function is used for arrow key handling. It finds the nearest object in a

specified direction.

61 Swell Software, LLC Base Classes

PegThing *First(void) const

PegThing

Returns a pointer to the first child object in the current object's tree.

void FrameStyle(PEGULONG Style)

This function can be used to modify the appearance of the frame for most
PegThing-derived objects. This function is provided for convenience, and is

nearly identical to the SetStyle() function shown below with one

exception: it guarantees that only the object's frame style is modified,

whereas the SetStyle() function can modify all style flags.

The available frame styles are:

FF_NONE No Frame

FF_THIN Thin Frame.

FF_RAISED Raised 3D Frame.

FF_RECESSED Recessed 3D Frame.

FF_THICK Thick 3D Frame.

PEGUSHORT FrameStyle(void)

This function returns the current frame style of an object.

virtual PEGINT GetColor(const PEGUBYTE Index)

This function returns the current color ID for the specified color index of an

object. See SetColor for a description of color indices.

PEGUSHORT GetId(void)

Returns the value of the object's mId member. The mId value is not used by

PEG directly, but it is useful to the application software for keeping track of
individual controls or other objects when a window such as a complex
dialog has several instances of a particular object type associated with it.
By assigning IDs to each object, the application can determine precisely the

source of a control notification by requesting the control's mId value. Object

IDs are also used to send and receive signals. The message number
associated with a particular signal is calculated based on the object ID and
the signal being sent.

PEGUSHORT GetSignals(void)

This function returns the signals of which the object is set to notify its
parent. The available signal masks and descriptions of each may be found

here.

62 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

PEGUSHORT GetStatus(void)

Retrieves the current value of the mStatus member variable.

virtual PEGULONG GetStyle(void)

This function returns the current style flags for an object.

Viewport *GetViewportList(void)

This function returns the object’s list of viewports. This is only available if

PEG_VIEWPORTS is defined.

void Hide(PegThing *pChild)

This function stops the object pChild from being displayed on the screen.

This is similar to the function Remove, except that pChild still remains a

child of its parent. It is still added to the presentation tree; it is just told not to
draw.

virtual void InitClient(void)

This function should be called if the frame or border style of the object is
modified at run time after the object has been initialized. This function

determines the new client area rectangle based on the mReal rectangle and

frame style. Many classes override this function to do a custom calculation.

PEGBOOL IsDescendentOf(PegThing *pParent)

This function determines if the object is a child of pParent (or a child of its

child of its child of its child, etc.). It returns TRUE if it is a descendent, and

FALSE otherwise.

virtual void KillFocus(PegThing *pThing)

This function generates a PM_NONCURRENT message and sends it to pThing
to tell it that it no longer has focus.

virtual PEGINT Message(const PegMessage &Mesg)

This function is called by PegPresentationManager to allow an object to

process a message. This is the most commonly overridden of all PEG

functions, because customizing object behavior is done by adding your own
message types and message handling code to the default operation

performed by PEG.

Messages can either be those defined internally by PEG, or they can be

new messages defined by you. PEG system messages are recognized by

63 Swell Software, LLC Base Classes

PegThing

the PegMessage.Type field, which is < FIRST_USER_MESSAGE for PEG

system messages. For this reason, you should always ensure that your
user message types are greater than FIRST_USER_MESSSAGE. A complete

list of all PEG system messages is contained in the section of this manual
entitled PegMessageQueue.

The complete list of system messages can be found here.

An example of overriding the message function can be found here.

void MessageChildren(const PegMessage &Mesg)

This function passes the message on to all of its children.

static PegMessageQueue *MessageQueue(void)

This function returns a pointer to the application's instance of

PegMessageQueue. You will need to use this function in order to post

messages to other windows or objects that are part of the application.

virtual void MoveFocusToFirstClientChild(void);

This function looks through all of the current object’s children until it finds

one that can accept focus. Then it moves focus to that object.

virtual void MoveToFront(PegThing *pWho)

This function is used to change the z-order of a parent's child objects. This
is useful when objects overlap in the parent's client area. In this case, one
object may be brought ‘to the front’ when selected, so that it is drawn on top

of its siblings. The Add() function can also be used to move an object that

is already a child to the front of the child list. However, this function differs

from the Add() function in that MoveToFront does not change the

sequential order of objects; i.e. the tab order is not modified by calling

MoveToFront. The presentation tree is simply modified such that the caller

is moved to be the first child object.

Like the Add() function, MoveToFront() operates within the constraints of

object status, meaning that objects with PSF_VIEWPORT status or

PSF_ALWAYS_ON_TOP status are always maintained ahead of child objects
which do not have this status.

PegThing *Next(void) const

Returns a pointer to the current object's next sibling, or NULL if the current

object is the end node of the current branch of the object tree.

64 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

PegThing *NextTabLink(void)

Returns a pointer to the object that is next in the tab order, if known;
otherwise returns NULL. This function is only provided if

PEG_KEYBOARD_SUPPORT and PEG_TAB_KEY_SUPPORT are defined. When

this configuration is defined, PEG objects that accept keyboard input focus
are linked together in a circular list when the parent window is displayed.
The order of this circular list is defined by functions SetDefaultTabLinks()
and SetTabOrder().

PegThing *Parent(void) const

Returns a pointer to the parent object, or NULL if the object has no parent
(i.e. the object is not visible).

virtual void ParentShift(PEGINT x, PEGINT y)

This function shifts this object and all of its children the specified amount in

the x and y direction.

static PegPresentationManager

*Presentation(void)

This function returns a pointer to the application's instance of

PegPresentationManager. This value is required in order to interact directly

with the top-level presentation. That is, in order to add a new window to the

screen, you would add the window to PegPresentationManager as shown:

PegWindow *MyWindow = new PegWindow(Rect);

Presentation()->Add(MyWindow);

PegThing *Previous(void) const

Returns a pointer to the current object's previous sibling, or NULL if the

current object is the first node of the current branch of the object tree.

PegThing *PrevTabLink(void)

Returns a pointer to the object that is previous in the tab order, if known;
otherwise returns NULL. This function is only provided if

PEG_KEYBOARD_SUPPORT and PEG_TAB_KEY_SUPPORT are defined. When

this configuration is defined, PEG objects that accept keyboard input focus
are linked together in a circular list when the parent window is displayed.
The order of this circular list is defined by functions SetDefaultTabLinks()
and SetTabOrder().

65 Swell Software, LLC Base Classes

static PegPrinter *Printer()

PegThing

This function returns a pointer to the printer driver, which is derived from
PegPrinter. The current printer driver supports only HP-PCL compatible
printers. This function is provided only if PEG_PRINTER_SUPPORT is defined

in the pconfig.hpp configuration file. Note that if this function is called

outside of the PegScreen::BeginPrint and PegScreen::EndPrint

functions, this call will return NULL.

void ReleasePointer(void)

This function acts as a wrapper function allowing access by a PegThing to

the PegPresentationManager member function of the same name. Use of

this function is equivalent to Presentation()->ReleasePointer(this).

virtual PegThing *Remove(PegThing *pWho)

This function removes a child object from the current object's child list. This

function is the opposite of Add(). Attempting to remove an object not in the

child list has no effect. When an object is removed from a visible parent, it
will receive a PM_HIDE message to notify it that it has been removed from

the screen.

Remove() does not delete the object after it has been removed. In fact, the

purpose of Remove() is to allow you to remove objects from the screen

without deleting them, allowing you later to re-display the object simply by
re-adding it to a visible window. If you want to remove and delete an object,

the PegThing member function Destroy() is provided for that purpose.

virtual void RemoveStatus(PEGULONG AndVal)

The opposite of AddStatus(), RemoveStatus() can be used to clear
individual bits or a combination of bits in an object's mStatus variable. This

function will logically AND the complement of AndVal with the object's

mStatus variable.

virtual void RemoveStyle(PEGULONG AndVal)

The opposite of AddStyle(), RemoveStyle() can be used to clear
individual bits or a combination of bits in an object's mStyle variable. This

function will logically AND the complement of AndVal with the object's

mStyle variable.

virtual void Resize(const PegRect &Rect)

Any PEG object can resize itself or any other object at any time by calling

the Resize() function. The new screen coordinates for the object are

66 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

passed in the parameter Rect. If you maintain or find a pointer to another

object, you can also resize that object by calling the same function. The
following example illustrates this concept:

PegRect Rect(10, 10, 40, 40);

PegButton *MyButton = new PegTextButton(Rect, 0, "Hello");

.

. // at any time, to resize MyButton:

.

Rect.Set(20, 20, 60, 60);

MyButton-

>Resize(Rect);

If an object is visible when it is resized, it will automatically perform the
necessary invalidation and drawing. It is perfectly OK to resize an object
that is not visible. In fact, in many cases this is the best time to do it.

static PegScreen *Screen(void)

This function returns a pointer to the screen interface object. The screen

interface object provides all of the drawing functions you will use in custom

drawing routines. For information about how to draw on the screen, refer to

the PegScreen class reference.

Note: The Screen() function returns the static PegThing member variable

mpScreen. mpScreen does not have to be set in stone for the life of your

application. One possible reason to temporarily replace the mpScreen
pointer value is to perform screen printing operations. By defining a
PegScreen class that drives a printer, you can easily print any PEG window
by temporarily setting the mpScreen pointer to point to your print driver,

telling the PEG window to re-draw, and then setting the mpScreen member

back to its original value.

virtual void SendSignal(PEGUBYTE Signal)

This function builds a signal based on Signal and sends it to this object's

parent.

67 Swell Software, LLC Base Classes

PegThing

virtual void SetColor(const PEGUBYTE Index,
const PEGINT ColorId)

SetColor is called to override at run time an object's default color values.

Every PEG object has at least four color indexes, any of which can be reset
using the SetColor function. The color indexes which can be passed in

Index are defined as follows:

PCI_NORMAL: The normal client area fill color.

PCI_SELECTED: The fill color when the object is selected.

PCI_NTEXT: The normal text color for the object.

PCI_STEXT: The text color to use when the object is selected.

The default system color IDs are defined in the file presmgr.hpp. The

actual color values associated with these IDs will vary depending on the
color depth supported on the target system. A few PEG objects such as
PegSpreadsheet have additional color indices associated with them.

void SetDefaultTabLinks(void)

This is called automatically by PegWindow derived objects when they
receive the PM_SHOW message. This establishes the initial order of tabbing

through the list of child objects. Note that this function is only defined when
PEG_KEYBOARD_SUPPORT and PEG_TAB_KEY_SUPPORT are defined in the

pconfig.hpp header file. This function is also called when objects that can

receive keyboard focus are added to a visible window.

The default tab order is determined from the position of child objects with

PSF_ACCEPTS_FOCUS status. Child objects are placed in the tab list in a top-

to-bottom, left-to-right search order. By default, the child object that initially
receives input focus is always the top most, left most child object.

The application program can change the default initial focus by first finding
the child object with PSF_DEFAULT_FOCUS status and removing this status

by calling pChild->RemoveStatus(PSF_DEFAULT_FOCUS). The application

can then re-define the initial focus by calling pChild-

>SetStatus(PSF_DEFAULT_FOCUS) on the desired child object.

void SetId(PEGUSHORT Id)

Assigns the value of the object's mId member. The default value is 0.

Object IDs are used by PEG signaling classes to determine the message

68 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

number associated with notification messages. For all other class types,
mId has no effect on the internal operation of PEG, but it can be useful to

the application-level software for identifying objects at run time.

static void SetMessageQueuePtr(PegMessageQueue

*pq)

This function replaces the current message queue with pq. Note that you

may need to delete the original message queue to avoid memory leaks.

static void SetPresentationManagerPtr(

PegPresentationManager *pm)

This function replaces the current presentation manager with pm. Note that

you may need to delete the original presentation manager to avoid memory

leaks.

static void SetPrinterPtr(PegPrinter *pPrinter)

This function is called during program startup to initialize the static pointer

to the PEG printer driver. This function is only provided if

PEG_PRINTER_SUPPORT is defined in the pconfig.hpp configuration file.

static void SetScreenPtr(PegScreen *pScreen)

This function is called during program startup to initialize the static pointer

to the PEG screen driver.

void SetSignals(PEGUSHORT Mask)

This function is used to identify which notification messages a signaling
control should send to its parent. The mask value should be created by
using the SIGMASK macro. This enables multiple signals to be enabled with

one call to SetSignals, similar to the object style flags. The available signal

masks and descriptions of each may be found here.

void SetSignals(PEGUSHORT Id, PEGUSHORT Mask)

This function can be used to assign both an object's ID and the associated
signal mask.

virtual void SetStyle(PEGULONG Style)

This function is used to set the style flags for an object. Not all style flags

are supported by all classes. In all cases, the desired style flags can be
'OR'ed together to form one style parameter.

69 Swell Software, LLC Base Classes

PegThing

As an aid in remembering the names of the style flags, the flags are

grouped into different categories, and the name of each flag starts with an

abbreviation of that category. For example, the frame flag names start with

FF for Frame Flag, and the button flags start with BF for Button Flag. The

style flags are found here.

void SetTabLink(PegThing *pNext)

This function determines which object that focus moves to when the Tab

key is pressed. PEG_KEYBOARD_SUPPORT and PEG_TAB_KEY_SUPPORT must

be defined.

void SetTabOrder(PEGUSHORT *pIds)

This function will override the default tab order of the PEG objects. This is

only provided if both #define PEG_KEYBOARD_SUPPORT and #define

PEG_TAB_KEY_SUPPORT are enabled in the configuration file pconfig.hpp.

The parameter pIds should be an array of object IDs sorted in your

preferred order, with the last entry set to 0. If the object of an ID doesn't
exist, it ignores it and continues with the next one. Make sure that this
function is called after the base object becomes visible, because it is there
that the default tab order is installed. For example:

PEGINT MyPegClass::Message(const PegMessage &Mesg)

{

// Terminate with 0

PEGUSHORT Order[] = {MyID_1, MyID_2, MyID_3, 0};

switch (Mesg.Type)

{

case PM_SHOW:

// This will set the default tab order.

PegWindow::Message(Mesg);

// This will set user-defined tab order.

SetTabOrder(Order);

break;

default:

return PegWindow::Message(Mesg);

}

return 0;

}

70 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

static void SetTimerManager(PegTimerManager *pt)

This function replaces the current timer manager with pt. Note that you

may need to delete the old timer manager to avoid memory leaks.

void Show(PegThing *pWhat)

This function is responsible for making an object visible on the screen. An
object can theoretically be added to a parent window without becoming

visible. Calling Show() will make it visible. Calling Hide() will make invisible

again.

void StandardBorder(PEGCOLOR FillColor)

This function draws a standard border based on the object frame style, fill

color, and mReal values.

PEGBOOL StatusIs(PEGULONG Mask)

This function is used to test individual bits of an object's private mStatus

variable. This variable contains system status flags common to all PEG
classes. An application program generally should never attempt to modify
these flags. However, it is sometimes useful to read this value to test for
certain object states. The system status flag list and definitions are found

here.

PEGUSHORT Type(void)

Returns the object's enumerated type, held in the private member variable

mType. This variable is used to determine the class of an object.

void Type(PEGUSHORT Set)

Assigns the value of the object's private mType member. This is normally

done by the constructor of the PEG object, although you can define new
types for your derived objects.

void UpdateChildClipping(void)

This function updates the mClip rectangle of all of the child (and
descendent) objects based on the current object’s mReal and mClip
rectangles.

const PEGCHAR *Version(void)

This function returns a pointer to the PEG library version string.

71 Swell Software, LLC Base Classes

1.6.6 Public Data Members:

PegThing

PegRect mClient

This rectangle defines the client area of a window or control. In some
cases, mClient may be equal to mReal, but generally mClient is at least a

border width of pixels smaller than mReal. Child objects are not allowed to

draw outside of their parent's mClient unless they have PSF_NONCLIENT
system status.

PegRect mClip

This rectangle defines the clipping rectangle of the object. This may be

smaller than mReal if the object extends beyond the client area of its parent.

PegRect mReal

This rectangle defines the outer limits of an object, inclusive. Objects are

never allowed to draw themselves outside of this rectangle.

PEGINT mColorId[4]

This array defines the four basic colors that all PegThing objects use to

draw themselves. The colors are indexed as PCI_NORMAL, PCI_NTEXT,

PCI_SELECTED, and PCI_STEXT.

1.6.7 Inline Wrapper Functions:

inline void Arc(PEGINT xc, PEGINT yc, PEGINT

XRadius, PEGINT YRadius, PEGINT
start_angle, PEGINT end_angle, PegBrush
&Brush, PEGINT width = 1)

Implementation: Arc(xc, yc, XRadius, YRadius, start_angle,

end_angle, Brush, width)

inline void BeginDraw(const PegRect &Invalid)

inline void BeginDraw(const PegRect &Invalid,

PEGINT Surface)

Implementation: Screen()->BeginDraw(this, Invalid, mSurface)

The first form of this function is used to draw into the default mSurface. The
second form is used to begin drawing into some other existing surface

defined in the application.

72 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

inline void Bitmap(PegPoint Where, PegBitmap
*pGetmap)

inline void Bitmap(PegPoint Where, PEGUINT

BitmapId)

Implementation: Screen()->Bitmap(Where, pGetmap)

The first form is used when a direct bitmap pointer is available. The second

form is used when a bitmap’s ID is available. In that case, the ID is used to

find the bitmap pointer in the PegResourceManager.

inline void BitmapFill(PegRect Rect, PegBitmap

*pGetmap)

Implementation: Screen()->BitmapFill(Rect, Getmap)

inline void Circle(PEGINT xCenter, PEGINT

yCenter, PEGINT radius, PegBrush &Brush)

Implementation: Screen()->Circle(xCenter, yCenter, radius,

Brush)

inline void DrawText(PegPoint Where, const

PEGCHAR *pText, PegBrush &Brush, const
PegFont *pFont, PEGINT Count = -1)

Implementation: Screen()->DrawText(Where, pText, Brush, pFont,
Count)

inline void EndDraw(void)

Implementation: Screen()->EndDraw()

inline void Invalidate(void)

Implementation: Presentation()->Invalidate(this, mReal)

inline void Invalidate(const PegRect &Rect)

Implementation: Presentation()->Invalidate(this, Rect)

inline void KillTimer(PEGUSHORT Id)

Implementation: TimerManager()->KillTimer(this, Id);

73 Swell Software, LLC Base Classes

PegThing

inline void Line(PEGINT XStart, PEGINT YStart,
PEGINT XEnd, PEGINT YEnd, PegBrush &Brush)

Implementation: Screen()->Line(XStart, YStart, XEnd, YEnd,
Brush)

inline void Rectangle(const PegRect &Rect,

PegBrush &Brush)

Implementation: Screen()->Rectangle(Rect, Brush)

inline PEGBOOL RectMove(PegRect Get, PegRect

ClipTo, PEGINT xShift, PEGINT yShift)

Implementation: Screen()->RectMove(Get, ClipTo, xShift, yShift)

inline void SetPointerType(PEGUBYTE Type)

Implementation: Screen()->SetPointerType(Type)

inline void SetTimer(PEGUSHORT Id, PEGLONG

Count, PEGLONG Reset)

Implementation: TimerManager()->SetTimer(this, Id, Count, Reset)

inline PEGINT TextHeight(const PEGCHAR *pText,

const PegFont *pFont)

Implementation: Screen()->TextHeight(pText, pFont)

inline PEGINT TextWidth(const PEGCHAR *pText,

const PegFont *pFont)

Implementation: Screen()->TextWidth(Text, Font)

1.6.8 Protected Members:

PEGUSHORT mId

Object ID value.

PEGULONG mStatus

Object status flags.

PEGULONG mStyle

Object style flags.

74 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

1.7 PegTimerManager

1.7.1 Overview

PegTimerManager is where all timer functionality resides. This involves

starting and stopping PegTimers owned by PegThing objects as well as

keeping track of the underlying timer ticks that keep the PegTimers going.

After enough ticks have gone by to set off a PegTimer, a PM_TIMER

message is sent to whatever object created the timer. If this PegTimer was
created with a non-zero reset value, then it will get reset to go off again

after the specified number of ticks. If the reset value was 0, or if the

KillTimer function is called, then the PegTimer will be deleted.

The PegTimerManager class itself is entirely portable and independent of
any specific RTOS implementation. It works by having either the PegTask

or a separate timer task constantly call TimerTick() at a regular interval.

This can be implemented with interrupts or with a polling loop.

Note that the PegThing class includes wrapper functions for SetTimer and

KillTimer that pass the PegThing’s this pointer as the target for the
timer. This is just a convenience, since this is typically the only way those
functions ever get called.

1.7.2 Derivation

PegTimerManager is a PEG base class.

1.7.3 Style Flags

None.

1.7.4 Constructors:

PegTimerManager(void)

This constructs a PegTimerManager object. There only needs to be one

instance of this in an application. This instance is referenced by all PEG

objects.

75 Swell Software, LLC Base Classes

1.7.5 Public Functions:

PegTimerManager

void KillTimer(PegThing *pWho, PEGUSHORT Id)

This function is responsible for removing the timer that contains the ID Id,
and is targeted for pWho. If Id is 0, then all timers targeted for pWho will be
eliminated.

void SetTimer(PegThing *pWho, PEGUSHORT Id,

PEGLONG Count, PEGLONG Reset)

This function starts (or restarts) a timer with the ID Id. The timer will initially

be set to go off after Count number of timer ticks, and then repeat after

Reset number of ticks. If Reset is 0, then it will not repeat. When the timer

does go off, a PM_TIMER message will be sent to pWho.

void TimerTick(void)

This function is called by either the PegTask or by a separate timer task. It
will go through every PegTimer that has been created so far and decrement

their counters by one. If a counter reaches 0, that means it is time to send a

PM_TIMER message to whatever object the timer is targeted for. If its reset

value was non-zero, the counter will be reset to that value. Otherwise, the
PegTimer is deleted.

1.7.6 Example:

This example shows a PegPrompt that changes color twice per second.

Note that the PegThing wrapper functions are used here to simplify the
code.

#define MY_TIMER_ID 1

PEGINT MyPrompt::Message(const PegMessage &Mesg)

{

switch (Mesg.Type)

{

case PM_SHOW:

SetTimer(MY_TIMER_ID, ONE_SECOND / 2,

ONE_SECOND / 2);

PegPrompt::Message(Mesg);

break;

case PM_TIMER:

76 PEG Pro API Reference Manual Swell Software, LLC

Base Classes

SetColor(PCI_NTEXT, GetColor(PCI_NTEXT) + 1);

Draw();

break;

default:

return PegPrompt::Message(Mesg);

}

return 0;

}

77 Swell Software, LLC Control Classes

C H A P T E R 2

CONTROL CLASSES

PegAnimation

PegBitmapButton

PegBitmapSlider

PegBmpProgressBar

PegButton

PegCheckBox

PegDecoratedButton

PegEditField

PegGroup

PegHelpButton

PegHScroll

PegIcon

PegIconButton

PegMenu

PegMenuBar

PegMenuButton

PegMLTextButton

PegProgressBar

PegPrompt

PegRadioButton

PegScroll

PegScrollPrompt

PegSlider

PegSpinButton

PegStatusBar

PegTextButton

78 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

PegTitle

PegToolBar

PegToolBarPanel

PegVPrompt

PegVScroll

79 Swell Software, LLC Control Classes

2.1 PegAnimation

PegAnimation

2.1.1 Overview

PegAnimation is an animated bitmap display class. It is designed to be

used for the simple display of animated GIF type images; however, any list

of images can be created and used with the PegAnimation class.

The PegAnimation class requires an array of PegAnimationFrame

structures to define the animation images. This array is created

automatically by PEG WindowBuilder, or it can be created manually if

desired. The PegAnimationFrame structure is defined as follows:

typedef struct {

PEGUINT BitmapId;

PEGINT Delay;

PEGINT xOffset;

PEGINT yOffset;

PEGINT Disposal;

} PegAnimationFrame;

The structure fields are:

BitmapId: ID value of the PegBitmap to display
Delay: Time delay in timer ticks between frames
xOffset: Offset from the left edge of the PegAnimation object
yOffset: Offset from the top edge of the PegAnimation object
Disposal: Control field indicating how to erase the previous frame.
Supported values are (2) = background color fill, (0/1) = do nothing, and (4)
= write previous.

2.1.2 See Also

PegIcon

2.1.3 Style Flags

PegAnimation supports the standard frame styles FF_NONE, FF_THIN,
FF_THICK, FF_RAISED, and FF_RECESSED.

80 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.1.4 Signals

PegAnimation class sends no signals.

2.1.5 Derivation

PegAnimation is derived from PegThing.

2.1.6 Constructors:

PegAnimation(const PegRect &Rect, PegAnimationFrame

*pFrameList, PEGUSHORT Id = 0, PEGULONG Style =
FF_NONE)

PegAnimation(const PegRect &Rect, PEGUSHORT Id = 0,
PEGULONG Style = FF_NONE)

The constructor creates a PegAnimation widget. Rect is the object size and
position. pFrameList is the address of an array of PegAnimationFrame
structures. The array is terminated with a structure having a -1 bitmap ID.

2.1.7 Public Functions:

void AssignFrameList(PegAnimationFrame *pFrameList);

This function can be called to reassign the animation frame list. The

parameter is the address of an array of PegAnimationFrame structures.

The array is terminated with a structure containing a -1 bitmap ID.

virtual void Draw(const PegRect &Invalid)

PegAnimation overrides the Draw() function to draw the associated bitmap

frames.

PEGINT GetCurrentFrame(void)

Returns the index of the current frame of animation.

virtual PEGINT Message(const PegMessage &Mesg);

PegAnimation overrides the Message function to receive timer messages

for drawing the animation frames.

void SetCurrentFrame(PEGINT Frame)

Sets the current frame of animation to be Frame.

81 Swell Software, LLC Control Classes

void SetMode(PEGUSHORT Mode)

PegAnimation

This function is called to set the mode of operation. The following mode

flags are supported, and can be OR’ed together to produce the desired
animation mode:

PEG_AF_WRAP

This mode causes the animation to continuously wrap from the last frame to

the first. If this mode flag is not set, the animation will run once when

activated and terminate after displaying the last animation frame.

PEG_AF_SHOWIDLE

This mode flag causes the animation to display the current animation frame

even when the animation is idle (i.e. it is not cycling through the list of
animation frames). If this flag is not set, the animation widget displays no

image when it is not running.

PEG_AF_AUTOSTART

This mode flag causes the animation to automatically start running when it

is visible. If this mode flag is not set, the animation is started via program

control by calling the Start() function.

void Start(PEGINT Frame = -1);

This function is called to start the animation display sequence, if the

PEG_AF_AUTOSTART mode is not set. If the Frame parameter is -1, the

animation starts at the current frame. The application can also pass a frame
number >= 0 to begin the animation at any specified frame index.

void Stop(void);

This function stops the animation. The animation will display the last active

frame if PEG_AF_SHOWIDLE mode is set; otherwise, it will display no graphic

when stopped.

82 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.2 PegBitmapButton

2.2.1 Overview

PegBitmapButton is a PegButton class that displays a PegBitmap with no

frame. There are actually three PegBitmaps associated with a

PegBitmapButton. There is one for the normal state, one for the pressed

state, and one for the focused state.

The button is NOT restricted to stay the same dimensions as the bitmaps,

so if the bitmap is smaller than the mReal rectangle of the button, then the

outer section of the button will essentially be transparent. Keep in mind,
however, that the user will still be able to click in the region outside the

bitmap if it is still within the button’s mReal. For some applications, this

might not be ideal, so it would be a good idea to keep the dimensions the
same.

Also, since there is no visible frame, if the bitmap has transparency in it,

then the button itself appears transparent. But it’s a good idea to make all of
the bitmaps that the button uses transparent in the same locations. For

example, if the normal bitmap is rectangular with the exception of a

rounded upper left corner, and the pressed bitmap is rectangular with the

exception of a rounded lower right corner, then there are going to be

artifacts left on the screen whenever the bitmap changes. The reason is
because the transparent region does not get redrawn. So if there was a

solid rectangle drawn there before, it won’t go away if a transparent bitmap

is drawn on top of it. To avoid this, the parent window can be redrawn to

clear out the background.

The PegBitmapButton uses four bitmaps, which can be indexed with the

following enumerations.

PBMI_NORMAL Normal button state

PBMI_PRESSED Pressed button state

PBMI_FOCUS Focused button state

PBMI_DISABLED Disabled button state

2.2.2 See Also

PegButton

PegIconButton

PegTextButton

PegBitmapButton

PegRadioButton

PegCheckBox

2.2.3 Style Flags

PegBitmapButton supports the standard frame styles FF_NONE, FF_THIN,
FF_THICK, FF_RAISED, and FF_RECESSED.

PegBitmapButton also supports the button styles BF_REPEAT,
BF_DOWNACTION, BF_EXCLUSIVE and BF_TOGGLE.

2.2.4 Signals

PegBitmapButton sends the PSF_CLICKED signal when selected.

2.2.5 Derivation

PegBitmapButton is derived from PegButton.

2.2.6 Constructors:

PegBitmapButton(const PegRect &Rect, PEGUINT

NormalBmp, PEGUINT PressedBmp, PEGUINT
FocusedBmp = 0, PEGUSHORT Id = 0, PEGULONG Style
= AF_ENABLED|FF_NONE)

The constructor creates a PegBitmapButton with a user-defined size. The
NormalBmp and PressedBmp are required, but if FocusedBmp is 0, then the

button defaults to using the NormalBmp when it receives focus.

2.2.7 Public Functions:

virtual void AssignBitmaps(PEGUINT NormalBmp, PEGUINT
PressedBmp, PEGUINT FocusedBmp = 0, PEGUINT
DisabledBmp = 0)

This function is used to assign all of the bitmaps used by the button. If

FocusedBmp or DisabledBmp are equal to 0, then they are set to use

NormalBmp.

Swell Software, LLC Control Classes 83

84 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

virtual void Draw(const PegRect &Invalid)

PegIconButton overrides the Draw() function to draw the bitmaps.

virtual void SetBitmap(PEGUINT Index, PEGUINT
BitmapId)

This function assigns an individual bitmap to the button using the specified

Index and BitmapId.

2.2.8 Protected Members

PEGuINT mBmpIds[4]

This is the array of bitmap IDs used by the button.

2.2.9 Examples:

The following example creates a PegBitmapButton. It uses a red circle

bitmap for the normal state, a green circle bitmap for the focused state, and
a modified green circle bitmap for the pressed state.

...

...

PegRect Rect;

Rect.Set(20, 20, 99, 49);

Add(new PegBitmapButton(Rect, BID_RED_BTN, BID_GREEN_UP_BTN,

BID_GREEN_DOWN_BTN));

...

...

85 Swell Software, LLC Control Classes

PegBitmapSlider

2.3 PegBitmapSlider

2.3.1 Overview

PegBitmapSlider is an analog adjustment control. The end user adjusts the

slider value by dragging the slider ‘handle.’ PegSlider can be either

horizontal or vertical. The orientation is determined by the style flags. This

class accepts bitmaps for the background and for the handle to allow a

much more customized appearance.

PegBitmapSlider sends PSF_SLIDER_CHANGE notification signals to the

slider parent when the user adjusts the slider value.

PegBitmapSlider contains two bitmaps referenced by the following

enumerations.

PBMI_SLIDER_BACKGROUND The background bitmap of the
slider

PBMI_SLIDER_NEEDLE The needle button bitmap of the
slider

2.3.2 See Also

PegSlider

2.3.3 Style Flags

PegBitmapSlider defines the following styles:

FF_NONE No Frame

FF_THIN Thin Frame.

FF_RAISED Raised 3D Frame.

FF_RECESSED Recessed 3D Frame.

SF_SNAP Snaps the slider handle to the exact tick
positions.

SS_ORIENTVERT Determines orientation. If this is used, the slider
is vertically oriented. Otherwise, it is horizontal.

86 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

SS_FACELEFT Determines the horizontal position of the slider
button when SS_ORIENTVERT is also used. If
this is used, the button is placed on the right
side of the slider so that it can ‘face left.’
Otherwise, it is placed on the left side so that it
faces right.

SS_FACETOP Determines the vertical position of the slider
button when SS_ORIENTVERT is not used. If this
is used, the button is placed on the bottom
edge of the slider so that it can ‘face top.’
Otherwise, it will be placed on the top edge so
that it faces the bottom.

2.3.4 Signals

PegBitmapSlider sends PSF_SLIDER_CHANGE signals to the slider parent

when adjusted by the end user. The message contains the following
values:

Message.pSource = Pointer to slider control.

Message.Param = ID of slider control.

Message.ExtParams[0] = Current slider value.

2.3.5 Derivation

PegBitmapSlider is derived from PegSlider.

2.3.6 Constructors:

PegBitmapSlider(const PegRect &Rect, PEGLONG Min,

PEGLONG Max, PEGINT BkgndBmp = 0, PEGINT

NeedleBmp = 0, PEGUINT Id = 0, PEGULONG Style =
FF_RAISED, PEGLONG Scale = -1)

The PegBitmapSlider constructor creates a slider control at the position and

size specified in Rect. The Min and Max values specify the initial limits of the

slider. The BkgndBmp parameter is the ID of the bitmap that will be drawn in

the background. The NeedleBmp parameter is the ID of the bitmap that will

be drawn for the needle or handle of the slider. If either bitmap IDs are -1,
the default PegSlider appearance will be used. The slider ID, if non- zero,
enables the PSF_SLIDER_CHANGE notification signal. The slider scale

determines the interval between slider tickmarks.

87 Swell Software, LLC Control Classes

2.3.7 Public Functions:

PegBitmapSlider

virtual void Draw(const PegRect &Invalid)

PegBitmapSlider overrides the Draw() function to draw the bitmaps on the

slider

PEGINT GetBitmap(PEGINT Index) const

This inline function returns the ID of the bitmap specified by Index.

void SetBitmap(PEGINT Index, PEGINT BmpId)

This function assigns a bitmap to the slider using the specified Index and
BmpId.

PEGINT GetNeedleOffset(void) const

This inline function returns the offset of the slide button where it should
actually be pointing at the current value.

134 PEG Pro API Reference Manual Swell Software, LLC

2.4 PegBmpProgressBar

2.4.1 Overview

PegBmpProgressBar is a simple progress bar control used to indicate to an
end user the completion status of a slow activity. PegBmpProgressBar can

assume any scale value within the range of the PEGINT data type; however,

it is most common to display a value that is a percentage of the completion
status.

The style, range, and initial value of a PegBmpProgressBar object are
passed to the object constructor. As the operation being monitored

progresses, the application software calls the Update() member function to

change the displayed completion value.

The bitmap progress bar control has three main styles. The default style is

PS_BITMAP. This style displays a background bitmap and an overlay bitmap.

As progress increases, more of the overlay bitmap is shown. Multiple overlay
bitmaps are can be used to create an animation effect. Another style,

PS_BUTTON, displays a gradient filled indicator, in which case the progress

bar internally draws a PegButton within the specified frame style. The

PS_LED style, on the other hand, does not use a client area button to

indicate progress; instead, it invokes a custom drawing style meant to
appear as a series of LEDs, with the lighted LEDs indicating the current
progress.

2.4.2 See Also

PegProgressBar
PegProgressWindow

2.4.3 Style Flags

PegBmpProgressBar supports the following styles:

135 Swell Software, LLC Control Classes

PegProgressBar

PS_SHOW_VAL This style instructs the progress bar to
display the current progress value in text
form, in addition to the graphical
presentation.

PS_RECESSED This style draws a solid, recessed
progress indicator. The default
appearance is a solid raised indicator.

PS_LED This style draws a segmented LED
indicator. The default appearance is a
solid raised indicator.

PS_VERTICAL This style orients the progress control
graphical indicator vertically. The default is
horizontal orientation.

PS_PERCENT This style instructs the progress bar to add
the ‘%’ indicator to the displayed text
value. This flag has no effect if the
PS_SHOW_VAL style is not active.

2.4.4 Signals

PegBmpProgressBar is a passive object, is not user selectable, and

sends no signals.

2.4.5 Derivation

PegBmpProgressBar is derived from PegProgressBar.

2.4.6 Constructors:

PegBmpProgressBar(const PegRect &Rect,
 PEGULONG Style = FF_THIN|PS_SHOW_VAL|PS_PERCENT|

PS_BUTTON, PEGUINT BakbmpID = 0,
 PEGUINT Ovlay1ID = 0, PEGUINT Ovlay2ID = 0,

PEGINT Min = 0, PEGINT Max = 100,
 PEGINT Current = 0)

This constructor creates a PegBmpProgressBar. The default values
construct a progress bar that displays both text and a graphical value. The

graphical indicator has a raised border. The progress bar has a range of 0

to 100, and displays a ‘%’ sign after the output value. The BkgndBmp

parameter is the ID of the bitmap that will be drawn in the background. The

Ovlay1ID parameter is the ID of the bitmap that will be drawn to show the

135 Swell Software, LLC Control Classes

Control Classes

graphical representation of the current progress. The Ovlay2ID parameter

is also a bitmap ID used to show progress. The bitmap progress bar

alternates between displaying Ovlay1ID and displaying Ovlay2ID to

create an animation effect.

PegBmpProgressBar(PegBitmap *Background, PegBitmap

*Overlay1, PegBitmap *Overlay2,const PegRect
&Rect, PEGULONG Style = FF_THIN|PS_SHOW_VAL|

 PS_PERCENT| PS_BUTTON, PEGINT Min = 0,
 PEGINT Max = 100, PEGINT Current = 0)

Similar as above constructor except this version uses PegBitmap pointers
instead of bitmap IDs.

2.4.7 Public Functions:

void Draw(const PegRect &Invalid)

PegBmpProgressBar overrides the Draw() function to check for and draw the
background bitmap and overlay bitmaps.

PEGINT Message(const PegMessage &Mesg)

 The Message() function has been overridden to handle messages that

start timers, stop timers, and switch overlay bitmaps.

PEGINT GetAnimationRate(void)

Returns the animation rate.

void SetAnimationRate(PEGINT Rate)

Sets the animation rate.

 void SetBitmaps(PegBitmap *Background, PegBitmap
*Overlay1 = NULL, PegBitmap *Overlay2 = NULL)

Sets bitmaps using PegBitmap pointers.

void SetBitmaps(PEGINT Bkgr_ID, PEGINT Overlay1_ID,

PEGINT Overlay2_ID)

Sets bitmaps using PegBitmap pointers.

void SetBitmap(PegBitmap *Img, PEGINT TypeID)

This function sets the bitmap designated by TypeID using a PegBitmap pointer.

135 Swell Software, LLC Control Classes

 Control Classes

void SetBitmap(PEGINT Img_ID, PEGINT TypeID)

This function sets the bitmap designated by TypeID using an image ID.

void SetMode(PEGUSHORT Mode)

This function sets the animation mode i.e. PEG_AF_AUTOSTART for the overlay

bitmaps.

void Start(void)

This function starts the overlay bitmap animation.

void Stop(void)

This function stops the overlay bitmap animation.

88 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.4 PegButton

2.4.1 Overview

PegButton serves as the base class for nearly all PEG button style objects.
PegButton provides the BF_REPEAT timer operation, default frame drawing,

and default selection PEG_SIGNALs. You would not normally create an

instance of PegButton in your system software; however, PegButton is very
useful as a base class for your own custom button styles.

2.4.2 See Also

PegBitmapButton

PegIconButton

PegTextButton

PegRadioButton

PegCheckBox

2.4.3 Style Flags

PegButton supports the standard frame styles FF_NONE, FF_THIN,
FF_THICK, FF_RAISED, and FF_RECESSED.

PegButton also supports the button styles BF_REPEAT, BF_DOWNACTION,
BF_EXCLUSIVE and BF_TOGGLE.

2.4.4 Signals

PegButton sends the PSF_CLICKED signal when selected.

2.4.5 Derivation

PegButton is derived from PegTextThing.

89 Swell Software, LLC Control Classes

2.4.6 Constructors:

PegButton

PegButton(const PegRect &Rect, PEGUINT StringId = 0,

PEGUINT Id = 0, PEGULONG Style = AF_ENABLED|
FF_RAISED, PEGUINT FontIndex = 0))

PegButton(const PEGCHAR *pText, const PegRect &Rect,

PEGUINT Id = 0, PEGULONG Style = TT_COPY|
AF_ENABLED|FF_RAISED, PEGUINT FontIndex = 0)

PegButton(void)

The first and second constructors creates a PegButton with a defined size

and position. The third constructor creates a PegButton with an undefined
position. Note that PegButtons take text and a font as parameters, but by

default do not draw them on the button. To display text on a button, use

PegTextButton.

2.4.7 Public Functions:

void Disable(void)

This function disables the button, and prevents it from being selected.

virtual void Draw(const PegRect &Invalid)

PegButton overrides the Draw() function to provide the 3D appearance of

the button when it is selected.

void Enable(void)

Enables the button, and allows it to be selected.

virtual void HandleDownClick(PEGINT Type)

This function handles down-click functionality. If the button has BF_TOGGLE

or BF_EXCLUSIVE style, the button becomes selected. Otherwise, it draws

itself in the pressed state. If it has BF_DOWNACTION style, a PSF_CLICKED

signal will also be generated. The Type parameter determines the type of

down-click that occurred (i.e. either a PM_LBUTTONDOWN or a PM_KEY).

virtual void HandleUpClick(const PegMessage &Mesg)

This function handles up-click functionality. If the button has BF_TOGGLE, it

becomes unselected. Otherwise, it draws itself in the normal (un-

depressed) state and sends a PSF_CLICKED signal. The Mesg parameter is

the message that occurred that triggered an up-click (i.e. either a
PM_LBUTTONUP or a PM_KEY_RELEASE).

90 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

virtual void Initialize(PEGULONG Style)

This is a common initialization function called by both constructors to set up

colors and status flags.

virtual PEGBOOL IsSelected(void)

This returns TRUE if the button contains the BF_PUSHED style. Otherwise, it

returns false.

virtual PEGINT Message(const PegMessage &Mesg)

PegButton catches PM_LBUTTONDOWN, PM_LBUTTONUP, and PM_TIMER
messages.

virtual void SetSelected(PEGBOOL Select)

This function either selects or unselects the button by adding or removing

the BF_PUSHED style flag. If the button is being selected and it has

BF_EXCLUSIVE style, then it will also unselect all of its sibling PegButtons.

virtual void SetStyle(PEGULONG Style)

PegButton overrides the PegThing::Style function to toggle

PSF_SELECTABLE and PSF_TAB_STOP status if the AF_ENABLED style flag is
changed.

2.4.8 Protected Members:

void CheckSignal(PEGBOOL Selected)

This function checks to see if a signal needs to be sent to the parent object
based on whether or not the button is selected, and if it has the BF_TOGGLE

or BF_EXCLUSIVE style flags. The signals it could send are PSF_CLICKED,

PSF_CHECK_ON, PSF_CHECK_OFF, PSF_DOT_ON or PSF_DOT_OFF.

void UnselectSiblings(void)

This function is used to make sure all other buttons that are children of this

button’s parent object will become unselected.

91 Swell Software, LLC Control Classes

2.5 PegCheckBox

PegCheckBox

2.5.1 Overview

PegCheckBox is a PegButton class that provides a toggle operation. Any

number of PegCheckBox objects with a common parent can be selected.

The PegCheckBox uses 4 bitmaps, which can be indexed with the following

enumerations.

PBMI_CHECK_ON Checked button state

PBMI_CHECK_OFF Unchecked button state

PBMI_CHECK_ON_DIS Checked and disabled button state

PBMI_CHECK_OFF_DIS Unchecked and disabled button state

2.5.2 See Also

PegButton

PegTextButton

PegRadioButton

PegIconButton

PegBitmapButton

2.5.3 Style Flags

PegCheckBox supports the BF_PUSHED, AF_ENABLED, BF_TOGGLE, and
BF_EXCLUSIVE styles.

2.5.4 Signals

PegCheckBox sends the PSF_CHECK_ON signal when selected, and the
PSF_CHECK_OFF signal when de-selected.

92 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.5.5 Derivation

PegCheckBox is derived from PegButton.

2.5.6 Constructors:

PegCheckBox(const PegRect &Rect, PEGUINT StringId,

PEGUSHORT Id = 0, PEGULONG Style = AF_ENABLED|
FF_NONE|BF_TOGGLE)

PegCheckBox(const PEGCHAR *pText, const PegRect &Rect,

PEGUSHORT Id = 0, PEGULONG Style = TT_COPY|
AF_ENABLED|FF_NONE|BF_TOGGLE)

The first constructor creates a PegCheckBox by obtaining text from the

string table using a string ID. The second constructor takes a pointer to a

string directly.

2.5.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegCheckBox overrides the Draw() function to draw the checkbox

appearance.

virtual PEGBOOL IsChecked(void)

Returns TRUE if the checkbox is selected, else FALSE.

virtual PEGINT Message(const PegMessage &Mesg)

PegCheckBox catches the PM_LBUTTONDOWN and PM_LBUTTONUP messages.

virtual void SetBitmap(PEGUINT Index, PEGUINT
BitmapId)

This function is used to assign a bitmap to the button using the specified

Index and BitmapId.

virtual void SetSelected(PEGBOOL Selected = TRUE)

This inline function can be called at any time to toggle the checkbox on or

off under program control.

2.5.8 Examples:

The following is an example of PegCheckBox:

93 Swell Software, LLC Control Classes

PegCheckBox

The following example creates a PegCheckBox. The checkbox will
determine its own width based on the string width.

...

...

PegRect Rect;

Rect.Set(20, 20, 99, 39);

Add(new PegCheckBox(“I like Coffee”, Rect));

...

...

94 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.6 PegDecoratedButton

2.6.1 Overview

PegDecoratedButton is a PegButton class that has the ability to display

both text and a PegBitmap. The location of the text relative to the bitmap

can be selected using a set of extended style flags. PegDecoratedButton

also supports a 'flyover' mode, where the button appears flat until the

pointer is over the button.

2.6.2 See Also

PegButton

PegIconButton

PegBitmapButton

PegTextButton

PegRadioButton

PegCheckBox

2.6.3 Style Flags

PegDecoratedButton supports the standard frame styles FF_NONE,
FF_THIN, FF_THICK, FF_RAISED, and FF_RECESSED.

PegDecoratedButton also supports the button styles BF_REPEAT,
BF_DOWNACTION, BF_TOGGLE, and BF_EXCLUSIVE.

PegDecoratedButton also supports two extended styles, BF_ORIENT_TR

and BF_ORIENT_BR. These style flags are independent of the PegButton-

derived style flags. These flags allow the bitmap and text to be positioned
relative to each other. Here is how they work together.

95 Swell Software, LLC Control Classes

PegDecoratedButton

!BF_ORIENT_TR && !BF_ORIENT_BR Bitmap is displayed to the left
of the text

BF_ORIENT_TR && !BF_ORIENT_BR Bitmap is displayed above the
text

!BF_ORIENT_TR && BF_ORIENT_BR Bitmap is displayed below the
text

BF_ORIENT_TR && BF_ORIENT_BR Bitmap is displayed to the
right of the text

2.6.4 Signals

PegDecoratedButton sends the PSF_CLICKED signal when selected.

2.6.5 Derivation

PegDecoratedButton is derived from PegButton.

2.6.6 Constructors:

PegDecoratedButton(const PegRect &Rect, PEGINT

StringId, PEGINT BitmapId, PEGUSHORT Id = 0,
PEGULONG Style = AF_ENABLED, PEGBOOL FlyOver =

FALSE)

PegDecoratedButton(const PEGCHAR *pText, const PegRect
&Rect, PEGINT BitmapId, PEGUSHORT Id = 0,
PEGULONG Style = AF_ENABLED, PEGBOOL FlyOver =
FALSE)

The constructors use the parameter Rect to determine the size of the

button, and can take in both a bitmap and text. Depending on which
constructor is used, either a string ID or a pointer to the text is passed in.

2.6.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegDecoratedButton overrides the Draw() function to draw the associated

text and bitmap.

96 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

PEGBOOL GetFlyOver(void) const

This inline function returns a boolean indicating whether the
PegDecoratedButton flyover mode for drawing itself is enabled or disabled.

PEGBOOL InFlyOver(void) const

This inline function returns whether or not the button is currently operating

in flyover mode. In other words, if flyover mode is set to TRUE, then this will

return TRUE if the pointer is over the button. If the pointer is currently not

over the button, then this will return FALSE.

virtual PEGINT Message(const PegMessage &Mesg)

PegDecoratedButton overrides the Message() method to catch the
PM_NONCURRENT, PM_POINTER_ENTER, and PM_POINTER_EXIT messages.

virtual void SetBitmap(PegBitmap *pNewBitmap)

This inline function assigns the bitmap associated with the button. The

bitmap may be changed at any time.

void SetFlyOver(PEGBOOL FlyOver)

This inline function enables or disables the PegDecoratedButton flyover
mode for drawing itself.

2.6.8 Examples:

The following are examples of PegDecoratedButton:

97 Swell Software, LLC Control Classes

PegDecoratedButton

The above example shows seven PegDecoratedButtons on the parent

window. The first row of three does not have flyover enabled. (They are

always drawn just like any other PegButton-derived object). They also
demonstrate text-only, bitmap-only, and text-and-bitmap button

configurations.

The other four PegDecoratedButtons in the diamond pattern have flyover

enabled. They are drawn flat until the pointer 'flies over' them. At that point,

the border (if any) is drawn. This style is typical of most toolbar buttons in
modern GUIs. They also demonstrate how the text and bitmap may be

oriented on the button.

The PegToolBar on the parent window has one PegToolBarPanel attached

to it with three PegDecoratedButtons on it. These buttons are also drawn in

'flyover' style. (They do not draw their borders until the pointer is over
them.) When a PegDecoratedButton is put on a PegToolBarPanel, it is best
to have the bitmap situated either to the right or to the left of the text, not on

the top or bottom, since the height of the button is restricted when it is on a

PegToolBarPanel.

The following example creates the four PegDecoratedButtons displayed in

the above image in a diamond pattern on the parent PegDecoratedWindow.

.

98 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

.

.

PegRect Rect;

.

.

.

Rect.Shift(-175, 75);

pButton = new PegDecoratedButton(Rect, SID_TEXT_ON_BOTTOM,

BID_GREEN_DOT, 0, AF_ENABLED | BF_ORIENT_TR, TRUE);

pWindow->Add(pButton);

Rect.Shift(-150, 50);

pButton = new PegDecoratedButton(Rect, SID_TEXT_ON_RIGHT,

BID_GREEN_DOT, 0, AF_ENABLED, TRUE);

pWindow->Add(pButton);

Rect.Shift(150, 50);

pButton = new PegDecoratedButton(Rect, SID_TEXT_ON_TOP,

BID_GREEN_DOT, 0, AF_ENABLED | BF_ORIENT_BR, TRUE);

pWindow->Add(pButton);

Rect.Shift(150, -50);

pButton = new PegDecoratedButton(Rect, SID_TEXT_ON_LEFT,

BID_GREEN_DOT, 0, AF_ENABLED | BF_ORIENT_TR |
BF_ORIENT_BR,

TRUE);

pWindow->Add(pButton);

99 Swell Software, LLC Control Classes

2.7 PegEditField

PegEditField

2.7.1 Overview

PegEditField is a user-editable graphical string object. PegEditField can be

displayed with any font or color and several different border styles. Only

one line of text can be displayed in a PegEditField.

PegEditField supports mark, cut, copy, and paste operations via keyboard

input when the definition #define PEG_KEYBOARD_INPUT is enabled in the file
\peg\include\pconfig.hpp. The length of the contained string can be
limited if desired. PegEditField shifts the string left or right as it is edited if it
cannot be completely displayed in the client area of the PegEditField

object.

2.7.2 See Also

PegPrompt

PegTextBox

2.7.3 Style Flags

PegEditField supports the following styles:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

EF_EDIT When this style is applied, the user can edit the
PegEditField object. If this style is applied, the
PegEditField object automatically includes the
TT_COPY style.

TT_COPY Instructs the PegEditField to copy the text string
assigned. This flag should be used when the text
string assigned to the PegEditField is created
dynamically using temporary storage.

100 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.7.4 Signals

In addition to the common signals defined by PegThing, PegEditField

supports the following signals:

PSF_TEXT_SELECT // sent when the user selects text

PSF_TEXT_EDIT // sent each time text is modified

PSF_TEXT_EDITDONE // sent when a text modification is complete

2.7.5 Derivation

PegEditField is derived from PegTextThing.

2.7.6 Constructors:

PegEditField(const PegRect &Rect, PEGUINT StringId =

0, PEGUSHORT Id = 0, PEGULONG Style =
FF_RECESSED|AF_ENABLED|EF_EDIT, PEGINT Len = -1)

PegEditField(const PEGCHAR *pText, const PegRect
&Rect, PEGUSHORT Id = 0, PEGULONG Style =
FF_RECESSED|AF_ENABLED|EF_EDIT, PEGINT Len = -1)

The first constructor takes a string ID as the initial text, while the second
constructor takes a pointer to a string.

2.7.7 Public Functions:

void CopyToScratchPad(void)

This method copies the currently selected text to the scratch pad.

virtual void DataSet(const PEGCHAR *pText)

PegEditField overrides the DataSet() function to reset any in-progress
string mark or edit operations. This version of the DataSet function is used
for dynamically created strings that are not in the string table.

virtual void DataSet(PEGINT StringId)

PegEditField overrides the DataSet() function to reset any in-progress
string mark or edit operations. This version of the DataSet function is used
for string IDs.

void DeleteMarkedText(void)

This method deletes the marked text.

101 Swell Software, LLC Control Classes

virtual void Draw(const PegRect &Invalid)

PegEditField

PegEditField overrides the Draw() function to display the string border and

text.

virtual PEGINT GetMarkEnd(void)

Returns the index of the last character marked by the user.

virtual PEGINT GetMarkStart(void)

Returns the index of the first character marked by the user.

virtual PEGINT GetMaxLen(void)

Returns the maximum number of characters the object will keep.

virtual PEGINT Message(const PegMessage &Mesg)

PegEditField catches various mouse and keyboard messages.

void PasteFromScratchPad(void)

This method pastes the text from the scratch pad and inserts it at the
current cursor position.

virtual void SetMark(PEGINT Start, PEGINT End)

This function can be used to mark all or a portion of the string text under

program control. The Start and End values are the character indexes at

which to begin and end marking, inclusive.

virtual void SetMark(PEGCHAR *pMarkStart, PEGCHAR
*pMarkEnd)

This function can be used to mark all or a portion of the string text under

program control. The pMarkStart and pMarkEnd values are pointers to the

characters at which to begin and end marking, inclusive.

virtual void SetMaxLen(PEGINT Length)

This function assigns the maximum number of characters that the object
will store.

virtual void SetStyle(PEGULONG Style)

PegEditField overrides the Style function to reset any in-progress mark or

edit operations if/when the EF_EDIT style is removed.

102 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.7.8 Protected Members

virtual void AdvanceCursor(PEGINT New)

This function advances the cursor based on the width of the New character.

virtual void DrawMarked(void)

This function is used to draw the text when some or all of it is highlighted
(marked).

virtual void Initialize(PEGULONG Style)

This function is a common initialization function called by all of the

constructors to set up colors and status flags.

virtual PEGBOOL InsertKey(PEGINT Key)

This function inserts the character Key at the current cursor location.

virtual void RetardCursor(PEGINT New)

This function moves the cursor back based on the width of the New
character.

virtual void SetCursorPos(PegPoint PickPoint)

This function finds a valid location nearest to PickPoint to position the

cursor.

2.7.9 Examples:

The following are each different styles of PegEditField:

The following function creates a PegEditField object with a custom font:

void MyWindow::AddCustomString(void)

{

PegRect ChildRect;

103 Swell Software, LLC Control Classes

PegEditField

ChildRect.Set(0, 0, 100, 40);

PegEditField *pField = new PegEditField(ChildRect,
SID_FOOBAR);

pField->SetFont(FID_CUSTOM_FONT);

Add(pField);

}

104 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.8 PegGroup

2.8.1 Overview

PegGroup is a container class that visually groups any number of children.

You can add any type of PEG object to a PegGroup, including window

objects, nested groups, etc.

PegGroup is especially useful for grouping sets of PegRadioButton objects,

since these objects are mutually exclusive within a common parent.

2.8.2 See Also

PegRadioButton

PegThing

PegTextThing

2.8.3 Style Flags

PegGroup supports the AF_ENABLED style.

2.8.4 Signals

PegGroup sends no signals. Signals sent by child objects of PegGroup are

passed up to the parent of the PegGroup object.

2.8.5 Derivation

PegGroup is derived from PegTextThing.

2.8.6 Constructors:

PegGroup(const PegRect &Rect, PEGINT StringId,

PEGULONG Style = AF_ENABLED)

PegGroup(const PEGCHAR *pText, const PegRect &Rect,
PEGULONG Style = AF_ENABLED)

The PegGroup constructor creates a PegGroup at the indicated position

with an initial text value indicated by either a string ID or a string pointer.

105 Swell Software, LLC Control Classes

2.8.7 Public Functions:

PegGroup

virtual void Add(PegThing *pWho, PEGBOOL Show = TRUE)

PegGroup is not a Viewport object, and therefore overrides the Add function

to prevent breaks in the Viewport tree.

virtual void Disable(void)

This function removes the AF_ENABLED style flag from the PegGroup and

also calls the Disable function for any PegButton-derived child objects.

virtual void Draw(const PegRect &Invalid)

PegGroup overrides the Draw() function to draw the group box.

virtual void Enable(void)

This function is used to enable the group and all children of the group.

virtual PEGINT Message(const PegMessage &Mesg)

PegGroup catches the PM_SHOW message.

virtual PegThing *Remove(PegThing *pWhat)

Since PegGroup does not fill the client area of the group when an object is

removed from it, PegGroup commands the parent object to redraw. For this

reason PegGroup overrides the Remove() function.

2.8.8 Examples:

The following are examples of PegGroup:

The following example creates a PegGroup and adds a collection of

PegRadioButton objects to the group. The group is then added to the

parent object.

106 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

void MyWindow::AddGroup(void)

{

PegRect GroupRect;

GroupRect.Set(mClient.Left + 10, mClient.Top + 10,

mClient.Right - 10, mClient.Top + 100);

PegGroup *pGroup = new PegGroup(GroupRect,

"RadioButtons");

PegRect ChildRect;

ChildRect.Set(mClient.Left + 20, mClient.Top + 20,

mClient.iLeft + 79, mClient.Top + 39);

pGroup->Add(new PegRadioButton(ChildRect, "Button1"));

ChildRect.Shift(0, 20);

pGroup->Add(new PegRadioButton(ChildRect, "Button2"));

ChildRect.Shift(0, 20);

pGroup->Add(new PegRadioButton(ChildRect, "Button3"));

Add(pGroup);

}

107 Swell Software, LLC Control Classes

2.9 PegHelpButton

PegHelpButton

2.9.1 Overview

PegHelpButton is a PegIconButton class that displays a text string when

the user moves the mouse over it.

2.9.2 See Also

PegButton

PegTextButton

PegIconButton

2.9.3 Style Flags

PegHelpButton supports the standard frame styles FF_NONE, FF_THIN,
FF_THICK, FF_RAISED, and FF_RECESSED.

PegHelpButton also supports the button styles BF_REPEAT,
BF_DOWNACTION, BF_EXCLUSIVE, and BF_TOGGLE.

2.9.4 Signals

PegHelpButton sends the PSF_CLICKED signal when selected.

2.9.5 Derivation

PegHelpButton is derived from PegIconButton.

108 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.9.6 Constructors:

PegHelpButton(const PegRect &Rect, PEGUINT BitmapId,
PEGUINT StringId, PEGUSHORT Id, PEGULONG Style =
AF_ENABLED)

PegHelpButton(const PEGCHAR *pText, const PegRect

&Rect, PEGUINT BitmapId, PEGUSHORT Id, PEGULONG
Style = AF_ENABLED)

The constructor creates a PegHelpButton with a user-defined size. The

PegBitmap associated with the button will be displayed in the center of the

button client area. The string that is passed will be displayed when the user

moves the mouse over the button.

2.9.7 Public Functions:

virtual PEGINT Message(const PegMessage &Mesg)

PegHelpButton overrides the Message() function to handle the mouse

messages.

109 Swell Software, LLC Control Classes

2.10 PegHScroll

PegHScroll

2.10.1 Overview

PegHScroll is a horizontal scroll bar class. The scroll bar elevator is

proportional to the visible area of the object being scrolled.

PegHScroll takes two forms. The most common form is a NONCLIENT
area scroll bar. In this form, PegHScroll calls the parent window

GetHScrollInfo function to determine position, size, and limit information.

An instance of this form of PegHScroll has PSF_NONCLIENT system status.

The second form is a client area scroll bar. This form does not have

PSF_NONCLIENT system status. This type of scroll bar is under system

software control, and does not attempt to automatically determine position
and limit information.

Client area PegHScroll objects are very similar in operation to PegSlider

objects. They are useful for allowing the user to update a field on the

display by dragging the scroll elevator or selecting the directional scrolling

buttons.

2.10.2 See Also

PegScrollInfo

PegScroll

PegVScroll

PegSlider

PegThing

How Scrolling Works

2.10.3 Style Flags

There are no styles associated with PegHScroll Objects.

110 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.10.4 Signals

PegHScroll sends PSF_SCROLL_CHANGE signals when the position of the

scroll bar elevator is changed either by dragging the elevator or by selecting
the directional scroll buttons. The signal message contains the following
information:

Message.Param = ID of the PegHScroll object.

Message.ExtParams[0] = Current scroll position.

Message.ExtParams[1] = Last reported scroll position.

Message.pSource = Pointer to PegHScroll object.

2.10.5 Derivation

PegHScroll is derived from PegScroll.

2.10.6 Constructors:

PegHScroll(PegScrollDrawInfo *pDrawInfo = NULL)

PegHScroll(const PegRect &InRect, PegScrollInfo *pSi,
PEGUINT Id = 0, PegScrollDrawInfo *pDrawInfo =
NULL)

The first constructor creates a non-client area scroll bar. The scroll bar will
automatically determine its position and size itself to the width of the parent

window.

The second constructor creates a client area scroll bar. In this mode, a

pointer to a PegScrollInfo structure is passed to set up the initial scrolling
range. In this mode, the scroll bar position and size are passed to the

constructor, along with the scroll bar ID, if any.

2.10.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegHScroll overrides the Draw() function to fill the scroll bar background

area.

111 Swell Software, LLC Control Classes

PegHScroll

virtual PEGINT Message(const PegMessage &Mesg)

PegHScroll catches PM_SHOW, directional button selection, and elevator

drag messages.

virtual void Resize(PegRect Rect)

PegHScroll overrides the Resize() function to ensure that the elevator

remains proportional to the overall scroll bar size.

void SetThumbColor(PEGCOLOR Color)

This allows for the elevator (thumb) button to change color.

2.10.8 Protected Members

virtual void CreateButtons(void)

This function is responsible for creating the left and right arrow buttons, as

well as the elevator button. This is a separate virtual function that can be

overridden in derived classes that want to use different types of buttons.

virtual void ReadParentScrollInfo(void)

This function retrieves the PegScrollInfo data from the parent object and
checks to see if it needs to be scrolled.

virtual void SetThumbButtonPos(void)

This function calculates and updates the position of the scroll button.

2.10.9 Examples:

The following are examples of PegHScroll:

The following example initializes a PegScrollInfo structure and creates a

client area scroll bar. The scroll bar will report values between 0 and 200

and will initially be positioned at 100; the scroll bar elevator will be 25% as

wide as the scroll bar.

void MyWindow::AddHScroll(void)

{

112 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

PegScrollInfo si;

si.Min = 0; si.Max

= 200; si.Current =

100; si.Step = 1;

si.Visible = 50;

PegRect ScrollRect;

ScrollRect.Set(10, 10, 120, PEG_SCROLL_WIDTH + 10);

Add(new PegHScroll(ScrollRect, &si));

}

113 Swell Software, LLC Control Classes

2.11 PegIcon

PegIcon

2.11.1 Overview

PegIcon is a simple bitmap display object. PegIcon can also be used to

represent another object.

PegIcon can be assigned a 'Proxy' object pointer. If this pointer is assigned,
the icon will add the Proxy object to the icon parent and destroy itself when

selected. This is how window icons function. PegDecoratedWindow classes

will create an instance of PegIcon when they are minimized, add the icon to

the window parent, and remove themselves from the parent.

A PegIcon object with no Proxy assignment is also useful for simply

displaying a PegBitmap.

2.11.2 See Also

PegBitmap

PegThing

2.11.3 Style Flags

None.

2.11.4 Signals

None.

2.11.5 Derivation

PegIcon is derived from PegThing.

114 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.11.6 Constructors:

PegIcon(PegThing *pProxy, PEGINT BitmapId = 0, PEGUINT
Id = 0, PEGULONG Style = FF_NONE)

PegIcon(const PegRect &Where, PEGINT BitmapId = 0,

PEGUINT Id = 0, PEGULONG Style = FF_NONE)

PegIcon(PEGINT BitmapId = 0, PEGUINT Id = 0, PEGULONG
Style = FF_NONE)

The first constructor creates a PegIcon that represents or serves as a proxy

for another object. The second and third constructors create a PegIcon that
will simply display a bitmap. The second constructor allows the caller to

specify the icon size and position. The third constructor allows the icon to

self determine the overall icon size to match the bitmap size. When the third

constructor is used, the application software may immediately use the

Resize() function to position the icon.

2.11.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegIcon overrides the Draw() function to draw the icon bitmap.

virtual PegBitmap *GetIcon(void)

This inline function returns the address of the bitmap associated with the
PegIcon.

virtual PegThing *GetProxy(void)

This inline function returns the address of the object that is represented by

the PegIcon.

virtual PEGINT Message(const PegMessage &Mesg)

PegIcon catches PM_LBUTTONUP messages.

virtual void SetIcon(PegBitmap *nbm)

This inline function can be used to alter the PegIcon bitmap at any time.

virtual void SetProxy(PegThing *pNew)

This inline function can be used to assign or alter the object represented by

the PegIcon.

115 Sv.dl Softwue, U.C Co..rolClasses

2.11.8 Examples:

The following are examples of PegIcon:

Peglcon

116 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.12 PegIconButton

2.12.1 Overview

PegIconButton is a PegButton class that displays a PegBitmap centered in

the button client area.

2.12.2 See Also

PegButton

PegTextButton

PegRadioButton

PegCheckBox

2.12.3 Style Flags

PegIconButton supports the standard frame styles FF_NONE, FF_THIN,
FF_THICK, FF_RAISED, and FF_RECESSED.

PegIconButton also supports the button styles BF_REPEAT, BF_DOWNACTION,

BF_EXCLUSIVE and BF_TOGGLE.

2.12.4 Signals

PegIconButton sends the PSF_CLICKED signal when selected.

2.12.5 Derivation

PegIconButton is derived from PegButton.

2.12.6 Constructors:

PegIconButton(const PegRect &Rect, PEGUINT BmpId,

PEGUINT Id = 0, PEGULONG Style = AF_ENABLED|
FF_RAISED)

The constructor creates a PegIconButton with a user defined size. The

PegBitmap associated with the button will be displayed in the center of the

button client area.

117 Swell Software, LLC Control Classes

2.12.7 Public Functions:

PegIconButton

virtual void Draw(const PegRect &Invalid)

PegIconButton overrides the Draw() function to draw the associated

bitmap.

virtual void SetBitmap(PEGUINT BmpId)

This inline function assigns the bitmap associated with the button. The

bitmap may be changed at any time.

2.12.8 Protected Members

PEGUINT mBitmapId

This is the ID of the bitmap drawn on the button.

2.12.9 Examples:

The following example creates a PegIconButton. The button will display the
PegBitmap 'OnMap' in the button client area.

...

...

PegRect Rect;

Rect.Set(20, 20, 99, 49);

Add(new PegIconButton(Rect, BID_ON_MAP));

...

...

118 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.13 PegMenu

2.13.1 Overview

PegMenu is the background object used to display a list of menu items.

PegMenu may contain any number of PegMenuButton objects.

PegMenu accepts a PegMenuDescription parameter. This description
defines the PegMenuButton objects that will initially be created and

displayed on the menu. The PegMenuDescription is most often defined

statically, or defined by PegWindowBuilder, but the PegMenuDescription

can also be created dynamically during program execution.

When dynamically created PegMenuDescriptions are used to create

instances of PegMenu, it is important to include the TT_COPY flag in each

PegMenuDescription style. By default, the menu descriptions are not
copied.

PegMenu also provides functions for finding, adding, and removing

PegMenuButton objects at any time. This allows PegMenu objects to be

altered at run time under program control.

PegMenu objects are automatically created by PegMenuBar when top-level
menu bar options are selected. PegMenu sizes itself to the size required to

display all children. The position of the PegMenu is defined when the menu

is displayed.

2.13.2 See Also

PegMenuBar

PegMenuButton

PegMenuDescription

2.13.3 Style Flags

None.

119 Swell Software, LLC Control Classes

2.13.4 Signals

None.

2.13.5 Derivation

PegMenu is derived from PegThing.

PegMenu

2.13.6 Constructors:

PegMenu(PegMenuDescription *pDesc, PEGBOOL Popup =
FALSE)

The PegMenu constructor creates a PegMenu object with PegMenuButton
children. The children are defined by the PegMenuDescription parameter.

2.13.7 Public Functions:

void CloseSiblings(PegMenuButton *pNotMe)

This function closes all of the submenus except for pNotMe.

virtual void Draw(const PegRect &Invalid)

PegMenu overrides the Draw() function to draw the menu border and

background.

PegMenuButton *FindButton(const PEGCHAR *pWho) This

function searches for a PegMenuButton child with a matching command

string. This function is in addition to the normal Find(PEGUINT
Id) which may also be used to find specific PegMenu command buttons.

The pointer returned can be used to Enable/Disable/Remove the

PegMenuButton.

PegRect GetMinSize(void)

This function examines all child objects of the PegMenu to determine the

minimum size required to display all children. The resulting rectangle is

returned. This result can be used to intelligently position the PegMenu.

virtual void MenuKeyHandler(PEGINT Key, PEGLONG Flags)

This is the default keyboard handler for the PegMenu. This function is only

provided when #define PEG_KEYBOARD_SUPPORT is enabled in the
configuration file pconfig.hpp.

120 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

virtual PEGINT Message(const PegMessage &Mesg)

PegMenu catches the PM_SHOW message. When this message is received,

the menu positions child PegMenuButtons for proper display.

void SetOwner(PegThing *pWho)

This function assigns the owner of the menu. Menu command signals are

routed to the PegMenu owner if this value is not NULL. This is often

required as PegMenu objects are usually added directly to
PegPresentationManager. This is done because the PegMenu may extend

beyond the borders of the owner window and it is not intended that the

PegMenu be clipped to the borders of the owner window. Assigning the

PegMenu an owner routes menu commands to the owner window, rather

than to the PegMenu parent, which in the case described would be

PegPresentationManager.

2.13.8 Protected Members

2.13.9 Examples:

The following are examples of PegMenuBar, PegMenu, and
PegMenuButton:

The following example creates a PegMenu from a PegMenuDescription.
The menu is positioned at the top left corner of the window client area, and

the menu owner is assigned. The menu is then added to

PegPresentationManager:

121 Swell Software, LLC Control Classes

PegMenu

static PegMenuDescription FileMenu[] =

{

{"Exit", IDB_DEMO_EXIT, AF_ENABLED, NULL},

{"Close", IDB_CLOSE, AF_ENABLED, NULL},

{"Save", 0, 0, NULL},

{"", 0, BF_SEPARATOR, NULL},

{"Restore", IDB_RESTORE, AF_ENABLED, NULL},

{"Minimize", IDB_MINIMIZE, AF_ENABLED, NULL},

{"Maximize", IDB_MAXIMIZE, AF_ENABLED, NULL},

{"", 0, 0, NULL}

};

void MyWindow::PopUpFileMenu(void)

{

PegMenu *pMenu = new PegMenu(FileMenu);

PegRect SizeRect = pMenu->GetMinSize();

SizeRect.MoveTo(mClient.Left, mClient.Top);

pMenu->Resize(SizeRect);

pMenu->SetOwner(this);

Presentation()-

>Add(pMenu);

}

Note: In the above example, the PegMenu should be removed when a

menu command is received or the owner window loses input focus.

122 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.14 PegMenuBar

2.14.1 Overview

PegMenuBar is a window decoration used to position and display a user

command menu. PegMenuBar is designed to work in conjunction with

PegDecoratedWindow objects. PegMenuBar may be added to any type of
object. However, the client area of objects other than

PegDecoratedWindow will not be reduced properly unless this is done in

the application software.

PegMenuBar automatically positions and sizes itself to the parent window.

PegMenuBar may contain any number of PegMenuButton objects.

PegMenuBar accepts a PegMenuDescription parameter. This description

defines the PegMenuButton objects that will initially be created and

displayed on the menu bar. The PegMenuDescription is most often defined

statically, or defined by PegWindowBuilder, but the PegMenuDescription

can also be created dynamically during program execution.

When dynamically created PegMenuDescriptions are used to create

instances of PegMenuBar, it is important to include the TT_COPY flag in

each PegMenuDescription style. By default, the menu descriptions are not
copied.

PegMenuBar also provides functions for finding, adding, and removing

PegMenuButton objects at any time. This allows PegMenu objects to be

altered at run time under program control. The functions for finding and

modifying menu command objects are recursive, and search the entire
menu tree for the specified items.

PegMenuBar automatically creates and displays PegMenu objects when

top-level menu commands are selected.

2.14.2 See Also

PegMenu

PegMenuButton

PegMenuDescription

123 Swell Software, LLC Control Classes

2.14.3 Style Flags

None.

2.14.4 Signals

None.

2.14.5 Derivation

PegMenuBar is derived from PegThing.

PegMenuBar

2.14.6 Constructors:

PegMenuBar(PegMenuDescription *pDesc)

The PegMenuBar constructor creates a PegMenuBar object with

PegMenuButton children. The children are defined by the
PegMenuDescription parameter. PegMenuBar automatically determines its

position and size.

2.14.7 Public Functions:

virtual void CloseSiblings(PegMenuButton *pNotMe)

This method closes all of the siblings of pNotMe.

virtual void Draw(const PegRect &Invalid)

PegMenu overrides the Draw() function to draw the menu bar background.

PegMenuButton *FindButton(const PEGCHAR *pWho) This

function searches for a PegMenuButton child with a matching command

string. This function is in addition to the normal Find(PEGUINT
Id) which may also be used to find specific PegMenu command buttons.

The pointer returned can be used to Enable/Disable/Remove the

PegMenuButton. This function is recursive, and will search the entire menu

tree for the indicated command button.

virtual PEGBOOL InFlyoverMode(void)

Returns the state of the menu in flyover mode.

124 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

virtual PEGINT Message(const PegMessage &Mesg)

PegMenuBar catches PM_PARENTSIZED and PM_NONCURRENT messages.

virtual void SetFlyoverMode(PEGBOOL State)

This function puts the PegMenuBar object in flyover mode. Flyover mode

means that submenu items are automatically highlighted as the mouse

moves over them.

2.14.8 Protected Members

virtual void MenuKeyHandler(PEGINT Key, PEGLONG Flags)

This function handles all keystroke messages.

virtual void PositionButtons(void)

This function calculates the positions of all the buttons on the menu bar.

virtual void SizeToParent(void)

This function checks the parent’s size and recalculates its own dimensions.

2.14.9 Examples:

The following are examples of PegMenuBar, PegMenu, and
PegMenuButton:

The following example creates a PegMenuBar and adds the menu bar to
the parent window. In this example, ‘HelpMenu,’ ‘WindowsMenu,’

125 Swell Software, LLC Control Classes

PegMenuBar

‘OptionsMenu,’ and ‘FileMenu’ are additional PegMenuDescription arrays
(not shown) that define the submenus of the menu bar.

static PegMenuDescription MainMenu[] =

{

{"Help", 0, AF_ENABLED, HelpMenu},

{"Disabled", 1, 0, NULL},

{"Windows", 0, AF_ENABLED, WindowsMenu},

{"Options", 0, AF_ENABLED, OptionsMenu},

{"File", 0, AF_ENABLED, FileMenu},

{"", 0, 0, NULL}

};

void MyWindow::AddMenuBar(void)

{

Add(new PegMenuBar(MainMenu));

}

126 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.15 PegMenuButton

2.15.1 Overview

PegMenuButton is a button class used to populate PegMenu and

PegMenuBar objects. PegMenuButton sends selection signals to the owner

of the PegMenu or PegMenuBar.

Custom appearance for PegMenuButton objects can be created by altering

the PegMenuButton Draw() function or, preferably, by deriving new

versions of PegMenuButton from the PegMenuButton class. Overriding the
Draw() function of PegMenuButton allows the developer to create any

desired menu button appearance.

The styles for PegMenuButton descriptions are very important. They define

whether the item sends a simple command, or whether it defines additional

characteristics such as 'dotable' or 'checkable.'

PegMenuButton objects are automatically created by PegMenuBar and

PegMenu objects to satisfy the corresponding PegMenuDescriptions. It is

NOT necessary to create individual PegMenuButton objects manually.

Simply defining the PegMenuDescription is all that is required to create a
fully functional command menu.

2.15.2 See Also

PegMenuBar

PegMenu

PegMenuDescription

2.15.3 Style Flags

PegMenuButton supports the following style flags:

BF_SEPARATOR - The menu button is a separator item. BF_CHECKABLE
- The menu button can be 'checked' or 'unchecked.' BF_CHECKED - If

checkable, defines initial state of the menu button. BF_DOTABLE - The

menu button is mutually exclusive when selected. BF_DOTTED - If
dotable, defines initial state of the menu button.

127 Swell Software, LLC Control Classes

2.15.4 Signals

None.

2.15.5 Derivation

PegMenuButton is derived from class PegTextThing.

PegMenuButton

2.15.6 Constructors:

PegMenuButton(PegMenuDescription *pDesc)

The PegMenuButton constructor creates a PegMenuButton object. The

description should contain either a valid button ID or the address of an
additional PegMenuDescription array.

2.15.7 Public Functions:

virtual void CloseMenu(void)

This function closes the submenu associated with the PegMenuButton, if

any.

void Disable(void)

This function disables a menu button so that the user cannot select it. The

text also is drawn gray by default.

virtual void Draw(const PegRect &Invalid)

PegMenuButton overrides the Draw() function to display the menu

command text string. This function may be overridden to define a custom
menu button appearance.

void Enable(void)

This function enables a menu button so that the user can select it.

virtual PegThing *Find(PEGUSHORT Id, PEGBOOL Recursive
= TRUE)

This method searches through its child objects to find an object with an ID

of Id. If Recursive is true, it will search through the button's ancestry until it

either finds the object or exhausts the list of child objects.

128 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

PegMenuButton *FindButton(const PEGCHAR *pWho)

This function can be used to find a particular PegMenuButton object. This

function is called by PegMenu and PegMenuBar to recursively search the

menu tree when the associated functions of the same name are invoked.

virtual PegRect GetMinSize(PEGUBYTE uType)

This function returns the minimum height and width required to display the

PegMenuButton object. The returned value includes space for checkmarks,

dot selection, and submenu indicator bitmaps.

PegThing *GetOwner(void)

Returns the owner object of the button.

PegMenu *GetSubMenu(void)

This function returns a pointer to the submenu associated with a menu
button, or NULL if the button has no submenu.

virtual PEGBOOL IsChecked(void)

For BF_CHECKABLE PegMenuButton objects, this function returns TRUE if

the item is currently selected, else FALSE.

virtual PEGBOOL IsDotted(void)

For BF_DOTABLE PegMenuButton objects, this function returns TRUE if the

item is currently selected, else FALSE.

PEGBOOL IsPointerOver(void)

Returns a boolean stating whether the mouse pointer is over this menu

button.

virtual PEGBOOL IsSeparator(void)

This function returns true if the menu button is a separator style button.

PEGBOOL IsSubVisible(void)

Returns a boolean stating whether the submenu of this button is visible.

virtual PEGINT Message(const PegMessage &Mesg)

PegMenuButton catches PM_POINTERENTER, PM_POINTEREXIT,

PM_LBUTTONDOWN, and PM_LBUTTONUP messages.

129 Swell Software, LLC Control Classes

virtual void SetChecked(PEGBOOL State)

PegMenuButton

This function can be called to check or uncheck a checkable menu item

under program control, rather than through the normal method of user
selection.

virtual void SetDotted(PEGBOOL State)

This function can be called to select a dotable menu item under program

control, rather than through the normal method of user selection.

virtual void SetOwner(PegThing *pWho)

This function is called by PegMenu and PegMenuBar objects to assign the
button parent. This directs the menu button command signals to the menu

owner window, instead of to the menu parent window.

void SetSubMenu(PegMenu *pMenu)

This function can be called to assign at run time the submenu associated

with a menu button. This is commonly used when a PegMenu is defined or

modified at run time using a dynamically constructed PegMenuDescription.

This function does not need to be called if the PegMenuDescription for a

menu tree is statically defined.

2.15.8 Examples:

The following are examples of PegMenuBar, PegMenu, and
PegMenuButton:

PegMenu example, PegMenuBar example.

130 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.16 PegMLTextButton

2.16.1 Overview

PegMLTextButton provides a pushbutton object with visual feedback that

indicates button depress and release operation. PegMLTextButton differs

from PegTextButton in that the text displayed can span multiple lines in

the button client area, hence the class name PegMLTextButton.

Any custom fonts or colors may be applied to PegMLTextButton. Users
often create custom derived versions of PegMLTextButton to draw modified

border styles, modified border shapes, etc. PegMLTextButton is also

commonly used to populate PegHorzList and PegVertList objects.

The text strings displayed on the button face are vertically centered over

the button client area, and may be horizontally justified in different ways by

using the different text justification styles such as TJ_LEFT or TJ_CENTER.

The text breaks for a multi-line text button are defined by the caller when
the text string is passed to the button, either during object construction or

with the DataSet() function. The character to be used as a break character

is passed to the class constructor(s), and defaults to the value of the
following define:

#define DEF_ML_MARKER 0x7c // the '|' character

This allows the application engineer to easily change the character used as

a line delimiter.

The break character can also be used to accomplish simple formatting,

such as insertion of blank lines. If the first or last characters in the string are

any number of break characters, the vertical centering will be adjusted. If

the string contains two or more back-to-back break characters, blank lines
will be inserted into the displayed text.

2.16.2 See Also

PegButton

PegTextButton

131 Swell Software, LLC Control Classes

PegIconButton

PegBitmapButton

PegMLTextButton

PegRadioButton

PegCheckBox

2.16.3 Style Flags

PegMLTextButton supports the following styles:

TJ_RIGHT Right justified text.

TJ_LEFT Left justified text.

TJ_CENTER Centered text.

BF_REPEAT This flag causes the button to send periodic
PSF_CLICKED signals when held down by the
user.

BF_DOWNACTION This flag causes the button to send the
PSF_CLICKED signal on the down press of the
button, rather than the default action which is to
signal on the button release.

AF_ENABLED This flag allows the button to be selected.

2.16.4 Signals

PegMLTextButton sends PSF_CLICKED signals when selected.

2.16.5 Derivation

PegMLTextButton is derived from PegButton.

132 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.16.6 Constructors:

PegMLTextButton(const PegRect &Size, PEGINT StringId,
PEGCHAR Marker = DEF_ML_MARKER, PEGUINT Id = 0,
PEGULONG Style = TJ_CENTER|AF_ENABLED)

PegMLTextButton(const PEGCHAR *pText, const PegRect

&Size, PEGCHAR Marker = DEF_ML_MARKER, PEGUINT
Id = 0, PEGULONG Style = TJ_CENTER|AF_ENABLED)

PegMLTextButton offers two constructors, depending on how you want to

specify the button text. The first constructor allows you to reference the

string table with a string ID. The second constructor allows you to specify

the text directly with a string pointer.

2.16.7 Public Functions:

virtual void DataSet(const PEGCHAR *pText)

PegMLTextButton overrides the DataSet() function to invalidate the button

client area and recalculate the number of lines to display.

virtual void DataSet(PEGINT StringId)

This version of the DataSet function takes a string ID to retrieve the actual

text from the string table.

virtual void Draw(const PegRect &Invalid)

PegMLTextButton overrides the Draw() function to draw the text on the

button face.

virtual void SetFont(PEGINT FontIndex)

PegMLTextButton overrides the SetFont() function to invalidate the button

client area and recalculate substring positions.

2.16.8 Examples:

The following is a default multi-line text button:

Created using the following code fragment:

133 Swell Software, LLC Control Classes

PegMLTextButton

PegRect Rect;

Rect.Set(10, 10, 49, 49);

Add(new PegMLTextButton(Rect, "Multi-Line|Text|Button"));

The following is a multi-line text button with a blank line, modified color, and

modified font:

Created using the following code fragment:

Rect.Set(0, 0, 90, 72);

Rect.Shift(mClient.iLeft + 10, mClient.iTop + 10);

PegMLTextButton *pButton = new PegMLTextButton(Rect,

"This Button|Has A||Blank Line");

pButton->SetColor(PCI_NORMAL, BLUE);

pButton->SetColor(PCI_NTEXT, WHITE);

pButton->SetFont(FID_SYSFONT);

Add(pButton);

134 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.17 PegProgressBar

2.17.1 Overview

PegProgressBar is a simple progress bar control used to indicate to an end
user the completion status of a slow activity. PegProgressBar can assume

any scale value within the range of the PEGINT data type; however, it is

most common to display a value that is a percentage of the completion
status.

PegProgressBar can assume any color, controlled by calling the
SetColor() function. For this control, PCI_NORMAL is the color index of the

progress bar background, and PCI_SELECTED is the color index of the

progress bar foreground. PCI_NTEXT is the color index of the optional text
value displayed in the center of the progress bar.

The style, range, and initial value of a PegProgressBar object are passed to
the object constructor. As the operation being monitored progresses, the

application software calls the Update() member function to change the

displayed completion value.

The progress bar control has two main styles. The most common style is a
solid indicator, in which case the progress bar internally draws a PegButton

within the specified frame style. The PS_LED style, on the other hand, does

not use a client area button to indicate progress; instead, it invokes a
custom drawing style meant to appear as a series of LEDs, with the lighted
LEDs indicating the current progress.

While you can create any number of PegProgessBar instances directly, it is

more common to use the PegProgressWindow class, as this is a simpler
method of creating and displaying a progress indicator to the end user.

2.17.2 See Also

PegProgressWindow

2.17.3 Style Flags

PegProgressBar supports the following styles:

135 Swell Software, LLC Control Classes

PegProgressBar

PS_SHOW_VAL This style instructs the progress bar to
display the current progress value in text
form, in addition to the graphical
presentation.

PS_RECESSED This style draws a solid, recessed
progress indicator. The default
appearance is a solid raised indicator.

PS_LED This style draws a segmented LED
indicator. The default appearance is a
solid raised indicator.

PS_VERTICAL This style orients the progress control
graphical indicator vertically. The default is
horizontal orientation.

PS_PERCENT This style instructs the progress bar to add
the ‘%’ indicator to the displayed text
value. This flag has no effect if the
PS_SHOW_VAL style is not active.

2.17.4 Signals

PegProgressBar is a passive object, is not user selectable, and sends no

signals.

2.17.5 Derivation

PegProgressBar is derived from PegThing.

2.17.6 Constructors:

PegProgressBar(const PegRect &Rect, PEGULONG Style =

FF_THIN|PS_SHOW_VAL|PS_PERCENT, PEGINT Min = 0,
PEGINT Max = 100, PEGINT Current = 0)

This constructor creates a PegProgressBar. The default values construct a
progress bar that displays both text and a graphical value. The graphical

indicator has a raised border. The progress bar has a range of 0 to 100,
and displays a ‘%’ sign after the output value.

136 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.17.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegProgressBar overrides the Draw() function to check for and draw the
LED bar style.

void Reconfig(PEGULONG Style, PEGINT Min, PEGINT Max)

This function reconfigures the progress bar using the new style, minimum

and maximum values.

virtual void Resize(PegRect Size)

PegProgressBar overrides the PegThing::Resize function in order to

properly resize its internal members.

void Update(PEGINT Val)

This function is called to update the progress bar completion value. The

progress bar will automatically redraw to reflect the new value.

PEGINT Value(void)

This function returns the current progress bar value.

2.17.8 Examples:

The following is a PegWindow containing several styles of
PegProgressBar:

The source code used to create the above example can be found in the file

\peg\examples\pegdemo\pegdemo.cpp. The window class is named
ProgBarWindow.

137 Swell Software, LLC Control Classes

2.18 PegPrompt

PegPrompt

2.18.1 Overview

PegPrompt is a text display object. PegPrompt can be drawn with several

different border styles, and can be updated dynamically for interactive

updates or real-time information display. PegPrompt does not support user
editing.

By default, PegPrompt will send PSF_CLICKED signals to its parent object if

the prompt ID is non-zero. By default, PegPrompt objects cannot be
selected and do not send signals.

PegPrompt can also be used to populate PegComboBox and PegList

objects.

The font used by PegPrompt can be changed at any time by using the

SetFont() function, which is a PegTextThing member function. Likewise,

the color used by PegPrompt can be set at any time by calling the

SetColor() function.

2.18.2 See Also

PegEditField

2.18.3 Style Flags

PegPrompt supports the following styles:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

TJ_RIGHT Right justified text

TJ_LEFT Left justified text

TJ_CENTER Centered text

138 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

TT_COPY Instructs the prompt to copy the string
assigned. This flag should be used when
the string assigned to the prompt is
created dynamically using temporary
storage.

AF_TRANSPARENT Does not fill client area, assumes same
color as parent.

AF_ENABLED Prompt can be selected. The prompt will
also send a PSF_FOCUS_RECEIVED signal
to its parent.

2.18.4 Signals

In addition to the common signals defined by PegThing, PegPrompt

supports the PSF_CLICKED and PSF_FOCUS_RECEIVED signal notifications.

2.18.5 Derivation

PegPrompt is derived from PegTextThing.

2.18.6 Constructors:

PegPrompt(const PegRect &Rect, PEGUINT StringId = 0,

PEGUSHORT Id = 0, PEGULONG Style = FF_NONE|
TJ_LEFT|AF_TRANSPARENT)

PegPrompt(const PEGCHAR *pText, const PegRect &Rect,

PEGUSHORT Id = 0, PEGULONG Style = TT_COPY|
FF_NONE|TJ_LEFT|AF_TRANSPARENT)

PegPrompt(const PegPoint &Put, PEGUINT StringId = 0,

PEGUSHORT Id = 0, PEGULONG Style = FF_NONE|

TJ_LEFT|AF_TRANSPARENT, PEGUINT FontId = 0)

PegPrompt(const PEGCHAR *pText, const PegPoint &Put,
PEGUSHORT Id = 0, PEGULONG Style = TT_COPY|
FF_NONE|TJ_LEFT|AF_TRANSPARENT, PEGUINT FontId =
0)

There are four PegPrompt constructors. The first two allow you to fully
specify the PegPrompt position and size. The third and fourth automatically

determine the prompt height based on the font passed to the constructor or

the default font prompt if no font is passed. The first and third constructors

are used for string IDs. The second and fourth constructors are used with

string pointers, for when a dynamic string is created at run time.

139 Swell Software, LLC Control Classes

2.18.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegPrompt

PegPrompt overrides the Draw() function to display the prompt text.

virtual PEGINT Message(const PegMessage &Mesg)

PegPrompt catches PM_LBUTTONUP messages.

2.18.8 Examples:

The following are each different styles of PegPrompt:

The following function creates a PegPrompt object with a custom font:

void MyWindow::AddCustomPrompt(void)

{

PegRect ChildRect;

ChildRect.Set(0, 0, 100, 40);

PegPrompt *pPrompt = new PegPrompt(ChildRect, "FooBar");

pPrompt->SetFont(FID_CUSTOM_FONT);

Add(pPrompt);

}

140 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.19 PegRadioButton

2.19.1 Overview

PegRadioButton provides a mutually exclusive selection indicator. When a

PegRadioButton is selected by the user, it finds all sibling radio buttons and

de-selects them.

In order to allow multiple radio buttons to be selected on a single window or

dialog, you must group the buttons into separate containers. PegGroup is
commonly used for this purpose, although you can also use a transparent

PegThing for this purpose just as well. Radio button objects that have the

same parent are mutually exclusive, so by grouping the radio buttons onto

different parent objects you can allow the selection of many different radio

buttons at the same time.

The PegRadioButton uses four bitmaps, which can be indexed with the

following enumerations:

PBMI_RADIO_ON Selected radio button state

PBMI_RADIO_OFF Unselected radio button state

PBMI_RADIO_ON_DIS Selected and disabled radio button state

PBMI_RADIO_OFF_DIS Unselected and disabled radio button state

2.19.2 See Also

PegIconButton

PegBitmapButton

PegTextButton

PegGroup

PegCheckBox

2.19.3 Style Flags

PegRadioButton supports the following styles:

141 Swell Software, LLC Control Classes

PegRadioButton

AF_ENABLED When this style is TRUE, the radio button is active

and can be selected by the user. Otherwise, the
button is not active and is drawn with a slightly
different appearance.

BF_PUSHED When this style is TRUE, the radio button will be
drawn selected when first displayed. Only one radio
button with a common parent should include this
style.

2.19.4 Signals

PegRadioButton sends PSF_DOT_ON and PSF_DOT_OFF signals.

2.19.5 Derivation

PegRadioButton is derived from PegTextThing.

2.19.6 Constructors:

PegRadioButton(const PegRect &Rect, PEGUINT StringId =

0, PEGUSHORT Id = 0, PEGULONG Style = AF_ENABLED|
FF_NONE|BF_EXCLUSIVE)

PegRadioButton(const PEGCHAR *pText, const PegRect
&Rect, PEGUSHORT Id = 0, PEGULONG Style =
TT_COPY|AF_ENABLED|FF_NONE|BF_EXCLUSIVE)

The first constructor is used when the string ID for the text is known. The

second constructor is used when the string is created at run time so that

only a pointer is available.

2.19.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegRadioButton overrides the Draw() function to draw the radio button

indicator bitmap and radio button text.

virtual PEGINT Message(const PegMessage &Mesg)

PegRadioButton catches the PM_LBUTTONDOWN message to toggle the radio

button selection state.

142 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

virtual void SetBitmap(PEGUINT Index, PEGUINT
BitmapId)

This function is used to assign a bitmap to the button using the specified

Index and BitmapId.

virtual void SetSelected(PEGBOOL Selected = TRUE)

This function can be called to select or de-select a radio button at any time.

2.19.8 Examples:

The following are each different styles of PegRadioButton:

The following function creates a PegGroup and adds several radio button
children to the group. The radio button ‘Button1’ will initially be selected:

void MyWindow::AddSelectGroup(void)

{

PegRect ChildRect;

ChildRect.Set(20, 20, 120, 100);

PegGroup *pGroup = new PegGroup(ChildRect, "Select One");

ChildRect.Set(30, 30, 110, 48);

pGroup->Add(new PegRadioButton("Button1", ChildRect,

IDR_BUTTON1,

AF_ENABLED|FF_NONE|BF_EXCLUSIVE|BF_PUSHED))

;

ChildRect.Shift(0, 20);

pGroup->Add(new PegRadioButton("Button2", ChildRect,

IDR_BUTTON2));

ChildRect.Shift(0, 20);

pGroup->Add(new PegRadioButton("Button3", ChildRect,

IDR_BUTTON3));

Add(pGroup);

}

143 Swell Software, LLC Control Classes

2.20 PegScroll

PegScroll

2.20.1 Overview

PegScroll is an abstract base scroll bar class. It is used as the base class

for both the default PegVScroll and PegHScroll scroll bar classes. Users

can implement their own scroll bar classes by deriving from the PegScroll
base.

This class is mainly responsible for setting and checking the PegScrollInfo

member. Any derived classes must decide what to do with that information

(i.e. how to draw the scroll buttons, etc.). PegVScroll and PegHScroll are

the default derivatives used in PEG.

Users may provide their own custom scroll bar appearance by deriving their
own scroll bar gadgets from the PegScroll base class. In order to use these

custom bars, the user must also override the parent window CreateVScroll

and/or CreateHScroll virtual member functions to instantiate instances of

the custom scroll bar class type.

The PegScroll class uses six bitmaps, which can be indexed with the

following enumerations:

PBMI_SCROLL_FILL The background of the middle section of the
scrollbar

PBMI_SCROLL_UP The Up or Left arrow button bitmap

PBMI_SCROLL_DN The Down or Right arrow button bitmap

PBMI_THUMB_FILL The middle section bitmap of the thumb button

PBMI_THUMB_UP The upper or left-most section bitmap of the
thumb button

PBMI_THUMB_DN The lower or right-most section bitmap of the
thumb button

2.20.2 See Also

PegScrollInfo

PegHScroll

144 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

PegVScroll

PegSlider

How Scrolling Works

2.20.3 Style Flags

There are no styles associated with PegScroll Objects.

2.20.4 Signals

There are no signals associated with PegScroll Objects.

2.20.5 Derivation

PegScroll is derived from PegThing.

2.20.6 Constructors:

PegScroll(PegScrollDrawInfo *pDrawInfo = NULL, PEGBOOL

Vertical = TRUE)

PegScroll(const PegRect &InRect, PegScrollInfo *pSi,

PEGUINT Id = 0, PegScrollDrawInfo *pDrawInfo =
NULL, PEGBOOL Vertical = TRUE)

The first constructor creates a nonclient area scroll bar. The scroll bar will
automatically determine its position and size itself to the height of the

parent window.

The second constructor creates a client area scroll bar. In this mode, a

pointer to a PegScrollInfo structure is passed to set up the initial scrolling

range. In this mode, the scroll bar position and size are passed to the
constructor along with the scroll bar ID, if any.

2.20.7 Public Functions:

PEGUINT GetBitmap(PEGUINT Index)

This function returns the ID of the bitmap with the specified Index.

145 Swell Software, LLC Control Classes

PEGINT GetMinOffset(void)

PegScroll

This inline function returns the minimum offset value. This is used to

determine the minimum location of the elevator button.

PEGINT GetMaxOffset(void)

This inline function returns the maximum offset value. This is used to

determine the maximum location of the elevator button.

PegScrollInfo *GetScrollInfo()

This inline function can be called to retrieve the current scroll bar

information.

virtual PEGINT Message(const PegMessage &Mesg)

PegScroll overrides the Message() function to catch the PM_SHOW message.

void Reset()

virtual void Reset(PegScrollInfo *pSi)

These functions are provided so that the scroll bar position can be

recalculated or reset at any time. The first form is used with nonclient scroll

bars, and the second form is used with client-area scroll bars that are under

program control.

void SetBitmap(PEGUINT Index, PEGUINT BmpId)

This function is used to assign a bitmap to the scroll bar using the specified

Index and BmpId.

void SetDrawInfo(PegScrollDrawInfo *pInfo, PEGBOOL
Size = TRUE)

This function assigns a PegScrollDrawInfo structure to the scroll bar. If

Size is TRUE, then the scroll bar is resized to the width and height

specified in pInfo.

void SetOffsets(PEGINT Min, PEGINT Max)

This function is used to set the minimum and maximum offsets of where the

elevator button can be positioned.

2.20.8 Protected Members

virtual void CheckScrollLimits(void)

This function ensures that it has not exceeded its scrolling boundaries.

146 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

virtual void CreateButtons(void)

This function is intended to be overridden in derived classes so that any

necessary buttons can be created. For example, the derived class

PegVScroll uses it to create the up, down, and elevator buttons.

virtual void ReadParentScrollInfo(void)

This pure virtual function must be implemented in derived classes. This
function is called by non-client scroll bars when the scroll bar is first shown
to discover the parent window's scrolling parameters. Derived

implementations should call either the parent window's GetVScrollInfo()

or GetHScrollInfo() function, depending on the desired orientation of the

derived class.

virtual void SetThumbButtonPos(void)

This pure virtual function must be implemented in derived classes. This

function is called when the scroll bar is first shown, or when resized, or

when the scroll information is changed. This function should determine the

the position and size of the scroll slider button (if any). Custom

implementations which do not include a slider button can implement this
function as an empty function.

147 Swell Software, LLC Control Classes

PegScrollPrompt

2.21 PegScrollPrompt

2.21.1 Overview

PegScrollPrompt is a PegPrompt-derived object that supports scrolling the

text as well as assigning bitmaps to the left side, right side, and

background.

PegScrollPrompt can also be used to populate PegComboBox and PegList

objects.

The font used by PegScrollPrompt can be changed at any time by using the

SetFont() function, which is a PegTextThing member function. Likewise,

the color used by PegScrollPrompt can be set at any time by calling the

SetColor() function.

PegScrollPrompt contains four bitmaps that are referenced using the

following enumerations:

PSPM_NORMAL Normal background bitmap

PSPM_FOCUS Focused background bitmap

PSPM_LEFT Left icon

PSPM_RIGHT Right icon

2.21.2 See Also

PegEditField

2.21.3 Style Flags

PegPrompt supports the following styles:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

TJ_RIGHT Right justified text

TJ_LEFT Left justified text

TJ_CENTER Centered text

148 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

TT_COPY Instructs the prompt to copy the string
assigned. This flag should be used when
the string assigned to the prompt is
created dynamically using temporary
storage.

AF_TRANSPARENT Does not fill client area, assumes same
color as parent.

AF_ENABLED Prompt can be selected. The prompt will
also send a PSF_FOCUS_RECEIVED signal
to its parent.

SP_ONFOCUS The text will scroll whenever the prompt
has focus.

SP_ALWAYS The text will always be scrolling.

SP_CONTINUOUS The text scrolling will repeat continuously.
If this is turned off, the text will stop
scrolling after the first time through.

SP_DOTDOT The prompt will append the string ‘...’ to
the text.

SP_WRAP The text will wrap, meaning that when the
scrolling reaches the end, it continues
scrolling at the beginning again.

2.21.4 Signals

In addition to the common signals defined by PegThing, PegScrollPrompt

supports the PSF_CLICKED, PSF_FOCUS_RECEIVED and

PSF_SCROLL_COMPLETE signal notifications.

2.21.5 Derivation

PegScrollPrompt is derived from PegPrompt.

149 Swell Software, LLC Control Classes

2.21.6 Constructors:

PegScrollPrompt

PegScrollPrompt(const PegRect &Rect, PEGINT StringId =
0, PEGUSHORT Id = 0, PEGULONG Style = FF_NONE|
TJ_LEFT|AF_TRANSPARENT|SP_ALWAYS)

PegScrollPrompt(const PEGCHAR *pText, const PegRect
&Rect, PEGUSHORT Id = 0, PEGULONG Style =
FF_NONE|TJ_LEFT|AF_TRANSPARENT|SP_ALWAYS)

There are two PegScrollPrompt constructors. The first constructor is used

for string IDs. The second constructor is used with string pointers, for when

a dynamic string is created at run time.

2.21.7 Public Functions:

virtual void DataSet(PEGINT StringId)

virtual void DataSet(const PEGCHAR *pText)

PegScrollPrompt overrides the DataSet() function because it needs to

draw the new text into its scrolling bitmap.

virtual void Draw(const PegRect &Invalid)

PegScrollPrompt overrides the Draw() function to display the prompt text

and bitmaps.

virtual PEGINT Message(const PegMessage &Mesg)

PegScrollPrompt catches timer and focus messages.

void SetBitmaps(PEGUINT NormalMap, PEGUINT
SelectedMap, PEGUINT LeftMap, PEGUINT RightMap)

This function assigns bitmaps to background and the left and right sides. If
the prompt gains focus, it will attempt to use pSelectedMap as the

background. Otherwise, it will use pNormalMap. Any of these parameters
may be 0.

virtual void SetFont(PEGINT FontId)

PegScrollPrompt overrides the SetFont() function because it needs to

redraw the text into its scrolling bitmap.

void SetLeftBitmap(PEGUINT LeftMap)

This function assigns a bitmap to be displayed on the left side of the text.

150 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

void SetNormalBitmap(PEGUINT NormalMap)

This function assigns a bitmap to be displayed in the background of the text

when the prompt does not have focus.

void SetRightBitmap(PEGUINT RightMap)

This function assigns a bitmap to be displayed on the right side of the text.

void SetScrollSpeed(PEGINT Amount, PEGINT Timeout)

This function determines how many pixels the text will scroll at a time and

how fast it will make those increments.

void SetSelectedBitmap(PEGUINT SelectedMap)

This function assigns a bitmap to be displayed in the background of the text
when the prompt has focus.

151 Swell Software, LLC Control Classes

2.22 PegSlider

PegSlider

2.22.1 Overview

PegSlider is an analog adjustment control. The end user adjusts the slider

value by dragging the slider ‘handle.’ PegSlider can be positioned

horizontally or vertically. The orientation is determined by the style flags.

PegSlider draws tickmarks at specified intervals along the slider range,

unless the specified interval < 1. The slider handle and tickmarks are

automatically drawn proportional to the overall slider size.

PegSlider sends PSF_SLIDER_CHANGE notification signals to the slider

parent when the user adjusts the slider value.

2.22.2 See Also

PegHScroll

PegVScroll

2.22.3 Style Flags

PegSlider defines the following styles:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

SF_SNAP Snaps the slider handle to the exact tick
positions.

SS_ORIENTVERT Determines orientation. If this is used, the slider
is vertically oriented. Otherwise, it is horizontal.

152 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

SS_FACELEFT Determines the horizontal position of the slider
button when SS_ORIENTVERT is also used. If
this is used, the button is placed on the right
side of the slider so that it can ‘face left.’
Otherwise, it is placed on the left side so that it
faces right.

SS_FACETOP Determines the vertical position of the slider
button when SS_ORIENTVERT is not used. If this
is used, the button is placed on the bottom
edge of the slider so that it can ‘face top.’
Otherwise, it will be placed on the top edge so
that it faces the bottom.

2.22.4 Signals

PegSlider sends PSF_SLIDER_CHANGE signals to the slider parent when

adjusted by the end user. The message contains the following values:

Message.pSource = Pointer to slider control.

Message.Param = ID of slider control.

Message.ExtParams[0] = Current slider value.

2.22.5 Derivation

PegSlider is derived from PegThing.

2.22.6 Constructors:

PegSlider(const PegRect &Rect, PEGLONG Min, PEGLONG

Max, PEGUINT Id = 0, PEGULONG Style = FF_RAISED,
PEGLONG Scale = -1)

The PegSlider constructor creates a PegSlider control at the position and

size specified in Rect. The Min and Max values specify the initial limits of

the slider. The slider ID, if non-zero, enables the PSF_SLIDER_CHANGE

notification signal. The slider scale determines the interval between slider
tickmarks.

2.22.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegSlider overrides the Draw() function to draw the slider control.

153 Swell Software, LLC Control Classes

virtual PEGINT GetCurrentValue(void)

This inline function returns the current slider value.

virtual PEGINT GetMaxValue(void)

This inline function returns the slider maximum limit value.

virtual PEGINT GetMinValue(void)

This inline function returns the slider minimum limit value.

PegSlider

virtual PEGINT GetNeedleOffset(void) const

This inline function returns the offset of the slide button where it should

actually be pointing at the current value.

virtual PEGINT GetScale(void)

This inline function returns the slider scale interval.

virtual PEGLONG IncrementValue(PEGLONG Val, PEGBOOL
Redraw = TRUE)

This function will increment the current value by the amount specified by

Val. A negative number can be passed to allow the value to decrement.

The final value is compared to the minimum and maximum values so that it
does not exceed the allowed range.

virtual PEGINT Message(const PegMessage &Mesg)

PegSlider catches the PM_LBUTTONDOWN to capture the pointer and move

the slider button as it receives PM_POINTER_MOVE messages.

virtual void Reset(PEGINT Min, PEGINT Max, PEGINT New)

This function can be called to reset the slider limits and current slider value.

virtual void Resize(const PegRect &NewSize)

This function overrides the PegThing::Resize function. The position of the

slider button is adjusted as it is resized.

virtual void SetCurrentValue(PEGINT NewVal, PEGBOOL
Redraw = FALSE)

This function can be called to reset the current slider value. The slider will

automatically redraw to reflect the new value if the Redraw value is TRUE.

void SetMaxTravelOffset(PEGINT Offset)

This function is used to set the maximum position that the slide button can

travel within the slider.

154 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

virtual void SetMaxValue(PEGINT Max, PEGBOOL Redraw =
TRUE)

This function can be called to reset the slider maximum limit value.

void SetMinTravelOffset(PEGINT Offset)

This function is used to set the minimum position that the slide button can

travel within the slider.

virtual void SetMinValue(PEGINT iMin)

This function can be called to reset the slider minimum limit value.

void SetNeedleOffset(PEGINT Offset)

This function is used to set the offset within the slide button that points to

the current value.

virtual void SetScale(PEGINT Scale)

This function can be called to reset the slider tickmark interval.

2.22.8 Protected Members

virtual void CheckSlideButton(void)

This function checks to see if the slide button has been created yet, and if

not it creates it. This can be overridden in derived classes so that a derived

version of the PegSlideButton class can be used.

PEGINT mMax

This is the maximum value for the slider.

PEGINT mMin

This is the minimum value for the slider.

PEGINT mScale

This is the slider tickmark interval.

2.22.9 Examples:

The following are each different styles of PegSlider:

155 Swell Software, LLC Control Classes

PegSlider

The following function creates a PegSlider. The slider will be vertical, and
will have a minimum value of 0, a maximum value of 200, and a tick mark

interval of 20 (i.e. 10 tickmarks will be drawn). This initial slider value will be

50.

void MyWindow::AddSlider(void)

{

PegRect SliderRect;

SliderRect.Set(20, 20, 60, 120);

PegSlider *pSlider = new PegSlider(SliderRect, 0, 200,

ID_SLIDER, FF_RAISED|SS_ORIENTVERT, 20);

pSlider->SetCurrentValue(50);

Add(pSlider);

}

156 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.23 PegSpinButton

2.23.1 Overview

PegSpinButton is a thumbwheel style control that is normally used to adjust

a numeric value displayed in an adjacent object. PegSpinButton objects

can be horizontal or vertical in orientation.

There are two forms of PegSpinButton. The first form is created when the

spin button has a 'buddy' object. A buddy object is a PegTextThing-derived
object that is automatically updated as the spin button is manipulated by the

end user. The second form of PegSpinButton has no buddy object, and

therefore reports spin button selection to the parent window for application-

level processing.

When a spin button has a buddy object, that object should be designed to
display a numeric value. When the spin button is operated by the end user,

the spin button first converts the buddy object string to an integer, then

increments or decrements the integer value as required. It then converts

the integer value back to a string for assignment to the buddy object.

The buddy object, if any, is required to have TT_COPY style. This is required
because the string value assigned to the buddy object is dynamically
constructed. If the buddy object does not have TT_COPY style, this style is
added automatically by the spin button object.

2.23.2 See Also

PegSlider

PegTextThing

2.23.3 Style Flags

PegSpinButton supports the following styles:

SB_VERTICAL Creates a vertical spin button. The default is to

create a horizontally-oriented spin button.

157 Swell Software, LLC Control Classes

2.23.4 Signals

PegSpinButton

If a PegSpinButton has a non-zero ID value, it sends PSF_SPIN_MORE and
PSF_SPIN_LESS signals to the parent window as the spin button is selected
by the end user.

PSF_SPIN_MORE and PSF_SPIN_LESS signal messages contain the following

data:

Message.pSource = Pointer to spin button control.

Message.Param = ID of spin button control.

2.23.5 Derivation

PegSpinButton is derived from PegThing.

2.23.6 Constructors:

PegSpinButton(const PegRect &Rect, PEGUINT Id = 0,

PEGULONG Style = AF_ENABLED|SB_VERTICAL)

This constructor is used to create a PegSpinButton that has no buddy

object. This spin button will send notification signals to the parent object as

the spin button is operated.

PegSpinButton(const PegRect &Rect, PegTextThing
*pBuddy, PEGLONG Min, PEGLONG Max, PEGINT Step,
PEGUINT Id = 0, PEGULONG Style = AF_ENABLED|
SB_VERTICAL)

This constructor is used to create a PegSpinButton that has a buddy object.
This spin button directly updates the buddy object, in addition to sending

PSF_SPIN_MORE and PSF_SPIN_LESS signals to the button parent.

2.23.7 Public Functions:

virtual PEGINT Message(const PegMessage &Mesg)

PegSpinButton catches messages from the spin button directional selection

arrows to update the buddy object or send signals to the spin button parent.

void SetBuddy(PegTextThing *pBuddy)

This inline function can be used to reset the buddy object pointer of the spin

button.

158 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

void SetLimits(PEGLONG Min, PEGLONG Max, PEGINT Step =
-1)

This function can be used to reset the spin button limits and step value. A

positive step value causes the spin button to increase the value of a buddy

object when the ‘Up’ or ‘Right’ spin buttons are pressed. A negative step
value reverses the direction of increment/decrement.

void SetOutputWidth(PEGINT Width)

This function can be used to specify a fixed-width output format for spin

buttons with a buddy object. The Width parameter indicates how many

digits the output value should contain. The output string is left-padded with
zeros if required to fill the indicated width.

2.23.8 Protected Members

PEGINT mStep

This is the amount to increment or decrement the value when a button is

pressed.

PEGLONG mMax

This is the maximum value for the spinner.

PEGLONG mMin

This is the minimum value for the spinner.

PegTextThing *mpSlave

This is a pointer to the text object that will display the current value.

2.23.9 Examples:

The following illustrates a vertical PegSpinButton with a PegPrompt buddy

object:

The following function creates a PegPrompt for displaying a numeric value.
The prompt will be updated by a vertical PegSpinButton object. The range

of values will be 20 through 80, and the value will increment/decrement by

5 each time the spin button is operated.

159 Swell Software, LLC Control Classes

PegSpinButton

void MyWindow::AddSpinPrompt(void)

{

PegRect ChildRect;

ChildRect.Set(20, 20, 100, 40);

PegPrompt *pPrompt = new PegPrompt(ChildRect, "20", 0,

FF_RECESSED|TJ_RIGHT|TT_COPY);

Add(pPrompt);

// set the spin button position to the right of the

prompt:

ChildRect.Left = pPrompt->mReal.Right + 1;

ChildRect.Right = ChildRect.Left + PEG_SCROLL_WIDTH;

PegSpinButton *pSpin = new PegSpinButton(ChildRect,

pPrompt, 20, 80, 5, 0, SB_VERTICAL);

Add(pSpin);

}

160 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.24 PegStatusBar

2.24.1 Overview

PegStatusBar is a window decoration that automatically sizes and positions

itself at the bottom of the client area of its parent. PegStatusBar may have

any number of children. Since the PegPrompt object is the most common

type of child object added to a status bar, the PegStatusBar class includes

functions for easily displaying and accessing any number of PegPrompt
objects.

The last object added to a PegStatusBar is sized to extend to the rightmost

edge of the status bar.

A pointer to a status bar added to a PegDecoratedWindow can be obtained

at any time by calling the PegDecoratedWindow::StatusBar() function.

2.24.2 See Also

PegDecoratedWindow

PegPrompt

2.24.3 Style Flags

None.

2.24.4 Signals

PegStatusBar does not send signals. However, children of the status bar

will send the normal signals supported by the child object types.

PegStatusBar will pass any signal received on to the parent window.

2.24.5 Derivation

PegStatusBar is derived from PegThing.

161 Swell Software, LLC Control Classes

2.24.6 Constructors:

PegStatusBar(void)

PegStatusBar

This constructor creates a PegStatusBar. The status bar is normally added

to a PegDecoratedWindow or PegDialog.

2.24.7 Public Functions:

virtual PegPrompt *AddTextField(PEGINT Width,
PEGUSHORT Id, PEGUINT StringId = 0)

virtual PegPrompt *AddTextField(const PEGCHAR *pText,

PEGINT Width, PEGUSHORT Id)

This function can be called to add a PegPrompt field to the status bar.
Parameter Width indicates the desired field width, in pixels. Id is the ID that

will be assigned to the PegPrompt, and StringId (or pText) is the initial

prompt value.

PegPrompt objects added to a PegStatusBar can be updated at any time.

They are located by calling GetPrompt() with the ID of the prompt in

question.

virtual void Draw(const PegRect &Invalid)

PegStatusBar overrides the Draw() function to draw the status bar frame.

PegPrompt *GetPrompt(PEGUINT wId)

This function returns a pointer to the PegPrompt child of the status bar with

the given ID value.

virtual PEGINT Message(const PegMessage &Mesg)

PegStatusBar catches the PM_SHOW and PM_PARENTSIZED messages to size

itself and position the children of the status bar.

virtual void SetFont(PEGINT FontIndex)

PegStatusBar overrides the SetFont method so that it can resize itself and

all of its children based on the size of the new font. It also alerts its parent
window that it has resized.

162 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

virtual void SetTextField(PEGUSHORT Id, PEGINT
StringId)

virtual void SetTextField(PEGUSHORT Id, const PEGCHAR

*pText)

This function provides a shorthand method for updating a prompt that has
been added to the status bar. The Id parameter indicates the desired

prompt ID, and the StringId or pText value is the new text value to assign

to the prompt.

2.24.8 Protected Members

virtual void SizeToParent(void)

This function resizes the status bar based on the width of the parent
window.

2.24.9 Examples:

The following is a PegStatusBar with several text fields, added to a
PegDecoratedWindow:

The following function creates a PegStatusBar with three text fields, and

adds the status bar to a parent window.

void MyWindow::AddStatusBar(void)

{

PegStatusBar *pStat = new PegStatusBar();

pStat->AddTextField(100, ID_FIELD1, "Fixed Field 1");

pStat->AddTextField(100, ID_FIELD2, "Fixed Field 2");

pStat->AddTextField(20, ID_FIELD3, "Variable Field 3");

Add(pStat);

}

163 Swell Software, LLC Control Classes

PegStatusBar

Any field in the status bar created above can be updated using the following
code sequence:

void MyWindow::UpdateSecondStatusField(PEGCHAR *pNewVal)

{

StatusBar()->SetTextField(ID_FIELD2, pNewVal);

}

164 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.25 PegTextButton

2.25.1 Overview

PegTextButton provides a pushbutton object with visual feedback indicating

to the user the button depress and release operation.

Any custom fonts or colors may be applied to PegTextButton. Users often

create custom derived versions of PegTextButton to draw modified border
styles, modified border shapes, etc. PegTextButton is also commonly used

to populate PegHorzList and PegVertList objects.

While PegTextButton is most often a 'bottom level' object, it is possible to

add children to a PegTextButton to further customize the appearance of

your user interface.

The text string displayed on the button face is vertically centered over the

button client area, and may be horizontally justified in different ways using

the text justification style flags.

2.25.2 See Also

PegMLTextButton

PegIconButton

PegBitmapButton

PegRadioButton

PegCheckBox

2.25.3 Style Flags

PegTextButton supports the following styles:

TJ_RIGHT Right justified text

TJ_LEFT Left justified text

TJ_CENTER Centered text

165 Swell Software, LLC Control Classes

PegTextButton

TT_COPY Instructs the button to copy the string assigned.
This flag should be used when the string
assigned to the button is created dynamically
using temporary storage.

BF_REPEAT This flag causes the button to send periodic
PSF_CLICKED signals when held down by the
user.

BF_DOWNACTION This flag causes the button to send the
PSF_CLICKED signal on the down press of the
button, rather than the default action which is to
signal on the button release.

BF_TOGGLE This flag causes the button to function much
like a checkbox, in that when it is pressed it
remains selected until it becomes pressed
again. Any number of buttons with BF_TOGGLE
style can be selected at the same time.

BF_EXCLUSIVE This flag causes the button to function much
like a radio button, in that when it is pressed, it
remains selected until another sibling button is
selected. It also unselects all sibling buttons
when it becomes selected. Only one button
within a single parent object can be selected at
a time.

AF_ENABLED This flag allows the button to be selected.

2.25.4 Signals

PegTextButton sends PSF_CLICKED signals when selected.

2.25.5 Derivation

PegTextButton is derived from PegButton and PegTextThing.

166 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.25.6 Constructors:

PegTextButton(const PegRect &Rect, PEGUINT StringId =
0, PEGUSHORT Id = 0, PEGULONG Style = AF_ENABLED|
FF_RAISED)

PegTextButton(const PEGCHAR *pText, const PegRect
&Rect, PEGUSHORT Id = 0, PEGULONG Style =
TT_COPYAF_ENABLED|FF_RAISED)

The first constructor is used to specify the string ID for the text. The second

constructor is used when a string pointer is all that is available.

2.25.7 Public Functions:

virtual void Draw(const PegRect &Rect)

PegTextButton overrides the Draw() function to draw the text on the button

face.

2.25.8 Examples:

The following are each different styles of PegTextButton:

The following is an example of overriding the Draw() function to create a

custom button appearance. This example creates a button similar to the
lower-right example above.

void CustomButton::Draw(const PegRect &Invalid)

{

PegBrush Brush;

BeginDraw(Invalid

);

PegTextButton

if (mStyle & BF_PUSHED)

{

Brush.LineColor = CLR_BLACK;

}

else

{

Brush.LineColor = CLR_LIGHTGRAY;

}

Brush.Width = 3;

// draw the top:

Line(mReal.Left, mReal.Top, mReal.Right, mReal.Top,

Brush);

// draw the left:

Line(mReal.Left, mReal.Top, mReal.Left, mReal.Bottom,

Brush);

if (mStyle & BF_PUSHED)

{

Brush.LineColor = CLR_LIGHTGRAY;

}

else

{

Brush.LineColor = CLR_BLACK;

}

// draw the right shadow:

Brush.Width = 1;

Line(mReal.Right, mReal.Top, mReal.Right,

mReal.Bottom - 2, Brush);

Line(mReal.Right - 1, mReal.Top + 1, mReal.Right - 1,

mRealiBottom - 2, Brush);

Line(mReal.Right - 2, mReal.Top + 2, mReal.Right - 2,

mReal.Bottom - 2, Brush);

// draw the bottom shadow:

Line(mReal.Left, mReal.Bottom, mReal.Right,

mReal.Bottom, Brush);

Swell Software, LLC Control Classes 167

168 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

Line(mReal.Left + 1, mReal.Bottom - 1, mReal.Right,

mReal.Bottom - 1, Brush);

Line(mReal.Left + 2, mReal.Bottom - 2, mReal.Right,

mReal.Bottom - 1, Brush);

// fill in the button client area:

Brush.Set(CLR_LIGHTRED, CLR_DARKGRAY, PBS_SOLID_FILL, 1);

Rectangle(mClient, Brush);

// draw the text centered:

PegPoint Put;

Put.x = (mClient.Left + mClient.Right) >> 1;

Put.x -= TextWidth(mpText, FID_SYSFONT) >> 1;

Put.y = mClient.Top + 1;

if (mStyle & BF_PUSHED)

{

Put.x++;

Put.y++;

}

Brush.Set(CLR_WHITE, CLR_BLACK, 0, 0);

DrawText(Put, mpText, Brush, FID_SYSFONT);

EndDraw();

}

169 Swell Software, LLC Control Classes

2.26 PegTitle

PegTitle

2.26.1 Overview

PegTitle is a window decoration that automatically sizes and positions itself

at the top of the client area of its parent. PegTitle automatically adds

various common control buttons to itself depending on the title style flags.

PegTitle also adds the functionality of dragging the parent window. PegTitle

checks the parent window PSF_MOVEABLE system flag in order to provide

this capability.

A pointer to the title added to a PegDecoratedWindow can be obtained at

any time by calling the PegDecoratedWindow::Title() function.

2.26.2 See Also

PegDecoratedWindow

PegDialog

2.26.3 Style Flags

TT_COPY Instructs the title to copy the string assigned.
This flag should be used when the string
assigned to the title is created dynamically
using temporary storage.

TF_SYSBUTTON This flag instructs the title to include a system
button, located in the upper-left corner of the
title bar. The system button activates the
system menu associated with the title bar.

TF_MINMAXBUTTON This flag instructs the title to include minimize
and maximize buttons on the title bar.

TF_CLOSEBUTTON This flag instructs the title to include a window
close button on the title bar.

170 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.26.4 Signals

PegTitle does not send signals. However the system menu associated with

the title bar will send signals to the parent window.

2.26.5 Derivation

PegTitle is derived from PegTextThing.

2.26.6 Constructors:

PegTitle(PEGINT StringId, PEGULONG Style =

TF_SYSBUTTON|TF_MINMAXBUTTON|TF_CLOSEBUTTON)

PegTitle(const PEGCHAR *pText, PEGULONG Style =
TT_COPY|TF_SYSBUTTON|TF_MINMAXBUTTON|
TF_CLOSEBUTTON)

This constructor creates a PegTitle. The default style is to include all

available title buttons. The second constructor adds the style TT_COPY as

a default because if the text is created dynamically, it will typically need to

make its own copy of it.

2.26.7 Public Functions:

void AssignMenu(PegMenuDescription *pDesc)

This function can be used to assign an alternate system menu to the
PegTitle system button. The default system menu includes the commands

“Close” (PM_CLOSE), “Maximize” (PM_MAXIMIZE), and “Minimize”

(PM_MINIMIZE).

virtual void Draw(const PegRect &Invalid)

PegTitle overrides the Draw() function to draw the title background and title

text.

virtual PEGINT Message(const PegMessage &Mesg)

PegTitle catches various mouse message, the title button messages, and

focus alteration messages.

virtual void SetFont(PEGINT FontIndex)

PegTitle overrides the SetFont method so it can resize itself based on the

size of the new font.

171 Swell Software, LLC Control Classes

2.26.8 Protected Members

virtual void SizeToParent(void)

PegTitle

This function resizes the title bar based on the width of the parent window.

2.26.9 Examples:

The following is a PegTitle added to a PegDialog window:

The following function creates a PegTitle, assigns an alternate system

menu to the title, and adds the title to the parent window.

static PegMenuDescription SystemMenu[] = {

{"Exit", IDB_DEMO_EXIT, AF_ENABLED, NULL},

{"Close", IDB_CLOSE, AF_ENABLED, NULL},

{"Save", 0, 0, NULL},

{"", 0, BF_SEPARATOR, NULL},

{"Restore", IDB_RESTORE, AF_ENABLED, NULL},

{"Minimize", IDB_MINIMIZE, AF_ENABLED, NULL},

{"Maximize", IDB_MAXIMIZE, AF_ENABLED, NULL},

{"", 0, 0, NULL}

};

void MyWindow::AddTitle(void)

{

PegTitle *pTitle = new PegTitle("Hello World",

TF_SYSBUTTON|TF_CLOSEBUTTON);

pTitle->AssignMenu(SystemMenu);

Add(pTitle);

}

172 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.27 PegToolBar

2.27.1 Overview

PegToolBar is a window decoration used to position and display a group of

related user objects. These objects could be text or bitmap buttons, user

input fields, or any other objects that represent frequently used commands
or user data that does not lend itself well to a menu. PegToolBar is

designed to work in conjunction with PegDecoratedWindow objects.

PegToolBar may be added to any type of object. However, the client area

of objects other than PegDecoratedWindow will not properly be reduced

unless this is done in the application software.

PegToolBar automatically positions and sizes itself to the parent window.

PegToolBar may contain any number of PegToolBarPanel objects.
PegToolBar also automatically sizes to the tallest PegToolBarPanel as the

panels are added. However, once the tool bar is added to a parent, it will no

longer size itself in this manner. It is therefore recommended to create a

PegToolBar object, add all of the PegToolBarPanels to the tool bar, then

add the PegToolBar to its parent object. This will ensure that the tool bar

will be the proper height. For an example of this, see the code at the bottom
of this page. It is not recommended that any other objects aside from a

PegToolBarPanel be added to a PegToolBar.

Any object that is placed on a PegToolBarPanel, and subsequently a
PegToolBar, behaves the same way it would if it were added to any other

PegThing derived object. For instance, a PegButton derived object sends

its PSF_CLICKED message up to the PegToolBarPanel, which in turn posts it

to the PegToolBar, which in turn posts the message to its parent, in this
case, the PegDecoratedWindow. Therefore, the message is handled within

the context of the parent PegDecoratedWindow. This model makes it very
easy to handle messages from objects on the tool bar by handling them in
the same message loop as all of your other command objects.

Also, for example, say you have a PegMenuButton (on the window's menu)

and a PegIconButton (on the window's tool bar) that share a common ID.

Whichever is selected by the end user, the same code will be executed.

This makes it very easy to put frequently used commands on a tool bar, and
also have them on the menu.

173 Swell Software, LLC Control Classes

2.27.2 See Also

PegToolBarPanel

PegToolBar

2.27.3 Style Flags

None.

2.27.4 Signals

None.

2.27.5 Derivation

PegToolBar is derived from PegThing.

2.27.6 Constructors:

PegToolBar(PEGUSHORT Id = 0)

The PegToolBar constructor creates a PegToolBar object. PegToolBar

automatically determines its position and size.

2.27.7 Public Functions:

virtual void AddPanel(PegToolBarPanel *pPanel)

This method adds the newly created PegToolBarPanel to the PegToolBar.

The panel is sized when it is created, and the PegToolBar positions the

panel on the tool bar after any previously added panels. If the panel is

already on the tool bar, this method simply does nothing and returns.

virtual void Draw(const PegRect &Invalid)

PegToolBar overrides the Draw() function to draw the tool bar background.

virtual PEGINT Message(const PegMessage &Mesg)

PegToolBar catches PM_PARENTSIZED and PM_SHOW messages.

virtual void PositionPanels(void)

This method is used internally by the PegToolBar to reposition its child
panels. It is a public function so that the PegToolBarPanels can trigger all of

the child panels to be repositioned.

174 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

virtual PegThing* RemovePanel(PegThing *pWho)

This method removes the panel that is pointed to by pWho. In doing so, it

repositions the PegToolBarPanels that follow this particular panel (if there
are any) to fill in the empty space on the PegToolBar left by removing the
panel.

2.27.8 Protected Members

virtual void SizeToParent()

This function resizes the width of the PegToolBar based on the width of the
parent window.

virtual void SizeToTallestPanel()

This function resizes the height of the PegToolBar based on the tallest

panel contained inside it.

2.27.9 Examples:

The following is an example of two PegDecoratedWindows with

PegToolBars and PegToolBarPanels. Note that there are three
PegToolBarPanels on the top window and that there are two

PegToolBarPanels on the second window. Note also that the PegThing-

derived objects are added to the PegToolBarPanels, not to the PegToolBar

itself.

PegToolBar example image:

175 Swell Software, LLC Control Classes

PegToolBar

The following example creates a PegToolBar and adds three

PegToolBarPanels to the PegToolBar. This is the PegToolBar in the above

top level window. Usually you would do this in the constructor of your

PegDecoratedWindow derived window.

... some code deleted ...

PegToolBar *pToolBar = new PegToolBar();

PegRect Rect;

PegToolBarPanel *pPanel = new PegToolBarPanel();

Rect.Set(0, 0, 70, 20);

pPanel->Add(new PegTextButton(Rect, "Remove It ->",

IDB_ALPHA_BUTTON));

Rect.Set(0, 0, 20, 20);

176 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

pPanel->AddToEnd(new PegTextButton(Rect, "B"));

pToolBar->AddPanel(pPanel);

Rect.Set(0, 0, 200, 20);

pPanel = new PegToolBarPanel(IDC_STRING_PANEL);

pPanel->Add(new PegEditField(Rect,

"String on a ToolBarPanel"));

pToolBar->AddPanel(pPanel);

Rect.Set(0, 0, 19, 18);

pPanel = new PegToolBarPanel();

pPanel->Add(new PegIconButton(Rect, BID_BULLSEYE,

IDB_BULL_BUTTON), FALSE);

pPanel->Add(new PegIconButton(Rect, BID_BLUE_DOT,

IDB_BLUE_BUTTON), FALSE);

pPanel->Add(new PegIconButton(Rect, BID_GRAY_DOT,

IDB_GREY_BUTTON), FALSE);

pPanel->Add(new PegIconButton(Rect, BID_GREEN_DOT,

IDB_GREEN_BUTTON), FALSE);

pPanel->Add(new PegIconButton(Rect, BID_RED_DOT,

IDB_RED_BUTTON), FALSE);

pToolBar->AddPanel(pPanel);

Add(pToolBar);

177 Swell Software, LLC Control Classes

PegToolBarPanel

2.28 PegToolBarPanel

2.28.1 Overview

PegToolBarPanel is a container object that is used in conjunction with

PegToolBar. Any PegThing-derived object may be placed on a

PegToolBarPanel. As the objects are added, the panel positions the objects

from left to right. The panel also resizes itself to the tallest child that is

added to the panel. Objects that are smaller in height to the tallest object
are placed at the top of the panel's client area.

2.28.2 See Also

PegToolBar

2.28.3 Style Flags

None.

2.28.4 Signals

None.

2.28.5 Derivation

PegToolBarPanel is derived from PegThing.

2.28.6 Constructors:

PegToolBarPanel(PEGUSHORT Id = 0)

The PegToolBarPanel constructor creates a PegToolBarPanel object. The

size of the panel is determined by its child objects. Its position on the

PegToolBar is determined when it is added to the PegToolBar.

2.28.7 Public Functions:

virtual void Add(PegThing* pWho, PEGBOOL Show = TRUE)

This is an overridden version of the PegThing::Add method. The
PegToolBarPanel height will be adjusted, if necessary, to allow the

178 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

PegThing object to fit on the panel. It will also have to resize itself based on
the width of the pWho object. It sends a message to its parent object

(PegToolBar) to reposition any sibling panels based on its new size.

virtual void AddToEnd(PegThing* pWho, PEGBOOL Show =
TRUE)

This method is identical to Add, but the object is added to the end of the

child list.

virtual void Draw(const PegRect &Invalid)

PegToolBarPanel overrides the Draw() function to draw the panel

background and its children.

virtual void Remove(PegThing* pWho)

This method is an override of the PegThing::Remove method. After passing

the parameters to PegThing, we resize ourselves accordingly.

2.28.8 Protected Members

virtual void PositionChildren()

This function calculates the positions of all of its child objects.

2.28.9 Examples:

The following is an example of two PegDecoratedWindows with

PegToolBars and PegToolBarPanels. Note that there are three

PegToolBarPanels on the top window and that there are two
PegToolBarPanels on the second window. Note also that the PegThing

derived objects are added to the PegToolBarPanels, not to the PegToolBar

itself.

Below is a PegToolBar example image:

179 Swell Software, LLC Control Classes

PegToolBarPanel

The following example creates a PegToolBar and adds three

PegToolBarPanels to the PegToolBar. This is the PegToolBar in the above

top-level window. Usually you would do this in the constructor of your

PegDecoratedWindow derived window.

... some code deleted ...

PegToolBar *pToolBar = new PegToolBar();

PegRect Rect;

PegToolBarPanel *pPanel = new PegToolBarPanel();

Rect.Set(0, 0, 70, 20);

pPanel->Add(new PegTextButton(Rect, "Remove It ->",

IDB_ALPHA_BUTTON));

Rect.Set(0, 0, 20, 20);

179 Swell Software, LLC Control Classes

Control Classes

pPanel->AddToEnd(new PegTextButton(Rect, "B"));

pToolBar->AddPanel(pPanel);

Rect.Set(0, 0, 200, 20);

pPanel = new PegToolBarPanel(IDC_STRING_PANEL);

pPanel->Add(new PegEditField(Rect,

"String on a ToolBarPanel"));

pToolBar->AddPanel(pPanel);

Rect.Set(0, 0, 19, 18);

pPanel = new PegToolBarPanel();

pPanel->Add(new PegIconButton(Rect, BID_BULLSEYE,

IDB_BULL_BUTTON), FALSE);

pPanel->Add(new PegIconButton(Rect, BID_BLUE_DOT,

IDB_BLUE_BUTTON), FALSE);

pPanel->Add(new PegIconButton(Rect, BID_GRAY_DOT,

IDB_GREY_BUTTON), FALSE);

pPanel->Add(new PegIconButton(Rect, BID_GREEN_DOT,

IDB_GREEN_BUTTON), FALSE);

pPanel->Add(new PegIconButton(Rect, BID_RED_DOT,

IDB_RED_BUTTON), FALSE);

pToolBar->AddPanel(pPanel);

Add(pToolBar);

179 Swell Software, LLC Control Classes

PegTransIcon

2.30 PegTransIcon
2.30.1 Overview

PegIcon is a simple bitmap display object. PegIcon can also be used to
represent another object.

PegIcon can be assigned a 'Proxy' object pointer. If this pointer is assigned,

the icon will add the Proxy object to the icon parent and destroy itself when

selected. This is how window icons function. PegDecoratedWindow classes

will create an instance of PegIcon when they are minimized, add the icon to

the window parent, and remove themselves from the parent.

A PegIcon object with no Proxy assignment is also useful for simply
displaying a PegBitmap.

2.11.2 See Also

PegBitmap

PegThing

2.11.3 Style Flags

None.

2.11.4 Signals

None.

2.11.5 Derivation

PegIcon is derived from PegThing.

180 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.11.6 Constructors:

PegIcon(PegThing *pProxy, PEGINT BitmapId = 0, PEGUINT
Id = 0, PEGULONG Style = FF_NONE)

PegIcon(const PegRect &Where, PEGINT BitmapId = 0,

PEGUINT Id = 0, PEGULONG Style = FF_NONE)

PegIcon(PEGINT BitmapId = 0, PEGUINT Id = 0, PEGULONG
Style = FF_NONE)

The first constructor creates a PegIcon that represents or serves as a proxy

for another object. The second and third constructors create a PegIcon that
will simply display a bitmap. The second constructor allows the caller to

specify the icon size and position. The third constructor allows the icon to

self determine the overall icon size to match the bitmap size. When the third

constructor is used, the application software may immediately use the

Resize() function to position the icon.

2.11.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegIcon overrides the Draw() function to draw the icon bitmap.

virtual PegBitmap *GetIcon(void)

This inline function returns the address of the bitmap associated with the
PegIcon.

virtual PegThing *GetProxy(void)

This inline function returns the address of the object that is represented by

the PegIcon.

virtual PEGINT Message(const PegMessage &Mesg)

PegIcon catches PM_LBUTTONUP messages.

virtual void SetIcon(PegBitmap *nbm)

This inline function can be used to alter the PegIcon bitmap at any time.

virtual void SetProxy(PegThing *pNew)

This inline function can be used to assign or alter the object represented by

the PegIcon.

181 Swell Software, LLC Control Classes

2.29 PegVScroll

PegVScroll

2.29.1 Overview

PegVScroll is a vertical scroll bar class. The scroll bar elevator is

proportional to the visible area of the object being scrolled.

PegVScroll takes two forms. The most common form is a NONCLIENT area

scroll bar. In this form, PegVScroll calls the parent window GetVScrollInfo

function to determine position, size, and limit information. An instance of

this form of PegVScroll has PSF_NONCLIENT system status.

The second form is a client area scroll bar. This form does not have

PSF_NONCLIENT system status. This type of scroll bar is under system

software control, and does not attempt to automatically determine position
and limit information.

Client area PegVScroll objects are very similar in operation to PegSlider

objects. They are useful for allowing the user to update a field on the

display by dragging the scroll elevator or selecting the directional scrolling

buttons.

2.29.2 See Also

PegScrollInfo

PegHScroll

PegScroll

PegSlider

How Scrolling Works

2.29.3 Style Flags

There are no styles associated with PegVScroll Objects.

182 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

2.29.4 Signals

PegVScroll sends PSF_SCROLL_CHANGE signals when the position of the

scroll bar elevator is changed either by dragging the elevator or by selecting
the directional scroll buttons. The signal message contains the following
information:

Message.Param = ID of the PegHScroll object.

Message.ExtParams[0] = Current scroll position.

Message.ExtParams[1] = Last reported scroll position.

Message.pSource = Pointer to PegHScroll object.

2.29.5 Derivation

PegVScroll is derived from PegScroll.

2.29.6 Constructors:

PegVScroll(PegScrollDrawInfo *pDrawInfo = NULL)

PegVScroll(const PegRect &InRect, PegScrollInfo *pSi,
PEGUINT Id = 0, PegScrollDrawInfo *pDrawInfo =
NULL)

The first constructor creates a non-client area scroll bar. The scroll bar will
automatically determine its position and size itself to the height of the

parent window.

The second constructor creates a client area scroll bar. In this mode, a

pointer to a PegScrollInfo structure is passed to setup the initial scrolling
range. In this mode, the scroll bar position and size are passed to the

constructor along with the scroll bar ID, if any.

2.29.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegVScroll overrides the Draw() function to fill the scroll bar background

area.

virtual PEGINT Message(const PegMessage &Mesg)

PegVScroll catches PM_SHOW, directional button selection, and elevator

drag messages.

183 Swell Software, LLC Control Classes

virtual void Resize(const PegRect &Rect)

PegVScroll

PegVScroll overrides the Resize() function to ensure that the elevator

remains proportional to the overall scroll bar size.

void SetThumbColor(PEGCOLOR Color)

This function modifies the color of the thumb (elevator) button.

2.29.8 Protected Members

virtual void CreateButtons(void)

This function is responsible for creating the up and down arrow buttons, as

well as the elevator button. This is a separate virtual function so that it can

be overridden in derived classes that want to use different types of buttons.

PegIconButton *mpDownButton

This is the down arrow button.

PeScrollButton *mpScrollButton

This is the elevator button that moves up and down inside the scroll bar.

PegIconButton *mpUpButton

This the up arrow button.

virtual void ReadParentScrollInfo(void)

This function is called by non-client scroll bars when the scroll bar is first
shown to discover the parent window’s scrolling parameters.

virtual void SetThumbButtonPos(void)

This function is called when the scroll bar is first shown, when it is resized,

or when the scroll information is changed. This function should determine

the position and size of the scroll button (if any).

2.29.9 Examples:

The following are examples of PegVScroll:

184 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

The following example initializes a PegScrollInfo structure and creates a

client area scroll bar. The scroll bar will report values between 0 and 200,

will initially be positioned at 100, and the scroll bar elevator will be 25% as

high as the scroll bar.

void MyWindow::AddVScroll(void)

{

PegScrollInfo si;

si.Min = 0;

si.Max = 200;

si.Current = 100;

si.Step = 1;

si.Visible = 50;

PegRect ScrollRect;

ScrollRect.Set(10, 10, PEG_SCROLL_WIDTH + 10, 80);

Add(new PegVScroll(ScrollRect, &si));

}

185 Swell Software, LLC Control Classes

2.30 PegVPrompt

PegVPrompt

2.30.1 Overview

PegVPrompt (Peg Vertical Prompt) is a text display object. PegVPrompt

can be drawn with several different border styles, and can be updated

dynamically for interactive updates or real-time information display.
PegVPrompt does not support user editing.

PegVPrompt differs from PegPrompt in that the text is displayed vertically,

with the first character of the prompt string displayed at the top of the

prompt object and the last character of the prompt string displayed at the

bottom of the prompt object.

The PegVPrompt text is centered both horizontally and vertically within the
prompt client area.

The font used by PegVPrompt can be changed at any time by using the

SetFont() function, which is a PegTextThing member function. Likewise,

the color used by PegVPrompt can be set at any time by calling the

SetColor() function.

2.30.2 See Also

PegEditField

PegPrompt

2.30.3 Style Flags

PegVPrompt supports the same styles as PegPrompt, as shown below.

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

TJ_RIGHT Right justified text

TJ_LEFT Left justified text

TJ_CENTER Centered text

186 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

TT_COPY Instructs the prompt to copy the string
assigned. This flag should be used when
the string assigned to the prompt is
created dynamically using temporary
storage.

AF_TRANSPARENT Does not fill client area, assumes same
color as parent.

AF_ENABLED Prompt can be selected. The prompt will
also send a PSF_FOCUS_RECEIVED signal
to its parent.

2.30.4 Signals

In addition to the common signals defined by PegThing, PegVPrompt

supports the PSF_CLICKED signal notification.

2.30.5 Derivation

PegVPrompt is derived from PegPrompt.

2.30.6 Constructors:

PegVPrompt(const PegRect &Rect, PEGUINT StringId = 0,

PEGUSHORT Id = 0, PEGULONG Style = FF_NONE|
AF_TRANSPARENT)

PegVPrompt(const PEGCHAR *pText, const PegRect &Rect,

const PEGCHAR *pText, PEGUSHORT Id = 0, PEGULONG
Style = FF_NONE|AF_TRANSPARENT)

The PegVPrompt constructor accepts a rectangle describing the prompt

position and size, a pointer to or an ID for the initial text value, and optional

object ID and style flags.

2.30.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegVPrompt overrides the Draw() function to display the prompt text.

2.30.8 Examples:

The following are examples of PegVPrompt:

187 Swell Software, LLC Control Classes

PegVPrompt

188 PEG Pro API Reference Manual Swell Software, LLC

Control Classes

189 Swell Software, LLC Image Conversions

C H A P T E R 3

IMAGE CONVERSIONS

PegBmpConvert

PegGifConvert

PegImageConvert

PegJpgConvert

PegPngConvert

PegQuant

190 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

3.1 PegBmpConvert

3.1.1 Overview

PegBmpConvert is a PegImageConvert-derived class for reading and

decompressing MS Windows or OS/2 BMP graphics files. Before using

PegBmpConvert, be sure to read fully the PegImageConvert base class

documentation.

The PegBmpConvert class is only included in the PEG library if
PEG_BMP_CONVERT is defined in header file pconfig.hpp.

3.1.2 See Also

PegGifConvert

PegImageConvert

PegJpgConvert

PegPngConvert

PegQuant

3.1.3 Derivation

PegBmpConvert is derived from PegImageConvert.

3.1.4 Constructors:

PegBmpConvert(PEGUINT Id = 0)

This constructor creates a bitmap conversion object.

3.1.5 Public Functions:

BmpHeader *GetBmpHeader(void)

This function returns a pointer to the bitmap header information. This can

be used to determine additional information about the decoded bitmap file.

The BmpHeader structure is defined as:

191 Swell Software, LLC Image Conversions

 PegBmpConvert

typedef struct

{
PEGUSHORT id;
PEGULONG file_size;
PEGUSHORT reserved[2];
PEGULONG image_offset;
PEGUSHORT header_size;
PEGUSHORT not_used;
PEGULONG xres;
PEGULONG yres;
PEGUSHORT numplanes;
PEGUSHORT bits_per_pix;
PEGULONG compression;
PEGULONG bit_map_size;
PEGULONG hor_res;
PEGULONG vert_res;
PEGULONG number_of_colors;
PEGULONG num_sig_colors;

} BmpHeader;

virtual PEGBOOL GetImageInfo(PegFile *pSrc,

PegImageInfo *pInfo)

This reads the header of an image file and populates a PegImageInfo

structure with the height, width, and bits per pixel of the image.

struct PegImageInfo {

PEGINT Width;

PEGINT Height;

PEGINT BitsPerPix;

};

The caller is responsible for allocating the structure. When the function is

finished, it resets the file pointer to the beginning of the file. This function is

only available if PIC_FILE_MODE is turned on.

virtual PegPixel GetULCColor(void)

Returns the upper-left hand corner color of the first bitmap. This is used by

image conversion to add transparency to bitmap images.

192 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

virtual PEGBOOL ReadImage(PEGINT Count = 1)

virtual PEGBOOL ReadImage(PegFile *pFile, PEGINT Count
= 1)

This function reads the BMP image. The Count parameter is ignored for

BMP image files. The second form of the function is defined only if

PIC_FILE_MODE is defined in the \peg\include\pconfig.hpp header file.

The first form of the function is used to transfer source file data from an
external source (such as a web browser network stack) to the image
decoder.

3.1.6 Examples:

A complete working example program using the run-time image conversion

classes is provided in your PEG distribution in the directory \peg\

examples\imgview.

193 Swell Software, LLC Image Conversions

3.2 PegGifConvert

PegGifConvert

3.2.1 Overview

PegGifConvert is a PegImageConvert-derived class for reading and

decompressing GIF input images. Before using PegGifConvert, be sure to

read fully the PegImageConvert base class documentation.

The PegGifConvert class is only included in the PEG library if

PEG_GIF_CONVERT is defined in header file pconfig.hpp.

PegGifConvert reads GIF image files and produces PegBitmap structures

and GIF_IMAGE_INFO structures. The structures produced are NOT

deleted when the PegGifConvert object is deleted, unless you first call the

DestroyImages() function before deleting the PegGifConvert object.

Normal usage is to create the PegGifConvert object, use it to read and
decompress any number of GIF images, and to retrieve the PegBitmap and
GIF_IMAGE_INFO structures from the conversion object using the

GetBitmapPointer() and GetGifInfo() functions. Once you have

retrieved the output produced, you can delete the conversion object without
losing any data. After you are done using or displaying the PegBitmaps
produced, you should free the memory associated with the run-time

conversion by deleting the PegBitmap and GIF_IMAGE_INFO structures

with a call to the DestroyImages() function.

** WARNING **

PegGifConvert uses the LZW decompression algorithm to read and decode

GIF images. The LZW algorithm is patented, and the patent is now owned

by Unisys Corporation. Usage of LZW requires that the user obtain a usage

license directly from Unisys. Software providers such as Swell Software are
not allowed to provide a transferable usage license. It is therefore your

responsibility to obtain an LZW usage license if you decide to use the

PegGifConvert class in your application. By providing PEG users with a GIF

decompression class, free of charge, Swell Software in no way implies that

an LZW license has been obtained, and assumes no responsibility for any

user who willfully violates the Unisys LZW patent by using the
PegGifConvert class without obtaining an LZW license from Unisys.

At the time of this printing, LZW usage licenses are available from Unisys

for a royalty charge of 0.45% (forty five one-hundredths of one percent) or

Image Conversions

less per OEM unit shipment. Further information can be obtained from the
Unisys website, www.unisys.com.

3.2.2 See Also

PegBmpConvert

PegImageConvert

PegJpgConvert

PegPngConvert

PegQuant

3.2.3 Derivation

PegGifConvert is derived from PegImageConvert.

3.2.4 Constructors:

PegGifConvert(PEGUINT Id = 0)

This constructor creates an image conversion object.

3.2.5 Public Functions:

void DestroyImages(void)

This function destroys all of the PegBitmaps that have been created as well

as any other internal structures used to maintain them.

GIF_HEADER *GetGifHeader(void)

This function returns a pointer to the GIF file header information. This can
be used to determine additional information about the decoded GIF. There

is one GIF_HEADER structure produced for each GIF file converted. The

GIF_HEADER structure is deleted when the PegGifConvert object is

destroyed. The GIF header information structure is defined as:

typedef struct {

PEGUINT Width; // overall width

PEGUINT Height; // overall height

PEGUINT Colors;

194 PEG Pro API Reference Manual Swell Software, LLC

http://www.unisys.com/

195 Swell Software, LLC Image Conversions

PegGifConvert

PEGUBYTE BackClrIndex;

COLORVAL Background; // background fill color

PEGUBYTE AspectRatio;

PEGUBYTE IsGif89;

} GIF_HEADER;

GIF_IMAGE_INFO *GetGifInfo(void)

This function is used to retrieve a pointer to the array of GIF information

structures produced during image conversion. There will be one element in
the array for each image converted, i.e. one GIF file may contain any

number of images and the equivalent number of GIF_IMAGE_INFO

structures will be produced. The GIF_IMAGE_INFO structures define local

information for each embedded image such as size, relative offset, and

delay time. The GIF_IMAGE_INFO structure is defined as:

typedef struct {

PEGINT xOffset; // relative x offset

PEGINT yOffset; // relative y offset

PEGUINT Width; // width in pixels

PEGUINT Height; // height in pixels

PEGUINT Delay; // delay in hundredths of a second

PEGUBYTE HasTrans;

PEGUBYTE TransColor;

PEGUBYTE InputFlag; // wait for user input?

PEGUBYTE Disposal; // image overwrite method

} GIF_IMAGE_INFO;

After your application has completed using the image data produced by the

conversion object, you must delete the GIF_IMAGE_INFO structures with a

call to the DestroyImages() function to avoid a memory leak.

virtual PEGBOOL GetImageInfo(PegFile *pSrc,
PegImageInfo *pInfo)

This function fills in the PegImageInfo structure from the GIF file pSrc. This

is only available if PIC_FILE_MODE is turned on.

PEGBOOL ReadFrame(void)

GIF images can be animated by using multiple frames. This function reads

in one individual frame and converts it into a PegBitmap.

196 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

PEGBOOL ReadHeader()

This function reads information out of the GIF header, such as height,

width, and number of colors.

PEGBOOL ReadHeader(PegFile *pSrc)

This version of the ReadHeader function is only available if PIC_FILE_MODE
is turned on.

virtual PEGBOOL ReadImage(PEGINT Count = 10)

virtual PEGBOOL ReadImage(PegFile *pSrc, PEGINT Count
= 10)

This function reads the GIF image. The Count parameter defines the

maximum number of PegBitmap structures to produce in the event that the
GIF file contains multiple images.

The second form of the function is defined only if PIC_FILE_MODE is defined

in the \peg\include\pconfig.hpp header file. The first form of the

function is used when PIC_FILE_MODE is not defined.

3.2.6 Examples:

A complete working example program using the run-time image conversion

classes is provided in your PEG distribution in the directory \peg\

examples\imgview.

197 Swell Software, LLC Image Conversions

PegImageConvert

3.3 PegImageConvert

3.3.1 Overview

PegImageConvert is the base class used to provide the image

decompression and other processing used by the PEG utility program of

the same name. PegImageConvert serves as the base class for

PegBmpConvert, PegGifConvert, PegJpgConvert, and PegPngConvert

classes. These classes provide the ability to read, color quantize, RLE
encode, and generate PegBitmap-formatted data structures at program run

time.

Note: Most applications do NOT use or enable run-time image
conversion! Run-time image conversion can consume a large amount of

dynamic memory, and should only be used if required. The better

alternative to run-time image conversion in many cases is to use the

ImageConvert utility program to pre-convert image files into PegBitmap
source files.

The run-time image conversion classes are enabled individually with

#defines in the pconfig.hpp header file. If any type of image conversion is

enabled, the base PegImageConvert class is compiled and included in the
PEG library.

The image conversion classes are designed to run either standalone using
file input, or under separate low-priority execution threads. There are

definitions in the file \peg\include\pconfig.hpp that specify how the

image conversion classes are going to be used.

The definition PIC_FILE_MODE, when enabled, instructs the image

conversion to use file I/O input methods. Alternatively, when this definition

is disabled, the image conversion classes use a circular data buffer for
input. This input buffer should be 'fed' by an external task. When running in
this mode, the conversion object calls a user-defined callback function

when the conversion object needs more input data or when the state of the
conversion object changes. This facilitates usage in a multitasking
environment where the input data is streaming in from an external source.

The provided callback function may sleep or otherwise suspend the
conversion process until additional input data is available.

198 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

If PIC_FILE_MODE is turned on, the GetImageInfo function reads the image

header and populates a PegImageInfo structure. The structure contains the
height, width, and bits per pixel of the image. Before the function returns, it
resets the file pointer back to the beginning of the file.

One of the jobs of the image conversion class is to map the input file colors
to the target system display capabilities. There are also two basic color

mapping modes that can be used by the conversion object. These mapping

modes are referred to as ‘inline’ mode and ‘post-read’ mode. In inline

remapping mode, the converter reads and decompresses one scanline of

input data to a temporary buffer and remaps this single row to the target

colors or grayscale. This process continues on a line-by-line basis until the
entire image has been remapped to the target system palette. The benefit

of this conversion mode is that only a single-line temporary buffer is

required in addition to the final output data array. As a result, this

conversion mode uses less dynamic memory than post-read conversion.

Please note, however, that inline conversion mode requires that the input
data is scan-line oriented and not interlaced. For this reason, inline

conversion mode cannot be used with interlaced PNG input files, which use

an interlace format that is not scan-line oriented.

Post-read conversion means that the entire input image is read into a

temporary buffer, and the image is then color mapped into the final output

buffer. This conversion mode can require much more memory than inline
conversion, especially for cases when high color depth (i.e. 24bpp) images

are being remapped to lower color depth target displays which may require

less than 8 bpp output in the final buffer. Post-read conversion has the

beneficial capability of producing an optimal color palette for 8 bpp paletted

systems. It is also able to handle interlaced PNG files.

The color-mapping algorithm used can be either a best-match algorithm or
a dithering algorithm. For inline remapping, the algorithm is determined by

the conversion mode. For post-read remapping the algorithm used is

determined by which color-mapping function the application calls.

After conversion is complete, the conversion objects return a pointer to a
PegBitmap structure containing the converted image ready for display. In
most cases, only one converted image will be available. However, for
animated GIF files there may be multiple PegBitmap structures produced.
The application software can determine how many images were converted

by calling the GetBitmapCount() function, and may retrieve pointers to

each bitmap by calling the GetBitmapPointer() function.

199 Swell Software, LLC Image Conversions

PegImageConvert

The image conversion classes can also be used in combination with the

PEG color quantization class, PegQuant. The image conversion classes will

count the colors present in each image for use in the color quantization

histogram.

The definition PIC_QUANT, when enabled, includes the color counting

functions required for custom palette generation. When this definition is
disabled, the color quantization functions are not included. This definition is
disabled for most embedded targets.

The order in which the PegImageConvert member functions are called is

critical for correct operation. This is detailed further in the member function

descriptions. In general, the conversion process can either convert the

incoming data inline to a predefined system palette, or in one pass after
reading the entire input image. Inline conversion is the most memory

efficient when running with a fixed system palette.

The general order of operation for inline conversion to a fixed system

palette is:

• Construct the conversion object.

• Set the conversion object mode to PIC_INLINE_REMAP or
PIC_INLINE_DITHER.

• Initialize the conversion object system palette.

• Set the conversion object callback function if not using a file system.

• Call the conversion object ReadImage() function.

• Call the conversion object RleEncode() function (optional).

• Retrieve the completed PegBitmap pointer using GetBitmapPointer().

• Delete the conversion object.

The general order of operation for post-read conversion to a fixed system

palette is:

• Construct the conversion object.

• Initialize the conversion object system palette.

• Set the conversion object callback function if not using a file system.

• Call the conversion object ReadImage() function.

• Call the conversion object RemapBitmap() or DitherBitmap() function
to remap the image to the target system color depth.

200 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

• Call the conversion object RleEncode() function (optional).

• Retrieve the completed PegBitmap pointer using GetBitmapPointer().

• Delete the conversion object.

This order of operation is somewhat different when the goal is to create a

custom palette and perform post-read remapping to the optimal palette:

• Construct a PegQuant object.

• Construct the conversion object.

• Set the conversion object callback function if not using a file system.

• Call the conversion object ReadImage() function.

• Call the conversion object CountColors() function.

• Call the PeqQuant object ReduceColors() function.

• Pass palette produced by PegQuant as system palette to the conversion
object.

• Call conversion object DitherBitmap() or RemapBitmap() function to
remap to optimal palette.

• Retrieve the completed PegBitmap pointer(s) using
GetBitmapPointer().

• Delete the conversion object.

** Important Note **

The PegBitmap structures created by the conversion object are not
deleted when the object is destroyed. Under normal operation, the caller

retrieves the bitmaps after conversion by calling the GetBitmapPointer()

function. The caller then owns the memory associated with the bitmaps,
and must free this memory after the bitmaps are no longer needed.

If the caller does not retrieve the PegBitmap structures, they should be

deleted with a call to DestroyImages() before deleting the conversion

object. This can be useful in an application where you do not actually want
to display the images, but you do need to obtain image size or other
attribute information. In this case, you can construct the conversion
object(s), tell them to read the image, retrieve whatever information is

required, and then call DestroyImages() to clean up the memory

associated with the conversion objects.

201 Swell Software, LLC Image Conversions

3.3.2 See Also

PegBmpConvert

PegGifConvert

PegImageConvert

PegJpgConvert

PegPngConvert

PegQuant

3.3.3 Derivation

PegImageConvert is a PEG base class.

3.3.4 Constructors:

PegImageConvert(PEGUINT Id)

This constructor creates an image conversion object.

3.3.5 Public Functions:

PEGUINT ConsumeImageInput(PEGUBYTE *pBuffer, PEGUINT

Length)

This function is called by derived conversion classes to get input data. This

abstracts the data source (either file or input buffer) from the derived

conversion classes.

void CountColors(PegQuant *pQuant)

This function is called after the image has been decoded to count the
occurrences of each possible color value. This is used for color reduction

along with the PegQuant class. This function is only provided if PIC_QUANT

is defined in the file \peg\include\pconfig.hpp.

void DestroyImages(void)

This function can be called to destroy all PegBitmap images created by the
conversion object. This should only be done if the caller does not want to

keep and use the PegBitmaps produced.

202 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

PEGBOOL DitherBitmap(void)

This function can be called after an image has been read and a system

palette has been assigned with SetSystemPalette(). This function will

dither the contained PegBitmap to the system palette.

PEGUINT GetBitmapCount(void)

This inline function can be called to learn the number of PegBitmap

structures produced during the image read operation. GIF files can contain
any number of individual images.

PegBitmap *GetBitmapPointer(PEGUINT Index)

This function returns a pointer to the PegBitmap structure at the specified

index produced by the conversion process. Most images (JPEG, PNG, etc.)

only have one bitmap, so passing an index of 0 obtains it. GIFs can have
multiple bitmaps, so pass the index of the bitmap you need.

PEGLONG GetDataSize(PEGUINT Index = 0)

Returns the data size of the specified image.

PEGCHAR *GetErrorString(void)

This function returns the error string associated with a conversion failure.
This value is only valid if the conversion object state variable indicates that

an error has occurred.

virtual PEGBOOL GetImageInfo(PegFile *pSrc,
PegImageInfo *pInfo)

This function reads the header of an image file and populates a

PegImageInfo structure with the height, width, and bits per pixel of the

image.

struct PegImageInfo {

PEGINT Width;

PEGINT Height;

PEGINT BitsPerPix;

};

The caller is responsible for allocating the structure. When the function is

finished, it resets the file pointer to the beginning of the file. This function is

only available if PIC_FILE_MODE is turned on.

203 Swell Software, LLC Image Conversions

PegImageConvert

static PEGUBYTE GetImageType(PegFile *pSrc)

This function reads the beginning of an image file to determine what type of

image it is. If it succeeds, it returns one of the following:

PIC_TYPE_BMP // Bitmap file

PIC_TYPE_GIF // GIF file

PIC_TYPE_PNG // PNG file

PIC_TYPE_JPG // JPEG file

When the function is finished, it resets the file pointer back to the beginning

of the file.

static PEGUBYTE GetImageType(PEGUTYPE *pData)

This version of the GetImageType function is only available if
PIC_MEMORY_MODE is turned on.

PEGUINT GetMode(void)

Returns the operating mode of the conversion object. The operating mode
is determined by the caller when configuring the conversion object. The
available modes are:

PIC_NO_CONVERT // no inline conversion (custom palette mode)
PIC_INLINE_DITHER // dither on the fly
PIC_INLINE_REMAP // remap to best color on the fly
PIC_RGB_TRANS // use RGB transparency
PIC_INDEX_TRANS // use indexed transparency

When operating with a fixed system palette, it is important to configure the

conversion object for an inline conversion mode prior to reading the image.

This saves a large amount of memory space over reading the image and
then converting to a fixed palette.

PEGUBYTE GetOutputBitsPerPix(void)

This function returns the output color depth determined by the system

palette assigned to the conversion object.

PegPixel GetPixelColor(PEGUBYTE *pGet, PEGUINT YPos,

PEGUINT Index)

Returns the PegPixel value at the specified index.

PEGUINT GetRowsConverted(void)

Returns the number of rows that have been converted so far.

204 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

PEGUINT GetState(void)

Returns the state variable of the conversion object. The possible states are:

PIC_IDLE // waiting for input data
PIC_ERROR // an error has occurred
PIC_HEADER_KNOWN // the header (width, height, type) is known
PIC_PALETTE_KNOWN // the palette is known
PIC_ONE_CONV_DONE // at least one conversion complete
PIC_COMPLETE // all conversions are complete

PEGUINT GetStride(PEGUINT Width, PEGUINT Bits, PEGUINT

HasAlpha = 0)

This function calculates the stride based on the width, bits per pixel, and
whether or not it has an alpha-channel.

PEGUINT GetStride(PegBitmap *pMap)

This version of the GetStride function calls the other GetStride function

using pMap’s width, bits-per-pixel, and alpha information.

PegPixel GetTransColor(void)

Returns the transparent color value.

PegPixel GetULCColor(void)

Returns the upper-left hand corner color of the first bitmap.

void Id(PEGUINT Id)

Sets the conversion object ID.

PEGUINT Id(void)

Returns the ID of the conversion object. This is a caller-defined value used
to identify a particular converter when many conversions are occurring

concurrently.

PEGUBYTE ImageType(void)

Returns the image type processed by the conversion object. The supported

image types are:

PIC_TYPE_BMP

PIC_TYPE_GIF

PIC_TYPE_JPG

PIC_TYPE_PNG

205 Swell Software, LLC Image Conversions

PEGUINT InputFreeSpace(void)

PegImageConvert

Returns the number of bytes free in the input buffer. This function is only

provided when PIC_FILE_MODE is not defined.

void KeepAlpha(PEGBOOL Keep)

This function determines whether the alpha information from the original

image is to be kept.

virtual PEGBOOL ReadImage(PegFile *pFile, PEGINT Count
= 100)

virtual PEGBOOL ReadImage(PEGINT Count = 100)

This function begins the conversion process. It should be called only after
the converter has been configured with SetMode(). The first form is

provided for PIC_FILE_MODE, and the second form for a multitasking

environment. Use of the Count parameter depends on the ReadImage()

implementation for a specific derived class. Currently, Count is used only in

the GIF image conversion implementation as an upper limit on the number
of GIF89a embedded images converted.

PEGBOOL RemapBitmap(void)

This function is called to do a best-color mapping of the bitmap to a fixed
system palette. The SetSystemPalette() function must be called before

RemapBitmap(). This function does no dithering; instead, it uses a closest-

match algorithm. This is useful when an optimal palette has been
generated.

PEGBOOL RleEncode(PEGBOOL Force = FALSE)

This function can be called to RLE encode a converted bitmap. The
function will first determine if RLE encoding saves space before doing the
encoding, so the caller cannot assume that the contained PegBitmap is
encoded after calling this function, unless Force is set to TRUE. This

function is only defined if PEG_CONVERT_RLECOMP is defined in

pconfig.hpp.

void RotateImages(PEGINT Rotation, PEGBOOL FlipX =
False, PEGBOOL Flipy = FALSE)

This function rotates the bitmap. Only values of 90 or 270 degrees are

supported. The bitmap rotates counter-clockwise. The parameters FlipX

and FlipY also tell it to mirror the image along the x or y axis, respectively.

206 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

PEGUINT SendData(PEGUBYTE *pGet, PEGUINT Size)

This function feeds input data to the converter. It is only provided when

PIC_FILE_MODE is not defined. This function allows an external task to pass

data to the conversion object.

void SetGrayscale(PEGBOOL Gray)

This function changes the color mapping algorithm to match colors based

on brightness using a linear grayscale target palette.

void SetIdleCallback(PEGBOOL (*pFunc)(PEGUSHORT Id,
PEGUSHORT State, PegImageConvert *pObject))

This function assigns a callback function that the conversion object will call

whenever input data is needed or the state of the conversion object has

changed. The callback function will receive the ID of the conversion object,

the conversion object state variable, and a pointer to the conversion object.

This function is only provided when PIC_FILE_MODE is not defined.

The callback function should be structured such that it tests the conversion
object state variable to determine the reason for the callback. If the
conversion object needs data, the callback function should provide it by

calling the conversion object SendData() function. The state variable may

also indicate that conversion is complete or that an error has occurred.

The State value is a bitwise OR of the status flags defined above under the
GetState() function.

The main purpose for the callback structure is to facilitate running in a

multitasking environment. The callback function may be structured to sleep

using OS defined methods until new input data becomes available.

void SetInputBuffer(PEGUBYTE *pGet, PEGULONG Size)

This function sets the input buffer out of which the image data is read. This

function is only available if PIC_MEMORY_MODE is turned on.

void SetMode(PEGUINT Mode)

This function configures the conversion object for one of several possible

modes. This function should be called before the input image is actually

read. The available modes are:

PIC_NO_CONVERT // no inline conversion (custom palette mode)
PIC_INLINE_DITHER // dither on the fly
PIC_INLINE_REMAP // remap to best color on the fly

207 Swell Software, LLC Image Conversions

PIC_RGB_TRANS // use RGB transparency
PIC_INDEX_TRANS // use indexed transparency

PegImageConvert

When operating with a fixed system palette, it is important to configure the

conversion object for an inline conversion mode prior to reading the image.

This saves a large amount of memory space over reading the image and

then converting to a fixed palette.

void SetPalStart(PEGUINT Index)

This function sets the beginning entry of the palette that it should use for the
image.

void SetSystemPalette(PEGUBYTE *pPal, PEGUINT PalSize,

PEGBOOL Fast = FALSE)

This function informs the conversion object of the working system palette.

This is required for best-color remapping and dithering. The Fast

parameter is no longer used.

void SetTargetSize(PEGINT Width, PEGINT Height)

This function sets the output size of the converted image. This does not

need to be the same as the original image size.

void SetTransColor(PegPixel Pixel)

void SetTransColor(PEGUBYTE Index)

This function can be used to assign a transparent color, either by its RGB

value or its palette index. This is only required for BMP and JPEG input

images, since other image types embed transparency information.

3.3.6 Protected Members

PEGUBYTE *GetLocalPalette(void)

This function returns the local palette associated with the converted

bitmap(s). This palette is embedded in the source image.

3.3.7 Examples:

A complete working example program using the run-time image conversion

classes is provided in your PEG distribution in the directory \peg\

examples\imgview.

208 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

3.4 PegJpgConvert

3.4.1 Overview

PegJpgConvert is a PegImageConvert-derived class for reading and

decompressing JPG input images. Before using PegJpgConvert, be sure to

read fully the PegImageConvert base class documentation.

The PegJpgConvert class is only included in the PEG library if

PEG_JPG_CONVERT is defined in the header file, pconfig.hpp.

PegJpgConvert reads JPG image files and produces PegBitmap structures.
The structures produced are NOT deleted when the PegJpgConvert object

is deleted, unless you first call the DestroyImages() function before

deleting the PegJpgConvert object.

Normal usage is to create the PegJpgConvert object, use it to read and
decompress any number of JPG images, and to retrieve the PegBitmap

structures from the conversion object using the GetBitmapPointer()

function. Once you have retrieved the output produced, you can delete the
conversion object without losing any data. After you are done using or
displaying the PegBitmaps produced, you should free the memory

associated with the run-time conversion by deleting the PegBitmap(s). You

can delete PegBitmap by calling Screen()->DestroyBitmap(pMap).

The PegJpgConvert header file, \peg\include\pjpgconv.hpp, includes

several definitions specific to the JPG decoder. These definitions can be
turned on or off (defined or not defined) to fine tune the memory usage and

feature support of the JPG converter. Note that run-time
decompression of JPG images is CPU- and memory-intensive!
Run-time decoding of random JPG images requires a target system with at
least several hundred KBytes of dynamic memory, and, possibly, virtual
memory capabilities as well. For this reason, users who have the ability to
design out the use of JPG are encouraged to opt instead for GIF or PNG
encoded images, which use much less memory during the decode process.

JPG_VIRTUAL_MEMORY can be defined in your pconfig.hpp file.

JPG_VIRTUAL_MEMORY must be enabled to support multiscan and

progressive JPG files, but it is not required for other (i.e. single scan) JPG
file types.

209 Swell Software, LLC Image Conversions

PegJpgConvert

DEFAULT_MAX_JPEG_MEM defines the maximum amount of dynamic memory

the JPG decoder may use. If JPG_VIRTUAL_MEMORY is defined, virtual

memory will be used if additional memory is required during the decode

process. If JPG_VIRTUAL_MEMORY is not defined, DEFAULT_MAX_JPEG_MEM

must be large enough to allow the decoder to create the intermediate data
objects used during the decode process. The amount of memory required is
largely dependent on the type of JPG files being decoded and the file
(image) size. For small (i.e. up to 200 x 200) images, 64K Bytes of dynamic
memory has proven to be sufficient. For larger or more complex images,
larger dynamic memory regions will be required. Trial and error is the only
method for determining the best setting for your system. It is interesting to
note that since JPG is an analog encode/decode process, running out of
memory results in a loss of image quality. It does not usually prevent the
JPG decoder from producing an image.

3.4.2 See Also

PegBmpConvert

PegGifConvert

PegImageConvert

PegPngConvert

PegQuant

3.4.3 Derivation

PegJpgConvert is derived from PegImageConvert.

3.4.4 Constructors:

PegJpgConvert(PEGUINT Id = 0)

This constructor creates an image conversion object.

210 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

3.4.5 Public Functions:

virtual PEGBOOL GetImageInfo(PegFile *pSrc,
PegImageInfo *pInfo)

This reads the header of an image file and populates a PegImageInfo

structure with the height, width, and bits per pixel of the image.

struct PegImageInfo {

PEGINT Width;

PEGINT Height;

PEGINT BitsPerPix;

};

The caller is responsible for allocating the structure. When the function is

finished, it resets the file pointer to the beginning of the file. This function is

only available if PIC_FILE_MODE is turned on.

virtual PEGBOOL ReadImage(PEGINT Count = 1)

virtual PEGBOOL ReadImage(PegFile *pSrc, PEGINT Count
= 1)

This function reads the JPG image. The Count parameter is ignored for

JPG image files. The second form of the function is defined only if

PIC_FILE_MODE is defined in the \peg\include\pconfig.hpp header file.

The first form of the function is used to transfer source file data from an
external source (such as a website browser network stack) to the image
decoder.

3.4.6 Examples:

A complete working example program using the run-time image conversion

classes is provided in your PEG distribution in the directory \peg\

examples\imgview.

211 Swell Software, LLC Image Conversions

PegPngConvert

3.5 PegPngConvert

3.5.1 Overview

PegPngConvert is a PegImageConvert-derived class for reading and

decompressing PNG input images. Before using PegPngConvert, be sure

to read fully the PegImageConvert base class documentation.

The ‘PNG’ graphics format was designed as a replacement for the

proprietary and patented GIF graphics format. ‘PNG’ is normally defined as
an acronym for ‘Portable Network Graphics,’ but many say that PNG truly is

an abbreviation for ‘PNG is Not GIF.’ The compression ratios, image

support, and animation support of PNG are all equal to or superior to GIF.

The PegPngConvert class is only included in the PEG library if

PEG_PNG_DECODER is defined in header file pconfig.hpp.

PegPngConvert reads PNG image files and produces PegBitmap

structures. The structures produced are NOT deleted when the

PegPngConvert object is deleted, unless you first call the

DestroyImages() function before deleting the PegPngConvert object.

Normal usage is to create the PegPngConvert object, use it to read and
decompress any number of PNG images, and to retrieve the PegBitmap

structures from the conversion object using the GetBitmapPointer()

function. Once you have retrieved the output produced, you can delete the
conversion object without losing any data. After you are done using or
displaying the PegBitmaps produced, you should free the memory

associated with the run-time conversion by deleting the PegBitmap by

calling Screen()->DestroyBitmap(pMap).

3.5.2 See Also

PegBmpConvert

PegGifConvert

PegImageConvert

PegJpgConvert

212 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

PegQuant

3.5.3 Derivation

PegPngConvert is derived from PegImageConvert.

3.5.4 Constructors:

PegPngConvert(PEGUINT Id = 0)

This constructor creates an image conversion object.

3.5.5 Public Functions:

PEGUBYTE BitsPerChannel(void) const

Returns the number of bits per channel of the original image.

PEGULONG BytesPerRow(void) const

Returns the number of bytes per row of the original image.

PEGUBYTE ColorType(void) const

This returns the color type of the original image. It can be color or

grayscale, palette or RGB, alpha or no alpha.

virtual PEGBOOL GetImageInfo(PegFile *pSrc,

PegImageInfo *pInfo)

This reads the header of an image file and populates a PegImageInfo

structure with the height, width, and bits per pixel of the image.

struct PegImageInfo {

PEGINT Width;

PEGINT Height;

PEGINT BitsPerPix;

};

The caller is responsible for allocating the structure. When the function is

finished, it resets the file pointer to the beginning of the file. This function is

only available if PIC_FILE_MODE is turned on.

PEGULONG Height(void) const

Returns the height of the original image.

213 Swell Software, LLC Image Conversions

PEGUBYTE InterlaceType(void) const

PegPngConvert

This returns the type of interlacing used in the original image. Supported

interlacing type is Adam7 or none.

PEGUBYTE NumChannels(void) const

Returns the number of channels in the original image.

virtual PEGBOOL ReadImage(PEGINT Count = 1)

virtual PEGBOOL ReadImage(PegFile *pSrc, PEGINT Count
= 1)

This function reads the PNG image. The Count parameter defines the

maximum number of PegBitmap structures to be produced in the event that
the PNG file contains multiple images.

The second form of the function is defined only if PIC_FILE_MODE is defined
in the \peg\include\pconfig.hpp header file. The first form of the

function is used when PIC_FILE_MODE is not defined.

PEGULONG Width(void) const

Returns the width of original image.

3.5.6 Examples:

A complete working example program using the run-time image conversion

classes is provided in your PEG distribution in the directory \peg\

examples\imgview.

214 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

3.6 PegQuant

3.6.1 Overview

PegQuant is a run-time histogram and optimal palette producer. PegQuant
implements a form of Heckbert's Median Cut color-reduction algorithm. This

class is only required for applications that must determine dynamic optimal
palettes. Most applications run with fixed palettes. PegQuant is passed to
PegImageConvert-derived classes to create a histogram of color usage.
After all included images have been added, the PeqQuant function

ReduceColors is called to create an optimal palette for use with the

scanned images.

3.6.2 See Also

PegImageConvert

PegBmpConvert

PegGifConvert

PegJpgConvert

3.6.3 Derivation

PegQuant is a PEG base class.

3.6.4 Constructors:

PegQuant(void)

Creates a PegQuant object.

3.6.5 Public Functions:

void AddColor(PegPixel Pixel)

This function adds the specified color to the histogram being created.

PEGUBYTE *GetPalette(void)

Returns a pointer to the optimal color palette produced from the image color
sums.

215 Swell Software, LLC Image Conversions

PEGUINT PalSize(void)

PegQuant

This function returns the current number of colors in the palette.

PEGUINT ReduceColors(PEGINT Start = 16, Limit = 254,
PEGINT StdStart = 0)

This function is called after all colors for all images have been counted. This

function actually does the work of creating the optimal palette for use with
the images counted.

3.6.6 Examples:

The following example reads several graphic files and creates an optimal

palette for use in displaying the files. The palette is then installed as the

new system palette. This example runs in PIC_FILE_MODE.

#define GIF1 "c:\\graphics\\tree.gif"

#define GIF2 "c:\\graphics\\house.gif"

#define BMP1 "c:\\graphics\\garage.bmp"

void MyWindow::CreatePalette(void)

{

PeqQuant *pQuant = new PegQuant();

CountColors(GIF1, PIC_TYPE_GIF, pQuant);

CountColors(GIF2, PIC_TYPE_GIF, pQuant);

CountColors(BMP1, PIC_TYPE_BMP, pQuant);

PEGUINT PalSize = pQuant->ReduceColors();

Screen()->SetPalette(0, PalSize, pQuant->GetPalette());

delete pQuant;

}

void MyWindow::CountColors(char *pPathName, PEGUINT Type,

PegQuant *pQuant)

{

PegFile Src;

Src.Open(pPathName, PEG_FILEMODE_RO);

PegImageConvert *pConvert;

216 PEG Pro API Reference Manual Swell Software, LLC

Image Conversions

if (Type == PIC_TYPE_GIF)

{

pConvert = new PegGifConvert(0);

}

else

{

pConvert = new PegBmpConvert(0);

}

pConvert->ReadImage(&Src);

pConvert-

>CountColors(pQuant);

pConvert->DestroyImages();

delete pConvert;

Src.Close();

}

217 Swell Software, LLC Window Classes

C H A P T E R 4

WINDOW CLASSES

PegAnimationWindow

PegComboBox

PegDecoratedWindow

PegDialog

PegEditBox

PegFileDialog

PegHorzList

PegList

PegMessageWindow

PegMLMessageWindow

PegNotebook

PegProgressWindow

PegRichTextBox

PegSpreadSheet

PegTable

PegTextBox

PegTreeNode

PegTreeView

PegVertList

PegVirtualVList

PegWindow

218 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.1 PegAnimationWindow

4.1.1 Overview

PegAnimationWindow is a window class for displaying a series of

PegBitmap images. If these images are displayed in rapid sequence, the

effect of smooth motion animation is produced.

PegAnimationWindow allows the programmer to specify the position and
size of each displayed frame. The animation can be run automatically by

PegAnimationWindow via the Run() function, or individual frames may be

displayed by the caller.

PegAnimationWindow can be used in applications which support multiple

palettes, and will install the correct palette for the animation when

displayed.

The default operation of PegAnimationWindow is to render each animation

frame to video memory during program execution. Custom implementations

are often modified to render ALL frames into unused portions of video
memory when PegAnimationWindow is initially displayed, and then to use

the video hardware bitblitting functions to draw each frame on the visible

screen. This yields superior performance on platforms that have advanced

video controller hardware.

An x and y offset value may be specified for the animation window. This

value indicates the offset from the window origin to the display of the
animation frames. This allows the animation frames to be part of a larger

background bitmap. Note that each animation frame must be displayed in

the same relative position; i.e., there are no unique offset values for each

frame.

4.1.2 See Also

PegBitmap

4.1.3 Style Flags

PegAnimationWindow supports the following style flags:

FF_NONE No Frame

219 Swell Software, LLC Window Classes

PegAnimationWindow

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

4.1.4 Derivation

PegAnimationWindow derives from PegWindow.

4.1.5 Constructors:

PegAnimationWindow(const PegRect &Rect, PEGINT BkgBmp,

PEGINT *pFrameList, PEGUBYTE NumFrames, PEGINT
xPos, PEGINT yPos, PEGUBYTE *pPalette = NULL,
PEGULONG Style = FF_NONE)

Creates an animation window of the specified size at the specified position.

BkgBmp is the ID of the background bitmap for the animation. BkgBmp may

be -1 if no background is desired.

pFrameList is the address of an array of pointers to PegBitmap images.

These images are displayed in sequence when the animation window runs.
The animation window will wrap back to the start frame after displaying the
final frame, allowing the display of continuous animation.

NumFrames indicates the total number of frames in the frame list.

xPos and yPos indicate the upper-left corner position at which the

animation frames will be displayed. This allows the animation window to be

larger than, and offset relative to, the actual animation bitmaps.

pPalette is a pointer to an array of unsigned characters. This array is

typically generated by PegImageConvert. The array should contain the
RGB (Red, Green, Blue) values for the palette desired. The number of

entries in the array should be 3 * PEG_NUM_COLORS.

Style is used to set the frame style for the animation window. The default

is to display no frame, allowing the animation window to be placed within a
larger parent window and provide a seamless animation appearance.

220 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.1.6 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegAnimationWindow overrides the Draw() function to display the

animation bitmaps.

virtual PEGINT Message(const PegMessage &Mesg)

PegAnimationWindow overrides the Message method to set the custom

palette (if there is one) when the window is displayed and to draw the

correct animation frame when the timer message is received.

virtual void Run(PEGUINT Period, PEGUBYTE Frame = 0)

This function starts the animation sequence. The parameter Period is used

to indicate the number of ticks that should elapse between the display of

each animation frame.

virtual void SetAnimationList(PEGINT *pList)

This sets the list of animation frames that will be used in the animation.

pList is an array of bitmap IDs referencing PegBitmaps.

virtual void SetBkgBitmap(PEGINT BkgBmp)

This sets the background image that is to be used on the window.

virtual void SetFrame(PEGUBYTE Frame = 0)

This function can be used to reset the animation frame, or to manually

display the animation sequence.

virtual void SetFrameOffset(PEGINT xOffset, PEGINT
yOffset)

This defines the upper-left corner position at which the animation frames

will be displayed.

virtual void Stop(void)

This function stops the animation playback sequence.

4.1.7 Protected Members

virtual void DrawAnimationFrame(void)

This function draws an individual frame of the animation.

221 Swell Software, LLC Window Classes

4.1.8 Examples:

PegAnimationWindow

An example of creating and using PegAnimationWindow can be found in

your PEG distribution. The directory \peg\examples\robot contains a

sample application that uses the PegAnimationWindow class.

222 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.2 PegComboBox

4.2.1 Overview

PegComboBox is similar to PegVertList. PegComboBox is a container that

can have any type of object added to it. PegComboBox adds the concept of
‘Opening and Closing,’ which can conserve space when a large number of
items are added to the combo box. A drop-down arrow is provided to open

the combo box. The box closes when an item is selected or the combo box

loses focus.

PegComboBox will send signal notifications to the parent window if the

PegComboBox has a non-zero ID value and the selected child also has a

non-zero ID value.

The LAST child added to the combo box will be displayed at the TOP of the
combo box if the Add() function is used to add children. The order of

display can be reversed by using the function AddToEnd() to add children
to the combo box.

If PegPrompt objects are added to a PegComboBox, the style flags for the

PegPrompt objects should include FF_NONE|AF_ENABLED for correct

display. Normally PegPrompt objects are not selectable (i.e. the

AF_ENABLED style is not used). However, when PegPrompt objects are

added to a PegComboBox, the style should be set as shown above so that
the prompt objects can be selected.

4.2.2 See Also

PegVertList

PegHorzList

PegWindow

4.2.3 Style Flags

PegComboBox supports the following style flags:

FF_NONE No Frame

223 Swell Software, LLC Window Classes

PegComboBox

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

The styles for PegComboBox are identical to the PegThing styles. In

addition, scrolling is enabled in PegComboBox in the same way as in

PegWindow, by using the SetScrollMode() function.

4.2.4 Signals

PegComboBox sends PSF_LIST_SELECT signals to the parent object. This

message contains:

Message.pSource = Pointer to combo box object.

Message.Param = ID of selected list item.

Message.pTarget = Pointer to combo box parent object.

In order to receive PSF_LIST_SELECT signals from a PegComboBox, you

must ensure that the PegComboBox AND the list children have non-zero ID

values.

4.2.5 Derivation

PegComboBox derives from PegThing.

4.2.6 Constructors:

PegComboBox(const PegRect &Rect, PEGUSHORT Id = 0,

PEGULONG Style = FF_THIN)

This constructor creates a PegComboBox object. The Rect parameter

determines the height of the combo box when open. The closed height is
determined by the height of the individual combo box children.

4.2.7 Public Functions:

virtual void Add(PegThing *pChild, PEGBOOL Show =

TRUE)

The PegComboBox overrides the PegThing::Add function so it can add
pChild to its vertical list member, rather than to itself.

224 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

virtual void AddToEnd(PegThing *pChild, PEGBOOL Show =
TRUE)

The PegComboBox overrides the PegThing::AddToEnd function so it can

add pChild to its vertical list member, rather than to itself.

virtual PEGINT Clear(void)

This empties the combo box’s list of all of the entries.

void CloseList(void)

This function closes the combo box list and displays the currently selected

item.

virtual void Draw(const PegRect &Invalid)

PegComboBox overrides the Draw() function to display the combo box

border.

virtual PegThing *Find(PEGUSHORT Id, PEGBOOL Recursive
= TRUE)

The PegComboBox overrides the PegThing::Find function so it can

search through the combo list as well.

PEGINT GetCloseHeight(void)

This returns the height of the combo box when it is closed.

virtual PEGINT GetIndex(PegThing *pWho)

This returns the index in the list where pWho can be found.

ComboList *GetListPointer(void)

This returns a pointer to the vertical list member.

PEGINT GetNumItems(void)

This returns the number of items in the list.

PEGINT GetOpenHeight(void)

This inline function returns the height of the combo box when open.

virtual PegThing *GetSelected(void)

This function returns a pointer to the currently-selected object.

virtual PEGINT GetSelectedIndex(void)

This function returns the index of the currently-selected object.

225 Swell Software, LLC Window Classes

virtual PegThing *GetThing(PEGINT Index)

PegComboBox

This function returns a pointer to the object specified by index Index.

virtual void Insert(PegThing *pWhat, PEGINT Where,
PEGBOOL Select = TRUE, PEGBOOL Show = TRUE)

This function inserts the object pWhat into the list at index Where. If Select
is TRUE, then the object becomes selected.

PEGBOOL IsOpen(void)

This inline function returns TRUE if the combo box is currently open,

otherwise FALSE.

virtual PEGINT Message(const PegMessage &Mesg)

PegComboBox overrides the Message function to catch the drop down

arrow selection message, and the PM_SHOW system message.

void OpenList(void)

This function is used to open the combobox by adding the list to the

Presentation.

PegThing *PageDown(void)

If the list is open, this function scrolls down one page length.

PegThing *PageUp(void)

If the list is open, this function scrolls up one page length.

virtual PegThing *Remove(PegThing *pChild)

The PegComboBox overrides PegThing::Remove so that the objects will

get removed from the list object instead of the combobox itself.

virtual void Resize(const PegRect &NewSize)

PegComboBox overrides the Resize() function to keep the drop-down

arrow button positioned at the upper right hand corner of the combo box.

PegThing *SelectNext(void)

This function selects the next object in the list. If the currently-selected
object is already at the bottom, it does nothing.

PegThing *SelectPrevious(void)

This function selects the previous object in the list. If the currently-selected

object is already at the top, it does nothing.

226 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

void SetOpenHeight(PEGINT Height)

This modifies the height of the combobox when the list is open.

void SetScrollMode(PEGUINT Mode)

This sets the scroll mode of the list. It can be either WSM_VSCROLL,
WSM_AUTOVSCROLL, or neither. WSM_CONTINUOUS can also be added to
either.

virtual PegThing *SetSelected (PEGINT Index)

This function sets the object at index Index to be the currently selected

object.

virtual void SetSelected(PegThing *pWho)

This function sets pWho to be the currently selected object.

void SetSeparation(PEGINT Sep)

This determines the amount of spacing used between items in the list.

4.2.8 Protected Members:

PEGBOOL mOpen

Boolean value to track the state of the combo box, open or closed.

PEGINT mOpenHeight

The height of the combo box when open.

PEGINT mCloseHeight

The height of the combo box when closed.

ComboList *mpList

This is the list that displays all the items in the combobox.

PegIconButton *mpOpenButton

This is the button on the combobox that opens the list.

4.2.9 Examples:

The following are examples of PegComboBox:

227 Swell Software, LLC Window Classes

PegComboBox

The following example creates a PegComboBox and adds several

PegPrompt objects to the combo box. The combo box will be 140 pixels tall
when opened. The combo box is configured to include a vertical scroll bar.

The initial item selected in the combo box will be item index 5.

void MyWindow::AddComboBox(void)

{

PegRect ListRect;

ListRect.Set(10, 10, 90, 150);

PEGCHAR Temp[20];

PegStrCpy(Temp, "Select");

pList = new PegComboBox(ListRect);

for (PEGINT Loop = 10; Loop > 0; Loop--)

{

PegLtoA(Loop, Temp + 6, 10);

pList->Add(new PegPrompt(0, 0, Temp, Loop,

FF_NONE|TJ_LEFT|AF_ENABLED|TT_COPY

));

}

pList->SetScrollMode(WSM_VSCROLL);

pList->SetSelected(5);

Add(pList);

}

228 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.3 PegDecoratedWindow

4.3.1 Overview

PegDecoratedWindow is a PegWindow-derived class that supports the

addition of common window decorations such as PegTitle, PegMenuBar,

and PegStatusBar. PegDecoratedWindow provides functions to facilitate

easy access to the decorations added to a window. PegDecoratedWindow

also maintains the actual client area available after the addition or removal
of any of these decorations.

Like all PEG objects, PegDecoratedWindow can also have any other type

of child objects added to it. The PegDecoratedWindow objects can even be

nested within themselves, creating complex and interesting window types.

4.3.2 See Also

PegWindow

PegDialog

PegMessageWindow

PegMLMessageWindow

4.3.3 Style Flags

PegDecoratedWindow supports the following style flags:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

4.3.4 Derivation

PegDecoratedWindow derives from PegWindow.

229 Swell Software, LLC Window Classes

4.3.5 Constructors:

PegDecoratedWindow

PegDecoratedWindow(const PegRect &Rect, PEGULONG Style
= FF_THICK)

PegDecoratedWindow(PEGULONG Style = FF_THICK)

There are two constructors available for PegDecoratedWindow. The first

defines the window size and position at the time the window is created. The

second requires that the window size and position be determined after the

window is constructed but before the window is displayed.

4.3.6 Public Functions:

virtual void Add(PegThing *pWhat, PEGBOOL Show = TRUE)

PegDecoratedWindow overrides the Add() function to catch the addition of

non-client decorations.

virtual void InitClient(void)

PegDecoratedWindow overrides the InitClient method in order to resize

the client area based on the presence, or absence, of a title bar, menu bar
and status bar.

PegMenuBar *MenuBar(void)

This function returns a pointer to the PegMenuBar added to the window, or
NULL if no menu bar is present.

virtual PEGINT Message(const PegMessage &Mesg)

PegDecoratedWindow catches the PM_CURRENT and PM_NONCURRENT
messages.

virtual PegThing *Remove(PegThing *pWho)

PegDecoratedWindow overrides the Remove() function to catch the

removal of non-client decorations

void SetTitle(PEGINT StringId)

This function can be called to modify the window title.

void SetTitle(const PEGCHAR* pText)

This version of the SetTitle function is used for dynamically-created strings

that aren’t in the string table.

230 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

PegStatusBar *StatusBar(void)

This function returns a pointer to the decorated window status bar, or NULL
if no status bar is present.

const PEGCHAR *Title(void)

This function returns a pointer to the text of the decorated window title, or
NULL if no title is present.

PegTitle *TitleObject(void)

This function returns a pointer to the decorated window title, or NULL if no

title is present.

PegToolBar *ToolBar(void)

This function returns a pointer to the PegToolBar added to the window, or

NULL if no toolbar is present.

4.3.7 Examples:

The following is a decorated window with a title bar, status bar, and menu

bar. The decorated window also contains a PegWindow child in the
decorated window client area. The full source code for this window can be

found in the file \peg\examples\pegdemo\pegdemo.cpp.

231 Swell Software, LLC Window Classes

4.4 PegDialog

PegDialog

4.4.1 Overview

PegDialog is a PegDecoratedWindow class with added features to support

modal and nonmodal dialog window execution.

Dialog windows usually draw themselves with a different frame and client
color than other windows. Dialog windows may be executed as modal

windows by calling their member function Execute().

Dialog windows attach special significance to buttons with the following IDs:

IDB_CLOSE

IDB_OK

IDB_CANCE

L

IDB_ABORT

IDB_RETRY

IDB_YES

IDB_NO

IDB_APPLY

These button IDs are reserved by PEG and are found in the header file

pegtypes.hpp. When a button with one of the above ID values is selected,

the dialog will close. When defining a dialog window, you must ensure that
at least one button added to the dialog is constructed with one of the above
button ID values. Otherwise, the only way to close the dialog will be via
program intervention.

When any of the buttons listed above is selected, the dialog window will

send a PM_DIALOG_NOTIFY message to its parent window (or its ‘ReportTo’

window) to indicate that the dialog has been completed. The message
iData member will contain the ID of the button that caused the dialog to

close. In all cases except ID_APPLY, the dialog will close after the parent

window has received the PM_DIALOG_NOTIFY message.

In the case of a modal dialog, Execute() will return when any of these

messages are received, and the return value will be the ID of the button that

caused the dialog to close.

In the case that the user selects the IDB_APPLY button, the dialog will send

the PM_DIALOG_NOTIFY message to its parent without closing.

232 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.4.2 See Also

PegWindow

PegDecoratedWindow

PegMessageWindow

PegMLMessageWindow

4.4.3 Style Flags

PegDialog supports the following style flags:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

4.4.4 Derivation

PegDialog derives from PegDecoratedWindow.

4.4.5 Constructors:

PegDialog(const PegRect &Rect, PEGINT TitleStringId =

0, PegThing *pReportTo = NULL, PEGULONG Style =
FF_RAISED)

PegDialog(const PegRect &Rect, const PEGCHAR *pText,
PegThing *pReportTo = NULL, PEGULONG Style =
FF_RAISED)

PegDialog(PEGINT TitleStringId = 0, PegThing

*pReportTo = NULL, PEGULONG Style = FF_RAISED)

PegDialog(const PEGCHAR pText, PegThing *pReportTo =
NULL, PEGULONG Style = FF_RAISED)

There are four constructors available for PegDialog. The first two define the

window size and position at the time the window is created. The second two

233 Swell Software, LLC Window Classes

PegDialog

require that the window size and position be determined after the window is

constructed, but before the window is displayed.

4.4.6 Public Functions:

virtual PEGINT Message(const PegMessage &Mesg)

PegDialog overrides the Message() function to catch signals sent by one or

more of the reserved button IDs that cause the dialog to close or report to

its owner window.

4.4.7 Examples:

The following is a PegDialog window. The full source code for this window

can be found in the file \peg\examples\pegdemo\pegdemo.cpp.

234 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.5 PegEditBox

4.5.1 Overview

PegEditBox is a multi-line text display control that allows full user editing via

mouse and keyboard. PegEditBox is derived from PegTextBox and

therefore supports all of the functionality of this base class.

PegEditBox is more complex, and therefore requires a larger code size,

than PegTextBox. If you do not need user-editing capability you should use

PegTextBox to display multi-line text rather than PegEditBox.

4.5.2 See Also

PegPrompt

PegEditField

PegWindow

PegTextThing

PegTextBox

4.5.3 Style Flags

PegEditBox supports the following styles:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

EF_EDIT When this style is applied, the user can edit the
PegTextBox object. If this style is applied the
PegTextBox object automatically includes the
TT_COPY style.

EF_WRAP When this style is applied, the text box will
wrap long lines to prevent them from being
clipped.

235 Swell Software, LLC Window Classes

PegEditBox

TT_COPY Instructs the PegEditBox to copy the text string
assigned. This flag should be used when the
text string assigned to the PegEditBox is
created dynamically using temporary storage

4.5.4 Signals

In addition to the common signals defined by PegThing, PegEditBox

supports the following signals:

PSF_TEXT_SELECT // sent when the user selects text

PSF_TEXT_EDIT // sent each time text is modified

PSF_TEXT_EDITDONE // sent when a text modification is complete

4.5.5 Derivation

PegEditBox is derived from PegTextBox.

4.5.6 Constructors:

PegEditBox(const PegRect &Rect, PEGUINT StringId = 0,

PEGUSHORT Id = 0, PEGUSHORT Style = FF_RECESSED|
EF_EDIT|EF_WRAP, PEGUINT MaxChars = 1000)

PegEditBox(const PEGCHAR *pText, const PegRect &Rect,

PEGUSHORT Id = 0, PEGUSHORT Style = TT_COPY|
FF_RECESSED|EF_EDIT|EF_WRAP, PEGUINT MaxChars =
1000)

This constructor creates a PegEditBox. MaxChars is the maximum number

of characters that the text box will be required to support.

4.5.7 Public Functions:

virtual void Append(PEGINT StringId)

virtual void Append(const PEGCHAR *pText)

This function appends the indicated text to the current text box string value.

The edit cursor is automatically positioned at the end of the appended text.

void CopyToScratchPad(void)

Copies the currently-selected text to the scratch pad.

236 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

virtual void DataSet(PEGINT StringId)

virtual void DataSet(const PEGCHAR *pText)

PegEditBox overrides the DataSet function to reset any in-progress string

mark or edit operations.

void DeleteMarkedText(void)

Deletes the currently-selected text.

virtual void Draw(const PegRect &Invalid)

PegEditBox overrides the Draw() function to display the text box border

and text.

CURSOR_POS GetCursorRowCol(void)

This function returns a CURSOR_POS structure that contains the x and y

coordinates of the cursor. The y-coordinate represents the line number, and
the x-coordinate represents the number of characters from the beginning of
the line in which the cursor resides.

void HomeCursor(void)

This function moves the edit cursor to the column 0 position on the current

line.

PEGBOOL InEditMode(void)

Returns TRUE if the PegEditBox is in edit mode.

virtual void InsertCharAtCursor(PEGUINT Key)

This function inserts a single character at the cursor position, unless the

maximum character limit is reached.

virtual PEGINT Message(const PegMessage &Mesg)

PegEditBox overrides the PegThing::Message function to handle mouse

and keyboard events.

void PasteFromScratchPad(void)

Pastes the scratch pad text at the current cursor position.

void SetCursorRowCol(PEGINT Index)

This function positions the edit cursor at the character indicated by Index,

which is the desired character offset from the start of the overall text string.
The desired character offset can be determined by using the member

237 Swell Software, LLC Window Classes

PegEditBox

functions of PegTextBox. The text box automatically scrolls such that the

indicated cursor position is visible within the editbox window client area.

4.5.8 Protected Members

virtual PEGBOOL AutoScrollLeft(void)

This function is used when the editbox scrolls horizontally. Any movement
of the cursor might require the editbox to scroll to the left, so this function

checks to see if that needs to happen.

virtual PEGBOOL AutoScrollUp(void)

This function is used when the editbox scrolls vertically. Moving the cursor

might require the editbox to scroll upward, so this function checks to see if
that needs to happen.

virtual PEGBOOL CheckAutoScrollDown(void)

This function is used when the editbox scrolls vertically. Moving the cursor
or adding characters might require the editbox to scroll downward, so this

function checks to see if that needs to happen.

virtual PEGBOOL CheckAutoScrollRight(void)

This function is used when the editbox scrolls horizontally. Moving the
cursor or adding characters might require the editbox to scroll to the right,

so this function checks to see if that needs to happen.

virtual PEGBOOL CheckControlKey(PEGUINT Key, PEGINT
Ctrl)

This function checks to see if the Shift key was held with a directional key. If
so, it marks a section of the text, depending on which direction was

pressed. This function is only available if PEG_KEYBOARD_SUPPORT is turned

on.

virtual void CheckMarkMove(void)

This function is called when a user marks some text. It checks to see if it is

necessary to scroll up or down to mark/unmark a line.

virtual void DrawCharAtCursor(PEGINT Key)

This function draws a single character at the current cursor position.

virtual void DrawCursor(void)

This function draws a vertical line at the current cursor location to indicate

where the user may input characters.

238 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

virtual void DrawMarkedText(PEGINT Line, PegPoint
PutPoint)

This function draws a single line of text that has at least some of its

characters marked. Note that the entire line is drawn, not just the marked

section.

virtual void DrawOneLine(PEGINT Line)

This function draws a single line of text.

virtual void DrawSelectText(PEGINT Line, PEGINT First,
PEGINT Last, PEGBOOL Sel)

This is called when the user is in the process of selecting characters. It

improves performance over simply redrawing the entire line.

virtual void DrawTextLine(PEGINT Line, PegPoint
PutPoint, PEGBOOL Fill = FALSE)

PegEditBox overrides PegTextBox::DrawTextLine in order to make sure

that marked text is drawn correctly.

virtual void ExitEditMode(void)

This function is called when the editbox is hidden or loses focus. It takes the

editbox out of edit mode and therefore removes the cursor.

virtual const PEGCHAR *GetCharAtCursor(void)

This function returns the character that is at the current cursor location.

virtual void GetCursorPointFromRowCol(void)

Calculates the x and y coordinates of the cursor from the row/column cursor

point.

virtual void GetCursorRowColFromClick(PegPoint Where)

Finds the nearest valid location to place the cursor when a user clicks

inside it.

virtual void GetMarkStartAndEnd(CURSOR_POS
*pStartMark, CURSOR_POS *pEndMark)

Returns the beginning and ending positions of the marked text. The

positions are in row/column format.

virtual PEGBOOL InsertKey(PEGUINT Key)

This function is the general key handler for the PegEditBox. All keys
including character keys and directional keys are handled here.

239 Swell Software, LLC Window Classes

CURSOR_POS mCursor

The location of the cursor in row/column format.

PegPoint mCursorPos

The location of the cursor in (x, y) format.

PegEditBox

virtual void RemoveCharAtCursor(PEGBOOL BackSpace)

This function removes the character at the current cursor location. If

BackSpace is TRUE, it removes the character behind the cursor. Otherwise,
it removes the character in front of the cursor.

virtual void RemoveCursor(void)

This function removes the cursor from the display.

virtual void ReplaceMarkedText(PEGUINT Key)

This function is called when the user presses a key after having marked
some text. The marked text is completely replaced by the character that

was typed.

virtual void SetCursorRowColFromIndex(PEGINT Index)

This function positions the cursor at the character indicated by Index,

which is the desired character offset from the start of the overall text string.

4.5.9 Examples:

The following are each different styles of PegEditBox:

240 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

The complete source for the last example above can be found in the
example program \peg\examples\vecfont distributed with your PEG

release.

241 Swell Software, LLC Window Classes

4.6 PegFileDialog

PegFileDialog

4.6.1 Overview

PegFileDialog is a utility class that supports the standard notion of browsing

a directory structure for a file name in the ‘File Open’ and ‘File Save As’

types of scenarios. Currently, the file system routines uses the generic
PegFile class (which gives it a degree of portability), as well as a few calls

that are specific to the Linux API (out of necessity).

The PegFileDialog was created out of a need for the PEG utility programs

(i.e. Window Builder, et al) to be able to run on the X Window System on

top of Linux. Since it has proven very useful to us, we have included it in the

PEG library to meet the needs of application developers who are creating

applications that require such functionality.

The class has all of the basics that make it useful, but it does not, at the

present time, have all of the luxuries that make it comparable to most
desktop implementations of the same types of dialogs.

It is important to note that the PegFileDialog does not actually change the

current working directory when the user navigates the file system. The file

routines simply keep track of the current directory and use this for finding

the files and directories within that directory. Therefore, you don't need to

worry about the dialog changing your application's present working

directory.

4.6.2 See Also

PegDialog

4.6.3 Style Flags

PegFileDialog supports the standard frame styles implemented in the
PegDialog class.

4.6.4 Signals

See PegDialog for a description of which signals are sent.

242 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.6.5 Derivation

PegFileDialog is derived from PegDialog.

4.6.6 Constructors:

PegFileDialog(const PEGSTRINGID TitleId, PEGINT Left =

-1, PEGINT Top = -1)

The constructor takes a constant PEGSTRINGID parameter that will be used

in the title of the dialog. It is usually a good idea to give the dialog box a title

that corresponds to the action that the user is performing (i.e. ‘File Open’).

The Left and Top parameters are needed if you would like to place the

dialog at a specific location on the screen. If you allow these parameters to
retain their default values, the dialog box will be centered on the screen.
Currently, it is not a good idea to assign the dialog box a size, since the
placement of the controls on the dialog expects the dialog to be a specific
size.

4.6.7 Public Functions:

virtual PEGINT Execute(void)

PegFileDialog overrides the Execute method in order to ensure that the file

name buffer has been set up properly.

PEGINT GetOperation(void)const

This function returns the type of operation being performed. This method

will return PFD_FILEOPEN or PFD_FILESAVEAS.

PEGINT Message(const PegMessage& Mesg)

The Message method is overridden so that the dialog can catch the signals

sent by the buttons on the toolbar as well as by the buttons that control
directory and file name sort order.

void SetDefNewExt(char* pExt)

This function sets the default filename extension for the dialog.

void SetFilter(const char* pFilter)

This function sets a filter so that only files matching the filter will be

displayed in the dialog.

243 Swell Software, LLC Window Classes

PegFileDialog

PEGBOOL SetMode(PEGINT Operation, PEGCHAR *pBuffer,
PEGUINT BuffSize, const char *pStartNode =
NULL))

Generally, this is the method that you would call after you have constructed

the object. The Operation parameter can be one of the following:

PFD_FILEOPEN

PFD_FILESAVEA

S

At the present time, the dialog does not behave differently based on this

setting. But, for forward compatibility, it is best to specify the action you

intend.

The second parameter is the node in the directory structure where you

would like the dialog to start. In other words, the dialog will take this as its

present working directory. If running on Linux, you may want to start the

user out in his or her home directory. This can be accomplished like this:

passwd *pPasswd = getpwuid(getuid());

Then passing the

pPasswd->pw_dir

over as the pStartNode parameter.

The remaining parameters refer to a preallocated PEGCHAR buffer into which

the selected file name is to be returned. If the user cancels the dialog box,

the value of pBuffer upon return is undefined.

Once you have set these parameters, you would then call the Execute
method and inspect the return value. If you receive a return value of
IDB_OK, then the full qualified name of the file (assuming the buffer did not

overrun) would be in pBuffer. If you receive a return value of IDB_CANCEL,

then the user canceled their selection and pBuffer is undefined.

static int SortDirList(const void *, const void *)

This is a callback function used by qsort to sort the directory names.

static int SortFileList(const void *, const void *)

This is a callback function used by qsort to sort the file names.

244 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.6.8 Examples:

The following code snippet exemplifies how to create and use a

PegFileDialog object. Usage is very simple. All you need to do is create a

new instance of the dialog, allocate a buffer of sufficient size, set its

options, execute the dialog, and inspect the return value.

PEGCHAR Buffer[256];

PEGUINT BufSize = 256;

PEGINT RetVal;

PegFileDialog* pFD = new PegFileDialog("Open File...");

// Get the current user's home directory, and

// set this as the top node for passing to the

// file dialog

passwd *pPasswd = getpwuid(getuid());

if (pFD)

{

if (pPasswd)

{

Buffer,

}

pFD->SetOptions(PFD_FILEOPEN, pPasswd->pw_dir,

BufSize);

else

{

pFD->SetOptions(PFD_FILEOPEN, "/work", Buffer,
BufSize);

}

RetVal = pFD->Execute();

// Check the return value from executing the dialog.

if (RetVal == IDB_OK)

{

will

}

// The user selected a valid file name, so Buffer

// have the full qualified path of the file the user

// selected.

245 Swell Software, LLC Window Classes

PegFileDialog

else if (RetVal == IDB_CANCEL)

{

// The user canceled their selection

}

else if(RetVal == PFD_ERROR)

{

name

}

// The buffer size was too small to hold the file

}

Below is a screen shot of the PegFileDialog in action. You'll notice the

various controls on the dialog that assist the user in selecting a file name.
We'll briefly discuss these controls so that you can better understand the

capabilities of the PegFileDialog class.

Starting with the toolbar, the button labeled ‘Up’ shifts the present working

directory up, if possible. The ‘Home’ button changes the present working

directory to the current user's home directory. The ‘Refresh’ button causes

the Directory and Files lists to be updated. And the ‘View’ button toggles the

246 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

directories and files displayed in the lists. If the view is on full, then all of the

hidden files and directories (i.e. the ‘dot’ files) are displayed; otherwise, they

are not shown. When the dialog starts up, the view defaults to hiding these

directories.

The Directories and Files lists are fairly straightforward. The lists can be
independently sorted in ascending or descending order by the user clicking

on the Directories or Files label. You'll note the small triangles in the far

right of either label. These denote the sort order.

The ‘Selection’ label displays the current working directory. Once a file

name has been selected from the Files list, the file name is entered in the

edit field at the bottom. If the current working directory is changed, this file

name is cleared from the edit field control. It is important to note that the
PegFileDialog verifies that the file exists before it allows a file to be entered

here.

The OK button closes the dialog box with a return value of IDB_OK. The file
name is verified and put into the buffer that the application designer
provided in the SetOptions method. If the buffer is not large enough to hold

the entire file name, then PFD_ERROR is returned instead of IDB_OK. If the
Cancel button is pushed, then the dialog simply exits.

4.7 PegHorzList

PegHorzList

4.7.1 Overview

PegHorzList is a container class for displaying a scrolling list of child

objects. PegHorzList automatically positions and sizes child objects. It is

therefore not necessary to manually position objects before adding them to
PegHorzList.

The LAST child added to the list will be displayed at the leftmost position in
the list if the Add() function is used to add children. The order of display

can be reversed by using the function AddToEnd() to add children to the

list.

Child objects are positioned when the list receives the PM_SHOW message,

which is a system message sent automatically when the list is first
displayed. PegHorzList sets the height of each child object to fit within the
horizontal list client area. The widths of child objects are not modified, and
should be set as desired when each child object is constructed.

4.7.2 See Also

PegVertList

PegList

PegWindow

4.7.3 Style Flags

PegHorzList supports the following style flags:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

The styles for PegHorzList are identical to the PegWindow styles. In
addition, scrolling is enabled in PegList in the same way as in PegWindow,

by using the SetScrollMode() function.

Swell Software, LLC Window Classes 247

248 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.7.4 Signals

PegHorzList sends PSF_LIST_SELECT signals to the parent object. This

message contains:

Message.pSource = Pointer to selected object in list.

Message.Param = ID of selected list item.

Message.pTarget = Pointer to list parent object.

4.7.5 Derivation

PegHorzList derives from PegList.

4.7.6 Constructors:

PegHorzList(const PegRect &Rect, PEGUINT Id = 0,

PEGULONG Style = FF_THIN)

This constructor creates a PegHorzList object. The Rect parameter

determines the position and size of the list. The list children are

automatically positioned by the list object.

4.7.7 Public Functions:

None.

4.7.8 Protected Members

virtual void PositionChildren(void)

This function calculates the position of all the child objects in the list.

4.7.9 Examples:

The following is a PegHorzList with PegTextButton children:

249 Swell Software, LLC Window Classes

PegHorzList

The following example creates a PegHorzList and adds several

PegIconButton children. The bitmaps for the icon buttons can be generated

using PegImageConvert.

void MyWindow::AddHList(void)

{

PegRect Rect;

Rect.Set(10, 10, 180, 44);

PegHorzList *pList = new PegHorzList(Rect);

Rect.Set(0, 0, 34, 34);

pList->Add(new PegIconButton(Rect, BID_THUNDER));

pList->Add(new PegIconButton(Rect, BID_LIGHT));

pList->Add(new PegIconButton(Rect, BID_SATELLITE));

pList->Add(new PegIconButton(Rect, BID_DYNAMITE));

pList->Add(new PegIconButton(Rect, BID_APPLE));

pList->SetScrollMode(WSM_HSCROLL);

Add(pList);

}

250 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.8 PegList

4.8.1 Overview

PegList is a container class that serves as a base class for PegVertList and

PegHorzList. PegList positions child objects so that they are stacked left to

right or top to bottom. You would not normally create an instance of PegList
in your system software. However, several of the member functions are

important when working with derived PegHorzList and PegVertList classes.

The LAST child added to the list will be displayed at the leftmost or topmost
position in the list if the Add() function is used to add children. The order of

display can be reversed by using the function AddToEnd() to add children
to the list.

Child objects are positioned when the list receives the PM_SHOW message,

which is a system message sent automatically when the list is first
displayed. The position of children added to a list object may be any value,
including 0,0, as the list object will reposition objects to fit within the list
client area.

For vertical lists, child object's widths are also forced to match the list client

width. A child object's height is not modified, so this value is meaningful
when child objects are constructed.

Likewise for horizontal lists, child object's heights are forced to fit within the

list client area. Child object widths are not modified, and so this value

should be set as desired when list children are constructed.

4.8.2 See Also

PegVertList

PegHorzList

PegWindow

4.8.3 Style Flags

PegList supports the following style flags:

251 Swell Software, LLC Window Classes

PegList

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

LS_WRAP_SELECT Wrap selection at top or bottom

The styles for PegList are identical to the PegWindow styles. In addition,

scrolling is enabled in PegList in the same way as in PegWindow, by using

the SetScrollMode() function.

4.8.4 Signals

PegList sends PSF_LIST_SELECT signals to the parent object. This

message contains:

Message.pSource = Pointer to selected object in list.

Message.Param = ID of selected list item.

Message.pTarget = Pointer to list parent object.

4.8.5 Derivation

PegList derives from PegWindow.

4.8.6 Constructors:

PegList(const PegRect &Rect, PEGUINT Id = 0, PEGULONG

Style = FF_THIN)

This constructor creates a PegList object. The Rect parameter determines

the position and size of the list. The list children are automatically
positioned by the list object.

4.8.7 Public Functions:

virtual void Add(PegThing *pWhat, PEGBOOL Show = TRUE)

This function adds pWhat to the head of the list. If Show is set to TRUE, the

object will be shown after being added.

252 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

virtual void AddToEnd(PegThing *pWhat, PEGBOOL Show =
TRUE)

This function adds pWhat to the end of the list. If Show is set to TRUE, the

object will be drawn after being added.

virtual PEGINT Clear(void)

This method removes and destroys all of the child objects in the list, so use

it with care. The return value is the number of child items that were

removed from the list, excluding scroll bars, if present.

virtual PEGINT GetIndex(PegThing *pWho)

This function returns the index of the list item pointed to by pWho. If pWho is

not a child of the list, this function returns -1.

PEGINT GetNumItems(void)

This method returns the total number of child items in the list. The return
value is the total number of items, excluding scroll bars or other non-client

objects, if present.

virtual PegThing *GetSelected(void)

This function returns the address of the list child that was last selected.

virtual PegThing *GetThing(PEGINT Index)

This function returns the list child with the specified index.

virtual PEGINT GetSelectedIndex(void)

This function returns the list index of the list child that was last selected.

virtual PegThing *GetThing(PEGINT Index)

This function returns a pointer to the child object with the specified index.

virtual void Insert(PegThing *pWhat, PEGINT Where,
PEGBOOL Select = TRUE, PEGBOOL Show = TRUE)

This function inserts an object into the specified location in the list. If the

Select flag is turned on, the inserted item will be selected and scrolled into

view.

virtual PEGINT Message(const PegMessage &Mesg)

PegList catches the PM_SHOW message.

253 Swell Software, LLC Window Classes

PegThing *PageDown(void)

PegList

This function scrolls the PegList child items by one full page, meaning that
the first nonvisible item at the bottom or right of the list client area is scrolled
into view and selected. This function returns a pointer to the newly selected

item. This function is called by the PegList::Message function in response

to the PK_PGDN key message.

PegThing *PageUp(void)

This function scrolls the PegList child items by one full page, meaning that
the first nonvisible item at the top or left of the list client area is scrolled into
view and selected. This function returns a pointer to the newly selected

item. This function is called by the PegList::Message function in response

to the PK_PGUP key message.

virtual PegThing *Remove(PegThing *pWhat)

This function removes pWhat from the list. If it is not in the list, the function

doesn't do anything.

PegThing *SelectNext(void)

This function can be called to force the list to advance to the next child item.
The list will automatically scroll the newly selected child into view. If

LS_WRAP_SELECT is enabled, the list will wrap to the top item if

SelectNext() is called when the bottom item is selected.

PegThing *SelectPrevious(void)

This function can be called to force the list to back up to the previous child
item. The list will automatically scroll the newly selected child into view. If

LS_WRAP_SELECT is enabled, the list will wrap to the bottom item if

SelectPrevious() is called when the top item is selected.

virtual void SetSelected(PegThing *pWho)

This function can be called to force the 'last selected' member to a certain

child under program control. The desired child object is pointed to by pWho.

virtual PegThing *SetSelected(PEGINT Index)

This function can be called to force the 'last selected' member to the child

item referred to by Index.

void SetSeparation(PEGINT Val)

This function sets the separation amount, in pixels, between child items.
The PegList-derived class will always position child items such that they are

adjacent to each other, and, by default, there will be no separation between

254 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

child items. This function can be called after the list is constructed but

BEFORE the list is displayed to place any amount of space between child

items.

4.8.8 Protected Members

virtual void PositionChildren(void)

This pure virtual function is used by derived classes to calculate the

position of its child objects.

255 Swell Software, LLC Window Classes

PegMessageWindow

4.9 PegMessageWindow

4.9.1 Overview

PegMessageWindow is a popup window class for display warning, error, or

other status information to the user.

The PegMessageWindow class provides a quick way to display information

messages. PegMessageWindow may contain a title bar, message line,
bitmap, or miscellaneous buttons.

PegMessageWindow supports both modal and nonmodal execution. In

addition, the signal generated when the message window is closed by the

user may be directed to any top-level window.

Modal execution is achieved by calling the PegMessageWindow
Execute() function. Execute() will add the message window to

PegPresentationManager if the window has no parent at the time
Execute() is called. Execute() will not return until the user selects one of

the MessageWindow option buttons. Execute() will return the ID of the

option button selected to close the message window.

Several button ID values are reserved by PEG for use with

PegMessageWindow (and PegDialog). These ID values correlate to the

common options presented on a message window. Additional options may

be presented by deriving from and extending the PegMessageWindow
class. The buttons included on the message window are specified by the

message window style flags. There is one style flag for each of the

predefined message window buttons.

4.9.2 See Also

PegWindow

PegDialog

PegMLMessageWindow

4.9.3 Style Flags

PegMessageWindow supports the following style flags:

256 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

MW_OK This option displays an OK button on the
message window.

MW_YES This option displays a YES button on the
message window.

MW_NO This option displays a NO button on the
message window.

MW_ABORT This option displays an ABORT button on the
message window.

MW_RETRY This option displays a RETRY button on the
message window.

MW_CANCEL This option displays a CANCEL button on the
message window.

4.9.4 Derivation

PegMessageWindow derives from PegWindow.

4.9.5 Constructors:

PegMessageWindow(const PegRect &Rect, PEGINT

TitleStringId, PEGINT MessageId = 0, PEGULONG
Style = MW_OK|FF_RAISED, PEGINT IconId = 0,
PegThing *pOwner = NULL)

PegMessageWindow(PEGINT TitleStringId, PEGINT

MessageId = 0, PEGULONG Style = MW_OK|FF_RAISED,
PEGINT IconId = 0, PegThing *pOwner = NULL)

PegMessageWindow(const PEGCHAR *pTitle, const PEGCHAR

*pMessage, PEGULONG Style = TT_COPY|MW_OK|
FF_RAISED, PEGINT IconId = 0, PegThing *pOwner =
NULL)

There are three constructors available for PegMessageWindow. The first

constructor allows you to specify the overall message window size. This

constructor is used in cases where you would like to add additional

decorations to the message window.

257 Swell Software, LLC Window Classes

PegMessageWindow

When the second or third constructor is used, the message window
calculates the required height and width of the window in order to fit the

message text and all specified option buttons. These constructors are most

commonly used.

The IconId parameter allows you to specify a bitmap that will be displayed

to the left of the text message.

The pOwner pointer allows you to specify a window that should receive a

PM_MWCOMPLETE message. This is only useful when the message window is
not executed modally. When the window is executed modally, the
Execute() function returns the ID of the button used to close the message
window.

4.9.6 Public Functions:

virtual void DataSet(PEGINT MessageId)

virtual void DataSet(const PEGCHAR *pText)

PegMessageWindow overrides the DataSet() function so that it can resize

itself and re-layout the buttons based on the size of the text.

virtual void Draw(const PegRect &Invalid)

PegMessageWindow overrides the Draw() function to display the message

text and the bitmap, if specified, in the window client area.

virtual PEGINT Message(const PegMessage &Mesg)

PegMessageWindow catches option button signals to close the message

window.

void SetTitle(PEGINT StringId)

void SetTitle(const PEGCHAR *pText)

This function is used to modify the text displayed on the PegTitle child
object.

4.9.7 Examples:

The following is a PegMessageWindow with OK, CANCEL, and RETRY
buttons.

258 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

The following function creates and modally executes the above message
window:

void MyWindow::ModalMessage(void)

{

PegMessageWindow *pWin = new PegMessageWindow(

"Example Message Window",

"This is a message window with a raised frame.",

MW_OK|MW_CANCEL|MW_RETRY|FF_RAISED);

Presentation()->Center(pWin);

Presentation()->Add(pWin);

pWin->Execute();

}

259 Swell Software, LLC Window Classes

PegMLMessageWindow

4.10 PegMLMessageWindow

4.10.1 Overview

PegMLMessageWindow is a popup window class for display warning, error,

or other status information to the user. The basic behavior of this class is

identical to the PegMessageWindow class, except that this class allows the

display of multiple lines of text in the message.

The PegMLMessageWindow class provides a quick way to display
information messages. PegMLMessageWindow may contain a title bar,

several message lines, and miscellaneous buttons.

PegMLMessageWindow supports both modal and nonmodal execution. In

addition, the signal generated when the message window is closed by the

user may be directed to any top-level window.

Modal execution is achieved by calling the message window Execute()

function. Execute() will add the message window to

PegPresentationManager if the window has no parent at the time
Execute() is called. Execute() will not return until the user selects one of

the message window option buttons. Execute() will return the ID of the

option button selected to close the message window.

Several button ID values are reserved by PEG for use with

PegMLMessageWindow (and PegDialog). These ID values correlate to the

common options presented on a message window. Additional options may
be presented by deriving from and extending the PegMLMessageWindow

class. The buttons included on the message window are specified by the

message window style flags. There is one style flag for each of the

predefined message window buttons.

4.10.2 See Also

PegDialog

PegMessageWindow

4.10.3 Style Flags

PegMLMessageWindow supports the following style flags:

260 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

MW_OK This option displays an OK button on the
message window.

MW_YES This option displays a YES button on the
message window.

MW_NO This option displays a NO button on the
message window.

MW_ABORT This option displays an ABORT button on the
message window.

MW_RETRY This option displays a RETRY button on the
message window.

MW_CANCEL This option displays a CANCEL button on the
message window.

4.10.4 Derivation

PegMLMessageWindow derives from PegWindow.

4.10.5 Constructors:

PegMLMessageWindow(const PegRect &Rect, PEGUINT

TitleStringId, PEGUINT MessageId = 0, PEGULONG
Style = MW_OK|FF_RAISED, PEGINT IconId = 0,
PegThing *pOwner = NULL)

PegMLMessageWindow(PEGUINT TitleStringId, PEGUINT

MessageId = 0, PEGULONG Style = MW_OK|FF_RAISED,
PEGINT IconId = 0, PegThing *pOwner = NULL)

PegMLMessageWindow(const PEGCHAR *pTitle, const

PEGCHAR *pMessage, PEGULONG Style = MW_OK|
FF_RAISED, PEGINT IconId = 0, PegThing *pOwner =

NULL)

There are three constructors available for PegMLMessageWindow. The

first constructor allows you to specify the overall message window size.

This constructor is used in cases where you would like to add additional
decorations to the message window.

261 Swell Software, LLC Window Classes

PegMLMessageWindow

If the size of the window is specified with a PegRect and the message text
is too large to fit in the available space, the sizing algorithm will grow the

height of the rectangle until all of the text fits properly. The left, top, and

right members of the specified rectangle will not change, only the bottom.

When the second or third constructor is used, the message window
calculates the required height and width of the window in order to fit the

message text and all specified option buttons. The second and third

constructors are most commonly used.

The IconId parameter allows you to specify a bitmap that will be displayed

to the left of the text message.

The pOwner pointer allows you to specify a window that should receive a

PM_MWCOMPLETE message. This is only useful when the message window is

not executed modally. When the window is executed modally, the
Execute() function returns the ID of the button used to close the message
window.

4.10.6 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegMLMessageWindow overrides the Draw() function to display the

message text and bitmap, if specified, in the window client area.

PegTextBox *GetTextBox(void)

Returns a pointer to the text box displaying the message. This is used to

edit any style parameters of the text box.

virtual PEGINT Message(const PegMessage &Mesg)

PegMLMessageWindow catches option button signals to close the

message window.

4.10.7 Examples:

For an example of using this class, please see the example in the

PegMessageWindow documentation.

262 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.11 PegNotebook

4.11.1 Overview

PegNotebook is a PegWindow-derived class for displaying and using a

tabbed notebook-style control. The notebook can have any number of tabs,

and each notebook tab is associated with a different notebook page. Each

notebook page displays any user defined group of objects.

Each notebook tab can contain either simple text or any user-defined object
type. Text tabs use slightly less memory, while user defined tab decorations

can give the notebook control a customized appearance.

Regardless of tab type, the tabs can be displayed at the top or bottom of

the notebook window.

Constructing and displaying PegNotebook requires the following steps:

• Construct the PegNotebook control, passing the number of notebook
tabs and the style of the notebook tabs. For text-only tabs, include the
NS_TEXTTABS style. For custom tabs, do not include the NS_TEXTTABS
style.

• Populate each notebook tab with either text or custom objects. This
determines what is displayed on each notebook tab.

• Populate each page of the notebook with a user-defined window or
group. This determines what will be displayed on each notebook page as
the tabs are selected. There can be only one child object on each
notebook page. To display a group of objects, a container such as a
borderless PegWindow must be created to hold the subobjects of the
page. This window is then populated with the desired group of child
objects, and its is set as the notebook client object.

4.11.2 See Also

PegWindow

4.11.3 Style Flags

PegNotebook supports the following style flags:

FF_RAISED Raised 3D Frame

263 Swell Software, LLC Window Classes

PegNotebook

FF_RECESSED Recessed 3D Frame

NS_TOPTABS The notebook tabs appear above the notebook
pages.

NS_BOTTOMTABS The notebook tabs appear below the notebook
pages.

NS_TEXTTABS The notebook tabs are simple text, not custom
objects.

4.11.4 Signals

In addition to the common signals defined by PegThing, PegNotebook

sends the PSF_PAGE_SELECT signal when a new notebook page is selected.

The message contains the following data:

Message.pSource = Pointer to notebook window.

Message.Param = ID of notebook window.

Message.ExtParams[0] = Page index of selected page.

4.11.5 Derivation

PegNotebook derives from PegWindow.

4.11.6 Constructors:

PegNotebook(const PegRect &Rect, PEGULONG Style,

PEGUBYTE NumTabs)

The PegNotebook constructor accepts a PegRect defining the notebook

position and size, a style value, and the number of tabs that the notebook

will initially display. The number of tabs can be modified at run time.

4.11.7 Public Functions:

void CalculateTabPositions(void)

This function calculates the size and position of each of the tabs based on
the font or size of the client objects.

virtual void Draw(const PegRect &Invalid)

PegNotebook overrides the Draw() function to display the notebook

background, border, and tabs.

264 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

PEGUBYTE GetCurrentPage(void)

This function returns the active (displayed) page of the notebook.

PegThing *GetPageClient(PEGUBYTE Index)

This function returns the top-level client object of the current page.

PegThing *GetTabClient(PEGUBYTE Index)

This function returns the client object used to decorate the indicated
notebook tab. This function returns NULL if the notebook is operating in

NS_TEXTTABS mode or if no decoration has been defined for the requested

tab.

virtual PEGINT Message(const PegMessage &Mesg)

PegNotebook catches mouse click messages to test for notebook tab

selection. PegNotebook also catches PM_KEY messages to allow navigation
via a keyboard.

PegThing *RemovePageClient(PEGUBYTE Index)

This function can be used to remove the client object from any notebook

page. This is sometimes useful when the application desires to switch the
client object displayed on a notebook page during program run time.

void ResetNumTabs(PEGUBYTE Num)

This function can be used to reset the number of tabs available on the
notebook window after the notebook object has been constructed. If Num is

greater than the current number of pages, the user should populate the new

tabs and notebook client pages after this call. If Num is less than the current

number of notebook pages, the notebook will delete any page clients for
pages that are no longer required.

void ResetTabStyle(PEGULONG Style)

This function can be used to move the notebook tabs or toggle between

text tabs and custom decorated tabs.

void SelectTab(PEGUBYTE Tab)

This function can be used to change the current tab selection under

program control. The current tab is usually selected by the user via mouse,

touch screen, or keyboard. If the indicated tab is not visible, the notebook

will automatically scroll the selected tab into view.

265 Swell Software, LLC Window Classes

virtual void SetFont(PEGINT FontId)

PegNotebook

This function can be used to change the font of the text on the notebook

tabs. Since the tabs are sized based on the string width of each text string
in the selected font, the font can only be changed BEFORE the notebook is

displayed.

void SetPageClient(PEGUBYTE Index, PegThing
*pPageClient)

This function is called to associate an object with each notebook page.

There can be only one top-level client for each notebook page. For this

reason, if multiple child objects are to be associated with one or more

notebook pages, a borderless container window should be constructed as

the notebook page client. The child objects for the notebook page should
then be added to this borderless container window.

This function should be called once for each notebook page, setting the
page clients for page indexes 0 through (nTabs - 1).

If the SetPageClient function is called to link an object with a notebook

page that already has a client object, the existing client object is destroyed
and replaced with the new child object.

void SetTabClient(PEGUBYTE Index, PegThing

*pTabClient)

This function is called to assign the custom decoration which will be

displayed on each notebook tab. This function only works if the notebook is

NOT configured for NS_TEXTTABS mode.

Custom tab decorations can be created by deriving a new custom class

from PegThing or from any other PEG base class. An example of this is

shown in the PegNotebook example application.

void SetTabString(PEGUBYTE Index, PEGINT StringId)

void SetTabString(PEGUBYTE Index, const PEGCHAR
*pText)

This function sets the text string displayed on each notebook tab. This

function only operates when the notebook window is configured for

NS_TEXTTABS mode.

This function should be called once for each notebook tab, setting the text

value for tab indexes 0 through (nTabs - 1).

266 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.11.8 Protected Members

virtual void DrawFrame(PEGBOOL Fill = TRUE)

PegNotebook overrides the PegWindow::DrawFrame function in order to

properly draw the tabs on the top or on the bottom.

4.11.9 Examples:

The following is an example of a PegNotebook window with text tabs, a

raised frame, and tabs on top:

The following is an example of a PegNotebook window with custom tabs, a
thick frame, and tabs on bottom:

267 Swell Software, LLC Window Classes

PegNotebook

An example application program using PegNotebook is found in the

directory \peg\examples\notebook.

268 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.12 PegProgressWindow

4.12.1 Overview

PegProgressWindow is an extension of PegMessageWindow. In this case,

a progress bar indicator is added to the message and optional buttons

displayed on the message window. This makes it very easy to create and

display a message and progress bar to the user during a long operation.

The progress bar that is a child of the progress window is directly updated

by the application software. The progress window member function Bar()

is called to retrieve a pointer to the progress bar when the application
determines that the progress bar should be updated.

The progress bar added to a PegProgressWindow always has a scale of 0

to 100. It is up to the application software to prescale the input value

accordingly.

The style of the progress bar displayed in the window client area is passed

to the PegProgressWindow constructor.

4.12.2 See Also

PegProgressBar

PegMessageWindow

4.12.3 Style Flags

PegProgressWindow accepts both PegMessageWindow and

PegProgressBar styles, and these are passed directly to each base class.

4.12.4 Signals

PegProgressWindow signals are identical to PegMessageWindow signals.

4.12.5 Derivation

PegProgressWindow is derived from PegMessageWindow.

269 Swell Software, LLC Window Classes

4.12.6 Constructors:

PegProgressWindow

PegProgressWindow(const PegRect &Rect, PEGINT

TitleStringId, PEGINT MessageId, PEGUSHORT
MesgStyle, PEGUSHORT ProgStyle = FF_THIN|
PS_SHOW_VAL|PS_PERCENT, PEGINT IconId = 0,

PegThing *pOwner = NULL)

PegProgressWindow(const PegRect &Rect, const PEGCHAR
*pTitle, const PEGCHAR *pMessage, PEGUSHORT
MesgStyle, PEGUSHORT ProgStyle = FF_THIN|
PS_SHOW_VAL|PS_PERCENT, PEGINT IconId = 0,
PegThing *pOwner = NULL)

The PegProgressWindow constructors are identical to the

PegMessageWindow constructors, with the added style value ProgStyle.

This additional style value is applied to the child PegProgressBar object.

4.12.7 Public Functions:

PegProgressBar *Bar(void)

This inline function returns a pointer to the child progress bar. This allows

the application software to manipulate the child control directly.

4.12.8 Examples:

The following code fragment creates and displays a PegProgressWindow:

void MyWin::DisplayProgress(void)

{

PegRect Rect;

Rect.Set(10, 10, 190, 140);

PegProgressWindow *pWin = new PegProgressWindow(Rect,

"Working....", "Copying Information...", MW_OK|
FF_RAISED);

Presentation()->Center(pWin);

Presentation()->Add(pWin);

}

270 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.13 PegRichTextBox

4.13.1 Overview

The PegRichTextBox is responsible for Rich Text support in PegPro library.

The PegRichTextBox with additional APIs for Rich Text Support is

responsible for displaying formatted text like bold, italic, underline, etc. that

are in Rich Text Format. It is responsible for displaying the RTF file.

4.13.2 Style Flags

PegRichTextBox supports the following styles:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

4.13.3 See Also

PegWindow

4.13.4 Derivation

PegRichTextBox derives from PegWindow.

4.13.5 Constructors:

PegRichTextBox(const PegRect &Rect, PEGUSHORT Id = 0,

PEGULONG Style = FF_RECESSED|EF_WRAP|TJ_LEFT)

This constructor creates a PegRichTextBox. This constructor initializes all
member variables.

4.13.6 Public Functions:

virtual void Draw(const PegRect &Invalid)
PegRichTextBox overrides the Draw() function to display the text box
border and rich text from the RTF file.

271 Swell Software, LLC Window Classes

virtual void Resize(const PegRect &Size)

PegRichTextBox

PegRichTextBox overrides the Resize function to resize object properly.

This function destroys all parsed information and parses the file again with

the new size of Object.

virtual void RtfParser(PEGCT *pFileName)

This function will create the PegFile object open file whose name is in

pFileName. Read this file, character by character, and parse it. If there is a

‘\\’ character, then it will call the ParseRtfKeyWord function to parse the
RTF keyword and arguments associated with that keyword.

virtual void RtfParser(PEGCHAR *pRtfBuff)

This function will parse the pRtfBuff string and create a link list. If there is a

‘\\’ character, then it will call the ParseRtfKeyWord function to parse the

RTF keyword and arguments associated with that keyword.

virtual void SetNumFont(PEGUSHORT number)

This function is used to set how many fonts are used by the application. It

will be called by the application. It will create an mpRichFontTable array of

size ‘number’ to hold the font ID.

virtual void SetRichFont(PEGUINT FontId, PEGUINT FontIndex)

This function stores font ID in mpRichFontTable at the FontIndex position.

4.13.7 Protected Members Functions

virtual void AddColorToRTFColorTable(void)

This function retrieves the color ID from values of red, green, and blue. It
creates the color node and adds it to the link list RtfColorTable.

virtual void AddDrawObjectNode(void)

This function creates a link list of RichTextNode. It will wrap the parsed

string according to the width of the RichtextBox object. This function will fill
the structure RichTextNode and form a link list. In this structure will fill text

string, point, color, font id, underline flag.

virtual void ApplyPropChange(PEGINT Action, PEGINT param)

This function applies properties to the protected members of a class

according to action. If there are properties related to color, it will call the
AddColorToRTFColorTable function.

virtual void DrawAllRichText(const PegRect &Invalid)

272 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

This function reads link list RichTextNode node by node and draws text

according to information in the link list.

virtual const PEGCHAR *FindNextLine(const PEGCHAR *pText,

PEGINT MaxWidth, PEGUINT FontId, PEGINT Dir = 1)

This function looks through the pText string and returns a pointer to where
the next new line will start.

virtual PEGCOLOR GetColor(PEGUBYTE Red, PEGUBYTE Green,

PEGUBYTE Blue)

This function calculates color value from red, green, and blue values

passed to it and returns them. This value is as per the color format used by
the target.

PEGCOLOR virtual GetColorFromRTFColorTable(PEGUBYTE index)

This function searches for color ID in RtfColorTable with an index number.

virtual void ParseChar(PEGINT Action)

This function will store an action in the array and call the

AddDrawObjectNode function.

virtual void ParseRtfKeyWord(void)

This function will parse RTF keywords, their associated arguments, and will

call the TranslateKeyword function.

virtual void TranslateKeyword(PEGCT *ketword, PEGINT param,

PEGBOOL fParam)

This function finds out keyword in the KeyWordsProp array, which holds
supported keyword Information. If the keyword is not found, it will skip it. If
the keyword is found in the array, it will call functions according to the

keyword type. If the keyword is associated with text properties, it will call

ApplayPropChange with param. If it is any special character, it will call the

ParseChar function with the action that has to be taken. If the keyword has

to be skipped, it will skip it.

4.13.8 Protected Members

char mText[MAX_PARSE_STRING_LEN]
This array holds parsed strings between two control Words.

char *mpFileName

Holds the pointer to the file name.

273 Swell Software, LLC Window Classes

PegRichTextBox

RichTextNode *mpDrawHome
Pointer to RichTextNode link list.

RtfColorTable *mpColorHome

Pointer to color table.

PEGINT *mpRichFontTable

Pointer to font ID array.

4.13.9 Examples:

The following is an example of a PegRichTextBox display RTF file.

274 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.14 PegSpreadSheet

4.14.1 Overview

PegSpreadSheet is a row,column matrix for displaying text or bitmaps.

PegSpreadSheet is a higher-level construct than the basic PEG window

and control types; therefore, there are a large number of functions available

for controlling PegSpreadSheet appearance and operation.

PegSpreadSheet allows selection of individual cells, entire rows and
columns, or any combination in between. PegSpreadSheet may have any

number of column headings, row headings, and column footers. In addition,

PegSpreadSheet supports vertical and horizontal scrolling. Specific groups

of rows and/or columns may be specified as ’fixed,’ in that they do not move

when the spreadsheet is scrolled.

PegSpreadSheet columns automatically size themselves based on the

width of the objects contained in each cell. The justification of text within
each column can also be individually configured.

PegSpreadSheet cells may be configured to be selected individually or in
complete rows or columns. Whenever an individual cell is selected by the

user, the PegSpreadSheet will send a PSF_CELL_SELECT signal to the

parent window assuming that notification has been enabled. The message

pSource pointer will point to the PegSpreadSheet and the message Point

member will contain the row and column of the selected cell, allowing the
application to fully determine which cell has been selected.

When a spreadsheet column is selected, the spreadsheet will send a

PSF_COL_SELECT signal to the parent window. The message Param

member will contain the first column number selected, and the message

ExtParams[0] member will contain the last column number selected.

These will be the same value when only one column is selected.

When a spreadsheet row is selected, the spreadsheet will send a

PSF_ROW_SELECT signal to the parent window. The message Param

member will contain the first row number selected, and the message

ExtParams[0] member will contain the last row number selected.

Each column of the spreadsheet has its own set of style flags. These flags

control the appearance of each column of cells. These flags are modified

through the SetColStyle() member function. Likewise, each row of the

275 Swell Software, LLC Window Classes

PegSpreadSheet

spreadsheet has unique style flags, which are set with the SetRowStyle()
member function.

PegSpreadSheet can be drawn with a flat, raised, or recessed appearance

for each cell.

Optional column headers, row headers, and column footers are drawn if

desired.

PegSpreadSheet automatically provides horizontal and vertical scrolling

capability if the client area is not sufficient to display all cells. If the

spreadsheet is resized such that the scroll bars are no longer required, they

are automatically removed.

4.14.2 See Also

PegWindow

PegTable

4.14.3 Style Flags

PegSpreadSheet supports the standard frame styles. In addition, the

following style flags affect the overall spreadsheet appearance. Style flags

for individual rows and columns are described in the SetRowStyle and

SetColumnStyle function descriptions below.

SS_PARTIAL_COL Draws the last visible column, even if partially
clipped.

SS_MULTI_COL_SELECT Allows simultaneous selection of multiple
columns.

SS_MULTI_ROW_SELECT Allows simultaneous selection of multiple
rows.

SS_CELL_SELECT Allows individual cells to be selected.

4.14.4 Signals

In addition to the common signals defined by PegThing, PegSpreadSheet
supports the following signals:

276 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

PSF_COL_SELECT Sent when PegSpreadSheet column(s) are
selected.

PSF_ROW_SELECT Sent when PegSpreadSheet row(s) are
selected.

PSF_CELL_SELECT Sent when PegSpreadSheet cell(s) are
selected.

PSF_COL_DESELECT Sent when a PegSpreadSheet column is
unselected.

PSF_ROW_DESELECT Sent when a PegSpreadSheet row is
unselected.

4.14.5 Derivation

PegSpreadSheet derives from PegWindow.

4.14.6 Constructors:

PegSpreadSheet(const PegRect &Rect, PEGINT Rows,

PEGINT Cols, PEGUINT Id = 0, PEGULONG Style =
FF_RAISED|SS_CELL_SELECT|SS_PARTIAL_COL,
PegThing *pOwner = NULL)

The PegSpreadSheet constructor accepts a PegRect defining the
spreadsheet position and size. The total number of spreadsheet rows is

specified by Rows, and the total number of columns is specified in Cols. The

spreadsheet must have a non-zero ID to send signals, and the ID can be

specified in Id. Style indicates the global spreadsheet style, as each row

and column style must be set individually.

The pOwner parameter specifies which window, if any, should receive the

spreadsheet selection signals. This is required since PegSpreadSheet is

often added to PegPresentationManager, rather than to the owner window.

4.14.7 Public Functions:

PEGINT AddColumn(PEGINT Width, const PEGCHAR *pHeader
= NULL)

This function can be used to add a new column to the right of the
spreadsheet after the spreadsheet has been defined and displayed. The

Width parameter defines the new column width (column widths for the

277 Swell Software, LLC Window Classes

PegSpreadSheet

initial columns are calculated automatically based on column data). The

pHeader parameter, if used, defines the new column header. Only single-

row column headers are supported with this parameter. If your column
headers use multiple rows, you should pass NULL to this function and then
assign your column headers individually for the new column.

PEGINT AddRow(const PEGCHAR *pHeader = NULL)

This function can be used to add a new row at the end of the spreadsheet

after the spreadsheet has been defined and displayed. This is not the same

as defining the initial spreadsheet rows, normally done before the
spreadsheet is displayed, because the new row's header width will not be

factored into the left margin width for spreadsheet layout. Therefore, if you

anticipate adding rows to a spreadsheet that will have wider row headers

than the initially-defined rows, you should pad the initial row headers to

leave room for the dynamically-added row headers.

PEGBOOL CellSelected(const PEGINT Row, const PEGINT
Col)

This function can be used to determine at any time if a spreadsheet cell is

selected.

PEGBOOL ColSelected(const PEGINT Col)

This function can be used to determine at any time if a spreadsheet column

is selected.

virtual PegScroll *CreateHorzScroll(PegRect Rect,
PegScrollInfo *pSi, PEGUSHORT Id = 0)

This function is used to create a horizontal scrollbar. Derived spreadsheet
classes will override this to use a custom scrollbar.

virtual PegScroll *CreateVertScroll(PegRect Rect,

PegScrollInfo *pSi, PEGUSHORT Id = 0)

This function is used to create a vertical scrollbar. Derived spreadsheet

classes will override this to use a custom scrollbar.

PEGINT DeleteColumn(PEGINT Col)

This function can be used to delete any column in the spreadsheet. All data
other than the deleted column is retained. This function returns the number

of columns remaining in the spreadsheet after the delete operation, or -1 on

error.

278 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

PEGINT DeleteRow(PEGINT Row)

This function can be used to delete any row in the spreadsheet. All data

other than the deleted row is retained. This function returns the number of

rows in the spreadsheet after the delete operation, or -1 on error.

virtual void Draw(const PegRect &Invalid)

PegSpreadSheet overrides the PegThing::Draw function in order to

properly draw the cells, headers, and footers.

void DrawAllCells(const PegRect &Invalid)

This function draws all visible cells in the spreadsheet.

void DrawFooters(void)

This function draws all visible footers in the spreadsheet.

virtual void DrawHeaders(void)

This function draws all visible headers in the spreadsheet.

void DrawRowHeaders(void)

This function draws all visible row headers in the spreadsheet.

void ForceColWidth(PEGINT Col, PEGINT Width)

This function can be used to override the default width assigned to a
spreadsheet column. The default width is determined by finding the widest
data string associated with a column of cells. This width is determined from
cell data populated before the spreadsheet is displayed. The application

may override this default width by calling the ForceColWidth function

immediately before displaying the spreadsheet.

PegBitmap *GetCellBmp(const PEGINT Row, const PEGINT

Col) const

Returns a pointer to the bitmap in the cell specified by Row and Col.

PEGCHAR *GetCellData(const PEGINT Row, const PEGINT
Col) const

This function is used to retrieve the text contained in a spreadsheet cell.

virtual PegRect GetCellRect(const PEGINT Row, const
PEGINT Col)

This function returns the PegRect coordinates defining one cell's position.

This rectangle might NOT be within the client area of the spreadsheet if the

spreadsheet has been scrolled.

279 Swell Software, LLC Window Classes

PegSpreadSheet

PEGCHAR *GetColHeader(const PEGINT Col) const

This function returns the text string used for the indicated column header.

PEGINT GetCols(void) const

This inline function returns the number of columns in the spreadsheet.

PEGUINT GetColumnStyle(const PEGINT Col)

This function is used to get the style flags associated with a particular

spreadsheet column.

PEGINT GetDispCols(void)

This inline function returns the number of columns that are actually visible

in the spreadsheet client area.

PEGINT GetDispRows(void)

This inline function returns the number of rows that are actually visible in

the spreadsheet client area.

PEGINT GetOptimumHeight(void)

This function returns the best height for the spreadsheet after all cells have

been initialized. This height will allow the display of the entire spreadsheet
without scrolling.

PEGINT GetOptimumWidth(void)

Returns the best width for the spreadsheet after all cells have been

initialized. This width will allow the display of the entire spreadsheet without

scrolling.

PEGCHAR *GetRowHeader(const PEGINT Row) const

This function returns the character string used as the row header for the

indicated row.

PEGINT GetRows(void) const

This inline function returns the number of rows in the spreadsheet.

PEGUINT GetRowStyle(const PEGINT Row)

This function returns the style flags associated with each row in the
spreadsheet.

280 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

PEGINT GetSelectedColumn(PEGINT Index = 0)

This function can be called at any time to inquire which column(s), if any,

are selected. If the SS_MULTI_COL_SELECT style is not enabled, there can

only be at most one selected column. If multiple-selection mode is enabled,
however, there may be any number of selected columns. In this case, the
caller uses the index value to step through the selected columns and
retrieve all selected column numbers.

PEGINT GetSelectedRow(PEGINT index = 0)

This function can be called at any time to inquire which row(s), if any, are

selected. If the SS_MULTI_ROW_SELECT style is not enabled, there can only

be at most one selected row. If multiple-selection mode is enabled,
however, there may be any number of selected rows. In this case, the caller
uses the index value to step through the selected rows and retrieve all
selected row numbers.

PEGINT InsertColumn(PEGINT Column, PEGINT Width, const

PEGCHAR *pHeader)

This function adds a new column to the spreadsheet, to the left of the
column specified by Column. The initial column width will be Width. The

column header may be assigned by passing pHeader or by passing NULL

and using the normal SetColumnHeader functions after the column has

been inserted. The return value is -1 for error or the number of columns in
the spreadsheet after insertion.

PEGINT InsertRow(PEGINT Row, const PEGCHAR *pHeader =

NULL)

Similar to InsertColumn (above), this functions inserts a new row in the

spreadsheet immediately above the indicated row. The return value is -1 for
error or the number of rows in the spreadsheet after insertion.

virtual PEGINT Message(const PegMessage &Mesg)

PegSpreadSheet overrides the PegThing::Message function to handle

events like scrolling or mouse clicks.

PEGBOOL RedrawOneCell(const PEGINT Row, const PEGINT
Col)

This function invalidates and draws an individual cell.

virtual void Resize(const PegRect &Rect)

PegSpreadSheet overrides the Resize function to update the client area

spreadsheet scroll bars.

281 Swell Software, LLC Window Classes

PEGBOOL RowSelected(const PEGINT Row)

PegSpreadSheet

Returns TRUE if the indicated row of cells is selected, else FALSE.

void SelectCell(PEGINT Row, PEGINT Col, PEGBOOL Set =
TRUE)

This function can be used to manually select or deselect cells independent

of user interaction.

virtual void SelectCell(const PegPoint &Pos)

This function is used when a user clicks on the spreadsheet. The parameter

Pos represents the position of the click. This function determines if it needs

to select a row, column, or cell based on the click.

void SelectColumn(const PEGINT Col, PEGBOOL Set =
TRUE)

This function can be used to manually select or deselect spreadsheet

columns independent of user interaction.

void SelectRow(const PEGINT Row, PEGBOOL Set = TRUE)

This function can be used to manually select or deselect spreadsheet rows

independent of user interaction.

virtual void SetCellBmp(const PEGINT Row, const PEGINT
Col, const PEGINT BmpId, PEGBOOL Redraw = FALSE)

This function sets a bitmap to be displayed in the cell specified by Row and
Col.

virtual void SetCellData(const PEGINT Row, const

PEGINT Col, const PEGCHAR *Text, PEGBOOL Redraw
= FALSE)

SetCellData is used to populate individual spreadsheet cells with

program-defined data values.

void SetCellFont(PEGINT FontId)

This function is used to select the font used to display cell data. There is
only one font used to display all cells.

virtual void SetColor(const PEGUBYTE Index, const

PEGINT Color)

PegSpreadSheet overrides the SetColor() function to provide additional

color indices. These indices include:

282 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

PCI_NORMAL Normal (not selected) cell fill color

PCI_SELECTED Selected cell fill color

PCI_NTEXT Normal (not selected) cell text color

PCI_STEXT Selected cell text color

PCI_SS_COLHEADBACK Column header background color

PCI_SS_COLHEADTEXT Column header text color

PCI_SS_ROWHEADBACK Row header background color

PCI_SS_ROWHEADTEXT Row header text color

PCI_SS_DIVIDER PegSpreadSheet divider color

PCI_SS_BACKGROUND PegSpreadSheet background color

void SetColumnFont(PEGINT Col, PEGINT FontId)

This function sets the font for an entire column in the spreadsheet.

void SetColumnStyle(const PEGINT Col, const PEGULONG
Flags)

This function is used to set the style flags associated with a particular
spreadsheet column. The default column style is TJ_CENTER|FF_RECESSED.

The available styles are:

FF_THIN Cells are drawn with a thin border.

FF_RAISED Cells are drawn with a raised border.

FF_RECESSED Cells are drawn with a recessed border.

TJ_RIGHT Cell data is right justified.

TJ_LEFT Cell data is left justified.

TJ_CENTER Cell data is center justified.

SCF_SEPARATOR The column is a separator, and cell data is not
displayed.

SCF_ALLOW_SELECT Allows selection of this column.

void SetFooter(const PEGINT LineNum, const PEGINT Col,
const PEGCHAR *pText)

This function is used to define the column footers. Columns footers are
displayed directly below each column of spreadsheet data. Column footers

are optional, and are only displayed if defined.

283 Swell Software, LLC Window Classes

PegSpreadSheet

void SetHeader(const PEGINT LineNum, const PEGINT Col,
const PEGCHAR *pText)

This function is used to define the spreadsheet column headers. Column

headers are displayed directly above each column in the spreadsheet. The

number of rows of header data is determined automatically by the
spreadsheet based on the number of header rows initialized by the calling

object. That is, you do not need to explicitly indicate how many rows of

column header data are required. You simply initialize the column headers

as needed, and PegSpreadSheet determines how to display the header

information. The width of the column headers is also included when

determining the width of each column. Columns headers are not required,
and will not be displayed if not initialized. Column headers must be defined

for the spreadsheet to support column selection.

void SetHeaderFont(PEGINT FontId)

This function defines the font used to display column headers.

void SetRowHeader(const PEGINT Row, const PEGCHAR
*pText)

This function is used to initialize the row headers. Row headers are
displayed to the left of each spreadsheet row. Row headers are not

required, and will not be displayed if they are not initialized. Row headers

must be defined for the spreadsheet to support row selection. Row headers

are not scrolled when the spreadsheet performs a horizontal scrolling
operation.

void SetRowStyle(const PEGINT Row, const PEGULONG

Flags)

This function sets the style flags associated with each row in the
spreadsheet. The only row style currently supported is the

SRF_ALLOW_SELECT style, which allows the user to select the row header to

select all cells in the row. The default row style is 0.

void SetScrollStartCol(const PEGINT Col)

This function can be used to determine which columns are scrolled right

and left by the horizontal scroll bar. Columns to the left of this value are not
scrolled, and columns to the right are. This allow you to ‘lock’ certain

columns in the display while others are scrolled.

void SetSize(const PEGINT Rows, const PEGINT Cols)

This function sets the size of the spreadsheet based on rows and columns.

284 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

void UnselectAll(void)

This function unselects all rows, columns, and cells.

PEGBOOL UnselectCells(void)

This function unselects cells. It returns TRUE if a selected cell was found,

else FALSE.

PEGBOOL UnselectColumns(void)

This function unselects all columns. It returns TRUE if a selected column
was found, else FALSE.

PEGBOOL UnselectRows(void)

This function unselects all rows. It returns TRUE if a selected row was

found, else FALSE.

PEGINT UpdateColLayout(void)

This function forces the spreadsheet to recalculate the visible/non-visible
column parameters and scroll bar settings. This function should be called if

the SS_PARTIAL_COL style flag is changed after the spreadsheet is visible.

PEGINT UpdateRowLayout(PEGBOOL ForceVertical = FALSE)

This function forces the spreadsheet to recalculate the visible/non-visible

row parameters and scroll bar settings. It should be called if the number of

column header rows, cell or header font, or any other variable that affects

the number of visible rows is changed after the spreadsheet is visible.

Setting ForceVertical TRUE forces the inclusion of a vertical scroll bar. If
ForceVertical is FALSE or omitted, a vertical scroll bar will be added only
if needed.

virtual void UpdateScrollBars(void)

This function forces the spreadsheet to recalculate the size and position of

the scroll bars.

PEGINT VScrollIntoView(const PEGINT Row)

This function scrolls the specified row into view.

4.14.8 Protected Members

virtual void CheckCellSelect(const PegPoint &Pos)

This function checks to see if the clicked position, Pos, is inside a selectable

cell. If so, it selects it.

285 Swell Software, LLC Window Classes

PegSpreadSheet

virtual void ClipToFace(const PegRect &Invalid)

This function adjusts the clipping rectangle to be contained inside the

border and the scroll bar.

virtual void DoHorizontalScrolling(const PEGINT
Amount)

This function forces a scroll horizontally by Amount.

virtual void DoVerticalScrolling (const PEGINT Amount)

This function forces a scroll vertically by Amount.

virtual void DrawCellBorder(PegRect &CellRect,

PEGCOLOR BackColor, PEGINT Row, PEGINT Column)

This function draws a border around a single cell.

virtual void DrawFlat(PegRect &CellRect, PEGCOLOR
BackColor, PEGINT Border = 0)

This function draws a flat (borderless) rectangle in the background of a

single cell.

virtual void DrawRaised(PegRect &CellRect, PEGCOLOR
BackColor, PEGINT Row, PEGINT Column)

This function draws a raised frame around a single cell.

virtual void DrawRecessed(PegRect &CellRect, PEGCOLOR
BackColor, PEGINT Row, PEGINT Column)

This function draws a recessed frame around a single cell.

virtual void UpdateCell(PegRect &CellRect, PEGCOLOR
ForeColor, COLORVAL BackColor, PEGINT Row,
PEGINT Col)

virtual void UpdateCell(PegRect &CellRect, const

PEGCHAR *pText, PEGUINT Justify, PEGINT FontId,
PEGCOLOR ForeColor, PEGCOLOR BackColor)

This function updates the text on a single cell using the text, font, and colors

passed into it.

4.14.9 Examples:

The following is an example of a PegSpreadSheet, centered in the client

area of a PegDecoratedWindow:

286 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

A complete example using PegSpreadSheet (the example used to create
the screen shot above) can be found in your \peg\examples\spread

directory.

287 Swell Software, LLC Window Classes

4.15 PegTable

PegTable

4.15.1 Overview

PegTable is a container object for displaying a matrix of PegThing-derived

objects.

The number of table rows and columns must be passed to the PegTable
constructor. The row heights and columns widths are determined

dynamically as objects are added to the table.

PegTable will display a cell grid if the table grid line width is non-zero. The

default grid line width is PEG_FRAME_WIDTH. This can be modified by calling

the member function SetGridWidth().

Each cell can add padding space around each child object if desired. The
default padding amount is zero pixels. This can be modified by calling the

table member function SetCellPadding(). Cell padding applies to all cells

in the table.

Child objects are added to the table using the table SetCellClient()

member function. Any PegThing-derived class may become a table cell
client. As objects are added to the table, they can be set to span multiple
rows and/or columns. This allows a great deal of flexibility in the final
appearance of the table. When objects that span multiple rows or columns

are added to the table and the TCF_FORCEFIT style flag is passed to the

SetCellClient() function, the spanned rows and/or columns may be

expanded to ensure that the object is fully displayed in the indicated table
cells.

When constructing child objects to display in the table, it is not necessary

for the application software to calculate each child object’s position. This is

determined by the table window. It IS necessary, however, to properly set
the overall size of each child object before adding that object to the table.

The table determines the row heights and column widths by examining the

size of each child object in conjunction with the rowspan and columnspan

attributes of each child.

After the table has been fully initialized, the Layout() member function

should be called before the table is displayed. The Layout function
calculates the correct overall table size, and positions each child object to fit
correctly within the desired table cells.

288 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

The Layout() function resizes row heights and column widths if required to
accommodate all children with TCF_FORCEFIT style. The layout algorithm
works by checking the following rules in the following order:

• For each single-cell child object with a TCF_FORCEFIT style, ensure that
the height and width of the cell occupied by the object are the object
height and width.

• For each multicell child object with a TCF_FORCEFIT, add the total height
and width of the spanned cells.

— If the total width of spanned cells is the object width, continue to
height check.

— Otherwise, search for a zero-width column spanned by the
object.

— If a zero-width column is found, increase the column width the
necessary amount to display the child object.

— If no zero-width columns are found, increase all spanned cell
widths by an equal amount to fully display the child object.

— If the total height of spanned cells is the object height, continue.

— Otherwise, search for a zero-height row spanned by the object.

— If a zero-height row is found, increase the row height the
necessary amount to display the child object.

— If no zero-height rows are found, increase all spanned cell
heights by an equal amount to fully display the child object.

• Position each child object to the center of the each cell.

The general order of constructing a PegTable is:

• Construct the table, passing in max rows and columns.

• Set column widths and row heights for any columns or rows with manual
size settings.

• Call SetCellClient for each cell in the table that should contain a child
object.

• Call the table member function Layout().

• Add the table to the parent window or PegPresentationManager.

Each table column has a fixed width. Initially, each column has a default

width of zero. The true width of each column can either be set manually by

calling the SetColWidth() function, or can be determined automatically by

289 Swell Software, LLC Window Classes

PegTable

the table. When adding objects to the table, the table will automatically re-
size columns (and rows) to match the size of the child object if the

TCF_FORCEFIT style flag is passed in to SetCellClient(). In all cases, the

column width for each column is set to the maximum width of either all
children for that column or the manually-assigned column width value.

Each table row also has a fixed height, which can either be set using the

SetRowHeight() function or determined automatically by the table.

PegTable will automatically size itself to display all children when the

Layout() function is called. For displaying very large tables, PegTable may

be added to the client area of a parent window which has scrolling enabled
This will allow the table to be panned up-down and left-right.

Notifications sent from table cell clients are passed unchanged to the table

parent. This allows any window containing a PegTable to receive events

from the table cell client objects as if the objects were direct children of the

parent window.

4.15.2 See Also

PegSpreadSheet

4.15.3 Style Flags

PegTable supports the following style flags:

TS_SOLID_FILL Fills the table mReal rectangle with the table
PCI_NORMAL color.

TS_DRAW_HORZ_GRID Draws only the horizontal grid lines between
rows of cells.

TS_DRAW_VERT_GRID Draws only the vertical grid lines between
columns.

TS_DRAW_GRID Draws all grid lines between all cells.

PegTable also supports the following styles with regard to the cell clients.

These flags are only applicable when calling the SetCellClient method.

290 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

TCF_FORCEFIT This style bit will force the parent table to
automatically adjust the row heights and
column widths of the cells that are occupied
by this object to ensure that the object is fully
contained and displayed by the cells that it
occupies

TCF_HCENTER Horizontally centers the cell object within the
bounding cell.

TCF_HLEFT Left justifies the cell object within the
bounding cell.

TCF_HRIGHT Right justifies the cell object within the
bounding cell.

TCF_VCENTER Vertically centers the cell object within the
bounding cell.

TCF_VTOP Top justifies the cell object within the
bounding cell.

TCF_VBOTTOM Bottom justifies the cell object within the
bounding cell.

4.15.4 Derivation

PegTable derives from PegWindow.

4.15.5 Constructors:

PegTable(PegRect &Rect, PEGINT Rows, PEGINT Cols)

This constructs a PegTable object, specifying the position and the number

of table rows and columns.

4.15.6 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegTable overrides the Draw() function and breaks the procedure into two

stages. First, the table itself draws the table grid lines. Then the table mClip
variable is set to the ‘client area’ of each cell and individual cell clients are
drawn.

virtual void DrawChildren(const PegRect &Invalid)

This function modifies the base class function of the same name to prevent

child objects from drawing outside the cell area allocated to each cell client.

291 Swell Software, LLC Window Classes

virtual void DrawGrid(void)

This function draws the table grid lines.

PegTable

PegThing *GetCellClient(PEGINT Row, PEGINT Col)

This function returns a pointer to the object displayed at the indicated cell

position.

PEGINT GetCellPadding(void)

This inline function returns the cell padding of the table.

void GetCellSpan(PEGINT Row, PEGINT Col, PEGINT
*pRowSpan, PEGINT *pColSpan)

This function determines the row-span and column-span for the cell at the

location specified by Row and Col.

PEGINT GetCellStyle(PEGINT Row, PEGINT Col)

This function returns the style flags for the specified cell.

PEGINT GetColumns(void)

This inline function returns the number of columns in the table.

PEGINT GetForcedColWidth(PEGINT Col)

This function returns the forced width of a column if it has the

TCF_FORCEFIT style. It returns -1 if TCF_FORCEFIT is not enabled for that

column.

PEGINT GetForcedRowHeight(PEGINT Row)

This function returns the forced height of a row if it has the TCF_FORCEFIT
style. It returns -1 if TCF_FORCEFIT is not enabled for that row.

PEGINT GetGridWidth(void)

This inline function returns the table's grid width.

PEGBOOL GetRowCol(PegThing *pChild, PEGINT *pRow,
PEGINT *pCol)

This function returns the row and column position of the child object

indicated by pChild. If pChild is found in the table, pRow and pCol are

written by this function to contain the row and column of the indicated child
object. If the object spans multiple rows or columns, the returned row and
column value will be the first, or upper left, cell position. This function

returns TRUE if the object pChild is found in the table, else FALSE.

292 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

PEGINT GetRows(void)

This inline function returns the number of rows in the table.

virtual void Layout(void)

This function should be called whenever the list of table child objects is
modified. This is normally done after the table is fully initialized but before

the table is displayed. Note that child objects can be modified after the table

has been displayed. The Layout function should be called after any

modifications are made to a visible table. Note that table row heights and

column widths are never decreased, but may be increased if new child
objects are added which are larger than the objects previously contained in
a given cell or group of cells.

virtual void Reconfigure(PEGINT Rows, PEGINT Cols,

PEGINT GridWidth, PEGINT CellPadding)

This function recalculates row/column widths based on current entries. This

should be called after changing the cell clients.

PegThing *RemoveCellClient(PEGINT Row, PEGINT Col)

This function removes the child object at the indicated cell position and

returns a pointer to that object. The object is not destroyed.

virtual void SetCellClient(PEGINT Row, PEGINT Col,
PegThing *pChild, PEGINT RowSpan = 1, PEGINT
ColSpan = 1, PEGULONG Style = TCF_HCENTER|

TCF_VCENTER)

This function is used to populate the children displayed in each table cell.
The child objects can be any type of PegThing-derived objects, which
includes all buttons, strings, prompts, text boxes, etc. The default row and
column span for an object is 1, indicating that the object occupies one table

cell. If the ColSpan or RowSpan values are set to a value larger than 1, this

object will occupy multiple table cells.

The default Style flag will center the object vertically and horizontally within

the bounding cell. To enable force-fitting the cell on the table, specify the

TCF_FORCEFIT style.

See this table for a list of supported style flags for the cell objects. It is

important to note that the justification styles operate only on the placement

of the object within its bounding cell or cells. The style flags do not operate

on the object itself. For example, a PegPrompt object has a series of styles

that allow for left, center, and right justification of its text. These text

293 Swell Software, LLC Window Classes

PegTable

justification style flags are completely independent of the cell style flags.

Therefore, it would be acceptable to right justify the text within the

PegPrompt object while specifying that the PegPrompt object be positioned

horizontally to the left within the cell.

virtual void SetCellPadding(PEGINT Pad)

This function is used to modify the default cell padding value, which is zero.
The padding amount is in pixels.

virtual void SetColWidth(PEGINT Col, PEGINT Width,

PEGBOOL Force = FALSE)

This function can be used to manually set the column width for any number

of columns in the table. The column width cannot be decreased, but can

only be set to a value larger than the current value. The initial width of all

table columns is zero pixels.

void SetGridWidth(PEGINT Width = PEG_FRAME_WIDTH) This

function is used to set the grid line width for the grid drawn by the table.

Setting the grid line width to zero disables the table grid; however, all other

positioning works as normal.

virtual void SetRowHeight(PEGINT Row, PEGINT Height,
PEGBOOL Force = FALSE)

This function can be used to manually set the row height for each table row.

The row height cannot be decreased, but can only be set to a value larger

than the current value. The initial height of all table rows is zero.

4.15.7 Examples:

The following is a PegTable populated with different types of cell client

objects.

294 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

The full source code for this example can be found in the \peg\examples\
table directory.

295 Swell Software, LLC Window Classes

4.16 PegTextBox

PegTextBox

4.16.1 Overview

PegTextBox is a multiline text display control. PegTextBox is derived from
PegWindow.

The font, color, size, scrolling mode, and other parameters can be modified,

giving PegTextbox a wide variety of appearances.

By default, PegTextBox left-justifies the displayed text. Center and right-
justification is also supported.

Lines of text that are too long to fit in the client width of the text box are also
wrapped by default to use two or more lines. This is controlled by the

EF_WRAP style flag. The wrapping algorithm searches for white space,

comma, or hyphen characters as logical points to break long lines. If a
suitable breaking point is not found, PegTextBox simply breaks a line at the
last character that fits within the client width area.

If a PegTextBox is used to display a long section of text that requires more
vertical lines than are visible in the text box client area, you can use the

SetScrollMode(WSM_AUTOVSCROLL) function to give the PegTextBox a

vertical scroll bar.

Internally, PegTextBox maintains a set of PEGUINT offsets into the block of

text displayed by the PegTextBox window. These offsets are the starting
character offsets corresponding to each line of text. This allows

PegTextBox to quickly display new lines of text as the text is scrolled up
and down. Only a fixed maximum number of offsets are calculated at any
one time (max is 100). This window of line-start offsets slides up and down

as the user scrolls the text in the window. You can access these line-start
offsets if needed using member functions.

In addition to scroll bars, PegTextBox catches PK_PGUP and PK_PGDN

PM_KEY messages to scroll the displayed text up and down, page by page.

PegTextBox does not allow user editing. The text data displayed in the text
box can only be modified via program control using the DataSet() or

Append() member functions. For a full edit-style control, refer to

PegEditBox.

296 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.16.2 See Also

PegPrompt

PegEditField

PegWindow

PegTextThing

PegEditBox

4.16.3 Style Flags

PegTextBox supports the following styles:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

EF_EDIT When this style is applied, the user can edit the
PegTextBox object. If this style is applied, the
PegTextBox object automatically includes the
TT_COPY style.

EF_WRAP When this style is applied, the text box will
wrap long lines to prevent them from being
clipped.

TT_COPY Instructs the PegEditBox to copy the text string
assigned. This flag should be used when the
text string assigned to the PegEditBox is
created dynamically using temporary storage.

4.16.4 Signals

PegTextBox supports no extended signals.

4.16.5 Derivation

PegTextBox is derived from PegWindow.

297 Swell Software, LLC Window Classes

4.16.6 Constructors:

PegTextBox

PegTextBox(const PegRect &Rect, PEGUINT StringId = 0,

PEGUSHORT Id = 0, PEGULONG Style = FF_RECESSED|
EF_WRAP|TJ_LEFT, PEGUINT MaxChars = 1000)

PegTextBox(const PEGCHAR *pText, const PegRect &Rect,

PEGUSHORT Id = 0, PEGULONG Style = TT_COPY|
FF_RECESSED|EF_WRAP|TJ_LEFT, PEGUINT MaxChars =
1000)

This constructor creates a PegTextBox. MaxChars is the maximum number

of characters that the text box will be required to support. If more than this
number of characters is assigned using the DataSet() function, the extra

characters fall off the end. If more than this number of total characters is
assigned using the Append() function, the oldest characters fall off the top.

4.16.7 Public Functions:

virtual void Append(PEGINT StringId)

virtual void Append(const PEGCHAR *pText)

This function appends the indicated text to the current text box string value.

If the total number of text box characters the maximum number of
characters, PegTextBox will remove the overflow characters from the start
of the text box string. This operation facilitates the creation of terminal style
windows.

void CheckBufLen(PEGINT Len)

This function checks to see if the internal text buffer is large enough to hold

Len number of characters. If not, it reallocates the buffer.

virtual void DataSet(PEGINT StringId)

virtual void DataSet(const PEGCHAR *pText)

PegTextBox overrides the DataSet function to reset any scroll bars and to
recalculate line offsets.

virtual void Draw(const PegRect &Invalid)

PegTextBox overrides the Draw() function to display the text box border

and text.

298 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

const PEGCHAR *FindLinePointer(PEGINT Line)

Finds the PEGCHAR at the start of the given line. If Line is beyond the total

number of lines, then the method returns NULL.

virtual void GetHScrollInfo(PegScrollInfo *pPut)

PegTextBox overrides the PegWindow::GetHScrollInfo function to make

the scroll bars operate relative to the contained text.

PEGINT GetLineIndex(PEGINT Line)

This function returns the starting index into the total text string at which the

text for line Line begins.

const PEGCHAR *GetLineStart(PEGINT Line, PEGINT
*pLength)

This function returns a pointer to the indicated line of text. Programmers
must remember that the text box text lines are actually subsets of a larger
text string; i.e., the returned string is not necessarily terminated at end of

the requested line. If the pLength parameter is non-NULL, this function

returns the number of characters (excluding \r or \n characters) displayed
on this text line.

PEGUINT GetMaxChars(void)

This inline function returns the maximum number of characters the text box

will contain.

PEGUINT GetTopLine(void)

This inline function returns the index of the top line currently displayed in
the text box.

virtual void GetVScrollInfo(PegScrollInfo *pPut)

PegTextBox overrides the PegWindow::GetVScrollInfo function to make

the scroll bars operate relative to the contained text.

PEGINT GetWidestLine(void)

This inline function returns the width (in pixels) of the widest line of
currently-displayed text in the text box. The widest line may not be visible in

the client area.

PEGINT LineCount(void)

This inline function returns the total number of lines contained in the text
box. This is the total number of lines available, as opposed to the number of

lines actually visible.

299 Swell Software, LLC Window Classes

PEGBOOL LineDown(void)

PegTextBox

This function can be called to scroll the text box down one line under

program control.

PEGBOOL LineUp(void)

This function can be called to scroll the text box up one line under program

control.

void MarkLine(PEGINT iLine)

This function can be used to ‘mark’ one line of text. The marked line of text

will be displayed using the PCI_STEXT and PCI_SELECTED foreground and

background colors.

virtual PEGINT Message(const PegMessage &Mesg)

PegTextBox catches several mouse and keyboard messages.

virtual void Resize(const PegRect &NewSize)

PegTextBox overrides the Resize() function to recalculate the layout of

the displayed text lines.

void RewindDataSet(PEGINT StringId)

void RewindDataSet(const PEGCHAR *pText)

This function assigns the specified text string to the PegTextBox, and also
resets the text box to the top line. This is useful when the text box content is

changed after the user may have scrolled the text box down some number

of lines. When this function is used, the new text is always displayed from

the start.

void SetBorderWhitespace(PEGINT Space)

This function determines how much white space is used to pad the outside

of the text, inside its border.

virtual void SetFont(PEGINT iFontIndex)

PegTextBox overrides the SetFont() function to recalculate the layout of

the displayed text lines.

void SetInterlineSpace(PEGINT Space)

This function determines how much white space is used to pad in between

lines of text.

300 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

void SetMaxChars(PEGINT Max)

This function can be used to modify the maximum number of characters the

text box will allow.

virtual void SetScrollMode(PEGUINT Mode)

PegTextBox overrides PegWindow::SetScrollMode to make sure that the

text lines get updated with it.

void SetTopLine(PEGINT Line)

This function will scroll the text box to the indicated line number under
program control. If the requested line is too far down (i.e., past the last line

of text) PegTextBox sets the top line such that the last line of text is visible

at the bottom of the text box client area.

void SetTopLineToEnd(void)

This function will scroll the text box down such that its last line is visible.

4.16.8 Protected Members:

virtual void DrawAllText(const PegRect &Invalid)

This function draws all visible lines of text.

virtual void DrawTextLine(PEGINT Line, PegPoint
PutPoint, PEGBOOL Fill = FALSE)

This function draws a single line of text.

virtual const PEGCHAR *FindNextLine(const PEGCHAR
*pText, PEGINT MaxWidth, PEGINT Dir = 1)

This function looks through the pText string and returns a pointer to where

the next new line will start.

PEGINT mWidestLine

Holds the width of the widest text box line, in pixels.

PEGINT mLeftOffset

This value indicates how far the text box has scrolled from the leftmost

anchor point.

4.16.9 Examples:

The following are each different styles of PegTextBox:

Window aasses 301 Sval Softwue, U.C

rr.

I

PegTextBox

This is the default appearance I
of PegTextBox.

III

This TextBox has no frame,]
and persistant scroll bars. I

' 1 ...

[!Jr 1

This TextBox has a thick

frame, altered colors, and a

vert icaI scroII bar.

a

This text box is using a
large bold vel=tor font.
The textbox is a client of
a parent DecoratedWindow. I

The camplete source for the Iast example shown above can be found in the
example program \peg\examples\vecfont distributed with your PEG
release.

302 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.17 PegTreeNode

4.17.1 Overview

PegTreeNode, derived from PegTextThing, is used to populate a
PegTreeView container window.

Each PegTreeNode must have an associated text string. Each node may

also have a bitmap or thumbnail associated with it. If a bitmap is specified,

the bitmap is displayed to the left of the text for that node. The same bitmap

can be used for any number of nodes.

The bitmaps associated with each node do not all have to be the same size.
The bitmaps associated with each node are displayed such that they are

horizontally centered. Also, the bitmaps can be of any height and width. A

pleasing display is usually created using bitmaps of between 12 x 12 and

20 x 20 pixels.

PegTreeNode objects are displayed in the order they are added to the

parent node.

The model for programming PegTreeView is very similar to the general

PEG programming model, since in both cases you are working with tree-

structured lists of objects.

4.17.2 See Also

PegWindow

PegTreeView

4.17.3 Derivation

PegTreeNode derives from PegTextThing.

303 Swell Software, LLC Window Classes

4.17.4 Constructors:

PegTreeNode

PegTreeNode(PEGINT StringId = 0, PEGINT BmpId = 0)

PegTreeNode(const PEGCHAR *Text, PEGINT BmpId = 0)

Creates a PegTreeNode object. The text string must be valid, while the

bitmap is optional.

4.17.5 Public Functions:

virtual void Add(PegThing *pChild, PEGBOOL DoShow =
FALSE)

Adds pChild to the current node.

PEGINT BranchHeight(void)

Returns the height of the current branch, factoring in all child node heights if

the current branch is open.

PEGINT BranchWidth(PegTreeView *pParent)

Returns the width, in pixels, of the current branch. This includes the bitmap

width (if any) and the text string width.

void Close(void)

Closes the current node. If the node has children, they are not displayed.

PEGINT Count(void)

Returns the number of children owned by the current node.

PegTreeNode *FirstNode(void)

Returns the first child node of the current node, or NULL if the current node

has no children.

void ForceOpen(void)

This function forces the node to be open.

PEGINT GetMap(void)

Returns the bitmap associated with the node, or -1.

void Insert(PegTreeNode *pSib)

Inserts a new node beneath the current node. This may push other nodes

down if they exist.

304 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

PEGBOOL IsOpen(void)

Returns TRUE if the current node is open and has children, else FALSE.

PEGBOOL IsSelected(void)

Returns TRUE if the current node is selected, else FALSE.

void MoveToTop(PegTreeNode *pChild)

Slides the current node to the top of its siblings, thus becoming the first

child of the parent node.

PegTreeNode *NextNode(void)

Returns the following sibling of the current node, or NULL.

PegTreeNode *NodeAbove(void)

This function returns the nearest visible PegTreeNode above the current

node.

PegTreeNode *NodeBelow(void)

This function returns the nearest visible PegTreeNode below the current

node.

PegTreeNode *NodeBottom(void)

This function returns the bottom-most PegTreeNode on the node's subtree.

PEGINT NodeHeight(void)

Returns the height of the current node, in pixels. This function does not
include the height of any child nodes.

PEGINT NodeWidth(void)

Returns the width, in pixels, of the current node. This includes the bitmap

width (if any) and the text string width.

void Open(void)

Forces the node to open and display any children.

PegTreeNode *ParentNode(void)

Returns the parent of the current node, or NULL if the current node is the

tree view top node.

305 Swell Software, LLC Window Classes

void SetMap(PEGINT BitmapId)

PegTreeNode

Assigns the bitmap associated with a given node. This function can be

called at any time, allowing the system software to change the bitmap
associated with a node based on the node state.

void SetNext(PegThing *pNext)

Assigns the next node associated with the current node. This function is

generally only used by PegTreeView.

void SetSelected(PEGBOOL Selected)

Forces the current node to become selected and to display itself as the
selected node.

4.17.6 Examples:

Refer to PegTreeView for instance and programming examples.

306 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.18 PegTreeView

4.18.1 Overview

PegTreeView, derived from PegWindow, displays a hierarchical

presentation of PegTreeNode objects. PegTreeView always uses

automatic vertical and horizontal scrolling, so that whenever more nodes

than can be displayed in the PegTreeView client area are present, scroll

bars are provided for panning the node display area.

PegTreeView is actually a container object. When you create and display
PegTreeView style windows, you will generally interact directly with the

PegTreeNode children of the PegTreeView container. Any nesting level of

PegTreeNode children can be displayed in the PegTreeView window.

PegTreeView allows node selection using the mouse or the keyboard.

The PegTreeView constructor accepts parameters for creating the first or
top-level node in the tree. PegTreeView immediately creates this top node,
and it is always present. Additional nodes are added by adding them to this
top node.

The model for programming PegTreeView is very similar to the general

PEG programming model, since, in both cases, you are working with tree-

structured lists of objects.

4.18.2 See Also

PegWindow

PegTreeNode

4.18.3 Style Flags

PegTreeView supports the following style flags:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

307 Swell Software, LLC Window Classes

PegTreeView

FF_THICK Thick 3D Frame

4.18.4 Signals

PegTreeView sends the following signals based on user selections:

PSF_NODE_DELETE This signal is sent when the user presses the
Delete key while a node is selected. It is the
responsibility of the application software to
actually remove and/or delete the selected
node.

PSF_NODE_SELECT This signal is sent when a new node is
selected in the PegTreeView container.

PSF_NODE_OPEN This signal is sent when the user opens a node
that has children.

PSF_NODE_CLOSE This signal is sent when the user closes a node
previously opened.

For each of the above signals, the message contains the following data:

Message.pSource = Pointer to PegTreeView object.

Message.Param = ID of the PegTreeView object.

Message.pData = Pointer to selected PegTreeNode.

4.18.5 Derivation

PegTreeView derives from PegWindow.

4.18.6 Constructors:

PegTreeView(const PegRect &Rect, PEGINT StringId,

PEGULONG Style, PEGINT BitmapId = 0)

PegTreeView(const PegRect &Rect, const PEGCHAR *pText,
PEGULONG Style, PEGINT BitmapId = 0)

The PegTreeView constructor accepts the initial tree view position, frame
style, and top node text. An optional bitmap or thumbnail to be associated

with the top level node may also be defined.

308 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.18.7 Public Functions:

void DestroyNode(PegTreeNode *pWho)

This function removes the indicated node from the tree and deletes the

node object. If the indicated node has children, they are also removed and

destroyed.

The FindNode() function is often used in conjunction with DestroyNode(),

to remove a specified node as follows:

DestroyNode(FindNode(1, "Temp"));

virtual void Draw(const PegRect &Invalid)

PegTreeView overrides the Draw() function to display the tree view

connecting lines and node anchors.

void DrawNode(PegTreeNode *pStart, PegPoint Put,
PEGINT MaxMapWidth)

Draws the node pointed to by pStart.

PegTreeNode *FindNode(PEGINT Level, const PEGCHAR
*pText)

This function returns a pointer to the PegTreeNode at the indicated nesting

level with the matching text string. If multiple nodes at the correct nesting
level have a matching text string, the first or topmost matching node pointer

will be returned.

Node nesting levels start at 0. The only level 0 node is the top tree node.

The first level of nodes under the top node are level 1 nodes, the next level

of indented nodes are level 2 nodes, etc.

virtual void GetHScrollInfo(PegScrollInfo *pPut)

PegTreeView overrides the GetHScrollInfo function to calculate the tree

width based on the sum of the individual node widths, and positions the
horizontal scroll bar accordingly.

PEGINT GetIndent(void)

This function returns the current indent level, in pixels.

PegTreeNode *GetSelected(void)

This function returns a pointer to the selected node.

309 Swell Software, LLC Window Classes

PegTreeView

virtual void GetVScrollInfo(PegScrollInfo *pPut)

PegTreeView overrides the GetVScrollInfo function to calculate the tree

height based on the sum of the individual node heights, and positions the

vertical scroll bar accordingly.

virtual PEGINT Message(const PegMessage &Mesg)

PegTreeView catches mouse and keyboard messages to test for node

actions.

PegTreeNode *RemoveNode(PegTreeNode *pWho)

This function removes, but does not delete, the indicated node from the

tree. If the node has children, the children are also removed from the tree

but remain attached to the node.

The FindNode() function is often used in conjunction with RemoveNode, to

remove a specified node as follows:

RemoveNode(FindNode(1, "Temp"));

void Reset(PEGINT TopStringId)

void Reset(const PEGCHAR *pText)

This method resets the entire tree by removing and deleting all of the tree's

nodes. The text for the top node is then set to the specified text.

void Select(PegTreeNode *pWho)

This function selects the indicated node via program control.

void SetIndent(PEGINT Val)

This function can be used to override the default indent level of each

generation of child nodes. The indent level is specified in pixels.

virtual void ToggleBranch(PegTreeNode *pWho)

This function either opens or closes a branch of the tree, depending on its

current status.

PegTreeNode *TopNode(void)

This function returns a pointer to the top tree node. Using this pointer, the

application-level software can traverse the entire tree.

310 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.18.8 Examples:

The following is an example of a PegTreeView window populated with

PegTreeNodes. In this case, the PegTreeView window is used as the client

for a PegNotebook page. This example is taken from PegWindowBuilder:

The following function creates a PegTreeView control and populates the
control with PegTreeNodes. The top level node is labeled ‘Hockey Teams.’

Two subnodes are created, labeled ‘Good Teams’ and ‘Bad Teams.’ To

each of these nodes are added several hockey team names (no offense

intended!).

void MyWindow::CreateTreeView(void)

{

PegTreeView *pTree;

pTree = new PegTreeView(mClient, “Hockey Teams”,
FF_RECESSED,

BID_HOCKEY);

pTree->Id(IDW_HOCKEY_TREE);

311 Swell Software, LLC Window Classes

PegTreeView

PegTreeNode *pNode = pTree->TopNode();

pNode->Add(new PegTreeNode("Good Teams", BID_CATEGORY));

pNode->Add(new PegTreeNode("Bad Teams", BID_CATEGORY));

// get pointer to first sub-node:

pNode = pNode->FirstNode();

// add good teams to this node:

pNode->Add(new PegTreeNode("Red Wings", BID_TEAM));

pNode->Add(new PegTreeNode("Blues", BID_TEAM));

pNode->Add(new PegTreeNode("Stars", BID_TEAM);

// get pointer to next node:

pNode = pNode->NextNode();

// add bad teams to this node:

pNode->Add(new PegTreeNode("Mighty Ducks", BID_TEAM));

pNode->Add(new PegTreeNode("Sharks", BID_TEAM));

pNode->Add(new PegTreeNode("Kings", BID_TEAM));

Add(pTree);

}

312 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.19 PegVirtualVList

4.19.1 Overview

PegVirtualVList is very similar to a PegVertList class in that it arranges data

vertically and allows the user to scroll through each element. The main

difference between them is that the PegVirtualVList class does not require

a PegThing object for each item in the list. It automatically makes just

enough objects to fill in the visible area, and then if the user scrolls the list,
only the data is shifted up and down, not the objects themselves.

By default, the PegVirtualVList class will only work with text, and it will use

standard PegPrompts to display that text. However, the class is designed to

be flexible to allow applications to create derived versions that could

potentially display any kind of data.

Rather than creating PegPrompts and adding them to the list in the manner
of a PegVertList class, the PegVirtualVList class takes an array of data as
input in the AssignVirtualList function. The default implementation

assumes the data is text, but the function’s parameter is actually a void*,

so derived versions can override this function to use other types of data.
The PegVirtualVList will create just enough PegPrompts to fit in its mClient

area, and then it will call DataSet() to assign text to the prompts from the

list data. When the user scrolls, it is just a matter of calling DataSet() on
each prompt again.

The main advantage here is speed. For lists of large sizes, the
PegVirtualVList is much faster at scrolling then a PegVertList. The reason

is that when a PegVertList scrolls its child objects, even though only a

select few of them might be visible, ALL of the child objects still need to be

repositioned. That means that the more objects are added to the list, the

slower scrolling will become. And with lists of hundreds or thousands of

items that can add up. The PegVirtualVList performs exactly the same
operations no matter how much data is in the list, so it doesn’t slow down.

4.19.2 See Also

PegVertList

PegList

313 Swell Software, LLC Window Classes

PegWindow

PegVirtualVList

4.19.3 Style Flags

PegVirtualVList supports the following style flags:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

The styles for PegVirtualVList are identical to the PegWindow styles. In
addition, scrolling is enabled in PegVirtualVList in the same way as in

PegWindow, by using the SetScrollMode() function.

4.19.4 Signals

PegVirtualVList sends PSF_LIST_SELECT signals to the parent object. This

message contains:

Message.pSource = Pointer to selected object.

Message.Param = ID of selected list item.

Message.pTarget = Pointer to list parent object.

4.19.5 Derivation

PegVirtualVList derives from PegWindow.

4.19.6 Constructors:

PegVirtualVList(const PegRect &Rect, PEGUSHORT Id = 0,

PEGULONG Style = FF_THIN|TJ_CENTER)

This constructor creates a PegVirtualVList object. The Rect parameter

determines the position and size of the list. The list children are
automatically positioned by the list object.

314 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.19.7 Public Functions:

virtual void AssignVirtualList(void *pList, PEGINT
Count)

This function is used to assign the list data to the list. The parameter pList

is an array of data of length Count. pList is a void* but it is assumed to be
an array of text strings. The PegVirtualVList class does not make its own
copy of the pList data, so it is assumed that that array will be persistent.

virtual PEGINT GetSelectedIndex(void)

This function returns the index of the currently-selected item.

virtual void GetVScrollInfo(PegScrollInfo *pPut)

PegVirtualVList overrides the GetVScrollInfo() function to make sure it

scrolls based on the total size of the data, not the size of the visible child

objects.

virtual PEGINT Message(const PegMessage &Mesg)

PegVirtualVList overrides the Message() function to handle mouse,

keyboard, and scrolling messages.

void PageDown(void)

This function scrolls the data down by one full page, meaning that the first
non-visible data item at the bottom of the list client area is scrolled into view

and selected. This function is called by the Message function in response to

the PK_PGDN key message.

void PageUp(void)

This function scrolls the data up by one full page, meaning that the first non-
visible data item at the top of the list client area is scrolled into view and

selected. This function is called by the Message function in response to the

PK_PGUP key message.

virtual void Resize(const PegRect &NewSize)

PegVirtualVList overrides the Resize function to check whether more or

less PegPrompts will fit in the new mClient area.

void ScrollIntoView(PEGINT Index, PEGBOOL Redraw =
TRUE)

This function scrolls the list up or down so that the data with the index

Index will be visible.

315 Swell Software, LLC Window Classes

void SelectNext(void)

PegVirtualVList

This function selects the data item that comes after (below) the currently-

selected item. If the next item is not currently visible, then the list will be
scrolled.

void SelectPrevious(void)

This function selects the data item that comes before (above) the currently-

selected item. If the previous item is not currently visible, then the list will be

scrolled.

virtual void SetCellHeight(PEGINT Height)

This function assigns the height of all of the PegPrompts in the list. This

should be set to a value that is evenly divisible by the height of the mClient

rectangle so there won’t be any empty space at the bottom. By default, the
cell height is the height of the font that is used.

virtual void SetFont(PEGINT FontIndex)

PegVirtualVList overrides the SeFont() function so that the cell height will

reflect the height of the font.

virtual void SetSelected(PEGINT Index)

This function is used to give focus to a particular element in the list. If the

element at Index is not visible, the list will be scrolled.

void Unselect(PEGBOOL Redraw = TRUE)

This function unselects the currently selected item.

4.19.8 Protected Members

virtual void AssignData(PEGINT ObjIdx, PEGINT ListIdx)

This function is used to assign a data item to an individual PegPrompt in the

list. This is called for each prompt every time the list scrolls. This is

essentially the same as calling DataSet(), but an application may have
other requirements for this in a derived version if the data is not simple text.

virtual void AllocObjects(PEGINT NumObjects)

This function allocates an array of PegPrompts. This can be overridden to

allocate any type of object.

316 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

virtual Pegthing *ConstructObject(PegRect Rect, PEGINT
Index)

This function creates an individual PegPrompt object and assigns its initial

text. This can be overridden to construct any type of object.

4.19.9 Examples:

The following is a PegVirtualVList:

The following example creates a PegVirtualVList:

PEGCHAR *gpListData[] = {

“Prompt0”,

“Prompt1”,

“Prompt2”,

“Prompt3”,

“Prompt4”,

“Prompt5”,

“Prompt6”,

“Prompt7”,

“Prompt8”,

“Prompt9”,

};

void MyWindow::AddVList(void)

{

PegRect Rect;

Rect.Set(10, 10, 80, 180);

PegVirtualVList *pList = new PegVirtualVList(Rect, 0,

FF_THIN|TJ_LEFT);

pList->AssignVirtualList(gpListData, 10);

317 Swell Software, LLC Window Classes

PegVirtualVList

pList->SetScrollMode(WSM_VSCROLL);

Add(pList);

}

318 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.20 PegVertList

4.20.1 Overview

PegVertList is a container class for displaying a scrolling list of child

objects. PegVertList automatically positions and sizes child objects. It is

therefore not necessary to manually position objects before adding them to
PegVertList.

The LAST child added to the list will be displayed at the topmost position in
the list if the Add() function is used to add children. The order of display

can be reversed by using the function AddToEnd() to add children to the

list.

Child objects are positioned when the list receives the PM_SHOW message,

which is a system message sent automatically when the list is first
displayed. PegVertList forces the width of child objects to match the width
of the list client area. Because the height of each child object is not
modified, you should use the correct object height when constructing child
objects.

4.20.2 See Also

PegHorzList

PegList

PegWindow

4.20.3 Style Flags

PegVertList supports the following style flags:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

319 Swell Software, LLC Window Classes

PegVertList

The styles for PegVertList are identical to the PegWindow styles. In

addition, scrolling is enabled in PegList in the same way as in PegWindow,

by using the SetScrollMode() function.

4.20.4 Signals

PegVertList sends PSF_LIST_SELECT signals to the parent object. This

message contains:

Message.pSource = Pointer to selected object.

Message.Param = ID of selected list item.
Message.pTarget = Pointer to list parent object.

4.20.5 Derivation

PegVertList derives from PegList.

4.20.6 Constructors:

PegVertList(const PegRect &Rect, PEGUINT Id = 0,

PEGULONG Style = FF_THIN)

This constructor creates a PegVertList object. The Rect parameter

determines the position and size of the list. The list children are

automatically positioned by the list object.

4.20.7 Public Functions:

None.

4.20.8 Protected Members

virtual void PositionChildren(void)

This function is used to calculate the positions of all the child objects.

4.20.9 Examples:

The following is a PegVertList with PegPrompt children:

320 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

The following example creates a PegVertList and adds several

PegIconButton children. The bitmaps for the bitmap buttons can be
generated using PegImageConvert.

void MyWindow::AddHList(void)

{

PegRect Rect;

Rect.Set(10, 10, 80, 180);

PegVertList *pList = new PegVertList(Rect);

Rect.Set(0, 0, 0, 34);

pList->Add(new PegIconButton(Rect, BID_THUNDER));

pList->Add(new PegIconButton(Rect, BID_LIGHT));

pList->Add(new PegIconButton(Rect, BID_SATELLITE));

pList->Add(new PegIconButton(Rect, BID_DYNAMITE));

pList->Add(new PegIconButton(Rect, BID_APPLE));

pList->SetScrollMode(WSM_VSCROLL);

Add(pList);

}

321 Swell Software, LLC Window Classes

4.21 PegWindow

PegWindow

4.21.1 Overview

PegWindow defines a basic rectangular area on the screen. Important

functionality added by PegWindow includes the concept of scrolling a

virtual client area.

PegWindow objects may be used as-is, but more commonly they serve as

the base class for the more refined window classes such as

PegDecoratedWindow and PegDialog. PegWindow can be resized by the

user, has a virtual client area, has one of several frame styles, and controls

nonclient-area scroll bars.

A PegWindow drawn with a raised border provides a blank panel that is
useful for splash screens. A PegWindow with no border is useful as a

container for other objects. The window can be moved to different locations

or added to different parent objects, and all of the window's children will

move with the window.

A simple way to create a window with a virtual scrolling client area is to nest

a large window within the client area of a parent window. An example of this

is included in the examples section for PegWindow.

PegWindow and PegWindow-derived classes are also Viewports by default.

This means that objects underneath PegWindow are not allowed to obscure

the screen area owned by the window. This is an important performance-

enhancing feature of PEG, and it also provides improved visual appeal.

When a PegWindow object is resized, all children of the window receive

PM_PARENTSIZED system messages. This message can be caught by child

objects to position and size themselves relative to their parent window.

A window defaults to PSF_MOVEABLE and PSF_SIZEABLE if the FF_THICK

frame style is used. For all other frame styles, the window will default to
non-sizeable and non-moveable. This can be overridden by calling

AddStatus() or RemoveStatus() after constructing the window.

A window defaults to having no scroll bars, and automatic scrolling mode is

disabled. The member function SetScrollMode() is used to alter the

scrolling mode of the window.

322 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

4.21.2 See Also

How Scrolling Works

Viewports

PegDecoratedWindow

PegDialog

PegMessageWindow

PegMLMessageWindow

4.21.3 Style Flags

PegWindow supports the following styles:

FF_NONE No Frame

FF_THIN Thin Frame

FF_RAISED Raised 3D Frame

FF_RECESSED Recessed 3D Frame

FF_THICK Thick 3D Frame

4.21.4 Signals

None.

4.21.5 Derivation

PegWindow derives from PegTextThing.

4.21.6 Constructors:

PegWindow(const PegRect &Rect, PEGULONG Style =

FF_THICK)

This constructor is used when the initial size and position of the window are
known at the time the window is created. Rect defines the mReal position of

the window.

323 Swell Software, LLC Window Classes

PegWindow(PEGULONG Style = FF_THICK)

PegWindow

This constructor is used when the default position of the window is not
known at the time the window is constructed, or when the window size and
position are self-determined. When this constructor is used, the window

should determine its position before or when the PM_SHOW message is

received. This should be done in two steps:

1) Set the window mReal member variable.

2) Call InitClient(), to initialize the window's client area.

4.21.7 Public Functions:

virtual void Add(PegThing *pWho, PEGBOOL Show = TRUE)

PegWindow overrides this method to add the pWho object and to give this

object focus, if necessary.

virtual void AddIcon(PegIcon *pIcon)

This function positions and adds a PegIcon object to the window. The

window will automatically determine the correct position for the PegIcon

object. It should be noted that any PegWindow-derived object can contain

icons. It is sometimes assumed that only PegPresentationManager can act

as a PegIcon container, which is not the case.

PEGUBYTE BlendMode(void)

Returns the window’s current blend mode. This function is only available if

PEG_LAYERED_WINDOWS is turned on.

PEGUBYTE BlendRatio(void)

Returns the window’s current blend ratio. This function is only available if

PEG_LAYERED_WINDOWS is turned on.

PEGBOOL CheckAutoScroll(void)

If either WSM_AUTOVSCROLL or WSM_AUTOHSCROLL scroll modes are set, this

function is called when the window is resized to determine if scroll bars
need to be updated. Derived classes also call this function at times when
the scroll bars may need to be added or removed.

324 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

virtual PegScroll *CreateHScroll()

virtual PegScroll *CreateVScroll()

These functions create default PegVScroll and PegHScroll non-client scroll

bars. If a derived window requires a different type of scroll bar, these

functions should be overridden to create the user-defined objects.

PEGUBYTE CurrentMoveMode(void)

Returns the current move mode of the window.

virtual void Draw(const PegRect &Invalid)

The Draw() function of PegWindow is broken out into two sections. The

function DrawFrame() is called first to draw the window frame, and then the
child objects of the window are drawn. Classes derived from PegWindow
may find it convenient to use the DrawFrame() function as part of an

overridden Draw() routine.

virtual void DrawFrame(PEGBOOL Fill = TRUE)

This function draws the window frame using the current frame style flags.

This function can be useful to PegWindow derived classes that have

overridden the Draw() function.

virtual PEGINT Execute(PEGBOOL AutoAdd = TRUE)

This function can be called to execute any window modally. The Execute()

function does not return until the window is closed. Under the
MULTITHREAD model, calling execute from a task other then PegTask
causes the window and any subsequent windows to execute from within the
calling task's thread.

In most cases, a window should be added to PegPresentationManager

before calling the Execute() function of the window. The exception is when

MULTITHREAD operation is enabled, and the user wants to execute the

window from within a secondary thread. In this case, calling Execute() will

automatically add the window to PegPresentationManager, and the window
will run from within the thread of the calling task.

virtual void GetHScrollInfo(PegScrollInfo *pPut)

This function is called by PegWindow and non-client PegHScroll children to

determine the appearance and range of the window’s horizontal scroll bar.

The default PegWindow implementation queries the position of all client-

area child objects to determine the horizontal scroll information. This

325 Swell Software, LLC Window Classes

PegWindow

function is often overridden in derived PegWindow classes to provide

custom scrolling operation.

virtual PegBitmap *GetIcon(void)

This function returns a pointer to the PegBitmap currently associated with
the window Icon.

virtual PEGUBYTE GetScrollMode(void)

Returns the current window scroll mode.

virtual void GetVScrollInfo(PegScrollInfo *pPut)

This function is called by PegWindow and non-client PegVScroll children to

determine the appearance and range of the window’s vertical scroll bar.

The default PegWindow implementation queries the position of all client-
area child objects to determine the vertical scroll information. This function

is often overridden in derived PegWindow classes to provide custom

scrolling operation.

PEGINT GlobalModalExecute(void)

Normally a call to Execute() will make a window modal within its own task,

while windows in other tasks can still get focus and read mouse/keyboard
input. This function makes a window modal over all tasks. It is only provided

if #define PEG_MULTITHREAD is enabled in the configuration file

pconfig.hpp.

virtual void InitClient(void)

Initializes the client region, taking into account the presence and size of a

border.

PEGBOOL IsMaximized(void)

Returns TRUE if the window is maximized, else FALSE.

PEGBOOL IsModal(void)

Returns TRUE if the window is modal, else FALSE.

virtual PEGINT Message(const PegMessage &Mesg)

PegWindow overrides the Message function, primarily to catch mouse clicks
for resizing the window. PegWindow also catches PEG_SIGNAL(IDB_CLOSE,

PSF_CLICKED) to close the window.

326 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

virtual void Resize(const PegRect &NewSize)

PegWindow overrides the Resize() function to send PM_PARENTSIZED

notifications to child objects, and to update scroll bars. This function is often

overridden to provide custom operation.

PEGBOOL SetBlendMode(PEGUBYTE Mode, PEGUBYTE Ratio =
0)

This function sets the current blend mode and ratio of the window. This

function is only available if PEG_LAYERED_WINDOWS is turned on.

void SetBlendRatio(PEGUBYTE Ratio)

This function sets the current blend ratio of the window. This function is only

available if PEG_LAYERED_WINDOWS is turned on.

virtual void SetTransitionMode(PEGUBYTE EnterMode,
PEGUBYTE ExitMode = TRANSITION_MODE_NONE,
PEGUBYTE Steps = 8, PEGUBYTE Timer = 1, PEGBOOL
UseSurface = 0)

This function allows the user to set a transition to take place when the
window is first displayed and/or when the window is removed. If

UseSurface is set to TRUE, then the window is drawn into a surface during

the transition.

virtual void SetIcon(PEGINT BitmapId)

This function assigns the bitmap that will be associated with the window

icon.

virtual void SetScrollMode(PEGUINT Mode)

This function sets the operation of non-client area scroll bars. Non-client

area scroll bars are used to provide the appearance of a virtual-client area.

The available scroll modes are:

WSM_AUTOVSCROLL...Add vertical scroll bar when needed

WSM_VSCROLL.......Add vertical scroll bar always

WSM_AUTOHSCROLL...Add horizontal scroll bar when needed

WSM_HSCROLL.......Add horizontal scroll bar always

WSM_AUTOSCROLL....WSM_AUTOVSCROLL|WSM_AUTOHSCROLL

WSM_CONTINUOUS....Continuous, smooth scrolling

Automatic scrolling relies on the values returned by the GetVScrollInfo()
and GetHScrollInfo() functions to determine when each scroll bar is

327 Swell Software, LLC Window Classes

PegWindow

required. If the PegScrollInfo.Visible value is the overall scroll range,

the corresponding scroll bar is not required.

The WSM_CONTINUOUS mode can be included with any other modes. This

flag causes the scroll bars to send scroll messages continuously as they
are dragged by the user, rather than the default operation, which is to send
a scroll message only when the scroll button is released.

Continuous scrolling requires greater hardware performance and/or

hardware acceleration in the video controller to provide the best smooth

scrolling. Performance-limited platforms should not use the

WSM_CONTINUOUS flag.

virtual void SetWallpaper(PEGINT Wallpaper, PEGUBYTE
Tile = 1)

This function assigns a PegBitmap that the window will draw into the client
area of the window. By default, if a wallpaper is assigned it will be tiled to fill

the mClient rectangle of the window. If Tile is false, the bitmap will be

centered within the window client area.

4.21.8 Protected Members:

void BeginEnterTransition(void)

This function begins a transition when a window is first displayed.

void BeginExitTransition(void)

This function begins a transition when a window is removed from the

display.

virtual PEGUBYTE BorderContains(PegPoint Point)

This function is called on receipt of PM_POINTERMOVE messages to

determine if the mouse is over the window border. The return value is 0 if
the mouse pointer is not over the window border, or a MoveMode. The

MoveModes are defined in the file \peg\include\pwindow.hpp.

PEGUBYTE mScrollMode

The current window scroll mode.

PEGUBYTE mModal

TRUE if the window is executing modally.

328 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

PEGUBYTE mMaximized

TRUE if the window is currently maximized.

PEGUBYTE mMoveMode

The current move or resize mode of the window.

virtual void MoveClientObjects(PEGINT xShift, PEGINT
yShift, PEGBOOL Redraw = TRUE)

This function shifts all child objects the specified amount in the x and y

directions.

PegScroll *mpHScroll

Pointer to non-client horizontal scroll bar if present, else NULL.

PegScroll *mpVScroll

Pointer to non-client vertical scroll bar if present, else NULL.

4.21.9 Examples:

Default PegWindow:

PegWindow with FF_RAISED frame style:

329 Swell Software, LLC Window Classes

PegWindow

Two PegWindow objects nested within another PegWindow. The child

windows have scrolling enabled:

The following example creates a PegWindow and adds the window to

PegPresentationManager. The window will have a default (thick) border,

will be 190 pixels wide by 110 pixels tall, and will be centered on the

screen.

void SomeObject::CreateWindow(void)

{

PegRect WinSize;

WinSize.Set(10, 10, 200, 120);

PegWindow *pWin = new PegWindow(WinSize);

Presentation()->Center(pWin);

Presentation()->Add(pWin);

}

The following example will create a PegWindow with a recessed frame and

add the window to the current object. The window will fill the client area of
the current object.

void SomeObject::AddClientWindow(void)

{

PegWindow *pWin = new PegWindow(mClient, FF_RECESSED);

Add(pWin);

}

330 PEG Pro API Reference Manual Swell Software, LLC

Window Classes

The following example creates two PegWindow objects. The second

window will be a child of the first. The second window is also much larger

than the first. The outer parent window will be configured to provide scroll

bars, so that the user can pan to display all areas of the child window. The

resulting parent/child window combination will be centered on the screen.

void SomeObject::CreateScrollingWindow(void)

{

PegRect ParentRect, ChildRect;

ParentRect.Set(0, 0, 200, 140);

ChildRect.Set(0, 0, 800, 800);

PegWindow *pOuter = new PegWindow(ParentRect);

PegWindow *pChild = new PegWindow(ChildRect, FF_NONE);

pOuter->Center(pChild);

pOuter->Add(pChild);

pOuter->SetScrollMode(WSM_AUTOSCROLL);

Presentation()->Center(pOuter);

Presentation()->Add(pOuter);

}

331 Swell Software, LLC Charting Classes

C H A P T E R 5

CHARTING CLASSES

PegChart

PegLineChart

PegMultiLineChart

PegStripChart

332 PEG Pro API Reference Manual Swell Software, LLC

Charting Classes

5.1 PegChart

5.1.1 Overview

PegChart is the base class for all of the charts in the PEG library. PegChart

is a virtual base class; therefore, it is not possible to instantiate an object of

this type directly at run time. The main job of PegChart is to provide a basic
framework for its derived children. It does this by keeping track of an extra

style variable, over and above the one retained by PegThing. It also

provides the algorithms for calculating the layout of the chart based on

whether or not the chart will be drawing labels and tick marks. And, lastly, it

provides drawing methods for the common elements of a chart (i.e., x and y

tick marks, labels, and grid lines).

5.1.2 Style Flags

PegChart supports the following styles:

CS_DRAWXGRID This flag causes grid lines to be drawn along
the x axis in the chart region.

CS_DRAWYGRID This flag causes grid lines to be drawn along
the y axis in the chart region.

CS_DRAWXTICS This flag causes tick marks to be drawn along
the x axis at specified intervals.

CS_DRAWYTICS This flag causes tick marks to be drawn along
the y axis at specified intervals.

CS_AUTOSIZE If this flag is set, the chart will always take up
the entire mClient region of its parent. When
the parent is resized or moved, the PegChart
responds to the message and resizes itself
appropriately.

CS_DUALYTICS Setting this flag causes the chart to draw y tick
marks on both the left and right side of the
chart area. By default, the chart only draws tick
marks on the left side.

CS_DUALYLABELS Used in conjunction with CS_DUALYTICS, this
flag forces the chart to draw y-axis labels on
both the left and right sides of the chart area.

333 Swell Software, LLC Charting Classes

PegChart

CS_XAXISONZEROY By default, the chart will draw the x axis at the
bottom of the chart region. There are
occasions where it is more effective for
determining data position when the x axis is,
instead, placed horizontal to 0 on the y axis.
Setting this flag affects this behavior. The x
axis will be drawn inside of the chart region,
perpendicular to the y axis, at the 0 y position.

CS_DRAWLINEFILL This flag tells the chart to draw a filled polygon
from each line segment to 0 on the y axis.

CS_DRAWXLABELS This flag causes incremental labels to be
drawn along the x axis. The label text is based
on the minimum and maximum possible values
of x.

CS_DRAWYLABELS This flag causes incremental labels to be
drawn along the y axis. The label text is based
on the minimum and maximum possible values
of y.

5.1.3 Signals

PegChart does not send any signals.

5.1.4 Derivation

PegChart is derived from PegThing.

5.1.5 Constructor:

PegChart(const PegRect &Rect, PEGLONG MinX, PEGLONG

MaxX, PEGLONG MinY, PEGLONG MaxY, PEGUINT

MajorXScale = 0, PEGUINT MajorYScale = 0)

The constructor is fairly straightforward. Like most PegThing-derived
objects, you pass it the rectangle you wish for it to occupy. If you have

CS_AUTOSIZE turned on, you may simply want to pass it the parent's

mClient rectangle.

The next four PEGLONG values specify the minimum and maximum values

for x and y. The last two parameters are for setting the major tick mark
frequency for the x and y axis, respectively. For instance, if your minimum y
value is -100 and your maximum y value is 900, and you specify a y scale

of 100, if the CS_DRAWYTICS bit is set in the extended style flag, you will see

tick marks on the y axis starting at -100 and incrementing 100 all the way to

334 PEG Pro API Reference Manual Swell Software, LLC

Charting Classes

900. Therefore, there will be 11 tick marks drawn on the y axis. If you were

to also turn on the CS_DRAWYGRID bit, you would see a grid line at the same

interval as the tick marks. Label scaling, or interval, is independent of the
tick mark/grid line scaling. Therefore, it is possible to specify tick marks to
appear at intervals of 100, while specifying labels to be drawn every 200.

No matter the scaling, all drawing starts at the minimum value and works its
way toward the maximum value until it meets or exceeds the maximum
value. This holds true for both the x and y axis.

5.1.6 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegChart overrides the Draw() function to draw the background color of

the chart area, and, if specified, the optional tick marks, labels, and grid

lines.

PegRect GetChartRegion() const

Returns the rectangle that represents the area where the chart is actually
being drawn. This rectangle's size and position is based on the position and

size of its parent (if CS_AUTOSIZE is set), as well as any tick marks or labels

that it may be drawing. In other words, this rectangle roughly corresponds

to a typical mClient rectangle in a standard PegThing.

PEGUINT GetExStyle() const

Returns the current value of mExStyle. Possible values are listed here.

PegFont *GetFont() const

Returns a pointer to the current font being used to draw axis labels.

PEGUINT GetMajorTicSize() const

Returns the length, in pixels, used to draw major tics.

PEGUINT GetMajorXScale() const

Returns the tick interval for the major scale on the x axis.

PEGUINT GetMajorYScale() const

Returns the tick interval for the major scale on the y axis.

PEGLONG GetMaxX() const

Returns the maximum allowable value for x.

335 Swell Software, LLC Charting Classes

PEGLONG GetMaxY() const

Returns the maximum allowable value for y.

PEGUINT GetMinorTicSize() const

Returns the length, in pixels, used to draw minor ticks.

PEGUINT GetMinorXScale() const

Returns the tick interval for the minor scale on the x axis.

PEGUINT GetMinorYScale() const

Returns the tick interval for the minor scale on the y axis.

PEGLONG GetMinX() const

Returns the minimum allowable value for x

PEGLONG GetMinY() const

Returns the minimum allowable value for y.

PEGUINT GetXLabelHeight() const

Returns the height of the labels along the x axis.

PEGUINT GetXLabelScale() const

Returns the interval for drawing labels along the x axis.

PEGUINT GetYLabelScale() const

Returns the interval for drawing labels along the y axis.

PEGUINT GetYLabelWidth() const

Returns the width of the labels along the y axis.

PegChart

virtual void MapDataToPoint(PegChartPoint *pPoint)

This method converts the data points held in pPoint to screen coordinates

based on the size of the mChartRegion of the chart, and the minimum and
maximum allowable values for x and y. It then puts the coordinates in the
appropriate pPoint members. This method is typically not called by objects

outside of the chart classes.

virtual void MapPointToData(PegChartPoint *pPoint)

This method does the opposite of MapDataToPoint in that it takes screen

coordinates and converts them to data points based on the same criteria as

336 PEG Pro API Reference Manual Swell Software, LLC

Charting Classes

MapDataToPoint. This method is typically not called by objects outside of

the chart classes.

virtual PEGINT Message(const PegMessage& Mesg)

PegChart overrides the Message method in order to provide appropriate

layout recalculation when its parent is moved or, optionally, resized.

virtual void ParentShift(PEGINT xOffset, PEGINT
yOffset)

PegChart overrides the PegThing::ParentShift function in order to make

sure that the chart region rectangle also gets shifted.

virtual void RecalcLayout(PEGBOOL Redraw = TRUE) This

method calculates the region used for drawing the actual chart

(represented internally by mChartRegion). This method takes into account
the drawing of tick marks and labels. This method is typically not called by
objects outside of the chart classes.

virtual void RecalcSize(const PegRect &NewRect,

PEGBOOL Redraw = TRUE)

This method resets the chart's size to the new rectangle, then calls

RecalcLayout and passes through Redraw. This method is typically not

called by objects outside of the chart classes.

void SetExStyle(PEGULONG Style)

Sets the current value of mExStyle. Possible values are listed here. These

values may be bitwise OR'd together.

void SetFont(PEGINT FontIndex)

Sets the font used for drawing axis labels.

void SetMajorTicSize(PEGUINT Size)

Sets the length for the major tick marks on each axis.

void SetMajorXScale(PEGUINT Scale)

Sets the tick interval for the major scale on the x axis.

void SetMajorYScale(PEGUINT Scale)

Sets the tick interval for the major scale on the y axis.

void SetMaxX(PEGLONG Data)

Sets the maximum value for x.

337 Swell Software, LLC Charting Classes

void SetMaxY(PEGLONG Data)

Sets the maximum value for y.

void SetMinorTicSize(PEGUINT Size)

Sets the length for the minor tick marks on each axis.

void SetMinorXScale(PEGUINT Scale)

Sets the tick interval for the minor scale on the x axis.

void SetMinorYScale(PEGUINT Scale)

Sets the tick interval for the minor scale on the y axis.

void SetMinX(PEGLONG Data)

Sets the minimum value for x.

void SetMinY(PEGLONG Data)

Sets the minimum value for y.

void SetXLabelHeight(PEGUINT Height)

Sets the height of the labels along the x axis.

void SetXLabelScale(PEGUINT Scale)

Sets the interval for drawing labels along the x axis.

void SetYLabelScale(PEGUINT Scale)

Sets the interval for drawing labels along the y axis.

void SetYLabelWidth(PEGUINT Width)

Sets the width of the labels along the y axis.

PegChart

5.1.7 Protected Members

virtual void DrawXGrid(const PegRect &Invalid)

This function draws gridlines parallel with the x axis through the chart

region.

virtual void DrawXLabels(const PegRect &Invalid)

This function draws numeric labels along the x axis.

virtual void DrawXTics(const PegRect &Invalid)

This function draws major and/or minor tick marks along the x axis.

338 PEG Pro API Reference Manual Swell Software, LLC

Charting Classes

virtual void DrawYGrid(const PegRect &Invalid)

This function draws gridlines parallel with the y axis through the chart

region.

virtual void DrawYLabels(const PegRect &Invalid)

This function draws numeric labels along the y axis.

virtual void DrawYTics(const PegRect &Invalid)

This function draws major and/or minor tic marks along the y axis.

5.1.8 Examples:

PegChart is not directly instantiable. See PegLineChart, PegMultiLineChart

or PegStripChart for an example of appropriate usage.

339 Swell Software, LLC Charting Classes

5.2 PegLineChart

PegLineChart

5.2.1 Overview

PegLineChart is a simple abstract down from PegChart and supports the

displaying of a single line on a given scale.

5.2.2 See Also

PegMultiLineChart

5.2.3 Style Flags

Please see PegChart for a complete description of style flags.

5.2.4 Signals

PegLineChart does not send any signals.

5.2.5 Derivation

PegLineChart is derived from PegChart.

5.2.6 Constructor:

PegLineChart(const PegRect &Rect, PEGLONG MinX,

PEGLONG MaxX, PEGLONG MinY, PEGLONG MaxY,
PEGUINT MajorXScale = 0, PEGUINT MajorYScale =
0)

The constructor is fairly straightforward. Like most PegThing-derived
objects, you pass it the rectangle you wish for it to occupy. If you have

CS_AUTOSIZE turned on, you may simply want to pass it the parent's

mClient rectangle.

The next four PEGLONG values specify the minimum and maximum values

for x and y. The last two parameters are for setting the major tick mark
frequency for the x and y axis, respectively. For instance, if your minimum y
value is -100 and your maximum y value is 900, and you specify a y scale

of 100, if the CS_DRAWYTICS bit is set in the extended style flag, you will see

tick marks on the y axis starting at -100 and incrementing 100 all the way to

900. Therefore, there will be 11 tick marks drawn on the y axis. If you were

340 PEG Pro API Reference Manual Swell Software, LLC

Charting Classes

also to turn on the CS_DRAWYGRID bit, you would see a grid line at the same

interval as the tick marks. Label scaling, or interval, is independent of the
tick mark/grid line scaling. Therefore, it is possible to specify tick marks to
appear at intervals of 100, while specifying labels to be drawn every 200.
No matter the scaling, all drawing starts at the minimum value and works its
way toward the maximum value until it meets or exceeds the maximum
value. This holds true for both the x and y axis.

5.2.7 Public Functions:

PegChartPoint *AddPoint(PEGLONG X, PEGLONG Y)

This method adds a new point to the end of the line segment. It returns a

pointer to the newly created point.

virtual void Draw(const PegRect &Invalid)

PegChart overrides the Draw() function to draw the line segments that

make up the line.

PegChartPoint *GetFirstPoint() const

Returns the first point of the line segment.

PEGCOLOR GetLineColor() const

Returns the PEGCOLOR used for determining the color of the line.

PegChartPoint *InsertPoint(PegChartPoint *pPoint,
PEGLONG X, PEGLONG Y)

This method inserts a new point after the point pointed to by pPoint. It

returns a pointer to the newly created point.

virtual PEGINT Message(const PegMessage& Mesg)

PegChart overrides the Message method in order to provide appropriate

layout recalculation when its parent is moved or, optionally, resized.

void RecalcLine(void)

This method forces a recalculation of the screen coordinates for every point
on the line.

virtual void RecalcSize(const PegRect& NewRect,

PEGBOOL Redraw = TRUE)

This method is overridden in order to ensure that the line data is up to date.

In other words, if the chart is moved or resized, the screen coordinates

associated with a given data point will change. In order to keep up with

341 Swell Software, LLC Charting Classes

PegLineChart

these changes, this method calls the Resize method to update the screen

coordinates of all the data points associated with the line. If the Redraw flag
is TRUE, the chart is redrawn.

PegChartPoint *RemovePoint(PegChartPoint *pPoint)

This method removes the point pointed to by pPoint. It returns a pointer to

the point preceding the deleted point, or NULL if there is none.

void ResetLine(void)

This method removes all of the points associated with the line.

virtual void Resize(const PegRect &NewRect)

The PegLineChart class overrides the Resize() function to adjust the line

chart's location and size as specified by the rectangle NewRect. The

function calls the PegChart base class RecalcLayout() function but

inhibits redrawing of the chart. Function RecalcLine() is then used to

reposition all line data points within the revised chart. This function is used
privately by this chart class.

PEGCOLOR SetLineColor(PEGCOLOR Color)

Sets the PEGCOLOR used for determining the color of the line. The function

returns the color that was previously being used to draw chart lines.

5.2.8 Examples:

The following code snippet produces the PegLineChart pictured below.

PegLineChart* pLineChart = new PegLineChart(Rect, 0,
1000, 0,

1000, 100, 100)

pLineChart->SetXLabelScale(200);

pLineChart->SetExStyle(CS_DRAWXTICS | CS_DRAWYTICS |

CS_DRAWXGRID | CS_DRAWYGRID | CS_AUTOSIZE |

CS_DRAWYLABELS | CS_DRAWXLABELS);

pLineChart->AddPoint(100, 100);

pLineChart->AddPoint(200, 200);

pLineChart->AddPoint(300, 300);

PegChartPoint *pPoint = pLineChart->AddPoint(400, 400);

pLineChart->AddPoint(500, 500);

pLineChart->AddPoint(600, 600);

pLineChart->AddPoint(700, 800);

pLineChart->InsertPoint(pPoint, 450, 0);

Charting Classes

PeglineChart example sereen shot

342 PEG Pro API RderenceMarual SWEIISoftwue, U.C

343 Swell Software, LLC Charting Classes

PegMultiLineChart

5.3 PegMultiLineChart

5.3.1 Overview

PegMultiLineChart supports the drawing of discrete lines that use the same

x and y scaling.

5.3.2 See Also

PegLineChart

5.3.3 Style Flags

For a complete listing of styles supported by PegMultiLineChart, see
PegChart.

5.3.4 Signals

PegMultiLineChart does not send any signals.

5.3.5 Derivation

PegMultiLineChart is derived from PegChart.

5.3.6 Constructor:

PegMultiLineChart(const PegRect &Rect, PEGLONG MinX,

PEGLONG MaxX, PEGLONG MinY, PEGLONG MaxY,
PEGUINT MajorXScale = 0, PEGUINT MajorYScale =
0)

The constructor is fairly straightforward. Like most PegThing-derived
objects, you pass it the rectangle you wish for it to occupy. If you have

CS_AUTOSIZE turned on, you may just want to pass it the parent's mClient

rectangle.

The next four PEGLONG values specify the minimum and maximum values

for x and y. The last two parameters are for setting the major tick mark
frequency for the x and y axis, respectively. For instance, if your minimum y
value is -100 and your maximum Y value is 900, and you specify a y scale

of 100, if the CS_DRAWYTICS bit is set in the extended style flag, you will see

tick marks on the y axis starting at -100 and incrementing 100 all the way to

344 PEG Pro API Reference Manual Swell Software, LLC

Charting Classes

900. Therefore, there will be 11 tick marks drawn on the y axis. If you were

to also turn on the CS_DRAWYGRID bit, you would see a grid line at the same

interval as the tick marks. Label scaling, or interval, is independent of the
tick mark/grid line scaling. Therefore, it is possible to specify tick marks to
appear at intervals of 100, while specifying labels to be drawn every 200.

No matter the scaling, all drawing starts at the minimum value and works its
way toward the maximum value until it meets or exceeds the maximum
value. This holds true for both the x and y axis.

5.3.7 Public Functions:

virtual PEGUBYTE AddLine(PEGCOLOR Color)

This method is used to add a new line to the chart. Color is used to draw

the line in the specified color. The return value is the ID of the new line.
Upon failure, the method will return 0. This chart supports up to 255
simultaneous lines.

PegChartPoint *AddPoint(PEGUBYTE Id, PEGLONG X,

PEGLONG Y, PEGBOOL Redraw = TRUE)

This method adds a new point to the end of the line segment identified by

Id. It returns a pointer to the newly created point.

virtual void Draw(const PegRect &Invalid)

PegMultiLineChart overrides the Draw() function to draw the individual

lines.

void DrawNewLineData(PegChartLine *pLine,
PegChartPoint *pNew, PegChartPoint *pPrevious =
NULL)

This function determines the area of the chart that has changed due to a
new point and then redraws that area. This method is called from the

AddPoint and InsertPoint methods when new data is added to the line. If

pPrevious is NULL, then the entire line is redrawn.

PegChartLine *GetFirstLine() const

Returns the first line segment, or NULL if there are no lines in the chart.

PegChartLine *GetLineFromID(PEGUBYTE Id)

Returns a pointer to the line segment that has the ID Id, or NULL if it could

not find it.

345 Swell Software, LLC Charting Classes

PegMultiLineChart

PegChartPoint *InsertPoint(PEGUBYTE Id, PegChartPoint
*pPoint, PEGLONG X, PEGLONG Y, PEGBOOL Redraw =
TRUE)

This method inserts a new point after the point pointed to by pPoint for the

given line segment. It returns a pointer to the newly created point.

virtual PEGINT Message(const PegMessage& Mesg)

PegMultiLineChart overrides the Message method in order to provide

appropriate layout recalculation when its parent is moved or, optionally,
resized.

void RecalcLine(PEGUBYTE Id, PEGBOOL Redraw = TRUE)

This method forces a recalculation of the screen coordinates for every point

on the given line. If the Redraw flag is TRUE, the line is redrawn.

virtual void RecalcSize(const PegRect &NewRect,
PEGBOOL Redraw = TRUE)

This method is overridden in order to ensure that the line data is up to date.
In other words, if the chart is moved or resized, the screen coordinates
associated with a given data point will change. In order to keep up with

these changes, this method calls the Resize method to update the screen

coordinates of all the data points associated with the line. If the Redraw flag

is TRUE, the chart is redrawn.

PEGBOOL RemoveLine(PEGUBYTE Id)

This method is used to remove a line from the chart. It returns a boolean

describing its success. Once a line has been removed from the chart, its
line ID becomes free. The line ID may subsequently be reused for a new

line.

PegChartPoint *RemovePoint(PEGUBYTE Id, PegChartPoint
*pPoint, PEGBOOL Redraw = TRUE)

This function removes the point at coordinates pPoint from the line

specified by Id.

void ResetAllLines(PEGBOOL Redraw = TRUE)

This method removes all of the points associated with each line in the chart.

If the Redraw flag is TRUE, each revised line is redrawn.

void ResetLine(PEGUBYTE Id, PEGBOOL Redraw = TRUE)

This method removes all of the points associated with the given line. If the

Redraw flag is TRUE, the revised line is redrawn.

346 PEG Pro API Reference Manual Swell Software, LLC

Charting Classes

virtual void Resize(const PegRect &NewRect)

The PegMultiLineChart class overrides the Resize method to adjust the

multiline chart's location and size as specified by the rectangle NewRect.

The function calls the PegChart base class RecalcLayout() function but

inhibits redrawing of the chart. Function RecalcLine() is then used to

reposition all data points for all lines within the revised chart. This function
is used privately by this chart class.

5.3.8 Examples:

The following code snippet produces the PegMultiLineChart pictured below.

PegMultiLineChart *pLineChart = new
PegMultiLineChart(Rect, 0,

1000, 0, 1000, 100

pLineChart->SetXLabelScale(200);

pLineChart->SetExStyle(CS_DRAWXTICS | CS_DRAWYTICS |

CS_DRAWXGRID | CS_DRAWYGRID | CS_AUTOSIZE |

CS_DRAWYLABELS | CS_DRAWXLABELS);

PEGUBYTE LineID = pLineChart->AddLine(CLR_LIGHTGREEN);

pLineChart->AddPoint(LineID, 100, 100);

pLineChart->AddPoint(LineID, 200, 200);

pLineChart->AddPoint(LineID, 300, 300);

PegChartPoint *pPoint = pLineChart->AddPoint(LineID, 400,
400);

pLineChart->AddPoint(LineID, 500, 500);

pLineChart->AddPoint(LineID, 600, 600);

pLineChart->AddPoint(LineID, 700, 800);

pLineChart->InsertPoint(LineID, pPoint, 450, 0);

PEGUBYTE LineID2 = pLineChart->AddLine(CLR_CYAN);

pLineChart->AddPoint(LineID2, 0, 0);

pLineChart->AddPoint(LineID2, 100, 500);

pLineChart->AddPoint(LineID2, 900, 0);

PegMultiLineChart example screen shot

347 Sval Softwue, U.C OoartingClasses

PegMultiLineChart

348 PEG Pro API Reference Manual Swell Software, LLC

Charting Classes

5.4 PegStripChart

5.4.1 Overview

PegStripChart supports the drawing of discrete lines plotted against the y

axis, with new data samples added in series along the x axis.

5.4.2 See Also

PegChart

5.4.3 Style Flags

PegStripChart supports all of the styles described in PegChart as well as
the following styles:

CS_DRAWAGED If the chart is in paged mode (CS_PAGED is
turned on), then the chart will redraw the
current line in a secondary color when the data
has reached the right side of the chart. New
data, restarting over at the left side of the chart,
will then overwrite this line. If this flag is turned
off, all of the line segments are removed from
the chart when the data reaches the right side
of the chart.

CS_DRAWLEADER This flag causes the chart to draw a vertical
line indicating the position of the most recently
added data and corresponding line segment.

CS_DRAWXAXIS This flag draws a single horizontal line across
the entire chart region. It is situated at 0 on the
y scale. This line does not draw tick marks or
labels. If CS_XAXISONZEROY is also turned on,
then this flag is ignored.

CS_PAGED This flag is mutually exclusive with
CS_SCROLLED. This causes the data to be
drawn along a leading edge as it is added to
the line. When the edge reaches the right side
of the chart region, the line wraps. At this point,
the existing data becomes aged, and is drawn
in a second color specified in the AddLine call.
The behavior of the strip chart when this flag is
on is somewhat akin to a heart beat monitor.

349 Swell Software, LLC Charting Classes

PegStripChart

CS_SCROLLED This flag is mutually exclusive with CS_PAGED.
This causes the data to be drawn beginning
from the left and moving toward the right side
of the chart region. When there is enough data
for the line to extend all the way across the
chart region, the line scrolls itself. Thus, new
data points are added on the right, and old
data points are subtracted from the left. This
behavior most closely resembles a
seismograph.

5.4.4 Signals

PegStripChart does not send any signals.

5.4.5 Derivation

PegStripChart is derived from PegChart.

5.4.6 Constructor:

PegStripChart(const PegRect &Rect, PEGUINT Samples,

PEGLONG MinY, PEGLONG MaxY, PEGUINT XScale = 0,
PEGUINT YScale = 0)

The constructor is fairly straightforward. Like most PegThing-derived
objects, you pass it the rectangle you wish for it to occupy. If you have

CS_AUTOSIZE turned on, you may simply want to pass it the parent's

mClient rectangle.

The Samples parameter specifies how many samples will fit into the chart

region. If you would like to see 100 samples of data at one time, then you
would set this parameter to 100.

The last two parameters are for setting the major tick mark frequency for
the x and y axis, respectively. For instance, if your minimum y value is -100
and your maximum y value is 900, and you specify a y scale of 100, if the

CS_DRAWYTICS bit is set in the extended style flag, you will see tick marks

on the y axis starting at -100 and incrementing 100 all the way to 900.
Therefore, there will be 11 tick marks drawn on the y axis. If you were to

also turn on the CS_DRAWYGRID bit, you would see a grid line at the same

interval as the tick marks. Label scaling, or interval, is independent of the
tick mark/grid line scaling. Therefore, it is possible to specify tick marks to
appear at intervals of 100, while specifying labels to be drawn every 200.

350 PEG Pro API Reference Manual Swell Software, LLC

Charting Classes

No matter the scaling, all drawing starts at the minimum value and works its

way toward the maximum value until it meets or exceeds the maximum

value. This holds true for both the x and y axis.

5.4.7 Public Functions:

PEGBOOL AddData(PEGUBYTE Id, PEGLONG RawData, PEGBOOL

Redraw = TRUE)

This method adds a data point to a given line specified by Id. It returns
TRUE if the data was added successfully, else FALSE.

PEGUBYTE AddLine(PEGCOLOR LineColor, PEGCOLOR

AgedColor, PEGCOLOR FillColor = 0)

This adds a new line to the chart. The colors are used to draw the line when

it is drawing new data, and in the case of the paged chart, the line color
when it is drawing the aged data. It returns the ID of the newly added line.

If adding the line fails, a value of 0 will be returned. This chart supports up

to 255 lines simultaneously.

void Draw(const PegRect &Invalid)

PegStripChart overrides the Draw() function to draw the individual lines.

PEGCOLOR GetLineAgedColor(PEGUBYTE Id)

Returns the PEGCOLOR used by line identified by Id to draw its historical

data.

PEGCOLOR GetLineColor(PEGUBYTE Id)

Returns the PEGCOLOR used by line identified by Id to draw its current data.

PEGCOLOR GetLineFillColor(PEGUBYTE Id)

Returns the PEGCOLOR used by line identified by Id to draw the filled

polygon from the current line segment to 0 on the y scale.

PEGCOLOR GetLineLeaderColor(PEGUBYTE Id)

This returns the current color of the leader. The leader is the straight
vertical line drawn at the furthest point on the x axis where data is being

inserted. The leader is only used when CS_PAGED is turned on. Every line

may have its own leader color. By default, if a color is not initially specified
for the leader, the normal line color is used.

351 Swell Software, LLC Charting Classes

PEGINT IndexToPointX(PEGUINT Index)

PegStripChart

This method determines the screen location along the x axis given the
current index. The location is based on the chart region size and the
number of samples being put into that region. This method is used

internally by the chart. It returns a screen point on the x axis as a PEGINT

value.

PEGINT Message(const PegMessage& Mesg)

PegStripChart overrides the Message method in order to provide

appropriate layout recalculation when its parent is moved or, optionally,
resized.

virtual void RecalcSize(const PegRect &NewRect,

PEGBOOL Redraw = TRUE)

This method is overridden in order to ensure that the line data is up to date.
In other words, if the chart is moved or resized, the screen coordinates
associated with a given data point will change. In order to keep up with

these changes, this method calls the Resize method to update the screen

coordinates of all the data points associated with each line.

PEGBOOL RemoveLine(PEGUBYTE Id)

This method removes the line with the ID of Id. It returns a boolean of

success or failure.

virtual void Resize(const PegRect &NewRect)

This method overrides the PegThing::Resize method. Internally, it calls its
own RecalcLayout method with the NewRect rectangle. It also calls the

PegThing::Resize method to ensure proper layout.

void SetLineAgedColor(PEGUBYTE Id, PEGCOLOR Color)

This method sets the color used by line Id to draw its historical data.

void SetLineColor(PEGUBYTE Id, PEGCOLOR Color)

This method sets the color used by line identified by Id to draw its current

data.

void SetLineFillColor(PEGUBYTE Id, PEGCOLOR Color)

This method sets the color used by line identified by Id to draw a filled

polygon from the current line segment to 0 on the y axis.

352 PEG Pro API Reference Manual Swell Software, LLC

Charting Classes

void SetLineLeaderColor(PEGUBYTE Id, PEGCOLOR Color)

This method sets the color of the leader of the specified line denoted by the

Id parameter.

PEGINT ValToPointY(PEGLONG Val)

This method converts a data value to a screen pixel location based on the

size of the chart region and the minimum and maximum allowable values

on the y axis. This method is used internally by the chart to plot data points

on the screen. It returns the screen point on the y axis as a PEGINT value.

5.4.8 Protected Members

virtual void DrawInvalidChartRegion(const PegRect
&Invalid)

This function draws only an invalidated section of the chart. This is called

when adding new data points to the chart.

virtual void DrawLine(const PegRect &Invalid,

PegStripChartLine *pLine)

This function draws an entire line on the chart.

virtual void DrawLineHistroy(const PegRect &Invalid,
PegStripChartLine *pLine)

This is used for charts with the CS_PAGED style. After the data points reach

the end of the chart, new data points start over at the beginning and all of
the previous points become aged. This function draws the aged line.

virtual void DrawNewLineData(PegStripChartLine

*pLine)

This function is responsible for drawing new data points and determining if

the chart needs to be paged.

5.4.9 Examples:

The following code snippet produces the PegStripChart pictured below.

This strip chart is using the CS_PAGED method of drawing.

PegRect Rect;

Rect.Set(40, 40, 590, 240);

PegStripChart *pChart = new PegStripChart(Rect, 240, -
100,

120, 0, 20);

353 Sval Softwue, U.C OoartingClasses

PegStripChart

PEGUBYTE Lineid = pCha<t->AddLine(CLR_LIGHTGREEN,
CLR_DARKGRAY);

Add(pCha<t);

PegStripChart examp)e screen shot

gStri CIHtrt Exm It! 1!!1[!)£1

354 PEG Pro API Reference Manual Swell Software, LLC

Charting Classes

355 Swell Software, LLC HMI Classes

C H A P T E R 6

HMI CLASSES

PegDial

PegFiniteDial

PegFiniteBitmapDial

PegCircularDial

PegCircularBitmapDial

356 PEG Pro API Reference Manual Swell Software, LLC

HMI Classes

6.1 PegDial

6.1.1 Overview

PegDial is an abstract base class from which PegFiniteDial and

PegFiniteBitmapDial are derived. PegDial provides the base functionality

common to all the derived dial objects in the PEG library.

It is important to understand how the angle value works on the dial.

Consider an xy coordinate system (Figures 1 and 2, below). A point P in the
xy plane has coordinates (x,y) where x is considered positive along OX and

negative along OX' while y is positive along OY and negative along OY'.

The angle A described counterclockwise from OX is considered positive. If

it is described clockwise from OX it is considered negative. We call X'OX

and Y'OY the x and y axis, respectively.

The various quadrants are denoted by I, II, III, and IV called the first,

second, third, and fourth quadrants, respectively. In Figure 1, for example,

angle A is in the second quadrant while in Figure 2, angle A is in the third

quadrant.

When working with angles with any PegDial derived class, 0 degrees is
always on line OX with greater angle values going counterclockwise.

Therefore, line OY is at 90 degrees, line OX' is at 180 degrees and line OY'

is at 270 degrees.

357 Swell Software, LLC HMI Classes

6.1.2 See Also

PegThing

PegFiniteDial

PegDial

PegFiniteBitmapDial

PegCircularDial

PegCircularBitmapDial

6.1.3 Style Flags

PegDial supports the standard frame styles FF_NONE, FF_THIN, FF_THICK,

FF_RAISED, and FF_RECESSED.

PegDial also supports the following additional styles:

DS_CLOCKWISE Sets the direction that the data will move the
needle. Having this flag set causes the needle
to move in a clockwise direction as the current
value gets larger. Clearing this flag will cause
the needle to move in a counterclockwise
direction.

DS_TICMARKS If this flag is set, the dial will draw tick marks at
the defined intervals.

DS_THINNEEDLE Will draw the needle as a thin single line.

DS_THICKNEEDLE Will draw the needle as a thick single line.

DS_POLYNEEDLE Will draw the needle using a filled polygon.

DS_RECTCOR Rectangle Center of Rotation. Will use the
center of the bounding rectangle (mReal) as
the center for the anchor of the needle.

DS_USERCOR User Center of Rotation. Allows the user to
specify where the center anchor will be for the
needle. This allows off-center bitmaps to be
used for backgrounds on the dial.

DS_STANDARDSTYLE A combination of DS_THINNEEDLE |
DS_CLOCKWISE | DS_TICMARKS | DS_RECTCOR.

AF_TRANSPARENT Enables the background to be drawn using the
background color of the parent.

358 PEG Pro API Reference Manual Swell Software, LLC

HMI Classes

6.1.4 Signals

PegDial does not send any signals.

6.1.5 Derivation

PegDial is derived from PegThing.

6.1.6 Constructors:

PegDial(const PegRect &Rect, PEGULONG Style)

This constructor simply takes a reference to a PegRect and a PEGULONG for

the style flags.

PegDial(PEGINT Left, PEGINT Top, PEGULONG Style)

This constructor simply takes PEGINT values to describe the left and top

position of the dial. By default, an object created in this fashion will have a

width and height of 100 pixels.

6.1.7 Public Functions:

PEGINT GetAnchorColor(void) const

This inline function returns the color ID of the anchor.

PEGUINT GetAnchorWidth(void) const

This inline function returns the width of the anchor.

PEGINT GetCurAngle(void) const

This inline function returns the current angle of the needle.

PEGLONG GetCurrentValue(void) const

This inline function returns the current value.

PEGINT GetDialColor(void) const

This inline function returns the color ID of the background of the dial.

PEGINT GetMaxAngle(void) const

This inline method returns the maximum angle supported by the dial.

PEGINT GetMaxValue(void) const

This inline method returns the maximum value supported by the dial.

359 Swell Software, LLC HMI Classes

PEGINT GetMinAngle(void) const

PegDial

This inline method returns the minimum angle supported by the dial.

PEGINT GetMinValue(void) const

This inline method returns the minimum value supported by the dial.

PEGINT GetNeedleColor(void) const

This inline function returns the color ID of the needle.

PEGUINT GetNeedleLength(void) const

This inline function returns the length of the needle.

PEGLONG GetTicFreq(void) const

This inline function returns the frequency of tick marks.

PEGUINT GetTicLen(void) const

This inline function returns the length of individual tick marks.

virtual PEGLONG IncrementValue(PEGLONG Value, PEGBOOL
Redraw = TRUE)

This virtual method increments the current value of the dial. By default, if
the object is visible, it will redraw itself. To suppress this behavior, set

Redraw to FALSE.

void SetAnchorColor(PEGINT ColorId)

This inline function is used to assign a color ID for the anchor point.

void SetAnchorWidth(PEGUINT Width)

This inline function is used to set the anchor width.

void SetDialColor(PEGINT ColorId)

This inline function is used to assign the color ID used to draw the dial face.

void SetNeedleColor(PEGINT ColorId)

This inline function is used to set the color of the needle.

void SetNeedleLength(PEGUINT Length)

This inline function is used to set the length of the needle. The value can be

between 0 and 100 (inclusive). This value is used to calculate the length of

the needle based on the lesser of the width or height of the dial. For

360 PEG Pro API Reference Manual Swell Software, LLC

HMI Classes

example, if this value is set to 80, then the length of the needle is 80% of

the width or height of the dial, whichever is smaller.

void SetTicFreq(PEGLONG Freq)

This inline function is used to set the tick mark frequency. This determines
the interval at which tick marks will be drawn on the dial face.

void SetTicLen(PEGUINT Length)

This inline function is used to set the tick mark length. This value works the

same way as the needle length. The value is a percentage of the width or

height of the dial, whichever is smaller. Therefore, if this value was set to

10, then the tick length would be 10% of the width or height of the dial,
whichever is smaller.

virtual void SetValue(PEGLONG Value, PEGBOOL Redraw =

TRUE)

This virtual method allows the current value to be set. By default, if the

object is visible, it will redraw itself. To circumvent this behavior, set Redraw

to FALSE.

6.1.8 Protected Members

virtual void CalcClipAndDraw(void)

This function calculates the needle position and, if it has moved, then it

redraws.

virtual void CalcNeedlePos(void)

This pure virtual function is used to calculate the needle position.

virtual void CalcTicPos(PEGLONG Val, PegPoint &Pt1,
PegPoint &Pt2)

This function calculates the position of the tick mark for value Val.

virtual void DrawAnchor(void)

This function draws the anchor, which is the pivot point of the needle. The

default anchor is just a circle.

virtual void DrawDial(void)

This function draws the outer frame of the dial.

virtual void DrawNeedle(void)

This function draws the needle of the dial.

361 Swell Software, LLC HMI Classes

virtual void DrawTicMarks(void)

This function draws all of the tick marks on the dial.

virtual void EraseNeedle(void)

This function removes the needle from the dial.

PegDial

virtual PEGINT ValToAngle(PEGLONG Val)

This function converts a numeric value to an angle based on the dial

settings.

6.1.9 Examples:

See PegFiniteDial or PegFiniteBitmapDial for examples of PegDial-derived
objects.

362 PEG Pro API Reference Manual Swell Software, LLC

HMI Classes

6.2 PegFiniteDial

6.2.1 Overview

PegFiniteDial is an HMI output gadget that provides an analog equivalent to

a digital readout. It can be fed any integral data from any source.

The dial is categorized as finite because it takes a specific start angle and a
specific end angle that map to a minimum and maximum value,

respectively. So, in action, the needle on the dial moves between the start

and end angles based on the current value that is between the minimum

and maximum values assigned to the dial. The travel of the needle may be

the entire 360 degrees of a circle, say from 0 to 359 in a counter clockwise

direction, but it may not wrap.

6.2.2 See Also

PegDial

PegFiniteBitmapDial

6.2.3 Style Flags

PegFiniteDial supports the styles described in PegDial.

6.2.4 Signals

PegFiniteDial does not send any signals.

6.2.5 Derivation

PegFiniteDial is derived from PegDial.

6.2.6 Constructors:

PegFiniteDial(const PegRect &Rect, PEGINT MinAngle,

PEGINT MaxAngle, PEGLONG MinValue, PEGLONG
MaxValue, PEGULONG Style = DS_STANDARDSTYLE)

This constructor takes a reference to a PegRect to determine its size, a

style, a minimum and maximum angle, and a minimum and maximum
value.

363 Swell Software, LLC HMI Classes

PegFiniteDial

The dial will map the minimum angle to the minimum value, and the
maximum angle to the maximum value. So, the dial will behave as

expected. If you set the minimum angle to be 0 and the maximum angle to

be 180, and the minimum value to 0 and the maximum value to 100, then

setting the value on the dial to 50 will set the needle to 90 degrees, straight
up.

6.2.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegFiniteDial overrides the Draw() function to draw the different

components of the dial.

virtual void SetLimits(PEGINT MinAngle, PEGINT
MaxAngle, PEGLONG MinValue, PEGLONG MaxValue)

This function sets the boundaries for the min/max values and angles of the

needle. It then redraws the needle if necessary.

6.2.8 Protected Members

virtual void CalcNeedlePos(void)

This function calculates the current position of the needle.

virtual void DrawTicMarks(void)

This function draws the tick marks along the outside of the dial.

virtual PEGINT ValToAngle(PEGLONG Val)

This function converts a numeric value to an angle along the dial.

6.2.9 Examples:

The following is an example of three PegFiniteDials on a
PegDecoratedWindow.

364 PEG Pro API Reference Manual Swell Software, LLC

HMI Classes

The above PegFiniteDials were created by the following code snippet:

PegFiniteDial *mpDial1, *mpDial2, *mpDial3;

.

.

.

PegRect WinRect;

WinRect.Set(50, 50, 200, 200);

mpDial1 = new PegFiniteDial(WinRect, 180, 0, -50, 100,

AF_TRANSPARENT | DS_STANDARDSTYLE);

mpDial1->SetTicFreq(10);

mpDial1->SetTicLen(10);

mpDial1->SetDialColor(CID_CYAN);

WinRect.Shift(160, 0);

mpDial2 = new PegFiniteDial(WinRect, 225, 315, 0, 300,

FF_RAISED | DS_THICKNEEDLE | DS_TICMARKS | DS_RECTCOR);

mpDial2->SetColor(PCI_NORMAL, CID_DARKGRAY);

mpDial2->SetNeedleColor(CID_BLUE);

mpDial2->SetTicFreq(50);

mpDial2->SetTicLen(20);

WinRect.Shift(160, 0);

mpDial3 = new PegFiniteDial(WinRect, 225, 315, 0, 300

FF_RECESSED | DS_POLYNEEDLE | DS_TICMARKS | DS_RECTCOR);

mpDial3->SetColor(PCI_NORMAL, CID_LIGHTGRAY);

365 Swell Software, LLC HMI Classes

PegFiniteDial

mpDial3->SetDialColor(CID_GREEN);

mpDial3->SetNeedleColor(CID_YELLOW);

mpDial3->SetTicFreq(50);

mpDial3->SetTicLen(20);

Add(mpDial1);

WinRect.Set(105, 160, 144, 179);

PegPrompt *pPrompt = new PegPrompt(WinRect, "0", 101,

FF_RECESSED | TJ_CENTER | TT_COPY);

pPrompt->SetColor(PCI_NTEXT, CID_RED);

mpDial1->Add(pPrompt);

Add(mpDial2);

WinRect.Set(265, 160, 304, 179);

pPrompt = new PegPrompt(WinRect, "0", 102, FF_RECESSED |

TJ_CENTER | TT_COPY);

pPrompt->SetColor(PCI_NTEXT, CID_BLUE);

mpDial2->Add(pPrompt);

Add(mpDial3);

mpDial2->Add(pPrompt);

Add(mpDial3);

366 PEG Pro API Reference Manual Swell Software, LLC

HMI Classes

6.3 PegFiniteBitmapDial

6.3.1 Overview

PegFiniteBitmapDial behaves exactly the same as PegFiniteDial, from

which it derives. The differences are that the user may specify a

background bitmap over which the dial needle will be drawn as well as a

bitmap that will be used to draw the needle anchor at the center of rotation.

This allows for very customizable finite dials.

An added feature of PegFiniteBitmapDial is the ability to specify a center of
rotation that is not necessarily the center of the bounding rectangle for the

dial. Typically, the needle of the dial would originate at the center of the

bounding rectangle. PegFiniteBitmapDial allows for the needle to originate

from anywhere inside its bounding rectangle. This further adds to the

custom possibilities when designing your dials.

The PegFiniteBitmapDial uses 2 bitmaps, which can be indexed with the
following enumerations.

PBMI_DIAL_BACKGROUND Background bitmap

PBMI_DIAL_ANCHOR Anchor bitmap

6.3.2 See Also

PegDial

PegFiniteDial

6.3.3 Style Flags

PegFiniteBitmapDial supports the styles described in PegDial.

PegFiniteBitmapDial does not support any of the frame styles because it

uses the background bitmap for drawing in the client area of the dial.

6.3.4 Signals

PegFiniteBitmapDial does not send any signals.

367 Swell Software, LLC HMI Classes

6.3.5 Derivation

PegFiniteBitmapDial is derived from PegFiniteDial.

PegFiniteBitmapDial

6.3.6 Constructors:

PegFiniteBitmapDial(const PegRect &Rect, PEGINT
MinAngle, PEGINT MaxAngle, PEGLONG MinValue,
PEGLONG MaxValue, PEGINT BkgBmp, PEGINT
AnchorBmp = 0, PEGULONG Style =
DS_STANDARDSTYLE)

This constructor takes a reference to a PegRect to determine its size, a

minimum and maximum angle, a minimum and maximum value, a bitmap
ID that will be used for drawing the background, a bitmap ID that will be

used to draw the needle anchor, and style flags.

The dial will map the minimum angle to the minimum value, and the

maximum angle to the maximum value. So, the dial will behave as

expected. If you set the minimum angle to be 0 and the maximum angle to

be 180, and the minimum value to 0 and the maximum value to 100, then

setting the value on the dial to 50 will set the needle to 90 degrees, straight
up.

6.3.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegFiniteBitmapDial overrides the Draw() function to draw the background

bitmap and needle.

PEGINT GetBitmap(PEGINT Index) const

This method returns the ID of the bitmap specified by Index.

PEGINT GetCORX(void) const

PEGINT GetCORY(void) const

These inline functions return the respective values of the x and y center of

rotation.

void SetBitmap(PEGINT Index, PEGINT BmpId)

This method sets the bitmap with the specified Index to BmpId.

368 PEG Pro API Reference Manual Swell Software, LLC

HMI Classes

void SetCOR(PEGINT CORX, PEGINT CORY, PEGBOOL Redraw =
FALSE)

This allows for the setting of the x and y values of the center of rotation (the

origin of the needle) of the dial.

void UseTrueCOR(PEGBOOL Use)

This method is shorthand for setting the style flags DS_RECTCOR and
DS_USERCOR to on or off, depending on the value of Use.

6.3.8 Protected Members

virtual void CalcNeedlePos(void)

This function calculates the current position of the needle.

6.3.9 Examples:

The following is an example of three PegFiniteBitmapDials on a
PegDecoratedWindow. Notice that the third dial, on the right, has a center

of rotation that is in the bottom right corner of the bounding rectangle of the

dial.

The above PegFiniteBitmapDials were created by the following code

snippet:

PegFiniteBitmapDial *pDial1, *pDial2, *pDial3;

369 Swell Software, LLC HMI Classes

PegFiniteBitmapDial

PegRect WinRect;

WinRect.Set(50, 50, 200, 200);

pDial1 = new PegFiniteBitmapDial(WinRect, 180, 0, 0, 100,

BID_DIAL_BKGRND1);

WinRect.Shift(160, 0);

pDial2 = new PegFiniteBitmapDial(WinRect, 225, 315, -25, 125,

BID_DIAL_BKGRND2, BID_ANCHOR1);

pDial2->SetStyle((pDial2->GetStyle() | DS_POLYNEEDLE) &

~DS_THINNEEDLE);

pDial2->SetNeedleColor(CID_BLUE);

WinRect.Shift(160, 0);

pDial3 = new PegFiniteBitmapDial(WinRect, 180, 90, 0, 100,

BID_DIAL_BKGRND3);

pDial3->SetStyle(DS_THICKNEEDLE | DS_USERCOR);

pDial3->SetCOR(123, 123);

pDial3->SetNeedleLength(65);

Add(pDial1);

Add(pDial2);

Add(pDial3);

370 PEG Pro API Reference Manual Swell Software, LLC

HMI Classes

6.4 PegCircularDial

6.4.1 Overview

PegCircularDial is an HMI output gadget that provides an analog equivalent

to a digital readout. It can be fed any integral data from any source.

The dial is categorized as circular because it allows for multiple revolutions
of the needle. Each lap of the needle around the circumference of the dial

adds a specific value to the accumulated value. To achieve this, the user

must specify a reference angle (the angle on the dial where the lap begins)

as well as a value per revolution. Coupled with the minimum and maximum

values supported by the dial, this allows for predictable circular behavior.

As an example, if the minimum value of the dial were 0 and the maximum
were 900, and the value per revolution were 300 and the reference angle

were 90, then setting the current value of the dial to 0 would force the

needle to draw at 90 degrees. Incrementing the value up to 300 would

make the needle do one complete revolution around the dial. When the

current value reached 900, the needle would be at 90 degrees, having

traveled around the circumference of the dial three times.

The direction of needle travel is determined by the minimum and maximum

values of the measurement value. If the maximum value is greater than the

minimum value, the needle will rotate clockwise. Otherwise, the needle will

rotate counterclockwise.

6.4.2 See Also

PegDial

PegCircularBitmapDials6_PegFiniteDial

6.4.3 Style Flags

PegCircularDial supports all of the styles described in PegDial except for

style DS_CLOCKWISE.

6.4.4 Signals

PegCircularDial does not send any signals.

371 Swell Software, LLC HMI Classes

6.4.5 Derivation

PegCircularDial is derived from PegDial.

PegCircularDial

6.4.6 Constructors:

PegCircularDial(const PegRect &Rect, PEGINT RefAngle,
PEGLONG ValuePerRev, PEGLONG MinValue, PEGLONG
MaxValue, PEGULONG Style = DS_STANDARDSTYLE)

This constructor takes a reference to a PegRect to determine its size. It
then takes a PEGINT value to denote the reference angle. The reference

angle is the point on the dial at which the minimum value that the dial
supports will be mapped, as well as where a complete revolution is

counted. ValuePerRev tells the dial how much to increment its internal

current value for each revolution of the needle around the circumference of

the dial. It then takes PEGLONGs for the minimum and maximum value, and a

style PEGUSHORT.

6.4.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegCircularDial overrides the Draw() function.

PEGINT GetRefAngle(void) const

This inline function returns the internal reference angle.

PEGLONG GetValuePerRev(void) const

This inline function returns the internal value per revolution.

virtual void SetLimits(PEGINT RefAngle, PEGLONG

ValuePerRev, PEGLONG MinValue, PEGLONG MaxValue)

This function sets limits on the angle and the min/max value of the dial. The

needle position is recalculated. The dial is not redrawn.

6.4.8 Protected Members

virtual void CalcNeedlePos(void)

This function calculates the current position of the needle.

virtual void DrawTicMarks(void)

This function draws all of the tick marks along the outside of the dial.

372 PEG Pro API Reference Manual Swell Software, LLC

HMI Classes

virtual PEGINT ValToAngle(PEGLONG Val)

This function converts a numeric value to an angle along the dial.

6.4.9 Examples:

The following is an example of three PegCircularDials on a
PegDecoratedWindow.

The above PegCircularDials were created by the following code snippet:

PegCircularDial *pDial1, *pDial2, *pDial3;

PegRect WinRect;

WinRect.Set(50, 50, 200, 200);

pDial1 = new PegCircularDial(WinRect, 0, 300, 0, 900,

AF_TRANSPARENT | DS_STANDARDSTYLE);

pDial1->SetTicFreq(10);

pDial1->SetTicLen(10);

pDial1->SetDialColor(CID_CYAN);

pDial1->RemoveStatus(PSF_VIEWPORT);

WinRect.Shift(160, 0);

pDial2 = new PegCircularDial(WinRect, 270, 180, 0, 1800,

FF_RAISED);

pDial2->SetStyle(pDial2->GetStyle() | DS_THICKNEEDLE |

DS_TICMARKS | DS_RECTCOR);

pDial2->SetColor(PCI_NORMAL, CID_DARKGRAY);

pDial2->SetNeedleColor(CID_BLUE);

pDial2->SetTicFreq(10);

373 Swell Software, LLC HMI Classes

PegCircularDial

pDial2->SetTicLen(20);

WinRect.Shift(160, 0);

pDial3 = new PegCircularDial(WinRect, 180, 360, 0, 720,

FF_RECESSED);

pDial3->SetStyle(mpDial3->GetStyle() | DS_POLYNEEDLE |

DS_TICMARKS | DS_RECTCOR);

pDial3->SetColor(PCI_NORMAL, CID_LIGHTGRAY);

pDial3->SetDialColor(CID_GREEN);

pDial3->SetNeedleColor(CID_YELLOW);

pDial3->SetTicFreq(10);

pDial3->SetTicLen(20);

Add(pDial1);

WinRect.Set(105, 210, 144, 229);

PegPrompt* pPrompt = new PegPrompt(WinRect, "0", 101,

FF_RECESSED | TJ_CENTER | TT_COPY);

pPrompt->SetColor(PCI_NTEXT, CID_RED);

Add(pPrompt);

Add(pDial2);

WinRect.Set(265, 210, 304, 229);

pPrompt = new PegPrompt(WinRect, "0", 102, FF_RECESSED |

TJ_CENTER | TT_COPY);

pPrompt->SetColor(PCI_NTEXT, CID_BLUE);

Add(pPrompt);

WinRect.Set(425, 210, 464, 229);

pPrompt = new PegPrompt(WinRect, "0", 103, FF_RECESSED |

TJ_CENTER | TT_COPY);

pPrompt->SetColor(PCI_NTEXT, CID_GREEN);

Add(pPrompt);

Add(pDial3);

374 PEG Pro API Reference Manual Swell Software, LLC

HMI Classes

6.5 PegCircularBitmapDial

6.5.1 Overview

PegCircularBitmapDial behaves exactly the same as PegCircularDial, from

which it derives. The differences are that the user may specify a

background bitmap over which the dial needle will be drawn as well as a

bitmap that will be used to draw the needle anchor at the center of rotation.

This allows for very customizable circular dials.

An added feature of PegCircularBitmapDial is the ability to specify a center
of rotation that is not necessarily the center of the bounding rectangle for

the dial. Typically, the needle of the dial would originate at the center of the

bounding rectangle. PegCircularBitmapDial allows the needle to originate

from anywhere inside its bounding rectangle. This further adds to the

custom possibilities when designing your dials.

The PegCircularBitmapDial uses two bitmaps, which can be indexed with

the following enumerations.

PBMI_DIAL_BACKGROUND Background bitmap

PBMI_DIAL_ANCHOR Anchor bitmap

6.5.2 See Also

PegDial

PegCircularDial

6.5.3 Style Flags

PegCircularBitmapDial supports all of the styles described in PegDial

except for style DS_CLOCKWISE. PegCircularBitmapDial does not support

any of the frame styles because it uses the background bitmap for drawing
in the client area of the dial.

6.5.4 Signals

PegCircularBitmapDial does not send any signals.

375 Swell Software, LLC HMI Classes

6.5.5 Derivation

PegCircularBitmapDial

PegCircularBitmapDial is derived from PegCircularDial.

6.5.6 Constructors:

PegCircularBitmapDial(const PegRect &Rect, PEGINT

RefAngle, PEGLONG ValPerRev, PEGLONG MinValue,
PEGLONG MaxValue, PEGINT BkgBmp, PEGINT
AnchorBmp = 0, PEGULONG Style =
DS_STANDARDSTYLE)

This constructor takes a reference to a PegRect to determine its size, a

PEGINT value for the reference angle, a PEGLONG value for the value per

revolution, a minimum and maximum value, a bitmap ID that will be used
for drawing the background, a bitmap ID that will be used to draw the

needle anchor, and a style PEGULONG.

6.5.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

PegCircularBitmapDial overrides the Draw() function to draw the

background bitmap and needle.

PEGINT GetBitmap(PEGINT Index) const

This method returns the ID of the bitmap specified by the parameter Index.

PEGINT GetCORX(void) const

PEGINT GetCORY(void) const

These inline functions return the respective values of the x and y center of

rotation.

virtual void Resize(const PegRect &Size)

PegCircularBitmapDial overrides the Resize() function so that it can adjust

its private drawing surface, if needed.

void SetBitmap(PEGINT BmpId)

This method sets the bitmap using the specified Index and BmpId.

376 PEG Pro API Reference Manual Swell Software, LLC

HMI Classes

void SetCOR(PEGINT CORX, PEGINT CORY, PEGBOOL Redraw =
FALSE)

This allows for the setting of the x and y values of the center of rotation (the

origin of the needle) of the dial.

void UseTrueCOR(PEGBOOL Use)

This method is shorthand for setting the style flags DS_RECTCOR and
DS_USERCOR to on or off, depending on the value of Use.

6.5.8 Protected Members

virtual void CalcNeedlePos(void)

This function calculates the current position of the needle.

377 Swell Software, LLC Miscellaneous

C H A P T E R 7

MISCELLANEOUS

Peg2DPolygon

PegBitmap

PegBrush

PegCapture

PegFont

PegGradient

PegMenuDescription

PegMessage

PegPoint

PegRect

PegScrollInfo

PegTimer

PegZip/PegUnzip

378 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

7.1 Peg2DPolygon

7.1.1 Overview

Peg2DPolygon is an advanced drawing class that extends and
encapsulates the functionality implemented in the PegScreen's Polygon

method into a true sprite-oriented, two-dimensional polygon.

Historically, in PEG, to draw a polygon one would allocate any number of
PegPoint structures, assign values to the x and y members, create a
PegBrush structure, and assign its color properties accordingly. One would

then call the PegScreen::Polygon method and pass it over the list of

PegPoints and the PegBrush structure. This would effectively draw the
given polygon at the coordinates designated in the PegPoint array.
Peg2DPolygon takes care of this work for you, and provides easy ways to

move and rotate the polygon within its bounding rectangle.

Peg2DPolygon simplifies the process of drawing 2D wireframes and filled

polygons. Instead of normalizing one's desired polygon coordinates to

screen coordinates, the polygon can be described in relation to origin 0 x
and 0 y as the top-left corner of the bounding rectangle of the polygon.

Once these coordinates are given to the Peg2DPolygon object, the object

will translate them from their 0,0 base to the left and top of its bounding

rectangle as it is located on the screen. And, throughout the lifetime of the

object, it updates this translation every time it is moved or resized.

Another great feature is the ability to rotate the polygon to any given angle

without have to translate the points yourself. The following is a discussion
of how the current angle value is used in determining the translation of the

points of the polygon.

It is important to understand how the angle value works in the
Peg2DPolygon object. Consider an xy coordinate system (Figures 1 and 2,

below). A point P in the xy plane has coordinates (x,y) where x is

considered positive along OX and negative along OX' while y is positive
along OY and negative along OY'. The angle A described counterclockwise

from OX is considered positive. If it is described clockwise from OX it is

considered negative. We call X'OX and Y'OY the x and y axis, respectively.

The various quadrants are denoted by I, II, III, and IV called the first,

second, third, and fourth quadrants, respectively. In Figure 1, for example,

379 Swell Software, LLC Miscellaneous

Peg2DPolygon

angle A is in the second quadrant, while in Figure 2 angle A is in the third

quadrant.

When working with angles with the Peg2DPolygon class, 0 degrees is
always on line OX with greater angle values going counterclockwise.

Therefore, line OY is at 90 degrees, line OX' is at 180 degrees, and line OY'

is at 270 degrees.

It is also important to note that the polygon is rotated relative to its bounding

rectangle. In other words, if you were to have a polygon that was bounded
by a rectangle 48 pixels high and 48 pixels wide, the center of rotation for

the polygon would be at relative 23 x and 23 y (24 pixels from the top left

corner of the bounding rectangle). This can provide some very interesting

rotational effects. The one aspect that does require some care in rotating

the polygon is the point’s distance from the center of the bounding
rectangle. If a point lies outside of the radius of the largest concentric circle

that would fit within the perimeter of the bounding rectangle, then the point

may become clipped as the polygon is rotated.

7.1.2 See Also

PegThing

7.1.3 Style Flags

Peg2DPolygon supports the standard frame styles FF_NONE, FF_THIN,
FF_THICK, FF_RAISED, and FF_RECESSED. FF_NONE is the default.

380 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

Peg2DPolygon supports the AF_TRANSPARENT flag. This flag can be

dangerous if you are rotating the polygon and redrawing, as it may not
correctly erase the relic polygon. The way to alleviate this is to rotate the
polygon, then have the parent of the Peg2DPolygon object draw itself. (This

assumes that you have not set the PSF_VIEWPORT status on the

Peg2DPolygon object.)

Peg2DPolygon also supports the TT_COPY style flag. If set, this causes

Peg2DPolygon to copy the array of PegPoints sent over in the constructor's
parameter list. If you have allocated the points on the heap and would not
like the data copied, do not set this flag. By default, this flag is not set.

7.1.4 Signals

Peg2DPolygon does not send any signals.

7.1.5 Derivation

Peg2DPolygon is derived from PegThing.

7.1.6 Constructors:

Peg2DPolygon(const PegRect &Rect, PegPoint *pPoints,

PEGUINT NumPoints, PEGUINT Id = 0, PEGULONG
Style = FF_NONE)

The constructor takes a reference to a PegRect that describes the
bounding rectangle for the polygon, a pointer to a PegPoint structure, the

number of points that describe the polygon, a PEGUINT for the ID of the

object, and a PEGULONG for the style flags.

It is necessary for the PegPoints to be allocated as an array of points, with

the pPoints parameter pointing to the first element in the array.

7.1.7 Public Functions:

virtual void Draw(const PegRect &Invalid)

Peg2DPolygon overrides the PegThing::Draw method in order to correctly

draw the polygon.

PEGINT GetCurAngle(void) const

This inline function returns the current angle used to rotate the polygon.

381 Swell Software, LLC Miscellaneous

PEGBOOL GetFill() const

Peg2DPolygon

This function retrieves the fill flag used to determine whether the polygon

should fill its interior or only draw its outline.

PEGINT GetLineWidth() const

This function retrieves the line width used when drawing the polygon.

PEGUINT GetNumPoints() const

Returns the number of points in the polygon.

virtual void ParentShift(PEGINT XOffset, PEGINT
YOffset)

Peg2DPolygon overrides the PegThing::ParentShift method in order to

correctly map the polygon coordinates to the new location on the screen.
This member is called internally by the library and should not be called from
a user application.

virtual void Resize(const PegRect &Rect)

Peg2DPolygon overrides the PegThing::Resize method in order to

correctly shift the polygon to the new location described by the new
bounding rectangle.

void SetCurAngle(PEGINT Theta)

This function is used to set the current angle used to rotate the polygon.

void SetFill(PEGBOOL Fill)

This function sets the fill flag used to determine if the polygon should fill its

interior or only draw its outline.

void SetLineWidth(PEGINT Width)

This function sets the line width used when drawing the polygon.

7.1.8 Examples:

The following is a code snippet that creates the Peg2DPolygon displayed
below. You'll notice that since we globally allocated the PegPoints that

described the polygon, we don't set the TT_COPY flag in the constructor to

the Peg2DPolygon object.

// Global Polygon point data

static PegPoint gtPolyPoints[] = {

382 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

{47, 24}, {12, 12}, {24, 22},

{24, 23}, {31, 19}, {31, 27},

{24, 25}, {12, 35} };

PolygonWindow::PolygonWindow() : PegDecoratedWindow()

{

mReal.Set(0, 0, 400, 300);

InitClient();

SetColor(PCI_NORMAL, CID_BLUE);

Add(new PegTitle("Peg2DPolygon Example"));

PegRect Rect;

Rect.Set(mClient.Left + 10, mClient.Top + 10,

mClient.Left + 57, mClient.Top + 57);

mpPolygon = new Peg2DPolygon(Rect, >PolyPoints[0], 8,

101, FF_NONE);

mpPolygon->SetColor(PCI_NORMAL, CID_BLUE);

mpPolygon->SetColor(PCI_NTEXT, CID_WHITE);

Add(mpPolygon);

}

7.2 PegBitmap

PegBitmap

The PegBitmap structure contains format and data address information for
PEG-compatible bitmaps.

The PegBitmap structure is defined as:

#define BMF_RAW 0x00 // bitmap is not RLE encoded

#define BMF_RLE 0x01 // bitmap is RLE encoded

#define
format

BMF_NATIVE 0x02 // bitmap is in native video

#define
270

BMF_ROTATED 0x04 // bitmap is rotated 90 or

// degrees

#define BMF_GRAYSCALE 0x08 // 1-8 bpp bitmap uses
grayscale

// palette

#define BMF_ARGB_FORMAT 0x08 // 16-bpp uses ARGB 4444
format

#define BMF_HAS_TRANS 0x10 // bitmap uses transparency

#define BMF_SPRITE 0x20 // bitmap resides in video
memory

#define BMF_RGB 0x40 // 24-bit bitmap is in RGB
(not

// BGR) order

#define BMF_555_FORMAT 0x40 // 16-bit bitmap is in 555
(not

// 565) format

#define BMF_332_FORMAT 0x40 // 8-bit bitmap is in 3:3:2
(not

// palette) format

#define BMF_ALPHA 0x80 // bitmap has alpha channel
(16 &

// 24bpp support only)

struct PegBitmap

{

PEGUBYTE Flags; // combination of flags above

PEGUBYTE BitsPix; // 1, 2, 4, 8, 16, or 24

PEGUSHORT Width; // in pixels

PEGUSHORT Height; // in pixels

PEGULONG TransColor; // transparent color for > 8bpp

// bitmaps

PEGUBYTE PEGFAR *pStart; // bitmap data pointer

};

Swell Software, LLC Miscellaneous 383

384 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

7.3 PegBitmapRotator

7.3.1 Overview

The PegBitmapRotator class is a utility class that takes a PegBitmap as

input and returns a rotated version of that PegBitmap. It uses all fixed-point

math to do the calculations.

It is important to understand how the angle value works in the

PegBitmapRotator object. Consider an xy coordinate system (Figures 1 and
2, below). A point P in the xy plane has coordinates (x,y) where x is
considered positive along OX and negative along OX' while y is positive

along OY and negative along OY'. The angle A described counterclockwise

from OX is considered positive. If it is described clockwise from OX, it is

considered negative. We call X'OX and Y'OY the x and y axis, respectively.

The various quadrants are denoted by I, II, III, and IV called the first,
second, third and fourth quadrants, respectively. In Figure 1, for example,

angle A is in the second quadrant while, in Figure 2, angle A is in the third

quadrant.

When working with angles with the PegBitmapRotator class, 0 degrees is
always on line OX with greater angle values going counterclockwise.

Therefore, line OY is at 90 degrees, line OX' is at 180 degrees, and line OY'

is at 270 degrees.

385 Swell Software, LLC Miscellaneous

7.3.2 See Also

PegBitmap

PegBitmapRotator

7.3.3 Public Functions:

PegBitmap *RotateBitmap(PegBitmap *pSrc, PEGINT
Rotation)

This function takes a PegBitmap pSrc and rotates it by the specified number

of degrees. It returns a pointer to the newly created rotated bitmap.

386 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

7.4 PegBrush

The PegBrush class is used to pass information to the PegScreen drawing
functions. PegBrush contains foreground and background colors, pattern,

width, and style flag information.

The PegBrush class is defined as:

class PegBrush

{

friend class PegScreen;

public:

PegBrush()

;

PegBrush(PEGCOLOR LColor, PEGCOLOR FColor,

PEGINT BStyle = PBS_NO_ALIAS, PEGINT LWidth = 1);

~PegBrush();

void Set(PEGCOLOR LColor, PEGCOLOR FColor,

PEGINT BStyle = PBS_NO_ALIAS, PEGINT_LWidth = 1))

{

LineColor = LColor;

FillColor = FColor;

Style = BStyle;

Width = LWidth;

}

PEGCOLOR LineColor;

PEGCOLOR FillColor;

PEGULONG Pattern;

PEGUINT Alpha;

PEGINT Width;

PEGINT Style;

PegBitmap *pBitmap;

private:

PegBitmap *pSysmap;

};

387 Swell Software, LLC Miscellaneous

The brush styles are:

PegBrush

PBS_SOLID_FILL: This flag is used to fill rectangles, polygons, and text

with a solid color. For text functions, PBS_SOLID_FILL will cause the text
background area to be filled with the background color, while turning that
flag off will cause only the text foreground to be drawn.

PBS_BMP_FILL: This flag is used to fill rectangles and polygons with a

bitmap. The Brush.pBitmap field is used to obtain the bitmap.

PBS_NO_ALIAS: This flag is used to draw lines or text with no anti-aliasing.

This is currently the default behavior, so it’s not really necessary to set this
explicitly.

PBS_SIMPLE_ALIAS: This flag is used to draw lines or text with ‘simple anti-

aliasing.’ This means that, at the edges of the line, the Brush.LineColor

will get blended with Brush.FillColor to produce a smoother looking line.

For lines drawn on top of solid-colored surfaces, this is often sufficient.

PBS_TRUE_ALIAS: This flag is used to draw lines or text with ‘true anti-

aliasing.’ This means that, at the edges of the line, the Brush.LineColor

will get blended with whatever pixels are already found on the screen. This
results in a smooth looking line even on multicolored backgrounds.
Performance-wise, this takes more processing time than

PBS_SIMPLE_ALIAS.

PBS_UNDERLINE: This flag is used to draw an underline underneath text

when calling the DrawText function.

PBS_ROUNDED: This flag is used to draw rounded endpoints for wide lines.

This can be useful when drawing a series of connected wide lines because
the intersections will look smooth and round, rather than having sharp
corners sticking out.

PBS_CENTER_LINE: By default, when drawing a thick line, the coordinates

passed into the Line function represent the top and left coordinates of the

line. In other words, if the user draws a line of width 10, the drawing would
start at the specified coordinates and fill in 10 pixels in the bottom and right

direction. By turning on PBS_CENTER_LINE, the width of the line is centered

on original coordinates. So in the same example, the line would now be
drawn with 5 pixels in the top and left direction and 5 pixels in the bottom
and right direction.

388 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

PBS_PATTERN: This flag informs the PegScreen class that the line that is

being drawn will not be a solid line. Instead it will use the Brush.Pattern
value to decide which pixels to turn on and which to turn off.

PBS_ALPHA: This flag informs certain drawing functions in the PegScreen
class that the drawing primitive is to be blended into the background using
a specific alpha value. The drawing primitive will then use the
Brush.Alpha value to blend the entire primitive.

388 PEG Pro API Reference Manual Swell Software, LLC

389 Swell Software, LLC Miscellaneous

7.5 PegCapture

PegCapture

PegCapture is a utility class used to capture and restore regions of the
screen.

The PegCapture class is defined as:

class PegCapture

{

public:

PegCapture(voi

d)

{

mRect.Set(0, 0, 0, 0);

mBitmap.pStart = 0

mValid = FALSE;

mDataSize = 0;

}

~PegCapture()

{

if (mBitmap.pStart)

{

delete mBitmap.pStart;

}

}

PegRect &Pos(void) {return mRect;}

PegPoint Point(void);

PEGLONG DataSize(void) {return mDataSize;}

void SetPos(PegRect &Rect)

{

mRect = Rect;

mBitmap.Width = (PEGUSHORT) Rect.Width();

mBitmap.Height = (PEGUSHORT) Rect.Height();

}

PEGBOOL IsValid(void) const {return mValid;}

void SetValid(PEGBOOL Valid) {mValid = Valid;}

void Realloc(PEGLONG Size);

void Reset(void);

390 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

void MoveTo(PEGINT Left, PEGINT Top);

void Shift(PEGINT xShift, PEGINT yShift)

{mRect.Shift(xShift, yShift);}

PegBitmap *Bitmap(void) {return &mBitmap;}

};

391 Swell Software, LLC Miscellaneous

7.6 PegFont

PegFont

The PegFont structure contains format and data address information for
PEG compatible fonts.

The PegFont structure is defined as:

struct PegFont

{

PEGUBYTE Type; PEGUBYTE

Ascent; PEGUBYTE

Descent; PEGUBYTE

CharHeight; PEGUBYTE

PreSpace; PEGUBYTE

PostSpace; PEGUBYTE

LineHeight; PEGUSHORT

BytesPerLine; PEGUSHORT

FirstChar; PEGUSHORT

LastChar; PEGUSHORT

*pOffsets; PegFont

*pNext;

PEGUBYTE *pData;

};

392 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

7.7 PegGradient

The PegGradient class is used to draw a progression from one color to
another. It can draw that progression in a number of different directions,

and it can include any number of specified colors at any point along that

progression, not just two colors at the ends.

To create a gradient, first create an instance of the PegGradient class, and
add the colors you want to use along with their position within the gradient.

The position is a value between 0x00 and 0xff. The position value is not a

specific pixel location, but a ratio used to determine the location once the

length of the gradient has been set. Although it does not matter in what

order you add the colors, it makes sense to start with the first color at

position ‘0.’

Once the colors have been set, the application can create a gradient in any

style or direction. The PegGradient APIs can be used to draw a gradient

directly to the screen, or it can draw it into a PegBitmap so that the gradient

doesn’t need to be recalculated every time the application wants to redraw

it. Drawing into a bitmap can greatly improve performance, though it does
so at the cost of requiring more memory.

The gradient can be drawn using a straight linear progression, or it could

progress along a cosine curve. Using a cosine curve creates a gradient that

looks a little different because the endpoint colors are better highlighted.

7.7.1 Constructors:

PegGradient(void)

This creates an instance of the PegGradient class. The gradient is empty at

this point so it would be unable to draw anything.

7.7.2 Public Functions:

void AddColor(PEGCOLOR Color, PEGINT Position)

This function is responsible for adding a new entry to the list of colors that

the gradient contains. Position is a ratio from 0x00 to 0xff that determines

the position within the gradient that Color should appear.

void ClearColors(void)

PegGradient

This function removes all colors from the gradient. This is necessary if the

application requires that the same PegGradient instance be used to draw
multiple gradients.

void DrawHorizGradient(PegThing *pCaller, PegRect

Rect, PEGBOOL Linear = TRUE, PEGBOOL Reverse =
FALSE)

This function draws a horizontal gradient, meaning that it progresses from
left to right. pCaller refers to the object that called this function. The region

defined by Rect is the screen coordinates that the gradient will draw into.

Also, the width of Rect is used to determine the length of the gradient. If

Linear is TRUE, the gradient will use a linear progression. Otherwise, it will

progress along a cosine curve. If Reverse is TRUE, the gradient is

essentially drawn from right to left instead of left to right.

void DrawLLtoURGradient(PegThing *pCaller, PegRect
Rect, PEGBOOL Linear = TRUE, PEGBOOL Reverse =

FALSE)

This function draws a diagonal gradient from the lower left corner to the

upper right corner. pCaller refers to the object that called this function. The

region defined by Rect is the screen coordinates that the gradient will draw

into. Rect is also used to determine the length of the gradient. If Linear is

TRUE, the gradient will use a linear progression. Otherwise, it will progress

along a cosine curve. If Reverse is TRUE, the gradient is essentially drawn

from the upper right to the lower left instead of from the lower left to the
upper right.

void DrawRadialGradient(PegThing *pCaller, PegRect

Rect, PEGINT CenterX, PEGINT CenterY, PEGINT
Radius, PEGBOOL Linear = TRUE)

This function draws a radial gradient, meaning that it starts from the point
specified by CenterX and CenterY and progresses outward radially.

pCaller refers to the object that called this function. The region defined by

Rect is the screen coordinates that the gradient will draw into. Radius

serves as the length of the gradient. If Linear is TRUE, the gradient will

use a linear progression. Otherwise, it will progress along a cosine curve.

void DrawULtoLRGradient(PegThing *pCaller, PegRect
Rect, PEGBOOL Linear = TRUE, PEGBOOL Reverse =
FALSE)

This function draws a diagonal gradient, meaning that it progresses from

the upper left corner to the lower right corner. pCaller refers to the object

Swell Software, LLC Miscellaneous 393

394 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

that called this function. The region defined by Rect is the screen

coordinates that the gradient will draw into. Also, Rect is used to determine

the length of the gradient. If Linear is TRUE, the gradient will use a linear

progression. Otherwise, it will progress along a cosine curve. If Reverse is

TRUE, the gradient is essentially drawn from lower right to upper left
instead of upper left to lower right.

void DrawVertGradient(PegThing *pCaller, PegRect Rect,

PEGBOOL Linear = TRUE, PEGBOOL Reverse = FALSE)

This function draws a vertical gradient, meaning that it progresses from top
to bottom. pCaller refers to the object that called this function. The region

defined by Rect is the screen coordinates that the gradient will draw into.

Also, the height of Rect is used to determine the length of the gradient. If

Linear is TRUE, the gradient will use a linear progression. Otherwise, it will

progress along a cosine curve. If Reverse is TRUE, the gradient is

essentially drawn from bottom to top instead of top to bottom.

PEGCOLOR Get(PEGINT Index)

This function retrieves a particular color value from the progression of

generated colors. Index is used to determine where in the progression to

retrieve the color. Index should not exceed the length of the gradient.

PegBitmap *GetHorizGradient(PegThing *pCaller, PEGINT
Width, PEGINT Height, PEGBOOL Linear = TRUE)

This function draws a horizontal gradient into a bitmap, meaning that it
progresses from left to right. pCaller refers to the object that called this

function. Width and Height define the dimensions of the bitmap that will be

generated. Also, Width is used to determine the length of the gradient. If

Linear is TRUE, the gradient will use a linear progression. Otherwise, it will

progress along a cosine curve.

PegBitmap *GetLLtoURGradient(PegThing *pCaller,
PEGINT Width, PEGINT Height, PEGBOOL Linear =
TRUE)

This function draws a diagonal gradient from the lower left corner to the
upper right corner into a bitmap. pCaller refers to the object that called this

function. Width and Height define the dimensions of the bitmap that will be

generated. They also are used to determine the length of the gradient. If
Linear is TRUE, the gradient will use a linear progression. Otherwise it will
progress along a cosine curve.

PegBitmap *GetRadialGradient(PegThing *pCaller,

PEGINT Width, PEGINT Height, PEGINT CenterX,

395 Swell Software, LLC Miscellaneous

PegGradient

PEGINT CenterY, PEGINT Radius, PEGBOOL Linear =
TRUE)

This function draws a radial gradient into a bitmap, meaning that it starts at
the point defined by CenterX and CenterY and progresses outward radially.

pCaller refers to the object that called this function. Width and Height

define the dimensions of the bitmap that will be generated. Radius serves

as the length of the gradient. If Linear is TRUE, the gradient will use a

linear progression. Otherwise, it will progress along a cosine curve.

PegBitmap *GetULtoLRGradient(PegThing *pCaller,
PEGINT Width, PEGINT Height, PEGBOOL Linear =
TRUE)

This function draws a diagonal gradient from the upper left corner to the

lower right corner into a bitmap. pCaller refers to the object that called this

function. Width and Height define the dimensions of the bitmap that will be

generated. They are also used to determine the length of the gradient. If
Linear is TRUE, the gradient will use a linear progression. Otherwise, it will

progress along a cosine curve.

PegBitmap *GetVertGradient(PegThing *pCaller, PEGINT
Width, PEGINT Height, PEGBOOL Linear = TRUE)

This function draws a vertical gradient into a bitmap, meaning that it
progresses from top to bottom. pCaller refers to the object that called this

function. Width and Height define the dimensions of the bitmap that will be

generated. Also, Height is used to determine the length of the gradient. If

Linear is TRUE, the gradient will use a linear progression. Otherwise, it will

progress along a cosine curve.

void Set(PEGINT Len, PEGCOLOR First, PEGCOLOR Last)

This function is used to generate all of the colors for the gradient segment

between First and Last. It is typically not necessary to call this from the
application code, but rather to call the other version of Set, or one of the
DrawXXXGradient or GetXXXGradient APIs.

void Set(PEGINT Len)

This function is used to generate all of the colors for the gradient and store
them in an internal array. The direction of the gradient is not relevant here
because this function is only concerned with calculating the necessary
colors, rather than determining where to draw them. If one of the

DrawXXXGradient or GetXXXGradient APIs is going to be used, then the

application does not need to call this. This is only needed if the application

intends to use the Get() function to draw the gradient manually.

396 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

7.7.3 Examples

This example demonstrates how to make a gradient-filled button. The

gradient will start with dark gray, then move to light gray, and then end with

black. When the user presses on the button a different gradient will be

used.

Note that this example creates the gradients as PegBitmaps in the
constructor of the button and stores them in member variables. Then the

Draw() function only needs to draw those bitmaps. This is an efficient way

to do this because the gradients are only calculated once. A more
complicated example would be required if the buttons needed to be
resizeable after they were constructed. In that case, the gradient would
need to be recalculated to fit the new dimensions.

MyButton::MyButton(PegRect Rect, PEGUSHORT Id,

PEGULONG Style)

: PegButton(Rect, PEG_NULL_STRING, Id, Style)

{

PegGradient grad;

grad.AddColor(CLR_DARKGRAY, 0);

grad.AddColor(CLR_LIGHTGRAY, 0x7f);

grad.AddColor(CLR_BLACK, 0xff);

mpBitmap = grad.GetVertGradient(this, mClient.Width(),

mClient.Height(), FALSE);

grad.ClearColors();

grad.AddColor(CLR_LIGHTGRAY, 0);

grad.AddColor(CLR_DARKGRAY, 0x7f);

grad.AddColor(CLR_WHITE, 0xff);

mpSelectedBitmap = grad.GetVertGradient(this,

mClient.Width(), mClient.Height(), FALSE);

}

void MyButton::Draw(const PegRect &Invalid)

{

BeginDraw(Invalid);

PegButton::Draw(Invali

d);

PegPoint p;

p.Set(mClient.Left, mClient.Top);

397 Swell Software, LLC Miscellaneous

PegGradient

if (mStyle & BF_PUSHED)

{

Bitmap(p, mpSelectedBitmap);

}

else

{

Bitmap(p, mpBitmap);

}

EndDraw();

}

398 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

7.8 PegMenuDescription

PegMenuDescption is a structure used to define PegMenuButton objects.

Arrays of PegMenuDescriptions are used to define any number of nested

menus and submenus. PegMenuDescription arrays are terminated with an

entry filled with 0 or NULL values.

The PegMenuDescription structure is defined as:

struct PegMenuDescription

{

const PEGCHAR *pText;

PEGUSHORT Id;

PEGULONG Style;

PegMenuDescription *pSubMenu;

};

7.8.1 See Also

PegMenu

PegMenuButton

PegMenuBar

399 Swell Software, LLC Miscellaneous

7.9 PegMessage

PegMessage

PegMessage is a data structure used to send and receive messages.
PegMessageQueue is the coordinator of message transports in your PEG

application.

The PegMessage structure is defined as:

struct PegMessage

{

public:

PegMessage(

)

{

pNext = NULL;

pTarget = NULL;

pSource = NULL;

}

PegMessage(PEGUSHORT Val)

{

pNext = NULL;

pTarget = NULL;

pSource = NULL;

Type = Val;

}

PegMessage(PegThing *pTo, PEGUSHORT Val)

{

pNext = NULL;

pTarget = pTo;

pSource = NULL;

Type = Val;

}

PegThing *pSource;

PegThing *pTarget;

PEGUSHORT Type;

PEGUSHORT Param;

union

{

400 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

PegRect Rect;

PegPoint Point;

PEGLONG ExtParams[2];

void *pData;

PEGLONG UserLong[2];

PEGULONG UserULONG[2];

PEGSHORT UserShoft[4];

PEGUSHORT UserUShoft[4];

PEGUBYTE UserUByte[8];

};

private:

PegMessage *pNext;

};

For system messages, the message data fields are predefined. For user

defined messages, all fields except Type and pTarget are available for

user definition and can be used to send application-defined data values.

401 Swell Software, LLC Miscellaneous

7.10 PegPoint

The PegPoint structure contains a single pixel address.

The PegPoint structure is defined as:

struct PegPoint

{

PegPoint

PEGSHORT x;

PEGSHORT y;

PEGBOOL operator != (const PegPoint &InPoint)const

PEGBOOL operator == (const PegPoint &InPoint)const

PegPoint operator +(const PegPoint &Point)const

void Set(PEGINT InX, PEGINT InY);

};

402 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

7.11 PegRect

The PegRect structure contains a rectangular screen dimension along with
a large number of operators, making it convenient to manipulate

rectangular areas of the display screen.

The PegRect structure is defined as:

struct PegRect

{

void Set(PEGINT x1, PEGINT y1, PEGINT x2, PEGINT y2)

void Set(PegPoint ul, PegPoint br) PEGBOOL

Contains(PegPoint Test) const; PEGBOOL

Contains(PEGINT x, PEGINT y) const; PEGBOOL

Contains(const PegRect &Rect) const; PEGBOOL

Overlap(const PegRect &Rect) const; void

MoveTo(PEGINT x, PEGINT y);

void Shift(PEGINT xShift, PEGINT yShift);

PegRect operator &=(const PegRect &Other);

PegRect operator |=(const PegRect &Other);

PegRect operator &(const PegRect &Rect) const;

PegRect operator ^=(const PegRect &Rect);

PegRect operator +(const PegPoint &Point) const;

PegRect operator ++(int);

PegRect operator +=(int x);

PegRect operator --(int);

PegRect operator -=(int x);

PEGBOOL operator !=(const PegRect &Rect) const;

PEGBOOL operator ==(const PegRect &Rect) const;

PEGINT Width(void) const

PEGINT Height(void) const

PEGSHORT Left;

PEGSHORT Top;

PEGSHORT Right;

PEGSHORT Bottom;

};

403 Swell Software, LLC Miscellaneous

7.12 PegScrollInfo

PegScrollInfo

The PegScrollInfo structure is used to pass scrolling data to and from
PegHScroll and PegVScroll scroll bar classes.

The PegScrollInfo structure is defined as:

struct PegScrollInfo

{

PEGINT Min;

PEGINT Max;

PEGINT Current;

PEGINT Step;

PEGINT Visible;

};

404 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

7.13 PegTimer

The PegTimer structure contains information about an active PegTimer.
The PegTimer structure is private to PegTimerManager and is never

referenced directly by external software, however we document this

structure here for completeness.

The PegTimer structure is defined as:

struct PegTimer

{

PegTimer() {pNext = NULL; pTarget = NULL;}

PegTimer(PEGLONG Cnt, PEGLONG Res)

{

mpNext = NULL;

mpTarget = NULL;

Count = Cnt;

Reset = Reset;

}

PegTimer(PegTimer *pNext, PegThing *pWho, PEGUSHORT Id,

PEGLONG Cnt, PEGLONG Res)

{

mpNext = pNext;

mpTarget = pWho;

Count = Cnt;

Reset = Res;

TimerId = Id;

}

PegTimer *mpNext;

PegThing *mpTarget;

PEGLONG Count;

PEGLONG Reset;

PEGUSHORT TimerId;

};

405 Swell Software, LLC Miscellaneous

PegZip - PegUnzip

7.14 PegZip - PegUnzip

The PEG library optionally includes functions for compressing and

decompressing arbitrary data blocks. These functions can be used by your

application any time the compression or decompression of large data

objects is required. The most common use is to compress PegBitmap data,

and decompress the PegBitmap data only when required for display.

The compression/decompression algorithm used by these functions is the
LZ78 algorithm published by Jacob Ziv and Abraham Lempel,

‘Compression of Individual Sequences via Variable-Rate Coding, IEEE
Transactions on Information Theory’ (September 1978). This algorithm

is highly effective and is used, in a slightly modified form, in all popular ZIP

and GZIP utilities available as desktop applications. The implementation

leans heavily on the open-source software published by Mark Nelson and

Jean-Loup Gailly in the open source project known as ‘ZLIB.’ The original

software has been heavily modified to improve portability, readability, and
usage within the PEG software environment.

The PegZip compression function is included in the library if the

configuration flag PEG_ZIP is defined.

The PegUnzip decompression function is included in the library if the

configuration flag PEG_UNZIP is defined. Note that the run-time PNG

decoder module uses the PegUnzip methods; therefore, PegUnzip is
always required if run-time PNG file decoding is utilized.

The operation of the PegZip function is straightforward. The application

program passes to the PegZip function a pointer to the data block to

compress and the size of the data block. The compressed data pointer and

size are returned in variables passed by address to the PegZip function.

The PegUnzip function can operate in two modes. The most efficient mode

requires that the application program has preknowledge of the

uncompressed data size. In this case, the application program allocates a

buffer for storing the uncompressed data and passes this buffer address

and size to the PegUnzip function. In this mode, the PegUnzip function is
completed in one step, returning the uncompressed data.

A second, less efficient mode allows the caller to pass a NULL buffer
pointer and zero (0) buffer size. In this mode, the PegUnzip function unzips

the compressed data but discards the output, returning only the

406 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

uncompressed data size to the caller. The caller must then allocate the

storage buffer to hold the uncompressed data and call PegUnzip a second

time to retrieve the output data. This mode is not efficient and is not

recommended.

In order to unzip compressed data in one operation, it is recommended that
the application program save the uncompressed data size in nonvolatile

memory so that decompression can occur with a single call to PegUnzip.

For example, if the compressed data is to be saved to a file, the application

program should save the original file size at the head of the output file. To

decompress the file, the application program can first read the
decompressed data size, then decompress the data in one operation.

The example program in the directory \peg\examples\zip demonstrates

both modes of compress/decompress operation.

The PegZip function prototype is:

PEGINT PegZip(PEGUBYTE **pDest, PEGULONG *pDestLen,

const PEGUBYTE *pSource, PEGULONG SourceLen);

The pDest parameter is the address of a pointer variable. The PegZip

function will allocate the compressed data output buffer automatically, and
return the address of this buffer in pDest. Your application will use this

pointer to save the compressed data.

The pDestLen parameter is the address of a PEGULONG variable. The

PegZip function will return the size of the compressed data buffer in this

variable upon successful completion.

The pSource parameter is a pointer to the buffer holding the data to be

compressed.

The SourceLen parameter is the size of the buffer to compress. This must

be passed by your application to the PegZip function.

The return value of PegZip is 0 if compression is successful. A negative
return value indicates that some error occurred during compression. The

most common error is PZIP_MEM_ERROR, which indicates that there wasn’t

enough heap space to perform the compression operation. The possible

error return codes are defined in the pzip.hpp header file.

407 Swell Software, LLC Miscellaneous

PegZip - PegUnzip

The PegZip operation requires a large amount of heap space. 48K Bytes of

heap data is required for data lookahead and tree structure maintenance, in

addition to the actual data output buffer. Normally, applications do not

require run-time compression, but instead only need to decompress

previously-compressed data files.

The PegUnzip function prototype is:

PEGINT PegUnzip(PEGUBYTE *pDest, PEGULONG *pDestLen,

const PEGUBYTE *pSource, PEGULONG SourceLen);

The pDest parameter is a pointer to the buffer allocated by your application

for storing the uncompressed data. You may pass NULL for pDest, in which
case the PegUnzip function discards the uncompressed data and returns
the required buffer size. If pDest is NULL, the variable pointed to by

pDestLen should also be 0.

The pDestLen parameter is the address of a variable holding the size of the

output buffer allocated by the caller. If this value is 0, the PegUnzip function
discards the uncompressed data but returns the size of the required output
buffer in this variable. This can be useful if the uncompressed data size is
not known by the application.

The pSource parameter is a pointer to the buffer holding the data to be

uncompressed.

The SourceLen parameter is the size of the buffer to decompress. This

must be passed by your application to the PegUnzip function.

The return value of PegUnzip is 0 if decompression is successful. A
negative return value indicates that some error occurred during

decompression. The most common error is PZIP_MEM_ERROR, which

indicates that not enough heap space was available to perform the

decompression operation. PZIP_BUF_ERROR indicates the output buffer

passed to PegUnzip is not large enough to hold the decompressed data. A

complete list of error return codes can be found in the pzip.hpp header file.

If decompression is successful, the pDestLen variable is updated to hold

the size of the decompressed data. If pDest is NULL, the output is
discarded; otherwise, the decompressed data is stored in the buffer
allocated by the caller at the pDest memory address.

408 PEG Pro API Reference Manual Swell Software, LLC

Miscellaneous

409 Swell Software, LLC Printer Classes

C H A P T E R 8

PRINTER CLASSES

PegPrinter

PCLPrinter

PEG Style Flags

PEG System Status Flags

PEG Signals

Viewports

How Scrolling Works

410 PEG Pro API Reference Manual Swell Software, LLC

Printer Classes

8.1 PegPrinter

8.1.1 Overview

PegPrinter is a virtual base class that supports printing in PEG.

Much like the screen drivers, the PegPrinter provides the framework

necessary for objects to draw themselves to a printer instead of to the

output display.

PegPrinter-derived classes provide the necessary functionality to do the

actual communications with a printer device to take the output from a
particular object and render a printed page. It is important to note that

printer output is not clipped to drawing areas in the same way that drawing

to a screen is clipped. Any object, even if it is not visible on the screen, is

allowed to produce output on a printed page. For this reason, it is often a

good idea to derive an object from PegThing that only does printing, and,
possibly, only certain types of printing (reports, charts, bitmaps, etc.). This

gives the application developer great control over the printed output,

because any object is allowed to draw anywhere on the page, not only

within its own rectangular region, as is the case when drawing to the

screen.

The PegPrinter API supports a document-centric model. Once a document

has been started, any number of pages may then be printed using the

same printer settings. The API also allows for multiple PEG objects to print
to the same page, if needed. This is implemented by causing a draw

operation to take place within the context of an offscreen bitmap. The

bitmap is of a size necessary to include all of the drawing based on the

selected width and height of the page as well as the resolution, or dots per

inch. Obviously, this can lead to very large off screen bitmaps if a large
page at high resolution is selected. The size of this bitmap is also affected

by the color depth of the screen driver in use.

For example, if your target system is running in monochrome and you are

printing to letter-sized paper at 100 dots per inch, the size of the bitmap

needed to hold an entire page would be 109,438 bytes, or just under

107 KB. On the other hand, if your target system is running in 16 bit per
pixel color and on the same size paper you are printing at 300 dots per

inch, the bitmap would be 1.581e+07 bytes, or 15.439 MB. So, it is

important to take these factors into consideration when designing printer

output.

411 Swell Software, LLC Printer Classes

PegPrinter

Printing is begun by calling the Screen()->BeginPrint function. It is

important that this method be called before any reference to the printer
object is performed by application code. Until this method is called and

returns successfully, the static PegThing::Printer method will return a

NULL pointer. Once this is done, the printer may then be configured and
documents may be printed. When printing has completed, the application

code must call Screen()->EndPrint to inform the screen driver that output

will no longer be going to the printer, but to the screen. This effectively
destroys the printer object and, therefore, once this function is called, the
application code must not try to reference the printer object.

See the Examples section below for a code listing on the steps necessary

to properly print.

8.1.2 See Also

PCL Printer

PegScreen

8.1.3 Style Flags

None.

8.1.4 Signals

None.

8.1.5 Derivation

None.

8.1.6 Public Functions:

PegPrinter *CreatePegPrinter(void)

This function is called by the PegScreen object when the user calls the

screen's BeginPrint method. User application code should never need to

call this function directly. This function is filled in by the installed printer
driver to create an instance of the appropriate printer object.

412 PEG Pro API Reference Manual Swell Software, LLC

Printer Classes

8.1.7 Constructors:

PegPrinter(void)

The PegPrinter constructor creates the PegPrinter object and sets the

object's internal members to reasonable defaults.

8.1.8 Public Functions:

virtual PEGINT BeginDoc(const PegPrintSetup

*pSetup = NULL)

This function begins a new document. A document is defined as a print job
where all of the pages print with the same printer settings. This function

must be called before any other printer functions are called.

Optionally, a PegPrintSetup structure may be passed to this method. If the

printer's Setup method was previously called, then the parameters used in

that call will be used for the document.

The method returns either PPRINT_ERR_SUCCESS or PPRINT_ERR_ERROR. If

an error is returned, you should check the value of the error member of the

printer by calling GetError.

See the explanation for the Setup method for details on using the
PegPrintSetup structure.

virtual PEGINT BeginPage(void)

This begins a new page in the document. BeginDoc must be called before

this, or this call will fail.

virtual PEGINT Cancel(void)

Cancels the current print job.

virtual PEGINT EndDoc(void)

Complimentary to the BeginDoc call. This ends the current document.

virtual PEGINT EndPage(void)

Ends the current page. This is complimentary to BeginPage.

413 Swell Software, LLC Printer Classes

virtual PEGINT GetColorMode(void) const

PegPrinter

Returns the color mode in use by the printer object. This can be one of the
following:

• PPRINT_MODE_MONOCHROME

• PPRINT_MODE_GRAYSCALE

• PPRINT_MODE_COLOR_SIMPLE

• PPRINT_MODE_COLOR

virtual PEGINT GetError(void) const

The PegPrinter keeps track of errors that it has encountered when dealing

with the actual printer device. The most recent error code may be retrieved
using this method. The following is a list of error codes.

• PPRINT_ERR_ERROR - General error value returned in method calls

• PPRINT_ERR_SUCCESS - Successful method call

• PPRINT_ERR_SETUP - A setup item is invalid

• PPRINT_ERR_UNSUPPORTED - Unsupported capability of the printer driver

• PPRINT_ERR_RES - Selected resolution is unsupported by the printer

• PPRINT_ERR_COLOR_MODE - selected color mode is unsupported by the
printer

• PPRINT_ERR_ORIENT - Selected paper orientation is unsupported by the
printer

• PPRINT_ERR_PAPER_SIZE - Selected paper size is unsupported by the
printer

• PPRINT_ERR_WIDTH - Selected width is too big based on the selected
paper size and resolution

• PPRINT_ERR_HEIGHT - Selected height is too big based on the selected
paper size and resolution

• PPRINT_ERR_COMM_INIT - Could not open the printer device

• PPRINT_ERR_COMM_DATA - Could not send data to the printer device

• PPRINT_ERR_ALLOC - Could not allocate the temporary bitmap used for
drawing

• PEGUBYTE PPRINT_ERR_DRIVER - The printer driver is invalid

• PPRINT_ERR_NO_DOC - There is no current document started

• PPRINT_ERR_NO_PAGE - There is no current page started

• PPRINT_ERR_CUR_DOC - There is already a document active

• PPRINT_ERR_CUR_PAGE - There is already a page active

• PPRINT_ERR_NO_PRINTER - The printer could not be open

414 PEG Pro API Reference Manual Swell Software, LLC

Printer Classes

• PPRINT_ERR_NO_CONTEXT - There is no valid printer context

• PPRINT_ERR_SUSPENDED - Printing has been suspended

• PPRINT_ERR_NONE - No current error

virtual PEGINT GetOrientation(void) const

Returns the orientation in use by the printer driver. The return value may be

one of the following:

• PPRINT_ORIENT_LANDSCAPE

• PPRINT_ORIENT_PORTRAIT

virtual PEGINT GetPaperSize(void) const

Returns a constant that denotes the paper size currently in use. Currently,

the following paper sizes are supported:

• PPRINT_PS_LETTER

• PPRINT_PS_LEGAL_LIST_1

• PPRINT_PS_LEDGER

• PPRINT_PS_EXECUTIVE

• PPRINT_PS_A4

• PPRINT_PS_A3

• PPRINT_PS_COM_10

• PPRINT_PS_MONARCH

• PPRINT_PS_C5

• PPRINT_PS_B5

• PPRINT_PS_DL

By default, the printer driver will use the paper size that is in the default tray

of the printer. Internally, the paper size is used to calculate the printable

area of the page.

virtual PegRect GetPrintRect(void) const

This method returns the rectangle used for the printed image boundaries. If

a paper size has not been selected, or if there is not an active document,
the rectangle will have all of its coordinate members set to -1.

virtual PEGINT GetResolution(void) const

Returns the resolution currently in use by the driver. The return value may

be one of the following:

415 Swell Software, LLC Printer Classes

• PPRINT_RES_75 - 75 dpi

• PPRINT_RES_100 - 100 dpi

• PPRINT_RES_150 - 150 dpi

• PPRINT_RES_300 - 300 dpi

• PPRINT_RES_600 - 600 dpi

PegPrinter

It is important to note that not all printers support all of these resolutions.

Some types of printers—thermal bar code printers, for example—only

support one resolution that is hard wired in the device. But most types of

desktop-type printers support a resolution of 300 dots per inch.

virtual PEGBOOL IsOpen(void) const

Returns TRUE if the printer device was successfully opened and the printer

driver is able to communicate with the printer. Otherwise, it returns FALSE.

virtual PEGINT Reset(void)

Clears the setup and resets the printer.

virtual PEGINT Resume(void)

This function works in tandem with Suspend to toggle sending draw output

to the printer or to the screen.

virtual PEGINT SetColorMode(PEGINT ColorMode)

This method sets the color mode used to print a subsequent document.
Upon success, PPRINT_ERR_SUCCESS is returned. If there is a document

currently active, PPRINT_ERR_ERROR will be returned and the internal error

flag will be set to PPRINT_ERR_CUR_DOC.

See GetColorMode for a list of valid color modes.

virtual PEGINT SetOrientation(PEGINT

Orientation)

This method sets the orientation used to printing a subsequent document.
Upon success, PPRINT_ERR_SUCCESS is returned. If there is a document

currently active, PPRINT_ERR_ERROR will be returned and the internal error

flag will be set to PPRINT_ERR_CUR_DOC.

See GetOrientation for a list of valid orientation codes.

416 PEG Pro API Reference Manual Swell Software, LLC

Printer Classes

PEGINT SetPaperSize(PEGINT PaperSize)

This method sets the paper size used to print a subsequent document.
Upon success, PPRINT_ERR_SUCCESS is returned. If there is a document

currently active, PPRINT_ERR_ERROR will be returned and the internal error

flag will be set to PPRINT_ERR_CUR_DOC.

See GetPaperSize for a list of valid paper sizes.

virtual PEGINT SetResolution(PEGINT Resolution)

This method sets the paper size used to print a subsequent document.
Upon success, PPRINT_ERR_SUCCESS is returned. If there is a document

currently active, PPRINT_ERR_ERROR will be returned and the internal error

flag will be set to PPRINT_ERR_CUR_DOC.

See GetResolution for a list of valid resolution codes.

PEGINT Setup(const PegPrintSetup *pSetup)

Before any pages of a document are printed, the document first has to be

set up. There are two ways of doing this, and both involve filling in a

PegPrintSetup structure that details how the driver configures the printer.

The PegPrintSetup structure is defined as follows:

struct PegPrintSetup

{

PEGINT ColorMode;

PEGINT Orient;

PEGINT Res;

PEGINT PaperSize;

PEGINT Width;

PEGINT Height;

PegPrintSetup(void)

{

ColorMode = PPRINT_MODE_MONOCHROME;

Orient = PPRINT_ORIENT_PORTRAIT;

Res = PPRINT_RES_75;

PaperSize = PPRINT_PS_LETTER;

Width = PPRINT_DEF_WIDTH;

Height = PPRINT_DEF_HEIGHT;

}

417 Swell Software, LLC Printer Classes

PegPrinter

};

The structure has a default constructor that sets the structure members to

reasonable defaults that would typically be supported by any printer.

The Width and Height members are set to PPRINT_DEF_WIDTH and

PPRINT_DEF_HEIGHT, respectively. These defines instruct the driver to

create a printing surface the maximum width and height supported as
indicated by the size of the paper in use. The driver version of this method
calculates these values and enforces the valid minimum and maximum
values.

The remaining members may be set to any value as described above for

their respective indicators.

This method may be optionally bypassed if a PegPrintSetup structure is

passed to the BeginDoc method. The Setup function will return an error if

there is already a document in progress.

virtual PEGINT Suspend(void)

This function allows the suspension of drawing output to the printer and

redirects all drawing output back to the screen. This function does not

actually suspend the printing of the current page in the printer.

A useful example of this method is updating a status bar that shows the
current print job progress. Using this method, the first page may be printed
and printing then suspended. While printing is suspended, the screen may
then be updated, informing the user that page one has completed and page

two is being readied. At that point, the Resume may be called to resume

printing.

8.1.9 Protected Members:

virtual void BitmapToPrinter(void)

This pure virtual function should be overridden in the printer driver class to

write the raster bitmap out to the printer.

virtual void ClearBitmap(COLORVAL FillColor =

TRANSPARENCY)

This function fills the raster bitmap with a solid color. By default, this fills the

bitmap with the TRANSPARENCY color.

Printer Classes

virtual void CloseDevice(void)

This function closes the printer device.

virtual PEGBOOL OpenDevice(void)

This function attempts to open the printer device. If it succeeds, it returns
TRUE. Otherwise, it returns FALSE.

virtual void SendData(const void *pData, PEGUINT

DataLen)

This function sends the raster data to the printer.

8.1.10 Examples:

The following is a code listing that details the steps necessary to properly

direct drawing output to a printer. It is analogous to drawing into an off-

screen bitmap, so the interface should be familiar.

The example below shows the printing of two separate documents, each
having any number of pages. Note that the first document is printed in

monochrome and the second in simple color.

void MyThing::PrintReport(void)

{

PEGINT ret;

PegPrintSetup setup;

// the setup structure has a default constructor which

// places the minimally supported values in the data

// members, so all we really need to change for

// the first document is the resolution, or dots per
inch.

setup.Res = PPRINT_RES_150;

// tell the screen driver that we are now directing all

// drawing operations to the printer.

Screen()->BeginPrint();

// here we are telling the printer driver how we wish to

// setup the printer.

ret = Printer()->Setup(&setup);

// this will tell the printer driver to start a new

418 PEG Pro API Reference Manual Swell Software, LLC

419 Swell Software, LLC Printer Classes

PegPrinter

// document based on the settings in setup

ret = Printer()->BeginDoc();

// in normal operation, you would want to check the

// value of ret for PPRINT_ERR_ERROR or
PPRINT_ERR_SUCCESS.

// If you receive the former value, then you may wish

// to call Printer()->GetError() to receive the error

// code that caused the problem. In the remainder of

// this example, we will bypass this since it obfuscates

// the portions of the code that focus on using

// the printer object.

// start the first page

ret = Printer()->BeginPage();

// call some functions that print a header and a report

// on the first page.

PrintHeader();

PrintPage1();

// end the page. This will also eject the paper from the

// printer.

ret = Printer()->EndPage();

// now, in the same document, print another page.

ret = Printer()->BeginPage();

PrintHeader();

PrintPage2();

// end the second page.

ret = Printer()->EndPage();

// end the first document

ret = Printer()->EndDoc();

// change the setup to print in simple color and at

// a resolution of 300 dots per inch.

setup.Res = PPRINT_RES_300;

setup.ColorMode = PPRINT_MODE_SIMPLE_COLOR;

// this time, we are passing the setup structure in the

// call to BeginDoc.

420 PEG Pro API Reference Manual Swell Software, LLC

Printer Classes

ret = Printer()->BeginDoc(&setup);

ret = Printer()->BeginPage();

PrintBitmapChart();

ret = Printer()->EndPage();

// now, print a copy of this object as it appears on

// the screen. This is how to do a screen dump of

// a PEG object.

ret = Printer()->BeginPage();

Invalidate(mReal);

Draw();

ret = Printer()->EndPage();

ret = Printer()->EndDoc();

// Now that we have completed printing, tell the screen

// the we will now be drawing to the screen

Screen()->EndPrint();

}

The printer object is very flexible in what type of output can be produced.
Basically, any type of drawing that you could normally do into a bitmap, you

can do into a printer. This allows you to create any type of output.

421 Swell Software, LLC Printer Classes

8.2 PCLPrinter

PCLPrinter

8.2.1 Overview

The PCLPrinter class is a printer driver for printers that support the Hewlett-

Packard (HP) Printer Control Language (PCL) level 3 or above. Most

modern HP LaserJet and InkJet printers, including HP Photo printers,
support this language. If you are in doubt regarding a specific printer, please

consult the printer specifications that came with your printer or on HP's

website.

This class is a straight derivation of the PegPrinter class and does not

implement any new public functions.

8.2.2 See Also

PegPrinter

8.2.3 Style Flags

None.

8.2.4 Signals

None.

8.2.5 Derivation

PegPrinter

8.2.6 Constructors:

PCLPrinter(void)

The constructor creates an instance of a PCLPrinter object. This function

should not be called directly by the application code. Application code

should always call the PegScreen::BeginPrint method to begin printing.

http://www.hp.com/

422 PEG Pro API Reference Manual Swell Software, LLC

Printer Classes

8.2.7 Public Functions:

virtual PEGINT BeginDoc(const PegPrintSetup
*pSetup = NULL)

PCLPrinter overrides the PegPrinter::BeginDoc function to send the
appropriate control commands to the printer. If pSetup is NULL, then it uses
the existing setup to start a new document.

virtual PEGINT BeginPage(void)

PCLPrinter overrides the PegPrinter::BeginPage function to send the

appropriate control commands to the printer to start a new page.

virtual PEGINT Cancel(void)

PCLPrinter overrides the PegPrinter::Cancel function but it is not

currently implemented.

virtual PEGINT EndDoc(void)

PCLPrinter overrides the PegPrinter::EndDoc function to end the current

document. It also resets the printer and sends the appropriate exit codes.

virtual PEGINT EndPage(void)

PCLPrinter overrides the PegPrinter::EndPage function to end the current

page. It informs the printer that the page is done and instructs the printer to

eject the current page.

virtual PEGINT Reset(void)

PCLPrinter overrides the PegPrinter::Reset function but it is not currently

implemented.

virtual PEGINT Setup(const PegPrintSetup

*pSetup)

PCLPrinter overrides the PegPrinter::Setup function to set up the printer

control parameters based on pSetup.

8.2.8 Protected Members:

virtual void BitmapToPrinter(void)

PCLPrinter overrides the PegPrinter::BitmapToPrinter function to send

the raster data to the printer.

426 PEG Pro API Reference Manual Swell Software, LLC

PEG Style Flags

8.3 PEG Style Flags

8.3.1 Overview

The PEG style flags are used to control the default appearance and

operation of many PEG classes. The style flags can be logically OR’ed

together to create the style parameter passed to an object constructor. The

style of an object can also be updated using the PegThing member function

SetStyle().

8.3.2 Frame styles:

FF_NONE
FF_THIN
FF_RAISED
FF_RECESSED
FF_THICK
FF_MASK

8.3.3 Text Justification Style:

TJ_RIGHT
TJ_LEFT
TJ_CENTER
TJ_MASK

8.3.4 Title Style:

TF_NONE
TF_SYSBUTTON
TF_MINMAXBUTTON
TF_CLOSEBUTTON

8.3.5 Text Thing Style

TT_COPY

426 PEG Pro API Reference Manual Swell Software, LLC

8.3.6 Button Style:

BF_REPEAT
BF_PUSHED
BF_DOWNACTION
BF_TOGGLE
BF_EXCLUSIVE
BF_FLYOVER

8.3.7 Menu Button Style:

BF_SEPARATOR
BF_CHECKABLE
BF_CHECKED
BF_DOTABLE
BF_DOTTED

8.3.8 Decorated Button Style:

BF_ORIENT_TR
BF_ORIENT_BR

8.3.9 List Style:

LS_WRAP_SELECT

8.3.10 Edit Style:

EF_EDIT
EF_PARTIALROW
EF_WRAP
EF_FULL_SELECT

8.3.11 Message Window Style:

MW_OK
MW_YES
MW_NO
MW_ABORT
MW_RETRY
MW_CANCEL

426 PEG Pro API Reference Manual Swell Software, LLC

8.3.12 Table Style:

TS_SOLID_FILL
TS_PARTIAL_COL
TS_PARTIAL_ROW
TS_DRAW_HORZ_GRID
TS_DRAW_VERT_GRID
TS_DRAW_GRID

8.3.13 Table Cell Style:

TCF_FORCEFIT
TCF_HCENTER
TCF_HLEFT
TCF_HRIGHT
TCF_VCENTER
TCF_VTOP
TCF_VBOTTOM

8.3.14 Spreadsheet Style:

SS_CELL_SELECT
SS_PARTIAL_COL
SS_MULTI_ROW_SELECT
SS_MULTI_COL_SELECT

8.3.15 Spreadsheet Column Style:

SCF_ALLOW_SELECT
SCF_SELECTED
SCF_SEPARATOR
SCF_CELL_SELECT

8.3.16 Spreadsheet Row Style:

SRF_ALLOW_SELECT
SRF_SELECTED
SRF_SEPARATOR
SRF_CELL_SELECT

8.3.17 Notebook Style:

NS_TOPTABS
NS_BOTTOMTABS
NS_TEXTTABS

426 PEG Pro API Reference Manual Swell Software, LLC

8.3.18 Slider Style:

SF_SNAP
SF_SCALE
SS_FACELEFT
SS_FACETOP
SS_BOTTOMTOTOP
SS_LEFTTORIGHT
SS_ORIENTVERT
SS_TICMARKS
SS_USERTRACK
SS_USERTRAVEL
SS_THINNEEDLE
SS_THICKNEEDLE
SS_POLYNEEDLE
SS_FACERIGHT
SS_FACEBOTTOM

8.3.19 Spin Button Style:

SB_VERTICAL

8.3.20 Scroll Prompt Style:

SP_ONFOCUS
SP_ALWAYS
SP_CONTINUOUS
SP_DOTDOT
SP_WRAP
SP_ON_MASK
SP_MASK

8.3.21 Miscellaneous Appearance Style:

AF_SIZEABLE
AF_MOVEABLE
AF_DRAW_SELECTED
AF_TRANSPARENT
AF_ENABLED

426 PEG Pro API Reference Manual Swell Software, LLC

8.3.22 Dial Style:

If PEG_HMI_GADGETS has been defined, then these styles are available.

DS_CLOCKWISE
DS_TICMARKS
DS_THINNEEDLE
DS_THICKNEEDL
DS_POLYNEEDLE
DS_RECTCOR
DS_USERCOR

DS_STANDARDSTYLE = DS_THINNEEDLE|DS_RECTCOR|DS_TICMARKS| DS_CLOCKWISE

8.3.23 Chart Style:

if PEG_CHARTING has been defined, then the styles below are available.

CS_DRAWXGRID
CS_DRAWYGRID
CS_DRAWXTICS
CS_DRAWYTICS
CS_AUTOSIZE
CS_SCROLLED
CS_PAGED
CS_DRAWXAXIS
CS_DRAWAGED
CS_DRAWLEADER
CS_DUALYTICS
CS_DUALYLABELS
CS_XAXISONZEROY
CS_DRAWLINEFILL
CS_DRAWXLABELS
CS_DRAWYLABELS

428 PEG Pro API Reference Manual Swell Software, LLC

Printer Classes

8.4 PEG System Status Flags

PSF_ACCEPTS_FOCUS This flag indicates that the object will become the

receiver of input events when selected. The
application level software can modify this flag, but
normally this is not advised. If this flag is modified
for a particular object, it is important for correct
operation that ‘breaks’ in the tree of objects
accepting focus are avoided. In other words, if a
parent window cannot accept focus, then neither
should any of the window’s child objects be
allowed to accept focus.

PSF_ALWAYS_ON_TOP This flag ensures that the object is always on top
of its siblings. The application level software can
modify this flag.

PSF_BUTTON_DERIVED This flag indicates that the object is either a
PegButton or derived from a PegButton. It is
added to objects in the PegButton constructor and
should not need to be modified by application
code.

PSF_CONTINUOUS_SCROLL This flag is used on objects that use a scroll bar. If
it is turned on, the user will be able to watch the
contents of the window scroll up or down as he or
she drags the scroll bar’s elevator button. If it is
turned off, then the user only sees the window
move when the elevator button is released. The
application level software can modify this flag.

PSF_CURRENT This flag indicates that the object is in the current
branch of the display tree. If the object is a leaf
object (i.e. it has no children) and it is current, then
it is the object that will receive keyboard input
messages.

PSF_KEEPS_CHILD_FOCUS This flag indicates that when the object gets focus,
it does not attempt to give focus to any of its child
objects. This is for objects like the PegList that
internally maintain which child object should be
focused.

PSF_DEFAULT_FOCUS This flag is given to objects when they receive the
PM_CURRENT message indicating that they have
focus. They only lose this flag when a different
sibling object receives focus. This is used to
maintain which object had focus last, even if the
parent object loses focus.

429 Swell Software, LLC Printer Classes

PEG System Status Flags

PSF_HIDDEN This flag indicates that the object has been added

to a parent object, yet it is not currently displayed
on the screen. This should not be modified by the
application.

PSF_MOVEABLE This flag determines whether or not an object can
be moved. The application-level software can
modify this flag.

PSF_NONCLIENT This flag, when set, allows a child object to draw
outside the client area of its parent. The
application-level software can modify this flag after
the object is constructed but before the object is
displayed.

PSF_OWNS_POINTER This flag indicates that the object has captured the
pointer, meaning all mouse or touch events will be
sent to this object, even if they aren’t located
within its mReal. Application software should not

modify this directly, but call the CapturePointer
and ReleasePointer functions instead.

PSF_SELECTABLE This flag is tested by PegPresentationManager to
determine if an object is enabled and allowed to
receive input messages. The application level
software can modify this flag.

PSF_SIZEABLE This flag determines whether or not an object can
be resized. The application level software can
modify this flag.

PSF_TAB_STOP This flag determines whether or not an object
receives input focus when the 'tab' key is received.
This flag is enabled by default for PegButton
objects. Also enabled for editable PegEditField
and PegTextBox objects. Enabled for PegPrompt
objects that can receive focus. The application
software can modify this flag.

PSF_VIEWPORT This flag, when set, instructs
PegPresentationManager that the object should
be given a private screen viewport. Objects that
have a viewport are drawn differently than objects
that do not have a viewport. In general, large
objects or objects that have a very complex
drawing routine should be given viewports, while
small or simple objects should not. By default, all
PegWindow derived objects receive viewports,
and all other objects do not. This flag should not
be changed except immediately after the object is
constructed.

430 PEG Pro API Reference Manual Swell Software, LLC

Printer Classes

PSF_VISIBLE The object is visible on the screen. This flag

should not be modified by the application-level
software. Clearing or setting this flag will not have
the effect of removing or displaying the object. The
PegThing member functions Add and Remove are
used for that purpose.

PSF_WINDOW_DERIVED This flag indicates that the object is either a
PegWindow or derived from a PegWindow. It is
added to objects in the PegWindow constructor so
it should not need to be modified by application
code.

431 Swell Software, LLC Printer Classes

PEG Signal Definitions

8.5 PEG Signal Definitions

8.5.1 PEG Base Signals

PSF_SIZED Sent when the object is moved or sized.

PSF_FOCUS_RECEIVED Sent when the object receives input focus.

PSF_FOCUS_LOST Sent when the object loses input focus.

PSF_KEY_RECEIVED Sent when an input key that is not supported is
received.

PSF_CLICKED Default left-click notification.

PSF_RIGHTCLICK Sent when a right-click message is received by
the object.

8.5.2 PEG Button Signals

PSF_CHECK_ON Sent by check box and menu button when

checked.

PSF_CHECK_OFF Sent by check box and menu button when
unchecked.

PSF_DOT_ON Sent by radio button and menu button when
selected.

PSF_DOT_OFF Sent by radio button and menu button when
unselected.

PSF_LIST_SELECT Sent by PegList derived objects, and also
PegComboBox.

8.5.3 PEG Notebook Signals

PSF_PAGE_SELECT Sent when a new page is selected.

8.5.4 PEG Scroll Signals

PSF_SCROLL_CHANGE Sent by non-client PegScroll-derived objects.

432 PEG Pro API Reference Manual Swell Software, LLC

Printer Classes

PSF_SLIDER_CHANGE Sent by PegSlider-derived objects.

8.5.5 PEG Spin Signals

PSF_SPIN_MORE Sent by PegSpinButton on down or right.

PSF_SPIN_LESS Sent by PegSpinButton on up or left.

8.5.6 PEG Spreadsheet Signals

PSF_COL_SELECT Sent when PegSpreadSheet column(s) are

selected.

PSF_ROW_SELECT Sent when PegSpreadSheet row(s) are selected.

PSF_CELL_SELECT Sent when PegSpreadSheet cell(s) are selected.

PSF_COL_DESELECT Sent when a PegSpreadSheet column is
deselected.

PSF_ROW_DESELECT Sent when a PegSpreadSheet row is deselected.

8.5.7 PEG Text Signals

PSF_TEXT_SELECT Sent when the user selects all or a portion of a text
object.

PSF_TEXT_EDIT Sent each time a text object string is modified.

PSF_TEXT_EDITDONE Sent when a text object modification is complete.

PSF_SCROLL_COMPLETE Sent when a PegScrollPrompt has completed
scrolling in 1-shot mode.

8.5.8 PEG Tree Signals

PSF_NODE_SELECT Sent when a new node is selected.

PSF_NODE_DELETE Sent when delete key pressed over node.

PSF_NODE_OPEN Sent when node is opened.

PSF_NODE_CLOSE Sent when node is closed.

433 Swell Software, LLC Printer Classes

PEG Signal Definitions

PSF_NODE_RCLICK Sent when the user right-clicks on the selected
node.

434 PEG Pro API Reference Manual Swell Software, LLC

Printer Classes

8.6 Viewports

PEG uses the concept of viewports to improve drawing efficiency and to
allow background drawing operations to occur without overwriting

foreground graphics.

Viewports are rectangular areas of the screen owned by certain objects.

Each viewport has only one owner, while one object may own several
viewports. The diagram below should clarify this concept:

In the diagram above, a typical run-time screen is shown. The black area is

the screen background, covered by PegPresentationManager. The two

white areas are PEG windows, named WindowA and WindowB. WindowB

is on top and partially covering WindowA. In this diagram, the black

rectangles with solid green outlines depict the viewports owned by
PegPresentationManager. In this case, PresentationManager owns

viewports V1-V6. WindowA is divided into two viewports, V7 and V8.

Finally, WindowB is on top and has one viewport, V9.

PEG maintains the screen viewports, and you do not ordinarily have to

concern yourself with how they work. There is one exception, however, that

you may need to be aware of. Normally, only PegWindow-derived objects

have viewport status. That means that other smaller objects like PegButton

435 Swell Software, LLC Printer Classes

Viewports

and PegIcon do not own viewports and simply inherit the viewport(s) of their

parent window.

The viewport management algorithm employed by PEG does not allow
there to be breaks in the viewport tree. That is, an object that owns
viewports (i.e. a PegWindow-derived object) should only be added to

another object that owns viewports. This does not mean that you cannot
add PegWindow-derived objects to objects that are not derived from
PegWindow, because you can. However, when you do this you should set

the PSF_VIEWPORT status flag of the parent object to make it a viewport

owner.

An example should clarify this concept. Suppose you want to create a

simple object container class. This container class will simply serve as a

parent for a group of lists, windows, and other controls. This is a common
thing to do, as it allows you to add and remove the entire group of objects at

any time simply by adding or removing the container. Since the container
class does not need to actually draw anything, you decide to derive it from

PegThing, the most basic PEG class. Since at least some of the children of
the PegThing container are PegWindow-derived objects, you will need to

make the PegThing container class a viewport owner. If you don't do this,
the PegWindow-derived children of the container class won't show up on

the screen. You can make the PegThing container class a viewport owner

simply by adding the PSF_VIEWPORT system status in the container class

constructor:

AddStatus(PSF_VIEWPORT);

Now your container class will work correctly, and both PegWindow-derived

children and simple children will be displayed when the parent container

class is displayed.

8.6.1 How Scrolling Works

PegWindow provides the capability of adding scroll bars, and using those

scroll bars to pan or move the client area of the window. Scroll bars are

added by calling the SetScrollMode() member function of PegWindow.

The scroll bars added to the window make use of two virtual PegWindow

functions: GetHScrollInfo and GetVScrollInfo. When a scroll bar needs

to update itself, it calls these parent window member functions to learn the
scroll bar limit, current setting, and percentage visible data.

GetHScrollInfo() and GetVScrollInfo() receive a pointer to a

436 PEG Pro API Reference Manual Swell Software, LLC

Printer Classes

PegScrollInfo structure. It is the job of these functions to fill in the
PegScrollInfo Min, Max, Current, Step, and Visible values so that the

scroll bar is correctly positioned.

The PegWindow class provides default implementations of

GetHScrollInfo and GetVScrollInfo. These implementations examine

all client-area children of the window to determine the outer limits that the
scroll bars should allow scrolling to. This default implementation also uses
the window client area width and height as the scroll bar 'visible' value.

The default implementation works well in most cases, and makes it very

easy to create scrolling client areas. All you need to do is add a child

window to a scrolling parent that is much larger than the parent client area.

The default implementation will adjust the scroll bars such that the entire
child window can be viewed by moving the horizontal and/or vertical scroll

bars.

In some cases, the default operation does not provide the required function.

In these cases, you can override the GetHScrollInfo and

GetVScrollInfo functions to return custom scrolling information. For

example, suppose you want to create a continuous time plot of data values
with a horizontal scroll bar to move back and forth in the time period
displayed. In this case, you would create a derived PegWindow class in
order to draw the chart data in the window client area. You would also

provide a overridden version of the GetHScrollInfo function to make the

horizontal scrollbar reflect the accumulated time values. In this case, the
PegScrollInfo minimum value might be the starting time of data recording,
the maximum value would be the current time, and the visible amount
would be the time period visible in the window client area.

