
Portable Embedded GUI

Development Toolkit User’s Manual

Second Printing
October 2007

© Copyright 2005-2007
Swell Software, Inc. All rights reserved.

© Copyright 2005-2007

Swell Software, Inc.
3081 Commerce Dr.

Fort Gratiot, MI 48059
PH: (810) 385-2893

FAX: (810) 385-2947

info@swellsoftware.com

No part of the document may be reproduced in any form without
the express written consent of Swell Software, Inc.

All rights reserved.

PEG® is a registered trademark of Swell Software, Inc.
C/PEG & PEG+TM are trademarks of Swell Software, Inc.

CHAPTER 0TABLE OF CONTENTS
Forward .. iii
Introduction... v

What PEG IS .. vi
What PEG is NOT .. vii
Where PEG is going .. viii
Library Updates .. ix

Chapter 1
PEG FontCapture.. 1

Configuring Character Range.. 5
Multilingual Support and UNICODE 6

What is UNICODE? ... 6
PEG Character Encoding .. 7
Should You Use UNICODE?... 9
Defining Unicode Strings ... 10
Using Custom Fonts .. 11

Chapter 2
PEG ImageConvert ... 13

Overview.. 13
Input File.. 15
Output File ... 16
Compression ... 16
Palette Options .. 17
Output Format ... 20
Screen Rotation... 22
Transparency... 23
Output Colors .. 24
Batch Conversion .. 25
Implementation Notes.. 26

Chapter 3
PEG WindowBuilder™ ... 27

Overview.. 27
PEG WindowBuilder Project Files 27
Source Output Files... 28
Screen Layout ... 29

The Project Window... 30
Project Window Menu Commands 31

Working with Modules- The Source Page 37
Working with Images- The Images Page........................... 40
Working with Fonts- The Fonts Page 41

The Target Window ... 45
Swell Software, Inc. Table of Contents i

Table of Contents
Selecting Objects in the Target Window............................ 46
Target Window Menu Commands 46

The String Table Editor.. 52
Merging String Tables ... 57
Exporting the String Table ... 57

Source Code Generation ... 58
Pointer Name Control .. 59

Example 1: Creating a simple PegDialog window 61
Creating and Configuring a Project: 62
Editing the Module:.. 68
Saving Your Work:... 71
Examining the Source Code:... 72

Example 2: An advanced PegDialog window 72
Customizing PEG WindowBuilder 80

Step-by-Step.. 82
The SwellButton and SwellScale....................................... 86
Building wbuser.dll... 88

Appendix
PEG Directory Structure .. 89
ii PEG+ Development Toolkit Manual Swell Software, Inc.

CHAPTER 0FORWARD
We at Swell Software thank you for choosing PEG+!

The authors of PEG are first and foremost embedded systems
programmers like yourself. With extensive experience developing software
for closed-loop servo robotics, industrial control systems, measurement
and monitoring equipment, and consumer electronics, we most likely share
many common experiences with you. We believe this kinship will allow us
to anticipate your requirements and to provide you with the tools and
support you need as you develop your next product.

In addition to the PEG development package, Swell Software provides
consulting and contract programming services to clients in a wide diversity
of industries. These services range from one-day on-site evaluations and
tutorials to complete screen prototyping and development. We encourage
you to take advantage of these services as early as possible in your project
cycle. If you have purchased or are evaluating the PEG library, you can of
course contact us at any time via phone or email to answer your technical
questions.

PEG is currently being used in projects around the globe, yet PEG also
continues to grow and improve. Minor updates are often published every
few weeks as we incorporate suggestions and requests from PEG
users. We encourage you to provide us with feedback as you begin using
PEG in your application development. If you find something just isn’t
working for you, or we are missing something you feel is a requirement,
please do not hesitate to let us know. We will make every effort to satisfy
your request and provide you with an updated release in as short a time
frame as possible. We are committed to making your embedded
development effort an overwhelming success!

How are the manuals organized
The PEG+ Programming Manual is organized such that the manual
explains the configuration and build procedures you will need to know in
order to begin using the PEG library. This allows you to be up and running
and experimenting with the library very quickly.

The remainder of the Programming Manual provides an ‘under the hood’
view of PEG library internals and introduces basic concepts that are
needed to fully understand how PEG works. You will need to read and
Swell Software, Inc. Forward iii

Forward
understand this material before you begin serious development of your
application level software. This is followed by descriptions of the
fundamental PEG classes. These descriptions contain many working
examples that will prove valuable to you as you begin writing your own
system software.

The second manual, the PEG Development Toolkit User’s Manual,
describes our supporting cast of utility programs. These include PEG
FontCapture, PEG ImageConvert, and PEG WindowBuilder. The
appendices describe the PEG installation directories and the example
programs.

The third manual, PEG+ API Reference Manual provides extensive
information about the fundamental PEG classes. This manual details the
Application Programming Interface (API) of the PEG+ graphics library. It is
intended as a quick reference guide for developers which may already be
familiar with how PEG+ works and may need to review details on individual
functions. The Reference Manual is also provided in interactive PDF
format. We believe the PDF format class reference is more convenient to
use on a day to day basis than the printed manual. This approach also
works well in that as you read this manual you are not overloaded (no pun
intended!) with member function names and descriptions. Instead, we
encourage you to first concentrate on obtaining a high-level understanding
of how PEG works. Later, as you begin working on your system software,
you will probably want to keep the API Reference Manual open at all
times.

The Programming Manual and PEG Development Toolkit User’s Manual
are also provided in PDF format, and the PDF format often contains last
minute changes or additions that you will not find here. These additions will
be noted in the Release Notes. The online manuals are found at the
following address:

http://www.swellsoftware.com/download/documentation.php

Username and password are required to download the manuals.
iv PEG+ Development ToolKit Manual Swell Software, Inc.

CHAPTER 0INTRODUCTION
Historically speaking, graphical user interfaces have almost exclusively
been the domain of desktop personal computers. This has been the result
of two main factors: the cost of graphical display hardware and the lack of
GUI software suitable for use in real-time systems.

In the area of industrial control systems, there have been attempts at
providing graphical presentations, but these have been cumbersome at
best and terribly expensive as well. These types of systems have typically
avoided the use of mainstream video output devices, and opted instead for
very expensive and functionally limited industrial display terminals.

Today, this attitude has changed to the point where it is very common for an
embedded system to contain many of the very same hardware components
found in a desktop computer system. This makes sense strategically
because it allows the inventor of an embedded product to leverage the
sales volume and pricing of the components sold primarily for desktop
computer use. The result is that the cost of including graphical display
hardware in an embedded product has declined significantly over the past
few years. A wide variety of LCD display panels, VGA display panels,
video controller chips and high-performance CPUs capable of driving a
graphical interface are now available.

Unfortunately, the software side of the equation has not advanced nearly as
quickly. Until now there has been no graphical interface solution that is
small enough and portable enough for an embedded system while at the
same time providing a modern and professional appearance. There have
been previous attempts at meeting this need, but so far these attempts
have missed the mark.

The alternative solutions that provide a modern, full-featured interface have
all been derived from desktop computing environments, and carry along
with them years of acquired baggage. These solutions impose very high
hardware costs on your system, and even higher costs in terms of the man-
hours required to successfully integrate these large software packages with
your real-time software. This of course assumes you have the time and
expertise required to actually build a working system with one of these
products. We have seen more than one project descend into a never-
ending abyss of delays, technical setbacks, and finally failure caused by
trying to force-fit software that was not intended for real-time systems.
Swell Software, Inc. Introduction v

Introduction
We believe you deserve a better solution!

What PEG IS
PEG is an acronym for Portable Embedded GUI. We chose this name
because we believe it accurately reflects the design and motivation that
went into the creation of our development package.

PEG is Portable
We have designed our software to be portable to any target hardware that
is capable of graphical output. PEG does not expect or require any
underlying software components in order to do its job. If you have a C++
compiler and hardware capable of pixel-addressed graphical output, you
can run PEG.

PEG is Embedded
This statement is rather vague, because it means so many different things
to different people. The bottom line is that PEG is, and will always be,
targeted only at real-time embedded systems. This distinction is so
important that we felt it should be included in the name of our library.

PEG is GUI
The PEG class library provides the building blocks for a powerful and
extensible graphical user interface. Users of PEG will find that they can
create a graphical presentation rivaling anything on the market today.
Extensive thought and research have gone into the design of our product to
insure that you are receiving a library that is fully capable of supporting all
of the advanced GUI features you need today, while also accommodating
future enhancements. Advanced clipping techniques, font support, graphic
image support, and smart object methodologies are incorporated in our
library. We are confident that the internal design of the library is such that
PEG can grow and advance for years to come while building on the existing
foundation.

In addition to the class library itself, PEG provides all of the other tools,
documentation, and support you will need to construct a custom graphical
interface for your project. This includes utilities for generating graphical
fonts (PegFontCapture); processing, optimizing, and compressing
graphical images (PegImageConvert); and PegWindowBuilder, a RAD
prototyping tool for use with PEG. With the class library and related tools,
vi PEG+ Development ToolKit Manual Swell Software, Inc.

What PEG is NOT
PEG without question provides the most powerful, professional, and
complete GUI solution available to real-time embedded system developers.

What PEG is NOT
The large software companies are today providing software that is intended
to be a ‘one size fits all’ solution. This has led to some confusion among
many developers concerning what a GUI library should do, what it should
not do, and what components are required to build a working system. We
believe it is worthwhile addressing these questions up front to insure that
we are all working from the same starting point.

PEG is not an operating system. PEG provides no code for task switching,
memory management, resource management, or inter-task
communication. Contrary to popular belief, the desktop windowing
environments are not part of the operating system either. This should be
obvious from the fact the graphical environment can be significantly
updated without improving or otherwise changing the underlying OS. In
order to build a real-time multitasking system using PEG, you will also have
to incorporate an operating system kernel. PEG is already fully integrated
with most of the leading real-time operating systems available today. PEG
can easily be integrated with other operating systems as well, and PEG can
run standalone if multitasking is not required for your application.

PEG is not an application program. The PEG library, by itself, will provide
an end user with absolutely zero in terms of useful interaction or information
display. It is your job to create the windows, dialogs, and other objects that
will be used to retrieve input from and display information to the end
user. Of course, the whole point to using PEG is that our library provides
the tools and components that make creating your application level
interface a manageable task.

Finally, PEG is not a PC-library. While PEG does support common PC
development environments as a matter of convenience and productivity,
the goal of PEG is to provide a full graphical interface solution to real-time
embedded systems developers. This solution includes the software,
utilities, documentation and support required to make your embedded
development effort a success, regardless of the final hardware
implementation.
Swell Software, Inc. Introduction vii

Introduction
Where PEG is going
Over the near term, the core PEG library will continue to grow and improve
in terms of the native control types that are available and the flexibility of
those controls. Over the longer term, we plan to add entirely new groups of
object types we feel would be useful for embedded systems. Of course, the
long-range development list also depends on input we receive from you,
the developer using PEG. In any event, the basic library will retain the
ability of allowing you to remove unwanted components in order to build a
system that exactly fits your size and performance requirements.

While PEG can be ported to nearly any hardware configuration capable of
graphical output, this effort can seem confusing to a new user. For this
reason, we have undertaken to add reference platforms for many common
hardware configurations. This allows PEG users to begin running PEG
immediately on hardware which is similar if not identical to the final target.
Currently reference platforms have been completed or are in development
for x86, ARM7, ARM9, StrongARM, MPC823, ColdFire, DragonBall, C167,
and MC68332 platforms. Additional reference platforms will be added as
evaluation hardware platforms become available for other CPU types that
are popular in the embedded community.

PEG WindowBuilder, our newest and most powerful support utility, is
continually being enhanced to meet the needs of PEG users. Fully
integrated support for Unicode and efficient code generation through the
use of container classes are new features as of this manual printing.

Library Updates
Library updates are posted on the Swell Software www site roughly every
90 days. If you are a new PEG customer, you are entitled to a minimum of
three months of technical support and library updates. The Download/
Updates page on the Swell Software Website is password protected. If you
do not know the password, please email support@swellsoftware.com and
request the current password.

The http://www.swellsoftware.com/download/updates.php page lists the
most recent changes or library enhancements, and also allows you to
download the latest release of PEG library source code, supporting utilities,
and documentation. This website has gone through an enhancement phase
and now includes a Frequently Asked Questions (FAQ) page with useful
contributions from current PEG users.
viii PEG+ Development ToolKit Manual Swell Software, Inc.

C H A P T E R 1

CHAPTER1PEG FONTCAPTURE
PEG FontCapture is a utility program written using PEG that can be used to
generate additional fonts for use by your application program. PEG
FontCapture is included with licensed distributions of the PEG library. PEG
FontCapture generates .cpp source files or binary data files each
containing a PegFont data structure, character widths and character data.
Versions of PEG FontCapture are available for MS Windows (all versions)
and most Unix/Linux/X11 development stations.

When you choose the standard source-file output format, the .cpp files
generated by PEG FontCapture can be compiled, linked, and if desired
ROM’ed along with the rest of your application code. Since the .cpp files
generated by PEG FontCapture entirely contain read-only data, additional
PegFonts included with your system software should only consume ROM
storage.

The binary output format is intended for use with targets which support a
run-time file system. In this type of system, an arbitrary number of
PegFonts may be stored as binary files and read from the file system into
memory only when needed.

The PegFont format is a binary 1 bit, 2 bit, or 4 bit per pixel font format. The
standard 1-bpp format is most commonly used because it requires the
smallest memory size. These fonts can be drawn in any combination of
foreground and background colors supported by your target system.

The 2 bit/pixel format is used for Outline fonts, which is a font format used
primarily in video display systems such as television or set-top box
applications. In this format the font includes a single-pixel wide outline.
When drawing the font, the foreground color is used for the font outline and
the background color is used as the font fill color.

The 4 bit/pixel format is used for anti-aliased fonts. Anti-aliased fonts define
16 pixel intensity levels to produce much smoother appearance for round
character edges.

PEG FontCapture appears as shown below:
Swell Software, Inc. PEG FontCapture 1

PEG FontCapture
The Source Font group allows you to select the source font type.
FontCapture supports the conversion of MS Windows TrueType fonts or
Adobe Postscript Glyph Bitmap Distribution (BDF) fonts.

If you are converting a TrueType format source font, you can use either the
native MS Windows font rendering engine or the open-source FreeType
(Native) rendering engine. These two font renderers produce slightly
different results due to internal differences in implementation.

If you select TrueType (Windows) as your source font type, the Select…
button can be used to invoke the ChooseFont Windows common dialog
(Note: this option is only available when running FontCapture on a MS
Windows host).

If you select the TrueType (Native) as your source font type, the Select...
button is used to choose a .ttf file from your host system file system. Note
the Native rendering engine works directly from a TrueType source file, it
does not utilize the “Installed Fonts” of your Windows host system. This
rendering engine can be used both on Windows, Linux, and Solaris host
environments.
2 PEG+ Development Toolkit Manual Swell Software, Inc.

If you select the BDF source font format, the Select button allows you to
select the actual .bdf file from your development station file system. No
matter which type of source font you choose, the output of Font Capture is
a PegFont data structure in ‘C’ data array format or binary format.

The final source font format is a PegFont file. This selection allows you to
read a previously converted PegFont source file. If you have edited or
customized the output of a PegFont and saved the font in source file
format, this option allows you to re-open the source file for further editing
and modification.

The Char Range group allows you to specify precisely the characters you
want to include in your PegFont. For example the desired range for a
certain font may include only numeric characters to reduce the resulting
font size. For multilingual applications, you may need to specify a complex
set of character ranges to support all languages included in your system.
This sometimes involves using Unicode character encoding, which will be
described in detail in later paragraphs. The simplest Char Range to specify
is the ASCII character range. This includes characters 0x00 to 0x7f. For
any other character range, you must specify in detail the range or ranges of
character you want to include using the range configuration dialog
described below.

The Output Format group allows you to select what type of conversion
output you desire. The Standard format is a 1-bpp font saved in C source
code format.

The Outline checkbox can be used to generate a font with an added single
pixel wide outline of each glyph. This is NOT the typical font type used in
PEG applications, but is supported for the minority of applications that
require an outlined font capability. When the Outline box is selected,
PegFontCapture encodes the output PegBitmap in a 2-bpp format; where
bitmap value 0 indicates the pixel should be the foreground color, bitmap
value 1 indicates the pixel should be in the outline color, and bitmap value 2
indicates the pixel should be either the background color or transparent,
depending on the PegColor.uFill value passed to the text drawing function.

While FontCapture can generate 2-bpp fonts, you should not attempt to use
them unless your PegScreen interface class supports this font format. The
Win32 screen interface class PegWinScreen includes this functionality as a
reference for users who desire to display outlined fonts.
Swell Software, Inc. PEG FontCapture 3

PEG FontCapture
The Compressed checkbox indicates that the PegFont will be created with
a compressed data section so that it takes up less space in ROM. The
PegZip function is used for the compression. In order to use a compressed
font in your application, it must first be decompressed. To do this, you must
first copy it into a new PegFont structure in RAM. Then use PegUnzip to
decompress the data section into your new PegFont. So, while
compressing your fonts will take up less ROM space, it will also take up a
considerable amount of extra RAM space. Note that C/PEG does not
support the PegZip/PegUnzip functions, so it therefore also does not
support compressed fonts.

The Anti-Aliased checkbox can be used to generate a font that uses 16
intensity levels to produce a much smoother appearance for round
character edges. The output PegBitmap is encoded in a 4-bpp format.
You should make sure that your PegScreen interface class supports this
font format, as the actual implementation of the anti-aliased drawing is
dependent on your screen driver. The Win32 screen interface class
PegWinScreen includes this functionality as a reference for users who
desire to display anti-aliased fonts. In our example implementations, if your
screen’s color depth is 8-bpp palette mode, then the 16 colors used to draw
the characters are the last 16 colors of the palette. Or if you are using a 16
or 24-bpp screen, then a calculated blend between the foreground and
background colors are used.

The Bitmap Font checkbox is used to generate a font that is stored as an
8-bpp bitmap. The advantage to this approach is that PEG only needs to
call the fast-drawing BitmapView function for each character, instead of
parsing out a stream of bits. The disadvantages are that obviously the font
will be 8 times the size of a standard 1-bpp PegFont. Note that your screen
driver needs to have an appropriate function to display this style of font.

The Binary output format is used when you want to create a binary
PegFont file, rather than the more common C source file. If your target
includes a file system, the Binary output format allows you to save your
PegFont to a file, and read this font from the file system at runtime. An
example program named BinFont is available to demonstrate how to load
PegFonts from a filesystem at program runtime.

The Solid and Add Space checkboxes are modifiers for the outline font
generation mode. The Solid checkbox causes the font outline to appear
somewhat heavier than the default outline. The Solid choice is beneficial
when working with large fonts. The Add Space option adds a single pixel of
spacing between each generated character when generating an outline
4 PEG+ Development Toolkit Manual Swell Software, Inc.

font. This is beneficial when working with very small outlined fonts. The
Solid and Add Space modifiers are ignored if the Outline checkbox is not
selected.

The Custom Aspect Ratio checkbox can be used to adjust the dimensions
of the characters in your font. When the font is generated, a dialog will
open that displays the current dimensions of the font in a grid form. Vertical
and horizontal sliders are used to adjust the shape of the grid. Increasing
the width or height of the grid makes the characters appear wider or taller in
the font.

The Optimization slider gives you control over how the FontCapture
program breaks mutiple-page fonts into component pages. The
FontCapture program examines the resulting font and attempts to find
sections of the font which contain no input data. When large empty sections
are found, FontCapture removes the empty section by creating two font
pages that skip the empty font section. The optimization slider allows you to
adjust how large the empty section needs to be to justify creating a new font
page. Creating more pages reduces the font storage size, but also
increases the runtime overhead when displaying string because the correct
font page for each character must be located at runtime. Note optimization
works best when using the TrueType (Native) rendering engine, as more
precise font data is available when using the Native rendering engine.

The Generate PegFont button causes FontCapture to convert the source
font into a PegFont. This process may occur very quickly for a small font, or
it may take several minutes for a very large font containing many thousands
of characters. You can capture as many fonts as you like within one
session of running FontCapture.

After converting the source font, PEG FontCapture will display the window
below to preview the resulting PegFont:
Swell Software, Inc. PEG FontCapture 5

PEG FontCapture
You can use this window to examine the PegFont produced, and even
compare multiple fonts to find the best appearance. There are also 2 more
ways that you can modify the font, even though it’s already been generated.
First, by pressing the Edit Font... button you can adjust the extra padding
that is included on the top and bottom of all of the characters in the font.
And second, pressing the Edit Character... button opens a dialog that
allows you to actually modify individual characters right down to the pixel
level. Once you are satisfied with the appearance of your font, you can use
the Save As... button on this window to save the font to a source or binary
file of your choosing.

1.0.1 Configuring Character Range
The Char Range group allows you to specify the range of character glyphs
that will be encoded in the output font. When the ASCII option is selected,
the range of characters is fixed to ASCII-0 through ASCII-127, which is the
normal range for single language applications.

PEG Font Capture also allows you to specify a custom range of characters
to be encoded. When you select the Custom option, the Configure… option
becomes active, allowing you to fully define the range of glyphs which will
be recorded in the output file.

It is often the case a particular font is only used to display a certain range of
characters; for example you may define one font that will be used only for
displaying numbers. In this case, you do not need or want to encode the
entire ASCII character range in the output file. Instead, you can enter a
limited character range by selecting the “Custom” button, and entering the
range of characters in the Range Configuration dialog, shown here:
6 PEG+ Development Toolkit Manual Swell Software, Inc.

The First Char and Last Char fields allow you to define the start and ending
characters to be encoded. Using the numerical example above, you could
enter “0030” (i.e. ASCII-‘0’) as the first character, and “0039” (i.e. ASCII-‘9’)
as the last character. This will save quite a large amount of memory over
capturing the entire ASCII character set.

1.0.2 Multilingual Support and UNICODE
A more advanced use of the Range Configuration dialog deals with
UNICODE fonts. When you select the UNICODE option on this dialog, the
dialog appearance changes as shown below:
Swell Software, Inc. PEG FontCapture 7

PEG FontCapture
Before we can fully understand how to configure custom UNICODE
character ranges, we must first examine what UNICODE is, the options
available for supporting multiple languages, and the trade-offs involved with
each approach.

1.1 What is UNICODE?
If you are a software developer from North America, you may not be more
than vaguely familiar with what UNICODE is, or what it means to your
software. UNICODE is a standard definition of 16-bit character encoding
that encompass all characters used for all of the most prominent writing
structures. For example, the UNICODE standard defines character
encodings for characters used to record Latin (~English), Japanese,
Korean, and Georgian writings.

To really understand what the UNICODE is, a little clarification in
terminology is required. We often confuse or mix the terms ‘language’,
‘alphabet’, ‘character’, and ‘glyph’. A glyph is a shape representing a
character. For example, ‘A’, ‘A’, and ‘A’ are three individual and unique
glyphs, however they are all the same character: ‘Capital Letter A’.
8 PEG+ Development Toolkit Manual Swell Software, Inc.

What is UNICODE?
UNICODE defines a unique encoding for each character. UNICODE does
not define a font, style, size, or any other attributes for a character. Since
there are far more recognized characters in the world (> 28,000) than can
be encoded using an 8-bit representation, UNICODE uses 16-bit values to
encode each character.

 Further Reading
To learn more about the UNICODE standard, we encourage you to
purchase The Unicode Standard, Version 3.0 (ISBN 0-201-48345-9)

1.1.1 PEG Character Encoding
The UNICODE font range selection dialog allows you to specify the groups,
or code pages, of characters you want to encode. If you select multiple
code pages for one font, PEG FontCapture will generate at least one
PegFont page for each code page you enable. In all cases the resulting
fonts use Unicode character encoding, even if your code page selections
leave “holes”, i.e. even if you select a non-contiguous set of character
pages. However, the multi-page PegFont encoding scheme allows the final
font to simply skip any unused range(s) of characters, eliminating memory
use for those unsupported code pages.

 Font Range Configuration
As stated above, PEG FontCapture allows you to specify precisely the code
pages and ranges of characters you need for your application. You enable
or disable each code page by selecting the corresponding check box for
each page. The numeric range for a code page that is not enabled is
ignored.

For each code page that is enabled, you can specify an exact window of
character values to capture. These character ranges are entered in
hexadecimal format, consistent with Unicode encoding.

The ability to capture limited windows within each code page is very useful
for multilingual applications that are attempting to produce a minimal
memory footprint. This enables you to select the specific code pages and
ranges of characters required in your application, without capturing all of
the characters in each page. For example, you may desire to capture code
page 1 (Basic Latin) indexes 0020 through 0080, code page 2 (Latin 1)
characters 0090 through 0100, and a few additional characters from code
page 9 (Cyrillic). You may thus create a custom font containing <= 256
characters, but still containing all of the glyphs you need for your
multilingual application.
Swell Software, Inc. PEG FontCapture 9

PEG FontCapture
Even if you are using 16-bit character encoding, you will very likely not want
to attempt to capture the entire UNICODE character set. Such a character
set would require a huge amount of memory, and it is highly unlikely that
you will find a font containing anywhere near the entire UNICODE character
set. PEG FontCapture allows you to specify exactly which code pages you
want to capture from the selected font.

Once you have entered the range configuration, PEG FontCapture saves
the configuration (or ‘profile’) to a binary file for later retrieval. The next time
you start the PEG FontCapture program, it will automatically default to the
set of ranges defined in the previous usage.

Whenever PEG FontCapture is operated using a Custom font range, the
header in the output file produced contains a comment section indicating
the mapping of Unicode characters to the character indexes in the captured
font. This mapping is required if you want to manually enter 16-bit string
values in your application.

 Applying Custom Character Filters
FontCapture also allows you to specify a custom range of characters to be
encoded by using a character filter file. On the Range dialog you may select
the Use Custom Filter File checkbox. When this checkbox is selected,
you can type the path and filename of a file to be used as a final character
filter. In other words, characters selected above will be verified against the
filter list and only those characters listed in the filter will be included in the
output font.

The custom filter file should have one hexadecimal character encoding per
line. An example is shown here:

0x3456 // you can put comments
0x3467 // or other notes after the character encoding
0x3786 // as shown here

This file format was chosen because it works perfectly with the encoding
tables provided with the Unicode Standard version 2.0!! The Unicode
standard accepts that many character encoding “standards” are in
existence and provides tables to map the alternate character encodings to
the Unicode encoding. These tables can be directly supplied to PEG
FontCapture as filter files, allowing you to generate Unicode encoded fonts
containing only those characters defined by a previous standard.
10 PEG+ Development Toolkit Manual Swell Software, Inc.

What is UNICODE?
1.1.2 Should You Use UNICODE?
If you are working on an application that must support many languages, this
is of course the question you are anxious to answer. Supporting multiple
languages does not always imply using multiple alphabets or using a single
character set containing all of the characters required for each language.
All common North-American and most Western European languages can
be supported very well by using a single 256 character alphabet. There are,
of course exceptions.

There are two schemes in broad use for displaying information in multiple
languages. The first scheme uses multiple 256 character font sets, with the
characters required for each language or possibly each group of languages
encoded in separate font files.

For example, suppose you write down and tabulate every character
required to display all strings defined in your application in each language
you are required to support. After going through this process, you may find
your application needs to be able to display a total of 500 unique
characters. Further, you find half of the languages can be supported using
the first 250 characters, and the other languages can be supported using
the second set of 250 characters. In this case, you might decide to use two
256 character font sets, and switch languages simply by switching the fonts
used for displaying strings in different languages.

The advantage to the multiple-font approach is you do not need to use 16-
bit character encoding, although your application can draw more than 256
unique glyphs. This can simplify your application development and reduce
the amount of memory required to store your character strings. One
disadvantage of this approach is that there is not a unique mapping of
characters to character encoding, i.e. character 0x0030 in one font may be
the glyph ‘0’, while in another font this may be an entirely different glyph.

The alternate approach is to place all required glyphs in a single font file (or
multiple font files, if different font sizes and styles are needed). If the
number of characters contained in ANY single font file exceeds 256, you
will need to run PEG in UNICODE mode, meaning all PEG strings will be
encoded using 16-bits/character. Note we prefer here to use the term “16-
bit encoding”, since as stated in the previous section the font produces with
Font Capture may not contain a true Unicode character mapping,
depending on the font range configuration. Running PEG in “Unicode
Mode” means only you are using 16-bit character encoding, and does not
mean your string values will be strict Unicode standard encoding.
Swell Software, Inc. PEG FontCapture 11

PEG FontCapture
The advantages to the UNICODE approach are you do not need to switch
fonts when switching between languages, each character encoding is
unique and unambiguous, and very large character sets are
accommodated with no extra programming effort beyond what is required
when first stepping to UNICODE. The disadvantages include increased
memory requirements for string storage, and the inability of software
debugging applications to display arrays of 16-bit encoded values as
“strings.” A further disadvantage is many run-time string libraries do not
support 16-bit character encoding.

You should not take the decision to use 16-bit character encoding lightly.
While this string encoding can greatly simplify the long-term programming
effort, it will almost certainly take you and your development team a while to
become comfortable with using 16-bit characters. Further, it is a time
consuming process to manually enter strings that use 16-bit encoding,
especially if your compiler has no intrinsic support for 16-bit character
encoding. While the PEG WindowBuilder string table editor is provided to
aid this process, you will miss the simplicity of entering “String” into your
editor!

1.1.3 Defining Unicode Strings
If you decide to run in Unicode mode, you will need to define and initialize
your string data such that it is recognized as an array of 16-bit variables. A
few compilers have built-in support for this type of data entry, but even in
these cases you cannot enter Unicode-formatted strings that use
characters above the printable character range using the standard ‘C’
double quoted string syntax.

The easiest way to create your Unicode strings is to allow PEG
WindowBuilder (described in chapter 12) to generate them for you. PEG
WindowBuilder provides a drag-and-drop string entry editor that allows you
to select any character from an extended font file you have generated using
PEG FontCapture. You simply pick the characters you want to use, and
WindowBuilder generates the associates Unicode formatted initialized
array in a portable ‘C’ format.

If you really need to enter your own Unicode format strings, the most
portable method is to enter the strings as PEGCHAR arrays, as shown
below:

PEGCHAR TestString[] = {‘H’,‘e’,’l’,’l’,’o’,‘ ‘,0x209,0x210,0x224,0};
12 PEG+ Development Toolkit Manual Swell Software, Inc.

What is UNICODE?
In this example, we have mixed a few characters from the ASCII range with
a few characters that are only available in the extended Unicode character
set. Note there currently is no other method available for entering and
initializing character codes which fall above the ASCII range unless you are
using some type of Unicode enabled editor.

1.1.4 Using Custom Fonts
Using fonts generated with PEG FontCapture is very simple. Every PEG
object which supports text output has a member function called
SetFont(PegFont *). Therefore, after constructing a PEG object that should
use the new font, you simply call that objects SetFont function, passing a
pointer to your new font. For example, assume you told PegFontCapture to
generate a new font called “MyNewFont”, by typing this in the font name
field of PEG FontCapture. In this case, the following code fragment
illustrates the process of altering the font used by a PEG object:

extern PegFont MyNewFont;

PegTextButton *pButton = new PegTextButton(10, 10, 100,
 MESG1, “NewFont”);
pButton->SetFont(&MyNewFont);

Likewise, if you have overloaded a Draw() function for a window or other
object, and you are drawing text on the screen, you can simply pass the
pointer to your new font to any of the PegScreen text information or output
functions.

 Changing Font Defaults
Every PEG object type that supports text has a default font definition. This
default font definition is held in a static array which is a member of the
PegTextThing class. By calling the PegTextThing::SetDefaultFont function
you can change the default font assigned to all successive instances of any
or all PegTextThing derived objects. For example, you might use the
SetDefaultFont function to change the font used for all PegTitle or all
PegTextButton objects.
Swell Software, Inc. PEG FontCapture 13

PEG FontCapture
14 PEG+ Development Toolkit Manual Swell Software, Inc.

Overview
C H A P T E R 2

CHAPTER2PEG IMAGECONVERT

2.1 Overview
PEG ImageConvert is a utility program developed by Swell Software that
can be used to convert MS Windows .bmp, CompuServe GIF, PNG, and
JPG files into binary or source code formats supported by PEG. All of these
file formats are in the public domain, and you may use PEG ImageConvert
to process files which you create in any of these formats. PEG
ImageConvert is a program written using PEG and running under the
Win32 or Linux development environment.

Input files can be 1, 2, 4, 8, 16, or 24 bit-per-pixel formats. Likewise, PEG
ImageConvert can generate 1, 2, 4, 8, 16, or 24 bit-per-pixel compressed
image files (Note that PEG ImageConvert for C/PEG does support 24-bpp
input, but does not support 24-bpp output.) For output of 8 bit-per-pixel or
less, the palette used to encode the output image can be saved in source
format during the image conversion process,suitable for use in calling the
PegScreen SetPalette() function.

The actual operation of PEG ImageConvert is heavily dependent on the
selected output format. PEG ImageConvert may perform color reduction,
dithering, RLE encoding, and transparency encoding for all input file types.
In addition, for 8-bpp output format, PEG ImageConvert adds optimal
palette generation.

While PEG ImageConvert can output PegBitmap structures in many
formats, this is of little use if the PegScreen driver being used on the target
is not capable of properly displaying the bitmaps in the format in which they
are saved. For example, while PEG ImageConvert can save PegBitmap
structures using 2-bpp encoding, this format should only be used if your
derived PegScreen driver class understands and can properly display
images saved in 2-bpp format. The PegScreen derived interface classes
provided with PEG support both 8-bpp bitmap encoding and the
native encoding corresponding to the color depth of the target
display.
Swell Software, Inc. PEG ImageConvert 13

PEG ImageConvert
All of the options that can be selected on the PEG ImageConvert dialog
window control the output of PEG ImageConvert. The format and data
content of the input file(s) is determined by PegImageConvert by reading
and parsing the input file header information.

If your target supports 256 or more colors, PEG ImageConvert can also
perform advanced palette reduction and optimization, allowing you to
create and use any number of color palettes, each of which is optimized for
the images displayed in your application. This option is best utilized along
with batch image processing (described below), which allows a custom
palette to be created for optimal display of multiple images. The input files
for list processing can be any combination of the supported file types, and
can even have different internal formats in terms of the color resolution
associated with each input file. For those readers who are familiar with
color quantization methods, PEG ImageConvert utilizes an improved form
of Heckbert’s ‘Median Cut’ algorithm for color reduction.

PEG ImageConvert is not a paint program or ray-tracing package. If you will
be creating and using bitmaps and animations in your PEG application
program, you will need to obtain a paint and/or graphics program capable of
outputting one or all of the supported input file formats. The Paint program
which is standard with MS Windows provides the minimum functionality you
will most likely need, although Paint is very limited in terms of palette
control and export formats.

If you are working with 256 or more colors, you many also find it useful to
purchase an image processing software package capable of translating
between several common graphic file formats. Paint Shop Pro, by Corel, is
one such graphics program that will do everything you will need when
creating bitmaps for use with PEG. For this reason, a fully licensed version
of Paint Shop Pro is included in your purchase of either PEG+ or C/PEG.

 The Conversion Dialog
The PEG ImageConvert application dialog appears as shown below:
14 PEG+ Development Toolkit Manual Swell Software, Inc.

Overview
2.1.1 Input File
The input file string allows you to select the source image file. You can
either type in the name of the file, or you can use the ‘Browse’ button to
select a file from your computer.

Only one file path\name can be entered in the Input File string field. If you
want to process multiple input images at one time, you should enter the
image names in an ASCII command file and select the command file as the
input file. This is described in more detail in the ‘Batch Processing’ section.

The basic input file type is determined by PEG ImageConvert based on the
input filename extension. For MS or OS2 Bitmap files, the filename
extension should be ‘.bmp’. For GIF files, the filename extension should be
‘.gif’, for PNG file the extension should be “.png”, and for JPEG files the
filename extension should be “.jpg” To process multiple input files, the
filename extension should be ‘.cmd’, which is interpreted as a command
file.

PEG ImageConvert verifies the file is truly of the type indicated by the file
extension by attempting to read the file header information and verifying the
Swell Software, Inc. PEG ImageConvert 15

PEG ImageConvert
file header makes sense for the indicated file type. An error is reported if the
file header information and filename extension do not correspond.

2.1.2 Compression
PEG ImageConvert can optionally apply a simple RLE compression
technique to the output data. The effectiveness of this compression
depends on many factors. If your input image is a computer generated
image with few colors, RLE compression can be very effective. If your input
image was produced with a RAY-tracing package or from an actual
photograph, RLE compression is less successful.

When RLE compression is enabled and if you select 256 or fewer colors in
the Output Colors field, PEG ImageConvert is required to save the output
data in 8-bpp format. This means for 1-bpp, 2-bpp, and 4-bpp input images,
turning on RLE compression forces PEG ImageConvert to first expand the
image to 8-bpp format, and then apply RLE compression. Depending on
the exact image file, this can actually cause the final output file to be larger
than if compression is not used.

For this reason, selecting RLE compression is actually only a suggestion to
PEG ImageConvert. If RLE compression is effective at reducing image
size, the compression is performed. If compression does not reduce the
output image size, the RLE encoding is omitted. This decision is made
automatically by PEG ImageConvert during the conversion process.
Therefore, the only reason to disable RLE compression is if your
PegScreen derived screen driver does not support RLE encoded
PegBitmap formats. The PegScreen drivers provided with PEG do support
RLE encoding.

RLE compression is almost always beneficial if you are using 8-bpp bitmap
encoding, especially for very large images. Compression ratios typically
vary from 10:1 to 3:2, depending again on the source of the image being
processed.

The use of dithering on the output bitmap has an negative impact on RLE
compression effectiveness. For this reason, if data size is the most
important consideration in your application, you should disable the dithering
option. This forces PEG ImageConvert to do a “Best Match” color mapping
of input to output colors.
16 PEG+ Development Toolkit Manual Swell Software, Inc.

Overview
2.1.3 Color Matching Options
PEG ImageConvert can apply various color optimization and dithering
methods when converting the input images to PegBitmap encoded data
structures. Your input images can be any combination of 2, 4, 16, 256, hi-
color (i.e. 16-bpp) or true-color (i.e. 24-bpp) input images. PEG
ImageConvert will convert the input images to best possible
representations on the target system.

If your source images contain a higher number of colors than are available
on your target display, PEG ImageConvert will reduce the number of colors
in the source image. This reduction will either perform a best-match
remapping or a dithering algorithm, depending on whether or not the
dithering option is selected.

For example, suppose you have several full-color GIF images you intend to
use on a target system that utilizes a 4 color grayscale LCD display. In this
case, you would select 2-bpp output format, and PEG ImageConvert will
reduce the full color GIF images to the best possible grayscale
representation.

 Fixed Orthogonal Palette
The Fixed Orthogonal Palette option instructs PEG ImageConvert to use
a pre-defined palette covering the rainbow of colors available for 16 or 256
color targets. This is the only palette option when running with fewer than
256 colors. When targeting 256-color operation, you must choose between
the fixed pre-defined system palette (the Fixed Orthogonal Palette) or an
optimal system palette created for your images. The 256-color fixed
orthogonal palette used by PEG is contained in the file peg\source\
pal256.cpp.

 Generate Optimal Palette
The Generate Optimal Palette option is only available if you are targeting
256 color (i.e. 8-bpp) output. This is the opposite of using a Fixed
Orthogonal palette. When this option is selected, PEG ImageConvert will
create a custom palette for use with the input images. The custom palette
will be saved at the top of the output file, and will be named
PegCustomPalette. The custom palette is simply an array of 256*3
unsigned characters, which is passed to the PegScreen::SetPalette
function when you want to use the custom palette.
Swell Software, Inc. PEG ImageConvert 17

PEG ImageConvert
Most users prefer to generate and use a custom palette when running in
256-color or higher modes. This provides you with the best possible image
display. Since the resulting palette is generally modified extensively as
compared to the palette that was included in the input images, the input
images are automatically re-encoded by PEG ImageConvert to use the
newly created palette. This all happens transparently when the ‘Generate
Optimal’ option is selected in the PEG ImageConvert dialog. You do not
have to do anything special when you are creating your image bitmap or
GIF files in order to use a custom palette.

The custom palette created by PEG ImageConvert is always named
PegCustomPalette, and is found at the top of the ASCII output file
generated by PEG ImageConvert. This palette always starts with the 16
standard PEG colors, and is followed by up to 240 colors selected to
produce the best possible image display for your input images. The custom
palette is simply an array of unsigned characters containing the Red,
Green, and Blue components of each color. This array of RGB values
should be programmed into your video controller palette registers prior to
displaying the associated bitmap(s). This palette can be directly passed to
the PegScreen::SetPalette() function, as shown below:

Screen()->SetPalette(PegCustomPalette, 0, 256);

It is also possible to use multiple custom palettes. When multiple custom
palettes are used, it is the responsibility of the application level software to
install the correct custom palette before the corresponding images are
displayed. For systems that display ‘one window at a time’, it is a simple
matter to install the correct palette when each window is displayed. For
other systems, it can be complex to use multiple palettes, and one optimal
palette is generally preferred.

 Custom Palette
The Custom Palette option allows you to define with a simple editor any
palette you prefer, and PEG ImageConvert will remap each pixel color
value in the input file(s) to your preferred palette before generating the
output image. The custom palette editor allows you to edit and save the
palette RGB values, and you can save the palette defintions to any number
of custom palette files.

 Floyd-Steinburg Dither
The Floyd-Steinburg Dither option instructs PEG ImageConvert to dither
your images when re-encoding them to the target palette. Dithering can be
18 PEG+ Development Toolkit Manual Swell Software, Inc.

Overview
used in any of the output color depths, with or without a custom palette.
What is dithering?? You should realize when an optimal palette is created
for multiple images, the actual colors contained in the final palette may not
exactly match the original image colors. Likewise when PEG ImageConvert
is outputting bitmaps for 16-color targets using input images which contain
256 or more colors, PEG ImageConvert must translate those original colors
into the best possible representation using only the 16-color palette.

The dithering option tells PEG ImageConvert how to convert your original
image colors to the new system palette colors. If dithering is selected, PEG
ImageConvert will pick colors such that the average value in each multi-
pixel area is equal to the average value of the original input colors for the
same multi-pixel area. If dithering is disabled, PEG ImageConvert will
simply translate each pixel into its nearest color in the target palette.

Should you dither? It depends on your target system, your palette options,
and your input images. If you are creating a custom palette, dithering
usually has very little effect since the custom palette will contain colors very
close to the original image colors. In most other cases, dithering can
significantly improve your color display, especially if you are displaying
photographic images on a target with fewer than 256 colors. The drawback
to dithering is your images can take on a speckled appearance, especially if
large areas of the original image are in a solid color. If your source images
are photographic or ray-traced images, you will almost certainly want to
dither. If your input images are hand-drawn images with few colors, you
may want to disable dithering and use a best-match color mapping.

2.1.4 Screen Rotation
The screen rotation options change the format of the data produced by
PEG ImageConvert. These options should be set to “None” unless you are
using one of the profile mode screen drivers. Refer to the chapter on
PegScreen in the Programming Manual for more information on the profile
mode screen driver templates.

PEG ImageConvert normally outputs image data in a left to right, top to
bottom format. The first data byte corresponds to the upper left image pixel,
the next byte corresponds to pixel (1,0), and so on scanning from left to
right across the image and moving from the top row to the last row. This is
the format expected by the standard PegScreen classes.

The profile mode screen drivers are able to display image data more
quickly if the data is stored in a different format corresponding to the screen
Swell Software, Inc. PEG ImageConvert 19

PEG ImageConvert
rotation. The “90” rotation setting should be used when your display device
has been mechanically rotated 90 degrees counter-clockwise. When this is
the case, PEG ImageConvert outputs the image data such that the first
data byte is the lower-left pixel of the image. Data is then saved in a
bottom-to-top, left to right manner.

The “270” rotation setting should be used when your display device has
been rotated 90 degrees clockwise (i.e. 270 degrees counter-clockwise).
When this is the case, PEG ImageConvert outputs the image data such that
the first data byte is the upper-right pixel of the image. Data is then saved in
a top-to-bottom, left-to-right manner.

These output format modifications are completely transparent to your
application level software. Your application software simply passes
PegBitmap addresses to the PegScreen drawing functions. However, it is
important when using the PEG ImageConvert utility you set the Screen
Rotation setting to match the display driver you are using.

Note the pre-defined PEG system bitmaps, contained in the file
pbitmaps.cpp, are provided in all forms including non-rotated, clockwise
rotation, and clockwise rotation. Only the format corresponding to the
screen driver in use is actually compiled and linked into the target system
software.

2.1.5 Transparency
The Transparency field can be used to specify a transparent color in the
input image. This field only applies to MS Windows or OS2 bitmap and
JPG files, as GIF and PNG files encode transparency information internal
to the input file. If the output color depth is set to 8-bpp or less, the
transparent color will be saved as index 255 in the output PegBitmap, since
index 255 is always interpreted as transparent by the PegScreen bitmap
functions. In this case, transparency forces the output PegBitmap
structure to use 8-bpp encoding, since the default transparent color value
is 255. This is true even if your source image contains only 2, 4, or 16
colors. If the source image is encoded using less than 8 bits-per-pixel,
ImageConvert will expand the image to 8 bpp format when you enable
transparency. However, if the color depth is set to 16 or 24-bpp, the
transparent color will be saved as 1. There will be no need to change the
encoding in this case.

MS Windows bitmap and JPG files do not inherently support transparency.
To use image transparency, the source image(s) must be created such that
20 PEG+ Development Toolkit Manual Swell Software, Inc.

Overview
all areas that should be displayed transparently are ‘painted’ with an
otherwise unused color. You must then inform ImageConvert which color
should be interpreted as transparent. There are two methods of specifying
the transparent color:

 Specify RGB Value
If you select the ‘RGB’ button, you should enter the Red, Green, and Blue
values in the string fields which are displayed. You can determine the
correct values through examination with a quality paint program.

 Use Upper-Left Color
When this method is selected, ImageConvert will assume that the upper-left
corner pixel is in the transparent color.

2.1.6 Conversion Format
The conversion format field allows you to specify how the generated
PegBitmap structures will be encoded, and tells PEG ImageConvert how
many colors are available on the target system. PegBitmap structures can
be encoded using 1, 2, 4, 8, 16, or 24 bits-per-pixel. If you are using a
system which supports less than 256 colors, saving the output PegBitmap
structures in one of these lower bit-per-pixel formats can save a large
amount of memory. Note however, using 1, 2, or 4 bpp output formats
requires your PegScreen driver class recognizes and properly displays
PegBitmaps saved in this format. It is also possible to use a combination of
different PegBitmap encodings in one PEG application, as long as your
display driver can handle each of the formats in use.

Within the 6 supported color depths, there are multiple formats that are also
supported:

 256 Color – Normal Palette
This is the default mode for 256 colors, in which each color value is an
index into a set of RGB values maintained in the video controller color
palette. The palette uses 3 bytes per color, where each byte represents
either red, green or blue.

 256 Color – Packed 3:3:2
In this mode, each data value passed to the video controller represents 3
bits of red, 3 bits of green, and 2 bits of blue color data. A small set of video
controller chips only support this 256 color mode. Note that when running
in packed pixel mode, the color palette is not required and is not used.
Swell Software, Inc. PEG ImageConvert 21

PEG ImageConvert
 256 Color – ARGB 4:4:4:4
This mode looks very much like the Normal Palette mode because each
color value is an index into a palette. The difference is that the palette
contains 2 bytes per color instead of 3. The structure of the colors in the
palette is 4 bits for the alpha channel, 4 bits for red, 4 bits for green and 4
bits for blue.

 HiColor – Standard
This is the default mode for 16-bpp. Each color value is a packed
PEGUSHORT where 5 bits are red, 6 bits are green and 5 bits are blue. No
palette is needed because each color value is an actual RGB value instead
of an index.

 HiColor – Format 5:5:5
This mode is very similar to the standard HiColor mode, with the exception
that there are only 5 bits of green. The most significant bit is therefore
unused in each color value.

 HiColor – BGR Order
In this mode, the red and blue sections of each color value are swapped. A
small number of video controllers require this format. This can be used with
either the standard 5:6:5 or 5:5:5 mode.

 TrueColor – Standard
This is the default mode for 24-bpp. Each color value is 3 bytes, using 1
byte for blue, 1 byte for green and 1 byte for red. No palette is needed
because the color values are the actual RGB values instead of indices.

 TrueColor – RGB Order
In this mode, the red and blue sections of each color value are swapped.
Different video controllers support different ordering of bytes, so PEG+
supports both.

If the output color depth is set to 256 colors or less, and transparency
or RLE compression are enabled, the resulting PegBitmap structures
are saved using 8-bpp encoding, regardless of your selection in the
Conversion Format field.
22 PEG+ Development Toolkit Manual Swell Software, Inc.

Overview
2.1.7 Batch Conversion
PEG ImageConvert can be used to perform list or batch conversion of
multiple images. This is helpful in almost all cases, and absolutely essential
when the goal is to create an optimal palette for multiple images. Batch
conversion is selected by specifying an input file with a filename extension
of ‘.cmd’, which indicates the source file is actually a command file, rather
than an individual image file.

Command files are simply lists of input images, along with optional
comments. They do not instruct PEG ImageConvert in terms of the type of
conversion to perform. This is still done by selecting the appropriate options
in the PEG ImageConvert dialog.

The command file should be an ASCII command file, with one command
per line. Each command line should contain a single input image path and
filename, and the output image name. The source file and output image
name can be separated by any combination of space, comma, and tab
characters. The output image name is the name you will use in your
application software when passing the image address to one of the
PegScreen bitmap display functions.

When performing batch conversion, all of the resulting output images are
saved in one output file, along with the custom palette if a custom palette
has been generated.

Very large command files are often easier to maintain by entering
comments within the file to indicate where groups of bitmaps files are used.
Comment lines are indicated by a single ‘#’ character in the first column of a
line.

The following is an example of a typical command file:

#
This is a comment line
Each command line specifies one input file,
and the name of the resulting PegBitmap structure.
#
\graphics\bitmaps\stop.bmp StopSign
\graphics\bitmaps\go.bmp GoSign
#
note that .bmp and .png files can be processed
within the same .cmd file
#
\graphics\pngs\yield.png YieldSign
Swell Software, Inc. PEG ImageConvert 23

PEG ImageConvert
In the above example, the goal is to produce three PegBitmaps and a
single optimal palette for use with these three images. The source images
are stop.bmp, go.bmp, and yield.png.

The resulting PegBitmaps will be named gbStopSignBitmap,
gbGoSignBitmap, and gbYieldSignBitmap, respectively.

PEG ImageConvert will process each of the input files using the options
selected in the PEG ImageConvert dialog, and will save all output to a
single file.

2.1.8 Conversion Preview
When the Convert button is pressed, PEG ImageConvert converts the
image(s) into PegBitmaps and then displays the Conversion Preview
Dialog, which shows all of the newly generated PegBitmaps. If there is
more than one image, a spinbutton can be used to cycle through them all.
The Conversion Preview Dialog is displayed below:
24 PEG+ Development Toolkit Manual Swell Software, Inc.

Overview
When the Save button is pressed, another dialog will appear with a few
more output options:

 Bitmap Symbolic Name
This field only appears if you are converting a single image file, rather than
a collection of images in a command file. It defines the name of the
PegBitmap structure that will be written to a file. This isn’t necessary when
using a command file, because the symbolic names are already included in
the command file itself. By default, the symbolic name field contains the
string “Default”, which would produce a PegBitmap name of
gbDefaultBitmap. This can be changed to any string that would be valid as
a variable name in ‘C’ source code.

 Binary Format
The Binary Format option specifies whether PEG ImageConvert should
generate ‘C’ source code or binary data. If your target system has means
for file I/O, you can greatly reduce the RAM or ROM storage requirements
for your bitmaps by saving them as binary files, and retrieving them from
the file system when they are needed. Binary data can only be used if your
final target system supports means for file I/O.

When ‘C’ source data structures are generated, PEG ImageConvert writes
a normal ASCII file that can be opened and modified with any editor. This
ASCII file contains the bitmap data array, along with the corresponding
PegBitmap structure definition. If an optimal palette is generated, the ASCII
file will also contain the custom palette.

When binary format is selected, PEG ImageConvert generates a binary
data file containing one or more PegBitmap data structures and bitmap
Swell Software, Inc. PEG ImageConvert 25

PEG ImageConvert
data definitions. The binary file starts with an eight byte leader, shown
below:

// Leader, one occurrence per binary image file:

char cVersion[4] // four byte version string, ‘1.00’
PEGUBYTE uReservedA // 1 byte reserved
PEGUBYTE uHavePalette // 1 byte palette flag
PEGUBYTE uReservedB[2] // 2 unused bytes

The uHavePalette byte of the leader signals the presence or absence of a
color palette in the binary file. If the binary file contains a custom palette,
uHavePalette will be non-zero and the custom palette immediately follows
the file leader, and can be declared as shown below:

// Palette, max one occurrence per binary image file

PEGUBYTE Palette[256*3] // only present when custom palette is
 // generated.

Following the short leader and optional palette data are the bitmap header
and bitmap data fields. The bitmap header and data fields are repeated for
each image contained in the file. Each bitmap is contained in the binary file
as shown below:

// repeated for each bitmap in file:

char cName[28] // 28 bytes, bitmap name left-
 // justified, padded with NULLS
PEGUBYTE uFlags // 1 byte, PegBitmap.uFlags
PEGUBYTE uBitsPerPix // 1 byte, PegBitmap.uBitsPix
PEGUSHORT wWidth // 2 bytes, PegBitmap.wWidth
PEGUSHORT wHeight // 2 bytes, PegBitmap.wHeight
PEGUSHORT wReserved // 2 bytes, unused
PEGULONG lSize // 4 bytes, size of data array in
 // bytes
PEGUBYTE uReserved // 1 byte, unused
PEGULONG lTransColor // 4 bytes, PegBitmap.dTransColor
PEGUBYTE uData[lSize] // bitmap data values

For each bitmap, lSize bytes of bitmap data immediately follow the bitmap
header information. When multiple PegBitmaps are generated using batch
conversion, each successive bitmap header immediately follows the
previous bitmap data. There are no padding or alignment bytes inserted
between bitmaps.
26 PEG+ Development Toolkit Manual Swell Software, Inc.

Overview
For multi-byte fields such as wWidth and wHeight, byte swapping may be
required when reading the bitmap header data depending on the endian
type of your CPU and the method used to read the bitmap data value. PEG
ImageConvert always writes multi-byte values MSB (most significant byte)
first in binary mode. Byte swapping is not required for the actual bitmap
data, as this section always contains only single-byte values.

Reading a bitmap or series of bitmaps from a binary file can be
accomplished with the pseudo-code shown below. Several variations of this
example could also be used:

PEGUBYTE *ReadBitmap(FILE *pSrc, PegBitmap &Bitmap)
{
 PEGUBYTE uTemp[30];
 PEGUBYTE *pPalette;
 PEGULONG lDataSize;

 fread(uTemp, 1, 8, pSrc); // read in the leader

 // ** check here for correct version string **

 if (uTemp[5]) // does file contain a palette?
 {
 pPalette = new PEGUBYTE[256 * 3];

 // read the palette
 fread(pPalette, 1, 256 * 3, pSrc);
 }
 else
 {
 pPalette = NULL;
 }

 fread(uTemp, 1, 28, pSrc); // read image name

 // ** verify image name **

 fread(&Bitmap.uFlags, 1, 1, pSrc);
 fread(&Bitmap.uBitsPix, 1, 1, pSrc);
 fread(&Bitmap.wWidth, 1, 2, pSrc);
 fread(&Bitmap.wHeight, 1, 2, pSrc);
 fread(uTemp, 1, 2, pSrc); // skip unused bytes
 fread(&lDataSize, 1, 4, pSrc); // get data size
 fread(uTemp, 1, 1, pSrc); // skip unused byte
 fread(&Bitmap.dTransColor, 1, 4, pSrc);

 // get RAM for bitmap data
 Bitmap.pStart = new PEGUBYTE[lDataSize];

 fread(Bitmap.pStart, 1, lDataSize, pSrc);

 return pPalette;
Swell Software, Inc. PEG ImageConvert 27

PEG ImageConvert
}

Note that if the binary file contains multiple bitmaps, the application
software could also pass to ReadBitmap() the name of the image file to
load. In that case, ReadBitmap would loop through the binary images until
the correct bitmap name is found.

 Big-Endian Byte Order
The other output option available is to write the images in Big Endian
format. This only affects 16-bpp PegBitmaps because they use 16-bit
PEGUSHORTs for their color values, while all other types use single bytes.

When all the options are selected, pressing the Continue button will open
the Save File dialog. Once you select a directory and filename, the output
will get written to the file.

2.1.9 Implementation Notes
PEG ImageConvert uses the PEG library classes PEG ImageConvert,
PegGifConvert, PegJpgConvert, PegBmpConvert, PegPngConvert and
PegQuant to do the work of converting your graphic files into the
PegBitmap format and producing optimal color palettes. Since these
classes are included with the PEG library, you can also create PEG
application programs which read and decompress these common graphic
file formats at run time. For most embedded applications, run-time
decompression is not desired due to the performance and memory
requirements. These systems are better served by using PEG
ImageConvert to process the application graphics prior to compile time.

The benefit to run-time decompression is of course memory savings. If your
application uses a large number of large graphics files, you may decide to
use the PEG image conversion classes directly in your application software
to perform run-time graphic file decompression.
28 PEG+ Development Toolkit Manual Swell Software, Inc.

Overview
C H A P T E R 3

CHAPTER3PEG WINDOWBUILDER™

3.1 Overview
PEG WindowBuilder™ is a rapid prototyping and design tool used to quickly
create your PEG windows and dialogs. PEG WindowBuilder is normally
provided as a Win32 application program, and will therefore run on nearly
any PC running XP MS Windows ’95, ’98, 2000, or XP MS Windows NT. An
alternate version of PEG WindowBuilder suitable for use in an X11
development environment is also available and provided to users who
specify this development environment.

While PEG WindowBuilder may at first glance appear to be a normal MS
Windows application, PEG WindowBuilder is actually a PEG application
program, running in our Win32 (or X11) development environment. There
are several reasons why PEG WindowBuilder is written entirely using the
PEG library. First, PEG WindowBuilder is a relatively complex application
program and therefore presents a good test case for insuring the PEG
library provides the features and capabilities required by complex
programs. Second, since the entire interface is created using PEG library
classes, exact WYSIWYG appearance is absolutely guaranteed. The
appearance of your PEG objects created from within PEG WindowBuilder
will match exactly the appearance of those same objects on your target
system, within the normal variations of pixel size, aspect ratio, and color
performance. Finally, since PEG WindowBuilder is based primarily on the
PEG library, it is possible to port and run WindowBuilder on non-PC
platforms.

The main PEG WindowBuilder window can be re-sized to take full
advantage of your screen real estate. In this case, the virtual frame buffer
that is always used by PEG under Win32 is re-sized to match the client
area of the outer window. This allows you to see your target windows and
dialogs at full size.

3.1.1 PEG WindowBuilder Project Files
All the work you do while running PEG WindowBuilder is saved in a binary
data structure called your PEG WindowBuilder Project. This data structure,
Swell Software, Inc. PEG WindowBuilder™ 27

PEG WindowBuilder™
when saved to disk, is your PEG WindowBuilder Project file. PEG
WindowBuilder project files have the extension “.wbp”.

The project file accurately maintains information about the source files,
target system, images, strings and fonts, etc.. used by your application
program. You can save your work at any time, and later re-open the project
file and modify your target screens.

 Project Path Information
All project file path information, such as the location of image files
referenced by your project, is maintained in a relative path format. This
means you can easily copy your PEG WindowBuilder project files from one
computer to another as long as you also copy all related font and image
files and maintain the same sub-directory structure for your project (if any)
in all cases.

Optionally, if PEG WindowBuilder does not find a required image or font file
using the relative path information, PEG WindowBuilder always attempts to
find the file in the directory containing the PEG WindowBuilder project. This
makes it possible to “package” a project and the supporting image and font
files in any common directory. PEG WindowBuilder will find the image and
font files even if the relative path information is incorrect, or if the file
resides in the same directory as the project itself.

3.1.2 Source Output Files
The goal of PEG WindowBuilder is to produce C++ source files, ready to
compile and run on your target system. All of the layout, property settings,
images, fonts, etc., you use while running PEG WindowBuilder will at some
point be exported in the form of C++ source files.

These source files contain standard C++ source code that, when compiled
and linked with the PEG library, can be run on your target system. These
source files may be one of three types: C++ class definitions, image file
data structures, or string table data. Each C++ source file created by PEG
WindowBuilder has the extension ‘.cpp’.

For most .cpp source files, PEG WindowBuilder also creates a
corresponding header file. These header files contain class prototypes,
message definitions, control IDs, string IDs, and other definitions required
for your application software to compile and run.
28 PEG+ Development Toolkit Manual Swell Software, Inc.

Overview
Each top-level module in your PEG WindowBuilder project will generate
one C++ source module and one corresponding header file. These files
contain the PegWindow derived classes which constitute your application
screens.

The source code created by PEG WindowBuilder contains both the object
initialization code required to create the window or dialog under
construction, and the message handling functions required to process any
signals enabled for individual controls. While it is your job to insert the
actual signal handling code, PEG WindowBuilder creates a framework for
you complete with the individual signal case statements.

If you use BMP, GIF, JPG, or PNG images in your project (described in
detail in a later section), PEG WindowBuilder will also produce a single
image file containing all images added to the project. This is a 'C' format
source file containing data structures defining each of the .bmp, .gif, .jpg
and .png images you have added to your project and will be using on your
target system.

3.1.3 Screen Layout
When you run PEG WindowBuilder for the first time, you will see the screen
shown below. This is the default appearance of the PEG WindowBuilder
application.
Swell Software, Inc. PEG WindowBuilder™ 29

PEG WindowBuilder™
The PEG WindowBuilder environment contains three main windows. These
windows are the Project window, the Properties window, and the
Target window. The Project window is where you can modify global
configuration settings, maintain the source files included in the open
project, and command PEG WindowBuilder to perform various operations
affecting the entire application program. The Properties window displays
various properties and style settings for a selected graphical element. This
window changes to the “preview mode” when the Project tree Images or
Fonts tab is selected, providing a preview of the selected image or font. The
Target window provides true WYSIWYG emulation of the target system
display screen.

Each of these three main PEG WindowBuilder windows will be described in
detail in the following sections.

3.2 The Project Window
The PEG WindowBuilder project window is where all information global to
your project is maintained. A project consists of any number of source files
and associated classes, along with fonts, images, and strings used by your
system. While it is possible to use multiple project files for a single system,
this is discouraged since there is no way in this case for PEG
WindowBuilder to prevent the duplication of source code or data.

The Project Window Source view displays a tree structure of your top-level
windows and each of their child controls. This is the default view you will
want to use while creating and editing a new window. To modify the
properties of any graphical element, you can select the element either in
Project Window Source view, or, if the element is visible you can select the
element directly by clicking on it in the Target screen window.

Internally, the Project window correlates directly to and continuously
updates the PEG WindowBuilder project file, which has the file extension
‘.wbp’, which stands for WindowBuilder Project. The project file contains
information about the source files included in your project, the class names
and types contained within each source file, the fonts used by your project,
etc. Many operations (for example changing the target screen resolution),
in addition to affecting the Target window, are also recorded in the ‘.wbp’
project file. The project file is not used or included in your system software,
but is used only by PEG WindowBuilder. Still, your project file is so
important we recommend you make a backup or tagged version of your
30 PEG+ Development Toolkit Manual Swell Software, Inc.

Project Window Menu Commands
PEG WindowBuilder project file every time you make a tagged version of
your system software.

The Project window contains a command menu, along with a PegNotebook
control. The PegNotebook tabs are titled Source, Images, and Fonts. We
will begin by describing each of the project window menu commands,
followed by a description of each of the notebook pages.

3.3 Project Window Menu Commands
 Configure|Directories
This command causes the following dialog window to be displayed:

This dialog window allows you to specify the complete path for your source
files, include files, and image files. The Source Files directory indicates
where the source files generated by PEG WindowBuilder will be saved. The
Header Files directory indicates where the header files generated by PEG
WindowBuilder will be saved. This directory can be the same directory as
the source files directory if desired.

The Image directory indicates where the image file produced by PEG
WindowBuilder should be placed on your hard drive. The name of this
image output file is specified in the Image File Name field. The BMP, GIF,
PNG, and JPG images you incorporate in your project may reside at any
location on your system or network; however, for ease of transferring PEG
Swell Software, Inc. PEG WindowBuilder™ 31

PEG WindowBuilder™
WindowBuilder project files, it is usually best to place all of your project
images into a common directory.

The String Filename field allows you to specify the name of the PEG
WindowBuilder output file which will contain your project string data. There
are actually two output files for string information; one contains the literal
string table, and the other is a header file containing the string IDs for each
string. Both of these files will have the filename specified in the String
Filename field, however the literal string table will have the extension .cpp
and will be saved in the Source directory, while the associated header file
will have the extension .hpp and will be saved in the Include directory.

The Backup directory indicates where PEG WindowBuilder will save
backup copies of files before updating them. Backups are created for all
source, image, string, font, and project files. To disable file backups, set the
Backup directory to a NULL string. It is NOT recommended you disable file
backups.

 Configure|Target
This command invokes the following dialog window, which is used to
control the appearance of the Target window:
32 PEG+ Development Toolkit Manual Swell Software, Inc.

Project Window Menu Commands
The H-Res field allows you to specify the horizontal resolution, in pixels, of
the target screen.

The V-Res field allows you to specify the vertical resolution, in pixels, of the
target screen.

The color-depth selections are used to configure the appearance of the
Target window. You can select 1, 2, 4, 8, 16, or 24-bpp. In addition, for 16-
color screens you can specify either color or grayscale appearance, and for
256-color sreens you can choose either a palette mode, a packed 3:3:2, or
ARGB 4:4:4:4 mode.

 Configure|Languages
This command invokes a dialog window that allows you to specify the
number of languages supported by the system software and the character
encoding used for string storage. This in effect determines the layout of the
String Table that will be generated by PEG WindowBuilder, and determines
how strings will be entered when new objects are created that display text
or string data.
Swell Software, Inc. PEG WindowBuilder™ 33

PEG WindowBuilder™
You will be prompted to select the language associated with each column
of the string table. You choose a language by selecting the appropriate 2-
letter language abbreviation from the available list. For instance, if you
wanted English and German languages in your string table, you would
select “en” for the first language and “de” for the second. The first language
is the default language used at the start of your PEG application.

If your application does not require support for multiple languages, or if, for
any reason do not wish to maintain your string data in the PEG
WindowBuilder string table, you can de-select the “Enable String Table”
checkbox on the language configuration page.

 Configure|Remote
This command allows you to display the contents of the target screen
window in a secondary Microsoft Windows window. This feature is used
when the target output device can be driven by a second video card
installed in the PC on which PEG WindowBuilder is running. Under certain
Windows platforms, a second video card is utilized as an ‘extended
desktop’. This capability allows you to drag the remote view window to the
second video display, and view your screens on the target display as you
create them.

Note the remote view window is limited to drawing only the portion of the
target screen which is visible in the target window. This means you must
resize your WB window large enough to see the entire target screen in
order to see the full window on the second display device.

 Project|New
This command creates a new PEG WindowBuilder project file. The project
file will initially contain only the default image file, and will use the default
Target window configuration.

 Project|Open
This command is used to open a previously saved PEG WindowBuilder
project file.

 Project|Open Recent
This command is used to open a recently edited project file.
34 PEG+ Development Toolkit Manual Swell Software, Inc.

Project Window Menu Commands
 Project|Save
This command is used to save the current project file. Note the associated
source files are not updated, rather only the binary project file is saved to
disk.

 Project|Close
This command is used to close the current project file. If the project file has
been modified you will be prompted to save your changes before the
project is closed.

 Project|Add Module
This command adds a new source module to the current project. One or
more source modules must be added to a new project before you will be
able to edit anything using the target screen menu within PEG
WindowBuilder.

 Project|Import Module
This command allows you to import a source module from a second
WindowBuilder project. This facility is used to merge project files created by
separate developers working on a common project.

 Project|Add Image
This command adds a new image to the current project. Once an image
has been added, it can be applied to any PEG objects which support
bitmap images. The source for the image must be a .bmp (Windows or OS2
Bitmap) .gif (CompuServe GIF), .jpg (JFIF/JPEG), or .png (Portable
Network Graphics) file.

The Images page of the notebook must be selected for this command to be
active.

 Project|Copy Selected Module
This command instructs PEG WindowBuilder to make an exact copy of the
currently selected module and add it to the project. The user will be
prompted to specify the new file and class name for the new module.

 Project|Add Font
This command is used to add any number of custom fonts to your project.
Once a font is added, it can be applied to any text-related PEG object
simply by dragging the font from the preview window to the object that
Swell Software, Inc. PEG WindowBuilder™ 35

PEG WindowBuilder™
should be assigned the custom font. The input for adding a font should be a
font file created with the PegFontCapture utility program.

The Fonts page of the notebook must be selected for this command to be
active.

 Project|Generate Source|Current Source Module
This command instructs PEG WindowBuilder to update the current selected
source and include files to reflect changes in the current project. Before the
source files are updated backup copies are saved to the Backup directory,
unless this directory has been set to NULL.

 Project|Generate Source|All Modified Source Modules
This command instructs PEG WindowBuilder to update all source modules
that have been modified. Before the source files are updated backup copies
are saved to the Backup directory, unless this directory has been set to
NULL.

As you work within the Target window, the internal copy of the PEG
WindowBuilder project file is updated to reflect all of your changes. The
source code files for your project are NOT updated until the Project|Update|
Source command is invoked.

 Project|Generate Source|Generate Image File
This command instructs PEG WindowBuilder to re-process all input image
files, and save the resulting PegBitmap information to the Image File
Name in the source directory. Note the output image file is completely
regenerated each time an image update is performed. It is therefore not
advisable to manually edit the output image file, since any changes will be
overwritten by an image update.

 Project|String Table|String Table Editor
This command brings up the string table edit window. This window allows
you to define the literal strings and string IDs used for each language in the
system. The string table is further described in a following section entitled
The String Table.
36 PEG+ Development Toolkit Manual Swell Software, Inc.

Project Window Menu Commands
 Project|String Table|Generate String File in Source
Form
This command instructs PEG WindowBuilder to re-create the string data
table and associated string ID header file. Note this file is completely
regenerated each time the Update Strings command is issued, and it is
therefore not advisable to manually edit the generated string data files.

 Project|String Table|Generate Binary String Resource
File
This command instructs PEG WindowBuilder to save the string table and
fonts into a binary string resource file that can be loaded into an application
at runtime.

 Project|String Table|Export as Unicode Text File
This command instructs WindowBuilder to export the string data in a
Unicode text file format that can be opened and edited by any external
program that supports the Unicode text file format.

 Project|String Table|Import Unicode Text File
The command instructs WindowBuilder to read a Unicode text file and
import new string translations from the imported file. When executing this
command, WindowBuilder searches the imported file for StringID names
that match existing entries in the string table. When matching StringID
names are found, the literal string entries for each language are imported
into the WindowBuilder string table. Note the Unicode text file must be in
the exact format produced by WindowBuilder during the export operation
for this command to be utilized correctly. There is no standard format for
Export and Import of string data in Unicode text file format.

 Project|String Table|Export as XLIFF File
This command instructs PEG WindowBuilder to export the string data in the
XLIFF format that can be opened and edited by any external program
supports the XLIFF file format. XLIFF is a standard translation file format
based on XML. XLIFF is a primarily bi-lingual format, so you can only
export either one or two languages at a time.

 Project|String Table|Import XLIFF File
This command instructs PEG WindowBuilder to read an XLIFF file and
import new string translations from the imported file. When executing this
command, WindowBuilder searches the imported file for StringID names
Swell Software, Inc. PEG WindowBuilder™ 37

PEG WindowBuilder™
that match existing entries in the string table. When matching StringID
names are found, the literal string entries for each language are imported
into the WindowBuilder string table. Note that the XLIFF file must be in the
exact format produced by WindowBuilder during the export operation for
this command to be utilized correctly.

3.3.1 Working with Modules- The Source Page
PEG WindowBuilder organizes your application program, containing
possibly hundreds of unique application windows, into unique modules.
Each module corresponds to one window or dialog, and produces one
source file and one include file.

The Source page of the Project window notebook control contains a
PegTreeView depicting each of the modules included in the current project.
Each top-level node of the PegTreeView control represents a top level
class constructed with PEG WindowBuilder. If you expand a top-level node,
you will see the list of child objects that have been added to that module. If
you click on one of the child objects, that item will become selected inside
the Target window.

The Target Window always operates on the selected module. If no module
is selected, none of the Target Window editing commands are operational.
Therefore the very first thing you must do after creating a new project
is add at least one module to your project. How to do this is described
below, but it is important to remember the right-hand side of the program
window, the target window, is not operational until a module has been
added to the project and selected.

You can at any time create a new module by selecting the Project|Add
Module command. You will be presented with a dialog window shown
below, prompting you to enter the required information, after which the new
source module will be added to your project.
38 PEG+ Development Toolkit Manual Swell Software, Inc.

Project Window Menu Commands
The Filename field allows you to specify the output filename for the source
file PEG WindowBuilder will generate for this new module. Any valid
filename may be entered into this field. You do not need to specify an
extension, as PEG WindowBuilder will automatically write both a .cpp and a
.hpp file for this module.

The Class Name field allows you to specify the name of the new window
class you are creating.

The Base Name field allows you to specify what the direct base class of the
window is going to be. WindowBuilder recognizes 3 standard base classes
for top-level modules: PegDialog, PegDecoratedWindow and PegWindow.
However, if you are developing screens that are going to be based on some
other custom window class, you can put the name of that class here. This
will not affect the operations within WindowBuilder, but that name will be
used when the source code is generated.

The Parameters field allows you to specify any user-defined parameters
you would like to pass to the class constructor (in addition to the
parameters PEG WindowBuilder will always pass to the constructor). If you
desire to pass extra parameters, you should type them on this line exactly
as they should appear in the constructor prototype, i.e. Type-Name, Type
Name, etc., for each parameter.
Swell Software, Inc. PEG WindowBuilder™ 39

PEG WindowBuilder™
The Overrides group is used to tell PEG WindowBuilder which function of
the base class will be overridden by the class you are defining. Only two
options are supported by PEG WindowBuilder (although you can of course
add your own function overrides to the completed class). These are the
Message function and the Draw function, which you know by now as the
most commonly overridden of all PEG member functions. The default
setting of this field indicates that you will override the Message() function (to
catch signals from child controls) but will not override the Draw() function.
This is the most common situation.

The Absolute Position checkbox allows you to use an alternate form for
the class definition. Normally, PEG WindowBuilder produces a class that
accepts a left-top corner position as the first two incoming parameters. The
window and all child controls are positioned relative to this left-top position.
If desired, you can produce a class that is absolutely postitioned, i.e. there
is no left-top incoming parameters and the window are child controls use
absolute pixel positioning.

The Startup Window checkbox specifies this window will be the first
displayed when your application executes. When this checkbox is selected,
PEG WindowBuilder automatically writes the PegAppInitialize function in
this module such that this window is created and added to
PegPresentationManager during program startup.

When you have completed entering in the required information, a new
object of the selected type is created and displayed in the Target window,
and the new module is added to the source page tree view control.

To remove a source module and its associated objects from your project,
select the source module in the tree control and press the ‘Delete’ key on
your keyboard. Following confirmation, the source module is removed from
the current project. Note the actual source files corresponding to the
selected node are NOT deleted from your hard drive. PEG WindowBuilder
simply removes all information about the source file from the current
project.

To modify the parameters associated with a source module after the
module has been created, you can right-click with the mouse on the module
in the Source notebook page. This will bring up a dialog window allowing
you to change the module name, file name, and other module parameters.
40 PEG+ Development Toolkit Manual Swell Software, Inc.

Project Window Menu Commands
3.3.2 Working with Images- The Images Page
The second tab of the Project window notebook is named “Images”. The
Images Notebook page lists the BMP, GIF, PNG, and JPG image files
included in the current project. Similar to the Source page, this information
is presented in a PegTreeView. Each top level node of the tree is one
PegBitmap image that can be used in your application program.

Images are imported into your project by using the Project|Add Image
command on the menu bar while viewing the Images notebook page.
Images can be selected from any location on your local hard drive or
network drive. PEG WindowBuilder will maintain relative path information to
the image if the image is located on the same drive as the project file,
allowing you to easily move entire projects from one computer to another.

When an image is selected with the mouse or keyboard on this notebook
page, a preview of the image is shown in the preview window. The image
can be applied to a bitmap-based PEG control by dragging the image from
the preview window to the target control.

You can display any image on the image page by selecting the image, or by
using the up-down arrow keys to move up an down in the tree control. Each
image is displayed in the Preview window as it is selected, allowing you to
quickly scan through the images included in your project.

Images are deleted by selecting the image in the Image notebook page and
pressing the 'Delete' key. Any objects that had been using a deleted image
are re-configured to use a default bitmap.

When the Target window is being used to layout a new window or dialog,
PegBitmap images from the Images page can be directly dragged-and-
dropped onto PEG objects that support image display. For example, if you
have created a PegBitmapButton as a child of the current window or dialog,
you can simply drag a PegBitmap from the images preview onto the
PegBitmapButton. This action causes the PegBitmap to be assigned to the
PegBitmapButton. It is important to remember before you can drag an
image and drop it in the target window, you must add at least one
child object to the target window which is capable of displaying an
image.

When you assign an image to certain types of objects by clicking on the
image and dragging it to the object, PEG WindowBuilder will ask you if you
would like to re-size the object to fit the image. If you select yes, the target
Swell Software, Inc. PEG WindowBuilder™ 41

PEG WindowBuilder™
object is re-sized such that the image fits neatly within the object. If you
select NO, the image is centered within the client area of the target object
and the target object size is not modified. For other object types the resizing
is done without question since this is the only mode of operation supported
by that object type.

The operation of PEG WindowBuilder when generating the output image
file can be quite complex, depending on your target screen color resolution.
Take a deep breath before continuing!

If your target system supports 256 colors, PEG WindowBuilder will scan
each image in the project, create an optimal palette for displaying those
images, remap the image colors back to the optimal palette, RLE encode
each image, save the custom palette, and save each newly-encoded image
file in 'C' style source data structures.

For 16 color targets, the Update Images command is slightly less complex.
In this mode, WindowBuilder dithers each image to a fixed orthogonal 16-
color palette, RLE encodes the images for which this is memory efficient,
and saves the resulting bitmaps in 'C' style source data structures.

For 2 and 4 color targets, the Update Images command simply saves each
image in the selected format with optional dithering.

3.3.3 Working with Fonts- The Fonts Page
The Fonts page is very similar to the Images page. This page lists the fonts
which have been added to the project, and allows you to drag-and-drop
fonts onto specific objects.

When you first create a new project you will find two fonts listed on the
Fonts page. These are the System font and Menu Font. These fonts are
part of the PEG library, and are always available for you to use. Note you
are not allowed to delete these fonts from your project.

You can also add any number of additional fonts to your project and apply
them to any text-display gadget that is part of your interface. You must pre-
generate the fonts you will add to your project by using the FontCapture
utility program. PEG WindowBuilder is able to read the 'C' source files
produced by FontCapture and create PegFont data structures in memory
using these source input files. The result is you see exactly the same
appearance for your fonts as you will see on your target system.
42 PEG+ Development Toolkit Manual Swell Software, Inc.

Project Window Menu Commands
If you delete a font from your project which has been assigned to one or
more text objects, you will receive a warning indicating the font is being
used by one or more objects. If you delete the font anyway, the text objects
that were using the font will revert to the default font based on object type.

The operation of adding a new font to your project varies depending on
your language configuration settings (described in a later section). If the
current project is configured to use only ASCII characters without the String
Table, adding a new font is simply a matter of choosing a font file produced
by the FontCapture program.

 Composite Fonts and Reduced Fonts
If your project is configured to support multiple languages and Unicode, the
operation of adding and defining a font becomes more complex. This is due
to several factors, primarily the large number of characters (> 30,000)
which may be required for the support of multiple languages. For projects of
this language configuration, the following dialog is displayed when you
select the Project|Add Font command:

The Font Name field assumes the name of the source font for standard
(i.e. non-Composite, non-Reduced) fonts. For Composite or Reduced fonts,
PEG WindowBuilder will produce a completely new PegFont from the input
font data when the String Table file is generated. In this case, you can
assign any name to the new font by typing into the Font Name field.

Composite Fonts are fonts collections, produced and managed by PEG
WindowBuilder, containing multiple sub-fonts produced by the FontCapture
Swell Software, Inc. PEG WindowBuilder™ 43

PEG WindowBuilder™
program. Why are composite fonts needed? To overcome limitations in the
character set or alphabet included in most TrueType or BDF font files. In
many cases you will find it is impossible to obtain one single TrueType or
BDF font that contains all of the characters required by your application
program. For example, one TrueType font may contain the Latin and
Cyrillic characters, while another contains Kanji and Hangul. It is very rare
to find a single font which contains characters for many different alphabets.

In order to avoid re-assigning the font associated with every PEG object
when a language change is made, it is desirable to have a single font (or
multiple fonts of different sizes, each containing the same character set)
which contains all of the characters used by your application program. This
is the reason for Composite fonts, you can combine any number of sub-
fonts in to one “SuperFont” potentially containing all the characters from
every sub-font.

The true power of Composite Fonts is realized when combined with the
Reduce Font option. This option instructs PEG WindowBuilder to produce a
new PegFont wherein only those characters actually used by your
application strings are included in the new PegFont. This information about
which characters to include is obtained by examining all strings found in the
project String Table (described below).

By using the Reduce Font option, you can save a tremendous amount of
ROM storage for your fonts for languages with very large alphabets, such
as Asian languages.

If you select the Composite Font option, you can then select the
“Component Fonts” button to edit a table which defines each sub-font that
will be include in the composite font. This table is shown here:
44 PEG+ Development Toolkit Manual Swell Software, Inc.

Project Window Menu Commands
In the above example, several sub-fonts have been added to the
composition font to yield one “Super Font”. The composition font contains
characters from the Latin, Cyrillic, and several pages of CJK (Chinese-
Japanese-Korean) alphabetic characters.

For each sub-font you add to your composite font, the range of characters
used from the sub-font will default to the full range of characters contained
in the sub-font. Since it is possible several sub-fonts may contain
overlapping characters, you may need to edit the First Char/Last Char
ranges displayed in this table so each sub-font provides a non-overlapping
range of characters to the final composite font.

When you have completed defining the sub-fonts that will make up your
composite font, you simply close this table by pressing the Done button,
and after naming your composite font click the OK button on the Font
properties dialog.

You can return and re-edit your Composite font settings at any time by
right-clicking on the font name in the Font tree display. Note, however,
while you can change the component font list for a Composite font, you
cannot change a previously added non-Composite font into a
Composite font, nor can you change a Composite font into a normal
Swell Software, Inc. PEG WindowBuilder™ 45

PEG WindowBuilder™
font. Instead, you must delete the font from your project and re-add the font
using the desired settings.

For Unicode enabled systems using Reduced fonts, the Project|String
Table|Generate String File in Source Form command does far more than
simply write out your strings as C++ string arrays. The following operations
take place:

• Scans string tables for all languages, creating global table of required
glyphs.

• Re-scans all reduced fonts used by the application, saving only the
required glyphs.

• Write new font structures containing only the required characters or
glyphs.

• Create C++ wide-string arrays for each language supported.

3.4 The Target Window
The PEG WindowBuilder Target Window displays as accurately as possible
a representation of the target system display screen. This representation is
completely accurate in terms of pixel placement of graphical objects and
colors used by each object. The Target Window does not correct for
differences in aspect ratio (i.e. pixel squareness) between your PC screen
and your target screen.

When you create objects within the Target Window, you are actually
defining new instances of PEG objects. These objects are dynamically
constructed and added to the Target Window, and operate just as any
normal PEG objects. This is important to remember as you create your
windows and dialogs within PEG WindowBuilder, you are creating a
working PEG program. You can at any time interact with the objects you
have created, just as the end user of your system software will interact with
the final system.

The target window becomes active when a source module is selected in the
project window. If no source files are included in your project, you must first
create a new source module before you will be able to do editing in the
target window. When you create a new source module, a default object of
the type defined in the new source module is generated and is the initial
object displayed in the target window. After this step has been completed
46 PEG+ Development Toolkit Manual Swell Software, Inc.

The Target Window
you will be able to use the Target window to modify and/or add children to
the initially defined object.

3.4.1 Selecting Objects in the Target Window
Almost all selection and editing of objects in the Target window is done
using the mouse. When you click on an object in the Target window, a red
border is drawn around the object to indicate that the object has been
selected. You can re-size any object by dragging the dark border with the
left mouse button held down until the desired size is obtained.

You can move an object by either dragging a selected object with the
mouse, or by using the keyboard arrow keys.

Multiple objects can be selected by holding the <ctrl> key down while right-
clicking on additional objects. When multiple objects are selected, the
selection box expands to contain all selected objects.

3.4.2 Target Window Menu Commands
The target window menu commands always operate on the current
selected object. You should select an object or group of objects before
selecting one of the menu commands. The Target window menu
commands are:

 Add|Button
This selection brings up a sub-menu of common button objects. These
include:

• PegTextButton
• PegMLTextButton
• PegBitmapButton
• PegDecoratedButton
• PegCheckBox
• PegRadioButton
• PegSpinButton
• PegIcon

Selecting any of these commands adds an object of the selected type to the
current selected object. In this case, the current selected object would
usually be the top-level window or dialog, or possibly a PegGroup.
Swell Software, Inc. PEG WindowBuilder™ 47

PEG WindowBuilder™
 Add|Text
This selection brings up a sub-menu of common text display objects. These
include:

• PegPrompt
• PegVPrompt
• PegEditField
• PegTextBox
• PegEditBox

Selecting any of these command adds an object of the selected type to the
current selected object. In this case, the current selected object would
usually be the top-level window or dialog, or possibly a PegGroup.

 Add|Indicator
This selection brings up a sub-menu of indicator style gadgets. These
include:

• PegAnimation
• PegProgressBar
• PegCircularBitmapDial
• PegCircularDial
• PegFiniteDial
• PegFiniteBitmapDial
• PegColorLight
• PegBitmapLight
• PegLinearScale
• PegLinearBitmapScale

Selecting any of these command adds an object of the selected type to the
current selected object. In this case, the current selected object would
usually be the top-level window or dialog, or possibly a PegGroup

 Add|Slide|Scroll
This selection brings up a sub-menu of slider/scroll bar objects. This list
includes:
48 PEG+ Development Toolkit Manual Swell Software, Inc.

The Target Window
• PegSlider
• PegVertScroll
• PegHorzScroll

Note adding a Vertical Scroll or Horizontal Scroll using this menu command
adds a client area scroll bar. This is a user-defined scroll bar rather than a
scroll bar which acts to scroll the window client area. Normal non-client-
area scroll bars are added by adjusting the window properties.

 Add|Container
This selection brings up a sub-menu of container style controls, that is
controls which are used to contain or group other child gadgets. These
include:

• PegGroup
• PegComboBox
• PegVertList
• PegHorzList

 Add|Chart
This selection brings up a sub-menu of PegChart derived classes that can
be added to the current object. These include:

• PegLineChart
• PegStripChart
• PegMultiLineChart

 Add|Window
This selection brings up a sub-menu of PegWindow derived classes that
can be added to the current object. These include:

• PegWindow
• PegNotebook
• PegTreeView
• PegTable
Swell Software, Inc. PEG WindowBuilder™ 49

PEG WindowBuilder™
• PegSpreadSheet

 Custom
This command allows the user to rebuild the executable with their custom
objects and will appear in the list when PEG WindowBuilder is rebuilt.

 Edit|Properties
This command is now obsolete. This used to bring up the properties dialog
of whatever object is currently selected. That properties dialog is now
always present in the bottom left corner of the window.

The properties dialog is context sensitive depending on the type of object
which has been selected. In general you can adjust the border style,
system status flags, and style flags for a given object by selecting each
page of the properties dialog notebook control. Many object types have
additional settings which can be controlled using the properties dialog.

The properties dialog is also where you specify the text string associated
with many object types such as PegPrompt or PegString. For text-based
control types, the properties dialog extended properties page includes a
field labeled “Initial Text” which allows you to type in a string or, if the String
Table is enabled, select the string ID associated with an object. This string
ID is a member of the string table maintained by PEG WindowBuilder. You
can view and edit the string table by selecting the Project|String Table
command in the project window.

If you have disabled the use of the PEG WindowBuilder string table in the
Project|Configure|Language dialog, the String page of the properties
notebook allows you to directly enter the ASCII string used to initialize a
control.

 Edit|Copy
Copies the selected object or objects, including all status and style flags.
Only one object can be selected when the Edit|Copy command is issued,
however that object can have any number of children. When an object such
as a PegGroup is copied, and the PegGroup has a number of children, the
Group AND all of the group children are copied.

When this command is selected, PEG WindowBuilder automatically
changes the selection box to contain the parent of the current object. This
50 PEG+ Development Toolkit Manual Swell Software, Inc.

The Target Window
allows you to quickly copy and paste an object into the object’s parent,
which is the most common operation.

Likewise, you can select an object, copy it, and then select an entirely
different object to paste the copy into.

 Edit|Paste
This command pastes an exact copy of the copied objects into the center of
the selected object. PEG WindowBuilder automatically selects the parent of
the copied object as the target for the paste command. You can override
this operation by selecting any other parent before selecting the paste
command.

 Edit|Delete
This command deletes a selected object. A object must be selected to be
deleted, but a group of selected objects cannot be deleted.

 Layout|Align|Left

 Layout|Align|Right

 Layout|Align|H-Center

 Layout|Align|Top

 Layout|Align|Bottom

 Layout|Align|V-Center
This group of commands is used to evenly align any number of child
controls. Before activating this command any number of child controls
should first be selected using the method described above. The above
group of commands can then be used to exactly align the group of objects
as desired.

 Layout|Move To Front
This command adjusts the order in which child objects are added to the
parent. The Move To Front command makes the object that last object
added to its parent. This is useful for adjusting the tab-order of controls
added to a parent window.
Swell Software, Inc. PEG WindowBuilder™ 51

PEG WindowBuilder™
 Layout|Move To Back
This command adjusts the order in which child objects are added to the
parent. The Move To Back command makes the object that first object
added to its parent. This is useful for adjusting the tab-order of controls
added to a parent window.

 Layout|Equal Height
This command evenly adjusts the height for a group of selected objects.
The height will be adjusted to the largest height in the group of selected
objects.

 Layout|Equal Width
This command evenly adjusts the width for a group of selected objects. The
height will be adjusted to the largest width in the group of selected objects.

 View|Maximize
This command removes the entire lift panel to allow the user to get a full
view of the working window.

 View|Test Mode
This command places the target window in test mode. In test mode, all of
the PEG WindowBuilder windows are hidden, leaving only your newly
created window or dialog on the screen. While in this mode, your new
window or dialog will operate exactly as on the final target system, although
any message processing code you have added to the window or dialog will
not be operational from within PEG WindowBuilder.

While in test mode, you will not be able to select and edit objects. You can
exit edit mode by closing the window or dialog under test, or by pressing the
“Stop” button placed in the lower right hand corner of the screen.

If you have defined a product background image and hotspots (described
below), you can click on the product hotspots while in test mode to navigate
through your UI screens, fully simulating the operation of your interface
within the WindowBuilder environment.

 View|Zoom Scale
This command allows you to zoom-in on the target window. This is useful
when your target screen is very small and it is easier to do layout and
modification in an enlarged view of your target screen.
52 PEG+ Development Toolkit Manual Swell Software, Inc.

The String Table Editor
 View|Product Image|Select Image
This command allows you to select a background image to wrap your target
screen. This can give you a good representation of the “look and feel” of
your final device. Any background image may be selected, however you
must take care to insure the background image is scaled correctly to fit the
target screen. In other words, the background image should include a pixel-
for-pixel screen area. You can adjust the actual position of the
WindowBuilder screen display within this background image.

 View|Product Image|Edit Hotspots
When a background product image has been defined, this command brings
up the hotspot editor dialog. This dialog allows you to define areas on the
product which will produce input messages into the PegMessageQueue. A
common example would be an product which provides the end user with
up/down/right/left and select type nagivation keys. You can use the hotspot
editor to define the areas within the background image the are selected to
produce each of these input message types.

Hotspots are utilized when you use the View|Test Mode command within
PEG WindowBuilder. In this mode, you can click on the product
background image hotspots to navigate through your UI. This allows you to
fully excercise each screen of your UI design without ever producing source
code or compiling to produce your actual PEG executable program.

 View|Product Image|Remove Background Image
This command is used to remove a previously assigned product
background image.

3.5 The String Table Editor
If you have enabled the use of string tables in the PEG WindowBuilder
Configure|Languages dialog, PEG WindowBuilder will maintain a table
containing all strings, for all languages, used by your application program.
In this environment, all PegTextThing derived classes are constructed
using StringID information, rather than literal strings. This allows your
system software to easily convert between different supported languages.

The String Table is composed of an array of literal strings, a two
dimensional array of string pointers, and an enumeration of string ID
values. String ID values are just indexes selecting the correct row from the
two dimensional table. Each table column is associated with one of the
Swell Software, Inc. PEG WindowBuilder™ 53

PEG WindowBuilder™
supported languages. If your application supports only one language, the
String Table is simply a single list of literal strings, an array of string
pointers, and an associated String ID enumeration.

The correct string table column is selected by the current language, which
is maintained in a static member variable of the PegTextThing class. This
variable should be loaded with one of the enumerated language names
when the active language is selected by calling the
PegTextThing::SetLanguage() function. The default language is the first
language configured in the Configure|Languages dialog box.

The string table is saved to the filename specified in the Configure|
Directories dialog. The enumeration of the language names, and the string
table IDs, are saved in the corresponding String Table header file. Each
source file that uses the String Table must include the String Table header
file in order to resolve the string IDs and language names. This include is
added to each source file generated by PEG WindowBuilder.

The String Table is edited by selecting the Project|String Table command
on the Project window menu bar. This brings up the string table edit
window, shown here.
54 PEG+ Development Toolkit Manual Swell Software, Inc.

The String Table Editor
 The String Table
The left hand side of the String Table Editor window displays a
PegSpreadSheet object containing each of the strings used in your system.
Each row of the table corresponds to a StringID, and each column of the
table corresponds to a supported language. The enumerated language
names are displayed as the table column headers.

The String Table can be displayed in a two-column or three-column format.
You can change the format by right-clicking over the spreadsheet and
selecting the desired format in the pop-up menu.

You can also sort the string table entries by using the right-click pop-up
menu. This menu provides command to shift the selected entry up or down
in the string table.

The first language listed on your language configuration page is your
project’s “Reference Language”. This language will be usually be English,
Swell Software, Inc. PEG WindowBuilder™ 55

PEG WindowBuilder™
but may be any language desired. The reference language is important
because this is the language you are working in when you work in the target
window. This is also the language which is always displayed when you view
the table in three column mode.

 String Edit Fields
The right-hand side of the String Table Editor window displays a series of
fields for editing the selected string. The first field, the ID field, is where you
can modify the string ID name, which is the name associated with each
string ID. This name will be included in your string file as an enumerated
list, and you will use this name in your application software when you want
to refer to a particular string. You can edit this name simply by typing on the
keyboard.

You can select the font to use while working in the string table using the
drop-down list box labeled Font. Once you select the font to use in the
String Table Editor, PEG WindowBuilder remembers which font you have
selected each time you call up the editor window. For example, if you have
created a composite font supporting all of your languages, you can specify
that this font should be used in the String Table Editor. Each time you call
up the String Table Editor, this is the font which will be used unless you
select a different font.

When you select a font to use in the String Table Editor, the font is
displayed in the grid in the lower-right portion of the screen. This grid is
more than a display, but actually allows you to select characters while
editing the current string. This is required since for many languages you
may not be able to simply type string values since the language alphabet
contains characters which are not included on your keyboard.

The second field on the right side of the String Table Editor window is the
string literal edit window. This field displays the string literal value using any
of the fonts which are part of your project.

There are three methods for editing strings displayed in the string literal edit
window. First, if the current language alphabet is supported by your
keyboard, you can simply type the string value. Second, you can simply
click on characters displayed in the font viewer window. As you click on the
characters, they are inserted into the current string at the current insertion
point. Finally, you can type the JIS or Unicode encoding value for the
character you wish to insert. For some people who know the encodings for
56 PEG+ Development Toolkit Manual Swell Software, Inc.

The String Table Editor
common characters, this is faster than finding the characters in the font
display window.

As you edit the selected string, the width of the string (in pixels) is displayed
in the Width field. This can be useful to insure the string for every
language will fit properly in the display area in which the string is used.

The Notes button brings up a small note editor window, shown here:

Notes are useful for including additional information about each string,
usually for the benefit of translators who will translate your English or
reference language strings into strings for the other languages.

As noted previously the first language you configure in the Configure|
Languages dialog is described as your Reference Language. The
reference language is the language you will use while working in the Target
window, and it is the language you will always view when the String Table
Editor is in three-column mode. The reference language will usually be
English, but may be any supported language.

The reference language is also important in the event a translation is not
required or available for certain strings in your application. For example,
let’s suppose the string “California” is included in your application. Since
this is a proper name, the name of a State, translation to another language
is usually not required. Therefore, you would leave the string blank for
every other language except your reference language, English. When PEG
WindowBuilder generates your StringTable file, any blank or NULL strings
for secondary languages are automatically filled in with the reference
language string pointer. In other words, for every other language in your
application, the “California” string entry will be filled with a pointer to the
Swell Software, Inc. PEG WindowBuilder™ 57

PEG WindowBuilder™
reference English string “California”, you do not need to duplicate this
string for every language.

3.5.1 Merging String Tables
The Merge… button on the String Table Editor window invokes a series of
dialog that walk you through the merge process. In order to understand the
reason for the merge operation, we need to examine the life-cycle of a
typical multi-language project development.
Step 1)The system developers define the initial string table. The total

number of languages and the language names are defined using
the Configure|Languages dialog.

Step 2)The String ID names and the Reference Language (English) strings
are initialized for all strings in the application using the String Table
Editor.

Step 3)The PEG WindowBuilder Project file, along with the PEG
WindowBuilder executable program, are distributed to translators
who will each fill in one column of the string table. These translators
may reside at the same location, but often reside all around the
globe.

Step 4)The translators return PEG WindowBuilder project files to you, and
the returned project files each have one or more additional columns
of the string table filled in with translated strings.

The problem should now be obvious: how do you get the translated strings
from all of those different translators back into a common project file??
Enter the Merge operation. The Merge operation will merge strings for
selected languages from a second project file into the current project file.
The process is actually very simple as you are guided step-by-step through
the merge process. When PEG WindowBuilder performs the merge, it looks
for matching string ID names in the secondary project. For each matching
string ID name, if the selected language in the secondary project has a non-
NULL string value, that string value is copied into the current project for that
specific string ID and language.

3.5.2 Exporting the String Table
The String Table data can be written out to a C++ source file at any time by
selecting the Project|String Table|Generate String File in Source Form
command. This command causes PEG WindowBuilder to write a string file
containing all of your String Id Names, your actual literal strings (Hex-
Unicode encoded), an array of string pointers for each language, and a
58 PEG+ Development Toolkit Manual Swell Software, Inc.

Source Code Generation
function and macro for finding unique strings at run time. The string file is
completely re-written each time the command is issued, therefore you
should never manually edit the string file.

3.6 Source Code Generation
The end goal of running PEG WindowBuilder is to produce the C++ source
code you will use to display your application screens. You will need to edit
and add your own program logic to the source files produced by PEG
WindowBuilder. Most significantly you will need to add program logic to
catch signals generated by your child controls. You may also need to make
any number of other additions and changes to the source files produced by
PEG WindowBuilder.

At the same time, you will want to be able to run PEG WindowBuilder again
and again to modify your screens and update the source files without losing
any of your hand-coded changes. This is not difficult to do as long as you
understand how WindowBuilder updates your source files and follow a few
simple rules.

When you instruct PEG WindowBuilder to produce/update the source files
using the Project|Update|Source command, PEG WindowBuilder first looks
to see if the source file already exists. If it does, PEG WindowBuilder enters
“Merge Mode”. In Merge Mode, PEG WindowBuilder is very careful not to
lose any of your custom modifications. The rules are this: PEG
WindowBuilder will find and re-write the section of the source file delimited
by the start of the constructor and the comment line which reads:

/* WB End Construction */

To avoid losing your changes, never make any manual edits between
the start of the class constructor and this comment delimiter.

PEG WindowBuilder also searches for the Message() member function, if
present, and updates this function to contain any new PEG_SIGNAL cases
not already present. PEG WindowBuilder will NOT remove case statements
from your Message function, even if the control which generated a specific
PEG_SIGNAL is no longer a child of the window. In short, deleting obsolete
sections from your source files is your responsibility, in the interest of safety
PEG WindowBuilder will not delete source lines from your Message
function.
Swell Software, Inc. PEG WindowBuilder™ 59

PEG WindowBuilder™
Any and all code outside of the class constructor and Message function is
maintained without modification during the source code merge process.
That is, any other editing you have done will be preserved entirely during
the source file update process.

3.6.1 Pointer Name Control
You can control the type and name of the pointer (if any) used when each
child object of the top-level window is created. Controlling how pointers are
used is done by adjusting the basic properties, using the properties dialog,
for each child control. There are four types of pointers used by PEG
WindowBuilder during code generation: Member pointers, Automatic
Named pointers, Automatic Temporary pointers, and Implicit pointers. We
will describe each type below and describe how you can control the use of
pointers in the generated source code.

 Implicit Pointers
The most basic pointer type is the implicit pointer. An implicit pointer is used
by PEG WindowBuilder when no references to an object are made after the
object has been created and you have not chosen to create a member or
automatic pointer. In this case PEG WindowBuilder does not need to keep
the address of the newly created child in any variable, and therefore uses
an in-line, “implicit” pointer to pass the child’s address to the Add() function.
The following is an example of source code produced by PEG
WindowBuilder which uses an implicit pointer:

Add(new PegPrompt(ChildRect, “Text”));

Note the return value from the new operator is not saved, but is passed
directly to the Add() function. When no other pointer type is needed, this is
the default pointer style used by PEG WindowBuilder.

 Temporary Pointers
Next up in the PEG WindowBuilder source code generation process is the
temporary pointer. This type of pointer is used by PEG WindowBuilder
when reference to an object is required after it has been created, but you
have not requested an automatic or member pointer be created. In this
case, PEG WindowBuilder will create a temporary automatic pointer to hold
the address of the child object instance. The temporary pointer is called
“Automatic” because it is created on the execution stack, i.e. space for the
pointer is allocated automatically by the compiler on the stack, and the
space is destroyed when the function (in this case the class constructor)
returns.
60 PEG+ Development Toolkit Manual Swell Software, Inc.

Source Code Generation
A common example of this might be a PegGroup container added to the top
level window. During code generation, PEG WindowBuilder needs to
maintain the address of the PegGroup instance while creating and adding
child controls to the group. PEG WindowBuilder will default to using a
temporary pointer for this purpose, which produces source code with the
following appearance:

PegThing *pChild1;

pChild1 = new PegGroup(…); // keep temp pointer to object

pChild1->Add(…); // add second-generation children to object
pChild1->Add(…); // ditto

Add(pChild1); // add object to top-level window

PEG WindowBuilder will always use the generic names pChildx for
temporary automatic pointers. PEG WindowBuilder will reuse the
temporary pointers for new objects if needed and available during code
generation. In some cases, multiple temporary pointers are required
simultaneously, in which case PEG WindowBuilder will create and use as
many temporary object pointers as are needed.

 Automatic Named Pointers
Similar to automatic temporary pointers, Automatic Named pointers are
created on the execution stack and only exist during the class constructor.
Named pointers are created by typing a name into the “Pointer Name” field
in the object properties dialog basic properties page and unchecking the
“Member Pointer” box. Note the name must be a valid C++ variable name
or your compiler will flag an error when you compile the generated module
(no name checking is done by PEG WindowBuilder!).

Automatic Named pointers are very handy to you, the developer, when you
want to modify the object created by PEG WindowBuilder in ways that are
not supported by the PEG WindowBuilder properties pages. An Automatic
Named pointer is used only for the object in question, and more importantly
is still valid and available to you at the end of the class constructor (i.e. after
the “/* WB End Construction */” marker). This allows you to further modify
an object by calling class member functions via the named pointer prior to
returning from the class constructor.

Named pointers also help to improve the syntax and eliminate casting when
PEG WindowBuilder must call member functions of a class. For example, if
Swell Software, Inc. PEG WindowBuilder™ 61

PEG WindowBuilder™
PEG WindowBuilder must call the “SetFont” function for a PegPrompt, it will
cast a temporary automatic pointer as follows:

((PegPrompt *) pChild1)->SetFont(…);

If an automatic named pointer is used, it will be a pointer to the desired type
and no casting is required:

PegPrompt *MyPrompt;

MyPrompt = new PegPrompt(…)
MyPrompt->SetFont(…);

This can greatly improve the appearance and readability of the constructor
source code produced by PEG WindowBuilder.

 Member Pointers
The final pointer option is the member pointer. A member pointer is a
pointer to a child object which is maintained as a member variable of the
parent window class. This pointer is initialized in the class constructor and
used at all times to reference the child object. You can instruct PEG
WindowBuilder to create a member pointer for a child object by checking on
the “Member Pointer” checkbox in the properties dialog and typing a name
in the “Pointer Name” field. Note the name must be a valid C++ variable
name or your compiler will flag an error when you compile the generated
module (no name checking is done by PEG WindowBuilder!).

3.7 Example 1: Creating a simple PegDialog
window
In this example, we will walk step-by-step through the procedure required to
create a new window builder project, create a new source module, and
create a simple PegDialog derived window. This example takes about 15
minutes to complete.

 The Example Dialog:
These instructions will take you systematically through the process of
creating the simple dialog window shown below. In the following
instructions, we will call this the ‘reference dialog’:
62 PEG+ Development Toolkit Manual Swell Software, Inc.

Example 1: Creating a simple PegDialog window
You may find it helpful to refer to the appearance of this dialog as you follow
the instructions below.

3.7.1 Creating and Configuring a Project:
Under MS Windows 95/98/NT/2000, start the PEG WindowBuilder
executable program, pwinbld.exe. You should see the screen shown
here
Swell Software, Inc. PEG WindowBuilder™ 63

PEG WindowBuilder™
:

This is the PEG WindowBuilder startup screen. This screen allows you to
quickly resume work on a previous project, or begin a new project. For this
example, we want to begin a new project, so you should select the New
Project button.

 Step 1- Configure Project and Directories
Whenever you begin a new project, PEG WindowBuilder asks you to enter
some basic project information such as the project name and where to keep
the project file on your computer. PEG WindowBuilder presents the
following dialog window to allow you to enter this information:
64 PEG+ Development Toolkit Manual Swell Software, Inc.

Example 1: Creating a simple PegDialog window
In the project name field of this dialog, type “DemoProj”. Your project file
will be saved to this name. In the project path field, type any valid drive and
directory name. If the directory does not exist, PEG WindowBuilder will
create it when you save your project.

You can also enter your company name and address, although this is not
required. If you do enter this information, PEG WindowBuilder will include
copyright notifications in the header area of the generated source files.

After you have entered in the required information, select the “OK” button.
You are now presented with the following screen:
Swell Software, Inc. PEG WindowBuilder™ 65

PEG WindowBuilder™
This dialog allows you to tell PEG WindowBuilder where you would like to
save the PEG WindowBuilder output files. For this demo, you only need to
enter in valid path names for the Source and Include directories. You can
leave these at the default settings, or enter in alternate directory names
where you would like to save the source code produced by PEG
WindowBuilder. It is acceptable to enter the same directory name for both
source and include files. After you have entered the Source and Include
directory names, select the “Apply” button. You will now see the screen on
the following page:
66 PEG+ Development Toolkit Manual Swell Software, Inc.

Example 1: Creating a simple PegDialog window
This is the default appearance of PEG WindowBuilder. PEG
WindowBuilder initially contains three main windows. These are the
Project window (upper left), the Target window (right) and the Preview
window (lower left).

The project window maintains and displays information about all of the
source files, images, and fonts which are part of your PEG WindowBuilder
project. The Target window provides an exact representation of your target
system display screen. The Preview window allows you to view the images
(i.e. bitmaps) and fonts you have added to your project.

You should now see that the Project window displays the name of the
project, i.e. “DemoProj” as the top node in the project source tree.

When a new project is created, the target window begins to display the
target screen. The default target screen resolution is 640x480 pixels and
uses 256 colors. This can be modified to any supported color depth and
Swell Software, Inc. PEG WindowBuilder™ 67

PEG WindowBuilder™
resolution using the Configure|Target command. For this example, you
should leave the target screen configuration at the default settings.

 Step 2- Add a new Module
You are now ready to create a new module. Each PEG WindowBuilder
module contains a unique class declaration and class implementation.
Select the Project|Add Module menu command. You will now see a
dialog asking you to enter information about the new class to be created,
shown here:

In the filename field, type “DemoDlg”. This is the name that will be
assigned to the source and header files produced for this class. In the
Class Name field, type “DemoDialog”. This name will be assigned to the
generated class. In the Parameters field, type “int iCount”. Any
information typed into the parameters field is passed directly to the dialog
constructor. While this demo will not actually use the incoming parameter, it
is useful to see how this affects the generated source code.

Click on the Startup Window checkbox to turn it on. This will cause PEG
WindowBuilder to generate a default PegAppInitialize function for us which
will display our example window. Leave the remaining dialog fields at their
default values and select “OK”.

Click on the DemoDialog icon, and the target window now displays the
default dialog window which has been created.
68 PEG+ Development Toolkit Manual Swell Software, Inc.

Example 1: Creating a simple PegDialog window
3.7.2 Editing the Module:
 Step 3- Modifying position and size.
You can select the default dialog by left clicking with the mouse anywhere
in the dialog window. When the dialog is selected, a dark box is drawn
around the dialog window to indicate it has been selected. You can now
use the left-mouse button ‘click-and-drag’ operation to move the dialog
window, and you can use the arrow keys on your keyboard to move the
dialog window to any position on the target screen.

If you position the mouse pointer over the dark border around the dialog,
the mouse pointer will change shape to indicate you can also re-size the
dialog. You should experiment with moving and resizing the dialog until you
are familiar with these operations.

Resize the dialog window under the Width field at the bottom of the screen
which is approximately equal to “354”, and the height is roughly “232”. You
don’t have to be exact, but these are the approximate dimensions of the
reference dialog window we are creating in this example.

 Step 4- Modifying Properties
You can also set the position, size, and other properties of the dialog
window by selecting the dialog and using the properties panel in the lower-
left portion of the window. If the properties panel is not visible, make sure
that the “Source” tab is selected in the project window.

The first properties page is called the “Basic” properties. These properties
are always available, no matter what type of PEG object you are working
with. In this case we can leave the Basic properties at the current settings.

Now select the “Extended” tab. This page of properties allows you to adjust
parameters that are specific to the dialog window. In the Title field, type
“Demo Dialog Window”. This assigns the dialog window title. Now
select the “Apply” button to apply your changes.

 Step 5- Add a PegGroup to the Dialog
Make sure the dialog window is selected, and then select the menu
command Add|Container|PegGroup. This will add a new PegGroup
control to the dialog window. The Add menu command always adds the
selected object type to the previously selected parent. In this case, the
parent is the dialog window and the new object type is a PegGroup control.
Swell Software, Inc. PEG WindowBuilder™ 69

PEG WindowBuilder™
Use the mouse and arrow keys to size the group control so it is similar in
position and size to the reference example. Edit the group properties by
going to the Properties panel in the lower-left corner, and on the Extended
properties page enter “Select Day” in the “Initial Text” field. This assigns
the text value which is displayed as the group title. Select “Apply” on the
properties dialog and you will see your changes take effect.

 Step 6- Add Radio Buttons to the Group
Once you have the PegGroup in position, insure you select it by left-clicking
inside the group with the mouse. Now select the Add|Button|
PegRadioButton command. Following this, a new PegRadioButton is
added to the center of the PegGroup. This is the general operation of the
Add command, in that the selected type of object is created with a default
size and positioned at the center of the object’s parent area.

Use the arrow keys to move the radio button to the upper left corner of the
group box, and then edit the radio button properties. On the Basic
properties page, enter “IDRB_MONDAY” in the ID field. On the extended
properties page, enter “Monday” in the Text field, and when you are done
select “Apply”. The ID value is the value you will use to identify the radio
button during program operation. This value is saved in a list of enumerated
control IDs in the generated class header file.

Repeat the above procedure to add the two additional radio buttons. Make
sure you select the PegGroup parent object before adding each radio
button, to insure that the radio buttons are children of the group object. For
these buttons, assign the first the ID value “IDRB_TUESDAY” and the
Text “Tuesday”. For the last radio button, assign the ID value
“IDRB_WEDNESDAY” and the text “Wednesday”.

You can use the mouse and array keys to position the radio buttons in the
approximate order and position you want them to be in. You don’t have to
be exact, we will use the Layout commands to insure that the radio buttons
are perfectly aligned.

 Step 7- Using Layout commands.
To insure that the radio buttons are equally aligned, we can use the Layout
commands. The layout commands effect collections or groups of objects. In
this case, we want to select all three radio buttons before using layout
command.
70 PEG+ Development Toolkit Manual Swell Software, Inc.

Example 1: Creating a simple PegDialog window
To select the three radio buttons, first select the top radio button with the
text value Monday by left-clicking on that radio button. Now hold down the
<ctrl> key and left click on the “Tuesday” and “Wednesday” radio buttons in
turn. You will see the selection box grows to enclose all three radio buttons.

Now we want to use the Layout|Align|Left command to align the left
edge of the radio buttons. After selecting this command, you should see the
radio buttons are all exactly aligned at the left border.

Note while you have multiple-objects selected, you can use the mouse and
arrow keys to move all of the objects as a group. Use the arrow keys now to
slide the three radio buttons into a position that “looks right”.

 Step 8- Add remaining children to Group.
You can add the two checkbox objects to the group by first selecting the
Group box, and then selecting the Add|Button|PegCheckBox
command. Position the checkboxes using the same methods described
above. Assign the first check box the ID “IDCB_HOLIDAY” and the Text
“Holiday”. Assign the second check box the ID “IDCB_WORKDAY” and
the Text “Workday”.

Again select the group box, and select the Add|Slider/Scroll|PegSlider
command. This adds a PegSlider control to the group box. Use the mouse
and arrow keys to position and size the slider control as shown in the
reference diagram. You do not need to assign any additional properties to
the PegSlider control.

 Step 9- Add PegTextBox
Click on an unused portion of the dialog window to select the window. Be
sure the dark border encloses the entire dialog window. A common mistake
is to click inside of the group box, in which case the group box is selected
rather than the dialog window. Now select the Add|Text|PegTextBox
command. A default size textbox is positioned at the center of the dialog
window. You will need to reduce the height of the textbox using the mouse
or properties dialog, and move the text box so it is underneath the group.
You can also use the properties dialog to enter an initial text value, such as
“Hello World”.
Swell Software, Inc. PEG WindowBuilder™ 71

PEG WindowBuilder™
 Step 10- Add TextButtons
Repeating the above procedures, click on an unused portion of the dialog
window, and then select the Add|Button|PegTextButton command to
add a new button to the dialog window. The button will again appear at the
center of the dialog, and you will need to use the mouse or arrow keys to
move the button into position.

Create the three buttons at the bottom of the dialog one at a time, repeating
the above process. Use the edit properties command to assign the Text
values “OK”, “Cancel”, and “Apply” to each button. Likewise, assign the ID
values “IDB_OK”, “IDB_CANCEL”, and “IDB_APPLY” to each button,
respectively.

You can use the Layout|Align|Top command to insure the buttons are
vertically aligned, and move them as a group until they are centered on the
dialog window.

You are now done creating the dialog window!!

3.7.3 Saving Your Work:
 Step 11- Save the project
At this point you should select the Project|Save command to save your
project. This will create the file “DemoDlg.wbp” in the directory you selected
in the Configure Directories dialog. Once you have saved your project, you
can later open it at any time and modify this dialog or add any number of
additional modules to the project.

 Step 12- Generate Source Code
Make sure the module “DemoDialog” is selected in the project tree (it
should be highlighted). If it is not, left-click with the mouse in the project
source tree or use the arrow keys to select the DemoDialog module. Now
select the Project|Generate Source|Current Source Module
command to create the C++ source files corresponding to this module.
After the source code has been generated, PEG WindowBuilder should
inform you the source or header file has been updated.

 Step 13- Close WindowBuilder
Select the Project|Exit command to exit the PEG WindowBuilder
application.
72 PEG+ Development Toolkit Manual Swell Software, Inc.

Example 2: An advanced PegDialog window
3.7.4 Examining the Source Code:
You can now open the source and header files produced by PEG
WindowBuilder with your favorite text editor. The generated .cpp file
contains the exact C++ source code required to construct the example
dialog window at run time, and the generated .hpp header file contains the
class declaration and ID enumeration necessary to complete the class
description. The source code file also contains a skeleton of the message
processing function you will edit to make your dialog do real work.

3.8 Example 2: An advanced PegDialog window
For this example, we will instruct PEG WindowBuilder to create a new
PegDecoratedWindow derived window class, and to generate an
overridden message handling function. We will also use the ‘Maintain
Pointer’ and ‘Send Signals’ options to make the dialog do useful work.
When you are done creating the window, you can actually compile the
source code and run the application! Be forewarned, this example takes
about 60 minutes to complete.

The final appearance of the new window is shown below:

In order to make the example more interesting, assume this window will
display a continuous time chart of some analog data value. For this reason,
we have provided the user with a PegSlider control to adjust the ‘Sample
Swell Software, Inc. PEG WindowBuilder™ 73

PEG WindowBuilder™
Rate’, Start and Stop buttons to start and stop the sampling process, and a
range of timestamp values that indicate how often the recorded data will be
saved to a permanent storage media.

We will also add a menu bar to the window. While this is not necessary for
this example, it gives us a good chance to demonstrate how you can create
and customize menus with PEG WindowBuilder.

 Step 1: Create a Project
Start PEG WindowBuilder and create a new project as in example 1. Name
this project ‘Example2’. Use the Configure|Directories command to set
both the source and include output directories to …\peg\wb\example2. This
will enable you to build the resulting application using the provided project
file.

 Step 2: Add a Module
Create a new module using the Project|Add Module command. Enter
exam2 as the file name, and enter ExampleTwo as the class name. It is
normally up to you to decide on the file and class names; however, we have
provided a project file and a version of the PegAppInitialize function which
will allow you to build and execute the window after you are done, so in this
case it is best to stick with the suggested names.

Before you click on the “OK” button, select the “PegDecoratedWin” button
in the Base Class group. This means your new window will be derived from
PegDecoratedWindow, rather than the default PegDialog. Leave the other
selections at their default settings.

 Step 3: Customize the Window
Use the properties dialog to modify the appearance of the window until it
resembles the reference example. You will need to select the ‘Color’ tab,
and set the PCI_NORMAL color. You will also need to select the Title Style
button on the Extended properties page, and turn off the “System Button”
and “Min/Max Button”. You should also type “Example Two” in the window
title field. On the basic properties page, set the window Height to 280
pixels, and the window Width to 350 pixels. Once you have done this, close
the properties dialog by selecting the “OK” button. You should now see the
window has the indicated fill color, and the size and title should match the
reference example.
74 PEG+ Development Toolkit Manual Swell Software, Inc.

Example 2: An advanced PegDialog window
 Step 4: Add the Menu Bar
Again enter the window properties dialog. On the Extended properties
page, select the “Menu Bar” checkbox. This adds a blank menu bar to the
window. Select the “Edit” button next to the Menu Bar check box, and you
will see the dialog window below:

This is the PEG WindowBuilder menu editor. The left-hand panel is a
PegTreeView control, which will show you all of your menu commands in a
convenient tree format. The right-hand panel contains several buttons you
will use to edit the menu bar.

For this example, we are going to create two top-level menu options, called
“File” and “Help”. Click on the “MenuBar” node of the tree (something
always has to be selected before the menu editing buttons are operational),
and then select the “Add” button. You are presented with a small window
which allows you to enter the menu “Caption” (the displayed menu text), the
menu item ID, and the menu item style.

Type “File” in the Caption field, leave the remaining fields at their default
value, and select “OK”. You now see the file menu item displayed in the
tree!
Swell Software, Inc. PEG WindowBuilder™ 75

PEG WindowBuilder™
Ensure the “MenuBar” tree node is still selected, and repeat the above
procedure to create the “Help” item on the menu bar.

Now we can create any number of submenus. Select the “File” node in the
tree, and add the following items:

The style settings are exactly the same as setting the different Style flags
when defining a PegMenuDescription. In fact, PEG WindowBuilder will use
the information you enter to generate the required PegMenuDescription in
source code format for you.

For this example we will not be using the MenuBar commands, so feel free
to experiment with the Menu Editor and modify the MenuBar settings.
Repeat the above procedures to add “About”, “Search”, and “View”
commands to the top level “Help” button.

When you are done, select the “Done” button, and close the properties
dialog by selecting “OK”. Your menu has now been added to the decorated
window. You won’t be able to actually view the sub-menus from within PEG
WindowBuilder, since selecting any non-client window object is intercepted
by PEG WindowBuilder to select the parent window. However, you can re-
open the properties dialog and edit the menu at any time.

 Step 5: Add the Child Controls
We are not going to detail each of the child controls, as by this time you are
probably becoming quite adept at adding new controls using the PEG
WindowBuilder menu commands. There are, however, a few things we
should point out to help you create a working window which looks like the
reference example.

The black window in the lower-left corner is a PegWindow, added with
Add|Window|PegWindow. We have modified the Frame style to be
‘Recessed’, changed the PCI_NORMAL color to black, and set the H-Scroll

Caption CHILD ID Style
Open IDB_OPENFILE AF_ENABLED
Close IDB_CLOSEFILE AF_ENABLED

BF_SEPARATOR
Exit IDB_CLOSE AF_ENABLED
76 PEG+ Development Toolkit Manual Swell Software, Inc.

Example 2: An advanced PegDialog window
mode to “Always”, which means the window will always display a horizontal
scroll bar.

The fields “Sample Rate” and “/sec” are PegPrompt objects.

The field which displays the Sample Rate, and shows the value “500”, is
also a PegPrompt object. This object is important for this example so we
will detail its configuration more completely.

In order to obtain the appearance shown, you must first disable the
“Transparent” style in the prompt Extended properties. When the
Transparent style is enabled, the prompt always assumes the background
color of its parent, so setting the prompt color has no effect. We have also
set the PCI_NORMAL color to black, and the PCI_NTEXT color to green.
Finally, the prompt Frame is set to “Recessed”, and the justification (also on
the extended properties page) is set to “Right”. Also, select the “Copy Text”
checkbox on the extended properties page. This instructs the PegPrompt
object to make a copy of the text it displays, which is required when the text
value assigned to the prompt is created dynamically on the stack. We will
explain this further later in this example.

Set the prompt ID to IDP_RATE, and set the prompt Initial Text to “500”.
Click on the “Member Pointer” checkbox in the prompt Basic properties
page, and type in the pointer name “mpRatePrompt”. This instructs PEG
WindowBuilder to define and use a pointer to this PegPrompt object which
will become a member variable of the parent window. We will use this
pointer to modify the prompt value as the slider control is adjusted. While
we could also find a pointer to the prompt at run-time using the Find()
function, in this case it is more convenient to simply tell PEG
WindowBuilder to create and keep a pointer to the prompt.

The slider control is created with a Recessed frame, a minimum value of
“100”, a maximum value of “1000”, and an initial value of “500”. Set the Tick
Interval to 50, which means that a tick mark will be drawn at each increment
of 50 in the slider range. Use the slider properties dialog to enter these
values. Also, insure that the “Catch Signals” checkbox is selected on the
slider control Basic properties page. This tells PEG WindowBuilder we want
to receive notification messages from the slider control (in this case
PSF_SLIDER_CHANGE signals), and PEG WindowBuilder will create the
matching case statements in the window message handling function. Set
the slider ID to “IDSL_RATE”.
Swell Software, Inc. PEG WindowBuilder™ 77

PEG WindowBuilder™
The Start, Stop, and other remaining child controls are not required for this
example. You do not need to assign ID values or select the “Catch Signals”
checkbox for any of these controls. Simply create them and place them on
the window to achieve the appearance shown above.

 Step 6: Save Your Work!
Use the Project|Save command to save your project file. You don’t want
to lose all of your effort so far do to a power failure or other malady!

 Step 7: Generate Source Code
Now select the Project|Generate Source|Current Source Module
command to generate the source code for your window.

 Step 8: Add Message Handling
Open the generated source file in your favorite editor. You will see PEG
WindowBuilder has generated a constructor for the ExampleTwo window,
and also the message handling function. Your message handling function
should appear very similar to the function below:

PEGINT ExampleTwo::Message(const PegMessage &Mesg)
{
 switch (Mesg.wType)
 {
 case PEG_SIGNAL(IDB_HELPINDEX, PSF_CHECK_ON):
 // Enter your code here:
 break;

 case PEG_SIGNAL(IDB_HELPINDEX, PSF_CHECK_OFF):
 // Enter your code here:
 break;

 case PEG_SIGNAL(IDB_ABOUT, PSF_CLICKED):
 // Enter your code here:
 break;

 case PEG_SIGNAL(IDB_CLOSE, PSF_CLICKED):
 // Enter your code here:
 break;

 case PEG_SIGNAL(IDB_FILESAVE, PSF_CLICKED):
 // Enter your code here:
 break;

 case PEG_SIGNAL(IDB_OPENFILE, PSF_CLICKED):
 // Enter your code here:
 break;

 case PEG_SIGNAL(IDSL_RATE, PSF_SLIDER_CHANGE):
78 PEG+ Development Toolkit Manual Swell Software, Inc.

Example 2: An advanced PegDialog window
 // Enter your code here:
 break;

 default:
 return PegDecoratedWindow::Message(Mesg);
 }
 return 0;
}

Note message case statements have been generated for all of the
MenuBar commands, and also for the window child controls for which the
“Send Signals” option was selected. In this case, verify you have the case
statement “case PEG_SIGNAL(IDSL_RATE, PSF_SLIDER_CHANGE):” in
your message function. We are going to add the source code here required
to make the prompt object display the current slider value. If you do not see
this case statement, you should check the properties of the slider control
with PEG WindowBuilder, and insure the “Catch Signals” checkbox is
checked.

Modify the case statement as shown below:

case PEG_SIGNAL(IDSL_SLIDER, PSF_SLIDER_CHANGE):
 {
 PEGCHAR cTemp[40];
 ltoa(Mesg.lData, cTemp, 10);
 mpRatePrompt->DataSet(cTemp);
 mpRatePrompt->Draw();
 }
 break;

The above code will convert the slider value, which is passed in the
message lData field, into an ASCII string for display. It then assigns this
string value to the prompt, and re-displays the prompt. Note the pointer
mpRatePrompt has been created for us by PEG WindowBuilder, and is
defined in the exam2 header file as a private member variable of the
Example2 class.

A less obvious note should be made. If you remember we instructed you to
select the “Copy Text” checkbox in the range prompt Extended properties
page. Normally, PEG objects do not copy text strings in order to reduce
memory usage. However, in this case we are creating a new string on the
execution stack, via the automatic “cTemp” variable. In this case, we want
the prompt object to copy the assigned text, since the cTemp variable will
not exist once we return from the Message function.
Swell Software, Inc. PEG WindowBuilder™ 79

PEG WindowBuilder™
 Step 9: Build and run the program
We have provided a version of the startup function PegAppInitialize which
creates and displays the ExampleTwo window in the \peg\wb\example2
directory. This file is called startup.cpp. In order to build and run the
program, you will need to do the following (using MS VC++)

a) Create a new workspace.
b) Add the project file \peg\build\win32\ms60\peg.dsp to your workspace.

The project builds the PEG library.
c) Add a new project to the same workspace. This project will build the

example application. You can name the project anything you like. After
you have added the project, add the files “startup.cpp” and
“exam2.cpp” to your project.

d) Make sure your project dependencies list “peg.lib”, as this will build
and link the PEG library with your application files.

e) Build and run the program!

As the program executes, you should be able to adjust the slider control
and see the value displayed in the prompt object. You have used PEG
WindowBuilder and a little hand coding to create a complex window! We
hope you have enjoyed working through this example program.

3.9 Customizing PEG WindowBuilder
It is possible to customize PEG WindowBuilder to include and utilize your
own custom gadgets, controls, and windows. This allows you to design
your windows and dialogs using modified objects which have your own
look-and-feel. In this section we will describe how to build a custom
WindowBuilder executable program that contains your custom gadgets and
windows.

Once you have built the custom executable program as described below,
PEG WindowBuilder will have compete access to your custom objects.
Your custom objects will be created by PEG WindowBuilder when
requested, and will draw themselves and handle messages just like
standard PEG library objects.

An example project and source files for making a custom form of the
WindowBuilder program is provided in the \peg\wb\custom\ directory.
80 PEG+ Development Toolkit Manual Swell Software, Inc.

Customizing PEG WindowBuilder
 Requirements and Limitations
The ability to customize PEG WindowBuilder can be a very powerful
feature, but it does require some effort on your part and there are a few
minor requirements and limitations. These requirements and limitations
include:

• Each custom object must be derived from a class in the PEG library, and
must not use multiple-inheritance.

• Each custom object must have a constructor identical in parameters to
the base class common constructor, meaning your custom object must
accept the same parameters as the base class constructor used by PEG
WindowBuilder when creating that object type. This is always the first
constructor listed in the reference manual. Your custom object may have
additional constructors, but they will not be utilized by PEG
WindowBuilder.

• If your custom object requires configuration parameters beyond those
provided in the class constructor, this configuration should be done via
custom APIs that you define for your custom object. This will insure the
source code produced by PEG WindowBuilder will be fully compatible
and can be continuously updated without losing any information.

• All strings must be Unicode encoded, and use two-byte character
encoding. This requirement is almost completely transparent to your
custom object code provided that you use the PEGCHAR data type for
all character data. Even if you will not be supporting Unicode on your
target, this requirement does not impose any special burden on how you
code your custom object.

• Your custom object must be able to draw itself in TrueColor (24-bit-per-
pixel) mode in addition to your target color mode. The reasons for this
are many, but in brief PEG WindowBuilder runs in TrueColor mode with a
custom TrueColor screen driver, and your object must pass 24-bit color
values when drawing itself in the PEG WindowBuilder environment.
Since most target systems which utilize PEG are not TrueColor systems,
this may require you define two color sets or two “Draw()” functions. The
first version will be used when running with PEG WindowBuilder, and the
second version will be used when running on your target. You will use
this pre-processor construct:

#if defined(WINDOW_BUILDER)
Swell Software, Inc. PEG WindowBuilder™ 81

PEG WindowBuilder™
// Draw in TrueColor mode

#else

// Draw in my target color mode

#endif

in the areas of your custom object code which deal with color values. While
this might sound ominous, in reality it is simple to do and we will illustrate
how to accomplish this in the example provided. Also, this requirement
does NOT apply to bitmaps your custom object may draw. PEG
WindowBuilder will properly display bitmaps of any color depth, so if your
custom object draws an image or images using the PegScreen::Bitmap
function, these images need only be provided in the appropriate color depth
for your target system.

Finally, to customize PEG WindowBuilder you will need a compiler and
linker capable of producing a 32-bit Win32 application program, and
compatible with a 32-bit library produced by the Microsoft compiler and
librarian. The examples below use the Microsoft VC++ 6.0 compiler, but
any Windows compatible compiler can be used.

3.9.1 Step-by-Step
To get started, we will describe each step in creating a custom
WindowBuilder executable file and how it works. Once the process is
understood, we will work through a complete example which adds two
custom objects to the PEG WindowBuilder program.

 Step 1: Define your class
The first thing to do is to write your custom class as you normally would.
This means you will define your own class, and it will be derived from a
PEG library class. You should try to pick the PEG base class which is
closest in appearance and functionality to what you desire in your custom
object. Most frequently, you will override the Draw() function to customize
the appearance of your class, but this is not required. You can override as
many or as few of the base class virtual functions as you desire to arrive at
your custom object. You can also add your own API or public functions for
your class. PEG WindowBuilder does not need to know about these custom
API functions, they will only be accessible to you when you write your
application software.
82 PEG+ Development Toolkit Manual Swell Software, Inc.

Customizing PEG WindowBuilder
When defining and implementing your class, remember you will need to
provide a constructor identical to the base class constructor. For example,
suppose your custom object is derived from PegPrompt, and is named
“MyCustomPrompt”. From the PEG reference manual, we see the first
PegPrompt constructor looks like this:

PegPrompt(const PegRect &Rect, const PEGCHAR *Text, PEGUSHORT wId = 0,
 PEGUSHORT wStyle = FF_NONE|TJ_LEFT|AF_TRANSPARENT)

From this, we know the constructor for MyCustomPrompt must look like
this:

MyCustomPrompt(const PegRect &Rect, const PEGCHAR *Text, PEGUSHORT wId = 0,
 PEGUSHORT wStyle = FF_NONE|TJ_LEFT|AF_TRANSPARENT)

You can add additional constructors if you like, but only this constructor is
required for compatibility with PEG WindowBuilder.

Repeat step 1 for each custom class you want to add to PEG
WindowBuilder. There is no limit to the number of custom classes which
may be defined.

 Step 2: Define your WindowBuilder Resources
PEG WindowBuilder defines a structure containing important information
about each of your custom classes. This structure is type defined like this:

typedef struct {
 const PEGCHAR *pResName;
 PEGUSHORT wType;
 PEGUSHORT wBaseType;
 PEGUSHORT wMenuCommand;
 PEGUSHORT wFrameStyles;
 PEGUBYTE uColorSet;
 PEGUBYTE uReserved;
 PEGBOOL bSizeable;
 PEGBOOL bAddMenu;
 PEGBOOL bModuleBase;
 PEGBOOL (*Reserved1)(void *, void *, void *);
 PEGBOOL (*Reserved2)(void *, void *);
 PegThing *(*DefConstruct)(PegRect &, PEGBOOL);
} WB_RESOURCE;

pResName is a pointer to 2-byte encoded string, the name of your custom
class.
Swell Software, Inc. PEG WindowBuilder™ 83

PEG WindowBuilder™
wType is your custom class type. All custom classes used in PEG
WindowBuilder must have a unique type.

wBaseType is the PEG library object type from which this class is derived.

wMenuCommand is filled in by PEG WindowBuilder, and should be set to
zero (0).

wFrameStyles indicates which frame styles this object supports. The most
common settings are 0 (none), and ALL_FRAME_TYPES.

uColorSet indicates which, if any, color values can be assigned by PEG
WindowBuilder. Definitions are provided in the wbres.hpp file which can be
"or'd" together to build the value of uColorSet.

uReserved should be set to zero (0).

bAddMenu indicates whether or not this custom object should appear on
the PEG WindowBuilder Add menu as a custom child object type.

bModuleBase indicates whether or not this custom object can be used as
a base class for a module. Both bAddMenu and bModuleBase can be
TRUE, they are not exclusive.

Reserved1 and Reserved2 are function pointers for future use, and should
be set to NULL.

DefConstruct is the address of the function to call to construct this object.

You will create an array of WB_RESOURCE structures, each entry in the
array will define one of your custom objects. This array has already been
created for you in the example provided, but you will of course want to add
to or modify the array provided to insert your custom objects.

 Step 4: Build the pwinbld.exe Program
Now that everything is in place, you are ready to build the WindowBuilder
program file. A Microsoft project workspace is provided in the \peg\utils\wb\
custom directory to serve as an example, but we can outline the important
compiler/linker switches here in case you are using another compatible
compiler.
84 PEG+ Development Toolkit Manual Swell Software, Inc.

Customizing PEG WindowBuilder
The project must be a “Win32 Executable” project.

Under compiler settings, structure packing should be set to “8-bytes”,
“Exception Handling” should be disabled, and “RTTI” (RunTime Type
Identification) should be disabled. You can perform a debug-mode build
while debugging your custom software, but you will not have debugging
information for the WindowBuilder library itself. Once you are satisfied that
everything is working, we recommend that you do a “Release Mode” build,
meaning that you should NOT include any debugging information in your
custom wbcustom.exe program.

While building the executable file, your include directory path should be set
to \peg\utils\wb\custom\include, and should NOT include your standard
PEG library include path, \peg\include. This is important! To insure all of
the library configuration flags and build settings are identical to those used
when building the PEG WindowBuilder library, a complete snapshot of the
properly configured PEG header files is included in the \peg\utils\wb\
custom\include directory. Use this header directory only for the special case
of building the WindowBuilder executable. Never modify these header files,
and remember to go back to the standard header files in the \peg\include
directory for all other builds either for an emulation environment or for your
target environment.

That’s it! Next we will work through a functional example, from which you
should find it easy to add your own custom objects.

3.9.2 The SwellButton and SwellScale
An example is provided to put the above description into practice. The
example files are found in the directory \peg\utils\wb\custom. We suggest
you open each of these files in your favorite editor as we describe them.

prdbutn.cpp
prdbutn.hpp

These files contain a custom button class, derived from PegBitmapButton.
This class draws a fancy border using many colors and bitmaps.

You will notice the first function in this file is named CreateRndTextButton.
This function is only included in the file if the definition WINDOW_BUILDER
is defined. This function is called by PEG WindowBuilder when the user
wants to add a RndTextButton to some other object using normal PEG
Swell Software, Inc. PEG WindowBuilder™ 85

PEG WindowBuilder™
WindowBuilder operations. There are two parameters to this function:
PegRect Size and PEGBOOL bFirstInstance.

 PEGBOOL bFirstInstance
The boolean bFirstInstance parameter indicates if the object is being
newly created. For example, when the PEG WindowBuilder user Invokes
the Add command, this function will be called with bFirstInstance == TRUE.
This tells the function to create an object of default size. The default size is
defined by you, but should fit within the Size parameter. The Size
parameter in this case is the mClient region of the parent object. You can, if
you like, use this Size parameter to create an object which is proportional
to the parent object size.

If the bFirstInstance parameter is FALSE, this means the button size is
known by PEG WindowBuilder. The function should create an object
exactly the size passed by PEG WindowBuilder in Size.

 prdscale.cpp

 prdscale.hpp
These files are similar, they define a custom scale indicator derived from
PegLinearScale.

 wbres.hpp
This file defines the WB_RESOURCE structure. This structure is used to
pass information about your object properties to PEG WindowBuilder. An
array of these structures is defined in the custom.cpp file. The
WB_RESOURCE structure is defined below:

 custom.cpp
This is the main module of the custom executable. This module contains
the array of WB_RESOURCE structures, and exports the callback
functions used by PEG WindowBuilder to create instances of your custom
class. To add your own class(es), all you need to do is add entries to the
WB_RESOURCE array, and declare your function names which will be
called to construct your objects.

 usertype.hpp
This file contains an enumerated list of custom object types. These types
are very important, because PEG WindowBuilder uses this type number to
identify each resource when loading and saving project files. The type
86 PEG+ Development Toolkit Manual Swell Software, Inc.

Customizing PEG WindowBuilder
numbers must be unique, and cannot be changed after you have created a
.wbp project file using your custom types.

3.9.3 Building wbcustom.exe
A MSVC++ project file and workspace are provided to build the
wbcustom.exe program. You do not have to use the MSVC++ tools, but this
is the toolset used for the example.

You will need to define your own classes as described above, and edit the
custom.cpp and usertype.hpp files to add your class information. Follow the
examples provided, and do not modify the custom.cpp file other than
adding your own class names, constructor functions, and WB_RESOURCE
structure definitions. You should not modify any of the C functions in this
file.

Open the workspace "\peg\utils\wb\custom\custom.dsw" using the
Microsoft MSVC++ IDE. You will see that this project contains the files
described above, including the wblib.lib library. Also, make sure you use
the "Tools|Options|Directories" menu command, and set your include file
path to \peg\utils\wb\custom\include. The path \peg\include should not
be in your include path listing.

Build the wbcustom.exe program file. This is your own custom version of
the WindowBuilder executable program, and it will have access to all of
your newly created custom object types.

3.9.4 Additional Notes
WindowBuilder uses your custom object “wType” field to store your custom
object information in your WindowBuilder project file. When WindowBuilder
reads your project file and finds one of your custom object types, it uses the
custom resource definition list to call the correct constructor for your custom
object(s).

This can lead to difficulties if you ever modify your custom object wType
definitions. To handle this, WindowBuilder calls the WBCustomVersion
function at startup to see if the custom version matches the version saved
in your project file. If not, WindowBuilder presents a dialog that allows you
to provide translation information for your custom object types.

For example, suppose you create a custom WindowBuilder program using
custom object types 0x80 and 0x81. You use WindowBuilder to create
several modules and save your project. Now you decide to add a new
Swell Software, Inc. PEG WindowBuilder™ 87

PEG WindowBuilder™
custom object type, and you want this new object to be type 0x80, bumping
the previous custom objects to types 0x81 and 0x82. In this case, you
should increment the #define WB_CUSTOM_VERSION before building the
WindowBuilder executable. WHen WindowBuilder reads your old project
file, it will recognize that the custom version has been modified, and ask
you to type new wType values. In this case, you would tell WindowBuilder
that type 0x80 is now 0x81, and type 0x81 is now 0x82. Once you save
your project these new object type numbers will be stored and you will not
have to enter these translations unless you again modify your custom
object type number definitions.
88 PEG+ Development Toolkit Manual Swell Software, Inc.

A P P E N D I X A :

CHAPTER 0PEG DIRECTORY STRUCTURE
This section provides an overview of the directories created during
PEG installation and the contents of each directory. After installing
PEG, you will find the following directory tree, starting at the root \peg
node:

build- Various make files for building the PEG library using different
compilers for different targets. Microsoft, Borland, and several other
compiler-specific build files are provided in this directory.
Swell Software, Inc. 89

examples- Each folder under this directory contains a complete
working example program. Microsoft developer studio project files
are also provided for quickly building each of the example programs.

goodies- Miscellaneous gadgets used in the example programs. Not
part of the core PEG library.

include- PEG library header files.

include\scrndrv- Target specific PegScreen implementations.

manual- Online documentation, starting with index.htm

source- Source files for the core PEG library.

source\scrndrv- Target specific PegScreen implementations.

utils\bitmaps- This directory contains the PegImageConvert
executable program.

utils\fonts- This directory contains the PegFontCapture executable
program.

utils\wb- This directory contains the WindowBuilder executable
program and examples.
90 PEG+ Programming Manual Swell Software, Inc.

	Portable Embedded GUI
	Development Toolkit User’s Manual
	Table of Contents
	Forward
	Introduction
	What PEG IS
	What PEG is NOT
	Where PEG is going
	Library Updates

	PEG FontCapture
	1.0.1 Configuring Character Range
	1.0.2 Multilingual Support and UNICODE
	1.1 What is UNICODE?
	1.1.1 PEG Character Encoding
	1.1.2 Should You Use UNICODE?
	1.1.3 Defining Unicode Strings
	1.1.4 Using Custom Fonts

	PEG ImageConvert
	2.1 Overview
	2.1.1 Input File
	2.1.2 Compression
	2.1.3 Color Matching Options
	2.1.4 Screen Rotation
	2.1.5 Transparency
	2.1.6 Conversion Format
	2.1.7 Batch Conversion
	2.1.8 Conversion Preview
	2.1.9 Implementation Notes

	PEG WindowBuilder™
	3.1 Overview
	3.1.1 PEG WindowBuilder Project Files
	3.1.2 Source Output Files
	3.1.3 Screen Layout

	3.2 The Project Window
	3.3 Project Window Menu Commands
	3.3.1 Working with Modules- The Source Page
	3.3.2 Working with Images- The Images Page
	3.3.3 Working with Fonts- The Fonts Page

	3.4 The Target Window
	3.4.1 Selecting Objects in the Target Window
	3.4.2 Target Window Menu Commands

	3.5 The String Table Editor
	3.5.1 Merging String Tables
	3.5.2 Exporting the String Table

	3.6 Source Code Generation
	3.6.1 Pointer Name Control

	3.7 Example 1: Creating a simple PegDialog window
	3.7.1 Creating and Configuring a Project:
	3.7.2 Editing the Module:
	3.7.3 Saving Your Work:
	3.7.4 Examining the Source Code:

	3.8 Example 2: An advanced PegDialog window
	3.9 Customizing PEG WindowBuilder
	3.9.1 Step-by-Step
	3.9.2 The SwellButton and SwellScale
	3.9.3 Building wbcustom.exe
	3.9.4 Additional Notes

	PEG Directory Structure

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

