

GoFast® 8051 Floating-Point Library User’s Guide

August 17, 2010

1 Introduction... 1

1.1 Purpose.. 1
1.2 Definitions... 2
1.3 The IEEE Floating Point Format .. 2
1.4 Precision.. 3
1.5 Special Values... 3
1.6 Exception Handling .. 4
1.7 Accuracy in Calculations .. 4

1.7.1 Rounding... 4
1.7.2 Base Conversion ... 5
1.7.3 Difference between Large Numbers ... 5
1.7.4 Irrational Numbers .. 6
1.7.5 Special Functions .. 6
1.7.6 Conversion to Integer.. 6
1.7.7 Financial Calculations... 7

1.8 Resource Requirements .. 7
1.8.1 Memory Conventions.. 7
1.8.2 Resource Requirements .. 8

1.9 Parameter Passing ... 8
1.10 Franklin/Keil C Compiler Version.. 9

1.10.1 Compiler Details ... 9
1.10.2 Timings ... 9

2 Basic Floating Point Operations .. 10
2.1 LDFAC & LDFACD – Load Floating Point Accumulator (FAC) 10
2.2 STFAC & STFACD – Store Floating Point Accumulator (FAC) 10
2.3 FPADD & DPADD – Addition and Subtraction 10
2.4 FPMUL & DPMUL – Multiplication ... 11
2.5 FPDIV, FPRDIV & DPDIV, DPRDIV – Division................................... 12
2.6 FPCMP & DPCMP – Comparison Routines .. 12
2.7 FLOAT & DFLOAT – Integer to FP Value Conversion.......................... 13
2.8 INT, FIX & DINT, DFIX – FP Value to Integer Conversion................... 14
2.9 AINT & DAINT – Floating Point INT Function...................................... 14

3 Precision Conversion Routines .. 15
3.1 SINGLE – Double to Single Precision Conversion Routine 15
3.2 Double – Single to Double Precision Conversion Routine....................... 15

4 ASCII Literal to/from Floating Point ... 16
4.1 ASCBIN & DASCBN – ASCII Literal to Floating Point Value 16

4.1.1 Example of ASCII Literals and Results of the Conversion 16
4.2 BINASC & DBNASC – Floating Point Value to ASCII Literal 17

4.2.1 BINASC – Single Precision.. 17
4.2.2 DBNASC – Double Precision... 18

5 API.. 19
5.1 Assembly API ... 19
5.2 C API .. 20

6 Error Conditions... 25
6.1 Addition .. 25
6.2 Multiplication.. 25
6.3 Division... 26
6.4 Comparison ... 26
6.5 Functions... 26
6.6 X to I function... 27

7 Routine Sizes and Execution Times... 28
7.1 8051 FPAC Routine Sizes and Execution Times 28

7.1.1 Basic Operations Set – FPAC... 28
7.1.2 Transcendental Functions - FPAC.. 28
7.1.3 Conversion Routines – FPAC... 29

7.2 8051 DPAC Routine Sizes and Execution Times..................................... 29
7.2.1 Basic Operations Set – DPAC .. 29
7.2.2 Transcedental Functions - DPAC ... 29
7.2.3 Conversion Routines – DPAC .. 30
7.2.4 Precision Translation Routines – DPAC....................................... 30

8 Operation Summary ... 31
8.1 Single Precision Operations.. 31
8.2 Double Precision Operations .. 31
8.3 Accuracy Test ... 33
8.4 Performance Test .. 33

9 Application Notes .. 35
9.1 On-Chip Data Memory (#01).. 35
9.2 On-Chip Memory Usage (#107) ... 37
9.3 Reentrancy (#02)... 37
9.4 The Floating Point Accumulator Structure in FPACs (#152)................... 40
9.5 General Overview of Accuracy and Precision (#122) 42
9.6 Tailoring Double Precision Function Accuracy (#148)............................ 43
9.7 Implementing an XˆY Operation .. 45
9.8 Error Codes and FPAC Conversion Routines (#123) 46

9.8.1 ASCBIN and DASCBN – ASCII to binary conversion routines.. 46
9.8.2 BINASC and DBNASC – binary to ASCII conversion routines.. 47

9.9 Understanding and Using FPAC Routine Timing Estimates (#135) 47
9.10 The Polynomial Function Evaluation Routine (#139) 49

10 References.. 52

© Copyright 2009-2010 Micro Digital Inc
© Copyright 1983-2009 Lantronix Inc

Now maintained by

Micro Digital Associates Inc.
2900 Bristol Street, #G204

Costa Mesa, CA 92626
(714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved.

GoFast 8051 Floating-Point Library User’s Guide

1 Introduction

Notes: FPAC refers to the single-precision floating point routines and DPAC refers to
the double-precision routines. This manual and application notes were re-entered from a
printed copy. Some introductory sections were recently written, and other edits have been
made.

1.1 Purpose

GoFast is a software floating-point library for processors that do not offer floating-point
support in hardware. It complies with the IEEE 754 standard. However, the exception
handling has been simplified a little, mostly to make the product simple to use in
embedded systems.

Most importantly, GoFast is fast. Replacing the native floating-point library with GoFast
might cut timings by 20% for simple functions such as add or multiply, and by 75% in
transcendentals such as the tangent. You could even see an occasional 90%, but there
would be something wrong with the original routine then. The floating-point routines
provided with the compiler are typically written in C and operate on floating-point
variables. These algorithms are relatively simple, easily found on the Web or in books,
and efficient in a floating-point unit. They get heavy when all floating-point is simulated.
GoFast performs all calculations using integers. The first thing done is the separation of
the exponent and the mantissa; the last is their recombination. Because the mantissa has
64 bits, good precision comes as a bonus. The algorithms can get intricate – and you
don’t find them on the Web – but they have been thoroughly tested over the years.

The GoFast floating point library includes FPAC and DPAC parts. FPAC provides
floating point functions based on the IEEE single precision floating point format. DPAC
extends the FPAC functionality to the IEEE double precision floating point format.

The library consists of the basic floating point operations (ADD/SUBTRACT,
MULTIPLY, DIVIDE), data conversion routines (ASCII to/from floating point, integer
to/from floating point), functions (sine, cosine, tangent, arctangent, common and natural
logarithm, exponentiation of e, square root, and floating point to integer power). In
addition, DPAC provides precision translation routines for conversion between single and
double precision formats.

The library was designed to emphasize accuracy, source code clarity, code size
efficiency, and execution speed. Wherever IEEE floating point standards exist, and when
they are feasible to implement in software with respect to the scope and purpose of this
package, FPAC and DPAC adhere to them.

1

GoFast 8051 Floating-Point Library User’s Guide

1.2 Definitions

Floating point is a method of representing numeric values (integers and non-integers) in
a computer. It uses three fields for this:

• The sign tells whether the number is positive or negative.
• The exponent tells where the decimal point goes.
• The mantissa (also called the significand) gives the digits.

To get the actual value of the number, you raise 2 to the power of the exponent and
multiply this with the mantissa. (For details such as bias and scaling, see the IEEE 754
document.)

In the IEEE 754 standard, single-precision numbers take up 32 bits, double-precision
numbers twice that. The useful range for singles is approximately 10-38 to 1038, for
doubles 10-308 to 10308. The relative precision (typical rounding error in one arithmetic
operation) is of the order of 10-7 for singles, 10-16 for doubles.

1.3 The IEEE Floating Point Format

The number format on which FPAC operates is the IEEE 754 single precision standard.
Its representation, in bit form is:

S EEE EEEE E MMM MMMM MMMM MMMM MMMM MMMM
byte 3 byte 2 byte 1 byte 0

“S” is the sign bit (1 if negative, 0 if positive). The “E” field is the two’s exponent. It is a
two’s complement value biased by 127 (decimal. The “M” field is the 23-bit normalized
mantissa. The most significant bit is always assumed to be 1, and so is not explicitly
stored. This yields an effective precision of 24 bits.

The value of the floating point number described above is obtained by multiplying 2
raised to the power of the unbiased exponent, by the binary mantissa. The assumed bit of
the binary mantissa (the most significant bit) has a value of 1.0, with the remaining bits
providing a fractional value (i.e., the value of the mantissa is greater than or equal to 1.0
and less than 2.0).

Note that the four bytes of the floating point number are stored in lexicographic order. As
noted in the architectural description of the 8051, the processor’s convention is that the
least significant byte has the lowest address value. This means the sign/exponent byte is
stored at a higher memory address than the mantissa bytes.

The dynamic range of the IEEE 754 single precision floating point format is +/-
1.175494E-38 to 3.402823E+38.

2

GoFast 8051 Floating-Point Library User’s Guide

The number format on which DPAC operates is the IEEE 754 double precision standard.
Its representation, in bit form, is:

S EEE EEEE EEEE MMMM MMMM MMMM MMMM MMMM
byte 7 byte 6 byte 5 byte 4

MMMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM
byte 3 byte 2 byte 1 byte 0

“S” is the sign bit (1 if negative, 0 if positive). The “E” field is the two’s exponent. It is a
two’s complement value biased by 1023 (decimal). The “M” field is the 52-bit
normalized mantissa. The most significant bit is always assumed to be 1, and so is not
explicitly stored. This yields an effective precision of 53 bits.

The value of the floating point number described above is obtained by multiplying 2
raised to the power of the unbiased exponent, by the binary mantissa. The assumed bit of
the binary mantissa (the most significant bit) has a value of 1.0, with the remaining bits
providing a fractional value (i.e., the value of the mantissa is greater than or equal to 1.0
and less than 2.0).

Note that the eight bytes of the floating point number are stored in lexicographic order.
As noted in the architectural description of the 8051, the processor’s convention is that
the least significant byte has the lowest address value. This means the sign/exponent byte
is stored at a higher memory address than the mantissa bytes.

The dynamic range of the IEEE 754 double precision floating point format is +/- 2.2250
73858 50720D-308 to 1.7976 93134 86231D+308.

1.4 Precision

The basic operations (add, subtract, multiply, divide, square root) and the conversions all
use the IEEE 754 "round to nearest or even" rounding exactly. No other rounding modes
are supported. These operations are IEEE exact.

The transcendental functions (which are not defined in IEEE 754) are correct to within
two mantissa units. However, the trigonometric functions SIN, COS and TAN will lose
precision in the argument reduction if the argument exceeds π/2.

1.5 Special Values

An overflow returns +INF or -INF, an underflow returns +0 or -0. If an argument is not-
a-number (NaN), the result is NaN. The table below gives the GoFast result for some
other special situations. It does not include cases that should not cause any confusion.

3

GoFast 8051 Floating-Point Library User’s Guide

 - INF-INF = NaN
 * 0*INF = NaN
 / 0/0 = NaN
 INF/INF = NaN
 sqrt sqrt(-0) = -0
 sqrt(x<0) = NaN
 ln/log -INF if x=0
 NaN if x<0
 sin/cos/tan NaN if |x| >= 65536

Most likely, these pathological cases will be of no interest to anyone. It is not at all
unusual to find a C library that returns questionable values for one or more.

1.6 Exception Handling

GoFast makes no distinction between quiet and signaling not-a-numbers (NaNs). In an
invalid operation, the answer is always a quiet NaN, 0x0008000000000000 in double
precision and 0x00400000 in single precision.

The GoFast routines support the IEEE 754 masked exception handling for overflows and
invalid operations. An overflow is returned as the special value infinity, and an invalid
operation is returned as the special value NaN.

No unmasked exceptions are supported; there are no exception interrupts. GoFast stores
an error code into the byte variable FPERR. The values are: 3 for not-a-number, 2 for
overflow and 1 for underflow.

1.7 Accuracy in Calculations

Floating-point calculations are in practice always inexact. This is easy to forget because
just about everything else in programming is exact, and because the precision seldom
becomes a problem. But you forget at your own peril.

There is nothing mysterious about the loss of precision; it’s simply the nature of the
thing. The following illustrates different faces of the inaccuracy.

1.7.1 Rounding
A floating-point number contains a fixed number of digits. Unless there are a lot of
trailing zeroes, an arithmetic operation will very likely produce too many digits to fit in
the same space. This of course happens even in normal decimal calculations, for
instance:

4

GoFast 8051 Floating-Point Library User’s Guide

 1234.567
 + 12.34567
 1246.91267 1246.913

Rounding errors as such are unlikely to become noticeable, but they can be enhanced by
other effects. Some algorithms are notoriously prone to lose precision.

1.7.2 Base Conversion
Changing the base of a fractional number generally requires approximations. Any
application that uses decimal input, decimal constants or decimal output has to perform
base conversions. Consider the example

 float f1;
 f1 = 1.1;
 printf("%.12f\n", f1);

This program will display the value 1.100000023842, not the exact 1.1. What happened?

The root of the problem is that 1 1/10 in base 2 is 1.0001100(1100), i.e. can't be
represented exactly. The compiler creates a constant 1.1 with 24 bits:

 1.000 1100 1100 1100 1100 1101

This value is obviously larger than 1.1 because we rounded up at bit 24. Printing the
value with too many decimals (anything more that 7 in this case) will show the
difference.

1.7.3 Difference between Large Numbers
Let's try the program

 float f1, f2, f3;
 f1 = 1234.0;
 f2 = 1233.1;
 f3 = f1 - f2;
 printf("%lf\n", f3);

The result is 0.900024: off by quite a bit. The basic effect is the same as explained
above: the required base conversion. But the relative error got enlarged in the subtraction
of two almost equal numbers:

 1234.0 = 1001 1010 0100 0000 0000 0000
 - 1233.1 = 1001 1010 0010 0011 0011 0011
 0.9 = 1100 1100 1101

5

GoFast 8051 Floating-Point Library User’s Guide

1.7.4 Irrational Numbers
Values such as sqrt(2) or sin(0.5) have no exact representation in any base. These can
still be calculated “exactly” to the value that is mathematically correct considering the
rounding rules. IEEE specifically requires an exact square-root, but says nothing about
other functions. The GoFast square-root is of course exact.

You probably won’t find an “exact” implementation of the transcendentals anywhere.
The additional error should be of the same order as the rounding error.

1.7.5 Special Functions
As a rule, the relative error of a function is different than the relative error of the
argument. In some cases this becomes important. Take the following code:

 double d1, d2;
 d1 = 1.1;
 d3 = exp(100*d1);

The result will differ from exp(110) by quite a bit. This does not mean that exp(x) is
inaccurate; it means that the original inaccuracy of x got magnified.

A point where a function approaches zero for a non-zero argument is especially tricky.
As an example, log(0.999998) is close to twice log(0.999999). If your argument is only a
little inexact, say due to rounding, the answer may be so wrong as to be meaningless.
Again we need to remember that log(x) as such is not the culprit, it is not inaccurate.

The same warning applies whenever significant argument reduction is needed, such as
the trigonometric functions for arguments much larger than π. Worst of all are cases
where these two situations coincide: sin(1000π) for instance.

1.7.6 Conversion to Integer
ANSI C specifies that a floating-point number is converted to an integer using truncation:
the decimals are discarded. This innocuous rule can cause surprises. Consider the
program

 int i1, i2;
 i1 = 256;
 i2 = (float)i1 / 2.56;
 printf("%d\n", i2);

Certainly the correct answer is 100, but you can't count on this; the program as written is
unstable. In some cases, the answer will keep jumping between 99 and 100, depending
on the compilation options and the exact code used.

The root reason for the instability is not hard to see. The value 2.56 has to be rounded
when it is converted to base 2. If this rounding is up, the division will give a value that is

6

GoFast 8051 Floating-Point Library User’s Guide

slightly less than 100. According to ANSI C rules, this becomes 99. If again 2.56 in base
2 is rounded down, the division will give slightly over 100, and truncates to 100.

IEEE 754 is a very rigorous standard; whether 2.56 is rounded up or down, surely it
should be rounded the same way every time. How is it possible that two standard
implementations give completely different results? Well, it really isn’t. This is an
interesting example of what happens when a standard meets an optimizing compiler.
How the rounding is done depends on the number of bits in the constant. ANSI C says
that a floating-point constant is double, and IEEE 754 rules this to have 53 binary digits.
Unfortunately

1 Some compilers use float constants in float expressions. This difference may be

enough to change the direction of the rounding.
2 Some compilers optimize out all divisions by a constant, using instead a

multiplication with the inverse value. What happens to the rounding is anybody’s
guess.

1.7.7 Financial Calculations

You want to make absolutely sure your broker isn’t cheating you, so you write a little
program to check the commission. The first trade looks fine. The second trade looks fine.
The third trade – caught him! Overcharged by a penny!

Well, not really. Financial rounding follows law and custom, knowing (and caring)
nothing about IEEE 754 rounding. In some special cases, you have to round up. Even the
usual “bank rounding” isn’t quite the same as the IEEE default – though you’ll have to
look hard to catch the difference.

None of this means that there’s a problem. Financial institutions just don’t use floating-
point math.

1.8 Resource Requirements

1.8.1 Memory Conventions

The 8051 FPAC/DPAC routines work with four and eight byte floating point values that
reside in either the external data memory or in the program memory (read-only
constants). External operands are addressed using the MOVX instruction with DPTR or
the MOVC instruction. The routines maintain a floating point accumulator (shared by
single and double precision routines) in the on-chip data memory along with exception
flags and some working storage. The conversion routines and functions produce
temporaries that are held in external data memory.

7

GoFast 8051 Floating-Point Library User’s Guide

1.8.2 Resource Requirements

The 8051 FPAC/DPAC routines use three types of 8051 resources; bit addressable on-
chip data memory, on-chip data memory, and external data memory.

Either one or two bytes of bit addressable on-chip data memory is required. A single byte
(called FACBIT) is used by the basic operations and an additional type (called CNVBIT)
is used by the ASCII/binary conversion routines and/or the functions.

The basic single precision operations require 14 bytes of on-chip data memory. The basic
double precision operations require 12 more bytes of on-chip data memory. The
ASCII/binary conversion routines use one byte of on-chip data memory. A fully
implemented single precision library will have an on-chip data memory requirement of
15 bytes while a fully implemented double precision library will require 27 bytes of
on-chip data memory.

The ASCII/binary conversion routines use one external data memory temporary (four or
eight bytes depending on precision). Functions may use up to four temporaries (again
either four or eight bytes each), but one temporary may be overlaid on the conversion
temporary making a maximum external data memory requirement of 16 bytes for single
precision and 32 bytes for double precision.

1.9 Parameter Passing

A floating point value is passed to an FPAC/DPAC routine by placing its address in
DPTR. If the value resides in program memory (a constant) instead of the external data
memory, then the FACRNM bit must be set (for Rom Number).

The FPAC/DPAC routines maintain a Floating Point Accumulator (referred to as the
“FAC”) in the on-chip data memory. A value will remain in the FAC until the user
changes it either explicitly or implicitly. In most cases, the contents of the FAC is used as
an operand by FPAC/DPAC routines. Thus, the contents of the FAC is a parameter that is
implicitly passed to and returned from FPAC/DPAC routines. Binary operations take
place as FAC <oper> [DPTR] FAC. Unary functions are performed on the value in the
FAC with the result returned in the FAC.

In general, FPAC/DPAC routines destroy the contents of the accumulator (called A or
ACC), the B register, and the current register bank (R0 to R7). The value of the DPTR is
returned unchanged (except for the ASCII to binary conversion routines which advance it
as noted).

The FPAC/DPAC routines use some stack space for temporaries. The conversion routines
and functions used temporaries in the external data memory. The amount of stack space
required by the various routines, beyond the two bytes for the return, is noted in the
discussion of the individual routines.

8

GoFast 8051 Floating-Point Library User’s Guide

Word integer values are passed to and from FPAC/DPAC routines in the B:A (with B
holding the most significant byte). Four byte integer values are passed in R7:R6:B:A (R7
is the most significant byte, A is the least significant byte). All integer values are in two’s
complement form.

1.10 Franklin/Keil C Compiler Version

1.10.1 Compiler Details
GoFast is a drop-in replacement library for the Franklin/Keil C compiler. The native
library has no double-precision routines, and the compiler will not generate any calls to
such routines. When you install GoFast, you can start using double-precision, but you’ll
have to write the function calls explicitly. You’ll find examples of this in the GoFast
files.

The native library lacks asin, acos, atan2 and all the hyperbolics. Instead of pow, there’s
a function that raises a number to an integer power. GoFast will not add these missing
functions. The implementation is compatible with the IEEE 754 standard, but it isn’t
really ANSI C, nor could it be.

GoFast for 8051 implements a floating-point accumulator (FAC) in read-write memory,
so it isn’t naturally reentrant. However, you get reentrancy by saving and restoring FAC
(and a few other temporaries) in a context switch. A note included with the product gives
the details.

1.10.2 Timings
The following table shows the GoFast timings for a few functions on a 12 MHz 8051, in
microseconds. The given range is from a typical value to a maximum value.

Functions Single Double
add 260 - 370 750 – 1100
multiply 450 - 560 1380 – 1530
divide 1070 - 1390 5300 – 6900
sin/cos 5050 23400
log 6000 23000
sqrt 2850 18500

9

GoFast 8051 Floating-Point Library User’s Guide

2 Basic Floating Point Operations

2.1 LDFAC & LDFACD – Load Floating Point Accumulator (FAC)

These routines load floating point values from memory (pointed to by DPTR) into the
floating point accumulator (FAC). If FACRNM is set, the value is taken from program
memory. If FACRNM is clear, the value is taken from external data memory. LDFAC is
a single precision routine while LDFACD is its double precision counterpart. The
FACRNM bit is always cleared by LDFAC and LDFACD.

The FAC consists of three parts: its sign, its exponent, and its mantissa. The sign is held
in a byte called FACSGN. The sign bit is replicated throughout this byte, so FACSGN’s
value is either 0 or OFFH (-1).

The exponent is held in a byte pair referred to as FACEXP. The exponent’s bias is not
removed while in the FAC. Single precision exponent values are zero-extended one byte
to fill the double type FACEXP. Double precision exponent values are zero-extended 5
bits to fill FACEXP.

The mantissa is held in a series of bytes headed by the byte named FACMAN. In the case
of single precision values in the FAC, the series of bytes is three long. A double precision
value in the FAC uses seven bytes. Unlike the four or eight byte representation of the
floating point number, the mantissa in the FAC explicitly represents what is called the
implicit (or “j”) bit of the floating point number’s mantissa. The mantissa, as with the
exponent, is right justified in the FAC’s mantissa register.

2.2 STFAC & STFACD – Store Floating Point Accumulator (FAC)

The value in the FAC is compressed as required and stored in memory at the location
indicated by DPTR.

2.3 FPADD & DPADD – Addition and Subtraction

The floating point value pointed to by DPTR (and FACRNM) is added to the floating
point value in the FAC. The FPADD routine is used to sum single precision floating point
numbers while the DPADD routine works with double precision floating point values.

Subtraction of two floating point values is accomplished by flipping the sign bit of the
subtrahend, then calling the appropriate addition routine. If the subtrahend contains zero
or NaN, the sign should not be complemented.

Both FPADD and DPADD use four bytes of stack space.

10

GoFast 8051 Floating-Point Library User’s Guide

The following routines implement double precision floating point subtraction operations.
The result is always left in the FAC, though either the FAC or the operand pointed to by
DPTR may be the subtrahend. Note that the sign is not complemented if the value is zero
or NaN.

DPSUB: CALL DNGFAC ; FAC = – FAC
 CALL DPADD ; FAC = OPN – FAC
 BRA DNGFAC ; FAC = FAC – OPN
;
DPRSUB: CALL DNGFAC ; FAC = – FAC
 JMP DPADD ; FAC = OPN – FAC
;
; Negate FAC
;
DNGFAC: MOV A, FACEXP – 0 ; Check zero

MOV B, FACEXP – 1
CJNE A, B, DNGF01 ; J/ FAC < > 0
JZ DNGF03 ; J/ FAC = 0 (NO NEGATION)

;
DNGF01: CJNE A, #007H, DNGF02 ; J/ FAC < > NaN
 MOV A, B
 CJNE A, #0FFH, DNGF02 ; J/ FAC < > NaN
 MOV A, FACMAN – 0
 ANL A, #00001111B ; Strip implicit bit
 JNZ DNGF03 ; J/ FAC = (NaN or INF)
;
DNGF02: CPL FACSGN ; Flip sign
DNGF03 RET

2.4 FPMUL & DPMUL – Multiplication

The floating point value in the FAC is multiplied by the floating point value pointed to by
DPTR (and FACRNM). The FPMUL routine works with single precision operands, the
DPMUL routine processes double precision values.

Both FPMUL and DPMUL use two bytes of stack space.

The following routine squares the single precision floating point value addressed by
DPTR (and FACRNM), leaving the result in the FAC.

FPSQ: MOV C, FACRMN ; Save ROM/RAM bit
 MOV HOLDBT, C
 CALL LDFAC ; FAC = Value
 MOV C, HOLDBT ; Get ROM/RAM bit

11

GoFast 8051 Floating-Point Library User’s Guide

 MOV FACRMN, C
 JMP FPMUL ; FAC = FAC * Value (square)

2.5 FPDIV, FPRDIV & DPDIV, DPRDIV – Division

Division of floating point values is performed by calling one of these division routines.
The xPDIV routines use the value pointed to by DPTR (and FACRMN) as the divisor
and the value in the FAC as the dividend, placing the result in the FAC (that is,
FAC/[DPTR] FAC). The xPRDIV routines use the value pointed to by DPTR (and
FACRMN) as the dividend and the value in the FAC as the divisor, placing the result in
the FAC (that is, [DPTR]/FAC FAC). The FPxxxx routines work with single
precision floating point values while the DPxxxx routines handle double precision
floating point numbers.

All of FPxxxx and DPxxxx routines use four bytes of stack space.

The following routine reciprocates the single precision floating point in the FAC.

FPREC: MOV DPTR. #FPONE ; DPTR points to 1.0
 SETB FACRMN ; in program memory
 JMP FPRDIV ; FAC = 1.0/ FAC

FPONE: DB 000H, 000H, 080H, 03FH ; Single Precision 1.0

2.6 FPCMP & DPCMP – Comparison Routines

The floating point value in the FAC is compared to the floating point value pointed to by
the DPTR (and FACRMN). The FPCMP routine is used to compare single precision
floating point numbers while the DPCMP routine is used to compare double precision
floating point values.

The comparison routines may use the addition/substraction routine (of the appropriate
precision) if necessary. See section 6.0 for the results of comparing the special
representations of +INF, -INF, and NaN with each other or standard point values.

Both routines implement a fuzz specification. The values are 20 bits for FPCMP (the
symbolic constant FFUZZ) and 48 bits for DPCMP (the symbolic constant DFUZZ). The
fuzz value indicates the number of bits which must be equal. For example, in the single
precision case, if the result of the FAC minus the operand is at least 2^-20 times smaller
than the large of the FAC and the operand, the values are considered equal even though
there may be a slight difference in actual values.

The result of the comparison is returned in the A register as follows:

12

GoFast 8051 Floating-Point Library User’s Guide

 Comparison_____ A Register
 No comparison 080H -128
 FAC < OPN 0FFH -1
 FAC = OPN 000H 0
 FAC > OPN 001H 1

A quick comparison result testing algorithm is:
 1) Clear carry, rotate the accumulator left
 2) If A < > 0 then
 a. If carry set then, FAC < OPN
 b. else (carry clear), FAC > OPN
 3) else (A = 0)
 a. If carry set then, FAC does not compare
 b. else (carry clear), FAC = OPN

FPCMP and DPCMP may destroy the contents of the FAC. Both FPCMP and DPCMP
use up to eight bytes of stack space.

2.7 FLOAT & DFLOAT – Integer to FP Value Conversion

A register resident integer is converted to a floating point value in the FAC by the float
routines. The Float routine converts the two’s complement 16 bit integer in B:A (B holds
the most significant byte) into a single precision floating point value in the FAC. The
DFLOAT routine converts the two’s complement 32 bit integer in R7:R6:B:A (R7 holds
the most significant byte, A holds the least significant byte) into a double precision value
in the FAC.

No stack space is used by FLOAT. DFLOAT uses 2 bytes of stack space.

The routine below “floats” an eight bit integer value in A into a double precision floating
point value in the FAC.

BDFLT: MOV B, #0 ; assume positive
 JNB ACC.7, BDFL01 ; J/ value positive
 DEC B ; Sign extend thru B
BDF01: MOV R6, B ; Sign extend thru R6
 MOV R7, B ; Sign extend thru R7
 JMP DFLOAT ; FAC = DFLOAT (R7: R6: B: A)

13

GoFast 8051 Floating-Point Library User’s Guide

2.8 INT, FIX & DINT, DFIX – FP Value to Integer Conversion

Two methods are provided to convert the floating point value in the FAC into a register
resident integer. The single precision routines, INT and FIX, process single precision
floating point values and return the resulting 16 bit two’s complement integer in B:A.
The double precision floating point numbers into a 32 bit two’s complement integers in
R7: R6:B: A.

The difference between the two methods, FIX and INT, is illustrated in the table below:

F.P. Value FIX(value) INT(value)

3.5 3 3
- 3.5 - 3 - 4

The result of a FIX operation is the argument value stripped of its fractional part. The
result of an INT operation is the largest integer such that it is less than or equal to the
argument value.

FIX does not use any stack space. INT uses 2 bytes of stack space. DFIX uses 2 bytes of
stack space. DINT uses 4 bytes of stack space.

2.9 AINT & DAINT – Floating Point INT Function

The floating point value in the FAC is “INT-ed” in place by calling the routine AINT for
single precision values or DAINT for double precision floating point numbers. While
approximately the same function could be accomplished by using an INT then FLOAT
sequence, AINT operations are considerable faster and of higher precision. Since this
operation is performed in the floating point domain, the AINT routine works with 24 bit
precision while the DAINT routine work with 53 bit precision.

In addition, arguments provided to AINT routine that are too large or invalid (NaN,
+INF, -INF), are returned unchanged. INT routines will return a maximum magnitude
integer of the appropriate sign these instances.

AINT and DAINT do not use any stack space.

14

GoFast 8051 Floating-Point Library User’s Guide

3 Precision Conversion Routines

DPAC provides two precision conversion routines, SINGLE and DOUBLE, for
conversion between the two floating point formats supported by FPAC/DPAC. The value
in the FAC is converted.

3.1 SINGLE – Double to Single Precision Conversion Routine

The SINGLE routine converts the double precision floating point number in the FAC into
a single precision floating point number in the FAC. The conversion is a round-to-nearest
process. Double precision floating point values that are too large to represent in the single
precision format overflow to infinity (INF) with an appropriate sign, while those values
that are too small to represent underflow to zero. NaNs and INFs are carried through
directly. In any event, no error flags are set by this conversion routine.

No stack space is used by the SINGLE routine.

3.2 Double – Single to Double Precision Conversion Routine

The Double routine converts the single precision floating point number in the FAC into a
double precision floating point number in FAC. The conversion is a precision extension
process (by setting the additional mantissa bits to zero). All single precision floating point
values can be properly represented in the double precision format. NaNs and INFs are
carried through directly. In any event, no error flags are set by this conversion routine.

No stack space is used by the DOUBLE routine.

15

GoFast 8051 Floating-Point Library User’s Guide

4 ASCII Literal to/from Floating Point

4.1 ASCBIN & DASCBN – ASCII Literal to Floating Point Value

These routines convert an ASCII literal point to by DPTR into a floating point value in
the FAC. DPTR points to the first character of the literal (in external data memory) to be
interpreted. This first character of the literal must be either a minus sign (indicating a
negative number), a decimal point, or a digit; these routines will not skip preceding
blanks.

The first character of the literal field plus subsequent characters must form a valid
decimal number, optionally followed immediately by “E”, (“D” is also allowed by the
double precision routine), signifying scientific notation. If an “E” is found, it may be
followed by a plus or a minus sign, then one or two digits (the sign and digits indicating
the power of ten scaling), the double precision routine allows up to three digits in the
exponent field.

These routines will process characters until an improper character is found. This
“improper” character may be a blank, comma, zero byte, etc. When the maximum
allowed digits have been found after the “E”, the next character is automatically
improper.

A NaN error code is returned if an improper literal is encountered. Note that reaching an
improper character is NOT an error condition; it can indicate the correct termination of
the ASCII literal. Errors include no digits in the literal, no digits preceeding the “E”, no
digits following the “E”. A literal that, when interpreted, is too large to represent is
returned as infinity (INF). Literals that are too small to represent underflow to zero.

A floating point value is always returned in the FAC. In the case of an error, the value is
what amounts to a best guess (or the value when things went awry).

The single precision routine (ASCBIN) uses 10 bytes of stack space while the double
precision routines (DASCBN) use 14 bytes of stack space.

4.1.1 Example of ASCII Literals and Results of the Conversion

Input String Value Error Returned pointer position
3.567, 3.567 No error At “,”
- .5 -0.5 No error At byte after “5”
5e4 50000 No error At byte after “4”
- .E4 0.0 Error At “E”
3.1.2 3.1 No error At second “.”
4.2E 13 42.0 Error At blank after “E”
-6E98 -INF *Error At byte after “8”
 0.0 Error Pointer unchanged

16

GoFast 8051 Floating-Point Library User’s Guide

^ initial pointer position

*: this is a valid double precision floating point value

4.2 BINASC & DBNASC – Floating Point Value to ASCII Literal

These routines are provided to convert the floating point value in the FAC into a zero
byte terminated string of ASCII characters at the location pointed to by DPTR.

Both BINASC and DBNASC return DPTR unchanged. However, these routines perform
a number of internal floating point operations which may destroy the value in the FAC.
The single precision routine (BINASC) uses 13 bytes of stack space while the double
precision routine (DBNASC) uses 16 bytes of additional stack space.

The first character of the ASCII literal produced is either a minus sign (for a negative
value) or a blank, depending on the sign of the number being converted. Based on the
value being converted, one of the following formats is selected:

4.2.1 BINASC – Single Precision

Form Value Range
0.n 0.1 to 0.9999999
N.n 1.0 to 9.999999
NN.n 10.0 to 99.99999
NNN.n 100.0 to 999.9999
NNNN.n 1000.0 to 9999.999
NNNNN.n 10000.0 to 99999.99
NNNNNN.n 100000.0 to 999999.9
NNNNNNNN. 1000000.0 to 9999999.

N.nE#dd other valid number
0. 0 or underflow
+INF positive infinity
-INF negative infinity
NaN not a number

17

GoFast 8051 Floating-Point Library User’s Guide

4.2.2 DBNASC – Double Precision

Form Value Range
0.n 0.1 to 0.999999999999999
N.n 1.0 to 9.99999999999999
NN.n 10.0 to 99.9999999999999
NNN.n 100.0 to 999.999999999999
… … to …
NNNNNNNNNNNNN.n 1000000000000.0 to 9999999999999.99
NNNNNNNNNNNNNN.n 10000000000000.0 to 99999999999999.9
NNNNNNNNNNNNNNN. 100000000000000.0 to 999999999999999.

N.nD#ddd other valid number
0. 0 or underflow
+INF positive infinity
-INF negative infinity
NaN not a number

Where N is a digit, n is the fractional part with trailing zeroes suppressed, “.” is a decimal
point, “#” is either “+” or “-“, and “d” is a digit in the ten’s exponent. See section 6.0 for
a description of the error conditions underflow, INF, and NaN.

The symbolic constant FDDIG specifies the number of digits the single precision routine
will display. The symbolic constant FNDIG controls the initial conversion step (before
the ASCII literal is formatted); the must be greater that FDDIG. As illustrated above, the
release value of FNDIG is seven.

The corresponding symbolic constants for the double precision conversion routine are
DDDIG and DNDIG. The release value of DNDIG is 15.

The output area is used for two purposes. It is first used to form an internal, intermediate
literal that is reformatted for the second use, as the output literal. The minimum size for
the single precision output area is FNDIG+10 bytes (17 bytes for the release version).
The minimum size of the output area for the double precision routine is DNDIG+12 bytes
(27 bytes for the release version).

18

GoFast 8051 Floating-Point Library User’s Guide

5 API

5.1 Assembly API

The Assembly API provided in the library expects the arguments in the FAC and places
the results in the FAC. (The FPXTOI and DPXTOI routines also use a 16-bit, two’s
complement integers in B: A; this value is destroyed during processing).

The single precision functions may use up to 12 bytes of stack space while the double
precision functions may use up to 14 bytes of additional stack space.

All function results are correct to within one or two mantissa bits except for tangent near
its discontiguous points and the logarithms very near 1.0 (though this is a representation
problem of floating point values, not an algorithm error).

See the C API is implementation in files gf_dp*.a51 and gf_fp*.a51 for example use of
the assembly API.

Single Double Description
FPATN DPATN Arctangent, range – PI/2 to + PI/2
FPCOS DPCOS Cosine (note: limited domain, see 6.0)
FPEXP DPEXP e raised to the power
FPLN DPLN Natural logarithm
FPLOG DPLOG Common logarithm
FPSIN DPSIN Sine (note: limited domain, see 6.0)
FPSQRT DPSQRT Square root
FPTAN DPTAN Tangent (note: limited domain, see 6.0)
FPXTOI DPXTOI Raise value to integer power

The code below illustrates the computation of one real root of a quadratic polynomial.
The coefficients of the polynomial are assumed to reside at the memory locations named
REALA, REALB, and REALC.

;
; -------- External Data Memory
;
REALA DS 4
REALB DS 4
REALC DS 4
FPTEMP DS 4
;
; -------- Program Memory
; Calculate (-b + SQRT (b^2 – 4ac)) / 2a
;
 MOV DPTR, #REALB ; Calc b^2

19

GoFast 8051 Floating-Point Library User’s Guide

 CALL FPSQ ; (see FPMUL)
 MOV DPTR, #FPTEMP
 CALL STFAC ; FPTEMP = b^2
;
 MOV DPTR, #REALA
 CALL LDFAC ; FAC = a
 MOV DPTR, #REALC
 CALL FPMUL ; FAC = ac
 MOV DPTR, #FPFOUR
 SETB FACRNM
 CALL FPMUL ; FAC = 4ac
;
 MOV DPTR, #FPTEMP
 CALL FPRSUB ; reverse subtract
 CALL FPSQRT ; FAC = SQRT (b^2 – 4ac)
 MOV DPTR, #REALB
 CALL FPSUB ; FAC = -b+SQRT (b^2 – 4ac)
;
 MOV DPTR, #REALA
 CALL FPDIV ; FAC = (-b+SQRT(b^2 – 4ac) / a
 MOV DPTR, #FPTWO
 SETB FACRNM
 CALL FPDIV ; FAC = (-b+SQRT (b^2 – 4ac) / 2a
;
; Constants (in program memory)
;
FPTWO: DB 000H, 000H, 000H, 040H ; Single precision 2.0
FPFOUR: DB 000H, 000H, 080H, 040H ; Single precision 4.0

5.2 C API

GoFast also has a C API, which can work with Keil C v5.02 compiler or later. We tested
on Keil C v8.16. To use a different compiler, the API needs to be changed. The C API is
implemented in files gf_dp*.a51 and gf_fp*.a51.

Since most C compilers for 8051 do not support a double type, the DOUBLE type is
defined as a structure:

struct ieeedp
{
 unsigned int wrd[4];
};
typedef struct ieeedp DOUBLE;

Note: The GoFast interface assumes that all variables are in XDATA. It uses pointers to
these variables for processing.

20

GoFast 8051 Floating-Point Library User’s Guide

Single Precision
char cabs (char); same as Keil math lib, can replace Keil's
int abs(int); same as Keil math lib, can replace Keil's
long labs(long); same as Keil math lib, can replace Keil's
float fabs (float); same as Keil math lib, can replace Keil's
float fpabs(float); same as Keil math lib, can replace Keil's
float fpsin(float);
float sin(float); same as Keil math lib, can replace Keil's
float fpcos(float);
float cos(float); same as Keil math lib, can replace Keil's
float fptan(float);
float tan(float); same as Keil math lib, can replace Keil's
float fpatan(float);
float atan(float); same as Keil math lib, can replace Keil's
float fpexp(float);
float exp(float); same as Keil math lib, can replace Keil's
float fplog10(float);
float log10(float); same as Keil math lib, can replace Keil's
float fplog(float);
float log(float); same as Keil math lib, can replace Keil's
float fpsqrt(float);
float sqrt(float); same as Keil math lib, can replace Keil's
float fpceil(float);
float ceil(float); same as Keil math lib, can replace Keil's
float fpfloor(float val);
float floor(float val); same as Keil math lib, can replace Keil's
float fppow(float, float);
float pow (float, float); same as Keil math lib, can replace Keil's
float fpadd(float, float); also supports x+y, can replace Keil's
float fpsub(float, float); also supports x-y, can replace Keil's
float fprsub(float, float);
float fpmul(float, float); also supports x*y, can replace Keil's
float fpdiv(float, float); also supports x/y, can replace Keil's
float fprdiv(float, float);
char fpcmp3(float x, float y); -1:x<y; 0:x==y; 1:x>y; -128: NOT compare
 also supports x?y, can replace Keil's
void fpftoa(float, char*); convert float to string
void ftoa(float, char*);
float fpatof (char*); convert string to float
float atof (char*);
char ftoc(float); convert float to char (8 bits)
char fptoc(float);
char fpftoc(float);
int ftoi(float); convert float to int (16 bits)
int fptosi(float);

21

GoFast 8051 Floating-Point Library User’s Guide

int fpftoi(float);
long ftol(float); convert float to long (32 bits)
long fptoli(float);
long fpftol(float);
unsigned char ftouc(float); convert float to unsigned char (8 bits)
unsigned char fptouc(float);
unsigned char fpftouc(float);
unsigned int ftoui(float); convert float to unsigned int (16 bits)
unsigned int fptoui(float);
unsigned int fpftoui(float);
unsigned long ftoul(float); convert float to unsigned long (32 bits)
unsigned long fptoul(float);
unsigned long fpftoul(float);
float ctof(char); convert char (8 bits) to float
float ctofp(char);
float fpctof(char);
float sitofp(int); convert int (16 bits) to float
float itof(int);
float fpitof(int);
float litofp(long); convert long (32 bits) to float
float ltof(long);
float fpltof(long);
float uctof(unsigned char); convert unsigned char (8 bits) to float
float uctofp(unsigned char);
float fpuctof(unsigned char);
float uitofp(unsigned int); convert unsigned int (16 bits) to float
float uitof(unsigned int);
float fpuitof(unsigned int);
float ultofp(unsigned long); convert unsigned long (32 bits) to float
float ultof(unsigned long);
float fpultof(unsigned long);

Double Precision

void dpadd (DOUBLE xdata *ag1,DOUBLE xdata *ag2,DOUBLE xdata *ans);
 ans = ag1 + ag2
void dpsub (DOUBLE xdata *ag1,DOUBLE xdata *ag2,DOUBLE xdata *ans);
 ans = ag1 - ag2
void dpmul (DOUBLE xdata *ag1,DOUBLE xdata *ag2,DOUBLE xdata *ans);
 ans = ag1 * ag2
void dpdiv (DOUBLE xdata *ag1,DOUBLE xdata *ag2,DOUBLE xdata *ans);
 ans = ag1 / ag2
void dppow (DOUBLE xdata *ag1, DOUBLE xdata *ag2,DOUBLE xdata *ans);
 ans = ag1 to pow ag2
char dpcmp3 (DOUBLE xdata *ag1,DOUBLE xdata *ag2);
 -1:x<y; 0:x==y; 1:x>y; -128: NOT compare

22

GoFast 8051 Floating-Point Library User’s Guide

void dpsqrt (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = sqrt(arg1)
void dpexp (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = exp(arg1)
void dplog (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = ln(arg1)
void dplog10 (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = log10(arg1)
void dpsin (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = sin(arg1)
void dpcos (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = cos(arg1)
void dptan (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = tan(arg1)
void dpatan (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = atan(arg1)
void dpfloor (DOUBLE xdata *val, DOUBLE xdata *ans); ans = dpfloor(arg1)
void dpceil (DOUBLE xdata *val, DOUBLE xdata *ans); ans = dpcei(arg1)
void dpatod (char xdata *s,DOUBLE xdata *d); string to double
void dpdtoa (DOUBLE xdata *d,char xdata *s); double to string
void dptofp (DOUBLE xdata *d1, float xdata *f1); convert double to float
void fptodp (float xdata *f1, DOUBLE xdata *d1); convert float to double
char dtoc (DOUBLE xdata *arg1); convert double to char (8 bits)
char dptoc (DOUBLE xdata *arg1);
char dpdtoc (DOUBLE xdata *arg1);
int dtoi (DOUBLE xdata *arg1); convert double to int (16 bits)
int dptosi (DOUBLE xdata *arg1);
int dpdtoi (DOUBLE xdata *arg1);
long dtol (DOUBLE xdata *arg1); convert double to long (32 bits)
long dptoli (DOUBLE xdata *arg1);
long dpdtol (DOUBLE xdata *arg1);
unsigned char dtouc (DOUBLE xdata *arg1); convert double to unsigned char (8 bits)
unsigned char dptouc (DOUBLE xdata *arg1);
unsigned char dpdtouc (DOUBLE xdata *arg1);
unsigned int dtoui (DOUBLE xdata *arg1); convert double to unsigned int (16 bits)
unsigned int dptoui (DOUBLE xdata *arg1);
unsigned int dpdtoui (DOUBLE xdata *arg1);
unsigned long dtoul (DOUBLE xdata *arg1); convert double to unsigned long (32
bits)
unsigned long dptoul (DOUBLE xdata *arg1);
unsigned long dpdtoul (DOUBLE xdata *arg1);
void ctod (char, DOUBLE xdata *ans); convert float to char (8 bits)
void dpcod (char, DOUBLE xdata *ans);
void dpctod (char, DOUBLE xdata *ans);
void itod (int, DOUBLE xdata *ans); convert float to int (16 bits)
void sitodp (int, DOUBLE xdata *ans);
void dpitod (int, DOUBLE xdata *ans);
void ltod (long, DOUBLE xdata *ans); convert float to long (32 bits)
void litodp (long, DOUBLE xdata *ans);
void dpltod (long, DOUBLE xdata *ans);
void uctod (unsigned char, DOUBLE xdata *ans); convert float to unsigned char (8 bits)
void uctodp (unsigned char, DOUBLE xdata *ans);
void dpuctod (unsigned char, DOUBLE xdata *ans);
void uitod (unsigned int, DOUBLE xdata *ans); convert float to unsigned int (16 bits)

23

GoFast 8051 Floating-Point Library User’s Guide

void uitodp (unsigned int, DOUBLE xdata *ans);
void dpuitod (unsigned int, DOUBLE xdata *ans);
void ultod (unsigned long, DOUBLE xdata *ans); convert float to unsigned long (32 bits)
void ultodp (unsigned long, DOUBLE xdata *ans);
void dpultod (unsigned long, DOUBLE xdata *ans);
Use kfptodp and kdptofp instead of dptofp and fptodp for Keil 5.02 or later.

#define kfptodp(fp,dp) _flipflop ((fp)); fptodp ((fp), (dp)); _flipflop ((fp))
#define kdptofp(dp,fp) dptofp ((dp), (fp)); _flipflop ((fp))

24

GoFast 8051 Floating-Point Library User’s Guide

6 Error Conditions

The IEEE 754 Floating Point standard defines several special representations. Signed
infinity is represented as a sign bit, an exponent field of all ones, and a mantissa field of
all zeroes. The result of an invalid operation is called Not-a-Number (NaN) and is
represented as an exponent field of all ones and a non-zero mantissa field (the sign bit is
insignificant but is generally set).

After FPAC and DPAC operations, the low order bits in FACBIT are set to one of the
following values:

FACBIT Description Result Value
0 No error per operation
1 Underflow zero
2 Overflow +INF or –INF
3 Invalid Operation NaN

6.1 Addition

 FAC

 0 number +INF -INF NaN
0 0 number +INF -INF NaN

number number ** +INF -INF NaN
+INF +INF +INF +INF NaN NaN
-INF -INF -INF NaN -INF NaN
NaN NaN NaN NaN NaN NaN

OPN

**: result could be 0 (possibly an underflow), a number, +INF, or –INF

6.2 Multiplication

FAC

 0 number +INF -INF NaN
0 0 0 NaN NaN NaN

number 0 ** +/-INF -/+INF NaN
+INF NaN +/-INF +INF -INF NaN
-INF NaN -/+INF -INF +INF NaN
NaN NaN NaN NaN NaN NaN

OPN

**: result could be 0 (possibly an underflow), a number, +INF, or –INF

25

GoFast 8051 Floating-Point Library User’s Guide

6.3 Division

DIVISOR

 0 number +INF -INF NaN
0 NaN 0 0 0 NaN

number +/-INF ** 0* 0* NaN
+INF +INF +/-INF NaN NaN NaN
-INF -INF -/+INF NaN NaN NaN
NaN NaN NaN NaN NaN NaN

DIVIDEND

*: underflow
**: result could be 0 (possibly an underflow), a number, +INF, or –INF

6.4 Comparison

FAC

 0 number +INF -INF NaN
0 = < or > > < *

number < or > <, =, > > < *
+INF < < * < *
-INF > > > * *
NaN * * * * *

OPN

<: FAC is less than operand
=: FAC is equal to operand (within FUZZ specification)
>: FAC is greater than operand
*: FAC does not compare to operand

6.5 Functions

Function

 ATN EXP LN/LOG SQRT Trig
-INF PI/2 0* NaN NaN NaN
-num number ** NaN NaN ***

0 0 1 -INF 0 0 or 1
+num number **** number number ***
+INF PI/2 +INF +INF +INF NaN
NaN NaN NaN NaN NaN NaN

ARG

26

GoFast 8051 Floating-Point Library User’s Guide

*: underflow
**: 0 (possibly underflow) or a number less than 1.0
***: 0, num, +INF, -INF, or NaN (if magnitude >= 65536)
****: number > 1.0 or +INF

6.6 X to I function

Integer Power

 -/Odd -/Even 0 +/Even +/Odd
-INF 0* 0* NaN +INF -INF
-num ** *** 1.0 *** **

0 +INF +INF NaN 0 0
+num *** *** 1.0 *** ***
+INF 0* 0* NaN +INF +INF
NaN NaN NaN NaN NaN NaN

OPN

*: underflow
**: 0 (an underflow), negative number, or –INF
***: 0 (an underflow), positive number, or +INF

27

GoFast 8051 Floating-Point Library User’s Guide

7 Routine Sizes and Execution Times

Note: These measurements were made sometime in the past, but are probably reliable.

They will be updated in a future revision.

7.1 8051 FPAC Routine Sizes and Execution Times

The sizes shown below are in bytes of program space. The execution time is given in
CPU cycles for the 8051. Each CPU cycle is 12 oscillator periods.

7.1.1 Basic Operations Set – FPAC

Name Size Exec. Times Comments
______ ____ typ max
LDFAC 45 70 70 Load FAC
STFAC 35 35 35 Store FAC
AINT 135 220 310 Max when arg near 1.0
FIX 60 85 130
INT 15 10 15 Plus FIX time and space
FLOAT 55 55 90
FPADD 305 260 370 (add) Requires OR1
 270 490 (sub)
FPCMP 125 140 500 Comparison
FPMUL 140 450 560 Requires OR1
FPDIV 185 1070 1390 (DIV) Requires OR1
OR1 255 Entry/ Exit support

All functions and conversion routines require the complete basic operations package.

7.1.2 Transcendental Functions - FPAC

Name Size Exec. Times Comments
______ ____ typ max
FPATN 245 6400 6400 Requires FR1 & FR2
FPEXP 150 7500 7400 Requires FR1 & FR2
FPLN/LOG 280 6000 6500 Requires FR1 & FR2
FPSQRT 130 2850 2850 Requires FR1
FPCOS/SIN 110 5050 5050 Requires FR1, FR2, & FR3
FPTAN 110 8500 8500 Requires FR1, FR2, & FR3
FPXTOI 165 8300 8300 Requires FR1
FR1 30 Exception Routines
FR2 80 Polynomial Routines
FR3 110 Trig Support Routines

28

GoFast 8051 Floating-Point Library User’s Guide

7.1.3 Conversion Routines – FPAC

Name Size Exec. Times Comments
______ ____ __________
ASCBIN 290 1700 + n n=920/digit (Req. CR1)
BINASC 600 1900 4500 Requires CR1
CR1 120 Conversion Support

7.2 8051 DPAC Routine Sizes and Execution Times

The sizes shown below are in bytes of program space. The execution time is given in
CPU cycles for the 8051. Each CPU cycle is 12 oscillator periods.

7.2.1 Basic Operations Set – DPAC

Name Size Exec. Times Comments
______ ____ typ max
LDFACD 70 160 160 Load FAC
STFACD 50 110 110 Store FAC
DAINT 185 1000 1320 Max when arg near 1.0
DFIX 130 190 235
DINT 25 5 20 Plus DFIX time and space
DFLOAT 120 165 255 Requires OR1
DPADD 350 750 1100 (add) Requires OR1
 850 1260 (sub)
DPCMP 170 600 1280 Comparison
DPMUL 180 1380 1530 Requires OR1
DPDIV 205 5300 6900 (DIV) Requires OR1
OR1 280 Entry/Exit Support

All functions and conversion routines require the complete basic operations package.

7.2.2 Transcedental Functions - DPAC

Name Size Exec. Times Comments
______ ____ typ max
DPATN 390 24000 24000 Requires FR1 & FR2
DPEXP 275 34900 34900 Requires FR1 & FR2
DPLN 345 23000 24400 Requires FR1 & FR2
 /LOG
DPSQRT 185 18500 18500 Requires FR1
DPCOS 210 23400 23400 Requires FR1, FR2, & FR3

29

GoFast 8051 Floating-Point Library User’s Guide

 /SIN
DPTAN 140 28000 28000 Requires FR1, FR2, & FR3
DPXTOI 175 26000 26000 Requires FR1
FR1 35 Exception Routines
FR2 80 Polynomial Routines
FR3 130 Trig Support Routines

7.2.3 Conversion Routines – DPAC

Name Size Exec. Times Comments
________ ____ ___________
DASCBN 375 7000 + n n=2500/digit (Req. CR1)
DBNASC 720 7300 24000 Requires CR1
CR1 275 Power of ten routine

7.2.4 Precision Translation Routines – DPAC

Name Size Exec. Times Comments
______ ____ typ max
SINGLE 115 125 150
DOUBLE 60 125 125

30

GoFast 8051 Floating-Point Library User’s Guide

8 Operation Summary

8.1 Single Precision Operations

Name_ Operation Description Stack
LDFAC Load FAC = OPN 0
STFAC Store OPN = FAC 0

FPADD Add FAC = FAC + OPN 4
FPMUL Multiply FAC = FAC * OPN 4
FPDIV Divide FAC = FAC / OPN 4
FPRDIV Divide FAC = OPN / FAC 4
FPCMP Compare A per FAC - OPN 8

FLOAT FAC = Float of Integer in B:A 0
INT B: A = INT (OPN) {largest int <= fpn in OPN} 2
FIX B: A = FIX (OPN) {integer part of fpn in OPN} 0
AINT FAC = FLOAT of largest int <= fpn in OPN 0

FPATN Arctangent FAC = ATN (FAC) 12
FPCOS Cosine FAC = COS (FAC) 12
FPEXP e to power FAC = e**FAC 12
FPLN Natural log FAC = LN (FAC) 12
FPLOG Common Log FAC = LOG (FAC) 12
FPSIN Sine FAC = SIN (FAC) 12
FPSRT Square Root FAC = SQRT (FAC) 12
FPTAN Tangent FAC = TAN (FAC) 12
FPXTOI fpn to power FAC = FAC**i {B: A = power} 12

ASCBIN FAC = fpn in ASCII pointed to by DPTR 10
BINASC fpn in ASCII pointed to by DPTR = FAC 13

fpn IEEE Floating Point Number
FAC Floating Point Accumulator (fpn)
OPN DPTR points to Operand (fpn)

8.2 Double Precision Operations

Name__ Operation Description Stack
LDFACD Load FAC = OPN 0
STFACD Store OPN = FAC 0

31

GoFast 8051 Floating-Point Library User’s Guide

DPADD Add FAC = FAC + OPN 4
DPMUL Multiply FAC = FAC * OPN 4
DPDIV Divide FAC = FAC / OPN 4
DPRDIV Divide FAC = OPN / FAC 4
DPCMP Compare A per FAC - OPN 8

DFLOAT FAC = Float of Integer in R7: R6: B: A 2
DINT R7: R6: B: A = largest int <= fpn in OPN 4
DFIX R7: R6: B: A = integer part of fpn in OPN 2
DAINT FAC = Float of largest int <= fpn in OPN 0

DPATN Arctangent FAC = ATN (FAC) 14
DPCOS Cosine FAC = COS (FAC) 14
DPEXP e to power FAC = e**FAC 14
DPLN Natural log FAC = LN (FAC) 14
DPLOG Common Log FAC = LOG (FAC) 14
DPSIN Sine FAC = SIN (FAC) 14
DPSRT Square Root FAC = SQRT (FAC) 14
DPTAN Tangent FAC = TAN (FAC) 14
DPXTOI fpn to power FAC = FAC**i {B: A = power} 14

SINGLE FAC = conversion of FAC to single precision 0
DOUBLE FAC = conversion of FAC to double precision 0

DASCBN FAC = fpn in ASCII pointed to by DPTR 14
DBNASC fpn in ASCII pointed to by DPTR = FAC 16

fpn IEEE Floating Point Number
FAC Floating Point Accumulator (fpn)
OPN DPTR points to Operand (fpn)

The following files comprise the FPAC/DPAC delivery package:

FILE DESCRIPTION
readme.txt Release notes
lib*.a51 All source code of GoFast library
TestAssistant*.* Test Assistant project (VC++ 6.0). Test Assistant sends the test

cases and receives the test results via serial port automatically.
test*.* Accuracy Test source code (accuracy.c/h) and GoFast library

header file gofast.h.
test\build*.* Silicon Laboratories IDE project accuracy.wsp, makefile of

Microsoft NMAKE (accuracy.mak), and batch file accuracy.bat.
test\c8051f330*.* Board support code.

32

GoFast 8051 Floating-Point Library User’s Guide

8.3 Accuracy Test

The Accuracy Test program outputs the result of each GoFast function with inputs
selected for each. Because of the limitation of ROM and RAM size, only one function
can be tested each time. Users should set the related macro to 1 in the file accuracy.h to
select which to test.

The Test Assistant program is used to send the test cases to Accuracy Test program
automatically via serial port. When the test is finished, the test results can be saved and
compared with the correct results file, which is saved in directory result. See readme.txt
for details.

The Accuracy Test source code may be used as an example of how the GoFast library
routines are used by an application program. Execution allows the user to exercise the
features of the GoFast library and to view its operation.

8.4 Performance Test

Performance Test outputs each function's execution time. The program can be used to test
the GoFast library or Keil standard math library. Because of the limitation of ROM and
RAM size, only one routine can be tested at a time. Users should set the related macro to
1 in the file bench.h.

The Test Assistant program is used to send the test cases to the Performance Test
program automatically via serial port and calculate the time, which is sent by the
Performance Test program via serial port. When the test is finished, the test results can be
saved. See readme.txt for details.

33

GoFast 8051 Floating-Point Library User’s Guide

Performance Test Results
(Tested on Silicon Laboratories C8051F330 board, 12MHz)

Single Double

Function
GoFast Keil GoFast

add 53.76 20.252 116.437
sub 59.064 22.273 115.7
mul 71.852 21.486 200.024
div 155.601 89.242 675.331
cmp 37.768 8.956 75.115
fabs 3.25 3.792 3.405
sin 566.35 324.068 2480.175
cos 557.513 321.301 2509.376
tan 962.696 525.083 3108.613
atan 753.152 401.841 2876.746
log 731.001 396.874 2626.336
log10 778.619 416.921 2787.991
exp 881.564 515.099 4179.886
pow 1639.917 953.854 6935.416
sqrt 361.673 220.053 2224.42
ceil 15.242 186.61 56.75
floor 15.071 186.739 56.616
char to float 14.946 20.669 36.133
unsigned char to float 12.584 20.669 34.976
short to float 15.309 12.502 34.043
unsigned short to float 15.059 12.502 33.708
long to float 13.1 11.96 30.894
unsigned long to float 9.75 9.502 29.133
float to char 19.167 20.69 28.401
float to unsigned char 18.942 20.69 28.175
float to short 21.175 20.856 31.258
float to unsigned short 17.917 20.856 30.929
float to long 27.588 21.19 43.171
float to unsigned long 27.588 21.19 43.173
abs for char 2.74 2.896
abs for short 2.573 2.652
abs for long 3.238 4.196
double to single 49.711
single to double 50.575

34

GoFast 8051 Floating-Point Library User’s Guide

9 Application Notes

9.1 On-Chip Data Memory (#01)

Problem: A number of customers have expressed a need to have the floating point

operands manipulated by the libraries reside in on-chip data memory
(OCDM).

 The 8051 has 128 bytes of OCDM. Depending on the particular

application, 8 to 32 bytes may be used for register banks, 15 to 28 bytes
may be assigned to FPAC/DPAC processing, some amount of storage is
allocated for stack space, with the remainder of the OCDM space available
for user variables. If the FPAC/DPAC operands are to reside in OCDM,
the user variable space must now hold not only the operands, but one to
four floating point temporaries (4 to 32 bytes) needed by the conversion
and function routines (if they are used). As a result, the OCDM fills up
rapidly. For this reason, we do not encourage this technique if alternatives
are available. (The release of successor 8051 hardware with additional
OCDM will, however, make this approach practical).

Solution: From the programmer’s standpoint, the changes below to use OCDM

operands instead of external data memory operands do not affect the
method of addressing operands; that is, the operand address is still passed
in DPTR (although a R/W memory operand in OCDM is only affected by
the low byte, DPL). We deem the minor inefficiency of using a 16 bit
addressing scheme for a seven bit address space acceptable to minimize
code changes and preserve compatibility.

 Old (Change to FPOPNS after label STFAC :)
 **** MOV R6, DPL
 **** MOV R7, DPH

 New (Change to the following)
 **** MOV R1, DPL

 Old (Change 4 occurrences of the following after STFAC:)
 **** MOVX @DPTR, A

 New (Change those 4 occurrences to the following)
 **** MOV @R1, A

Old (Change 3 occurrences of the following after STFAC:)
 **** INC DPTR

 New (Change those 3 occurrences to the following)
 **** INC R1

35

GoFast 8051 Floating-Point Library User’s Guide

 Old (Delete the occurrence of the following after STFAC:)
 **** MOV DPL, R6
 **** MOV DPH, R7
 Old (Change after label FDATA)
 **** MOVX A, @DPTR

 New (Change to the following)
 **** MOV R1, DPL
 **** MOV A, @R1

 Old (Change in module DPOPNS after label STFACD:)
 **** MOV R6, DPL
 **** MOV R7, DPH

 New (Change to the following)
 **** MOV R1, DPL

 Old (Change 3 occurrences of the following after STFACD:)
 **** MOVX @DPTR, A

 New (Change those 3 occurrences to the following)
 **** MOV @R1, A

 Old (Change 2 occurrences of the following after STFACD:)
 **** INC DPTR

 New (Change those 2 occurrences to the following)
 **** INC R1

 Old (Delete the occurrence of the following after STFACD:)
 **** MOV DPL, R6
 **** MOV DPH, R7

 Old (Change 3 lines after the label DDATA:)
 **** MOVX A, @DPTR

 New (Change to the following)
 **** MOV R1, DPL
 **** MOV A, @R1

36

GoFast 8051 Floating-Point Library User’s Guide

9.2 On-Chip Memory Usage (#107)

Problem: Customers have expressed a need to be able to reduce the on-chip memory

resources consumed by FPAC and DPAC routines.

Solution: Basic operations for the 8051 FPAC and DPAC require one byte of bit

addressable, on-chip memory. The conversion routines and functions
consume a second byte. If this resource is at an absolute premium, and
exception conditions do not need to be signalled, it is possible to reduce
the total number of bytes needed by FPAC/DPAC to one.

STEP 1 –Remove all references to unnecessary bits

These are found in the result routines FOPRSL, INFRSL,
NANRSL, UNFRSL, ZERRSL, ONERSL (in functions), and the
corresponding double precision routine. Delete all assembly
statements that reference:

FACBIT (Generally, ANL or ORL operations)
UNFFLG (Generally, SETB operations)
NANFLG (Generally, SETB operations)
INFFLG (Generally, SETB operations)

STEP 2 –Change bit declarations

Delete the declarations for UNFFLG, NANFLG, and INFFLG.
Change the remaining bit declarations to:

DPFLAG EQU FACBIT.4
SIGFLG EQU FACBIT.3
MANSGN EQU FACBIT.2
FNCSGN EQU FACBIT.1
FNCSEC EQU FACBIT.0

9.3 Reentrancy (#02)

Problem: A number of customers have expressed a need to have the library be

reentrant. Because the FPAC/DPAC routines use fixed memory locations
for the floating point accumulator and associated variables, they are not
inherently reentrant.

Solution: To make the FPAC/DPAC routines reentrant, it is necessary to call a state

preservations routine at the start of each interrupt service routine which
uses FPAC/DPAC and to call a state restoration routine before returning
from an interrupt service routine that invoked the preservation routine.
These subroutines preserve static variables and register values on a stack.

37

GoFast 8051 Floating-Point Library User’s Guide

The following data must be saved/restored across interrupt servicing:

1) Registers including ACC, B, PSW, DPTR, and some FPAC/DPAC bit

registers.

2) The floating point accumulator (FAC) and associated resident

variables.

3) Temporaries used by FPAC functions, if functions are (A) included
and (B) used at an interrupt level.

There will need to be an area to store preserved variables. While this could
be done on the hardware stack, the amount of data involved would
consume a large portion of the on-chip data memory. The approach of
choice would be to use a region of external data memory.

The routine that saves and restores the machine/FPAC state is not, and
cannot be, reentrant. This means that any interrupt that would invoke the
state save/restorations routine must be masked during certain critical
periods.

Steps of state preservation:

A. Save registers on the hardware stack

 CLR IE.7 ;Prevent other interrupts

 PUSH PSW ;Save machine registers
 PUSH ACC
 PUSH B
 PUSH DPL
 PUSH DPH
 PUSH FACBIT ;Save FPAC bit registers
 PUSH CNVBIT

 ;;; Change register bank number in PSW or
 ;;; save registers R0-R7 here

B. Save FPAC variable area to external data memory

**** MOV A,R4 ;Save R4,R6,R7 only if bank switch

 **** PUSH ACC
 **** MOV A,R6
 **** PUSH ACC
 **** MOV A,R7
 **** PUSH ACC

38

GoFast 8051 Floating-Point Library User’s Guide

 MOV DPL,XSPL ; Get external mem stack pointer
 MOV DPH, SXPH

 MOV R6,#FACBAS ;Base address
 MOV R7,#27 ;(15 for FPAC, 27 for DPAC)
 XMPUSH MOVX A, @R6
 INC R6
 MOVX @DPTR,A
 INC DPTR
 DJNZ R7,XMPUSH

 **** MOV R7,#HIGH(EXTMEM) ;Only if functions
 **** MOV R6,#LOW(EXTMEM)
 **** MOV R4,#4*8 ;4*4 if single precision routines
 **** CALL STCOPY ;(See XPCNVT module)

 MOV XSPL,DPL ;Update external mem stack pointer
 MOV XSPH, DPH
 **** POP ACC ;Only if pushed previously
 **** MOV R7,A
 **** POP ACC
 **** MOV R6,A
 **** POP ACC
 **** MOV R4,A

 **** SET IE.7 ;Allow interrupts

 Steps of state restorations:
 A. Restore the FPAC variable area from external data memory

 CLR IE.7 ;Disallow interrupts

 MOV A,XSPL ;Get external mem stack pointer
 CLR C
 SUBB A,#27+4*8 ;Size of the FPAC region
 MOV XSPL,A ;Update ext mem sp
 MOV R6,A ;***DPL if no functions
 MOV A,XSPH
 SUBB A,#00
 MOV R7,A ;***DPH if no functions

 **** MOV DPTR,#EXTMEM ;Only if functions
 **** MOV R4,#4*8 ;Size of FPAC function temp area
 **** CALL STCOPY

39

GoFast 8051 Floating-Point Library User’s Guide

 **** MOV DPL,R6
 **** MOV DPH,R7

 MOV R6,#FACBAS ;Base address
 MOV R7,#27 ;(15 for FPAC, 27 for DPAC)
 XMPOP MOVX A,@DPTR
 INC DPTR
 MOVX @R6,A
 INC R6
 DJNZ R7,XMPOP

 B. Restore Registers from the hardware stack

 **** Restore R0-R7 if not banked switched

 POP CNVBIT ;Restore FPAC bit registers
 POP FACBIT

 POP DPH ;Restore machine state
 POP DPL
 POP B
 POP ACC
 POP PSW

 **** SET IE.7 ;reenable interrupt

Special Notes:
This code assumes XSPH:XSPL is intialized to point to the lowest address
byte of an external memory block that provides (at most) 59*maximum
reentrant level bytes for storage. Note that 10 bytes are used on the
hardware stack per reentrant level.

9.4 The Floating Point Accumulator Structure in FPACs (#152)

FPACs which are built around the structure of a FAC (Floating Point Accumulator)
present the user with what may be called a single address virtual machine. An
understanding of how single address architectures work may give the user more insight
into effective utilization of FPAC/FACs.

Probably the most durable computer architecture is based on a register-memory
organization. Registers are in many ways an address space separate from the memory.
Bulk data storage is the purpose of the memory area while operations can only be done
on data within registers. This separation permits and requires machine instructions to
transfer data between the two regions. Once data has been moved into register(s), a
different class of instructions is used to manipulate it.

40

GoFast 8051 Floating-Point Library User’s Guide

The FAC organization of FPACs attempts to mimic this structure. A set of the target
processor’s resources (generally on-chip data memory) is dedicated for the Floating Point
Accumulator. Whereas hardware – implemented registers can only be accessed by the
instructions of the architecture – and thus may be protected from invalid references – the
FAC resources are reserved only by a software convention. Thus, the FAC area is “off-
limits” to conventional access and must only be dealt with by the FPAC routines
supplied.

An audit of the facilities of an FPAC/FAC look very much like a simple single address
machine. A set of transfer routines are used to move data between the target processor’s
bulk memory and the FAC pseudo-register. Operations are performed with the value in
the FAC and, perhaps, a value in bulk memory.

One key difference must exist between a hardware implementation of single address
machine and a software implementation: address specification. Hardware implemented
architectures almost invariably include one or more “address fields” in their instruction
format. Since software implemented architectures usually cannot directly use this
hardware format, a different approach to address specification will normally be
necessary. The FPAC/FAC routines take the approach of using a particular register in the
underlying target processor to hold the memory address of the operand to be involved in
an operation. Thus, while single address machines may use just one instruction to
perform an operation, FPAC/FACs will normally require two instructions: one to place
the operand’s address into the appropriate register followed by a subroutine call to
perform the operation. (When sequential operations use the same memory address,
however, reloading the address register is unnecessary since the FPAC/FAC routines
almost always preserve the incoming value of the address register.)

Knowing the software conventions used in implementing the FAC, it becomes clear how
to make an FPAC/FAC “re-entrant”. Hardware-based re-entrancy comes from the ability
to save the entirety of the state of the machine when a context switch (such as an
interrupt) occurs (and, of course, the ability to restore the state when switching back!).
Since the hardware has no idea that a FAC is in use (and that it’s an extension to the state
information that needs to be saved and restored), the user must – if FPAC re-entrancy is
needed – manually save and restore the set of target processor resources that comprise the
FAC. This will include a variety of temporary storage areas and flags in addition to what
might be considered just the FAC proper. (The FPAC routines which use a memory
operand in combination with a value in the FAC first transfer the memory operand to
temporary registers in preparation for later work). This can be a lengthy process,
especially for double precision FPACs, and since the need to have FPAC re-entrancy on
target processors that have FPAC/FACs is typically slight or non-existent, the steps to
make an FPAC/FAC re-entrant are rarely taken.

Currently available FPACs which use a FAC organization include: 8051 FPAC/DPAC,
68HC11 FPAC/DPAC, 6301 FPAC/DPAC, 6801 FPAC/DPAC, 8096 FPAC/DPAC, Z-
80 FPAC/DPAC, and 8085 FPAC/DPAC.

41

GoFast 8051 Floating-Point Library User’s Guide

9.5 General Overview of Accuracy and Precision (#122)

For effective use of FPAC/DPAC routines, it is important to have an understanding of the
meaning of accuracy and precision in the representation of values in the IEEE single and
double precision format. Although the examples below refer to single precision
representation, the difficulties shown are present, though to a lesser extent, with double
precision representation.

Single precision FPAC has a mantissa precision of 24 bits, which is approximately 7.2
decimal digits. The “approximately” qualifier belies the fact that conversion between
decimal and binary representations can be inexact. The ASCII to binary conversion
routine chooses the binary value closest to the decimal value argument, in the event an
exact decimal-binary conversion is not possible.

The table below illustrates this inexact conversion problem. The first column gives a
decimal value. The second column contains the decimal value of the IEEE single
precision number closest to the decimal value.

 Decimal Value Decimal Value
 (Closest Single Precision Value)

 1.0 1.0
 1.1 1.10000002384
 1.01 1.00999999046
 1.001 1.00100004673
 1.0001 1.00010001659

 0.1 1.0000000149e-1
 0.01 9.9999997765e-2
 0.001 1.0000000475e-3
 0.0001 9.9999997474e-4

The representational difficulty becomes apparent when computing the difference of two
“close” numbers. For example, the operation:

 1.001-1.0 = 0.001

After conversion of IEEE single precision representation becomes:

 1.00100004673-1.0 = 1.00004673e-3

In like manner,
 0.001 + 1.0 – 1.0

will yield 1.00004673e-3 instead of the expected 0.001 (or 0.0010000000475) because of
the representation characteristics.

42

GoFast 8051 Floating-Point Library User’s Guide

These problems become particularly apparent when using the EXP and LN functions. In
the case of the LN function (and the corresponding log), the algorithm effectively
subtracts 1.0 from the argument. As shown in the example above, this subtraction can
magnify imprecisions. Thus, an unexpected value can result from apparently accurate
value, if the user is unaware of the underlying representation aspects of FPAC/DPAC.

9.6 Tailoring Double Precision Function Accuracy (#148)

The IEEE floating point standard defines a single precision and a double precision
format. The single precision format has about seven decimal digit accuracy while the
double precision format has nearly sixteen decimal digit accuracy. Quite often, more than
single precision accuracy may be needed for a particular application, but accuracy offered
by the double precision format far exceeds the requirement. The result of unnecessary
accuracy may be excessive computation time.

In general, it is not practical to modify DPAC operation routines in an attempt to trade
lesser accuracy for faster execution time. However, certain functions in the double
precision function library are amenable to simple accuracy reductions that will speed the
routines. These functions are the exponentiation (DPEXP) and the sine and cosine
(DPSIN and DPCOS).

These routines are suitable for accuracy/speed tradeoffs because after a relatively brief
range reduction or scaling sequence, these functions use somewhat lengthy polynomial
approximations. The approximation polynomials are such that by shrinking their degree,
accuracy will be lost but speed will be gained. Other functions use a split-domain
approach to keep the approximation polynomial small (DPATN, DPLN/DPLOG), use an
iterative algorithm not suitable for early termination (DPSQRT) , or have a fixed
computation sequence that needs to remain unchanged (DPXTOI, DPTAN).

The exponentiation routine has a fifteen (or, in more recent DPACs, a thirteen) degree
polynomial. Roughly speaking, each degree equates to one decimal digit of accuracy.
Hence, to go from sixteen digit accuracy to ten digit accuracy, a reduction of six degrees
could be realized.

To implement DPEXP accuracy reduction, two modifications to the source code in the
DPFNCS module need to be made. First, the label associated with the start of the DPEXP
constants table should be moved to the appropriate value. In the example given, to reduce
the polynomial degree by six, the label at the start of the constant table should be
associated with the seventh constant in the list rather than the first constant. (Note that by
moving the label instead of deleting the constants, it’s easier to back out of the change).
The label name depends on the processor the DPAC was written for:

43

GoFast 8051 Floating-Point Library User’s Guide

 Processor DPEXP Constant Table Label
 --------------------------------- ------------------------------------
 8051, 8085, Z-80 DEXCNS
 80386, 68HC11, 6301, 6801 DEXCON
 68000, 8096 DEXPCN

8086 EXPCONS

In addition, the symbolic name indicating the number of constants in the table needs to
reflect the correct number of constants in the abbreviated table. Again in the example
given, the table length constant in DPEXP would be changed from its delivery value of
sixteen to ten. The symbolic name is, as before, dependent on the processor:

 Processor DPEXP Table Length Name
 ---------------------------------- -----------------------------------
 8051, 8085, Z-80 DNEXCN
 80386, 68HC11, 6301, 6801 DNEXCN
 68000, 8096 NDEXPC
 8086 NEXPCN

To estimate the reduction in computation time, take the typical function time as delivered
then subtract the result of multiplying the number of constants removed from the table by
the sum of the typical multiply time plus the typical addition time.

The trigonometric routines gain about two decimal digits of accuracy for each constant in
their polynomial table. Hence, continuing with the example reduction to ten digits of
accuracy, three constants could be removed from the approximation polynomial tables for
sine and cosine.

 Processor Sine Cosine
 Table Length Table Length
 ---------------------------------- ----------- ------------- ------------ -------------
 8051, 8085, Z-80 DSINCN DNSNCN DCOSCN DNCOCN
 80386, 68HC11, 6301, 6801 DSICON DNSICN DCOCON DNCOCN
 68000, 8096 DSINCN NDSINC DCOSCN NDCOSC
 8086 SINCON NSINCON COSCON NCOSCON

A word of warning when doing this. The approximation error with the delivered
functions is generally randomly distributed within less than two bits of actual function
value. By truncating the polynomials, the approximation error becomes regular and
monotonically increasing across sections of function domains. If the required function
accuracy is met even at the points of maximum error, then this will not matter. If,
however, the algorithm using reduced accuracy functions is sensitive to error distribution,
either added accuracy will be required or different approximation polynomials with better
error distributions will be needed.

44

GoFast 8051 Floating-Point Library User’s Guide

9.7 Implementing an XˆY Operation

The GoFast library provides an operation to compute X to the Ith power (I is an integer).
As shown in the FPAC/DPAC manual, all combinations of operands yield a deterministic
result of the “proper” type. If at all possible, this routine should be used.

Expanding to the general case of a floating point number taken to a floating point power
is somewhat more complicated because a floating point power can have a “special” value
(+INF, -INF, or NaN), or it can be a non-integral value applied to a negative number (for
example, -1.5 ˆ 0.5).

The traditional means for implementing an X to the Yth power is to follow this sequence
of steps:

LN(X) Take the natural logarithm of X
Y*LN(X) Compute the natural logarithm of the result
EXP(Y*LN(X)) Take e to the power of the product

One difficulty in implementation occurs when the first step, taking the natural logarithm
of X, “fails” – that is, the LN function returns NaN, indicating an invalid operation, and
the X operand was not NaN. This will happen if X is a negative number or if X is –
INF. Another failure will occur when 1.0 is taken to a +INF or –INF. The second step of
the algorithm given above must, in this instance, multiply 0.0 by an INF value. In this
particular case, we know the result should be 0.0 (because 1.0 to any power is 1.0), but
the multiply routine, as per the IEEE proposed standard, returns NaN. A corrolary to this
second instance is taking +INF to the 0th power.

If the particular application that needs an XˆY operation can insure that the X value is a
positive number and that the Y value is a number, then the algorithm given will work
well. Should an application not have limited domains on the operands, the implementer
will need to pre-screen the operands to handle cases where the algorithm does not
function. The first step in doing this is completing (and, possibly, changing) the table
below so that the XˆY operation returns a meaningful value for all relevant combinations
of operands.

Result Range for XˆY operation

 Y

X -INF Y < 0 0 0 < Y +INF NaN
-INF 0* 0* 1 ? ? NaN

X < -1 ? ? 1 ? ? NaN
-1 ? ? 1 ? ? NaN

-1 < X < 0 ? ? 1 ? ? NaN
0 +INF +INF NaN 0 0 NaN

0 < X < 1 +INF **** 1 *** 0* NaN
1 1 1 1 1 1 NaN

45

GoFast 8051 Floating-Point Library User’s Guide

1 < X 0* *** 1 **** +INF NaN
+INF 0* 0* 1 +INF +INF NaN
NaN NaN NaN NaN NaN NaN NaN

*: Underflow

**: result could be 0 (an underflow) or a number (less than 1.0)
***: result could be a number (greater than 1.0) or +INF

The implementer can use the XTOI function as a template for doing the pre-screening
operation.

9.8 Error Codes and FPAC Conversion Routines (#123)

The FPAC application note details the behavior of the ASCII-to-binary and binary-to-
ASCII conversion utilities with respect to setting of the error code and sticky bits (error
flags). In general, it applies to all the FPAC libraries, although some of the specifics of
routine operations will vary (for example, in an instance discussed below, when and if an
ASCII-to-binary conversion routine will experience overflow during the processing of a
value too small to represent is library dependent).

9.8.1 ASCBIN and DASCBN – ASCII to binary conversion routines

The general flow of these conversion routines is to compute a mantissa value then scale
the mantissa value by multiplying it by a computed power of ten. In both cases, the
computations are done in the floating point domain, using the FPAC addition,
multiplication, and division routines of the appropriate precision. Because the normal
routines are used, the error code is set and, under certain circumstances, sticky bits may
be set. (Note: certain custom versions of FPAC perform the mantissa and scaling
operations in the integer domain – for extended precision at the cost of added code space
and execution time. Although operations are not performed by floating point routines the
range of the result is checked, so these custom libraries follow the same error code and
error flag conventions.)

If the result of the conversion is within the range of the precision in use, the error code
returned will be 0 (no error), and no sticky bits will be set by the conversion routine. If
the value returned is smaller than is representable, a zero value will be returned, the error
code will be set to 1 (for underflow), the sticky bit for underflow (generally called
UNFFLG) will be set, and in certain cases the overflow flag (generally called INFFLG)
may be set (scaling to a negative power of ten is done with division by the appropriate
positive power of ten – which may be too big to represent). If the value returned is larger
than is representable, an infinity value of the appropriate sign will be returned, the error
code will be set to 2 (for overflow), and the sticky bit for overflow (generally called
INFFLG) will be set. If the ASCII data provided is syntactically invalid, (no mantissa
digits, for example), a Not-a-Number representation (NaN) will be returned, the error

46

GoFast 8051 Floating-Point Library User’s Guide

code will be set to 3 (for invalid operation), and the sticky bit for invalid operations
(generally called NANFLG) will be set.

9.8.2 BINASC and DBNASC – binary to ASCII conversion routines

The general flow of these conversion routines to divert special values for independent
processing, otherwise to scale the incoming value by a computed power of ten to put it in
a scientific notation form. A string processing routine is then used to convert a selected
range of values to a floating point ASCII representation.

The special values: zero, signed infinity, a Not-a-Number (NaN), are “converted” to
ASCII by what amounts to a string copy. Since no floating point routines are used,
conversion of these special values does not change the error code nor set any sticky bits.

The computing of the scaling power of ten, and the scaling of the values not selected for
special processing is done in the floating point domain, using the FPAC addition,
multiplication, and division routines of the appropriate precision. Because the normal
FPAC routines are used, and because all of the floating point operations performed to
convert a standard value to ASCII yield a standard value, the error code will be set to 0
(no error) and no sticky bits will be set. (Note: certain custom versions of FPAC perform
these operations in the integer domain – for extended precision at the cost of added code
space and execution time. Since integer domain routines are used, the error code and
sticky bits are left unchanged.)

If it is desirable to have the binary-to-ASCII conversion routine set the error code to the
appropriate value (and/or to set the appropriate sticky bit), some code should be added to
the segments that process the special case values. In general, this will mean replacing a
return instruction with a register load instruction (to the desired error code) and a jump to
the error code setting routine (in the xPOPNS module). Of course, the specific register
and routine to jump to will vary with the particular library involved. The details can be
found by observing the steps taken by the special value return routines in the xPOPNS
module; they are invoked by the basic operations routines and the range checking routine
to return a special value and to set the error code and sticky bits.

9.9 Understanding and Using FPAC Routine Timing Estimates
(#135)

The routine by routine timing estimates provided in FPAC manuals can aid in estimating
the performance of programs using FPAC modules. Unfortunately, as with many
compilation of statistics, improper use of the estimates can produce misleading results.
The purpose of this application note is to assist in the correct utilization and interpretation
of the timing numbers.

47

GoFast 8051 Floating-Point Library User’s Guide

Timing Units
The timing estimates are given in units of a particular processor’s instruction cycles.
Depending on the particular processor, the oscillator or clock frequency is often a
multiple of the instruction cycle frequency (in most cases, the factor is two or three
although in one instance it is twelve!). Included as part of the FPAC data sheet is a table
giving typical instruction cycle periods. Usually, manufacturer data sheets refer to
instruction periods or “processor” clock frequency. The tabulation of instruction
execution times given in processor specifications is normally proceeded or followed by a
discussion of clock frequency and instruction cycle timing.

Estimate Values
The basic FPAC routines have two timing estimate values. The typical value is an
estimate of the number of instruction cycles that a broad range of expected values, or
value pairs, will consume, on average. Of course, execution times for specific values will
differ from the given typical value.

The maximum execution cycle count is, as the name states, the longest processing time
that a routine can consume. In general, this is a very rare occurrence.

Estimate Conditions
The system conditions assumed for the timing estimates are important factors in the
timing estimates. A direct conversion from instruction cycle count to execution time,
(multiplying the cycle count by an appropriate instruction period), is often made. If the
system does not have a constant clock frequency, (the system may use processor clock
stretching to “hide” refresh or DMA cycles), some form of compensation in the form of
an effective clock frequence is necessary to meaningfully apply the FPAC timing
estimates.

Another important assumption made about system behavior is zero-wait state memory for
data and code reference. While the 8051 and 6809 require this, most processors have
some facility for inserting wait states in memory access operations. Clearly, the increased
memory access time associated with wait state memory will add execution time to FPAC
routines. Manufacturers data sheets usually contain some guidelines for estimating the
performance reduction caused by various memory speeds.

On processors that can overlap instruction execution with memory cycles, FPAC routines
are implemented to be as insensitive to longer memory accesses times as practical. This
can be seen in some cases by unusual instruction ordering, memory accesses that may
sometimes unnecessarily pre-fetch data items to avoid additional memory cycles, and
maximum practical use of register-resident values. While these steps reduce the potential
performance reduction, inevitably, the use of wait state memory will slow FPAC routine
execution. System hardware designers, utilizing manufacturer’s projections, should be
able to estimate a fairly accurate performance reduction factor.

Finally, in the case of processors with dynamic bus sizing, FPAC assumes that all
memory references are made with the maximum bus width supported by the processor.

48

GoFast 8051 Floating-Point Library User’s Guide

Typical-only Timing Estimates
The FPAC functions do not have “maximum” timing values. This reflects the extreme
difficulty in choosing values that will consume the maximum instruction cycles. Instead,
the function timing estimates are built up from a combination of basic operator timings –
tuned for the manner in which the basic operators are used with the particular function.
Once these basic operator timings, added to the execution time of surrounding
instructions, are summed, an adjustment is applied to insure that the typical timing given
will only rarely be exceeding in practice. The adjustment factor is routine dependent and
is generally in the range of three to ten percent.

9.10 The Polynomial Function Evaluation Routine (#139)

The functions supplied by the FPAC/DPAC library are of general utility. Some users,
though, need special purpose functions in addition to the standard FPAC/DPAC
functions. When constructing the code to perform the special purpose function
evaluation, it can be necessary to compute the value of a polynomial function. In
addition, a general polynomial function evaluator may be required for some FPAC/DPAC
applications. Making the polynomial evaluator, which is internal to the FPAC/DPAC
library, can serve both needs.

Evaluation of any polynomial function requires three items: the function argument (the
“x” value), the list of coefficients, and the number of coefficients. The table below
illustrates the method that is used to supply the function argument.

FPAC/DPAC Argument Use Routine_______
Z-80 FAC LDPAC or LDFACD
8085 FAC LDPAC or LDFACD
8051 FAC LDPAC or LDFACD
8096 FAC LDPAC or LDFACD
68HC11 FAC LDPAC or LDFACD
6801 FAC LDPAC or LDFACD
6301 FAC LDPAC or LDFACD
8086 user mem – none – (DS:DI pointer)
80386 registers LDOP1 or DLDOP1
68000 registers GETFP1 or GETDP1

The 68000 routine is internal to FPAC/DPAC. The user must place the argument value
on the stack, then a four byte value (simulating a return address), then call the internal
routine to properly load the appropriate registers. For more details, see the header
comments associated with the internal routines.

The coefficient list is pointed to by a register containing the base address of a list of
floating point values in IEEE floating point format. The first constant in the list is applied
to the highest power of the function argument, followed by succeedingly lower power

49

GoFast 8051 Floating-Point Library User’s Guide

argument coefficients, finally reaching the constant (zero power) coefficient. The table
below indicates the register used to hold the coefficient table pointer.

FPAC/DPAC Coefficient Pointer Register
Z-80 HL
8085 HL
8051 DPTR coefficients reside in ROM
8096 FPPNTR coefficients reside in ROM
68HC11 X
6801 X
6301 X
8086 SI coefficients reside in CS
80386 EBX coefficients reside in CS
68000 A1

The number of coefficients, (which is the degree of the polynomial plus one), is supplied
in a register. The specific register is given below:

FPAC/DPAC Number of Coefficients
Z-80 A
8085 A
8051 A
8096 FACTMP (on-chip dedicated RAM location)
68HC11 A
6801 A
6301 A
8086 AX
80386 ECX
68000 D7

Once the values have been prepared for the polynomial evaluator, the user calls one of
two routines. The two routines provided allow a polynomial in powers of the function
argument or in squared powers of the function argument (generally associated with
trigonometric functions). The table below gives the names of these routines.

FPAC/DPAC Standard Squared
Z-80 XSER or DXSER XXSER or DXXSER
8085 XSER or DXSER XXSER or DXXSER
8051 XSER or DXSER XXSER or DXXSER
8096 XSER or DXSER XXSER or DXXSER
68HC11 XSER or DXSER X2SER or DX2SER
6801 XSER or DXSER X2SER or DX2SER
6301 XSER or DXSER X2SER or DX2SER
8086 XSER XSQRSER
80386 XSER or DXSER X2SER or DX2SER
68000 XSER or DXSER X2SER or DX2SER

50

GoFast 8051 Floating-Point Library User’s Guide

Note that the single and double precision forms of the polynomial evaluation routines for
the 8086 are in different modules. If they are made public, they would have to have
different names.

The polynomial function evaluators return the result in the same way the parameter is
supplied. The “inverse” routine to the loading routine is used to store the result for the
8051, 8085, Z-80, 8096, and 80386 FPAC/DPACs. The 8086 FPAC/DPAC overwrites
the argument at DS:DI with the result.

The 68000 FPAC/DPAC has internal routines FOPRSL and DOPRSL which round,
compress, and place the in-register value on the stack. To invoke one of these routines,
the user places the return address in A0, and then jumps to the appropriate routine’s entry
point.

As with many efforts in software implementation, it is often easier to learn from existing
functional code than to independently develop and debug code. For this reason, it is
advisable to examine the exponentiation (EXP) and the simple trigonometric routines
(SIN/COS) for examples of how to use the standard and squared power polynomial
evaluation routines. These functions can serve as effective templates for the successful
implementation of custom FPAC/DPAC functions.

51

GoFast 8051 Floating-Point Library User’s Guide

10 References

ANSI/IEEE Standard 754-1985: Binary Floating-Point Arithmetic

W. Cody, W. Waite: Software Manual for the Elementary Functions, Prentice-Hall, 1980

52

	Introduction
	Purpose
	Definitions
	The IEEE Floating Point Format
	Precision
	Special Values
	Exception Handling
	Accuracy in Calculations
	Rounding
	Base Conversion
	Difference between Large Numbers
	Irrational Numbers
	Special Functions
	Conversion to Integer
	Financial Calculations

	Resource Requirements
	Memory Conventions
	Resource Requirements

	Parameter Passing
	Franklin/Keil C Compiler Version
	Compiler Details
	Timings

	Basic Floating Point Operations
	LDFAC & LDFACD – Load Floating Point Accumulator (FAC)
	STFAC & STFACD – Store Floating Point Accumulator (FAC)
	FPADD & DPADD – Addition and Subtraction
	FPMUL & DPMUL – Multiplication
	FPDIV, FPRDIV & DPDIV, DPRDIV – Division
	FPCMP & DPCMP – Comparison Routines
	FLOAT & DFLOAT – Integer to FP Value Conversion
	INT, FIX & DINT, DFIX – FP Value to Integer Conversion
	AINT & DAINT – Floating Point INT Function

	Precision Conversion Routines
	SINGLE – Double to Single Precision Conversion Routine
	Double – Single to Double Precision Conversion Routine

	ASCII Literal to/from Floating Point
	ASCBIN & DASCBN – ASCII Literal to Floating Point Value
	Example of ASCII Literals and Results of the Conversion

	BINASC & DBNASC – Floating Point Value to ASCII Literal
	BINASC – Single Precision
	DBNASC – Double Precision

	API
	Assembly API
	C API

	Error Conditions
	Addition
	Multiplication
	Division
	Comparison
	Functions
	X to I function

	Routine Sizes and Execution Times
	8051 FPAC Routine Sizes and Execution Times
	Basic Operations Set – FPAC
	Transcendental Functions - FPAC
	Conversion Routines – FPAC

	8051 DPAC Routine Sizes and Execution Times
	Basic Operations Set – DPAC
	Transcedental Functions - DPAC
	Conversion Routines – DPAC
	Precision Translation Routines – DPAC

	Operation Summary
	Single Precision Operations
	Double Precision Operations
	Accuracy Test
	Performance Test

	Application Notes
	On-Chip Data Memory (#01)
	On-Chip Memory Usage (#107)
	Reentrancy (#02)
	The Floating Point Accumulator Structure in FPACs (#152)
	General Overview of Accuracy and Precision (#122)
	Tailoring Double Precision Function Accuracy (#148)
	Implementing an XˆY Operation
	Error Codes and FPAC Conversion Routines (#123)
	ASCBIN and DASCBN – ASCII to binary conversion routines
	BINASC and DBNASC – binary to ASCII conversion routines

	Understanding and Using FPAC Routine Timing Estimates (#135)
	The Polynomial Function Evaluation Routine (#139)

	References

