
Portable Embedded GUI

Programming Manual

Third Printing
June 2006

© Copyright 2004, 2005, 2006,
Swell Software, Inc. All rights reserved.

© Copyright 2004, 2005, 2006

Swell Software, Inc.
2920 Pine Grove Ave
Port Huron, MI 48060
PH: (810) 982-5955
FAX: (810) 982-5949

info@swellsoftware.com

No part of the document may be reproduced in any form without the
express written consent of Swell Software, Inc.

All rights reserved.

PEG® is a registered trademark of Swell Software, Inc.
C/PEGTM is a trademark of Swell Software, Inc.

CHAPTER 0TABLE OF CONTENTS
Forward... v
Introduction ... vii

What PEG IS ... viii
What PEG is NOT .. ix
Where PEG is going .. x
Library Updates ... x

Chapter 1
Synopsis... 1

What C/PEG Is .. 1
What C/PEG Is Not.. 2

How C/PEG Works .. 2
Benefits of using C/PEG.. 2

High Level Overview.. 3
Graphics Objects ... 3

Supported Platforms .. 5

Chapter 2
Common Terms and Concepts .. 7

Structured C Architecture .. 7
Structures as Objects .. 8
Graphical Interface Terminology 10

Chapter 3
C/PEG Programming Reference... 13

Building the C/PEG Library.. 13
Pre-configured Build Files ... 23

Chapter 4
The C/PEG Execution Model .. 27

Overview.. 27
Software Block Diagram.. 28
Program Startup .. 29

Chapter 5
PegMessageQueue.. 41

PegMessage Definition.. 42
Signals ... 49
Swell Software, Inc. Table of Contents iii

Chapter 6
PegScreen ... 53

Chapter 7
Fundamental Data Types ... 59

Chapter 8
The Mighty Thing.. 73

Chapter 9
Programming with C/PEG.. 105

C/PEG Naming Conventions ... 105
Source and Header Files... 105
Program Startup Review ... 106
Rules of Memory Ownership ... 106

Creating PegThings ... 107
Removing and Destroying PegThings 109
Drawing to the Screen ... 110
Determining Drawability ... 112
Object Boundaries ... 113
Customizing Objects.. 114

The Object Factory .. 115
Programming Examples .. 123
iv C/PEG Programming Manual Swell Software, Inc.

FORWARD
We at Swell Software thank you for choosing C/PEG!

The authors of PEG are first and foremost embedded systems
programmers like yourself. With extensive experience developing software
for closed-loop servo robotics, industrial control systems, measurement
and monitoring equipment, and consumer electronics, we most likely share
many common experiences with you. We believe this kinship will allow us
to anticipate your requirements and to provide you with the tools and
support you need as you develop your next product.

In addition to the PEG development package, Swell Software provides
consulting and contract programming services to clients in a wide diversity
of industries. These services range from one-day on-site evaluations and
tutorials to complete screen prototyping and development. We encourage
you to take advantage of these services as early as possible in your project
cycle. If you have purchased or are evaluating the PEG library, you can of
course contact us at any time via phone or email to answer your technical
questions.

PEG is currently being used in projects around the globe, yet PEG also
continues to grow and improve. Minor updates are often published every
few weeks as we incorporate suggestions and requests from PEG
users. We encourage you to provide us with feedback as you begin using
PEG in your application development. If you find something just isn’t
working for you, or we are missing something you feel is a requirement,
please do not hesitate to let us know. We will make every effort to satisfy
your request and provide you with an updated release in as short a time
frame as possible. We are committed to making your embedded
development effort an overwhelming success!

How are the manuals organized
The C/PEG Programming Manual is organized such that the manual
explains the configuration and build procedures you will need to know in
order to begin using the C/PEG library. This allows you to be up and
running and experimenting with the library very quickly.

The remainder of the Programming Manual provides an ‘under the hood’
view of C/PEG library internals and introduces basic concepts that are
needed to fully understand how C/PEG works. You will need to read and
Swell Software, Inc. v

understand this material before you begin serious development of your
application level software. This is followed by descriptions of the
fundamental C/PEG functions. These descriptions contain many working
examples that will prove valuable to you as you begin writing your own
system software.

The second manual, the PEG Development Toolkit User’s Manual,
describes our supporting cast of utility programs. These include PEG
FontCapture, PEG ImageConvert, and PEG WindowBuilder. The
appendices describe the PEG installation directories and the example
programs.

The third manual, C/PEG API Reference Manual provides extensive
information about the fundamental C/PEG functions. This manual details
the Application Programming Interface (API) of the C/PEG graphics library.
It is intended as a quick reference guide for developers which may already
be familiar with how C/PEG works and may need to review details on
individual functions.The Reference Manual is also provided in interactive
PDF format. We believe the PDF format class reference is more
convenient to use on a day to day basis than the printed manual. This
approach also works well in that as you read this manual you are not
overloaded (no pun intended!) with member function names and
descriptions. Instead, we encourage you to first concentrate on obtaining a
high-level understanding of how C/PEG works. Later, as you begin working
on your system software, you will probably want to keep the API Reference
Manual open at all times.

The Programming Manual and PEG Development Toolkit User’s Manual
are also provided in PDF format, and the PDF format often contains last
minute changes or additions that you will not find here. These additions will
be noted in the Release Notes. The online manuals are found at the
following address:

http://www.swellsoftware.com/download/documentation.php

Username and password are required to download the manuals.
vi C/PEG Programming Manual Swell Software, Inc.

INTRODUCTION
Historically speaking, graphical user interfaces have almost exclusively
been the domain of desktop personal computers. This has been the result
of two main factors: the cost of graphical display hardware and the lack of
GUI software suitable for use in real-time systems.

In the area of industrial control systems, there have been attempts at
providing graphical presentations, but these have been cumbersome at
best and terribly expensive as well. These types of systems have typically
avoided the use of mainstream video output devices, and opted instead for
very expensive and functionally limited industrial display terminals.

Today, this attitude has changed to the point where it is very common for an
embedded system to contain many of the very same hardware components
found in a desktop computer system. This makes sense strategically
because it allows the inventor of an embedded product to leverage the
sales volume and pricing of the components sold primarily for desktop
computer use. The result is that the cost of including graphical display
hardware in an embedded product has declined significantly over the past
few years. A wide variety of LCD display panels, VGA display panels,
video controller chips and high-performance CPUs capable of driving a
graphical interface are now available.

Unfortunately, the software side of the equation has not advanced nearly as
quickly. Until now there has been no graphical interface solution that is
small enough and portable enough for an embedded system while at the
same time providing a modern and professional appearance. There have
been previous attempts at meeting this need, but so far these attempts
have missed the mark.

The alternative solutions that provide a modern, full-featured interface have
all been derived from desktop computing environments, and carry along
with them years of acquired baggage. These solutions impose very high
hardware costs on your system, and even higher costs in terms of the man-
hours required to successfully integrate these large software packages with
your real-time software. This of course assumes that you have the time
and expertise required to actually build a working system with one of these
products. We have seen more than one project descend into a never-
ending abyss of delays, technical setbacks, and finally failure caused by
trying to force-fit software that was not intended for real-time systems.
Swell Software, Inc. vii

We believe that you deserve a better solution!

What PEG IS
PEG is an acronym for Portable Embedded GUI. We chose this name
because we believe it accurately reflects the design and motivation that
went into the creation of our development package.

PEG is Portable
We have designed our software to be portable to any target hardware that
is capable of graphical output. PEG does not expect or require any
underlying software components in order to do its job. If you have a C++
compiler and hardware capable of pixel-addressed graphical output, you
can run PEG.

PEG is Embedded
This statement is rather vague, because it means so many different things
to different people. The bottom line is that PEG is, and will always be,
targeted only at real-time embedded systems. This distinction is so
important that we felt it should be included in the name of our library.

PEG is GUI
The PEG class library provides the building blocks for a powerful and
extensible graphical user interface. Users of PEG will find that they can
create a graphical presentation rivaling anything on the market today.
Extensive thought and research have gone into the design of our product to
insure that you are receiving a library that is fully capable of supporting all
of the advanced GUI features you need today, while also accommodating
future enhancements. Advanced clipping techniques, font support, graphic
image support, and smart object methodologies are incorporated in our
library. We are confident that the internal design of the library is such that
PEG can grow and advance for years to come while building on the existing
foundation.

In addition to the class library itself, PEG provides all of the other tools,
documentation, and support you will need to construct a custom graphical
interface for your project. This includes utilities for generating graphical
fonts (PegFontCapture); processing, optimizing, and compressing
graphical images (PegImageConvert); and PEG WindowBuilder, a RAD
prototyping tool for use with PEG. With the class library and related tools,
viii C/PEG Programming Manual Swell Software, Inc.

What PEG is NOT
PEG without question provides the most powerful, professional, and
complete GUI solution available to real-time embedded system developers.

What PEG is NOT
The large software companies are today providing software that is intended
to be a ‘one size fits all’ solution. This has led to some confusion among
many developers concerning what a GUI library should do, what it should
not do, and what components are required to build a working system. We
believe it is worthwhile addressing these questions up front to insure that
we are all working from the same starting point.

PEG is not an operating system. PEG provides no code for task switching,
memory management, resource management, or inter-task
communication. Contrary to popular belief, the desktop windowing
environments are not part of the operating system either. This should be
obvious from the fact that the graphical environment can be significantly
updated without improving or otherwise changing the underlying OS. In
order to build a real-time multitasking system using PEG, you will also have
to incorporate an operating system kernel. PEG is already fully integrated
with most of the leading real-time operating systems available today. PEG
can easily be integrated with other operating systems as well, and PEG can
run standalone if multitasking is not required for your application.

PEG is not an application program. The PEG library, by itself, will provide
an end user with absolutely zero in terms of useful interaction or information
display. It is your job to create the windows, dialogs, and other objects that
will be used to retrieve input from and display information to the end
user. Of course, the whole point to using PEG is that our library provides
the tools and components that make creating your application level
interface a manageable task.

Finally, PEG is not a PC-library. While PEG does support common PC
development environments as a matter of convenience and productivity,
the goal of PEG is to provide a full graphical interface solution to real-time
embedded systems developers. This solution includes the software,
utilities, documentation and support required to make your embedded
development effort a success, regardless of the final hardware
implementation.
Swell Software, Inc. ix

Where PEG is going
Over the near term, the core PEG library will continue to grow and improve
in terms of the native control types that are available and the flexibility of
those controls. Over the longer term, we plan to add entirely new groups of
object types that we feel would be useful for embedded systems. Of
course, the long-range development list also depends on input we receive
from you, the developer using PEG. In any event, the basic library will
retain the ability of allowing you to remove unwanted components in order
to build a system that exactly fits your size and performance requirements.

While PEG can be ported to nearly any hardware configuration capable of
graphical output, this effort can seem confusing to a new user. For this
reason, we have undertaken to add reference platforms for many common
hardware configurations. This allows PEG users to begin running PEG
immediately on hardware which is similar if not identical to the final target.
Currently reference platforms have been completed or are in development
for x86, ARM7, StrongARM, MPC823, ColdFire, DragonBall, C167, and
MC68332 platforms. Additional reference platforms will be added as
evaluation hardware platforms become available for other CPU types that
are popular in the embedded community.

PEG WindowBuilder, our newest and most powerful support utility, is
continually being enhanced to meet the needs of PEG users. Animation,
Navigation, Background Images, Hotspots, XLIFF Import and Export,
generation of string resource files and zoom capability are just some of the
new features as of this manual printing.

Library Updates
Library updates are posted on the Swell Software www site roughly every
90 days. If you are a PEG customer, you are entitled to a minimum of six
months of technical support and library updates. The Download/Updates
page on the Swell Software Website is password protected. If you do not
know the password, please email support@swellsoftware.com and request
the current password.

The http://www.swellsoftware.com/download/updates.php page lists the
most recent changes or library enhancements, and also allows you to
download the latest release of PEG library source code, supporting utilities,
and documentation. This website has gone through an enhancement phase
and now includes a Frequently Asked Questions (FAQ) page with useful
contributions from current PEG users.
x C/PEG Programming Manual Swell Software, Inc.

What C/PEG Is
C H A P T E R 1

CHAPTER1SYNOPSIS

1.1 What C/PEG Is
C/PEG is a high performance graphics application framework library for
resource conscious embedded systems. C/PEG provides the embedded
application developer with a full tool set of graphics primitives and high level
control objects to easily and quickly construct user friendly, graphical
interfaces for any type of embedded device.

The core of C/PEG is written in ANSI conforming C. The architecture of the
library is very straight forward and easy to understand for any moderately
experienced C programmer.

The C/PEG library is self contained, singly providing all the functionality
necessary to create real-world object applications. The core library does
not depend on any particular functionality that may or may not be provided
by a compiler library or operating system.

C/PEG is designed from the ground up to be portable across operating
systems and hardware platforms, thus giving the embedded systems
designer the discretion of selecting the technology that best suits the
system's application. The core library is platform agnostic and all of the
library's extensive functionality is equally available across the entire range
of supported hardware and operating environments.

C/PEG is extensible. The library is designed to let a programmer of any skill
level easily extend or even replace the behavior or visual representation of
library objects. If a stock object does not suit your liking, you are free, even
encouraged, to mold the object into a form that better fits the product. This
gives embedded systems designers the right tools for building products that
stand out from competitors and differentiates the company making the
product from the rest of the market.

C/PEG is scalable. From the smallest embedded system with the most
modest available resources, all the way up to advanced medical and
avionics devices featuring desktop level power, C/PEG is the right graphical
application framework. This allows you to select the best hardware platform
Swell Software, Inc. Synopsis 1

Synopsis
for the product without the question of whether or not your GUI has the
ability to come along for the ride.

1.2 What C/PEG Is Not
C/PEG is not a desktop graphical user interface that has been 'stripped
down' in an attempt to fit into the embedded systems market.

C/PEG does not hide the system from the programmer. It does not attempt
to wrap and internalize system functionality that is best left to the
application developer. C/PEG deals strictly with the graphical user interface
of the system. All other functionality for the application is left to the
imagination and skill of the developer. In other words, C/PEG does not
force a 'you can do anything you wish, as long as it's what we wanted for
you to do' type of development environment.

1.2.1 How C/PEG Works
The execution model of C/PEG is very familiar to any programmer who has
ever worked with message driven application models, such as the
venerable Win32 API or the mature X Window System. In this model, user
interface objects participate in a messaging loop whereby the system
notifies the object of certain events. These events may be a by-product of
user interaction with the system hardware, such as incoming key or
pointing device data; operating system notifications, such as timers; or from
interrupts coinciding with external device status. All of these events cause
C/PEG to 'do something'. When these events are dormant, so too is C/
PEG.

This model also facilitates an easy to understand and highly structured line
of communication between C/PEG application objects. It is a very simple
process for C/PEG objects to notify any other C/PEG objects with any type
of system or user defined message.

1.2.2 Benefits of using C/PEG
Building off of the success of the original C++ version of PEG, C/PEG
already has an impressive pedigree and proven track record of enormous
benefits to the embedded systems application developer community.

In this day of hurried product development cycles, C/PEG is a tremendous
asset to any development team. By providing both low and high level
2 C/PEG Programming Manual Swell Software, Inc.

High Level Overview
graphics functionality, application programmers are free to roll up their
sleeves and customize the graphics display in any way they like without
sacrificing the ability to use familiar GUI objects like text buttons and scroll
bars. This translates into a faster time to market with a custom user
interface that propels the product past the competitors.

All of this power comes in a small package that won't break the product
budget or the chosen hardware platform.

1.3 High Level Overview
1.3.1 Graphics Objects
The C/PEG graphics library is a modular application framework built for
embedded systems, and while the code is written in ANSI compliant C, it
utilizes some basic principles introduced in C++.

First, the library is logically partitioned into structures. These structures hold
both data and pointers to functions. In some ways, these structures
resemble a C++ class. But, unlike the typical usage for a C++ class, all of
the members of these structures are globally visible. The architecture is
designed to allow for maximum application developer flexibility without
adding unnecessary overhead. For the sake of discussion, we will refer to
these structures as objects.

These objects are then ordered in a hierarchal tree, beginning with the
PegThing object, whereby one object takes on the characteristics and
functionality of another object, then extends or supplants these
characteristics and functionality to create a new object that will fulfill the
needs at hand.

For example, the PegThing object implements data members and function
pointers that deal primarily with status, ownership and position. Every other
object in the C/PEG library is a derivative of PegThing. In other words,
every other object in the C/PEG library has the same data members and
function pointers laid out exactly the same as PegThing. This allows every
object to be a member of a list of objects, own a list of objects, and be
aware of it's own state and position on the screen. In terms of C++, this
would be termed as inheritance where objects build off the foundation laid
down by other objects. This term, in it's classical sense, does not apply too
well to the C/PEG architecture. A C/PEG object does not have a compiler
determined virtual function table and therefore does not support the early/
Swell Software, Inc. Synopsis 3

Synopsis
late binding paradigm set down by C++. C/PEG objects are collections of
data and functions that can be used to easily build new objects independent
of the compiler.

 Hardware Support
The functions and data that implement the necessary functionality to drive
hardware are not part of the object hierarchy of C/PEG objects that begin
with PegThing. These objects obviously do not need the same sort of
characteristics as an object that is expected to be part of a list of objects
that are displaying on the screen.

The functions and data that handle the video hardware are collectively
referred to as the PegScreen object. The PegScreen object implements the
basic functionality of tracking the invalid regions of the screen, clipping
draw operations and providing primitives with which the PegThing derived
objects use to display themselves. The PegScreen object also provides a
framework for the hardware dependent code that must be filled in for any
particular piece of display hardware. This provides a very structured and
reliable way to port C/PEG to new video hardware.

A set of display drivers that extend the PegScreen object that are able to
actually draw primitives, text and bitmaps are referred to as templates.
These templates are arranged by the color depth they support and screen
orientation, either landscape or portrait. The templates can do most of the
work for any given piece of video hardware, for a given color depth and
screen resolution short of actually configuring the hardware and
establishing the location of the frame buffer.

The last link in the chain is referred to as the driver. This builds on the
template and implements the code necessary to configure the video device
as well as discovering the memory location of the frame buffer. These
drivers may also implement functionality for drawing primitives, text or
bitmaps based on the feature set provided by the particular video hardware.
For instance, if the video hardware supports hardware line drawing, then
the driver will override the line drawing implemented in the template to
provide a more efficient version that takes advantage of the hardware's
acceleration scheme.

 Comparison with PEG+
C/PEG and PEG+ share many common characteristics. The C/PEG library
was developed by the same engineers that first developed PEG+ back in
4 C/PEG Programming Manual Swell Software, Inc.

Supported Platforms
1997. A great deal of the code contained in C/PEG came directly from
PEG+, giving C/PEG a maturity beyond it's age.

But, while the focus of PEG+ is it's ability to scale up to incorporate leading
edge features and technologies such as alpha blending and OpenGL, the
focus of C/PEG is to scale down to provide even the smallest embedded
systems with a complete, efficient and easy to use graphics library.

To that end, C/PEG includes great support for drawing primitives, text and
bitmap rendering as well as higher level objects such as buttons and scroll
bars. At the same time, C/PEG does not include features that would make it
prohibitive to it's target audience.

To summarize, if your embedded application needs a desktop like graphics
interface, then you need PEG+. But, if your embedded product needs to
display text and bitmaps and would benefit from a good set of higher level
objects without sacrificing speed and size, then C/PEG is for you.

1.4 Supported Platforms
 Operating Systems
• Windows
• Unix (Linux, Solaris, LynxOS, NetBSD)
• ThreadX (Express Logic)
• smx (MicroDigital)
• OSE (Enea Embedded Technology)
• Stand alone (no operating system required)
• MQX (MQX Embedded)
• eCosPro (eCosCentric, Ltd.)
• PharlapETS (Ardence, Inc.)
• µC/OS-II (Micrium)
• RTXC & RTXC Quadros (Quadros Systems, Inc.)
• CMX-RTX (CMX Systems, Inc)

 Processors
• x86 (Intel, AMD)
• ARM (Intel, Cirrus Logic, Sharp, Freescale)
Swell Software, Inc. Synopsis 5

Synopsis
• Coldfire (Freescale)
• PXA (Intel)
• PowerPC (Motorola)

 Video
• ARM
• x86 VGA
• Linux frame buffer device
• Epson
• C&T
• ATI
• PowerPC
• Noritake
6 C/PEG Programming Manual Swell Software, Inc.

Structured C Architecture
C H A P T E R 2

CHAPTER2COMMON TERMS AND CONCEPTS
This section introduces some of the basic concepts and terminology used
when discussing the C/PEG library. If you are an experienced C
programmer and you have worked with desktop windowing interface
software, then much of this material will be familiar territory; but, you are still
encouraged to skim through this section to attain a complete grasp of the
terminology used throughout this manual is invaluable.

2.1 Structured C Architecture
The core of C/PEG is written in ANSI C. Although this is a moving target, C/
PEG is designed to fit the 'lowest common denominator' functionality
offered by compilers, compiler libraries and operating systems. After all, the
'P' stand for 'Portable'. If C/PEG doesn't compile and run for every
embedded platform available to the C programmer, then it's not doing it's
job.

C/PEG isn't fancy about the implementation. It is straightforward, clean and
robust. This allows the library to be quickly ported to new platforms, as well
as providing a clear road map to extendibility.

Most C programmers groan at the idea their venerable language could be
confused in any way with C++. That C++ may be an acceptable language
for desktop type applications, but the overhead and, sometimes
unpredictable, compiler support for embedded systems demands that C++
and its tenants not be allowed in their world. While, on the other hand, the
paradigm introduced by object oriented languages, while not the savior of
modern day software, does have it's place and does provide a natural and
intuitive way to break down a problem into manageable chunks.

That said, C/PEG uses the C language in a manner most C programmers
will understand and find satisfactory.
Swell Software, Inc. Common Terms and Concepts 7

Common Terms and Concepts
2.1.1 Structures as Objects
Most graphical interface software written over the past twenty years have
an API grounded in the C language. These API's implement dozens or
even hundreds of functions to present a powerful environment to achieve
incredible graphical applications. Over the last decade, there have been
many attempts by many companies to wrap these C language API's into an
object oriented C++ blanket. Some are successful, while most are not.

One of the main reasons why most wrapper API's fall by the wayside is they
remove the real API from the programmer and, therefore, fall short in
providing all of the functionality of the API. This is usually due to the fact it is
extremely difficult to wrap a scattered set of functions cleanly into
compartmentalized object programming. Any programmer who cut their
teeth in graphics programming with the Windows API, then was moved to
the macro fortified and obfuscated world of the Microsoft Foundation Class
architecture understands this frustration.

C/PEG avoids this problem by being designed from the ground up with the
notion that the continuity of the API is the pearl in the oyster. Also, instead
of burying the low level functionality of the graphics software, it should be
presented to the application developer in a straightforward and intuitive
manner that can easily, and safely, be exploited.

So, the big question is: How is this done?

C/PEG logically partitions functionality to present an easy to understand
API which encourages exploration by the application developer. The
partitioning is focused on melding functionality, that together, is greater
than the sum of its parts. Every graphical element that is able to display
itself on the screen at run time shares common functionality that is the
foundation on which all elements are built. Once this foundation is
understood by the application developer using C/PEG, it is a small step to
becoming a real graphical interface guru.

In this manual, we will use the term object to a great extent. Don't be put off
by this. This is not an inference to a C++ object with it's templates and
virtual function tables. Rather, the term object is used to describe collective
functionality and data. In C/PEG, these are implemented as nothing more
than structures. Each C/PEG graphical object is formed by adding structure
elements together to reach the desired level of representation and
functionality.
8 C/PEG Programming Manual Swell Software, Inc.

Structured C Architecture
The term derived is also used extensively. Again, this is not meant to imply
the C++ meaning of this term. It is intended to convey the idea that one
structure shares common data and functionality with a more basic
structure. In C/PEG, the basic structure that represents the data and
functionality shared by all graphical objects is named PegThing. Every
structure that is able to display itself on the screen shares the same data
and functional elements found in the same order as they are represented in
PegThing. In C/PEG terminology, this is what is meant by derived. It is
proper to say PegTextThing is derived from PegThing because
PegTextThing holds all of the same members in the same order as
PegThing. Thus, a PegTextThing can be safely cast as a PegThing when it
is necessary to access members of the PegTextThing structure that are
derived from PegThing.

 Function Pointers and Callbacks
Bundled in with the data elements of C/PEG objects are function pointers.
These function pointers represent the basic functionality of a C/PEG object:
how the object is drawn, how the object handles messages, adding and
removing objects and so forth. The PegThing object implements a version
of this functionality which is used by most every object that is derived from
it. Some objects selectively implement their own versions of the functions to
achieve a different look and feel than what is already provided.

What this means to the application developer is they are free to create new
object types and selectively override, or replace, the default functions with
versions of their own which provide the functionality necessary to solve
their problem. So, when the term override appears in this manual, this is the
type of activity to which is being referred.

For an example, if the application developer wishes to make an object draw
differently than a similar object that is already in the C/PEG library, he only
needs to prototype a new function that follows the default draw function
prototype and assign that function to a C/PEG object's draw function.

In some respects, this may appear to be a callback mechanism, and in
loose terms it may fall into that category. The difference here is the state
and functionality of an object are self contained. In other words, given the
above example, when the draw function is replaced, there is no callback
table or some other sort of business going on under the sheets that
obfuscates this procedure from the application developer. The mechanism
is simply assigning a function to a function pointer within a structure. So,
Swell Software, Inc. Common Terms and Concepts 9

Common Terms and Concepts
when that object is being dealt with by any other object, the correct drawing
function will be called for the object without the need for any ancillary data.

2.1.2 Graphical Interface Terminology
This section introduces some terms which may be new to programmers not
familiar with graphical programming.

 Panel and Control
In most graphical API's developed in the past, there are generally two types
of graphical elements: windows and controls. Windows are often referred to
as top level graphical objects that act as containers for controls, with the
controls being child objects of the window. This is often a convenient way to
refer to collections of similar objects.

In C/PEG, the concept of a window is replaced by a panel. The PegPanel
object implements the functionality necessary to be a top level object and to
have child objects with which the user interacts. The name panel was
chosen over window because the term window is a very powerful metaphor
that implies all sorts of things that may be detrimental in understanding just
what is meant by a top level object in C/PEG. For instance, a window is
generally thought of as a moveable, sizable, framed and titled object the
user can minimize, maximize and close at will. In C/PEG, none of these
attributes fit into a panel. A panel is completely controlled by the application
developer, giving the application developer complete control over the flow
of the application.

 Parent, Child and Sibling
These terms refer to the relationship between the panels, controls and
other items that are all part of the interface. A control that is attached to a
panel is termed a child of that panel. Likewise, the panel that contains the
control is termed the parent panel. If there are several controls attached to
the same panel, those controls refer to each other as siblings.

While we have just described the most common case, there is nothing
internal to C/PEG that prevents a panel object from being a child of a
control object. In fact, it is often very useful to construct custom objects
using exactly this type of parent-child relationship.

Some GUI platforms place restrictions on the number of parent-child
generations that can be nested with the same panel, or even within a single
application. C/PEG imposes no such restrictions, nor will anything prevent
10 C/PEG Programming Manual Swell Software, Inc.

Structured C Architecture
an object that is a parent object in one case from becoming a child of
another object in a different case. This is a powerful feature of C/PEG,
because it allows the application developer to reuse custom objects that
are created in a variety of ways.

 Modal Execution
A panel is said to be executed modally when that panel must be closed or
completed by the end user before other panels are allowed to receive any
user input. In C/PEG, any panel may be executed modally. In fact there can
be several modal panels operating at one time in certain multi-tasking
environments. Modal panels capture all input devices, preventing other
panels and controls from being active while the model panel is executing.
Swell Software, Inc. Common Terms and Concepts 11

Common Terms and Concepts
12 C/PEG Programming Manual Swell Software, Inc.

Building the C/PEG Library
C H A P T E R 3

CHAPTER3C/PEG PROGRAMMING REFERENCE

3.1 Building the C/PEG Library
Building the library is a very simple process. For most platforms and
compilers, a build file is supplied with the C/PEG distribution. These build
files are located in a directory below cpeg/build that matches the
platform and compiler you are using to build. All of the C/PEG source files
can be found in the cpeg/source directory. Likewise, the header files are
in the cpeg/include directory.

The section begins by describing the library configuration flags, which are
flags used to include or exclude various components and features in C/
PEG. You may need to modify at least a few of these flags before you build
the library.

 Library Code Size
The code size of the library can vary depending on which resources your
application is using and how you have configured the library as well as the
compiler, optimization levels and CPU being used.

Since a typical application may not use all of the C/PEG library objects, it is
more useful to refer to the typical footprint of the library on an embedded
target. The typical footprint is a measure of the ROM or FLASH space
actually used by the C/PEG library when linked with your application
modules. The measure of the typical footprint is derived from several real-
world embedded systems using the C/PEG library. The typical footprint of
the library is between 60K and 100K bytes, and can be as small as 48K
bytes, depending on which features of the library your application is using.

There are developers who prefer to include in the library only what is
actually used, and others who place everything in the library and depend on
the linker to extract only what is needed. The second approach is taken by
the pre-configured build files, however the following information will allow
you to build the library any way you prefer.
Swell Software, Inc. C/PEG Programming Reference 13

C/PEG Programming Reference
 File Naming Conventions
Every effort has been made to insure all C/PEG source files are named in a
consistent manner to avoid problems encountered when moving between
Windows and Unix environments. All C/PEG source files use the standard
DOS 8.3 file name format, and long file names are not used. The source
files use only lower case names to avoid problems with case sensitive file
systems.

Finally, for Windows users, the C/PEG distribution includes source files in
CR+LF format, while the Unix distributions include source files in CR only
format.

 Build Options
Before building the library, it is necessary to properly set the compiler
directives contained in the C/PEG configuration file. This file, pconfig.h,
is located in the cpeg/include directory. These directives determine the
target environment for the library, along with other options such as input
device drivers, screen drivers, screen resolution and tasking model.

Throughout this manual, the library configuration flags and how they affect
library operation are frequently referenced. These configuration flags are
simply defined symbols that are listed in the pconfig.h file. The terms
“turn on” and “turn off” when used to describe these symbols are a
reference to either defining or not defining the symbol in the header file.

As delivered, C/PEG is configured to build a library that is suitable for your
host development system. This could be either Windows or a Unix variant.
This configuration allows you to quickly begin using and experimenting with
C/PEG without being concerned about target specific issues.

It is not necessary to fully tune your C/PEG configuration before building
the library for the first time. If you wish to begin working as quickly as
possible, you may build the library as it is installed from your distribution.
You can always return and modify the configuration flags and rebuild the
library.

 Target Platform
C/PEG is delivered to support your host development environment and
target platform. It is suggested you initially build C/PEG for your host
development system as these environments allow you to quickly begin
using C/PEG and creating your user interface software.
14 C/PEG Programming Manual Swell Software, Inc.

Building the C/PEG Library
Using C/PEG on a target platform other than those currently supported may
require minor modifications to the RTOS interface functions and hardware
drivers.

Table 1 shows the list of symbols that configure C/PEG to run with a
specific operating system. It is important to note only one of these may be
defined at one time. If you are using an operating system that is not yet
directly supported by C/PEG, it is usually easiest to simply build C/PEG for
stand alone operation and run C/PEG as a single task. This can be
enhanced at any time to support true multi-tasking operation as described
in later sections.

The primary difference between running stand alone and running with an
operating system integration is the method C/PEG uses to provide
messaging services. When in stand alone mode, the messaging services
are implemented completely by C/PEG. For operating system integrations,
the messaging services are implemented using thread safe services
provided by the operating system.

A second difference between these configurations is the ability of C/PEG to
allow multiple tasks to access the GUI API. Since synchronization is
normally a trait of the operating system, when C/PEG is configured for
stand alone use, there are no such services available. But, when C/PEG is
integrated with an operating system that provides this functionality, C/PEG
resources are protected and allow for multi-tasking operation.

Symbols OS
PEG_OS_NONE No RTOS or unsupported RTOS
PEG_OS_WIN Windows
PEG_OS_SMX smx
PEG_OS_THX ThreadX
PEG_OS_KWIK AMX
PEG_OS_ETS ETS
PEG_OS_RTXC RTXC
PEG_OS_QUADROS RTXC Quadros
PEG_OS_OSE OSE
PEG_OS_ONTIME OnTime RTOS-32
PEG_OS_ECOS eCos
PEG_OS_RTX CMX-RTX
PEG_OS_DOS PEGStandalone for DOS
Swell Software, Inc. C/PEG Programming Reference 15

C/PEG Programming Reference
Table 1 (OS Symbols)

 Screen Driver
There are a number of screen drivers available for the C/PEG library. The
actual driver to use for the specific platform is determined by the selected
operating system and color depth, often referred to as bits-per-pixel or bpp,
at which to run.

Selecting the operating system is described in the previous section.
Selecting the color depth at which to run is done by defining
PEG_NUM_COLORS to the appropriate number of colors supported by the
platform. For the Windows and X11 screen drivers, PEG_NUM_COLORS is
by default, set to 256, but it may be changed to any of the available options.
Table 2 outlines the possible values for PEG_NUM_COLORS along with the
corresponding color depth.

When first installed on the host development system, C/PEG is configured
to run with a screen driver that coincides with the host. So, if you are
running on Windows, C/PEG is configured to use the screen driver that
runs on Windows. The same for Unix/X11hosts. While these drivers are not
usually considered to be of high performance, they do allow you to get C/
PEG up and running very quickly.

PEG_OS_NUCLEUS Nucleus
PEG_OS_MQX MQX
PEG_OS_UCOS uC/OS
PEG_OS_INTEGRITY INTEGRITY
PEG_OS_UVELOSITY uvelOSity
PEG_OS_LINUX Linux
PEG_OS_X11 and PEG_OS_LINUX Linux with X11
PEG_OS_LYNX LynxOS
PEG_OS_X11 and PEG_OS_LYNX LynxOS with X11
PEG_OS_SOLARIS Solaris
PEG_OS_X11 and PEG_OS_SOLARIS Solaris with X11
PEG_OS_QNX QNX
PEG_OS_X11 and PEG_OS_QNX QNX with X11
PEG_OS_NETBSD NetBSD
PEG_OS_X11 and PEG_OS_NETBSD NetBSD with X11

Symbols OS
16 C/PEG Programming Manual Swell Software, Inc.

Building the C/PEG Library
PEG_NUM_COLORS Bits per Pixel (bpp)
2 1
4 2

16 4
256 8

65535 16

Table 2 (Color Depths)

To select a screen driver for your target platform, first select the operating
system as described in the previous section, then select the appropriate
color depth the target hardware will support. You would then add the source
modules for the color depth template and the hardware driver to your C/
PEG build files. Table 3 lists the names of the template drivers, the source
modules where they are implemented and the color depth they support.

Template
Name

Source
Module Name

Number of
Colors

Supported

L1Screen l1screen.c 2

L2Screen l2screen.c 4

L4Screen l4screen.c 16

L8Screen l8screen.c 256

L16Screen l16screen.c 65535

Table 3 (Screen Driver Templates)

The screen drivers are arranged in three layers. These layers combine from
the bottom up to support a particular platform.

The top layer for every screen driver is the fundamental PegScreen object.
This object exposes the graphics API to the C/PEG application and is
responsible for tracking the invalid region of the screen, appropriately
clipping draw operations, and implementing some drawing primitives which
are not dependent on color depth.
Swell Software, Inc. C/PEG Programming Reference 17

C/PEG Programming Reference
The middle layer is one of the templates listed in Table 3. The template
implements basic drawing primitives as well as text and bitmap drawing for
a given color depth.

The bottom layer is referred to as the driver. This portion is responsible for
configuring the video hardware and allocating the frame buffer. If the video
hardware also has acceleration functions, then the driver implements those
as well. For instance, if the video hardware is able to draw lines, then the
driver will implement the line drawing functions so that they take advantage
of this, and replaces the functions otherwise found in the template.

Every C/PEG library build includes the PegScreen object, one of the color
templates and a driver module.

 Keyboard or Keypad Input
For the host development environments, keyboard input is configured in the
operating system integration. For other targets, the driver may be in a
separate source module. If you are unsure of keyboard or keypad support
for your target, please contact Swell Software.

The symbol PEG_KEYBOARD_SUPPORT determines whether or not the
library will internally include support for standard keyboard input. The library
code size can be slightly reduced by turning off this definition for targets
that do not require support for a standard keyboard. If your target will be
using a keyboard or keypad type of input device, then you should turn this
symbol on. If your final target will be exclusively using a touch screen or
softkeys, you should not define this symbol.

The keyboard handling can be fine tuned in C/PEG by turning on the
PEG_ARROW_KEY_SUPPORT and/or PEG_TAB_KEY_SUPPORT symbols.
These symbols determine how C/PEG moves focus between child objects.
The operation differs slightly depending on which of these symbols are
defined and on which keys are provided for navigating the interface.

 Focus Indicators
When operating a GUI with a keyboard or keypad input device, it is usually
a requirement various C/PEG objects draw themselves differently when
they have keyboard input focus. This provides a visual queue to the end
user as to which object is currently active.
18 C/PEG Programming Manual Swell Software, Inc.

Building the C/PEG Library
When a system operates with only a pointing device, such as a mouse or
touch screen, drawing focus indicators is generally not a requirement. If this
is the case, the application developer can save library size and run time
overhead by eliminating this functionality.

The symbol PEG_DRAW_FOCUS determines if C/PEG will include this type of
support. This symbol is turned on by default when
PEG_KEYBOARD_SUPPORT is defined, otherwise it defaults to being turned
off.

The application developer may decide to either turn this symbol on or off
independent of keyboard support if they so choose.

 Mouse Input
C/PEG is delivered with mouse input drivers for the supported development
platforms. As with keyboard support, mouse support for any given platform
is dependent on the platform and should be configured appropriately.
Contact Swell Software for guidance on mouse support for your target
hardware.

On all platforms, the PEG_MOUSE_SUPPORT symbol can be used to enable
or disable internal support for mouse input. If the target system is not using
a mouse for user input, then turn this symbol off. This will slightly reduce the
code size of the library and also exclude the system bitmaps that are used
to draw the mouse cursor, further reducing the size of the run time image.

 Touch Screen Input
The PEG_TOUCH_SUPPORT symbol configures the library to support touch
screen input. This is very similar to mouse input, although a few objects
work differently. Specifically, the library does not require messages
regarding pointer movement to be received by an object to operate properly
when PEG_TOUCH_SUPPORT is defined. In most cases, the target system
would be configured to run with either a mouse or a touch screen, but not
both.

 Unicode
The C/PEG library can be built to support 16 bit character encoding, also
referred to as Unicode. To enable support for Unicode, define the
PEG_UNICODE symbol before building the library.

Note some compilers provide intrinsic support for 16 bit string manipulation
in their respective run time libraries, while some do not. For this reason, the
Swell Software, Inc. C/PEG Programming Reference 19

C/PEG Programming Reference
symbol PEG_STRLIB is often also required when Unicode support is
enabled.

The default setting for this symbol is off.

 String Tables
Multi-lingual applications are most often built using string tables rather than
using actual string references. This makes it an easy process to change
languages when the application is executing. The WindowBuilder tool
includes a facility to create and maintain the string table for the application.

To enable this feature, define the PEG_STRING_TABLE symbol. When
turned on, this causes functions to be included in the C/PEG library for
converting string identifiers to string pointers as well as functions for
defining the active string table and functions for assigning the active
language.

 String Library
The C/PEG library requires a small set of string manipulation functions.
These are almost always provided by the compiler's run time libraries.
However, many compilers and associated run time libraries do not support
16 bit character encoding. In addition, a few run time libraries force
unnecessary functions to be linked into the application to achieve 16 bit
character support.

For these reasons, C/PEG provides a sub-set of the standard C string
library that provides 16 bit character handling. The provided functions
include all of the functions required by C/PEG, thus eliminating the need to
link in the compiler run time library.

If you are using the compiler's run time library for other reasons, then you
probably want to disable the C/PEG string manipulation functions as most
compilers provide highly optimized versions of these functions.

The C/PEG string functions are included by turning on the PEG_STRLIB
symbol. The default setting for this symbol is on if PEG_UNICODE is turn on;
otherwise it is turned off.

 Tasking Model
C/PEG supports two tasking models. The term tasking model refers to the
mechanisms C/PEG has in place to allow multiple GUI tasks to operate in
parallel on single or multiple processors.
20 C/PEG Programming Manual Swell Software, Inc.

Building the C/PEG Library
The default tasking model is single threaded. This is the model used for
standalone operation and for operating systems that do not support multiple
tasks, such as DOS. This model can also be used to interface to operating
systems that do support multiple tasks, but have only one task which will
access the GUI. The single threaded model provides the lowest overhead
and is the simplest to interface. This model can also be used as a starting
point when running with an unsupported operating system.

The other tasking model is multi-threaded support. Under this model, any
number of tasks may directly create, display, modify and destroy user
interface elements. This model is selected by defining the
PEG_MULTITHREAD symbol. This execution model is the default when C/
PEG is configured for a supported operating system other than DOS. For
multi-tasking operating systems to which C/PEG has been integrated,
PEG_MULTITHREAD is defined by default.

The exception to this rule is the NetBSD operating system. As of version
1.6, threading support is not native to the operating system. The C/PEG
integration with NetBSD and X11 is not multi-threaded. This is due to the
fact the X11 server is not built with threading enabled on NetBSD, and
cannot, therefore, reliably support applications that may use an external
threading library. The version of C/PEG that is integrated with NetBSD that
does not run on X11 does provide multi-threaded support using the GNU
pth library.

 PegPlotPointView
When the PegScreen object needs to change the value of a single pixel in
video memory, it normally uses a macro named PegPlotPointView to
accomplish this. This macro is defined in each screen template module to
carry out this function based on the color depth of the system. If the
application will need to switch, at run time, between different C/PEG screen
drivers, then this macro must be defined as a function instead of a macro to
prevent compiler errors. The PEG_PLOTPOINTVIEW_AS_FUNCTION
symbol should only be defined to allow for run time driver switching.

 Exit Operation
When running C/PEG applications on a development host system, it is
usually desirable to allow C/PEG to terminate execution when no C/PEG
objects are displayed. Conversely, in most embedded systems, C/PEG
should never terminate regardless of whether or not any graphics are
displayed. To control this, the symbol PEG_EXIT_WHEN_LAST_CLOSED is
Swell Software, Inc. C/PEG Programming Reference 21

C/PEG Programming Reference
provided. When this definition is turned on, C/PEG will exit when all objects
are closed. Otherwise, C/PEG will never terminate execution.

This symbol is defined by default when running on a host platform such as
Windows or Unix.

 Graphics Primitives
C/PEG does not internally use all of the available graphics primitives to
draw it's stock objects. If the application level software does not require
extended graphics primitives, the code size of the library can be reduced by
eliminating these primitives.

It is important to note floating point math is not used in any part of C/PEG.
The following primitives do not use floating point math to calculate their
respective drawing algorithms. Instead, there is a small lookup table used
to determine the sin and cosine of an angle that is used to determine where
to plot a point. This table is automatically included when either
PEG_FULL_GRAPHICS or PEG_ARC_GRAPHICS is turned on.

The symbol PEG_FULL_GRAPHICS instructs the library to include support
for polygons, circles and ellipses.

The symbol PEG_ARC_GRAPHICS denotes the inclusion of functions to
support drawing arcs.

 Memory Management
To portably support different memory allocation schemes supported by
disparate operating systems, C/PEG provides a set of macros for allocating
and releasing memory on the heap, PEG_ALLOC and PEG_FREE,
respectively. C/PEG uses these macros in every instance that requires
memory to be allocated and released.

If the symbol PEG_MEM is defined, then C/PEG assumes it will define the
PEG_ALLOC and PEG_FREE macros. On the host development system and
standalone builds, these macros map to malloc and free.

If the compiler or operating system of the target system use their own
memory management routines, then the integration substitutes the links
and does not define PEG_MEM.
22 C/PEG Programming Manual Swell Software, Inc.

Building the C/PEG Library
 Assertions
Throughout the library, C/PEG uses the macro PEG_ASSERT to assert
pointer arguments as well as return values from functions that allocate
memory. This is a nice feature when developing the code base for the
application, but is typically not desirable in production code. The symbol
PEG_USE_ASSERT may be turned on in debug builds then turned off in
production builds. In line with many assert implementations, the
PEG_ASSERT macro evaluates to ((void)0) when PEG_USE_ASSERT is
not defined.

 LTOA
Two C/PEG objects use the non-ANSI function ltoa to convert integer
data to string format. Many compiler run time libraries provide this function,
while others do not (gcc being one of the latter). For this reason, C/PEG
optionally provides it's own version of the ltoa function. If the compiler does
not provide the function, define the PEG_USE_LTOA symbol.

Internally, C/PEG uses the function PegLtoA to call this function. If
PEG_USE_LTOA is defined, then this call maps to the C/PEG internal
version of the function call. If PEG_USE_LTOA is not turned on, then this call
maps to using the compiler version of the function named ltoa.

The default setting turns on this symbol if either PEG_UNICODE is turned
on, or the gcc compiler is used, otherwise, the C/PEG version is disabled.

3.1.1 Pre-configured Build Files
 Building C/PEG for Windows using Microsoft Visual Studio 6.0
and .NET
Microsoft project files for MSVC++ 6.0 and .NET are provided for building
the Windows version of the C/PEG library and each example program. The
project files for building the C/PEG library are located in the cpeg/build/
win32/ms60 and cpeg/build/win32/msnet directories, respectively.
While the project files for building the example applications are in the
cpeg/examples/examplename/win32/ms60 and cpeg/examples/
examplename/win32/msnet.

As delivered, the C/PEG library is ready to build on this platform for
Windows developers.
Swell Software, Inc. C/PEG Programming Reference 23

C/PEG Programming Reference
Before attempting to build the C/PEG library or any example programs, you
must first tell MSVC++ where to find the C/PEG include files. For example,
using MSVC++ 6.0, go to “Tools|Options|Directories” and add the C/PEG
include directory to the include directories and the C/PEG source directory
to the source file directories.

 Building C/PEG on Linux With X11 Support
There is a GNU make compatible build file in the cpeg/build/x11/
linux directory. To build the library for Linux/X11, simply switch to this
directory and run make(1L). This will create a library file that can then be
statically linked into any of the example programs.

To build the example programs, go to the cpeg/examples/
examplename/x11/linux directory and run make(1L).

 Building for Other Integrated Operating Systems
Build procedures for other operating systems are provided in a separate
document that accompanies the operating system integration files. If C/
PEG was purchased from Swell Software for a supported operating system,
the distribution comes with instructions for configuring and building the
library for use with the operating system as well as an example program
that demonstrates using C/PEG with the chosen platform.

 Building C/PEG for Other Targets
If the target platform does not have a configuration available, it is a simple
matter to follow the steps taken to build on other platforms. Building C/PEG
for a custom target is basically a matter of setting the best-fit options in
cpeg/include/pconfig.hpp, compiling all of the needed C/PEG
source files and linking them either into a library or directly into the system
software.

Most application developers find that the standalone integration is an easy
starting point for building C/PEG to run standalone or with a new operating
system.

As a rule of thumb, it is best to start working with C/PEG using one of the
pre-configured environments, usually Windows or X11/Unix. This will allow
the application developer to experiment with the library and become familiar
with the program startup sequence. The application level software may also
be coded in this environment, since this code will not have to be modified to
run on the final target.
24 C/PEG Programming Manual Swell Software, Inc.

Building the C/PEG Library
If you have any questions during this process, we encourage you to contact
Swell Software for assistance.
Swell Software, Inc. C/PEG Programming Reference 25

C/PEG Programming Reference
26 C/PEG Programming Manual Swell Software, Inc.

Overview
C H A P T E R 4

CHAPTER4THE C/PEG EXECUTION MODEL
This section introduces the C/PEG execution model and describes how the
fundamental C/PEG objects work together to create a working interface.
This section focuses on establishing a high level view of C/PEG and the
internal components of a graphical presentation created with C/PEG, while
the following sections detail actual object descriptions, functions and
usage.

C/PEG supports two general execution models: single threaded and multi-
threaded. For the purposes of this discussion, we will be using the single
threaded model for an example. All of the concepts presented are valid
regardless of the execution model. It is only the flow of information and
processing that changes based on the execution model. A complete
discussion of multi-threading as it relates to C/PEG is included in a later
section “C/PEG Multi-Threading”.

4.1 Overview
The components of C/PEG that control the execution of the application are
PegTask, PegMessageQueue, PegPresentation and PegScreen. These
components work together to insure the interface operates in a well
defined, predictable and fault tolerant manner. These components are also
central to insuring the C/PEG application is portable to a variety of
embedded systems. In this section we will fully investigate PegTask and
PegPresentation, while PegMessageQueue and PegScreen are described
in the following sections.

PegTask provides the interface between C/PEG and the operating system.
When running in a single threaded environment, PegTask is simply the
entry point to the main program loop.

PegMessageQueue provides FIFO style message queue functionality for
sending information between C/PEG objects.
Swell Software, Inc. The C/PEG Execution Model 27

The C/PEG Execution Model
PegPresentation keeps order on the visible screen. This involves keeping
track of which objects are on top of other objects, maintaining the status of
each object and remembering which object should receive user input.

Finally, PegScreen provides a layer of insulation between C/PEG and the
physical display device. PegScreen does the dirty work of drawing on the
display and provides all of the low level drawing functions C/PEG objects
need to present themselves to the user.

4.1.1 Software Block Diagram
A software block diagram of an executing C/PEG application is shown
below in Illustration 1. This drawing depicts PegTask, PegMessageQueue,
PegPresentation and PegScreen as well as input devices and
miscellaneous graphical objects. These are the components of every user
interface built using C/PEG.

Illustration 1 (Software Execution Model)
28 C/PEG Programming Manual Swell Software, Inc.

Overview
4.1.2 Program Startup
C/PEG startup is divided into two steps. The first step is accomplished by
PegTask. This step creates the central C/PEG components and performs
any other required initialization. The second step takes place in the
application level entry point, a function called PegAppInitialize.

PegTask is tailored to the execution environment, while
PegAppInitialize is entirely application defined. This segmentation
follows the C/PEG philosophy of insulating all application level software
from the target environment, allowing the application software to run
unmodified when moving from one of the host development systems to the
final target system.

PegAppInitialize is where the application developer is allowed to
create and display any startup objects for the application. The contents of
this function are left entirely to the application developer to do whatever is
necessary to launch the system. This may include putting up several
graphical elements on the screen. Or maybe only one. Or, maybe none at
all. Although, most applications will put at least one object on the screen at
this point and allow the user to begin interacting with the system.

We will work through several examples of what this function may look like
in later sections. For the moment, here is an example of a PegAppInitialize
function that places a PegPanel object on the screen:

void PegAppInitialize(PegPresentation *pPresent)
{
 PegAdd(pPresent, MyPanelCreate());
}

Text 1 (PegAppInitialize Example)

We have not yet covered all of the information necessary to understand
this example, so don't worry about the details. In the above example, we
have created an interface object and added that object to the
PegPresentation. This is a typical implementation of the
PegAppInitialize function.

 PegTask
The graphical interface should be viewed conceptually as a continuous low
priority task in the overall multi-tasking system. During execution,
Swell Software, Inc. The C/PEG Execution Model 29

The C/PEG Execution Model
messages are dispatched from the PegMessageQueue to the
PegPresentation, who, in turn, routes the messages to various graphical
objects for processing. While the graphical interface is not truly running
continuously in a multi-tasking system, the multi-tasking aspects are
transparent to the entire graphical interface with the exception of PegTask.
PegTask constructs PegPresentation, PegMessageQueue and
PegScreen. These components are required for any C/PEG application to
run. After these components are created, PegTask calls
PegAppInitialize, which is the entry point for application code.

PegTask is a conceptual element and is generally composed of two or
more functions. The first function provides the task entry point required by
the operating system. When running in a standalone environment or on a
Unix type of system, PegTask is simply the function main. When running
in any standalone or single threaded environment, a second function
named PegIdleFunction is also a component of PegTask.
PegIdleFunction is called by the portable PegMessageQueue
implementation when there is nothing left for C/PEG to do. This allows
other lower priority tasks to execute. Or, in a single threaded environment,
PegIdleFunction is a convenient place to perform other processing
required by the target system.

In the following example, the PegTask entry point is a function called,
fittingly, PegTask. This function should create the C/PEG foundation
objects, call PegAppInitialize and begin C/PEG execution by calling
PegExecute and passing the PegPresentation as the argument. Text 2
illustrates a typical implementation of PegTask.

void PegTask(void)
{

PegRect r;
PegMessage Mesg;
PegScreen *pScreen;
PegMessageQueue *pMessageQueue;
PegPresentation *pPresentation;

PegRectSet(&r, 0, 0, PEG_VIRTUAL_XSIZE – 1,
 PEG_VIRTUAL_YSIZE – 1);

/* create the PegScreen interface object */
pScreen = PegScreenCreate(&r);
PegScreenPtrSet(pScreen);

/* create the system message queue */
30 C/PEG Programming Manual Swell Software, Inc.

Overview
pMessageQueue = PegMessageQueueCreate();
PegMessageQueuePtrSet(pMessageQueue);

/* create the PegPresentation object */
pPresentation = PegPresentationCreate(&r);
PegPresentationPtrSet(pPresentation);

/* call into the user application code */
PegAppInitialize(pPresentation);

/* execute PegPresentation */
PegExecute(pPresentation, PEF_NORMAL);

/* when the above function returns,
 * the application is done */
PegDestroy(pPresentation);
PegScreenDestroy(pScreen);
PegMessageQueueDestroy(pMessageQueue);

}

Text 2 (Example PegTask Function)

The example above is generally all that is required to run C/PEG as a
single task in any real time operating system environment.

 PegIdleFunction
In the standalone version of C/PEG, PegIdleFunction is the second
component of PegTask. PegIdleFunction is called by the
PegMessageQueue when there are no longer any messages in the queue
which require processing. In this case, the graphical interface is up to date
and does not need the CPU. PegIdleFunction is defined by the
application developer and is typically where an operating system specific
suspension mechanism is implemented to block, or suspend, C/PEG until
some external stimulus is received which unblocks C/PEG and allows the
GUI processing to continue.

It is important to note PegIdleFunction is not called by any version of C/
PEG which has been integrated with a multi-threading operating system.

Versions of C/PEG that run multi-threaded and are properly integrated with
a multi-tasking operating system do not use this suspension mechanism,
but instead use custom implementations of PegMessageQueue which
suspend the GUI tasks directly when no messages are available for a
particular task.
Swell Software, Inc. The C/PEG Execution Model 31

The C/PEG Execution Model
The code for PegIdleFunction is obviously somewhat operating system
dependent. The operation performed by PegIdleFunction is also
dependent on whether the input devices are interrupt driven or polled. If the
input devices are interrupt driven, PegIdleFunction should block or
suspend indefinitely until a message arrives. If the input devices are polled,
PegIdleFunction should poll the input devices until a new input
message is generated.

The following is an example PegIdleFunction for use with interrupt
driven input devices:

void PegIdleFunction(void)
{

OS_MSG *pOsMsg;
PegMessage NewMessage;

/* suspend C/PEG until an external message arrives */
pOsMsg = OSWaitForMessage(OsPegQueue, INFINITE);

/* convert the OS formatted message to a PegMessage */
ConvertOSMessageToPegMessage(pOsMsg, &NewMessage);

/* place the PegMessage into the PegMessageQueue */
PegMessageQueuePush(PegMessageQueuePtr(),

&NewMessage);
}

Text 3 (PegIdleFunction Example)

In the above example, PegIdleFunction waits for an infinite period of
time for a message to arrive in the OsPegQueue from some other source in
the system. OsPegQueue, in this case, would be an operating system
defined message queue created for interfacing C/PEG with input devices
and other system tasks. When a message is received, the function
ConvertOSMessageToPegMessage is called to convert the message
from the operating system specific format into a PegMessage format. The
new PegMessage is then pushed into the C/PEG system message queue,
after which PegIdleFunction returns allowing the GUI to process the
message.

Note the above is an example implementation only. In the example, it
should be evident input device drivers must be present that are capable of
directly posting messages into the OsPegQueue. Otherwise, this version of
32 C/PEG Programming Manual Swell Software, Inc.

Overview
PegIdleFunction will remain suspended indefinitely and no further GUI
processing will take place once C/PEG calls PegIdleFunction.

In addition, it should be noted that, if possible, the
ConvertOsMessageToPegMessage should be eliminated. This requires
messages are sent through the operating system message queue in the
PegMessage format. If the system is able to do this, PegIdleFunction
should simply transfer messages from the OSPegQueue to
PegMessageQueue.

An even simpler implementation may be used if your input devices must be
polled. The following listing is an example of what PegIdleFunction
may look like in this type of scenario.

void PegIdleFunction(void)
{

PollTime();
PollMouse();
PollKeyboard();

}

Text 4 (PegIdleFunction Polling Example)

As you can see, this is indeed very simple. If the operating system in use
has not been integrated with C/PEG, this is a very nice starting point for
getting the system up and running. After the system is running, this function
may be tuned to eliminate the polling as the system is integrated and
interrupt driven input drivers are added.

Many users of C/PEG with custom operating systems also create a
function for sending messages from external tasks into the C/PEG
message queue (defined in Listing 3 as OsPegQueue). This function does
whatever processing is required to send messages from other tasks to the
queue being monitored by PegIdleFunction.

Note the following code sequence is not allowed from an external task (i.e.
a task other than PegTask) when using the portable (i.e. standalone)
version of PegMessageQueue.

Do Not Do This
void ExternalTask(void)
{

PegMessage NewMessage;
NewMessage.usType = PM_EXIT;
Swell Software, Inc. The C/PEG Execution Model 33

The C/PEG Execution Model
PegMessageQueuePush(PegMessageQueuePtr(),
&NewMessage);

}

Text 5 (External Task)

Why should this be avoided? Remember ExternalTask is not PegTask,
but some other task, possibly of a higher priority than PegTask. Calling
PegMessageQueuePush from an external task could result in the
corruption of protections in place. The portable version of
PegMessageQueue is designed to run only from within PegTask.

There is another, less obvious, reason why posting messages directly into
PegMessageQueue from external tasks is not a good idea. Remember the
user defined PegIdleFunction is probably waiting at an operating
system defined message queue for a message to arrive. If the application
bypasses the operating system defined message queue,
PegIdleFunction will not wake up, and C/PEG message processing will
not continue.

As stated above, this is why most users porting C/PEG to a new operating
system define a function for sending messages to the operating system
defined message queue which is monitored by PegIdleFunction.

The C/PEG standalone environment is a simple and convenient starting
point when porting C/PEG to a custom target. The entire standalone
implementation of PegTask is contained in the file cpeg/source/
sapeg.c. Very little modification is usually required to turn this version of
PegTask into a single, low priority task running on the target operating
system.

 PegPresentation
PegPresentation keeps track of all of the objects present on the display
device. In addition, PegPresentation keeps track of which object has input
focus (i.e. which object should receive user input such as keyboard input),
and which objects are 'on top' of other objects. Since there is no limit to the
number of objects that may be present on the screen at one time, it is easy
to see this quickly becomes a complex task.

So how does the PegPresentation do it? By using tree structured lists
intrinsic to the design of C/PEG, all objects that can be displayed are
derived at some point in their hierarchy from a common base structure
called PegThing. This structure is outlined in greater detail in subsequent
34 C/PEG Programming Manual Swell Software, Inc.

Overview
sections, but for now two important members of PegThing are a pointer to
the PegThing's first child object and a pointer to the PegThing's next
sibling. Using these two pointers, PegPresentation maintains all objects in
lists as shown in the following illustration.

Illustration 2 (PegPresentation)

PegPresentation is also derived from PegPanel, which is derived from
PegThing. This means PegPresentation is more or less just another panel,
although in this case the panel has no border, can often appear invisible
and always fills the entire screen or display. In essence, PegPresentation is
the great-great grandfather of all panels and controls that will be displayed
during the execution of the application. The term 'top level panel' is often
used to refer to a panel that has been added directly to the
PegPresentation.

 Event Driven Programming
In viewing the example PegTask function above, you may have wondered
“Where is main?”. C/PEG follows the event driven programming paradigm.
There is no one central location or super-loop in the application level GUI
software.

C/PEG is message driven, which may also be referred to as event driven.
This means real processing is only done in response to messages received
from the outside world. The objects that are created and used in the
application software will be able to send and receive messages. The
application developer is able to invent unique messages and interpret them
in any way in order to make the C/PEG objects do the work the application
demands. In general, messages should be simple and the corresponding
Swell Software, Inc. The C/PEG Execution Model 35

The C/PEG Execution Model
message processing should be short. This prevents any object from
dominating the available CPU time. There is an example of creating a
custom message later in this manual.

There are several advantages to a message driven implementation. The
fact C/PEG objects communicate with each other via messages eliminates
the problems associated with callback functions or similar implementations.
One C/PEG object can communicate easily with another without worrying
about how to physically address that object. In the large view, it could be
stated the message driven systems are distributed systems, and objects
could actually be physically miles apart from each other and talk as if they
are both running from the same ROM. Of course, the out of the box
PegMessageQueue implementation would require some enhancement to
support this example, but these types of things are possible in a message
driven environment.

PegButtons, PegEditFields, PegPrompts and other control types also use
messaging to notify their parent objects when the control has been
modified. The messages generated by these types of objects are
determined by the object's internal integer identification, which is a data
member of every PegThing derivative. This makes the flow of information
through a C/PEG based application very predictable and robust. This type
of message passing is so common that C/PEG defines a unique syntax for
handling control notification messages, called signals. Signals will be
described in detail in an upcoming section.

 Input Focus Tree
An additional task of PegPresentation is the message routing. In a later
chapter on PegMessageQueue, this mechanism will be looked at closer,
and demonstrated how to route messages to specific objects. However,
many system messages, such as mouse and keyboard input messages,
are not directed to any particular object. For this reason, the
PegPresentation internally maintains a pointer to the object that was last
selected by the user using the mouse or by some other means. This object
is called the current or input object, meaning that, by default, this object will
receive input messages.

C/PEG views each displayed panel and child objects of each panel as
branches in a tree. When input focus moves from object to object,
PegPresentation insures the entire branch of the tree up to the actual input
object has input focus. It is easy to detect if an object is a member of the
36 C/PEG Programming Manual Swell Software, Inc.

Overview
input focus branch of the PegPresentation tree at any time by testing the
system status flag for PSF_CURRENT.

Just because an object is a member of the input focus tree does not
necessarily mean the object is the end, or leaf, of the input focus branch. A
pointer to the final input object may be obtained by calling the
PegCurrentThingGet function. This function will return a pointer to the
actual default input object, or NULL if no object has been selected to
receive input events.

The application level software may also override the user's input selection
and manually command PegPresentation to move the input focus at any
time by calling the PegFocusTreeMove function. This function will set
input focus to the indicated object by sending PM_NONCURRENT messages
to objects that are no longer members of the input focus branch, and
PM_CURRENT messages to objects that are members of the new input
focus branch. The effect is non-directed input messages will be sent to the
newly designated input object. In most circumstances, it is not necessary
for the application level software to manually adjust the input focus,
however, this capability is available if needed.

When a new panel is added to the PegPresentation, that panel
automatically receives input focus. Likewise, if that panel has any child
objects, the first child object of the panel receives focus. This continues
until a leaf node (a child object with no children) is found. The PegAdd
function, described in a following section, is most commonly used to add
child objects to a panel. Since the last object added to a window becomes
the first child of the panel (unless PegAddToEnd is used), the last object
added to a panel will have input focus when the panel is first displayed.

This makes it important to add child objects such that the object that should
initially have input focus is added to the panel last.

 Keyboard Input Handling
Closely related to the input focus tree are C/PEG keyboard input handling
methods. One of the main reasons for keeping track of which object has
input focus is to know which control to send keypress messages to when
the user operates an interface that has some form of keyboard or keypad
input device.

Keyboard input is received by C/PEG objects when the library is built with
the PEG_KEYBOARD_SUPPORT symbol turned on.
Swell Software, Inc. The C/PEG Execution Model 37

The C/PEG Execution Model
PEG_KEYBOARD_SUPPORT does not imply the system is outfitted with a full
AT style keyboard. Many C/PEG users have a very limited keypad with
only a few key values available. This type of input will work just fine with a
C/PEG application, since C/PEG requires only a very limited set of key
values to navigate through screens and select controls.

The PegMessage object will be discussed in further detail in a later section,
however it is useful to describe the format of keyboard or keypad input
messages here. Keyboard input arrives in the form of PM_KEY messages,
meaning the PegMessage.usType data member is set to PM_KEY. The
actual key value is passed in the PegMessage.sData field, and the key
flags such as shift key state, control key state are passed in the
PegMessage.u.lData field. Keyboard messages are undirected,
meaning the message contains no information about which object should
receive the message. This makes it the responsibility of the
PegPresentation to know which object should receive keyboard input
messages as they arrive from the system input device driver.

As described above, when a panel is added to PegPresentation, the first
child object of the panel gains input focus. A limited number of PM_KEY
messages can then be sent to move focus from object to object. When
PEG_KEYBOARD_SUPPORT is turned on, the end user can fully navigate
through the presented objects by sending a very small set of PM_KEY
messages to C/PEG.

The table below describes the key values C/PEG objects are watching for
to allow the user to navigate through the graphical interface. The key
values are designed to closely follow desktop standards for keyboard input.
This does not imply the target system must actually have keys such as TAB
or CTRL, this only means C/PEG is watching for these key values. If the
target system has, for example, four arrow keys and an Enter key, the
application software simply needs to map these keys to the best match key
values for which C/PEG is watching. In some cases, the application may
need to send different key values for a common input key depending on
what type of object with which the user is currently interacting.
38 C/PEG Programming Manual Swell Software, Inc.

Overview
C/PEG Key Value Action Taken
PK_TAB When this key is received, C/PEG attempts

to move focus to the next child of the current
panel. If the current child is the last child,
focus wraps back to the first child of the
current window.

<CTRL> + PK_TAB This key combination is used to cycle
through top level panels.

PK_CR The carriage return key is used to select the
item which has focus. If the object is a
PegButton, the object will activate or toggle.

PK_LNUP
PK_LNDN
PK_LEFT
PK_RIGHT

These keys (the arrow keys) move focus
from sibling to sibling.

PK_ESC This key is used to escape from a
PegEditField operation.

<CTRL> + PK_F4 This key combination is used to close the
current panel.

Table 4 (C/PEG Key Actions)

 Mouse or Touch Screen Input Handling
Mouse input is also handled, at least initially, by PegPresentation. Mouse
and touch screen input messages are also undirected, meaning they are
not targeted to any specific object. Mouse and touch screen input
messages do, however, contain position information for each touch,
release or move operation. This allows PegPresentation to quickly
determine which object should receive each mouse or touch screen input
message.
Swell Software, Inc. The C/PEG Execution Model 39

The C/PEG Execution Model
40 C/PEG Programming Manual Swell Software, Inc.

C H A P T E R 5

CHAPTER5PEGMESSAGEQUEUE
PegMessageQueue is a simple encapsulated FIFO message queue with
functions for queue management. PegMessageQueue also performs timer
maintenance and miscellaneous housekeeping duties as will be described
later.

Messages are placed into the queue from any one of three sources:

1) Input devices such as a mouse, touch screen or keyboard
2) Any other task in a multi-tasking system (via PegTask)
3) From C/PEG objects themselves

The messages placed in PegMessageQueue are the driving force behind
the graphical interface. These messages contain notifications and
commands which cause the graphical elements to draw themselves,
remove themselves from the screen, resize themselves or perform any
number of various other tasks. Messages can also be user defined,
allowing the application developer to send and receive a nearly unlimited
number of messages whose meaning is defined by the application
software.

For example, it would be very common to have a graphical element send a
message to another task in the system requesting data for display. The
target task receives the request and responds, sending the response
message to PegTask.

While C/PEG is acting upon messages, the messages must be in the
format defined by C/PEG. While messages are in transit through the
operating system environment, they must be in the format required by the
particular operating system. Conversion between these two message
formats is the responsibility of PegTask. Many application developers
choose to use the message format defined by C/PEG throughout their
entire application.

When porting C/PEG to run on a particular operating system, it is best to
make use of the operating system supplied message system in order to
Swell Software, Inc. PegMessageQueue 41

PegMessageQueue
achieve the greatest efficiency. If the C/PEG distribution has already been
tailored to a particular operating system, the distribution has a
PegMessageQueue implementation that has already been customized to
use the underlying operating system's message passing mechanism. If the
target's operating environment is new to C/PEG, then the system developer
should try to define the operating system's message queue such that little
or no translation is required between PegMessage messages and
operating system messages. Most commercial operating system
implementations are designed such that the format of messages and
message queues is largely user defined, which allows the system
developer to directly send PegMessage formatted messages throughout
the entire system.

5.1 PegMessage Definition
Messages are defined by C/PEG as simple structures containing fields
indicating the source, target and content of the message. The definition of
the structure, named PegMessage, is shown below in Text 6.

On most systems, each PegMessage structure requires 24 bytes of
memory.

typedef union _uPegMessage
{

struct _PegRect Rect;
struct _PegPoint Point;
void *pData;
PEGLONG lData;
PEGLONG lUserData[2];
PEGULONG ulUserData[2];
PEGSHORT sUserData[4];
PEGUSHORT usUserData[4];
PEGUBYTE ubUserData[8];

} uPegMessage;

typedef struct _PegMessage
{

PEGUSHORT usType;
PEGSHORT sData;
void *pTarget;
void *pSource;
struct _PegMessage *pNext;
union _uPegMessage u;

} PegMessage

Text 6 (PegMessage Structure)
42 C/PEG Programming Manual Swell Software, Inc.

PegMessage Definition
Messages are identified by the member field usType. This is a 16 bit
unsigned short integer value, which allows for 65,535 unique message
types to be defined. Currently, C/PEG reserves the first 5,000 message
type values for internal messages, which leaves message values 5,000
through 65,535 available for user-defined messages. The number of
messages reserved for use by C/PEG may change slightly in future
releases, therefore the library provides a constant indicating the first
message value which is available for user definition. The constant is
implemented as a #define with a symbol of PEG_FIRST_USER_MESSAGE.

 Message Flow and Routing
C/PEG follows a bottom-up message flow philosophy. This means
whenever possible, messages pulled from PegMessageQueue are sent
directly to the lowest level object that should receive the message. If the
object does not act on the message, it is passed up the tree to its parent.
This flow continues until either an object processes the message, or the
message arrives at PegPresentation. If a user-defined message arrives at
PegPresentation, it will be ignored. This occurrence is usually an indication
the application software failed to catch a message in a top level panel
object.

Many messages, especially user-defined messages, may be directed
towards a particular object by specifying the pTarget field or the sData field
in the message. If the pTarget field is anything other than NULL, the
message is always sent directly to the object pointed to by pTarget. This
type of message is called a direct message.

Other messages do not have a particular object as their target. Examples of
these messages include mouse, touch screen and keyboard input
messages. In these cases, the pTarget member of the message is set to
NULL, and it is the responsibility of PegPresentation to determine which
object should receive the message. Messages of this type are referred to
as undirected messages. This concept will be further explored in the
discussion regarding the multi-tasking capabilities of C/PEG in a later
section.

When a user-defined message is pulled from the message queue and it has
a pTarget value of NULL, the message routing functions assume that the
message's sData field contains the ID of the object that should receive the
message. This means there are two ways of directing user-defined
messages to a particular object. The application software may load the
pTarget field of the message with an actual pointer to the destination
Swell Software, Inc. PegMessageQueue 43

PegMessageQueue
object, which always takes precedence, or it can load the pTarget field of
the message with NULL and PegPresentation will route the message to the
first object found with an ID value matching the sData field of the message.
If the application developer wishes to route user-defined messages using
object ID values, those objects should thus have globally defined object
ID's to insure there are never multiple objects visible with duplicate ID
values.

Whenever a C/PEG object sends a system-defined message to its parent
panel, the message contains a pointer to the object that sent the message.
This pointer is contained in the message field named pSource. This makes
it very easy to identify the sender of the message and perform operations
such as modifying the appearance of the object and interrogating the object
for additional information.

 C/PEG System Messages
C/PEG messages can be divided into two categories. C/PEG system
messages, which are generated internally by C/PEG to control and
manipulate C/PEG objects, and user messages, which are defined and
used by the application. Whether a message is a system message or a
user message, the type of message is determined by the value of the
message usType field. This is a 16 bit unsigned value. C/PEG reserves
message types values from 1 to PEG_FIRST_USER_MESSAGE.

C/PEG uses messages internally to command objects to perform certain
operations. These internally generated messages are called system
messages. C/PEG system messages are no different from user defined
messages, with the exception that the type is between 1 and
PEG_FIRST_USER_MESSAGE. The definition of the messages is determined
by C/PEG and C/PEG objects understand what to do when they receive
various system messages.

C/PEG allows the application developer great flexibility in message
handling. Not only is the application developer allowed to create custom
messages, it is also common to receive and process the system messages
that are generated internally by C/PEG. This is sometimes referred to as
intercepting a message, because the application can catch a message that
C/PEG has sent to an object and change the interpretation of the message,
or even cause the object to ignore the message entirely. Working examples
of how to do this are provided in the programming section of this manual.
44 C/PEG Programming Manual Swell Software, Inc.

PegMessage Definition
 System Message List
The following is a list of C/PEG system messages that may generally be of
interest to application level software. Additional control specific messages
are documented in the section of the reference manual that described each
particular control.

C/PEG System Message
Type Description

PM_ADD This message can be issued to add an
object to another object. The message
pTarget field should contain a pointer
to the parent object, and the message
pSource field should contain a pointer
to the child object.

PM_CLOSE Recognized by PegPanel derived
objects and causes the recipient to
remove itself from its parent and
delete itself from memory.

PM_CURRENT This message is sent to an object
when it becomes a member of the
branch of the PegPresentation tree
which has input focus.

PM_DESTROY This message is sent to
PegPresentation to destroy an object.
The pSource member of the message
should point to the object to be
destroyed.

PM_DRAW This message can be sent to an object
to force that object to redraw itself.

PM_EXIT This message is sent to
PegPresentation to cause termination
of the application program.

PM_HIDE This message is sent to an object
whenever it is removed from a visible
parent.

PM_KEY This message is sent to the current
input object when keyboard input is
received. The message sData
member contains the corresponding
ASCII character code, if any, and the
u.lData member of the message
contains key modifiers, if available.
Swell Software, Inc. PegMessageQueue 45

PegMessageQueue
PM_LBUTTONDOWN This message is sent to an object
when the user generates mouse click
input. PegPresentation routes mouse
input directly to the lowest child object
containing the click coordinates. If the
child object does not process mouse
input, the message is passed up to the
parent object. This process continues
until an object in the active tree
processes the message, or the
message ends up back at
PegPresentation. The position of the
mouse click is included in the u.Point
field of the message.

PM_LBUTTONUP This message is sent to an object
when the user releases the left mouse
button. The flow of this message is
identical to PM_LBUTTONDOWN

PM_NONCURRENT This message is sent to an object
when it loses membership in the input
focus branch.

PM_PARENTSIZED This message is sent to all children of
a PegPanel derived object if the panel
is resized. This makes it very easy for
child objects that want to maintain a
certain proportional spacing or position
within their parent to catch this
message and resize themselves
whenever the parent window is sized.

PM_POINTER_ENTER This message is sent to an object
when the mouse pointer (if available
on the system) moves into the section
of the screen occupied by the object.

PM_POINTER_EXIT This message is sent to an object
when the mouse pointer (if available
on the system) moves out of the
section of the screen occupied by the
object.

PM_POINTER_MOVE This message is sent to an object
when the mouse pointer (if available
on the system) moves within the
boundary of the section of the screen
occupied by the object.

C/PEG System Message
Type Description
46 C/PEG Programming Manual Swell Software, Inc.

PegMessage Definition
Table 5 (C/PEG System Messages)

 User Defined Messages
The underlying motivation for user defined messages is giving the
application engineer the ability to use the C/PEG message system in the
same manner as system messages to pass messages to and from C/PEG
objects and custom application objects. This allows the application to do
something useful when the end user interacts with the GUI elements that
are specific to a particular product.

There are many reasons for the application engineer to use this
mechanism. These will become clear once the developer is familiar with C/
PEG and begins building his own applications.

PM_SHOW This message is sent to an object
when it is added to a visible parent,
before the object is first drawn. This
allows an object to perform any
necessary initialization prior to drawing
itself on the screen.

PM_SIZE This message is sent to an object to
cause it to resize. This is equivalent to
calling the PegResize function. Note
that C/PEG does not differentiate
between moving an object and
resizing an object. Both are
accomplished via the PegResize
operation. The new size for the object
is included in the message u.Rect
field.

PM_RBUTTONDOWN This message is sent in systems that
support right mouse button input. C/
PEG objects do not process right
mouse button messages.

PM_RBUTTONUP This message is sent in systems that
support right mouse button input. C/
PEG objects do not process right
mouse button messages.

PM_TIMER This message is sent to an object that
has previously started a timer via the
PegTimerStart function. The integral
ID of the timer is included in the sData
member of the message.

C/PEG System Message
Type Description
Swell Software, Inc. PegMessageQueue 47

PegMessageQueue
For an example, suppose there are two separate but related panels visible
on the screen. We will call these Panel A and Panel B. Panel A displays
several data values, in alphanumeric format, that can be modified by the
user. Panel B displays these same data values as a line chart. When the
user modifies a data value in Panel A, we want Panel B to update the line
chart to reflect the new value. One way of accomplishing this is to define a
new message that contains the altered data value. When Panel A is notified
by one of it's child controls that a value has been changed, it builds an
instance of a newly defined message, places the data value into the
message and sends the message to Panel B. When Panel B receives the
message, Panel B realizes the line chart should be redrawn using the new
data value.

It is important to note both Panel A and Panel B should have visibility to the
user defined message type integer value. For this reason, it is often
necessary to put these types into a header file that can be shared among all
objects that will be interested in receiving or sending that particular
message type. Remember to always begin with PEG_FIRST_USER_MESSAGE
when enumerating message types. While it is not an absolute necessity for
every user defined message type to be unique, it can save confusion in the
long run.

There are three techniques that can be employed for sending user defined
messages from one object to another. The first two imply the caller has
direct visibility to the receiver by having a pointer to the receiving object.

First, the receiving object's Notify function may be called directly by the
caller, passing the message as a parameter. The general form of this call is
as follows:

PEGINT PegNotify(void *pTarget, const PegMessage *pMesg);

Second, the message's pTarget field may be loaded with the address of
the receiver and pushed into the PegMessageQueue. Finally, the
message's sData member can be loaded with the ID of the target object
while the pTarget field is set to NULL and pushed into the
PegMessageQueue. The second or third methods are generally preferred
because it adheres to the basic partitioning philosophy of the C/PEG
library.

If the pTarget field in the message is loaded with a pointer to a C/PEG
object, the application developer must insure the object is not deleted
48 C/PEG Programming Manual Swell Software, Inc.

Signals
before the message arrives. When a user defined message contains a non-
NULL pTarget value, there is no verification the pTarget field of the
message is a valid object pointer. (If PEG_USE_ASSERT is defined, then an
invalid pTarget may throw an assert in the message handling routine of
PegPresentation. This is not a desirable action on a production system.)
For this reason, in some situations, it is better to use NULL pTarget values
and, instead, route the message to the object using the object's ID. If
PegPresentation is unable to locate an object with the indicated ID, the
message is simply discarded.

There are also differences between these methods in terms of the order in
which events are processed. If a message is pushed into
PegMessageQueue, the sending object immediately continues processing
and the target object will receive and process the new message after the
sending object returns from message processing. If the receiving object's
message handling function is called directly by the sender, the receiver will
immediately receive and process the message. In effect, pre-empting the
calling object and it's execution thread. While these differences are
generally inconsequential for user defined messages, they can be very
important for C/PEG system messages.

5.2 Signals
As we have seen, messages are used to issue commands or to send other
information between objects that are part of the user interface. In the
previous section we learned a common use for user defined messages is to
provide notification to a parent object when a child object has been
modified. This usage is so common, in fact, C/PEG has defined a simplified
method for defining these messages and a corresponding syntax for
receiving them. This method is called signaling, and the messages sent
and received via signaling are referred to as signals. Signals are designed
to simplify the programming effort by reducing the complexity associated
with panels that contain a large number of child controls.

Signals are also defined to solve some common problems associated with
other, less friendly, messaging systems:

• Very often, a single panel will have a large number of child objects. It can
be very difficult to remember all of the unique messages associated with
each of these objects.

• Complex control types, such as PegEditField or PegComboBox, can be
modified in several different ways. The result of this is either multiple
Swell Software, Inc. PegMessageQueue 49

PegMessageQueue
message types must be sent by the control to the parent panel, or the
receiver of a single notification message would have to further
interrogate the control to determine exactly why the child object sent the
message.

• Although a control may define several different types of modifications,
the application code may not be interested in every type of control
modification that can occur. In that case, it would be a waste of
processing time for the child object to generate messages in which the
parent is not interested.

• Finally, to facilitate the implementation of a rapid application
development (RAD) tool such as PEG WindowBuilder, a consistent,
simple and robust message definition method must be in place.

C/PEG signaling solves each of these problems. Basically, signaling is
nothing more than allowing an object to automatically generate and use
multiple user defined message types that are based on a single object ID
value. A control object that uses signaling can further define which signals
are sent and which are not. This prevents the object from generating
unnecessary messages and wasting CPU cycles.

A further advantage of the C/PEG signaling algorithm is all message values
related to signaling are calculated at compile time, and signaling therefore
adds no overhead to run time performance of C/PEG.

When an object which uses signaling is defined, only the object’s ID value
needs to be specified along with the signals the object is interested in. In
order to process signals generated by that object, the parent only needs to
remember the child object's ID. A later section will show this in detail.

C/PEG defines many different signals, or notification messages, which can
be monitored for each control. Whenever the control is modified by the
user, the control checks to see if it has been configured to notify the parent
of the modification. If so, the control automatically generates a unique
message number based on the control's ID and the type of notification. The
message source pointer is loaded to point to the control, and the message
is then set up to the parent panel or object.

To receive a signal, C/PEG defines the PEG_SIGNAL macro, which is used
in the parent panel's message processing function. The parameters to the
PEG_SIGNAL macro are the object ID and the notification message in which
the object is interested. The PEG_SIGNAL macro is a shorthand method for
determining the exact message number sent by a control with a given ID
and corresponding to one of the 32 possible notification types.
50 C/PEG Programming Manual Swell Software, Inc.

Signals
The example below illustrates the use of signals in the definition and run
time processing of a typical parent panel. Since most of the code presented
in the example has not yet been fully discussed or explained, it is sufficient
to examine the syntax for defining the control object ID's for each of the
panel's controls and the message processing statements corresponding to
each control.

A few object ID's are reserved by C/PEG to facilitate the proper operation of
C/PEG modal panels. These object ID's are defined in the header file
pegtypes.h. These reserved objects ID values occupy the upper range of
possible ID values, and for this reason, ID values assigned to application
objects should always start with an ID value of 1.

Not all notification signals are needed or supported by all control types. For
this reason, the reference documentation for each control type that uses
signaling includes a list of the notification messages supported by that
control.

 Control ID Definition and Signal Processing Example
The example below presents the message handling function of a panel as a
preview allowing the application developer to observe the syntax of C/PEG
signaling. The syntax is slightly unusual, even for experienced C
programmers.

The first bit of code is from the header file for the panel. Each child control
is assigned an enumerated ID, as in IDC_USER_NAME and IDC_HAS_EMAIL.
In the second code segment, we find the message processing function,
MyPanelNotify, where notifications from these controls are caught using the
PEG_SIGNAL macro. The parameters to the PEG_SIGNAL macro are the ID of
the control object, and the notification type we are interested in catching.
This syntax has the further advantage of making the code somewhat self
documenting, since as you become familiar with this syntax you will quickly
be able to recognize the control type and notification that each case
statement is processing.

PEGINT MyPanelNotify(void *pThing, const PegMessage *pMesg);
enum MyPanelChildIds
{

IDC_USER_NAME = 1, /* edit field ID */
IDC_HAS_EMAL, /* check box ID */
IDC_EMAIL_ADDRESS /* email address edit field ID */

};

PEGINT MyPanelNotify(void *pThing, const PegMessage *pMesg)
{

Swell Software, Inc. PegMessageQueue 51

PegMessageQueue
switch(pMesg->usType)
{
case PEG_SIGNAL(IDC_USER_NAME, PSF_TEXT_EDITDONE):

/* add code for user name modification here */
break;

case PEG_SIGNAL(IDC_USER_NAME, PSF_FOCUS_RECEIVED):
/* add code here to bring up help for user name */
break;

case PEG_SIGNAL(IDC_EMAIL_ADDRESS, PSF_TEXT_EDITDONE):
/* add code for email address change here */
break;

case PEG_SIGNAL(IDC_HAS_EMAIL, PSF_CHECK_ON):
/* add code for checkbox turned on */
break;

case PEG_SIGNAL(IDC_HAS_EMAIL, PSF_CHECK_OFF):
/* add code for checkbox turned off */
break;

default:
return(PegPanelNotify(pThing, pMesg));

}

return(0);
}

Text 7 (Message Handling Function Example)
52 C/PEG Programming Manual Swell Software, Inc.

C H A P T E R 6

CHAPTER6PEGSCREEN
PegScreen is a C/PEG object that provides the drawing primitives used by
the individual C/PEG objects to draw themselves on the display device. C/
PEG objects never directly manipulate video memory; but, instead use the
PegScreen object and functions to draw lines, text, bitmaps, etc. Most
importantly, PegScreen provides a layer of isolation between the video
hardware and the rest of the C/PEG library, which is required to insure C/
PEG is easily portable to any target environment.

The PegScreen object contains all of the callable user API’s for graphics
drawing. If it is able to process the draw request in a portable manner, then
it does so. If not, it hands the call off to the second layer of the graphics
layer, the template. The template is a portable set of drawing functions that
work in a particular color depth. For platforms with non-accelerated
hardware, the template is able to display graphics directly into the frame
buffer. If the hardware does support any type of hardware acceleration, as
in line drawing, for instance, then the template hands the draw call off to the
lowest level of the graphics layer, the driver.

The following illustrations exemplifies the relationship between these
members of the graphics layer.
Swell Software, Inc. PegScreen 53

PegScreen
Illustration 3 (Unaccelerated Graphics Layout)
54 C/PEG Programming Manual Swell Software, Inc.

Illustration 4 (Accelerated Graphics Layout)

This layout makes the graphics API portable across platforms. It also
provides a clear path for supporting new hardware.

PegScreen may interface to a large variety of display devices. VGA and
SVGA displays, LCD panels and even printers may be driven by the
PegScreen interface object. Custom implementations may, of course,
extend the required functionality. C/PEG is delivered with several working
examples of template and driver implementations. These are described in
more detail in the following sections.
Swell Software, Inc. PegScreen 55

PegScreen
At this point, it should be clear why the build procedures at the start of the
manual contain instructions for including different template and driver
modules depending on the target environment.

 Screen Coordinates
This is a topic of much confusion on many platforms. In some
environments, screen coordinates are always relative to the upper left
corner of the object that is accessing the screen. In other environments,
screen coordinates are always relative to the absolute upper left corner of
the screen. In most cases, some combination of both is used.

Further, the units for screen coordinates are sometimes defined in pixels,
inches, sub-inches or an arbitrary unit derived from a basic font style.

After much discussion, the designers of C/PEG determined the following
complex rules governing screen coordinates:

C/PEG screen coordinates are in pixels. When the application developer
defines a position of a panel, the position is in pixels. When the application
developer defines the position of a button, the position is in pixels. When
the application developer defines the starting position for text drawing, the
position is in pixels. We think you get the message.

C/PEG screen coordinates are relative to the upper left corner of the
screen, which is 0, 0. While this does not exactly follow trigonometric
conventions, this is at least a consistent definition among graphical
environments and will be familiar to users who have done previous GUI
programming. C/PEG screen coordinates are not relative to the client area
of an object, the client area of an object's parent or relative to the day of the
month. C/PEG screen coordinates are relative to the upper left corner of the
screen, which is 0, 0.

For custom drawing routines, it is important to bear in mind the application
developer will always need to use some corner of the object's client
rectangle as the reference point for the drawing operations. While this may
at first appear more difficult than alternative approaches, we feel once you
gain experience with this method of coordinate resolution, you will find
custom drawing from within C/PEG is much easier to do than with any other
platform.
56 C/PEG Programming Manual Swell Software, Inc.

 Video Controllers
C/PEG is designed to be completely independent of the target system
video display channel. In order to accomplish this, the PegScreen object is
defined to allow C/PEG objects to use a common set of display output
functions when drawing to the screen.

C/PEG can be used with display devices supporting any combination of
pixel resolution, color depths and memory layout. This includes LCD, HGA,
CGA, VGA and SVGA capable devices.

 Porting C/PEG to Custom Video Hardware
Porting C/PEG to run on a custom target platform requires a custom driver
layer for the graphics engine and configuration routines that is tuned to the
bus architecture, color depth, memory organization and pixel resolution of
the target platform. Creating a custom PegScreen involves configuring the
video controller and optionally tuning one of the provided templates to
make the best use of the system configuration. This does not mean it is
necessary to invent algorithms to meet the requirements of these functions.
The required algorithms are provided in the PegScreen object and
templates provided with the library. It is best to start with the nearest
template implementation as the basis for your custom driver.

Video controller chips are generally not designed to work with only one type
of display. All video controllers contain programmable registers that must
be initialized to make the controller function in a way that is compatible with
the display device. This process of programming the video controller
registers is called configuring the video controller.

The video controller and the display device stay in sync with each other via
horizontal and vertical sync timings signals. The most difficult portion of
video controller configuration is insuring the vertical and horizontal timing
signals generated by the controller are within the requirements of the
display screen being used. This requires the timing information provided by
the screen or LCD display manufacturer be closely correlated with the
registers on the video controller that control the sync timing signals. The
remainder of a typical controller configuration involves informing the
controller of the memory configuration, color values, etc., the system
intends to use.

If the target hardware uses a linear 1 bpp (bits per pixel), 2 bpp, 4 bpp, 8
bpp, or 16 bpp linear frame buffer, the provided templates contain
everything you need to run C/PEG on your target. If the video hardware
Swell Software, Inc. PegScreen 57

PegScreen
contains acceleration functions, these templates will not take full advantage
of these features, but they will allow you to get a system up and running
quickly. Tuning the driver to take advantage of video hardware acceleration
can be accomplished as the project development progresses.

Most two and four color memory systems are linear, with adjacent pixels
corresponding to adjacent bits or bit pairs in video memory. The exception
to this is that often for two color screens, separate banks or pages of video
memory drive even and odd rows of pixels. Four color video systems often
follow a similar segmentation, with each fourth row of pixels coming from a
common bank of video memory.

Sixteen color video systems can be an extension of the linear memory
noted above, with each nibble in video memory corresponding to a single
screen pixel. A more common form of sixteen color video systems is the
planar organization invented with the IBM VGA controller. This is one of the
most difficult memory systems to understand and program, although the
provided VGA screen driver utilizes exactly this type of memory layout.

Video systems with 256 color and above are all basically linear in nature,
requiring one or more bytes of video data for each screen pixel. Calculating
pixel addresses is usually very simple for these types of systems. An added
complexity for 256 color systems is the use of one or more color palettes.

 PegScreen Templates and Drivers
Several PegScreen templates are provided in your C/PEG distribution.
These templates are general purpose drivers accommodating a wide range
of color depths and screen resolutions. Note that these general purpose
templates do not configure the video controller, that is the job of the driver
layer. All of the necessary drawing routines are provided and ready to use
for a given color depth at any screen resolution in the templates.

To implement a new driver layer, it is best to start with an existing driver
that most closely resembles the target video hardware.
58 C/PEG Programming Manual Swell Software, Inc.

C H A P T E R 7

CHAPTER7FUNDAMENTAL DATA TYPES
This section introduces the custom data types defined by C/PEG. The data
types include simple 8, 16 and 32 bit data storage types as well as more
complex types for passing information such as color, position and bitmap
data. After using C/PEG for a while, these data types will become second
nature. The data types are defined in the include file pegtypes.h. The more
complex objects are found in separate header files that are listed along with
the description of the type.

 Simple Data Types
• Defined in file: pegtypes.h

The following simple data types are used instead of the intrinsic data types
defined by the compiler to avoid conflicts when running on platforms with
different basic word length and data manipulation capabilities. In all cases,
longer bit length types on those machines that do not accommodate 8 or 16
bit data values may replace shorter bit length types. The following
definitions may need to be modified to match the word length of the target
platform.

C/PEG Data Type C Data Type Datatype
PEGBYTE signed char 8 bit signed
PEGUBYTE unsigned char 8 bit unsigned
PEGSHORT signed short int 16 bit signed
PEGUSHORT unsigned short int 16 bit unsigned
PEGINT signed int signed, native size
PEGUINT unsigned int unsigned, native size
PEGLONG signed long 32 bit signed
PEGULONG unsigned long 32 bit unsigned
PEGCOLORVAL varies on color depth
PEGCHAR 8 or 16 bits

Table 6 (Simple Data Types)
Swell Software, Inc. Fundamental Data Types 59

Fundamental Data Types
Whenever possible, the C/PEG library uses the PEGINT and PEGUINT
data types to produce the most efficient code for the target processor. If the
variable in question does not need to be an exact bit width, the PEGINT
and PEGUINT data types are used. The smaller data types are used only
when the library requires a specific variable size, or when data space
savings require that a short data type is specified.

 PegPoint
• Header module: ppoint.h

• Source module: ppoint.c

Definition:
typedef _PegPoint
{

PEGSHORT x;
PEGSHORT y;

} PegPoint;

PegPoint is a basic pixel address data type. The x and y position is always
relative to the top left corner of the screen.

Note PegPoint contains PEGSHORT data values. This means it is perfectly
normal and acceptable during normal operation of C/PEG for at least some
portion of an object to have negative screen coordinates. This simply
means the object has been moved partially or entirely off of the visible
screen. Of course, the C/PEG clipping methods prevent the object from
trying to access the non-existent area of video memory.

 PegRect
• Header module prect.h

• Source module prect.c

Definition:
typedef struct _PegRect
{

PEGSHORT sLeft;
PEGSHORT sTop;
PEGSHORT sRight;
PEGSHORT sBottom;

} PegRect;
60 C/PEG Programming Manual Swell Software, Inc.

A large part of graphical interface programming revolves around defining
and calculating rectangular regions on the screen. By providing a PegRect
structure and support functions, C/PEG easily facilitates these types of
operations.

See the “C/PEG API Reference Manual” for support functions that relate to
PegRect.

 PegBrush
• Header module: pbrush.h

• Source module: pbrush.c

Definition:
typedef struct _PegBrush
{

struct _PegBitmap *pBitmap;
struct _PegRect Clip;
PEGULONG ulPattern;
PEGINT iWidth;
PEGCOLORVAL Foreground;
PEGCOLORVAL Background;
PEGUBYTE ubFlags;

} PegBrush;

C/PEG is designed to allow the application developer to easily modify the
default appearance of all of the C/PEG objects at compile time, and also to
change the appearance of individual objects at run time. C/PEG is internally
designed to support display color depths up to 16 bpp (5-5-5 or 5-6-5 RGB)
operation. The color definitions used in the C/PEG source distribution limit
C/PEG to actually only using 16 colors. This restriction allows C/PEG to run
out of the box on most systems. There are no restrictions on the actual
color depth of the target display, but C/PEG objects will not by default make
use of this extended color capability. The default color values used by each
C/PEG object are defined in pegtypes.h.

All C/PEG objects contain four primary color values. These color values
determine the default background and default text colors, as well as the
background and text colors to use when the object is current, or selected.
Many C/PEG objects appear the same way whether selected or not. A few
C/PEG objects define additional color values specific to that object type. In
any event, these default colors may be modified by adjusting the definitions
in the pegtypes.h file. Object colors may also be modified at run time by
calling the PegColorSet function described in detail later.
Swell Software, Inc. Fundamental Data Types 61

Fundamental Data Types
PegBrush is also a parameter to many of the screen output functions.
PegBrush informs the output functions what foreground and background
color to use, how to modify the drawing of the primitive, a pointer to a fill
bitmap and a PegRect structure that may be used to perform additional
clipping.

The PEGCOLORVAL data type may be 8, 16 or 32 bits, depending on the
color depth of the target platform. This is configured automatically by the C/
PEG header files based on the selected value of PEG_NUM_COLORS.

The member Foreground is generally used to draw text, lines and the
outlines of rectangles, circles, arcs and polygons. While the Background
member is generally used as the fill color for text, circles, arcs and
polygons.

The iWidth member is used as the width for drawing lines. It is also used as
the outline width for drawing rectangles, circles, arcs and polygons.

The ubFlags member modifies the drawing operation of many of the screen
output functions.

The following table describes the valid values for this member as well as
their meaning on specific draw operations. It is acceptable to use some of
these flags together to achieve the desired effect by logically OR'ing the
flags together.

It is important to note by using flags which will cause the draw operations to
evaluate the pBitmap or Clip members of the brush structure, the
respective members must be appropriately filled in, or else there will be a
run time error.
.

PEGBrush ubFlags Description
CF_NONE No fill, pattern, bitmap or clipping
CF_FILL Fill rectangles, circles, arcs and polygons

with the Background color
CF_XOR Do not use any color, instead XOR with the

background
CF_PATTERN Applies to line. Uses the value in

ulPattern to draw the line. The default for
the pattern is defined as 0xccccccccUL by
the PEG_DEF_FILL_PATTERN definition.
62 C/PEG Programming Manual Swell Software, Inc.

Table 7 (PegBrush Flags)

The Clip member of a PegBrush allows the application developer to exert
fine control over the draw operations. Every draw operation is always
clipped to the C/PEG object that is doing the drawing. Therefore, a C/PEG
object is never allowed to draw outside of the portion of the screen it
occupies. The Clip member enforces even more stringent policing on the
part of the PegScreen. Not only are draw operations clipped to the calling
object, the draw operations will also be clipped to the Clip rectangle in the
PegBrush, if one is supplied and CF_CLIP is part of the ubFlags member.

The ulPattern member is used when drawing patterned lines. The member
holds an unsigned long data value that determines the pattern which is
used to draw the line. A bit that is turned on in this value, starting from the
high order bit, indicates the corresponding pixel on the screen should be
drawn in the foreground color of the brush. A bit that is off indicates drawing
should be skipped for the corresponding pixel. The default value for this
member when the brush is created using the PegBrushCreate functions is
PEG_DEF_FILL_PATTERN, which is defined as 0xccccccccUL, which is
two bits on followed by two bits off, repeated eight times.

 PegMessage
• Include module: pmessage.h

• Source module: pmessage.c

Definition:
typedef union _uPegMessage
{

struct _PegRect Rect;
struct _PegPoint Point;

CF_TILE Tiles pBitmap over a given rectangle. Uses
the Clip member to determine the tile
region

CF_CENTER Centers pBitmap over a given rectangle.
Uses the Clip member to determine the
region over which to center.

CF_STRETCH Fills the rectangle defined by Clip with a
resized copy of the bitmap in pBitmap. This
functionality is not available on all platforms.

CF_CLIP Clips any draw operation to the Clip
member

PEGBrush ubFlags Description
Swell Software, Inc. Fundamental Data Types 63

Fundamental Data Types
void *pData;
PEGLONG lData;
PEGLONG lUserData[2];
PEGULONG ulUserData[2];
PEGSHORT sUserData[4];
PEGUSHORT usUserData[4];
PEGUBYTE ubUserData[8];

} uPegMessage;

typedef struct _PegMessage
{

PEGUSHORT usType;
PEGSHORT sData;
void *pTarget;
void *pSource;
struct _PegMessage *pNext;
union _uPegMessage u;

} PegMessage;

PegMessage defines the format of messages passed within the C/PEG
environment. On most machines, each PegMessage requires 24 bytes of
memory if structure packing is enabled.

For user defined messages, all but the usType and pTarget message fields
can be used in any way desired. The uPegMessage union member field is
intended to allow the application developer to easily pass any type of data
necessary in the user defined message.

 PegTimer
• Include module: pmessage.h

• Source module: pmessage.c

Definition:

typedef struct _PegTimer
{

struct _PegTimer *pNext;
struct _PegThing *pTarget;
PEGLONG lCount;
PEGLONG lReset;
PEGUSHORT usTimerId;

} PegTimer;

Support functions:
void PegTimerStart(PegMessageQueue *pQ, void *pThing,

PEGUSHORT usId,PEGLONG lCount, PEGLONG lReset);
void PegTimerKill(PegMessageQueue *pQ, void *pThing,

PEGUSHORT usId);
64 C/PEG Programming Manual Swell Software, Inc.

void PegTimerTick(PegMessageQueue *pQ);

C/PEG provides a simple means for the application developer to receive
periodic timer messages in C/PEG objects. Any object derived from a C/
PEG object may start any number of individual timers. When the timer
expires, that object will receive a PM_TIMER message from
PegMessageQueue. The message's sData member will contain the ID of
the timer that has expired. If the timer is started with a non-zero reset value,
the timer will automatically load itself with the reset value and begin a new
time out.

C/PEG timers are maintained by PegMessageQueue. In order for C/PEG
timers to function, the system must call the PegTimerTick function
periodically to indicate to C/PEG that one tick time has expired. This is
normally accomplished in the target specific implementation of PegTask.
For versions of C/PEG which have been customized for a particular
operating system, PegTimer is fully integrated with the operating system
timer services such that an unlimited number of PegTimers are driven by a
single operating system timer.

The PegTimerTick mechanism serves two purposes. First, it insulates C/
PEG from knowing anything about the target hardware time base. Second,
it allows the application designer to tailor the frequency in which the C/PEG
timer is strobed. Very often it is not necessary for the GUI timers to be
nearly as accurate as low-level timer interrupts. For an example, if it is
desired for a C/PEG timer to be accurate to 50 milliseconds, and the low-
level timer interrupt occurs every one millisecond, the system software
would call the PegTimerTick function once for every 50 timer interrupts
received.

The application designed determines the time base for C/PEG timers.
Therefore, the value loaded in a C/PEG timer is simply a number of ticks,
rather than any absolute time value. C/PEG defines the constant
PEG_ONE_SECOND, which should be set by the application designer to equal
the number of C/PEG timer ticks that will occur in one second. When a C/
PEG timer is loaded, it is good practice to calculate the tick value based on
this PEG_ONE_SECOND definition. This way, if the time base changes during
program development, it will not be necessary to track down every location
in the application code where timers are being set in order to modify the tick
value used.

PegTimers are started by calling the PegTimerStart function. The
parameters specify the timer ID, the first time out period and successive
Swell Software, Inc. Fundamental Data Types 65

Fundamental Data Types
time out periods. The PegMessageQueue pointer will usually be the default
C/PEG system message queue which can be obtained by calling the
PegMessageQueuePtr function. If a single C/PEG object needs to create
more than one timer, it is important to assign the timers specific ID values
so the C/PEG object is able to recognize each timer expiration message.
The theoretical limit for timer ID values on most systems is 32K since the ID
is sent to the object in the sData member of a PegMessage, which is a
PEGSHORT data type.

The lCount and lReset time out periods determine how many timer ticks will
expire before the timer 'times out'. These can be the same value. If the
lReset value is zero, the timer will time out only once and delete itself. This
is generally referred to as a one shot timer.

While there is an active timer for an object, the object will receive
PegMessages with a usType set to PM_TIMER.

To stop a timer, the object should call PegTimerKill. If a value of zero is
passed in the usID parameter, then all timers for that object will be deleted.

The application level code should never create an instance of a PegTimer
object directly. All of the necessary functionality for timer are provided in the
timer functions described above.

 PegFont
• Header module: pfont.h

• Source module: pfont.c

Definition:
typedef struct _PegFont
{

PEGUBYTE ubType;
PEGUBYTE ubAscent;
PEGUBYTE ubDescent;
PEGUBYTE ubHeight;
PEGUSHORT usBytesPerLine;
PEGUSHORT usFirstChar;
PEGUSHORT usLastChar;
PEGUSHORT *pOffsets;
struct _PegFont *pNext;
PEGUBYTE *pData;

} PegFont;

The PegFont type contains information about each font used by the
application. The PegScreen text output and text information routines
66 C/PEG Programming Manual Swell Software, Inc.

require a pointer to a PegFont structure as a parameter. One PegFont
structure should be defined for each font that is used by the application.
The good news is, these fonts can easily be generated using the PEG
FontCapture utility program. This program will automatically generate this
data structure along with the associated offset and data tables.

By default, C/PEG includes only two fonts named PegBoldFont and
PegNormalFont. As suggested by their names, PegBoldFont is slightly
larger and heavier than PegNormalFont. PegBoldFont is used for string
objects, prompts and in the title bars in message panels. The
PegNormalFont is used for all of the button objects as well as the group
object. The font used by any particular object is very easy to change by
making a call to PegFontSet.

The two native fonts provided with C/PEG have been hand tuned to look
nice at small point sizes. Larger fonts are usually very readable without any
hand tuning and can be used directly as they are outputted from the PEG
FontCapture utility.

 Default Object Fonts
If custom fonts are created for use in an application, they may be used at
specific times using the PegFontSet function as described above. This can
become tedious and subject to mistakes if the application must set the font
for each particular object of a given type. To that end, C/PEG provides
functionality to allow the application developer to set the default font for any
object type that uses text. The default font used by C/PEG for each object
type is defined in the header file pfonts.h.

C/PEG maintains a small table that maps a particular font to a particular C/
PEG type of object. This type is independent of the type that is stored in the
object. This type is more of an aggregate of like C/PEG objects types into a
more general classification. These types can be found in the pfonts.h
header file defined in the PEG_DEFAULT_FONT_INDEX enum. The following
table outlines the default font classifications and to which C/PEG objects
these pertain.

C/PEG Default Font Index C/PEG Objects Affected
PEG_DEFAULT_FONT None
PEG_TITLE_FONT PegTitle
PEG_TEXT_BUTTON_FONT PegTextButton, PegMLTextButton,

PegDecoratedButton
Swell Software, Inc. Fundamental Data Types 67

Fundamental Data Types
Table 8 (Default Font Index)

Any object that derives at some point from PegTextThing contains a pointer
to a PegFont structure it uses to pass to the PegScreen object when it
wishes to draw text. These types of objects, at some point in the process
used to create them, set their internal font pointer by getting a pointer at the
default font for their classification. The point here is every PegTextThing
derived object calls into this font pointer table to retrieve the font they are
suppose to use for drawing. Therefore, if the application modifies the font
table, subsequent object creation will obtain the new font from the font
table, if their classification's font pointer was modified.

It would be obvious to assume, then, any modifications to the font table
should be done early in the application process, preferable before any
PegTextThing derived objects are created. This would ensure the objects
are created with the correct font.

To do this, the application only needs to call PegDefaultFontSet with the
correct object category and a pointer to a PegFont structure. After this call,
all new objects of that category will internalize the new PegFont and use
that for drawing.

The application developer may also wish to add new categories to this font
pointer table to support new category types that are used in the application.
This is simple to do as well. The total number of font pointers allowed in the
table is controlled by the PEG_NUM_FONTS define. This define is the sum of
two other defines: PEG_NUMBER_OF_DEFAULT_FONTS and
PEG_SPARE_FONT_INDEXES. As delivered, the C/PEG library defines the latter
to be 0. By modifying PEG_SPARE_FONT_INDEXES to a number greater than 0,

PEG_RADIO_BUTTON_FONT PegRadioButton
PEG_CHECKBOX_FONT PegCheckBox
PEG_PROMPT_FONT PegPrompt, PegMLPrompt
PEG_EDIT_FIELD_FONT PegEditField
PEG_TEXTBOX_FONT PegTextBox
PEG_GROUP_FONT PegGroup
PEG_ICON_FONT PegIcon
PEG_PROGBAR_FONT PegProgressBar
PEG_PANEL_FONT PegPanel
PEG_MESSAGE_PANEL_FONT PegMessagePanel, PegStatusPanel

C/PEG Default Font Index C/PEG Objects Affected
68 C/PEG Programming Manual Swell Software, Inc.

the application developer may then add that many new category indices
and font pointers to the font table.

It is important to note any customer user objects that wish to use the new
font must call into the font table during the creation process. This will
ensure the application behaves as expected.

It is also possible to modify the font table pre-compile time. Therefore,
instead of calling PegDefaultFontSet, the application developer may wish to
simply replace the default font in the particular category slot pre-compile
time, thus ensuring that every object of that category will always use the
desired font without the necessity of calling PegDefaultFontSet at the start
of the application. Of course, the down side to this is if the application
developer updates the C/PEG library, these changes may be lost during the
upgrade process.

 Outlined Fonts
PegFonts are normally 1 bpp bitmapped fonts, but, outlined fonts are
encoded in 2 bpp format. These fonts can be drawn with any combination
of foreground and background colors that are supported on the target
hardware. An additional PegFont type is the outlined font type. This font
looks identical to the application and library software, however the internal
format is modified to draw with a different appearance. The PegScreen
recognizes the outline font type and will draw the font accordingly.

 Anti-Aliased Fonts
Anti-aliased PegFonts are also bitmapped fonts, but they are encoded
using a 4 bpp format to allow each pixel to be defined as one of a possible
sixteen levels of off to on. The sixteen shading levels are usually sufficient
to provide a nice appearance on most displays.

Anti-aliased fonts are used and assigned to C/PEG library objects just like
normal 1 bpp fonts. The only difference is in the internal format. The anti-
aliased font format is recognized by the PegScreen object as such and is
drawn accordingly.

 Multilingual Support
The PegFont data structure can be used to contain almost any number of
characters, or glyphs, including characters sets that exceed 256 characters
in number. For very large fonts, the PEG FontCapture utility application will
automatically generate multi-page fonts using the pNext member of each
font to create a single PegFont containing any number of characters. Each
Swell Software, Inc. Fundamental Data Types 69

Fundamental Data Types
page of the font may have different attributes, which allows for the greatest
memory savings.

 PegBitmap
• Include module: pbitmap.h

• Source module: pbitmap.c

Definition:
typedef struct _PegBitmap
{

PEGUBYTE ubFlags;
PEGUBYTE ubBitsPix;
PEGUBYTE sWidth;
PEGUBYTE sHeight;
PEGULONG ulTransColor;
PEGUBYTE *pStart;

} PegBitmap;

The PegBitmap structure is used to pass bitmap data to the PegScreen
object during draw operations that wish to draw bitmaps. C/PEG supports
bitmaps from 1 to 16 bpp formats. Further, the bitmap data may be
compress, uncompressed or may only encode changes from a previous
bitmap, which is used for displaying animations. C/PEG uses RLE
compression techniques. While other techniques may offer superior
compression ratios, RLE compression offers very fast run time
performance.

The PEG ImageConvert utility application is used to generate bitmaps in
the correct format for the application and target hardware. The data
structure, along with the actual bitmap data, is automatically generated by
this utility. In general, bitmaps larger that 64 x 64 pixels should be
compressed to save storage space. On the other hand, if the target system
has plenty of memory available at run time, it may be a performance
enhancer to not compress the bitmaps. Every platform and architecture is
different, so you may need to experiment with compression to find a
suitable level of performance and memory usage for your platform.

While most bitmaps will be converted to a PegBitmap structure pre-compile
time, it is also possible to create a bitmap at run time and draw into it using
the same draw routines that are used to draw to the screen. The only
difference is in the opening call to PegDrawBegin or PegDrawBeginBitmap.
The first function implies drawing directly to the screen, while the second
takes a pointer to an existing bitmap. The application developer may create
a bitmap for this use by calling PegBitmapCreate and passing over the size
70 C/PEG Programming Manual Swell Software, Inc.

and color depth of the requested bitmap. There is an example of using this
technique later on in the manual.
Swell Software, Inc. Fundamental Data Types 71

Fundamental Data Types
72 C/PEG Programming Manual Swell Software, Inc.

C H A P T E R 8

CHAPTER8THE MIGHTY THING
In this section the most fundamental and important object in all of the C/
PEG library will be discussed: PegThing. This section describes the overall
capabilities of the PegThing object, the associative functions of the objects
and provides several small programming examples illustrating the most
common C/PEG programming operations. This information complements
the API reference manual in that here the concentration is on useful
examples, whereas the primary purpose of the API reference manual is to
provide a quick lookup for function names and argument lists.

The first half of the section is a rather formal function reference, covering
object creation, deletion and functions dealing specifically with PegThing
objects. The second half covers various important topics explaining the
purpose of PegThing members and demonstrating the use of PegThing
support functions to accomplish small programming tasks.

PegThing is the base object from which all viewable C/PEG objects are
derived. As mentioned previously, the term derived in this context refers to
the fact every viewable C/PEG object contains the same data and function
pointer members as PegThing in the same order as they are contained in
PegThing. While it may not be typical to create an instance of an actual
PegThing object in the application, it is very possible that application level
code may wish to derive custom object types directly from PegThing.

A basic precept in the design of C/PEG is all graphical objects, from the
most complex to the simplest, share a small but significant set of properties.
Some of these basic properties include: whether or nor the object is visible;
if the object has a parent and who the parent is; if the object has children
and who those children are; if the user should be allowed to interact with an
object; and so forth. These and other properties define how each object will
participate in the graphical representation.

This is not to imply PegThing is overly complex or difficult to understand. In
fact, PegThing is actually very straight forward. The following sections will
describe in detail the functions and data members of PegThing. With this
information, the application developer will gain a clear understanding of
Swell Software, Inc. The Mighty Thing 73

The Mighty Thing
how C/PEG works, and will be able to anticipate how objects will work
together when combined to perform complex interfaces.

 PegThing Support Functions
This section describes each support member and data member of the
PegThing object. Rather than focusing entirely on formal function
declarations, parameter descriptions and return values as is done in the C/
PEG API Reference Manual, this section instead includes many code
fragments and useful examples to illustrate how each of the functions can
be used.

This manual does not include every function associated with the PegThing
object. Please refer to the API manual for an alphabetic list of all PegThing
functions.

 Creation
Every PegThing derived object in the C/PEG library has a set of functions
for creating, initializing and setting up the members of the objects. They all
share the same function name scheme: the name of the object type
(PegThing, in this case), then an action word or phrase that describes what
it is that is being done. The action words and phrases are common for each
object, only the object name changes.

For instance, to create a default PegThing object, which is properly
initialized, but does not have a size, position, ID or style, use the function
PegThingCreateDefault. Likewise, to create a PegTextButton with the
same attributes (properly initialized, but not having size, position, ID or
style), use PegTextButtonCreateDefault. The function names an internal
sequence of what function is called by which other function is exactly the
same for every PegThing derived object.

This provides a very definable and reproducible model that, once
understood, allows the application developer to easily create custom
objects derived from an existing C/PEG base object. Once the object is
created, there is a clear road map on how to properly initialize the object for
use.

The illustration below shows the five functions which are common to all
PegThing derived objects and how these work together to create an object
of a given type. The illustration uses PegThing for the example, but the
same order holds true for any PegThing derivative, only the function names
are different to match the object type.
74 C/PEG Programming Manual Swell Software, Inc.

It is very common for a derived object to call the object from which it was
derived for default functionality for a given function. For example, the
PegButton object, which is derived from PegTextThing, calls
PegTextThingSet from within its own PegButtonSet function. This ensures
the derived object properly inherits the correct setup procedure.

Illustration 5 (PegThing Creation)

PegThing *PegThingCreateDefault(void);

This function is used when the desired initial position of the object on the
screen is not known at the time of object creation. When this is the case, it
is necessary to define the object's position some time between when the
object is created and when the object is drawn on the screen.

The returned PegThing pointer is a fully formed PegThing object. All of it's
function pointers have been initialized. It's type has been set to
PEG_TYPE_THING and it's default status has been set. The remaining data
members have all been set to 0.

The easiest, and proper, way to set an objects position is to call the
PegResize function, which accepts a pointer to the object that is to be
resized along with a pointer to a PegRect structure that is used to resize the
object to the desired screen coordinates. Calling PegResize is the
acceptable way to set the size of an object or position after the object is
visible.
Swell Software, Inc. The Mighty Thing 75

The Mighty Thing
PegThing *PegThingCreate(PegRect *pRect, PEGUSHORT usId,
PEGUSHORT usStyle);

This function is used when the desired initial position of the object on the
screen known at the time of object creation. This will also assign the ID to
the object as well as its initial style.

Internally, this function calls PegThingCreate to obtain a fully formed
PegThing object. It then uses the parameters to 'set up' the object. The
obvious benefit to this is there really is only one function that does the
actual work of allocating the memory necessary for a PegThing object.

void PegThingInit(PegThing *pThing);

This function is called by PegThingCreateDefault to properly initialize the
PegThing object. This function sets the objects type, default status and
calls PegThingSetDefFuncs to set up the objects function pointers.
It is suggested any objects which are derived from PegThing objects in
application code may wish to call this function after the custom object has
been allocated. This ensures the basics of the object are setup properly
before doing any custom modifications on the custom object.

void PegThingSet(PegThing *pThing, PegRect *pRect,
PEGUSHORT usId,PEGUSHORT usStyle);

This function is called by PegThingCreate after the object has been
allocated. The PegRect parameter is used to set the Real member of the
object (this member keeps track of the over all size and position of the
object) as well as the Client and Clip members, by calling PegClientInit.
Also, the ID and style of the object are set.

If the application developer creates a custom object derived directly from
PegThing, it is a good idea to call this function from the function that creates
the custom object to correctly set up the position, style and ID of the object.

void PegThingSetDefFuncs(PegThing *pThing);

This function sets up the function pointers in the passed over PegThing
object. This function is called by PegThingInit to properly set up the function
pointers.

 Creation Examples
This may seem a bit confusing at the onset, but the creation procedure for a
PegThing or derivative is actually partitioned like this to allow flexibility in
creating new object types. Likewise, it is actually very easy to use from the
76 C/PEG Programming Manual Swell Software, Inc.

application software stand point. For example, here is the code to create a
default PegThing object:

PegThing *pThing = PegThingCreateDefault();

And that's it.

Internally, the execution flow followed the right side of the above diagram,
but that is not the concern of the application code. So,
PegThingCreateDefault just quietly does it's job and returns a fully formed
pointer to a new PegThing object.

Here's the code to create a PegThing object that has size, position (both
provided by the PegRect object), style and ID:

PegRect r = { 5, 20, 225, 140 };

PegThing *pThing = PegThingCreate(&r, ID_OBJECT_ID,
FF_THIN);

This is very simple as well. The rectangle determines the size and position
of the object, we give it an ID and tell it that its border style is thin.

 Destruction
It is important for the application developer to live by a simple rule of thumb:

“If C/PEG created it, then C/PEG destroys it”

This is a golden rule of C/PEG and can not be overstressed. If an object is
created using a create function in C/PEG, then that object must be
destroyed using the object's complimentary destroy function. If this simple
rule is not followed, the application will quickly suffer from memory leaks
and execution issues and has no chance of not failing.

There are many reasons for this. First, some objects contain pointers to
exterior data that will not be released back to the system if the object is
freed by the application code. Second, the object will not be cleared from
system message queue if freed by application code. This could quickly
spell doom for the application if there are any messages bound for the freed
object. Finally, if the object had a parent, the parent would be unaware the
object has disappeared and will, at some point, attempt to access that
object through it's child pointer.
Swell Software, Inc. The Mighty Thing 77

The Mighty Thing
For an illustration, if you call this:

PegThing *pThing = PegThingCreate(&r, ID, FF_NONE);

or this:

PegThing *pThing = PegThingCreateDefault();

You had better do this to destroy pThing:

PegDestroy(pThing);

It's as simple as that and extremely important to ensure the integrity of the
system.

For a more in depth look at how C/PEG manages objects and memory, see
the 'Rules of Memory Ownership' section below.

 Implementation of the Function Pointers
There are 11 function pointers contained in the PegThing structure
declaration. This allows for a elementary implementation of encapsulation,
which is one of the corner stones of object-oriented programming. This
encapsulation mechanism allows any PegThing derived object to
implement any one of a group of functions to better suit the problem at
hand, without the need for the object to register itself with the system.

As an example, the draw function which every PegThing derived object is
able to customize has a function pointer assigned to it in the PegThing
structure. If a new object wishes to draw itself differently than how a
PegThing object draws itself, then the application developer only has to
prototype a new function in the same fashion as the default draw function
and assign that new function to the function pointer in the structure. This is
done on an object by object basis and is usually part of the creation process
for the object.

Without this mechanism, getting an object to look and behave in any way
distinct from the default implementation would be a messy proposition. On
most desktop GUI systems, the application developer must register a type
with the system and provide a callback for system messages which are
directed to that object. This often leads to application code that spends
more time dealing with system restrictions and policy than it deals with the
business of the actual application implementation. In C/PEG, the idea is to
make developing custom objects natural and structured, without introducing
a level of overhead which renders the notion of customization unusable.
78 C/PEG Programming Manual Swell Software, Inc.

The 11 functions are first described in detail to give you a better
understanding of the tools that are available, then several examples are
given in order to clarify when and how to override these functions to hone
the object into a tool better suited to the application.

An important note before we move on; there are support functions for
setting and calling these functions. It is strongly suggested the application
developer exclusively make use of these support functions and does not
touch the structure's function pointer members directly. This insulates the
application code from the actual implementation of the mechanism for
maintaining the function pointers within the structure. The following tables
list the functions, (which are currently implemented as macros to save the
overhead of a function call), used to call the individual PegThing functions
as well as the function used to set the function pointers in the structure.

Function Prototype Internal Function
Pointer Called

PegDraw(void *pThing) funcDraw
PegNotify(void *pThing, const
PegMessage *pMesg)

funcNotify

PegAdd(void *pParent, void *pAdd,
PEGBOOL bRedraw)

funcAdd

PegAddToEnd(void *pParent, void
*pAdd, PEGBOOL bRedraw)

funcAddToEnd

PegRemove(void *pParent, void
*pRemove, PEGBOOL bRedraw)

funcRemove

PegDestroy(void *pThing) funcDestroy
PegResize(void *pThing, PegRect
*pRect)

funcResize

PegDrawBorder(void *pThing,
PEGCOLORVAL background)

funcDrawBorder

PegDrawFocus(void *pThing, PEGBOOL
bRedraw)

funcDrawFocus

PegEraseFocus(void *pThing) funcEraseFocus
PegParentShift(void *pThing,
PEGINT xshift, PEGINT yshift)

funcParentShift

Table 9 (Function Pointer Wrapper Functions)
Swell Software, Inc. The Mighty Thing 79

The Mighty Thing
Based on these function wrapper macros, to call an object's add function,
for instance, the application code should use this form:

PegAdd(pParent, pAdd, TRUE);

and never this form:

pParent->funcAdd(pParent, pAdd, TRUE);

Every PegThing and derivative supports all 11 of these function pointers.
Some are implemented as custom functions specific to that object, while
others defer the call to the structure from which they derived. It is standard
practice, for instance, to pass a function call to a base object when the
derived object wishes to implement the default behavior for a function call
based on the status of the object. This type of function deferring is most
evident within the notify construct, where a derived object wishes to catch
some special messages and, at the same time, wishes C/PEG system
messages to be processed by the base object.

As an example, if a PegThing derived object, MyObject implements a
custom notify function, but wishes to pass C/PEG system messages to
PegThing to implement, the notify function would look something like the
following:
PEGINT MyObjectNotify(void *pThing, const PegMessage *pMesg)
{

switch(pMesg->usType)
{
case PEG_SIGNAL(IDB_POPUP_BUTTON, PSF_CLICKED):

/* do something when IDB_POPUP_BUTTON is pressed */
break;

default:
return(PegThingNotify(pThing, pMesg));

}
return(0);

}

Notice that the custom notify function wishes to handle the instance where
the IDB_POPUP_BUTTON is clicked, but nothing more. Every other message
that is sent to the object by C/PEG is deferred to the base object from which
MyObject was derived.

It is important to note that, in this case, it is incorrect for the object to call
PegNotify instead of PegThingNotify. This is because by calling PegNotify,
the MyObjectNotify function will be called, which would make this recursive
and enter into an infinite loop. In all cases when overriding a base object's
default function, it is correct to call the base object's default function directly
80 C/PEG Programming Manual Swell Software, Inc.

if the derived object wishes to optionally implement base object functionality
and not call the generic function wrapper as listed in the above table.

There is more discussion of these principles in the programming section
later in this manual.

The function used to set an individual function pointer is declared as the
following:

PEGBOOL PegFuncPtrSet(void *pThing, PEGINT iFuncID, void
*pFunc);

This allows the application developer to set the function pointer for any
given PegThing derived object. The valid arguments for iFuncID are listed
below.

Value Function
Identifier

Set Function Pointer

PFP_NOTIFY funcNotify
PFP_DRAW funcDraw
PFP_ADD funcAdd
PFP_ADDTOEND funcAddToEnd
VPFP_REMOVE funcRemove
PFP_DESTROY funcDestroy
PFP_RESIZE funcResize
PFP_DRAWBORDER funcDrawBorder
PFP_DRAWFOCUS funcDrawFocus
PFP_ERASEFOCUS funcEraseFocus
PFP_PARENTSHIFT funcParentShift

Table 10 (Valid Function Identifiers)

The third parameter is a pointer to a user defined function that will replace
the default implementation of the particular function pointer in the object.

For example, to set the draw function in an object, the application developer
would do the following:

1. Prototype the replacement function

void MyObjectDraw(void *pThing);
Swell Software, Inc. The Mighty Thing 81

The Mighty Thing
2. Set the function pointer in an object that has already been created:

PegFuncPtrSet(pMyObject, PFP_DRAW, MyObjectDraw);

3. Implement the MyObjectDraw function to do the custom drawing.

There are more detailed examples of using the function pointers in
PegThing in the programming sections later in this manual.

 Notify
Prototype:

PEGINT PegThingNotify(void *pThing, const PegMessage
*pMesg);

This is the PegThing version of the notify function. This version implements
handlers for most of the basic C/PEG system messages as defined in a
previous section. Most objects derived from PegThing and implement a
custom version of this function do so to handle mouse events or user input
in a different manner than what is available here.

 Draw
Prototype:

void PegThingDraw(void *pThing);

The default implementation of the PegThing's draw function merely calls
PegDrawChildren, and therefore does not directly implement any draw
operation on it's own behalf. This function is implemented differently for the
remaining objects in the C/PEG library and, along with the notify function, is
often customized by application level objects.

 Add
Prototype:

void PegThingAdd(void *pParent, void *pAdd, PEGBOOL
bRedraw);

This implementation provides the basic functionality necessary to add one
PegThing or derivative to another. This function is rarely customized, and if
it is, the custom function will almost always call this version of the function
at some point to ensure the objects are parented correctly.
82 C/PEG Programming Manual Swell Software, Inc.

 AddToEnd
Prototype:

void PegThingAddToEnd(void *pParent, void *pAdd, PEGBOOL
bRedraw);

This is basically the same call as PegThingAdd, the exception being that
the object is added at the end of the parent's child list, instead of to the
front.

 Remove
Prototype:

void *PegThingRemove(void *pParent, void *pRemove, PEGBOOL
bRedraw);

The is the opposite of adding an object. Again, this function is usually not
customized, and if so, this version is almost always called to make sure the
objects were properly decoupled.

 Destroy
Prototype:

void PegThingDestroy(void *pThing);

This function releases the memory associated with the PegThing or derived
object. In the event the application developer creates a custom object
whose size differs in any way from the base object upon which it is derived,
the custom object should implement a custom version of the destroy
function.

For instance, if the custom object has a pointer to some data which is
allocated at run time, the custom object must define it's own destroy
function to properly release the memory associated with the data pointer.

 Resize
Prototype:

void PegThingResize(void *pThing, PegRect *pRect);

The PegThing version of this function properly updates the object's internal
size and clipping rectangles. Also, if the object has been moved as well as
resized (the top-left coordinates of the new rectangle do not match the top-
left coordinates of the object's internal rectangle), then the object's children,
Swell Software, Inc. The Mighty Thing 83

The Mighty Thing
if any, are alerted their parent object has been shifted by calling
PegParentShift for each child object.

 DrawBorder
Prototype:

void PegThingDrawBorder(void *pThing, PEGCOLORVAL
background);

The PegThing version of this function is able to draw the raised, recessed
and thin border styles that most PegThing objects use. (The thick frame, as
on the PegPanel, is supported by the PegPanel version of this function).

If the custom object wants to display itself in a rectangular type of border,
then this function may be called from within the draw function of the derived
object.

 DrawFocus
Prototype:

void PegThingDrawBorder(void *pThing, PEGBOOL bRedrawAll);

The PegThing version of this function does not actually do any drawing.
Derived objects implement a custom version of this function for their own
use. Most notably, PegButton derivatives implement drawing code that puts
a thin rectangle just inside of their client boundary when the object is
current to visually inform the user which object has focus.

 EraseFocus
Prototype:

void PegThingEraseBorder(void *pThing);

As with the draw border function, the PegThing version of this function does
not do any actual drawing.

 ParentShift
Prototype:

void PegThingParentShift(void *pThing, PEGSHORT xshift,
PEGSHORT yshift);

This function is called by the PegThingResize function when an object that
has children is moved or resized and the new placement or size forces the
top-left coordinates of the object to change. The PegThing version of this
84 C/PEG Programming Manual Swell Software, Inc.

function updates the child objects positional rectangles, as well as calls the
same function for it's child, if any.

This function is not usually customized, but may be, if needed. An example
of when this might be necessary would be if the object maintains positional
data that is relative to it's current placement on the screen, like chart points
on a graph. If the parent object is moved, then this object would need to be
informed and update it's own chart points relative to the new position on the
screen.

 Overrides and Deferrals
The above listed functions are available in every PegThing derived object.
The object may not provide a object specific implementation of the function,
instead deferring the call to the object type from which it is derived, but it is
never an error to refer to the object's version of the function.

For example, the PegButton object, which is derived from PegTextThing,
which is itself derived from PegThing, does not directly implement the add
function. It, instead, defers the function call to it's base object,
PegTextThing, to handle. In this case, PegTextThing does not actually
implement the add function, either. Instead, PegTextThing defers the call to
PegThing. This is where the call actually lands. But, it is not an error for the
application call to do this:

PegButtonAdd(pButton, pAdd, TRUE);

This is because C/PEG is built to know this really means to call
PegTextThing's add function, which C/PEG also knows is a call to
PegThing's add.

This is important for a number of reasons. The first is this allows the
application developer to follow a very simple set of rules when overriding
functions to create custom objects. When overriding functions, it is always
safe to call the implementation of the function from which the custom object
was derived. Therefore, the following is safe to do:
void MyObjectAdd(void *pParent, void *pAdd, PEGBOOL bRedraw)
{

/* do some kind of custom processing */

/* call the base object's version to do the C/PEG work */
PegButtonAdd(pParent, pAdd, bRedraw);

}

Of course, this makes the assumption MyObject derived from PegButton.
Swell Software, Inc. The Mighty Thing 85

The Mighty Thing
This provides a clear roadmap to application developers. Instead of
searching through header files finding which object implemented which
function and who derived from who, it is far easier to always remember to
call the object from which the custom object was derived.

Second, this provides an alternative to the function call wrappers which call
the current object’s version of a function. To illustrate, the previous example
will be examined a little closer.

There is a macro that calls the current object's version of the add function,
PegAdd. Easy enough. During the course of creating a PegButton object,
the function pointers for the PegButton object are set up to point to, first,
PegThing functions, then a few from PegTextThing, then a few PegButton
implements on it's own. It would be very difficult for the application
developer to remember which function is mapped to which of the object's
function pointers and how to call the function and so forth. Therefore, there
is a set of macros which coincide with each of the function pointers in
PegThing objects. They follow the same form as the actual function
prototypes as shown above: PegAdd looks just like PegThingAdd, but the
object name was dropped. Easy enough, too.

The power of this is the application developer may always do the following
to add any object to any other object, regardless of the pParent object's
actual implementation of the add function:

PegAdd(pParent, pAdd, TRUE);

Under the hood, this macro expands to call the function that is pointed to by
pParent's funcAdd pointer. This insures the correct function is always called
given any sort of parent object. Easy enough, still.

The only place where making a call like this is a problem would be inside of
the function pointed to by pParent's funcAdd pointer, and giving pParent as
the first argument. That said, the treachery is obvious, right? This is not to
say there may not be instances where this type of recursion is wrong, but
they are probably far off edge cases that would infrequently show
themselves.

So, to really drive home the lesson, don't ever do anything resembling this:

void MyObjectAdd(void *pParent, void *pAdd, PEGBOOL bRedraw)
{

PegAdd(pParent, pAdd, bRedraw):
86 C/PEG Programming Manual Swell Software, Inc.

}
This would dig a very deep and dark hole very quickly from which the task
would never be liberated.

This holds true for any code within any type of function override. It is always
an error to call the callers version of the current function from within the
callers version of the current function.

To solve this, the application developer may defer the call to the base
object's version of the function, hence, this is correct:

void MyObjectAdd(void *pParent, void *pAdd, PEGBOOL bRedraw)
{

PegButtonAdd(pParent, pAdd, bRedraw):
}

Of course, the question now is: “How much is this going to cost me?”

Here's the beauty: It's free. It costs nothing. Nada. Zilch. Zero.

And here's why. Every PegThing derived object, in the object's header file,
implements a list of all of the function's that are implemented as function
pointers in the object. Some of the list are actual function prototypes for
functions the object is overriding. Every derived object overrides at least
one function, otherwise, there wouldn't be a point to the object. The
remainder of the list are macros that substitute a call to that object's version
of a particular function with a call to it's base object's version of that
function. These macros chain together until an actual function prototype is
found, and that's where the preprocessor lands. Simple, robust and free.

To illustrate, we'll continue on with the PegButton example. Here's an
excerpt from the PegButton header file:

PEGINT PegButtonNotify(void *pThing, const PegMessage *pMesg);
void PegButtonDraw(void *pThing);
#define PegButtonAdd(_t,_a,_d) PegTextThingAdd(_t,_a,_c)
#define PegButtonAddToEnd(_t,_a,_d) PegTextThingAddToEnd(_t,_a,_c)

And on it goes down the line until all of the functions have, in some way,
been implemented.

Now, here's the same four functions as described in PegButton's base
object's, PegTextThing, header file.
#define PegTextThingNotify(_t,_m) PegThingNotify(_t,_m)
Swell Software, Inc. The Mighty Thing 87

The Mighty Thing
#define PegTextThingDraw(_t) PegThingDraw(_t)
#define PegTextThingAdd(_t,_a,_d) PegThingAdd(_t,_a,_d)
#define PegTextThingAddToEnd(_t,_a,_d)PegThingAddToEnd(_t,_a,_d)

Obviously, these are all implemented as macros which defer calls to
PegThing. Of course, PegThing implements all of these functions in some
way as demonstrated from the declarations for the example four functions
listed here from PegThing's header file:

PEGINT PegThingNotify(void *pThing, const PegMessage *pMesg);
void PegThingDraw(void *pThing);
void PegThingAdd(void *pThing, void *pAdd, PEGBOOL bRedraw);
void PegThingAddToEnd(void *pThing, void *pAdd, PEGBOOL bRedraw);

From this we can draw the conclusion the function that the funcAdd pointer
in the PegButton structure points to is PegThingAdd. So, by calling:

PegAdd(pButtonObject, pAdd, TRUE);

the call goes to PegThingAdd. Likewise, this is the equivalent:

PegButtonAdd(pButtonObject, pAdd, TRUE);

The first is done by directly accessing the object's function pointer, which is
accurate at run time, the second is done with macros and the preprocessor
takes care of the work.

This is not to suggest custom objects need to implement the preprocessor
function table macros. These macros exist to give the application developer
a clear direction for program execution when dealing with the foundation
objects in the C/PEG library. They are not needed in the custom, derived,
objects, since these objects are not used as base objects for even further
derived objects.

We will spin the current example a little further to illustrate the point. From
application code, to execute the MyObject's version of the add function, the
call would look like this:

PegAdd(pMyObject, pAdd, TRUE);

Since this function is a macro that binds the call at run time. But, from within
the custom add function for MyObject, to defer the call to the base object,
the code would do this:

PegButtonAdd(pMyObject, pAdd, TRUE);
88 C/PEG Programming Manual Swell Software, Inc.

This is a logical partition of duties. For large applications, it is not unusual
for a team of developers to work on custom objects, while another team
works on implementing those objects and assembling the actual
application. For this illustration, we will refer to these groups as designers
and developers, respectively. This makes it very easy to draw this
conclusion:

Designers call PegButtonAdd, developers call PegAdd.

A designer would call PegButtonAdd in the add function of MyObject to
implement the standard C/PEG functionality to add one object to another.
That's fine. The designer knows the custom object. He knows what it
derives from. He knows how it works and when to call the base object's
version of the function to achieve the results he's looking for.

The developer, on the other hand, may not know what MyObject derived
from. Actually, he really shouldn't care. He should not be concerned with
such details. All he should know is when to use MyObject in the application
based on the requirements for the application's functionality at some given
point. And, assuming the designer set up the object's function pointers
properly, a call the PegAdd will get the job done for the developer.

To take this example a step further, the folks that write C/PEG would be
considered the designers and the folks that use C/PEG to build applications
are the developers. The only difference lies in the notion C/PEG is made to
customize, so there has to be mechanisms in place to allow the designer
group of the developer population to easily extend the C/PEG library
objects. So, the macros are a convenience to the designer group of the
developer population. This aids them in getting their job done without
worrying about what object derives from what other object and when it's
appropriate to call which function from the tree of derived objects that end
at their custom object. (That sentence was meant to sound confusing,
because the situation can be).

To summarize, C/PEG implements a deferral system to shield the
developer community at large from the overwhelming task of committing to
memory every C/PEG object and its list of functions. The application
designers and developers, following very simple rules, are able to quickly
and easily get up to speed with the basics of using C/PEG and are able to
extend the objects in any way they wish.
Swell Software, Inc. The Mighty Thing 89

The Mighty Thing
 Style and Status
Every PegThing object and derivative share a group of members that relate
to the state of the object and how that object reacts to certain events.

The style of an object deals with how the object is presented on the screen.
The type of frame an object has is part of it's style. How the text is aligned
when drawn is part of the object's style. If the object is enabled or not is part
of it's style. Basically, anything that has to do with an object's graphical
representation is part of the object's style.

The status of an object is similar to it's style, but this state pertains more to
how the rest of the C/PEG library sees this object. If the object may be
resized or moved is part of it's status. If the object accepts user input focus
is part of it's status. If the object is visible or current is part of it's status.
Although some of these status flags may be taken into consideration in the
graphical representation of an object, they are predominately used for C/
PEG objects to discover capabilities and state within the C/PEG system.

The following tables lists valid style and status flags, as well as which type
of objects pay attention to that particular flag. For any style or status flag, if
a base object supports that flag, it's derivatives will as well. Therefore, if
PegThing is listed as the supportive object, all objects derived from
PegThing may also support that flag.

 Style Flags

Style Flag Meaning Supportive
Objects

FF_NONE No border PegThing
FF_THIN Thin Border PegThing
FF_RAISED Raised, 3D looking border PegThing
FF_RECESSED Recessed, 3D looking Border PegThing
FF_THICK Thick, 3D Border PegPanel
TJ_RIGHT Text justify right PegTextThing
TJ_LEFT Text justify left PegTextThing
TJ_CENTER Text justify center PegTextThing
TF_NONE No close button on title bar PegTitle
TF_CLOSE BUTTON Close button on title bar PegTitle
TT_COPY Copy text data into private buffer PegTextThing
90 C/PEG Programming Manual Swell Software, Inc.

LS_WRAP_SELECT Wraps list select to first when
moving past last

PegList

BF_REPEAT Button repeats sending clicked
messages

PegButton

BF_SELECTED Button is current pressed down PegButton
BF_DOWNACTION Button sends clicked message

when pushed down
PegButton

BF_FULLBORDER Adds a thin border around a
button in addition to a raised
border

PegButton

BF_ORIENT_TR Controls text/bitmap placement PegDecorated
Button

BF_ORIENT_BR Controls text/bitmap placement PegDecorated
Button

EF_EDIT Allows editing of a string PegEditField
PF_COPY Copy point data into a private

buffer
Peg2DPolygon

PF_FILLED Draw polygon filled Peg2DPolygon
MP_OK Add an OK button PegMessagePane

l
MP_YES Add a Yes button PegMessagePane

l
MP_NO Add a No button PegMessagePane

l
MP_ABORT Add an Abort button PegMessagePane

l
MP_RETRY Add a Retry button PegMessagePane

l
MP_Cancel Add a Cancel button PegMessagePane

l
SF_SNAP Snaps a slider button to the next

tick on move
PegSlider

SF_SCALE Draw a scale on the slider’s face PegSlider
SF_VERTICAL Orient vertically, Orients

horizontally when not turned on
PegSlider

PS_SHOW_VAL Show current value PegProgressBar
PS_LED Draw indicator using LED Style PegProgressBar
PS_VERTICAL Orient vertically, Orients

horizontally when not turned on
PegProgressBar

PS_PERCENT Draw the “%” symbol next to the
current value

PegProgressBar

Style Flag Meaning Supportive
Objects
Swell Software, Inc. The Mighty Thing 91

The Mighty Thing
Table 11 (Valid Style Flags)

Most C/PEG objects take a style as a parameter to its create function. This
is the easiest way to initially set the style of the object.

At run time, 3 functions may be used to add, remove and query styles of a
PegThing and derived objects. These functions are as follows:

void PegStyleAdd(void *pThing, PEGUSHORT usStyle);

This function is used to add a style to the object. Style flags may be
logically OR'd together to set several flags at once.

void PegStyleRemove(void *pThing, PEGUSHORT usStyle);

This function removes a given style from the object. Style flags may be
logically OR'd together to remove several flags at one. This may also be
used to clear all flags by passing 0xffff as usStyle.

PEGBOOL PegStyleHas(void *pThing, PEGUSHORT usStyle);

This function queries the object to determine if a particular style is set. Style
flags may be logically OR'd together to test for several styles at once. The
function returns TRUE upon finding the style, FALSE if not.

In the current version of C/PEG, these functions are implemented as
macros to save run time overhead.

It is strongly advised the application developer use these functions for style
maintenance on an object and to not access the style member of the object
directly.

SB_VERTICLE Orient vertically, Orients
horizontally when not turned on

PegSpinButton

MLP_SHOW_PARTIAL
_ROW

Shows partial row at the top and/
or bottom

PegMLPrompt

AF_DRAW_SELECTED Draws in a different background
color when selected

PegButton,
PegPrompt

AF_TRANSPARENT Does not fill in a background
frame when drawing

PegThing

AF_ENABLED Draws enabled (normal) or
disabled

PegButton

Style Flag Meaning Supportive
Objects
92 C/PEG Programming Manual Swell Software, Inc.

 Status Flags

Status Flag Meaning Supportive
Objects

PSF_VISIBLE Set if the object is visible,
meaning that it is a member of a
tree branch that can trace it's
lineage to PegPresentation.

PegThing

PSF_CURRENT Set if the object belongs to the
branch on PegPresentation that
currently has focus.

PegThing

PSF_SELECTABLE Set if the object is selectable PegThing
PSF_SIZEABLE Set if the object may be resized

by the user
PegThing

PSF_MOVEABLE Set if the object may be moved
by the user

PegThing

PSF_NONCLIENT Set if the object is to not be
considered as part of the client
region of it's parent.

PegThing

PSF_ACCEPTS_FOCU
S

Set if the object may receive
focus

PegThing

PSF_TAB_STOP Set if the object wishes to be on
the list of child objects that may
gain input focus when the user
navigates through the child
objects using the tab key

PegThing

PSF_OWNS_POINTER Set when an object captures the
input pointing device

PegThing

PSF_DRAWABLE Set when the object is a member
of the current branch of objects
that has permission from
PegPresentation to draw

PegTitle

PSF_ALWAYS_MAX_S
IZE

Set for PegPanel objects that are
always the maximum size of the
screen

PegPanel

PSF_ALWAYS_ON_TO
P

Set when an object requests to
always be displayed on top of
any other object

PegThing

Table 12 (Valid Status Flags)

As with the style flags, there are maintenance functions to handle adding,
removing and querying the status flags of an object at run time.
Swell Software, Inc. The Mighty Thing 93

The Mighty Thing
Setting or removing status flags by the application code is highly
discouraged. These flags are tightly maintained by the C/PEG library for
each object. If the application code steps in and modifies this object
member, the internal state of the object could very well be out of sync with
how C/PEG is expecting to handle the object, and undefined behavior could
easily show itself.

Likewise, the application code may query the status of an object at any time
to determine execution paths in the application logic. The most often
queried status is PSF_DRAWABLE. It is recommended for the application to
check this status before attempting to draw. This small check may save a
great deal of overhead when drawing complex objects. The PegScreen
makes every attempt to stop objects that are not visible or do not have
drawable status from actually doing any drawing. But, even then, there is
overhead for every primitive graphics function that is unnecessarily called
by the application.

Here is the form of the status query function:
PEGBOOL PegStatusIs(void *pThing, PEGUSHORT usStatus)

Again, as with the style functions, this function is implemented as a macro
to save run time overhead. Status flags may be combined to check for more
than one status at a time.

 Signals
Signals are special types of messages which are, usually, sent from child
objects to their parent in response to user interaction. The parent object will
then catch these signals in its notify function providing a clear place for the
application developer to introduce the logic of the system.

The following table lists the signal types used by C/PEG. As with style flags,
if a signal is supported in a base object, then the objects derived from the
base object will also support those signals.
94 C/PEG Programming Manual Swell Software, Inc.

Signals Meaning Supportive
Objects

PSF_VISIBLE Set if the object is visible,
meaning that it is a member of a
tree branch that can trace it's
lineage to PegPresentation.

PegThing

PSF_CURRENT Set if the object belongs to the
branch on PegPresentation that
currently has focus.

PegThing

PSF_SIZED An object has been moved or
resized

PegThing

PSF_FOCUS_RECEIV
ED

An object has received input
focus

PegThing

PSF_FOCUS_LOST An object has lost input focus PegThing
PSF_KEY_RECEIVED An object has received a key

message that it does not support
PegThing

PSF_RIGHTCLICK A right button mouse click
occurred in the region of the
screen owned by the object

PegThing

PSF_TEXT_SELECT The user has selected all or a
portion of a string

PegEditField

PSF_TEXT_EDIT Each time the string is modified PegEditField
PSF_TEXT_EDIT_DO
NE

Text modification is complete PegEditField

PSF_CLICKED Button selection PegButton
PSF_CHECK_ON Check is turned on PegCheckBox
PSF_CHECK_OFF Check is turned off PegCheckBox
PSF_DOT_ON Item is selected, or off PegRadioButton
PSF_DOT_OFF Item is not selected, or off PegRadioButton
PSF_LIST_SELECT List item is selected PegList
PSF_SCROLL_CHANG
E

Scroll position update PegScroll

PSF_SLIDER_CHANG
E

Slider position update PegSlider

PSF_SPIN_MORE Up or right button clicked PegSpinButton
PSF_SPIN_LESS Down or left button clicked PegSpinButton

Table 13 (Signals)

As discussed above, these signals may be deciphered by the parent object
using the PEG_SIGNAL macro.
Swell Software, Inc. The Mighty Thing 95

The Mighty Thing
There are several functions used for signal maintenance. These functions
allow for adding, removing and querying signals as well as dealing with the
object sending signals to its parent. These functions, the first four of which
are implemented as macros, are listed below.

PEGBOOL PegSignalHas(void *pThing, PEGUSHORT usSignal);

Checks if the object supports sending a particular signal. Will return TRUE
if it does and FALSE if it does not.

void PegSignalsSet(void *pThing, PEGUSHORT usSignal);

Sets the signals supported by the object. This is a bit different from simply
adding a signal, in that this function does not preserve the original signal
state of the object. Signals may be logically OR'd together to set several
signals at once.

void PegSignalAdd(void *pThing, PEGUSHORT usSignal);

This adds a signal to the existing signal set supported by the object. Signals
may be logically OR'd together to set several signals at once.

void PegSignalRemove(void *pThing, PEGUSHORT usSignal);

This function removes signals from the signal set supported by the object.
Signals may be logically OR'd together to remove more than one signal at a
time.

PEGBOOL PegSignalCheckSend(void *pThing, PEGUSHORT
usSignal);

This function is used internally by the C/PEG objects to determine if a
certain event should be signaled to its parent. If the application developer
wishes to add new signal types to object, either stock library objects or
custom objects, then this function should be called in situations where the
object may wish to send a message to its parent. This function checks to
make sure the object has an ID, a parent to which to send the message, if it
supports the incoming signal and if its parent object is visible before
sending a signal to its parent. These are very important checks and should
not be by passed by application code.

void PegSignalSend(void *pThing, PEGUSHORT usSignal);

This function is called by PegSignalCheckSend when the above stated
criteria for signal passing has been met by an object that wishes to send a
signal to its parent. This function should not be called directly by application
code, instead use PegSignalCheckSend.
96 C/PEG Programming Manual Swell Software, Inc.

 Notifying Children
In dealing with messages, it is also necessary to point out when a parent
object needs to inform each of its children of an event, the
PegChildrenNotify function can be used. This function takes a PegMessage
and notifies each child object with the message. This is useful, for example,
when a parent object is moved and the PM_PARENT_SHIFT message needs to
be sent to all of the parent object's children.

Here is the prototype for the function:

void PegChildrenNotify(void *pParent, const PegMessage
*pMesg);

This may also be used by application code to implement custom behavior in
response to C/PEG system messages or user defined messages.

 Colors
Every PegThing object and derivative has four intrinsic colors that are used
for drawing the objects background and text. Some objects also use these
colors for determining colors such as the slider button color. The size of this
color list is determined by the constant PEG_THING_COLOR_LIST_SIZE. The
application designer is free to modify the size of the list used by PegThing
objects to add more color choices for custom objects. Likewise, it is not
advised for the list to be set to smaller than four, as this would break code in
the C/PEG library. The constants for the indices and
PEG_THING_COLOR_LIST_SIZE can be found in the file pegtypes.h.

The following table lists the indices used to access these colors and when
these colors are used.

Color Index Used To Draw
PCI_NORMAL Background fill color when the object is not

selected
PCI_NTEXT Normal text
Swell Software, Inc. The Mighty Thing 97

The Mighty Thing
Table 14 (Color Indices)

There are two functions that are used to set and query which color is
assigned to an index. They are as follows:

void PegColorSet(void *pThing, PEGUBYTE ubIndex, const
PEGCOLORVAL c);

This function should be used to set the color associated with a certain
index. The advantage to using this function as opposed to simply setting
the value in the object in application code, is this function takes care to
invalidate the screen region occupied by the object, so in subsequent
drawing operations, this object is properly updated.

Alone, this function will not cause the object to be immediately redrawn.
The object must have it's draw function called after the color has been set
in order for the new color value to be used in drawing.

PEGCOLORVAL PegColorGet(void *pThing, PEGUBYTE ubIndex);

This function returns the color value associated with the specified index
value. If the index value is out of bounds of PEG_COLOR_LIST_SIZE, then an
invalid color value is returned.

 Type
C/PEG implements a simple mechanism for determining an object's type at
run time. This allows the library and application code the opportunity to
discover an object's type and act on the object accordingly.

Types are broken down into two categories. The lower values are reserved
for control types and the upper values are reserved for panel types.

The lower control types begin at the value of 1 and go up to
PEG_FIRST_USER_CONTROL_TYPE – 1. These types are listed in the first table
below.

PCI_SELECTED Background fill color when the object is
selected. Some object optionally draw
themselves in a different background color
when selected.

PCI_STEXT Text color when the object is selected.
Some objects optionally support drawing
their text in a different color when selected.

Color Index Used To Draw
98 C/PEG Programming Manual Swell Software, Inc.

Custom objects implemented by the application designer may also wish to
have a unique type. This can be easily accomplished by the application
designer by beginning new custom control types at
PEG_FIRST_USER_CONTROL_TYPE and enumerating up. The ceiling for custom
control types is PEG_TYPE_PANEL - 1, which is the boundary for the upper
panel types used in C/PEG.

The upper control types are listed in the second table. The third table
describes the upper and lower limits for user defined types.

Control Type Control
PEG_TYPE_THING PegThing
PEG_TYPE_TITLE PegTitle
PEG_TYPE_BUTTON PegButton
PEG_TYPE_HSCROLL PegHorzScroll
PEG_TYPE_VSCROLL PegVertScroll
PEG_TYPE_ICON PegIcon
PEG_TYPE_TEXT_BUTTON PegTextButton
PEG_TYPE_BM_BUTTON PegBitmapButton
PEG_TYPE_TEXT_THING PegTextThing
PEG_TYPE_RADIO_BUTTON PegRadioButton
PEG_TYPE_CHECK_BOX PegCheckBox
PEG_TYPE_PROMPT PegPrompt
PEG_TYPE_VPROMPT PegVertPrompt
PEG_TYPE_PROGRESS_BAR PegProgressBar
PEG_TYPE_SCROLL_BUTTON PegScrollButton
PEG_TYPE_COMBO_BOX_LIST PegComboBoxList
PEG_TYPE_EDIT_FIELD PegEditField
PEG_TYPE_SLIDER PegSlider
PEG_TYPE_SPIN_BUTTON PegSpinButton
PEG_TYPE_GROUP PegGroup
PEG_TYPE_ML_TEXT_BUTTON PegMLTextButton
PEG_TYPE_DECORATED_BUTTON PegDecoratedButton
PEG_TYPE_2DPOLYGON Peg2DPolygon
PEG_TYPE_LIST PegList
PEG_TYPE_VLIST PegVertList
Swell Software, Inc. The Mighty Thing 99

The Mighty Thing
Table 15 (Control Types)

Panel Type Panel
PEG_TYPE_PANEL PegPanel
PEG_TYPE_MESG_PANEL PegMessagePanel
PEG_TYPE_PROGRESS_PANEL PegProgressPanel
PEG_TYPE_HSCROLL PegHorzScroll
PEG_TYPE_VSCROLL PegVertScroll

Table 16 (Panel Types)

These constants should not be modified by the system developer. To do so
would interfere with the PEG WindowBuilder application and how it views
system objects.

Object Type Lower Limit Upper Limit
Control(PegThing) PEG_FIRST_USER_CON

TROL_TYPE
PEG_TYPE_PANEL – 1

Panel(PegPanel) PEG_FIRST_USER_PAN
EL_TYPE

Maximum value of a
system unsigned
char, usually 255

Table 17 (User Type Limits)

All C/PEG objects have their type set in the object's initialization function
and is part of the object creation process. Application developers should
adhere to this functionality with custom objects.

There are two functions, which are implemented as macros, that deal with
setting and querying an object's type. These are listed below:

PEGUBYTE PegTypeGet(void *pThing);

This function simply returns the type of the object.

void PegTypeSet(void *pThing, PEGBUYTE ubType);

PEG_TYPE_HLIST PegHorzList
PEG_TYPE_COMBO_BOX PegComboBox

Control Type Control
100 C/PEG Programming Manual Swell Software, Inc.

This function sets the type of the object.

 Traversing the Tree
It is often necessary to iterate through, or traverse, a list of PegThing
objects. This feature is available due to the structure of the C/PEG object
hierarchy as discussed in earlier sections.

All visible objects belong to a branch of objects that, at some point, traces
it's lineage to PegPresentation. Any object type may be a parent or a child
of any other object type, there is no artificial restriction on this in C/PEG.
This alleviates the necessity of the application code to keep track of all of
the objects it has created. If the object is visible, then PegPresentation
knows about it and can return to the application code a pointer to that
object.

All PegThing objects has a set of pointers that deal strictly with this list
paradigm. Any PegThing object may be queried for it's parent, immediate
sibling and first child by the application code. Indeed, this is how the
internals of C/PEG works.

For example, consider the PegFind function, prototyped as follows:

PegThing *PegFind(void *pStart, PEGUSHORT usId, PEGBOOL
bRecursive)

This function is used by application code to receive a pointer to a particular
PegThing object who is a descendant of pStart, and may optionally recurs
through the entire branch structure beneath pStart. Internally, this function
uses the child and sibling pointers in the PegThing objects to search for a
PegThing object whose ID matches usId. Without the basic linked list
architecture of C/PEG, this would be an impossible task. But, with it, this
function is very short and easily can recurs through any size tree to find the
first case where the ID's match.

There are three support functions, all implemented as macros, which aid
the application developer in working with these family pointers. It is
suggested the application code use these functions to work with these
pointers, in the event the PegThing member names may change in a future
release.

PegThing *PegChildFirst(void *pThing);

Returns a pointer to the parameters first child. If the object has no children,
this returns NULL.
Swell Software, Inc. The Mighty Thing 101

The Mighty Thing
PegThing *PegChildNext(void *pThing);

Returns a pointer to the parameters immediate sibling. If the object has no
sibling, this returns NULL.

PegThing *PegParent(void *pThing);

Returns a pointer to the PegThing object's parent, or NULL if the object
does not have a parent.

 Example
Since this is such a fundamental part of using C/PEG, here is an example
of traversing a list in order to find a particular object based on the objects
type:

PegThing *FindObjectByType(PegThing *pStart,PEGUBYTE ubType)
{

PegThing *pChild = PegChildFirst(pStart);

while(pChild)
{

if (PegTypeGet(pChild) == ubType)
{

return(pChild);
}
pChild = PegChildNext(pChild);

}
return(NULL);

}

Text 8 (Finding an Object by Type)

For simplicity, this function does not recurs, nor does it check the validity of
the starting PegThing pointer.

The important concept to see here is that to walk through a list of child
objects for a given PegThing object, the code begins with getting the first
child of the starting PegThing object. Subsequently, the child object is used
to walk through the list of children, not the starting object. This is important
because it exemplifies the chain of the list. The parent has only a pointer to
its first child, which, in turn, can be used to walk through the sibling list of
the child. Below is an illustration to clarify the point:
102 C/PEG Programming Manual Swell Software, Inc.

Illustration 6 (Child to Siblings)

The PegThing (Parent) object above has a pointer to its first child. This
child has a pointer to its immediate sibling, who in turn has a pointer to its
immediate sibling. The first child does not have a pointer to any sibling
beyond the first sibling, and the parent object does not have a pointer to
any child beyond its first child. But, all siblings have a pointer back to the
parent object as their parent.

 Finding System Objects
It is often necessary for application code to interact with the three
fundamental system objects in order to get the job done. These objects are
the PegPresentation, PegScreen and PegMessageQueue objects.

In any C/PEG application, there is always exactly one instance of
PegPresentation and exactly one instance of PegScreen. It is highly
recommended the application code use the following functions to access
these objects, since these functions lock the resource before gaining a
pointer to the objects.

PegScreen *PegScreenPtr(void);

PegPresentation *PegPresentationPtr(void);

These functions are fairly self explanatory. For most application code, the
pointer to the PegPresentation is usually of more interest. This is because
this object is always the root of the visible tree of PegThing objects, as
discussed in the previous section.

For instance, given the PegFind example above, to search the entire tree of
visible PegThing objects starting from the root, the application would make
this call:
Swell Software, Inc. The Mighty Thing 103

The Mighty Thing
PegThing *pThing = PegFind(PegPresentationPtr(),
ID_SOME_OBJECT,

TRUE);

This call would begin the search at PegPresentation and recurs through all
of it's children until it found an object with an ID or ID_SOME_OBJECT, or it
reached the end of its children and their descendants and returned NULL.

The PegMessageQueue object is used by the application to send
messages between objects and also to start up timers. Unlike the
PegPresentation and PegScreen, there may be more than one
PegMessageQueue object in use, although there is always exactly one
system message queue.

To gain a pointer to the C/PEG system message queue, the application
code would use the PegMessageQueuePtr call as prototyped below:

PegMessageQueue *PegMessageQueuePtr(void);

As mentioned, there may be more than one message queue in use by the
application, but there is always only one primary system queue that is
created as part of the C/PEG startup process. It is this queue that is
returned by the PegMessageQueuePtr call.

For example, to start a timer for a given object, pThing, the application
would make this call:

PegTimerStart(PegMessageQueuePtr(), pThing, ID_BUTTON, 10,
10);

The details of this call are not important at this point, it is an example of
using the PegMessageQueuePtr function.
104 C/PEG Programming Manual Swell Software, Inc.

C H A P T E R 9

CHAPTER9PROGRAMMING WITH C/PEG
This section introduces the basic concepts surrounding graphical
application development using C/PEG. While by no means exhaustive, this
section will get the average C programmer up and running with C/PEG in
short order. There are also several example applications in the C/PEG
distribution which demonstrate a particular object or concept which will take
the basics presented here a step further.

9.0.1 C/PEG Naming Conventions
All user callable functions begin with the word 'Peg'. This serves two
purposes: it prevents C/PEG function names from conflicting with that of a
operating system or compiler library, and it makes C/PEG function calls self
evident allowing the application developer to easily discern where C/PEG
functions are being called.

The second portion or the function name may be one of two things. If the
function deals directly with a specific type of object, then it is the object's
name, as in PegThingCreate or PegBrushSet. If the function does not deal
specifically with a certain type of object, then the action predicate makes up
this section, as in PegFind or PegParent.

If the second portion of the function name is an object type, then the third
portion is the action predicate that describes what is being done with the
object. PegThingNotify and PegButtonDraw are examples of this.

If you can remember: “Peg” + Object Name + Action as a formula for
deciding function names, then you can easily call a great majority of
functions in the C/PEG library. To some developers this may seem
awkward at first, but, after using the C/PEG API for a short length of time,
the naming convention becomes very natural.

9.0.2 Source and Header Files
Most C/PEG objects are declared in a unique header file, with the
implementation of the object is a similarly named source file. For instance,
the PegThing object is declared in the pthing.h file and defined in the
Swell Software, Inc. Programming with C/PEG 105

Programming with C/PEG
pthing.c file. While this obviously makes it very easy to find where a
particular object is defined and implemented, this also aids the application
designer if they wish to leave out components of the library. For instance, if
the PegGroup object is not used in the application, the application designer
may opt to not compile the pgroup.c file into the library, ensuring the library
and application do not include any PegGroup code.

Every C/PEG application only needs to include the header file peg.h to build
against the C/PEG library.

9.0.3 Program Startup Review
In order for the C/PEG application to run, the PegPresentation,
PegMessageQueue and PegScreen objects must first be created. This is
usually completed by PegTask. There are several examples of this in the C/
PEG distribution. The simplest of which is the startup code for running C/
PEG in stand alone mode, perhaps with no operating system, which can be
found in the sapeg.c source file.

After the required C/PEG objects are created, the PegAppInitialize function
is called to allow the application developer to initialize the application. This
segmentation was introduced in order to allow the application developer to
easily move from one of the C/PEG development environments to the
target platform without modifying any of the application level software.

9.0.4 Rules of Memory Ownership
This section is a brief tutorial regarding the memory management technique
employed within C/PEG. This is required to insure the application software
does not suffer from memory leaks or other common memory problems.

It is often regarded as true most memory problems result from a lack of
clear documentation of how and when allocated memory should be freed
and by whom. There are, of course, also just bad programming practices,
such as sharing pointers to globally allocated data blocks between
unrelated objects, which usually leads to trouble.

For C/PEG objects, the rules are simple. When an object is added to
another object which is either PegPresentation or a direct descent thereof,
C/PEG can be said to own that object. The application does not have to
worry about freeing that object as long as it remains a child, no matter how
distant, of PegPresentation. C/PEG insures all children of PegPresentation,
106 C/PEG Programming Manual Swell Software, Inc.

Creating PegThings
along with PegPresentation itself, are freed when the object is closed or the
application terminates.

Another side to this is by destroying a parent object, all of its children are
subsequently destroyed. For example, if a PegPanel object is created by
calling PegPanelCreate, C/PEG allocates the memory for the object and
returns a pointer to the object to the application. At that point, let us say, the
application code adds several child objects to the PegPanel object. At this
point, all of the child objects are said to be owned by the PegPanel object.
When the PegPanel object is destroyed by calling its destroy function,
PegPanelDestroy being the default implementation of this function, then all
of the child objects are destroyed along with it and all of the memory
allocated for each object, including the PegPanel object, is freed.

Next, assume the PegPanel had been added to PegPresentation and is
now visible. At this point, the application has given up all ownership of the
panel and panel's child controls. C/PEG is now responsible for insuring that
the panel and it's children are freed from memory when the panel is closed.

Finally, assume the application has manually removed the panel from
PegPresentation, without allowing the panel to close itself in response to
user input. In this case, the application owns the panel because
PegPresentation no longer has any knowledge of the panels existence.
However, the child controls of the panel are still owned by the panel; so,
once again, when the application destroys the panel, the child objects are
destroyed as well.

9.1 Creating PegThings
As stated before, all viewable C/PEG objects are derived at some point
from PegThing. PegThing does not do much in terms of what is visible on
the screen, but it is the common foundation that allows PegPresentation,
PegScreen and PegMessageQueue to perform their tasks so effectively.
This is also the underlying reason why C/PEG objects are so flexible.

PegThing contains information about the physical location of the objects on
the screen, the client area of the object, the clipping area of an object, the
system status flags for the object and the pointers used to maintain the
object's position in the presentation tree.

The PegAdd function provides the mechanism for adding one object to
another. When this function is called, an object is inserted into another
Swell Software, Inc. Programming with C/PEG 107

Programming with C/PEG
object's child list. If the parent object is visible, then the newly added child
object becomes visible. The best way to create a complex panel is to create
the panel, create all of the panel's child objects and then add the panel to
PegPresentation. In this way, the panel and all of its children become
visible at the same time.

PegPresentation is also a PegThing. This means that internally to C/PEG,
there is no difference between adding a complex panel to PegPresentation
and adding a simple text button to a panel. In both cases, it is simply a
matter of adding one object to another.

A further result of the C/PEG object hierarchy is it is perfectly reasonable to
create a C/PEG object which would normally be considered a self
contained bottom level object, such as a PegPrompt, and add another
object, such as a PegButton, to the PegPrompt. The result is a PegPrompt
that would first display the text associated with the prompt, if any, and then
allow its child objects to draw themselves. In this example, the PegButton
would appear next to or over the prompt's text, depending on the
dimensions of the prompt and button and the text justification flags the
prompt used to draw. While this result may not appear very useful, it
doesn't take much imagination to see by deriving a custom version of
PegPrompt specifically for this purpose, powerful new object types can be
easily created simply by combining these two C/PEG defined objects.

The following code illustrates the ease of creating and displaying a new
panel using C/PEG. The panel will be created so that it occupies the entire
screen and have a thick border.

void PegAppInitialize(PegPresentation *pPresent)
{

PegRect r = { 10, 10, 100, 30 };
PegPanel *pp = PegPanelCreate(NULL, ID_MY_PANEL, FF_THICK);
PegAdd(pp, PegTextButtonCreate(&r, “OK”, IDB_OK, AF_ENABLED);
PegAdd(pPresent, pp, TRUE);

}

This code demonstrates the creation of a PegPanel object, adding a
PegTextButton object to it, then adding the panel to PegPresentation.

It is important to note application code should never allocate C/PEG objects
outside of their respective creation functions. Although it would probably not
cause the application or system to fail, it yield unexpected consequences if
the object is not properly allocated and initialized. The reverse of this,
108 C/PEG Programming Manual Swell Software, Inc.

Removing and Destroying PegThings
destroying an object in application code by manually freeing the memory,
would most certainly break the system and cause major problems.

9.2 Removing and Destroying PegThings
For some reason, freeing objects often causes more confusion and
programming errors than creating them in the first place. C/PEG attempts
to make removing and freeing GUI objects as painless and mistake free as
possible.

The first thing to understand is removing a PegThing from its parent is not
the same as destroying it. Removing the object means the application is
taking that object out of the display tree. After being removed, the object no
longer has a parent, and will not be visible. It is possible, even common, to
later add the object back to a visible object and use it over again.

Objects may be removed from a parent by calling PegRemove and passing
the parent, the child object and a flag which tells the parent object to
redraw. While removing an object is useful, it is more common to want to
both remove the object from it's parent and free the object from memory.
There are two acceptable ways to remove and delete C/PEG objects:

1) Send a PM_DESTROY message to PegPresentation. The pSource
member of the message should point to the object which is to be
destroyed. This method is most often used when destroying C/PEG
objects from tasks outside of C/PEG.

2) Call PegDestroy and pass a pointer to the object that is to be
destroyed. Any PegThing object is able to destroy any other PegThing
object in this manner. This function will first remove the object from it's
parent, then release the memory associated with the object.

In no case should the application ever do something akin to free(pThing).
This sort of application behavior would most certainly bring the system to a
halt.

It is not necessary to manually destroy the individual children of a PegThing
object, in fact, this will cause errors if attempted. If any of this discussion is
not clear, please go back to the “Rules of Memory Ownership” section
above.
Swell Software, Inc. Programming with C/PEG 109

Programming with C/PEG
9.3 Drawing to the Screen
Any visible C/PEG object is able to draw to the screen at any time using the
C/PEG drawing functions. Drawing is most often done within the draw
function of the object, but can take place within other functions and contexts
as well.

The following is illustrative code for an object which draws its border, then
draws two lines that form an “X” using it's own client region as line end
points:

void MyThingDraw(void *pThing)
{

PegBrush b;
PegThing *pMyThing = (PegThing *)pThing;
PegBrushSet(&b, BLACK, BLACK, CF_NONE, 1);
PegDrawBegin(pMyThing);
PegDrawBorder(pMyThing, PegColorGet(pMyThing, PCI_NORMAL));
PegDrawLine(pMyThing, pMyThing->Client.sLeft,

pMyThing->Client.sTop, MyThing->Client.sRight,
pMyThing->Client.sBottom, &b);

PegDrawLine(pMyThing, pMyThing->Client.sLeft,
pMyThing->Client.sBottom, pMyThing->Client.sRight, pMyThing-

>Client.sTop, &b);
PegThingDraw(pMyThing);
PegDrawEnd(pMyThing);

}

Text 9 (Draw Example)

The important concepts here are drawing is always opened by calling the
PegDrawBegin function. This informs the PegScreen object drawing
operations are about to begin. Then, the actual drawing takes place. Since
this object is, assumably, derived directly from PegThing, PegThingDraw is
also called after the drawing operations. This gives the object's children a
chance to draw. The draw operation is then concluded with a call to
PegDrawEnd. This informs the PegScreen object this object has completed
draw operations. If this is the last PegDrawEnd call that matches a
PegDrawBegin call, and the video mode is set up to double buffer drawing
operations, then the visible screen is then updated.

When C/PEG recognizes an object needs to be redrawn, it redraws the
object by calling the objects draw function.
110 C/PEG Programming Manual Swell Software, Inc.

Drawing to the Screen
It is also possible to write functions that draw on the screen outside of the
draw function. These functions must have access to a visible PegThing
object to draw, since all drawing operations functions take a pointer to a
PegThing derivative which is used as the drawing context.

PegScreen only allows drawing to occur to areas of the screen which have
been invalidated. Areas of the screen are invalidated by calling the
PegRectRegionInvalidate function. Under most circumstances, the screen
invalidation is handled automatically by C/PEG as the user moves things
around on the screen, or as the application code adds and removes visible
objects. If all of the drawing is done from within a draw function, then the
application need not worry about screen invalidation, since the draw
function is called specifically because an area of the screen has been
invalidated.

If the application needs to draw on the screen at random times, or for
example, based on a periodic timer expiring, the application needs to
invalidate the area of the screen where the drawing will take place before
drawing commences, the PegRectRegionInvalidate takes any rectangle as
a parameter. Most often, it is acceptable to use the client region of the
object that wishes to draw. The application may wish to limit the drawing to
an area smaller than this and may do so. No matter how large the
invalidated rectangle on the screen, the object is never allowed to draw
outside of its own borders.

The following is a function which illustrates a PegThing derived object
drawing outside of the context of its draw function. This example will paint
the entire client area of the object black, and then fill the client area of the
object with red horizontal lines, 1 pixel wide, spaced 4 pixels apart:

void MyThingDrawLines(PegThing *pThing)
{

PegBrush b;
PEGINT yPos = pThing->Client.sTop;
PegBrushSet(&b, RED, BLACK, CF_FILL, 0);
PegRectRegionInvalidate(&pThing->Client);
PegDrawBegin(pThing);
PegDrawRectangle(pThing, &pThing->Client, &b);
b.iWidth = 1;
while(yPos <= pThing->Client.sBottom)
{

PegDrawLine(pThing, pThing->Client.sLeft,
yPos, pThing->Client.sRight, yPos, &b);
Swell Software, Inc. Programming with C/PEG 111

Programming with C/PEG
yPos += 4;
}
PegDrawEnd(pThing);

}

Text 10 (Drawing Outside of the Draw Function)

9.4 Determining Drawability
In order for a PegThing or derived object to draw, and to have the output of
its drawing operations appear on the screen, the object must have a
specific combination of status flags enabled. These flags govern, what is
referred to as, drawability.

These two status flags are ultimately controlled by the PegPresentation
object. When an object is made a descendant of the PegPresentation
object, the object's status is modified to include the PSF_VISIBLE flag. The
meaning of this flag is fairly self evident: The object is visible. In C/PEG, an
object can not be considered to be visible unless it is a direct descendant of
the PegPresentation object.

The second status flag may also seem as self evident as the first, but, there
are a few more rules involved. The PSF_DRAWABLE status flag is set by the
PegPresentation object on at least one branch of its child objects. That is to
say, there is always at least one child on the PegPresentation object which
has both PSF_VISIBLE and PSF_DRAWABLE status and is, therefore, drawable.
This object is always the first child of the PegPresentation object, and this
drawable status is always passed down the branch to every child of the
drawable object.

Taking this a bit further, there also may be other child objects of the
PegPresentation object who would also be considered visible, but may not
be deemed as drawable. In order for a sibling of the drawable child to be
drawable as well, its screen boundaries must not overlap the area occupied
by the first drawable child of the PegPresentation object.

These simple rules provide for an efficient execution model whereby the
application may determine object drawability by judicious use of size and
placement.

For example, if the application required two sibling objects on the screen at
the same time, both updating their displays based on some sort of external
112 C/PEG Programming Manual Swell Software, Inc.

Object Boundaries
input, the application designer should take care to insure these two objects
do not overlap each other and are also not overlapped by a third object that
may be considered to be “on top” of the first two objects.

Of course, if a single child of the PegPresentation occupies the entire
screen, and is the first child of the PegPresentation object, then no other
children of PegPresentation will be allowed to acquire drawable status until
the first object is dismissed or resized.

The C/PEG API provides a macro that helps the application determine if a
particular object is able to draw at a any given time. This macro is
PEG_CHECK_VALID_DRAW. It is strongly suggested object drawing functions
first check the return value of this macro before proceeding with any type of
drawing operation. The macro is an implementation of two other macros
that check the status flags of a PegThing or derived object and returns
TRUE or FALSE regarding the drawability of the object. This makes for very
little overhead and can potentially save a great deal of unnecessary object
inspection by the low level drawing routines.

The application code should never try to cohere an object into being
drawable. This could potentially have dire consequences as overlapping
objects may corrupt the display of their siblings.

9.5 Object Boundaries
All PegThing derived objects have two rectangles associated with them
named Real and Client. The rectangle, Real, defines the outermost limits of
an object. The object and all children of the object are prevented from
drawing outside the Real rectangle.

The Client rectangle defines the interior boundaries of the object. The
Client rectangle is always a subset of the Real rectangle. All children of an
object are clipped to the parent's Client rectangle. The exception to this is if
the child has a status of PSF_NONCLIENT, in which case the child object is
clipped to the parent object's Real rectangle.

For most objects, the Client rectangle is smaller than the Real rectangle by
the width of the object's border. If the object has no border, then Client and
Real are identical.

The rectangle that is passed to the objects creation function defines the
outermost limits of the object, hence this rectangle becomes the Real
Swell Software, Inc. Programming with C/PEG 113

Programming with C/PEG
member rectangle. C/PEG objects initialize their Client area by calling the
PegClientInit function, which reduces the Client area by the objects border
width.

It is possible for the application developer to create their own non-client
area decorations and add them to C/PEG objects. When this is done, the
object will need to have the necessary logic to insure the Client rectangle is
reduced correctly to allow space for the new non-client decorations.

9.6 Customizing Objects
Very few products developed by C/PEG developers will use every C/PEG
object as it is implemented “stock, out of the box”. In this day of increasing
embedded systems production, it is more important than ever for a product
to distinguish itself from its competitors. There are many ways to
differentiate a product. It can be the product provides functionality that is
unrivaled in its field. It can be the design of the application is so appealing
to customers that it is irresistible. Obviously, the Holy Grail of a product's
design is when it achieves both.

For products which contain a graphical interface, the right design can help
lead to both. This allows the system designers and engineers to implement
advanced functionality and wrap it all up in an intuitive, user friendly
package whose design immediately attracts buyers to the product and
away from the competition.

To that end, a central part to the graphical user interface is a theme for the
graphical objects which flawlessly implement the functionality of the product
in a way which encourages the user to use the product and become
comfortably familiar with the workings of the product very quickly. This
leads to product loyalty and increased market share.

If the product is hard to use, then no one will use it.

C/PEG is built with this notion clearly at the forefront, easily
accommodating the designer's ideas for how a GUI library should work.
While the product developers are free to use the C/PEG objects as they
come from our “factory”, most feel to really hit the sweet spot for the
product, the C/PEG library objects need to be tweaked to give them a
theme that will best represent the product in the market place.
114 C/PEG Programming Manual Swell Software, Inc.

Customizing Objects
There are two areas which are of the most importance when customizing a
C/PEG object: functionality and visibility. How an object represents itself on
the screen and how the object behaves, or the look and feel of an object,
are the two most customized characteristics of C/PEG graphical objects.

Fortunately, C/PEG allows for this, to the point where it even expects this to
occur. This means, to the application designer, implementing custom
objects that override the default look and feel of the base object is a straight
forward and repeatable process.

9.6.1 The Object Factory
The starting point for customization is always to find the stock C/PEG object
that most closely resembles the look and feel that is intended for the
custom object. Sometimes, this is a trade off between how close either
criteria is met by any single object; meaning a given object may provide the
functionality that is desired, but not the visibility, or the other way around.
Once the application designer is familiar with the C/PEG library objects, this
decision is usually a very easy one to make.

For an example, we will use a situation where an application designer
wishes for an object that is able to display text and to draw it's background
as a gradient between three color values. The object should also inform it's
parent object when it is selected by the user, either by being clicked with
the mouse, or activated with the keyboard. This may sound like a tall order,
but it really is quite simple.

If we were to start at the top of the PegThing object tree, we would, of
course, start with PegThing. In this case, this wouldn't be a bad place to
start, but there are better options available. So, if we look at which objects
are immediate derivations from PegThing, we would encounter the
PegTextThing object. This better suits our needs closer because it already
implements the necessary code to keep track of a NULL terminated string,
but it does not have the functionality we need. But, we are getting closer.

Now, if we were to look at which objects derive from PegTextThing, which
also have the text handling functionality that we need, we would see the
PegButton object. Now we're on to something. The PegButton object
knows how to send a PSF_CLICKED message up to its parent when it is
selected by the user. So, we've arrived.
Swell Software, Inc. Programming with C/PEG 115

Programming with C/PEG
But, wait, PegButton really doesn't do too much in the drawing department.
Sure, it has text handling capabilities it acquired from PegTextThing, and
can draw its background and frame, but it doesn't know how to draw a
gradient background. So, we move on to the children of PegButton. At
which point we see none of the objects which derive from PegButton know
how to draw a gradient background, either.

So, what do we have with PegButton? An object that supports text, but
doesn't know how to draw it, can draw it's background and frame based on
if it is selected or not, and knows how to send a message to it's parent
when it is selected by the user. That's pretty close to what we need.

Now that we have the base C/PEG object that is pretty close to what is
needed for the custom object, what do we do next?

There are two very clear paths to take from here. We'll introduce and
expand on the first, which will make the second self evident. To start, here's
some sample code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

void GradientObjectDraw(void *pThing);
/*--*/
PegButton *pGradientObject = PegButtonCreate(&r, “Text”,
IDB_GRADIENT_BUTTON, AF_ENALBED);
PegFuncPtrSet(pGradientObject, PFP_DRAW, GradientObjectDraw);
/*--*/
void GradientObjectDraw(void *pThing)
{
PegDrawBegin(pThing);
PegButtonDraw(pThing);

/* custom gradiated draw code goes here */

/* followed by drawing the text */

PegDrawEnd(pThing);
}

Illustration 7 (Object Factory Code 1)

There are actually three distinct sections in the above code we will examine
individually.
116 C/PEG Programming Manual Swell Software, Inc.

Customizing Objects
The first section is line 1. This is the declaration for the new object's draw
function. This can go in a header file and be included wherever an instance
of the custom object is made.

The second section goes from line 3 through to line 5. This is application
code that creates a PegButton object and then assigns the object's draw
method to GradientObjectDraw. This, in effect, will override the PegButton's
draw function and cause the GradientObjectDraw function to be called
wherever the object's instance of the draw function is called.

The third section is a snippet of code which does everything but really
implement gradient drawing and text drawing (that would take up quite a bit
of space and detract from the example being illustrated), and is on lines 7
through 17. The important items to note here is the code calls
PegDrawBegin, then calls the PegButton's version of the draw function,
then calls PegDrawEnd. If the application designer wishes to make the
object completely custom in appearance, with rounded corners perhaps,
then leave out the call to PegButtonDraw. This, in effect, will give the
designer a clean slate without being incumbered by any style force on it by
the base objects visual representation.

A note worth mentioning here is if an object implements a particular
function in a way that is very similar to how the designer wishes the custom
object to behave or draw, but, perhaps, the base C/PEG object does some
things in the function that is undesirable, it is perfectly fine to copy and
paste appropriate portions of the C/PEG implementation for the function
into the custom function.

For example, in this case, to do the actual text drawing, there is no reason
to re-invent the wheel. There are several objects which draw text,
PegTextButton and PegPrompt are two such objects. It is usually a good
idea to look at how these objects draw text and adapt this code to the
custom object for text drawing.

That's a simple example of overriding a function to make a particular
instance of an object do something custom. Declare a function, declare an
instance of an existing C/PEG object, substitute the necessary function,
implement the function to do what is necessary to fit with the design of the
application, repeat.

But, what if the application needs to use this custom draw function for every
button it puts on the screen? It is tedious and error prone to use the above
Swell Software, Inc. Programming with C/PEG 117

Programming with C/PEG
example in hundreds of different places in the application code. The answer
to this is an object factory.

An object factory is simply a function which wraps this functionality so the
implementation is invisible to the user of the object, and to partition object
creation and initialization from the rest of the application.

C/PEG is full of functions like this, since every PegThing object has two of
them. PegThingCreate and PegThingCreateDefault are two examples of
object factories. These functions allocated memory and properly initialize
the object for use by the application. It should also be noted an object
factory implies an object garbage collector as well. C/PEG also has these in
the form of PegThingDestroy and derived functions. In short, if the designer
makes the objects, the designer should provide facilities to destroy the
objects. In the above example, it would be appropriate to call
PegButtonDestroy for the object since all that changed from a standard
PegButton object was a function replacement.

So, let's revisit the example, this time using an object factory to see what's
different.
118 C/PEG Programming Manual Swell Software, Inc.

Customizing Objects
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

GradientObject *GradientObjectCreate(PegRect *pRect,
 PEGUSHORT usId);
void GradientObjectDestroy(GradientObject *pGradientObject);
void GradientObjectDraw(void *pThing);
/*---*/
GradientObject *GradientObjectCreate(PegRect *pRect,
 PEGUSHORT usId)
{
GradientObject *pgo = (PegGradientObject*)PegButtonCreate
(pRect, usId, AF_ENABLED);
PegFuncPtrSet(pgo, PFP_DRAW, GradientObjectDraw);
}
/*---*/
void GradientObjectDestroy(GradientObject *pGradientObject)
{
PegButtonDestroy((PegButton *)pGradientObject);
}
/*---*/
void GradientObjectDraw(void *pThing)
{
PegDrawBegin(pThing);
PegButtonDraw(pThing);

/* custom gradiated draw code goes here */

/* followed by drawing the text */

PegDrawEnd(pThing);
}
/*---*/
GradientObject *pGradientObject = GradientObjectCreate(&r, ID);
/* work with the object */
GradientObjectDestroy(pGradientObject);

Illustration 8 (Object Factory Code 2)

It may look like a little more code, but it is definitely worth the trade off.

Lines 1 through 4 are the function declarations in a header file.

Lines 6 through 12 show the object factory itself. This insulates the caller
from knowing the details of the GradientObject's implementation,
Swell Software, Inc. Programming with C/PEG 119

Programming with C/PEG
encapsulating the functionality of creating one of these object types from
the rest of the application.

Lines 14 through 17 show the destroy function. In this example, we are
deferring the call to the base object.

Lines 19 through 29 are pretty much the same as in the previous example.

Finally lines 31 through 33 show application code for creating a
GradientObject at run time, then destroying it.

The power of this is the level of control over the object it gives the object
designer. At any time, the object designer could choose to modify the
GradientObject, by changing the function pointers or adding data members,
and it would not directly effect any application code that uses the object and
expecting the “old” version of the object.

The C/PEG library works on this same principle. The more functionality that
can be encapsulated into small pieces that can be artfully assembled by the
application developer, the more productive the developer becomes and the
better the application is as a result.

To take this one further step to reinforce the object factory concept, we will
add some data members to the GradientObject.

Let's say marketing comes back to the application engineers and want the
buttons to draw text using two fonts, instead of the one font the object
currently uses. Not an unreasonable request, especially from marketing.

So a member of the application engineering team draws the short straw
and is tasked with implementing the change.

If the application is already using object factories, which this one is, then
this is a trivial change and will not effect any other application code.

Here's some code which extends the GradientObject object by adding a
new PegFont pointer data member and assigning that font to the object
when the object is created.
120 C/PEG Programming Manual Swell Software, Inc.

Customizing Objects
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

typedef struct
{
PEG_BUTTON_DECLARE \
PegFont *pBigFont;
} GradientObject;

GradientObject *GradientObjectCreate(PegRect *pRect,
 PEGUSHORT usId);
void GradientObjectDestroy(GradientObject *pGradientObject);
void GradientObjectDraw(void *pThing);
/*---*/
GradientObject *GradientObjectCreate(PegRect *pRect,
 PEGUSHORT usId)
{
GradientObject *pgo =
(GradientObject*)PEG_ALLOC(sizeof(GradientObject));

PegButtonInit((PegButton *)pgo);
PegButtonSet((PegButton *)pgo, pRect, usId, AF_ENABLED);

PegFuncPtrSet(pgo, PFP_DRAW, GradientObjectDraw);
pgo->pBigFont = &NewBigFont;
}
/*---*/
void GradientObjectDestroy(GradientObject *pGradientObject)
{
PegButtonDestroy((PegButton *)pGradientObject);
}
/*---*/
void GradientObjectDraw(void *pThing)
{
PegDrawBegin(pThing);
PegButtonDraw(pThing);

/* custom gradiated draw code goes here */

/* followed by drawing the text */

PegDrawEnd(pThing);
}
/*---*/
GradientObject *pGradientObject = GradientObjectCreate(&r, ID);
/* work with the object */
GradientObjectDestroy(pGradientObject);

Illustration 9 (Object Factory Code 3)
Swell Software, Inc. Programming with C/PEG 121

Programming with C/PEG
This brings us to the final step in customization; modifying the base object
itself, not just which functions the object uses for the look and feel particular
to that object.

Lines 1 through 5 introduce a concrete example of deriving a custom
object. Every C/PEG object is declared with a macro that consists of the
object name followed by the word “DECLARE”. In this case, of course, the
macro is PEG_BUTTON_DECLARE. For PegTextThing this macro is
PEG_TEXT_THING_DECLARE and so forth. The macro for any object includes
the data members particular to that object and all of the member variables
and function pointers of all of its base members in the same order in which
they are declared in the base object.

For example, the PEG_BUTTON_CREATE macro looks like this:

#define PEG_BUTTON_DECLARE \
PEG_TEXT_THING_DECLARE

This may seem redundant, since PegButton does not include any data
members of its own, but this allows the application designer to use the
PEG_BUTTON_DECLARE macro without much concern if this macro changes
over time or through iterations of the C/PEG library.

For instance, the PegComboBox declaration macro looks like this:

#define PEG_COMBOX_BOX_DECLARE \
PEG_THING_DECLARE \
PegComboBoxInsertFuncPtr funcInsert; \
struct _PegComboBoxList *pList; \
struct _PegBitmapButton *pOpenButton; \
struct _PegBitmap *pBitmap; \
void *pLastSelected; \
PEGBOOL bOpen; \
PEGSHORT sOpenHeight; \
PEGSHORT sCloseHeight;

This macro could change and any application designer using a
PegComboBox in their application would be unconcerned with the
modifications.

This type of encapsulation is one of the great powers of C/PEG. You'll
notice the only real change in the GradientObject code example was the
addition of the new structure definition and changes in the object factory
122 C/PEG Programming Manual Swell Software, Inc.

Customizing Objects
function. The application code did not have to change. The object's destroy
function did not have to change because the object did not allocate any
new data for its new data member. If it were to add another member which
did allocate memory, then the memory could be freed in the destroy
function before calling the base object's destroy function.

In the object factory function, lines 12 through 23, there are some changes
which are of interest. First, the function allocates its own object memory.
This is in lieu of calling PegButtonCreate. It then calls two PegButton
functions to initialize the object and to set its data members. It is good
practice for any custom object to call its base object's initialize and set
functions. Then, the new member pointer, pBigFont is set to point to the
PegFont NewBigFont.

Of course, the draw function would need to change in order to draw the text
in two different font faces, but is outside the scope of this discussion.

To conclude, the C/PEG object factory concept is a powerful mechanism
for application object designers that need to extend and expand the base
look and feel of any C/PEG library object.

9.6.2 Programming Examples
Please see the cpeg/examples directory for example programs which
demonstrate object handling and application execution.
Swell Software, Inc. Programming with C/PEG 123

Programming with C/PEG
124 C/PEG Programming Manual Swell Software, Inc.

	Portable Embedded GUI
	Programming Manual
	Table of Contents
	Forward
	How are the manuals organized

	Introduction
	What PEG IS
	PEG is Portable
	PEG is Embedded
	PEG is GUI

	What PEG is NOT
	Where PEG is going
	Library Updates

	Synopsis
	1.1 What C/PEG Is
	1.2 What C/PEG Is Not
	1.2.1 How C/PEG Works
	1.2.2 Benefits of using C/PEG

	1.3 High Level Overview
	1.3.1 Graphics Objects
	Hardware Support
	Comparison with PEG+

	1.4 Supported Platforms
	Operating Systems
	Processors
	Video

	Common Terms and Concepts
	2.1 Structured C Architecture
	2.1.1 Structures as Objects
	Function Pointers and Callbacks

	2.1.2 Graphical Interface Terminology
	Panel and Control
	Parent, Child and Sibling
	Modal Execution

	C/PEG Programming Reference
	3.1 Building the C/PEG Library
	Library Code Size
	File Naming Conventions
	Build Options
	Target Platform
	Screen Driver
	Keyboard or Keypad Input
	Focus Indicators
	Mouse Input
	Touch Screen Input
	Unicode
	String Tables
	String Library
	Tasking Model
	PegPlotPointView
	Exit Operation
	Graphics Primitives
	Memory Management
	Assertions
	LTOA
	3.1.1 Pre-configured Build Files
	Building C/PEG for Windows using Microsoft Visual Studio 6.0 and .NET
	Building C/PEG on Linux With X11 Support
	Building for Other Integrated Operating Systems
	Building C/PEG for Other Targets

	The C/PEG Execution Model
	4.1 Overview
	4.1.1 Software Block Diagram
	4.1.2 Program Startup
	PegTask
	PegIdleFunction
	PegPresentation
	Event Driven Programming
	Input Focus Tree
	Keyboard Input Handling
	Mouse or Touch Screen Input Handling

	PegMessageQueue
	5.1 PegMessage Definition
	Message Flow and Routing
	C/PEG System Messages
	System Message List
	User Defined Messages

	5.2 Signals
	Control ID Definition and Signal Processing Example

	PegScreen
	Screen Coordinates
	Video Controllers
	Porting C/PEG to Custom Video Hardware
	PegScreen Templates and Drivers

	Fundamental Data Types
	Simple Data Types
	PegPoint
	PegRect
	PegBrush
	PegMessage
	PegTimer
	PegFont
	Default Object Fonts
	Outlined Fonts
	Anti-Aliased Fonts
	Multilingual Support
	PegBitmap

	The Mighty Thing
	PegThing Support Functions
	Creation
	Creation Examples
	Destruction
	Implementation of the Function Pointers
	Notify
	Draw
	Add
	AddToEnd
	Remove
	Destroy
	Resize
	DrawBorder
	DrawFocus
	EraseFocus
	ParentShift
	Overrides and Deferrals
	Style and Status
	Style Flags
	Status Flags
	Signals
	Notifying Children
	Colors
	Type
	Traversing the Tree
	Example
	Finding System Objects

	Programming with C/PEG
	9.0.1 C/PEG Naming Conventions
	9.0.2 Source and Header Files
	9.0.3 Program Startup Review
	9.0.4 Rules of Memory Ownership
	9.1 Creating PegThings
	9.2 Removing and Destroying PegThings
	9.3 Drawing to the Screen
	9.4 Determining Drawability
	9.5 Object Boundaries
	9.6 Customizing Objects
	9.6.1 The Object Factory
	9.6.2 Programming Examples

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

