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GoFast 8051 Floating-Point Library User’s Guide 

1 Introduction 
 
Notes:  FPAC refers to the single-precision floating point routines and DPAC refers to 
the double-precision routines. This manual and application notes were re-entered from a 
printed copy. Some introductory sections were recently written, and other edits have been 
made. 

 

1.1 Purpose 
 
GoFast is a software floating-point library for processors that do not offer floating-point 
support in hardware. It complies with the IEEE 754 standard. However, the exception 
handling has been simplified a little, mostly to make the product simple to use in 
embedded systems. 

Most importantly, GoFast is fast. Replacing the native floating-point library with GoFast 
might cut timings by 20% for simple functions such as add or multiply, and by 75% in 
transcendentals such as the tangent. You could even see an occasional 90%, but there 
would be something wrong with the original routine then. The floating-point routines 
provided with the compiler are typically written in C and operate on floating-point 
variables. These algorithms are relatively simple, easily found on the Web or in books, 
and efficient in a floating-point unit. They get heavy when all floating-point is simulated. 
GoFast performs all calculations using integers. The first thing done is the separation of 
the exponent and the mantissa; the last is their recombination. Because the mantissa has 
64 bits, good precision comes as a bonus. The algorithms can get intricate – and you 
don’t find them on the Web – but they have been thoroughly tested over the years. 

The GoFast floating point library includes FPAC and DPAC parts. FPAC provides 
floating point functions based on the IEEE single precision floating point format. DPAC 
extends the FPAC functionality to the IEEE double precision floating point format. 

The library consists of the basic floating point operations (ADD/SUBTRACT, 
MULTIPLY, DIVIDE), data conversion routines (ASCII to/from floating point, integer 
to/from floating point), functions (sine, cosine, tangent, arctangent, common and natural 
logarithm, exponentiation of e, square root, and floating point to integer power). In 
addition, DPAC provides precision translation routines for conversion between single and 
double precision formats. 

The library was designed to emphasize accuracy, source code clarity, code size 
efficiency, and execution speed. Wherever IEEE floating point standards exist, and when 
they are feasible to implement in software with respect to the scope and purpose of this 
package, FPAC and DPAC adhere to them. 
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1.2 Definitions 
 
Floating point is a method of representing numeric values (integers and non-integers) in 
a computer. It uses three fields for this: 
 

• The sign tells whether the number is positive or negative. 
• The exponent tells where the decimal point goes. 
• The mantissa (also called the significand) gives the digits. 

 
To get the actual value of the number, you raise 2 to the power of the exponent and 
multiply this with the mantissa. (For details such as bias and scaling, see the IEEE 754 
document.) 
 
In the IEEE 754 standard, single-precision numbers take up 32 bits, double-precision 
numbers twice that. The useful range for singles is approximately 10-38 to 1038, for 
doubles 10-308 to 10308. The relative precision (typical rounding error in one arithmetic 
operation) is of the order of 10-7 for singles, 10-16 for doubles. 
 
 

1.3 The IEEE Floating Point Format 
 
The number format on which FPAC operates is the IEEE 754 single precision standard. 
Its representation, in bit form is: 
 
S EEE EEEE E MMM MMMM MMMM MMMM MMMM MMMM 
byte 3 byte 2 byte 1 byte 0 
 
“S” is the sign bit (1 if negative, 0 if positive). The “E” field is the two’s exponent. It is a 
two’s complement value biased by 127 (decimal. The “M” field is the 23-bit normalized 
mantissa. The most significant bit is always assumed to be 1, and so is not explicitly 
stored. This yields an effective precision of 24 bits. 
 
The value of the floating point number described above is obtained by multiplying 2 
raised to the power of the unbiased exponent, by the binary mantissa. The assumed bit of 
the binary mantissa (the most significant bit) has a value of 1.0, with the remaining bits 
providing a fractional value (i.e., the value of the mantissa is greater than or equal to 1.0 
and less than 2.0). 
 
Note that the four bytes of the floating point number are stored in lexicographic order. As 
noted in the architectural description of the 8051, the processor’s convention is that the 
least significant byte has the lowest address value. This means the sign/exponent byte is 
stored at a higher memory address than the mantissa bytes.  
 
The dynamic range of the IEEE 754 single precision floating point format is +/- 
1.175494E-38 to 3.402823E+38. 
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The number format on which DPAC operates is the IEEE 754 double precision standard. 
Its representation, in bit form, is: 
 
S EEE EEEE  EEEE MMMM MMMM MMMM MMMM MMMM 
byte 7   byte 6   byte 5   byte 4 
 
MMMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM 
byte 3   byte 2   byte 1   byte 0 
 
“S” is the sign bit (1 if negative, 0 if positive). The “E” field is the two’s exponent. It is a 
two’s complement value biased by 1023 (decimal). The “M” field is the 52-bit 
normalized mantissa. The most significant bit is always assumed to be 1, and so is not 
explicitly stored. This yields an effective precision of 53 bits. 
 
The value of the floating point number described above is obtained by multiplying 2 
raised to the power of the unbiased exponent, by the binary mantissa. The assumed bit of 
the binary mantissa (the most significant bit) has a value of 1.0, with the remaining bits 
providing a fractional value (i.e., the value of the mantissa is greater than or equal to 1.0 
and less than 2.0). 
 
Note that the eight bytes of the floating point number are stored in lexicographic order. 
As noted in the architectural description of the 8051, the processor’s convention is that 
the least significant byte has the lowest address value. This means the sign/exponent byte 
is stored at a higher memory address than the mantissa bytes. 
 
The dynamic range of the IEEE 754 double precision floating point format is +/- 2.2250 
73858 50720D-308 to 1.7976 93134 86231D+308. 
 
 

1.4 Precision 
 

The basic operations (add, subtract, multiply, divide, square root) and the conversions all 
use the IEEE 754 "round to nearest or even" rounding exactly.  No other rounding modes 
are supported.  These operations are IEEE exact. 

The transcendental functions (which are not defined in IEEE 754) are correct to within 
two mantissa units.  However, the trigonometric functions SIN, COS and TAN will lose 
precision in the argument reduction if the argument exceeds π/2. 

 

1.5 Special Values 
 

An overflow returns +INF or -INF, an underflow returns +0 or -0.  If an argument is not-
a-number (NaN), the result is NaN.  The table below gives the GoFast result for some 
other special situations.  It does not include cases that should not cause any confusion. 
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 -            INF-INF = NaN 
 *            0*INF = NaN 
 /            0/0 = NaN 
                   INF/INF = NaN 
 sqrt       sqrt(-0) = -0  
                   sqrt(x<0) = NaN 
 ln/log    -INF if x=0 
                   NaN if x<0 
      sin/cos/tan  NaN if |x| >= 65536 
    
Most likely, these pathological cases will be of no interest to anyone. It is not at all 
unusual to find a C library that returns questionable values for one or more.  

 

1.6 Exception Handling 
 

GoFast makes no distinction between quiet and signaling not-a-numbers (NaNs).  In an 
invalid operation, the answer is always a quiet NaN, 0x0008000000000000 in double 
precision and 0x00400000 in single precision. 

The GoFast routines support the IEEE 754 masked exception handling for overflows and 
invalid operations.  An overflow is returned as the special value infinity, and an invalid 
operation is returned as the special value NaN. 

No unmasked exceptions are supported; there are no exception interrupts.  GoFast stores 
an error code into the byte variable FPERR. The values are: 3 for not-a-number, 2 for 
overflow and 1 for underflow.  

 

1.7 Accuracy in Calculations 
 

Floating-point calculations are in practice always inexact.  This is easy to forget because 
just about everything else in programming is exact, and because the precision seldom 
becomes a problem.  But you forget at your own peril. 

There is nothing mysterious about the loss of precision; it’s simply the nature of the 
thing.  The following illustrates different faces of the inaccuracy. 

 

1.7.1 Rounding 
A floating-point number contains a fixed number of digits.  Unless there are a lot of 
trailing zeroes, an arithmetic operation will very likely produce too many digits to fit in 
the same space.  This of course happens even in normal decimal calculations, for 
instance: 
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  1234.567 
          +     12.34567
             1246.91267   1246.913 
 
Rounding errors as such are unlikely to become noticeable, but they can be enhanced by 
other effects.  Some algorithms are notoriously prone to lose precision. 

 

1.7.2 Base Conversion 
Changing the base of a fractional number generally requires approximations.  Any 
application that uses decimal input, decimal constants or decimal output has to perform 
base conversions.  Consider the example 

  float f1; 
  f1 = 1.1; 
  printf("%.12f\n", f1); 
 
This program will display the value 1.100000023842, not the exact 1.1.  What happened? 

The root of the problem is that 1 1/10 in base 2 is 1.0001100(1100), i.e. can't be 
represented exactly.  The compiler creates a constant 1.1 with 24 bits: 

  1.000 1100 1100 1100 1100 1101 
 
This value is obviously larger than 1.1 because we rounded up at bit 24.  Printing the 
value with too many decimals (anything more that 7 in this case) will show the 
difference. 

 

1.7.3 Difference between Large Numbers 
Let's try the program 

 float f1, f2, f3; 
 f1 = 1234.0; 
 f2 = 1233.1; 
 f3 = f1 - f2; 
 printf("%lf\n", f3); 

 
The result is 0.900024: off by quite a bit.  The basic effect is the same as explained 
above: the required base conversion.  But the relative error got enlarged in the subtraction 
of two almost equal numbers: 

 1234.0 = 1001 1010 0100 0000 0000 0000 
   - 1233.1 = 1001 1010 0010 0011 0011 0011 
                  0.9 =                            1100 1100 1101 
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1.7.4 Irrational Numbers 
Values such as sqrt(2) or sin(0.5) have no exact representation in any base.  These can 
still be calculated “exactly” to the value that is mathematically correct considering the 
rounding rules.  IEEE specifically requires an exact square-root, but says nothing about 
other functions.  The GoFast square-root is of course exact. 

You probably won’t find an “exact” implementation of the transcendentals anywhere.  
The additional error should be of the same order as the rounding error.   

 

1.7.5 Special Functions 
As a rule, the relative error of a function is different than the relative error of the 
argument.  In some cases this becomes important.  Take the following code: 

  double d1, d2; 
  d1 = 1.1; 
  d3 = exp(100*d1); 
 
The result will differ from exp(110) by quite a bit.  This does not mean that exp(x) is 
inaccurate; it means that the original inaccuracy of x got magnified.   

A point where a function approaches zero for a non-zero argument is especially tricky.  
As an example, log(0.999998) is close to twice log(0.999999).  If your argument is only a 
little inexact, say due to rounding, the answer may be so wrong as to be meaningless.  
Again we need to remember that log(x) as such is not the culprit, it is not inaccurate.   

The same warning applies whenever significant argument reduction is needed, such as 
the trigonometric functions for arguments much larger than π.  Worst of all are cases 
where these two situations coincide: sin(1000π) for instance. 

 

1.7.6 Conversion to Integer 
ANSI C specifies that a floating-point number is converted to an integer using truncation: 
the decimals are discarded.  This innocuous rule can cause surprises.  Consider the 
program 

  int i1, i2; 
  i1 = 256; 
  i2 = (float)i1 / 2.56; 
  printf("%d\n", i2); 
 
Certainly the correct answer is 100, but you can't count on this; the program as written is 
unstable.  In some cases, the answer will keep jumping between 99 and 100, depending 
on the compilation options and the exact code used. 

The root reason for the instability is not hard to see.  The value 2.56 has to be rounded 
when it is converted to base 2.  If this rounding is up, the division will give a value that is 
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slightly less than 100.  According to ANSI C rules, this becomes 99.  If again 2.56 in base 
2 is rounded down, the division will give slightly over 100, and truncates to 100. 

IEEE 754 is a very rigorous standard; whether 2.56 is rounded up or down, surely it 
should be rounded the same way every time. How is it possible that two standard 
implementations give completely different results? Well, it really isn’t. This is an 
interesting example of what happens when a standard meets an optimizing compiler. 
How the rounding is done depends on the number of bits in the constant. ANSI C says 
that a floating-point constant is double, and IEEE 754 rules this to have 53 binary digits. 
Unfortunately 

 
1 Some compilers use float constants in float expressions. This difference may be 

enough to change the direction of the rounding. 
2 Some compilers optimize out all divisions by a constant, using instead a 

multiplication with the inverse value. What happens to the rounding is anybody’s 
guess. 

 
 

1.7.7 Financial Calculations 
 
You want to make absolutely sure your broker isn’t cheating you, so you write a little 
program to check the commission. The first trade looks fine. The second trade looks fine. 
The third trade – caught him! Overcharged by a penny! 
 
Well, not really. Financial rounding follows law and custom, knowing (and caring) 
nothing about IEEE 754 rounding. In some special cases, you have to round up. Even the 
usual “bank rounding” isn’t quite the same as the IEEE default – though you’ll have to 
look hard to catch the difference. 
 
None of this means that there’s a problem. Financial institutions just don’t use floating-
point math. 
 

1.8 Resource Requirements 
 

1.8.1 Memory Conventions 
 
The 8051 FPAC/DPAC routines work with four and eight byte floating point values that 
reside in either the external data memory or in the program memory (read-only 
constants). External operands are addressed using the MOVX instruction with DPTR or 
the MOVC instruction. The routines maintain a floating point accumulator (shared by 
single and double precision routines) in the on-chip data memory along with exception 
flags and some working storage. The conversion routines and functions produce 
temporaries that are held in external data memory. 
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1.8.2 Resource Requirements 
 
The 8051 FPAC/DPAC routines use three types of 8051 resources; bit addressable on-
chip data memory, on-chip data memory, and external data memory. 
 
Either one or two bytes of bit addressable on-chip data memory is required. A single byte 
(called FACBIT) is used by the basic operations and an additional type (called CNVBIT) 
is used by the ASCII/binary conversion routines and/or the functions. 
 
The basic single precision operations require 14 bytes of on-chip data memory. The basic 
double precision operations require 12 more bytes of on-chip data memory. The 
ASCII/binary conversion routines use one byte of on-chip data memory. A fully 
implemented single precision library will have an on-chip data memory requirement of 
15 bytes while a fully implemented double precision library will require 27 bytes of  
on-chip data memory. 
 
The ASCII/binary conversion routines use one external data memory temporary (four or 
eight bytes depending on precision). Functions may use up to four temporaries (again 
either four or eight bytes each), but one temporary may be overlaid on the conversion 
temporary making a maximum external data memory requirement of 16 bytes for single 
precision and 32 bytes for double precision. 
 
 

1.9 Parameter Passing 
 
A floating point value is passed to an FPAC/DPAC routine by placing its address in 
DPTR. If the value resides in program memory (a constant) instead of the external data 
memory, then the FACRNM bit must be set (for Rom Number). 
 
The FPAC/DPAC routines maintain a Floating Point Accumulator (referred to as the 
“FAC”) in the on-chip data memory. A value will remain in the FAC until the user 
changes it either explicitly or implicitly. In most cases, the contents of the FAC is used as 
an operand by FPAC/DPAC routines. Thus, the contents of the FAC is a parameter that is 
implicitly passed to and returned from FPAC/DPAC routines. Binary operations take 
place as FAC <oper> [DPTR]  FAC. Unary functions are performed on the value in the 
FAC with the result returned in the FAC.  
 
In general, FPAC/DPAC routines destroy the contents of the accumulator (called A or 
ACC), the B register, and the current register bank (R0 to R7). The value of the DPTR is 
returned unchanged (except for the ASCII to binary conversion routines which advance it 
as noted). 
 
The FPAC/DPAC routines use some stack space for temporaries. The conversion routines 
and functions used temporaries in the external data memory. The amount of stack space 
required by the various routines, beyond the two bytes for the return, is noted in the 
discussion of the individual routines. 
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Word integer values are passed to and from FPAC/DPAC routines in the B:A (with B 
holding the most significant byte). Four byte integer values are passed in R7:R6:B:A (R7 
is the most significant byte, A is the least significant byte). All integer values are in two’s 
complement form. 
 

1.10 Franklin/Keil C Compiler Version 
 

1.10.1 Compiler Details 
GoFast is a drop-in replacement library for the Franklin/Keil C compiler. The native 
library has no double-precision routines, and the compiler will not generate any calls to 
such routines. When you install GoFast, you can start using double-precision, but you’ll 
have to write the function calls explicitly. You’ll find examples of this in the GoFast 
files. 

The native library lacks asin, acos, atan2 and all the hyperbolics. Instead of pow, there’s 
a function that raises a number to an integer power. GoFast will not add these missing 
functions. The implementation is compatible with the IEEE 754 standard, but it isn’t 
really ANSI C, nor could it be. 

GoFast for 8051 implements a floating-point accumulator (FAC) in read-write memory, 
so it isn’t naturally reentrant. However, you get reentrancy by saving and restoring FAC 
(and a few other temporaries) in a context switch. A note included with the product gives 
the details. 

 

1.10.2 Timings 
The following table shows the GoFast timings for a few functions on a 12 MHz 8051, in 
microseconds. The given range is from a typical value to a maximum value. 

 
 

Functions  Single  Double 
add  260 - 370 750 – 1100
multiply  450 - 560 1380 – 1530
divide  1070 - 1390 5300 – 6900
sin/cos 5050 23400
log  6000 23000
sqrt  2850 18500
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2 Basic Floating Point Operations 
 

2.1 LDFAC & LDFACD – Load Floating Point Accumulator (FAC) 
 
These routines load floating point values from memory (pointed to by DPTR) into the 
floating point accumulator (FAC). If FACRNM is set, the value is taken from program 
memory. If FACRNM is clear, the value is taken from external data memory. LDFAC is 
a single precision routine while LDFACD is its double precision counterpart. The 
FACRNM bit is always cleared by LDFAC and LDFACD. 
 
The FAC consists of three parts: its sign, its exponent, and its mantissa. The sign is held 
in a byte called FACSGN. The sign bit is replicated throughout this byte, so FACSGN’s 
value is either 0 or OFFH (-1). 
 
The exponent is held in a byte pair referred to as FACEXP. The exponent’s bias is not 
removed while in the FAC. Single precision exponent values are zero-extended one byte 
to fill the double type FACEXP. Double precision exponent values are zero-extended 5 
bits to fill FACEXP. 
 
The mantissa is held in a series of bytes headed by the byte named FACMAN. In the case 
of single precision values in the FAC, the series of bytes is three long. A double precision 
value in the FAC uses seven bytes. Unlike the four or eight byte representation of the 
floating point number, the mantissa in the FAC explicitly represents what is called the 
implicit ( or “j”) bit of the floating point number’s mantissa. The mantissa, as with the 
exponent, is right justified in the FAC’s mantissa register. 
 
 

2.2 STFAC & STFACD – Store Floating Point Accumulator (FAC) 
 

The value in the FAC is compressed as required and stored in memory at the location 
indicated by DPTR. 
 
 

2.3 FPADD & DPADD – Addition and Subtraction 
 
The floating point value pointed to by DPTR (and FACRNM) is added to the floating 
point value in the FAC. The FPADD routine is used to sum single precision floating point 
numbers while the DPADD routine works with double precision floating point values. 
 
Subtraction of two floating point values is accomplished by flipping the sign bit of the 
subtrahend, then calling the appropriate addition routine. If the subtrahend contains zero 
or NaN, the sign should not be complemented. 
 
Both FPADD and DPADD use four bytes of stack space. 
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The following routines implement double precision floating point subtraction operations. 
The result is always left in the FAC, though either the FAC or the operand pointed to by 
DPTR may be the subtrahend. Note that the sign is not complemented if the value is zero 
or NaN.  
 
DPSUB: CALL DNGFAC  ; FAC = – FAC 
  CALL DPADD  ; FAC = OPN – FAC 
  BRA DNGFAC  ; FAC = FAC – OPN 
; 
DPRSUB: CALL DNGFAC  ; FAC = – FAC 
  JMP DPADD  ; FAC = OPN – FAC 
; 
; Negate FAC 
; 
DNGFAC: MOV A, FACEXP – 0 ; Check zero 

MOV B, FACEXP – 1 
CJNE A, B, DNGF01 ; J/ FAC < > 0 
JZ DNGF03  ; J/ FAC = 0 (NO NEGATION) 

; 
DNGF01: CJNE A, #007H, DNGF02 ; J/ FAC < > NaN 
  MOV  A, B 
  CJNE  A, #0FFH, DNGF02 ; J/ FAC < > NaN 
  MOV  A, FACMAN – 0 
  ANL   A, #00001111B ; Strip implicit bit 
  JNZ DNGF03  ; J/ FAC = (NaN or INF) 
; 
DNGF02: CPL FACSGN  ; Flip sign 
DNGF03 RET 
 
 

2.4 FPMUL & DPMUL – Multiplication 
 

The floating point value in the FAC is multiplied by the floating point value pointed to by 
DPTR (and FACRNM). The FPMUL routine works with single precision operands, the 
DPMUL routine processes double precision values. 
 
Both FPMUL and DPMUL use two bytes of stack space. 
 
The following routine squares the single precision floating point value addressed by 
DPTR (and FACRNM), leaving the result in the FAC. 
 
FPSQ:  MOV C, FACRMN  ; Save ROM/RAM bit  
  MOV  HOLDBT, C   
  CALL  LDFAC  ; FAC = Value 
  MOV  C, HOLDBT  ; Get ROM/RAM bit 
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  MOV FACRMN, C 
  JMP FPMUL  ; FAC = FAC * Value (square) 
 
 

2.5 FPDIV, FPRDIV & DPDIV, DPRDIV – Division 
 

Division of floating point values is performed by calling one of these division routines. 
The xPDIV routines use the value pointed to by DPTR (and FACRMN) as the divisor 
and the value in the FAC as the dividend, placing the result in the FAC ( that is, 
FAC/[DPTR]  FAC). The xPRDIV routines use the value pointed to by DPTR (and 
FACRMN) as the dividend and the value in the FAC as the divisor, placing the result in 
the FAC ( that is, [DPTR]/FAC  FAC). The FPxxxx routines work with single 
precision floating point values while the DPxxxx routines handle double precision 
floating point numbers. 
 
All of FPxxxx and DPxxxx routines use four bytes of stack space. 
 
The following routine reciprocates the single precision floating point in the FAC. 
 
FPREC: MOV DPTR. #FPONE ; DPTR points to 1.0 
  SETB FACRMN  ; in program memory 
  JMP FPRDIV  ; FAC = 1.0/ FAC 
 
FPONE: DB  000H, 000H, 080H, 03FH ; Single Precision 1.0 
 
 

2.6 FPCMP & DPCMP – Comparison Routines 
 

The floating point value in the FAC is compared to the floating point value pointed to by 
the DPTR (and FACRMN). The FPCMP routine is used to compare single precision 
floating point numbers while the DPCMP routine is used to compare double precision 
floating point values. 
 
The comparison routines may use the addition/substraction routine (of the appropriate 
precision) if necessary. See section 6.0 for the results of comparing the special 
representations of +INF, -INF, and NaN with each other or standard point values. 
 
Both routines implement a fuzz specification. The values are 20 bits for FPCMP (the 
symbolic constant FFUZZ) and 48 bits for DPCMP (the symbolic constant DFUZZ). The 
fuzz value indicates the number of bits which must be equal. For example, in the single 
precision case, if the result of the FAC minus the operand is at least 2^-20 times smaller 
than the large of the FAC and the operand, the values are considered equal even though 
there may be a slight difference in actual values. 
 
The result of the comparison is returned in the A register as follows: 
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 Comparison_____  A Register      
 No comparison  080H -128 
 FAC  <  OPN   0FFH     -1 
 FAC  =  OPN   000H      0        
 FAC  >  OPN   001H      1 
 
A quick comparison result testing algorithm is: 
 1) Clear carry, rotate the accumulator left 
 2) If A < > 0 then 
  a. If carry set then, FAC  <  OPN 
  b. else (carry clear), FAC  >  OPN 
 3) else (A = 0 ) 
  a. If carry set then, FAC does not compare 
  b. else (carry clear), FAC = OPN 
 
FPCMP and DPCMP may destroy the contents of the FAC. Both FPCMP and DPCMP 
use up to eight bytes of stack space. 
 
 

2.7 FLOAT & DFLOAT – Integer to FP Value Conversion 
 

A register resident integer is converted to a floating point value in the FAC by the float 
routines. The Float routine converts the two’s complement 16 bit integer in B:A (B holds 
the most significant byte) into a single precision floating point value in the FAC. The 
DFLOAT routine converts the two’s complement 32 bit integer in R7:R6:B:A (R7 holds 
the most significant byte, A holds the least significant byte) into a double precision value 
in the FAC.  
 
No stack space is used by FLOAT. DFLOAT uses 2 bytes of stack space. 
 
The routine below “floats” an eight bit integer value in A into a double precision floating 
point value in the FAC. 
 
BDFLT: MOV B, #0    ; assume positive 
  JNB ACC.7, BDFL01  ; J/ value positive 
  DEC B    ; Sign extend thru B 
BDF01: MOV R6, B    ; Sign extend thru R6 
  MOV R7, B    ; Sign extend thru R7 
  JMP DFLOAT   ; FAC = DFLOAT (R7: R6: B: A) 
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2.8 INT, FIX & DINT, DFIX – FP Value to Integer Conversion 
 

Two methods are provided to convert the floating point value in the FAC into a register 
resident integer. The single precision routines, INT and FIX, process single precision 
floating point values and return the resulting 16 bit two’s complement integer in B:A. 
The double precision floating point numbers into a 32 bit two’s complement integers in 
R7: R6:B: A. 
 
The difference between the two methods, FIX and INT, is illustrated in the table below: 
 
F.P. Value  FIX(value)  INT(value) 

3.5      3      3 
- 3.5   - 3   - 4 
 
The result of a FIX operation is the argument value stripped of its fractional part. The 
result of an INT operation is the largest integer such that it is less than or equal to the 
argument value. 
 
FIX does not use any stack space. INT uses 2 bytes of stack space. DFIX uses 2 bytes of 
stack space. DINT uses 4 bytes of stack space. 
 
 

2.9 AINT & DAINT – Floating Point INT Function 
 

The floating point value in the FAC is “INT-ed” in place by calling the routine AINT for 
single precision values or DAINT for double precision floating point numbers. While 
approximately the same function could be accomplished by using an INT then FLOAT 
sequence, AINT operations are considerable faster and of higher precision. Since this 
operation is performed in the floating point domain, the AINT routine works with 24 bit 
precision while the DAINT routine work with 53 bit precision. 
 
In addition, arguments provided to AINT routine that are too large or invalid (NaN, 
+INF, -INF), are returned unchanged. INT routines will return a maximum magnitude 
integer of the appropriate sign these instances. 
 
AINT and DAINT do not use any stack space. 
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3 Precision Conversion Routines 
 
DPAC provides two precision conversion routines, SINGLE and DOUBLE, for 
conversion between the two floating point formats supported by FPAC/DPAC. The value 
in the FAC is converted. 
 
 

3.1 SINGLE – Double to Single Precision Conversion Routine 
 

The SINGLE routine converts the double precision floating point number in the FAC into 
a single precision floating point number in the FAC. The conversion is a round-to-nearest 
process. Double precision floating point values that are too large to represent in the single 
precision format overflow to infinity (INF) with an appropriate sign, while those values 
that are too small to represent underflow to zero. NaNs and INFs are carried through 
directly. In any event, no error flags are set by this conversion routine. 
 
No stack space is used by the SINGLE routine. 
 
 

3.2 Double – Single to Double Precision Conversion Routine 
 

The Double routine converts the single precision floating point number in the FAC into a 
double precision floating point number in FAC. The conversion is a precision extension 
process (by setting the additional mantissa bits to zero). All single precision floating point 
values can be properly represented in the double precision format. NaNs and INFs are 
carried through directly. In any event, no error flags are set by this conversion routine. 
 
No stack space is used by the DOUBLE routine. 
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4 ASCII Literal to/from Floating Point  
 

4.1 ASCBIN & DASCBN – ASCII Literal to Floating Point Value 
 

These routines convert an ASCII literal point to by DPTR into a floating point value in 
the FAC. DPTR points to the first character of the literal (in external data memory) to be 
interpreted. This first character of the literal must be either a minus sign (indicating a 
negative number), a decimal point, or a digit; these routines will not skip preceding 
blanks. 
 
The first character of the literal field plus subsequent characters must form a valid 
decimal number, optionally followed immediately by “E”, (“D” is also allowed by the 
double precision routine), signifying scientific notation. If an “E” is found, it may be 
followed by a plus or a minus sign, then one or two digits (the sign and digits indicating 
the power of ten scaling), the double precision routine allows up to three digits in the 
exponent field. 
 
These routines will process characters until an improper character is found. This 
“improper” character may be a blank, comma, zero byte, etc. When the maximum 
allowed digits have been found after the “E”, the next character is automatically 
improper. 
 
A NaN error code is returned if an improper literal is encountered. Note that reaching an 
improper character is NOT an error condition; it can indicate the correct termination of 
the ASCII literal. Errors include no digits in the literal, no digits preceeding the “E”, no 
digits following the “E”. A literal that, when interpreted, is too large to represent is 
returned as infinity (INF). Literals that are too small to represent underflow to zero. 
 
A floating point value is always returned in the FAC. In the case of an error, the value is 
what amounts to a best guess (or the value when things went awry). 
 
The single precision routine (ASCBIN) uses 10 bytes of stack space while the double 
precision routines (DASCBN) use 14 bytes of stack space. 
 

4.1.1 Example of ASCII Literals and Results of the Conversion 
 

Input String Value Error Returned pointer position 
3.567, 3.567 No error At “,” 
- .5 -0.5 No error At byte after “5” 
5e4 50000 No error At byte after “4” 
- .E4 0.0 Error At “E” 
3.1.2 3.1 No error At second “.” 
4.2E 13 42.0 Error At blank after “E” 
-6E98 -INF *Error At byte after “8” 
 0.0 Error Pointer unchanged 

16 



GoFast 8051 Floating-Point Library User’s Guide 

 
^  initial pointer position 
 
*:  this is a valid double precision floating point value 
 
 
 

4.2 BINASC & DBNASC – Floating Point Value to ASCII Literal 
 

These routines are provided to convert the floating point value in the FAC into a zero 
byte terminated string of ASCII characters at the location pointed to by DPTR. 
 
Both BINASC and DBNASC return DPTR unchanged. However, these routines perform 
a number of internal floating point operations which may destroy the value in the FAC. 
The single precision routine (BINASC) uses 13 bytes of stack space while the double 
precision routine (DBNASC) uses 16 bytes of additional stack space. 
 
The first character of the ASCII literal produced is either a minus sign (for a negative 
value) or a blank, depending on the sign of the number being converted. Based on the 
value being converted, one of the following formats is selected:  
 
 

4.2.1 BINASC – Single Precision 
 
Form Value Range
0.n 0.1 to 0.9999999 
N.n 1.0 to 9.999999 
NN.n 10.0 to 99.99999 
NNN.n 100.0 to 999.9999 
NNNN.n 1000.0 to 9999.999 
NNNNN.n 10000.0 to 99999.99 
NNNNNN.n 100000.0 to 999999.9 
NNNNNNNN. 1000000.0 to 9999999. 
 
N.nE#dd other valid number 
0. 0 or underflow 
+INF positive infinity 
-INF negative infinity 
NaN not a number 
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4.2.2 DBNASC – Double Precision 
 
Form Value Range
0.n 0.1 to 0.999999999999999 
N.n 1.0 to 9.99999999999999 
NN.n 10.0 to 99.9999999999999 
NNN.n 100.0 to 999.999999999999 
… … to … 
NNNNNNNNNNNNN.n 1000000000000.0 to 9999999999999.99 
NNNNNNNNNNNNNN.n 10000000000000.0 to 99999999999999.9 
NNNNNNNNNNNNNNN. 100000000000000.0 to 999999999999999. 
 
N.nD#ddd other valid number 
0. 0 or underflow 
+INF positive infinity 
-INF negative infinity 
NaN not a number 
 
 
Where N is a digit, n is the fractional part with trailing zeroes suppressed, “.” is a decimal 
point, “#” is either “+” or “-“, and “d” is a digit in the ten’s exponent. See section 6.0 for 
a description of the error conditions underflow, INF, and NaN. 
 
The symbolic constant FDDIG specifies the number of digits the single precision routine 
will display. The symbolic constant FNDIG controls the initial conversion step (before 
the ASCII literal is formatted); the must be greater that FDDIG. As illustrated above, the 
release value of FNDIG is seven. 
 
The corresponding symbolic constants for the double precision conversion routine are 
DDDIG and DNDIG. The release value of DNDIG is 15.  
 
The output area is used for two purposes. It is first used to form an internal, intermediate 
literal that is reformatted for the second use, as the output literal. The minimum size for 
the single precision output area is FNDIG+10 bytes (17 bytes for the release version). 
The minimum size of the output area for the double precision routine is DNDIG+12 bytes 
(27 bytes for the release version). 
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5 API 
 

5.1 Assembly API 
 
The Assembly API provided in the library expects the arguments in the FAC and places 
the results in the FAC. (The FPXTOI and DPXTOI routines also use a 16-bit, two’s 
complement integers in B: A; this value is destroyed during processing). 
 
The single precision functions may use up to 12 bytes of stack space while the double 
precision functions may use up to 14 bytes of additional stack space. 
 
All function results are correct to within one or two mantissa bits except for tangent near 
its discontiguous points and the logarithms very near 1.0 (though this is a representation 
problem of floating point values, not an algorithm error). 
 
See the C API is implementation in files gf_dp*.a51 and gf_fp*.a51 for example use of 
the assembly API. 
 
Single Double Description 
FPATN DPATN Arctangent, range  – PI/2 to + PI/2 
FPCOS DPCOS Cosine (note: limited domain, see 6.0) 
FPEXP DPEXP e raised to the power 
FPLN DPLN Natural logarithm 
FPLOG DPLOG Common logarithm 
FPSIN DPSIN Sine (note: limited domain, see 6.0) 
FPSQRT DPSQRT Square root 
FPTAN DPTAN Tangent (note: limited domain, see 6.0) 
FPXTOI DPXTOI Raise value to integer power 
 
 
The code below illustrates the computation of one real root of a quadratic polynomial. 
The coefficients of the polynomial are assumed to reside at the memory locations named 
REALA, REALB, and REALC. 
 
; 
;  -------- External Data Memory 
; 
REALA DS 4 
REALB DS 4 
REALC DS 4 
FPTEMP DS 4 
; 
;  -------- Program Memory 
; Calculate (-b + SQRT (b^2 – 4ac)) / 2a 
; 
 MOV DPTR, #REALB ; Calc b^2 
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 CALL FPSQ ;  ( see FPMUL) 
 MOV DPTR, #FPTEMP 
 CALL STFAC ;  FPTEMP = b^2 
; 
 MOV DPTR, #REALA 
 CALL LDFAC ; FAC = a 
 MOV DPTR, #REALC 
 CALL FPMUL ; FAC = ac 
 MOV DPTR, #FPFOUR 
 SETB FACRNM 
 CALL FPMUL ; FAC = 4ac 
; 
 MOV DPTR, #FPTEMP 
 CALL FPRSUB ; reverse subtract 
 CALL FPSQRT ; FAC = SQRT (b^2 – 4ac) 
 MOV DPTR, #REALB 
 CALL FPSUB ; FAC = -b+SQRT (b^2 – 4ac) 
; 
 MOV DPTR, #REALA 
 CALL FPDIV ; FAC = (-b+SQRT(b^2 – 4ac) / a 
 MOV DPTR, #FPTWO 
 SETB FACRNM 
 CALL FPDIV ; FAC = (-b+SQRT (b^2 – 4ac) / 2a 
; 
; Constants (in program memory) 
; 
FPTWO: DB 000H, 000H, 000H, 040H ; Single precision 2.0 
FPFOUR: DB 000H, 000H, 080H, 040H ; Single precision 4.0 
 

5.2 C API 
 
GoFast also has a C API, which can work with Keil C v5.02 compiler or later. We tested 
on Keil C v8.16. To use a different compiler, the API needs to be changed. The C API is 
implemented in files gf_dp*.a51 and gf_fp*.a51. 
 
Since most C compilers for 8051 do not support a double type, the DOUBLE type is 
defined as a structure: 
 

struct ieeedp 
{ 
    unsigned int wrd[4]; 
}; 
typedef struct   ieeedp  DOUBLE; 

 
Note: The GoFast interface assumes that all variables are in XDATA.  It uses pointers to 
these variables for processing. 
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Single Precision 
char  cabs (char); same as Keil math lib, can replace Keil's 
int abs(int); same as Keil math lib, can replace Keil's 
long  labs(long); same as Keil math lib, can replace Keil's 
float fabs (float); same as Keil math lib, can replace Keil's 
float fpabs(float); same as Keil math lib, can replace Keil's 
float fpsin(float); 
float sin(float); same as Keil math lib, can replace Keil's 
float fpcos(float); 
float cos(float); same as Keil math lib, can replace Keil's 
float fptan(float); 
float tan(float); same as Keil math lib, can replace Keil's 
float fpatan(float); 
float atan(float); same as Keil math lib, can replace Keil's 
float fpexp(float); 
float exp(float); same as Keil math lib, can replace Keil's 
float fplog10(float); 
float log10(float); same as Keil math lib, can replace Keil's 
float fplog(float); 
float log(float); same as Keil math lib, can replace Keil's 
float fpsqrt(float); 
float sqrt(float); same as Keil math lib, can replace Keil's 
float fpceil(float); 
float ceil(float); same as Keil math lib, can replace Keil's 
float fpfloor(float val); 
float floor(float val); same as Keil math lib, can replace Keil's 
float fppow(float, float); 
float pow (float, float);  same as Keil math lib, can replace Keil's 
float fpadd(float, float); also supports x+y, can replace Keil's 
float fpsub(float, float); also supports x-y, can replace Keil's 
float fprsub(float, float); 
float fpmul(float, float); also supports x*y, can replace Keil's 
float fpdiv(float, float); also supports x/y, can replace Keil's 
float fprdiv(float, float); 
char  fpcmp3(float x, float y); -1:x<y; 0:x==y; 1:x>y; -128: NOT compare 
 also supports x?y, can replace Keil's 
void fpftoa(float, char*); convert float to string 
void ftoa(float, char*); 
float fpatof (char*); convert string to float 
float atof (char*); 
char ftoc(float);  convert float to char (8 bits) 
char fptoc(float); 
char fpftoc(float); 
int ftoi(float);  convert float to int (16 bits) 
int fptosi(float); 
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int fpftoi(float); 
long ftol(float);  convert float to long (32 bits) 
long fptoli(float); 
long fpftol(float); 
unsigned char ftouc(float);  convert float to unsigned char (8 bits) 
unsigned char fptouc(float); 
unsigned char fpftouc(float); 
unsigned int ftoui(float);  convert float to unsigned int (16 bits) 
unsigned int fptoui(float); 
unsigned int fpftoui(float); 
unsigned long ftoul(float);  convert float to unsigned long (32 bits) 
unsigned long fptoul(float); 
unsigned long fpftoul(float); 
float ctof(char);  convert char (8 bits) to float 
float ctofp(char); 
float fpctof(char); 
float sitofp(int);  convert int (16 bits) to float 
float itof(int); 
float fpitof(int); 
float litofp(long);  convert long (32 bits) to float 
float ltof(long); 
float fpltof(long); 
float uctof(unsigned char);  convert unsigned char (8 bits) to float 
float uctofp(unsigned char); 
float fpuctof(unsigned char); 
float uitofp(unsigned int);  convert unsigned int (16 bits) to float 
float uitof(unsigned int); 
float fpuitof(unsigned int); 
float ultofp(unsigned long);  convert unsigned long (32 bits) to float 
float ultof(unsigned long); 
float fpultof(unsigned long); 
 
Double Precision 
 
void dpadd  (DOUBLE xdata *ag1,DOUBLE xdata *ag2,DOUBLE xdata *ans); 
 ans = ag1 + ag2 
void dpsub  (DOUBLE xdata *ag1,DOUBLE xdata *ag2,DOUBLE xdata *ans); 
 ans = ag1 - ag2 
void dpmul  (DOUBLE xdata *ag1,DOUBLE xdata *ag2,DOUBLE xdata *ans); 
 ans = ag1 * ag2 
void dpdiv  (DOUBLE xdata *ag1,DOUBLE xdata *ag2,DOUBLE xdata *ans); 
 ans = ag1 / ag2 
void dppow (DOUBLE xdata *ag1, DOUBLE xdata *ag2,DOUBLE xdata *ans); 
 ans = ag1 to pow ag2 
char dpcmp3 (DOUBLE xdata *ag1,DOUBLE xdata *ag2); 
 -1:x<y; 0:x==y; 1:x>y; -128: NOT compare 
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void dpsqrt (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = sqrt(arg1) 
void dpexp (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = exp(arg1) 
void dplog  (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = ln(arg1) 
void dplog10 (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = log10(arg1) 
void dpsin (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = sin(arg1) 
void dpcos (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = cos(arg1) 
void dptan (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = tan(arg1) 
void dpatan (DOUBLE xdata *arg1,DOUBLE xdata *ans); ans = atan(arg1) 
void dpfloor (DOUBLE xdata *val, DOUBLE xdata *ans); ans = dpfloor(arg1) 
void dpceil  (DOUBLE xdata *val, DOUBLE xdata *ans); ans = dpcei(arg1) 
void dpatod  (char xdata *s,DOUBLE xdata *d); string to double 
void dpdtoa  (DOUBLE xdata *d,char xdata *s); double to string 
void dptofp  (DOUBLE xdata *d1, float xdata *f1); convert double to float 
void fptodp  (float xdata *f1,  DOUBLE xdata *d1); convert float to double 
char dtoc (DOUBLE xdata *arg1);  convert double to char (8 bits) 
char dptoc (DOUBLE xdata *arg1); 
char dpdtoc (DOUBLE xdata *arg1); 
int dtoi (DOUBLE xdata *arg1);  convert double to int (16 bits) 
int dptosi (DOUBLE xdata *arg1); 
int dpdtoi (DOUBLE xdata *arg1); 
long dtol (DOUBLE xdata *arg1);  convert double to long (32 bits) 
long dptoli (DOUBLE xdata *arg1); 
long dpdtol (DOUBLE xdata *arg1); 
unsigned char dtouc (DOUBLE xdata *arg1);  convert double to unsigned char (8 bits) 
unsigned char dptouc (DOUBLE xdata *arg1); 
unsigned char dpdtouc (DOUBLE xdata *arg1); 
unsigned int dtoui (DOUBLE xdata *arg1);  convert double to unsigned int (16 bits) 
unsigned int dptoui (DOUBLE xdata *arg1); 
unsigned int dpdtoui (DOUBLE xdata *arg1); 
unsigned long dtoul (DOUBLE xdata *arg1); convert double to unsigned long (32 
bits) 
unsigned long dptoul (DOUBLE xdata *arg1); 
unsigned long dpdtoul (DOUBLE xdata *arg1); 
void ctod (char, DOUBLE xdata *ans);  convert float to char (8 bits) 
void dpcod (char, DOUBLE xdata *ans); 
void dpctod (char, DOUBLE xdata *ans); 
void itod (int, DOUBLE xdata *ans);  convert float to int (16 bits) 
void sitodp (int, DOUBLE xdata *ans); 
void dpitod (int, DOUBLE xdata *ans); 
void ltod (long, DOUBLE xdata *ans);  convert float to long (32 bits) 
void litodp (long, DOUBLE xdata *ans); 
void dpltod (long, DOUBLE xdata *ans); 
void uctod (unsigned char, DOUBLE xdata *ans); convert float to unsigned char (8 bits) 
void uctodp (unsigned char, DOUBLE xdata *ans); 
void dpuctod (unsigned char, DOUBLE xdata *ans); 
void uitod (unsigned int, DOUBLE xdata *ans); convert float to unsigned int (16 bits) 
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void uitodp (unsigned int, DOUBLE xdata *ans); 
void dpuitod (unsigned int, DOUBLE xdata *ans); 
void ultod (unsigned long, DOUBLE xdata *ans); convert float to unsigned long (32 bits) 
void ultodp (unsigned long, DOUBLE xdata *ans); 
void dpultod (unsigned long, DOUBLE xdata *ans); 
Use kfptodp and kdptofp instead of dptofp and fptodp for Keil 5.02 or later. 
 
#define kfptodp(fp,dp) _flipflop ((fp)); fptodp ((fp), (dp)); _flipflop ((fp)) 
#define kdptofp(dp,fp) dptofp ((dp), (fp)); _flipflop ((fp)) 
 

24 



GoFast 8051 Floating-Point Library User’s Guide 

6 Error Conditions 
 
The IEEE 754 Floating Point standard defines several special representations. Signed 
infinity is represented as a sign bit, an exponent field of all ones, and a mantissa field of 
all zeroes. The result of an invalid operation is called Not-a-Number (NaN) and is 
represented as an exponent field of all ones and a non-zero mantissa field (the sign bit is 
insignificant but is generally set). 
 
After FPAC and DPAC operations, the low order bits in FACBIT are set to one of the 
following values: 
 
FACBIT Description Result Value 
0 No error per operation 
1 Underflow zero 
2 Overflow +INF or –INF 
3 Invalid Operation NaN 
 
 

6.1 Addition 
 

 FAC 
 

 0 number +INF -INF NaN
0 0 number +INF -INF NaN

number number ** +INF -INF NaN
+INF +INF +INF +INF NaN NaN
-INF -INF -INF NaN -INF NaN
NaN NaN NaN NaN NaN NaN

 
 

OPN 
 
 
 
 
**: result could be 0 (possibly an underflow), a number, +INF, or –INF 
 

 

6.2 Multiplication 
 

FAC 
 

 0 number +INF -INF NaN
0 0 0 NaN NaN NaN

number 0 ** +/-INF -/+INF NaN
+INF NaN +/-INF +INF -INF NaN
-INF NaN -/+INF -INF +INF NaN
NaN NaN NaN NaN NaN NaN

 
 

OPN 
 
 
 
 

**: result could be 0 (possibly an underflow), a number, +INF, or –INF 
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6.3 Division 
 

DIVISOR 
 

 0 number +INF -INF NaN
0 NaN 0 0 0 NaN

number +/-INF ** 0* 0* NaN
+INF +INF +/-INF NaN NaN NaN
-INF -INF -/+INF NaN NaN NaN
NaN NaN NaN NaN NaN NaN

 
 

DIVIDEND 
 
 
 

 
*: underflow 
**: result could be 0 (possibly an underflow), a number, +INF, or –INF 
 
 

6.4 Comparison 
 

FAC 
 

 0 number +INF -INF NaN
0 = < or > > < * 

number < or > <, =, > > < * 
+INF < < * < * 
-INF > > > * * 
NaN * * * * * 

 
  

OPN 
 
 
 
 
<: FAC is less than operand 
=: FAC is equal to operand (within FUZZ specification) 
>: FAC is greater than operand 
*: FAC does not compare to operand 

 
 

6.5 Functions 
 

Function 
 

 ATN EXP LN/LOG SQRT Trig 
-INF PI/2 0* NaN NaN NaN 
-num number ** NaN NaN *** 

0 0 1 -INF 0 0 or 1 
+num number **** number number *** 
+INF PI/2 +INF +INF +INF NaN 
NaN NaN NaN NaN NaN NaN 

 
 
 
ARG 
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*:  underflow 
**: 0 (possibly underflow) or a number less than 1.0 
***: 0, num, +INF, -INF, or NaN (if magnitude >= 65536) 
****: number > 1.0 or +INF 
 

 

6.6 X to I function 
 

Integer Power 
 

 -/Odd -/Even 0 +/Even +/Odd
-INF 0* 0* NaN +INF -INF 
-num ** *** 1.0 *** ** 

0 +INF +INF NaN 0 0 
+num *** *** 1.0 *** *** 
+INF 0* 0* NaN +INF +INF 
NaN NaN NaN NaN NaN NaN 

 
 
 

OPN 
 
 
 
 
*:  underflow 
**: 0 (an underflow), negative number, or –INF 
***: 0 (an underflow), positive number, or +INF 
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7 Routine Sizes and Execution Times 
 
Note: These measurements were made sometime in the past, but are probably reliable. 

They will be updated in a future revision. 
 

7.1 8051 FPAC Routine Sizes and Execution Times 
 

The sizes shown below are in bytes of program space. The execution time is given in 
CPU cycles for the 8051. Each CPU cycle is 12 oscillator periods. 
 

7.1.1 Basic Operations Set – FPAC 
 
Name Size Exec. Times Comments 
______ ____     typ    max 
LDFAC     45      70       70 Load FAC 
STFAC     35      35       35 Store FAC 
AINT   135    220     310 Max when arg near 1.0 
FIX     60      85     130 
INT     15      10       15 Plus FIX time and space 
FLOAT     55      55       90 
FPADD   305    260     370 (add) Requires OR1 
     270     490 (sub) 
FPCMP   125    140     500 Comparison 
FPMUL   140    450     560 Requires OR1 
FPDIV   185  1070   1390 (DIV) Requires OR1 
OR1   255   Entry/ Exit support 
 
All functions and conversion routines require the complete basic operations package. 
 

7.1.2 Transcendental Functions - FPAC 
 
Name Size Exec. Times Comments 
______ ____     typ    max 
FPATN   245  6400   6400 Requires FR1 & FR2 
FPEXP   150  7500   7400 Requires FR1 & FR2 
FPLN/LOG   280  6000   6500 Requires FR1 & FR2 
FPSQRT   130  2850   2850 Requires FR1 
FPCOS/SIN   110  5050   5050 Requires FR1, FR2, & FR3 
FPTAN   110  8500   8500 Requires FR1, FR2, & FR3 
FPXTOI   165  8300   8300 Requires FR1 
FR1     30   Exception Routines 
FR2     80   Polynomial Routines 
FR3   110   Trig Support Routines 
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7.1.3 Conversion Routines – FPAC 
 
Name Size Exec. Times Comments 
______ ____ __________ 
ASCBIN   290    1700 + n n=920/digit (Req. CR1) 
BINASC   600  1900   4500 Requires CR1 
CR1   120   Conversion Support 
 
 

7.2 8051 DPAC Routine Sizes and Execution Times 
 

The sizes shown below are in bytes of program space. The execution time is given in 
CPU cycles for the 8051. Each CPU cycle is 12 oscillator periods. 
 

7.2.1 Basic Operations Set – DPAC 
 

Name Size Exec. Times Comments 
______ ____     typ    max
LDFACD     70    160     160 Load FAC 
STFACD     50    110     110 Store FAC 
DAINT   185  1000   1320 Max when arg near 1.0 
DFIX   130    190     235 
DINT     25        5       20 Plus DFIX time and space 
DFLOAT   120    165     255 Requires OR1 
DPADD   350    750    1100 (add) Requires OR1 
     850    1260 (sub) 
DPCMP   170    600    1280 Comparison 
DPMUL   180  1380    1530 Requires OR1 
DPDIV   205  5300    6900 (DIV) Requires OR1 
OR1   280   Entry/Exit Support 
 
All functions and conversion routines require the complete basic operations package. 
 

7.2.2 Transcedental Functions - DPAC 
 
Name Size Exec. Times Comments 
______ ____     typ    max 
DPATN   390 24000 24000 Requires FR1 & FR2 
DPEXP   275 34900 34900 Requires FR1 & FR2 
DPLN   345 23000 24400 Requires FR1 & FR2 
   /LOG 
DPSQRT   185 18500 18500 Requires FR1 
DPCOS   210 23400 23400 Requires FR1, FR2, & FR3 

29 



GoFast 8051 Floating-Point Library User’s Guide 

   /SIN 
DPTAN   140 28000 28000 Requires FR1, FR2, & FR3 
DPXTOI   175 26000 26000 Requires FR1 
FR1     35   Exception Routines 
FR2     80   Polynomial Routines 
FR3   130   Trig Support Routines 
 

7.2.3 Conversion Routines – DPAC 
 

Name Size Exec. Times Comments 
________ ____ ___________ 
DASCBN   375     7000 + n n=2500/digit (Req. CR1) 
DBNASC   720   7300 24000 Requires CR1 
CR1   275   Power of ten routine 

 

7.2.4 Precision Translation Routines – DPAC 
 

Name Size Exec. Times Comments 
______ ____     typ    max 
SINGLE   115    125     150 
DOUBLE     60    125     125 
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8 Operation Summary 
 

8.1 Single Precision Operations 
 
Name_ Operation Description Stack 
LDFAC Load FAC = OPN       0 
STFAC Store OPN = FAC       0 
 
FPADD Add FAC = FAC + OPN       4 
FPMUL Multiply FAC = FAC * OPN       4 
FPDIV Divide FAC = FAC /  OPN       4 
FPRDIV Divide FAC = OPN / FAC       4 
FPCMP Compare A per  FAC - OPN       8 
 
FLOAT FAC =  Float of Integer in B:A       0 
INT B: A =  INT (OPN)  {largest int <= fpn in OPN}       2 
FIX B: A =  FIX (OPN)  {integer part of fpn in OPN}       0 
AINT FAC =  FLOAT of largest int <= fpn in OPN       0 
 
FPATN Arctangent FAC = ATN (FAC)     12 
FPCOS Cosine FAC = COS (FAC)     12 
FPEXP e to power FAC = e**FAC     12 
FPLN Natural log FAC = LN (FAC)     12 
FPLOG Common Log FAC = LOG (FAC)     12 
FPSIN Sine FAC = SIN (FAC)     12 
FPSRT Square Root FAC = SQRT (FAC)     12 
FPTAN Tangent FAC = TAN (FAC)     12 
FPXTOI fpn to power FAC = FAC**i {B: A = power}     12 
 
ASCBIN FAC = fpn in ASCII pointed to by DPTR     10 
BINASC fpn in ASCII pointed to by DPTR = FAC     13 
 
 
 
fpn IEEE Floating Point Number 
FAC Floating Point Accumulator (fpn) 
OPN DPTR points to Operand (fpn) 
 
 

8.2 Double Precision Operations 
 
Name__ Operation Description Stack 
LDFACD Load FAC = OPN       0 
STFACD Store OPN = FAC       0 
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DPADD Add FAC = FAC + OPN       4 
DPMUL Multiply FAC = FAC * OPN       4 
DPDIV Divide FAC = FAC /  OPN       4 
DPRDIV Divide FAC = OPN / FAC       4 
DPCMP Compare A  per  FAC - OPN       8 
 
DFLOAT FAC =  Float of Integer in R7: R6: B: A       2 
DINT R7: R6: B: A = largest int <= fpn in OPN       4 
DFIX R7: R6: B: A = integer part of fpn in OPN       2 
DAINT FAC =  Float of largest int <= fpn in OPN       0 
 
DPATN Arctangent FAC = ATN (FAC)     14 
DPCOS Cosine FAC = COS (FAC)     14 
DPEXP e to power FAC = e**FAC     14 
DPLN Natural log FAC = LN (FAC)     14 
DPLOG Common Log FAC = LOG (FAC)     14 
DPSIN Sine FAC = SIN (FAC)     14 
DPSRT Square Root FAC = SQRT (FAC)     14 
DPTAN Tangent FAC = TAN (FAC)     14 
DPXTOI fpn to power FAC = FAC**i {B: A = power}     14 
 
SINGLE FAC = conversion of FAC to single precision       0 
DOUBLE FAC = conversion of FAC to double precision       0 
 
DASCBN FAC = fpn in ASCII pointed to by DPTR     14 
DBNASC fpn in ASCII pointed to by DPTR = FAC     16 
 
 
 
fpn IEEE Floating Point Number 
FAC Floating Point Accumulator (fpn) 
OPN DPTR points to Operand (fpn) 
 
 
The following files comprise the FPAC/DPAC delivery package: 
 
FILE DESCRIPTION
readme.txt Release notes 
lib\*.a51 All source code of GoFast library 
TestAssistant\*.* Test Assistant project (VC++ 6.0). Test Assistant sends the test 

cases and receives the test results via serial port automatically. 
test\*.* Accuracy Test source code (accuracy.c/h) and GoFast library              

header file gofast.h. 
test\build\*.* Silicon Laboratories IDE project accuracy.wsp, makefile of 

Microsoft NMAKE (accuracy.mak), and batch file accuracy.bat. 
test\c8051f330\*.* Board support code. 
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8.3 Accuracy Test 
 
The Accuracy Test program outputs the result of each GoFast function with inputs 
selected for each. Because of the limitation of ROM and RAM size, only one function 
can be tested each time. Users should set the related macro to 1 in the file accuracy.h to 
select which to test. 
 
The Test Assistant program is used to send the test cases to Accuracy Test program 
automatically via serial port. When the test is finished, the test results can be saved and 
compared with the correct results file, which is saved in directory result. See readme.txt 
for details. 
 
The Accuracy Test source code may be used as an example of how the GoFast library 
routines are used by an application program. Execution allows the user to exercise the 
features of the GoFast library and to view its operation. 
 

8.4 Performance Test 
 
Performance Test outputs each function's execution time. The program can be used to test 
the GoFast library or Keil standard math library. Because of the limitation of ROM and 
RAM size, only one routine can be tested at a time. Users should set the related macro to 
1 in the file bench.h. 
 
The Test Assistant program is used to send the test cases to the Performance Test 
program automatically via serial port and calculate the time, which is sent by the 
Performance Test program via serial port. When the test is finished, the test results can be 
saved. See readme.txt for details. 
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Performance Test Results 
(Tested on Silicon Laboratories C8051F330 board, 12MHz) 

 
Single Double 

Function 
GoFast Keil GoFast 

add 53.76 20.252 116.437 
sub 59.064 22.273 115.7 
mul 71.852 21.486 200.024 
div 155.601 89.242 675.331 
cmp 37.768 8.956 75.115 
fabs 3.25 3.792 3.405 
sin 566.35 324.068 2480.175 
cos 557.513 321.301 2509.376 
tan 962.696 525.083 3108.613 
atan 753.152 401.841 2876.746 
log 731.001 396.874 2626.336 
log10 778.619 416.921 2787.991 
exp 881.564 515.099 4179.886 
pow 1639.917 953.854 6935.416 
sqrt 361.673 220.053 2224.42 
ceil 15.242 186.61 56.75 
floor 15.071 186.739 56.616 
char to float 14.946 20.669 36.133 
unsigned char to float 12.584 20.669 34.976 
short to float 15.309 12.502 34.043 
unsigned short to float 15.059 12.502 33.708 
long to float 13.1 11.96 30.894 
unsigned long to float 9.75 9.502 29.133 
float to char 19.167 20.69 28.401 
float to unsigned char 18.942 20.69 28.175 
float to short 21.175 20.856 31.258 
float to unsigned short 17.917 20.856 30.929 
float to long 27.588 21.19 43.171 
float to unsigned long 27.588 21.19 43.173 
abs for char 2.74 2.896  
abs for short 2.573 2.652  
abs for long 3.238 4.196  
double to single 49.711   
single to double 50.575   
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9 Application Notes 
 

9.1 On-Chip Data Memory (#01) 
 
Problem: A number of customers have expressed a need to have the floating point 

operands manipulated by the libraries reside in on-chip data memory 
(OCDM). 

 
 The 8051 has 128 bytes of OCDM. Depending on the particular 

application, 8 to 32 bytes may be used for register banks, 15 to 28 bytes 
may be assigned to FPAC/DPAC processing, some amount of storage is 
allocated for stack space, with the remainder of the OCDM space available 
for user variables. If the FPAC/DPAC operands are to reside in OCDM, 
the user variable space must now hold not only the operands, but one to 
four floating point temporaries (4 to 32 bytes) needed by the conversion 
and function routines (if they are used). As a result, the OCDM fills up 
rapidly. For this reason, we do not encourage this technique if alternatives 
are available. (The release of successor 8051 hardware with additional 
OCDM will, however, make this approach practical). 

 
Solution: From the programmer’s standpoint, the changes below to use OCDM 

operands instead of external data memory operands do not affect the 
method of addressing operands; that is, the operand address is still passed 
in DPTR (although a R/W memory operand in OCDM is only affected by 
the low byte, DPL). We deem the minor inefficiency of using a 16 bit 
addressing scheme for a seven bit address space acceptable to minimize 
code changes and preserve compatibility. 

 
 Old (Change to FPOPNS after label STFAC :) 
 ****  MOV R6, DPL 
 ****  MOV R7, DPH 
  
 New (Change to the following) 
 ****  MOV R1, DPL 
 
 Old (Change 4 occurrences of the following after STFAC:) 
 ****  MOVX @DPTR, A 
 
 New (Change those 4 occurrences to the following) 
 ****  MOV @R1, A 
 

Old (Change 3 occurrences of the following after STFAC:) 
 ****  INC DPTR 
  
 New (Change those 3 occurrences to the following) 
 ****  INC R1 
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 Old (Delete the occurrence of the following after STFAC:) 
 ****  MOV DPL, R6 
 ****  MOV DPH, R7 
 Old (Change after label FDATA) 
 ****  MOVX A, @DPTR 
 
 New (Change to the following) 
 ****  MOV R1, DPL 
 ****  MOV A, @R1 
 
 Old (Change in module DPOPNS after label STFACD:) 
 ****  MOV R6, DPL 
 ****  MOV R7, DPH 
 
 New (Change to the following) 
 ****  MOV R1, DPL 
 
 Old (Change 3 occurrences of the following after STFACD:) 
 ****  MOVX @DPTR, A 
 
 New (Change those 3 occurrences to the following) 
 ****  MOV @R1, A 
 
 Old (Change 2 occurrences of the following after STFACD:) 
 ****  INC DPTR 
 
 New (Change those 2 occurrences to the following) 
 ****  INC R1 
 
 Old (Delete the occurrence of the following after STFACD:) 
 ****  MOV DPL, R6 
 ****  MOV DPH, R7 
 
 Old (Change 3 lines after the label DDATA:) 
 ****  MOVX A, @DPTR 
 
 New (Change to the following) 
 ****  MOV R1, DPL 
 ****  MOV A, @R1 
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9.2 On-Chip Memory Usage (#107) 
 
Problem: Customers have expressed a need to be able to reduce the on-chip memory 

resources consumed by FPAC and DPAC routines.  
 
Solution: Basic operations for the 8051 FPAC and DPAC require one byte of bit 

addressable, on-chip memory. The conversion routines and functions 
consume a second byte. If this resource is at an absolute premium, and 
exception conditions do not need to be signalled, it is possible to reduce 
the total number of bytes needed by FPAC/DPAC to one.  

 
STEP 1 –Remove all references to unnecessary bits 
 

These are found in the result routines FOPRSL, INFRSL, 
NANRSL, UNFRSL, ZERRSL, ONERSL (in functions), and the 
corresponding double precision routine. Delete all assembly 
statements that reference:  
 

FACBIT (Generally, ANL or ORL operations) 
UNFFLG (Generally, SETB operations) 
NANFLG (Generally, SETB operations) 
INFFLG (Generally, SETB operations) 
 

STEP 2 –Change bit declarations 
 

Delete the declarations for UNFFLG, NANFLG, and INFFLG. 
Change the remaining bit declarations to: 

DPFLAG EQU FACBIT.4 
SIGFLG EQU FACBIT.3 
MANSGN EQU FACBIT.2 
FNCSGN EQU FACBIT.1 
FNCSEC EQU FACBIT.0 

 

9.3 Reentrancy (#02) 
 
Problem: A number of customers have expressed a need to have the library be 

reentrant. Because the FPAC/DPAC routines use fixed memory locations 
for the floating point accumulator and associated variables, they are not 
inherently reentrant. 

 
Solution: To make the FPAC/DPAC routines reentrant, it is necessary to call a state 

preservations routine at the start of each interrupt service routine which 
uses FPAC/DPAC and to call a state restoration routine before returning 
from an interrupt service routine that invoked the preservation routine. 
These subroutines preserve static variables and register values on a stack.  
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The following data must be saved/restored across interrupt servicing: 
 
1) Registers including ACC, B, PSW, DPTR, and some FPAC/DPAC bit 

registers. 
 
2) The floating point accumulator (FAC) and associated resident 

variables.  
 

3) Temporaries used by FPAC functions, if functions are (A) included 
and (B) used at an interrupt level.  

 
There will need to be an area to store preserved variables. While this could 
be done on the hardware stack, the amount of data involved would 
consume a large portion of the on-chip data memory. The approach of 
choice would be to use a region of external data memory.   
 
The routine that saves and restores the machine/FPAC state is not, and 
cannot be, reentrant. This means that any interrupt that would invoke the 
state save/restorations routine must be masked during certain critical 
periods.  
 
Steps of state preservation: 
 
A. Save registers on the hardware stack  

 
 CLR IE.7 ;Prevent other interrupts 
  
 PUSH PSW ;Save machine registers 
 PUSH ACC 
 PUSH B 
 PUSH DPL 
 PUSH DPH 
 PUSH FACBIT ;Save FPAC bit registers 
 PUSH CNVBIT  
  
 ;;;  Change register bank number in PSW or 
 ;;;  save registers R0-R7 here  

 
B. Save FPAC variable area to external data memory 
 
**** MOV A,R4 ;Save R4,R6,R7 only if bank switch  

 **** PUSH ACC 
 **** MOV A,R6 
 **** PUSH ACC 
 **** MOV A,R7 
 **** PUSH ACC 
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  MOV DPL,XSPL ; Get external mem stack pointer 
  MOV DPH, SXPH 
 
  MOV R6,#FACBAS  ;Base address 
  MOV R7,#27 ;(15 for FPAC, 27 for DPAC) 
  XMPUSH MOVX A, @R6 
  INC R6 
  MOVX @DPTR,A 
  INC DPTR 
  DJNZ R7,XMPUSH 
 
 **** MOV R7,#HIGH(EXTMEM) ;Only if functions 
 **** MOV R6,#LOW(EXTMEM) 
 **** MOV R4,#4*8 ;4*4 if single precision routines 
 **** CALL STCOPY ;(See XPCNVT module) 
 
  MOV XSPL,DPL ;Update external mem stack pointer 
  MOV XSPH, DPH 
 **** POP ACC ;Only if pushed previously 
 **** MOV R7,A 
 **** POP ACC 
 **** MOV R6,A 
 **** POP ACC 
 **** MOV R4,A 
  
 **** SET IE.7 ;Allow interrupts 
 
 Steps of state restorations: 
 A. Restore the FPAC variable area from external data memory 
   
  CLR IE.7 ;Disallow interrupts 
   
  MOV A,XSPL ;Get external mem stack pointer 
  CLR C 
  SUBB A,#27+4*8 ;Size of the FPAC region 
  MOV XSPL,A ;Update ext mem sp 
  MOV R6,A ;***DPL if no functions 
  MOV A,XSPH 
  SUBB A,#00 
  MOV R7,A ;***DPH if no functions 
 
 **** MOV DPTR,#EXTMEM   ;Only if functions 
 **** MOV R4,#4*8 ;Size of FPAC function temp area 
 **** CALL STCOPY 
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 **** MOV DPL,R6 
 **** MOV DPH,R7 
 
  MOV R6,#FACBAS   ;Base address 
  MOV R7,#27 ;(15 for FPAC, 27 for DPAC) 
  XMPOP MOVX A,@DPTR 
  INC DPTR 
  MOVX @R6,A 
  INC R6 
  DJNZ R7,XMPOP 
  
 B. Restore Registers from the hardware stack 
 
 **** Restore R0-R7 if not banked switched 
 
  POP CNVBIT ;Restore FPAC bit registers 
  POP FACBIT  
 
  POP DPH ;Restore machine state 
  POP DPL 
  POP B 
  POP ACC 
  POP PSW 
 
 **** SET IE.7 ;reenable interrupt 
 

Special Notes: 
This code assumes XSPH:XSPL is intialized to point to the lowest address 
byte of an external memory block that provides (at most) 59*maximum 
reentrant level bytes for storage. Note that 10 bytes are used on the 
hardware stack per reentrant level. 

 
 

9.4 The Floating Point Accumulator Structure in FPACs (#152) 
 

FPACs which are built around the structure of a FAC (Floating Point Accumulator) 
present the user with what may be called a single address virtual machine. An 
understanding of how single address architectures work may give the user more insight 
into effective utilization of FPAC/FACs.  
 
Probably the most durable computer architecture is based on a register-memory 
organization. Registers are in many ways an address space separate from the memory. 
Bulk data storage is the purpose of the memory area while operations can only be done 
on data within registers. This separation permits and requires machine instructions to 
transfer data between the two regions. Once data has been moved into register(s), a 
different class of instructions is used to manipulate it.  
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The FAC organization of FPACs attempts to mimic this structure. A set of the target 
processor’s resources (generally on-chip data memory) is dedicated for the Floating Point 
Accumulator. Whereas hardware – implemented registers can only be accessed by the  
instructions of the architecture – and thus may be protected from invalid references – the 
FAC resources are reserved only by a software convention. Thus, the FAC area is “off-
limits” to conventional access and must only be dealt with by the FPAC routines 
supplied.    
 
An audit of the facilities of an FPAC/FAC look very much like a simple single address 
machine. A set of transfer routines are used to move data between the target processor’s 
bulk memory and the FAC pseudo-register. Operations are performed with the value in 
the FAC and, perhaps, a value in bulk memory.   
 
One key difference must exist between a hardware implementation of single address 
machine and a software implementation: address specification. Hardware implemented 
architectures almost invariably include one or more “address fields” in their instruction 
format. Since software implemented architectures usually cannot directly use this 
hardware format, a different approach to address specification will normally be 
necessary. The FPAC/FAC routines take the approach of using a particular register in the 
underlying target processor to hold the memory address of the operand to be involved in 
an operation. Thus, while single address machines may use just one instruction to 
perform an operation, FPAC/FACs will normally require two instructions: one to place 
the operand’s address into the appropriate register followed by a subroutine call to 
perform the operation. (When sequential operations use the same memory address, 
however, reloading the address register is unnecessary since the FPAC/FAC routines 
almost always preserve the incoming value of the address register.) 
 
Knowing the software conventions used in implementing the FAC, it becomes clear how 
to make an FPAC/FAC “re-entrant”. Hardware-based re-entrancy comes from the ability 
to save the entirety of the state of the machine when a context switch (such as an 
interrupt) occurs (and, of course, the ability to restore the state when switching back!). 
Since the hardware has no idea that a FAC is in use (and that it’s an extension to the state 
information that needs to be saved and restored), the user must – if FPAC re-entrancy is 
needed – manually save and restore the set of target processor resources that comprise the 
FAC. This will include a variety of temporary storage areas and flags in addition to what 
might be considered just the FAC proper. (The FPAC routines which use a memory 
operand in combination with a value in the FAC first transfer the memory operand to 
temporary registers in preparation for later work). This can be a lengthy process, 
especially for double precision FPACs, and since the need to have FPAC re-entrancy on 
target processors that have FPAC/FACs is typically slight or non-existent, the steps to 
make an FPAC/FAC re-entrant are rarely taken.  
 
Currently available FPACs which use a FAC organization include: 8051 FPAC/DPAC, 
68HC11 FPAC/DPAC, 6301 FPAC/DPAC, 6801 FPAC/DPAC, 8096 FPAC/DPAC, Z-
80 FPAC/DPAC, and 8085 FPAC/DPAC.   
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9.5 General Overview of Accuracy and Precision (#122) 
 
For effective use of FPAC/DPAC routines, it is important to have an understanding of the 
meaning of accuracy and precision in the representation of values in the IEEE single and 
double precision format. Although the examples below refer to single precision 
representation, the difficulties shown are present, though to a lesser extent, with double 
precision representation. 
 
Single precision FPAC has a mantissa precision of 24 bits, which is approximately 7.2 
decimal digits. The “approximately” qualifier belies the fact that conversion between 
decimal and binary representations can be inexact. The ASCII to binary conversion 
routine chooses the binary value closest to the decimal value argument, in the event an 
exact decimal-binary conversion is not possible.  
 
The table below illustrates this inexact conversion problem. The first column gives a 
decimal value. The second column contains the decimal value of the IEEE single 
precision number closest to the decimal value.  
 
 Decimal Value  Decimal Value 
  (Closest Single Precision Value)
 
  1.0  1.0 
  1.1  1.10000002384 
  1.01  1.00999999046 
  1.001  1.00100004673 
  1.0001  1.00010001659 
 
  0.1  1.0000000149e-1 
  0.01  9.9999997765e-2 
  0.001  1.0000000475e-3 
  0.0001  9.9999997474e-4 
 
The representational difficulty becomes apparent when computing the difference of two 
“close” numbers. For example, the operation: 
 
  1.001-1.0 = 0.001 
 
After conversion of IEEE single precision representation becomes: 
 
  1.00100004673-1.0 = 1.00004673e-3 
 
In like manner, 
 0.001 + 1.0 – 1.0 
 
will yield 1.00004673e-3 instead of the expected 0.001 (or 0.0010000000475) because of 
the representation characteristics. 
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These problems become particularly apparent when using the EXP and LN functions. In 
the case of the LN function (and the corresponding log), the algorithm effectively 
subtracts 1.0 from the argument. As shown in the example above, this subtraction can 
magnify imprecisions. Thus, an unexpected value can result from apparently accurate 
value, if the user is unaware of the underlying representation aspects of FPAC/DPAC.  
 
 

9.6 Tailoring Double Precision Function Accuracy (#148) 
 

The IEEE floating point standard defines a single precision and a double precision 
format. The single precision format has about seven decimal digit accuracy while the 
double precision format has nearly sixteen decimal digit accuracy. Quite often, more than 
single precision accuracy may be needed for a particular application, but accuracy offered 
by the double precision format far exceeds the requirement. The result of unnecessary 
accuracy may be excessive computation time.  
 
In general, it is not practical to modify DPAC operation routines in an attempt to trade 
lesser accuracy for faster execution time. However, certain functions in the double 
precision function library are amenable to simple accuracy reductions that will speed the 
routines. These functions are the exponentiation (DPEXP) and the sine and cosine 
(DPSIN and DPCOS).  
 
These routines are suitable for accuracy/speed tradeoffs because after a relatively brief 
range reduction or scaling sequence, these functions use somewhat lengthy polynomial 
approximations. The approximation polynomials are such that by shrinking their degree, 
accuracy will be lost but speed will be gained. Other functions use a split-domain 
approach to keep the approximation polynomial small (DPATN, DPLN/DPLOG), use an 
iterative algorithm not suitable for early termination (DPSQRT) , or have a fixed 
computation sequence that needs to remain unchanged (DPXTOI, DPTAN).  
 
The exponentiation routine has a fifteen (or, in more recent DPACs, a thirteen) degree 
polynomial. Roughly speaking, each degree equates to one decimal digit of accuracy. 
Hence, to go from sixteen digit accuracy to ten digit accuracy, a reduction of six degrees 
could be realized.  
 
To implement DPEXP accuracy reduction, two modifications to the source code in the 
DPFNCS module need to be made. First, the label associated with the start of the DPEXP 
constants table should be moved to the appropriate value. In the example given, to reduce 
the polynomial degree by six, the label at the start of the constant table should be 
associated with the seventh constant in the list rather than the first constant. (Note that by 
moving the label instead of deleting the constants, it’s easier to back out of the change). 
The label name depends on the processor the DPAC was written for:  
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 Processor DPEXP Constant Table Label 
 --------------------------------- ------------------------------------ 
 8051, 8085, Z-80  DEXCNS 
 80386, 68HC11, 6301, 6801  DEXCON 
 68000, 8096  DEXPCN 

8086  EXPCONS 
 
In addition, the symbolic name indicating the number of constants in the table needs to 
reflect the correct number of constants in the abbreviated table. Again in the example 
given, the table length constant in DPEXP would be changed from its delivery value of 
sixteen to ten. The symbolic name is, as before, dependent on the processor:  
 
 Processor DPEXP Table Length Name 
 ---------------------------------- ----------------------------------- 
 8051, 8085, Z-80  DNEXCN 
 80386, 68HC11, 6301, 6801  DNEXCN 
 68000, 8096  NDEXPC 
 8086  NEXPCN 
 
To estimate the reduction in computation time, take the typical function time as delivered 
then subtract the result of multiplying the number of constants removed from the table by 
the sum of the typical multiply time plus the typical addition time.  
 
The trigonometric routines gain about two decimal digits of accuracy for each constant in 
their polynomial table. Hence, continuing with the example reduction to ten digits of 
accuracy, three constants could be removed from the approximation polynomial tables for 
sine and cosine.  
 
 Processor Sine Cosine 
     Table Length    Table    Length 
 ---------------------------------- ----------- ------------- ------------ ------------- 
 8051, 8085, Z-80 DSINCN DNSNCN DCOSCN DNCOCN  
 80386, 68HC11, 6301, 6801 DSICON DNSICN DCOCON DNCOCN 
 68000, 8096 DSINCN NDSINC DCOSCN NDCOSC 
 8086 SINCON NSINCON COSCON NCOSCON 
 
A word of warning when doing this. The approximation error with the delivered 
functions is generally randomly distributed within less than two bits of actual function 
value. By truncating the polynomials, the approximation error becomes regular and 
monotonically increasing across sections of function domains. If the required function 
accuracy is met even at the points of maximum error, then this will not matter. If, 
however, the algorithm using reduced accuracy functions is sensitive to error distribution, 
either added accuracy will be required or different approximation polynomials with better 
error distributions will be needed.  
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9.7 Implementing an XˆY Operation 
 

The GoFast library provides an operation to compute X to the Ith power (I is an integer). 
As shown in the FPAC/DPAC manual, all combinations of operands yield a deterministic 
result of the “proper” type. If at all possible, this routine should be used.  
 
Expanding to the general case of a floating point number taken to a floating point power 
is somewhat more complicated because a floating point power can have a “special” value 
(+INF, -INF, or NaN), or it can be a non-integral value applied to a negative number (for 
example, -1.5 ˆ 0.5).  
 
The traditional means for implementing an X to the Yth power is to follow this sequence 
of steps: 
 
LN(X) Take the natural logarithm of X 
Y*LN(X) Compute the natural logarithm of the result 
EXP(Y*LN(X))  Take e to the power of the product 
 
One difficulty in implementation occurs when the first step, taking the natural logarithm 
of X, “fails” – that is, the LN function returns NaN, indicating an invalid operation, and 
the X operand was not NaN. This will happen if X is a negative number or if X is     –
INF. Another failure will occur when 1.0 is taken to a +INF or –INF. The second step of 
the algorithm given above must, in this instance, multiply 0.0 by an INF value. In this 
particular case, we know the result should be 0.0 (because 1.0 to any power is 1.0), but 
the multiply routine, as per the IEEE proposed standard, returns NaN. A corrolary to this 
second instance is taking +INF to the 0th power.   
 
If the particular application that needs an XˆY operation can insure that the X value is a 
positive number and that the Y value is a number, then the algorithm given will work 
well. Should an application not have limited domains on the operands, the implementer 
will need to pre-screen the operands to handle cases where the algorithm does not 
function. The first step in doing this is completing (and, possibly, changing) the table 
below so that the XˆY operation returns a meaningful value for all relevant combinations 
of operands.  
 
Result Range for XˆY operation 
 
 Y 

X -INF Y < 0 0 0 < Y +INF NaN 
-INF 0* 0* 1 ? ? NaN 

X < -1 ? ? 1 ? ? NaN 
-1 ? ? 1 ? ? NaN 

-1 < X < 0 ? ? 1 ? ? NaN 
0 +INF +INF NaN 0 0 NaN 

0 < X < 1 +INF **** 1 *** 0* NaN 
1 1 1 1 1 1 NaN 
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1 < X 0* *** 1 **** +INF NaN 
+INF 0* 0* 1 +INF +INF NaN 
NaN NaN NaN NaN NaN NaN NaN 

 
*: Underflow 

**: result could be 0 (an underflow) or a number (less than 1.0) 
***: result could be a number (greater than 1.0) or +INF 

 
The implementer can use the XTOI function as a template for doing the pre-screening 
operation.  
 
 

9.8 Error Codes and FPAC Conversion Routines (#123) 
 

The FPAC application note details the behavior of the ASCII-to-binary and binary-to-
ASCII conversion utilities with respect to setting of the error code and sticky bits (error 
flags). In general, it applies to all the FPAC libraries, although some of the specifics of 
routine operations will vary (for example, in an instance discussed below, when and if an 
ASCII-to-binary conversion routine will experience overflow during the processing of a 
value too small to represent is library dependent).  
 

9.8.1 ASCBIN and DASCBN – ASCII to binary conversion routines 
 
The general flow of these conversion routines is to compute a mantissa value then scale 
the mantissa value by multiplying it by a computed power of ten. In both cases, the 
computations are done in the floating point domain, using the FPAC addition, 
multiplication, and division routines of the appropriate precision. Because the normal 
routines are used, the error code is set and, under certain circumstances, sticky bits may 
be set. (Note: certain custom versions of FPAC perform the mantissa and scaling 
operations in the integer domain – for extended precision at the cost of added code space 
and execution time. Although operations are not performed by floating point routines the 
range of the result is checked, so these custom libraries follow the same error code and 
error flag conventions.)  
 
If the result of the conversion is within the range of the precision in use, the error code 
returned will be 0 (no error), and no sticky bits will be set by the conversion routine. If 
the value returned is smaller than is representable, a zero value will be returned, the error 
code will be set to 1 (for underflow), the sticky bit for underflow (generally called 
UNFFLG) will be set, and in certain cases the overflow flag (generally called INFFLG) 
may be set (scaling to a negative power of ten is done with division by the appropriate 
positive power of ten – which may be too big to represent). If the value returned is larger 
than is representable, an infinity value of the appropriate sign will be returned, the error 
code will be set to 2 (for overflow), and the sticky bit for overflow (generally called 
INFFLG) will be set. If the ASCII data provided is syntactically invalid, (no mantissa 
digits, for example), a Not-a-Number representation (NaN) will be returned, the error 
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code will be set to 3 (for invalid operation), and the sticky bit for invalid operations 
(generally called NANFLG) will be set.  
 

9.8.2 BINASC and DBNASC – binary to ASCII conversion routines 
 
The general flow of these conversion routines to divert special values for independent 
processing, otherwise to scale the incoming value by a computed power of ten to put it in 
a scientific notation form. A string processing routine is then used to convert a selected 
range of values to a floating point ASCII representation. 
 
The special values: zero, signed infinity, a Not-a-Number (NaN), are “converted” to 
ASCII by what amounts to a string copy. Since no floating point routines are used, 
conversion of these special values does not change the error code nor set any sticky bits.  
 
The computing of the scaling power of ten, and the scaling of the values not selected for 
special processing is done in the floating point domain, using the FPAC addition, 
multiplication, and division routines of the appropriate precision. Because the normal 
FPAC routines are used, and because all of the floating point operations performed to 
convert a standard value to ASCII yield a standard value, the error code will be set to 0 
(no error) and no sticky bits will be set. (Note: certain custom versions of FPAC perform 
these operations in the integer domain – for extended precision at the cost of added code 
space and execution time. Since integer domain routines are used, the error code and 
sticky bits are left unchanged.) 
 
If it is desirable to have the binary-to-ASCII conversion routine set the error code to the 
appropriate value (and/or to set the appropriate sticky bit), some code should be added to 
the segments that process the special case values. In general, this will mean replacing a 
return instruction with a register load instruction (to the desired error code) and a jump to 
the error code setting routine (in the xPOPNS module). Of course, the specific register 
and routine to jump to will vary with the particular library involved. The details can be 
found by observing the steps taken by the special value return routines in the xPOPNS 
module; they are invoked by the basic operations routines and the range checking routine 
to return a special value and to set the error code and sticky bits.  
 
 

9.9 Understanding and Using FPAC Routine Timing Estimates 
(#135) 

 
The routine by routine timing estimates provided in FPAC manuals can aid in estimating 
the performance of programs using FPAC modules. Unfortunately, as with many 
compilation of statistics, improper use of the estimates can produce misleading results. 
The purpose of this application note is to assist in the correct utilization and interpretation 
of the timing numbers.  
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Timing Units 
The timing estimates are given in units of a particular processor’s instruction cycles. 
Depending on the particular processor, the oscillator or clock frequency is often a 
multiple of the instruction cycle frequency (in most cases, the factor is two or three 
although in one instance it is twelve!). Included as part of the FPAC data sheet is a table 
giving typical instruction cycle periods. Usually, manufacturer data sheets refer to 
instruction periods or “processor” clock frequency. The tabulation of instruction 
execution times given in processor specifications is normally proceeded or followed by a 
discussion of clock frequency and instruction cycle timing.  
 
Estimate Values 
The basic FPAC routines have two timing estimate values. The typical value is an 
estimate of the number of instruction cycles that a broad range of expected values, or 
value pairs, will consume, on average. Of course, execution times for specific values will 
differ from the given typical value.  
 
The maximum execution cycle count is, as the name states, the longest processing time 
that a routine can consume. In general, this is a very rare occurrence.  
 
Estimate Conditions
The system conditions assumed for the timing estimates are important factors in the 
timing estimates. A direct conversion from instruction cycle count to execution time, 
(multiplying the cycle count by an appropriate instruction period), is often made. If the 
system does not have a constant clock frequency, (the system may use processor clock 
stretching to “hide” refresh or DMA cycles), some form of compensation in the form of 
an effective clock frequence is necessary to meaningfully apply the FPAC timing 
estimates.  
 
Another important assumption made about system behavior is zero-wait state memory for 
data and code reference. While the 8051 and 6809 require this, most processors have 
some facility for inserting wait states in memory access operations. Clearly, the increased 
memory access time associated with wait state memory will add execution time to FPAC 
routines. Manufacturers data sheets usually contain some guidelines for estimating the 
performance reduction caused by various memory speeds.  
 
On processors that can overlap instruction execution with memory cycles, FPAC routines 
are implemented to be as insensitive to longer memory accesses times as practical. This 
can be seen in some cases by unusual instruction ordering, memory accesses that may 
sometimes unnecessarily pre-fetch data items to avoid additional memory cycles, and 
maximum practical use of register-resident values. While these steps reduce the potential 
performance reduction, inevitably, the use of wait state memory will slow FPAC routine 
execution. System hardware designers, utilizing manufacturer’s projections, should be 
able to estimate a fairly accurate performance reduction factor.  
 
Finally, in the case of processors with dynamic bus sizing, FPAC assumes that all 
memory references are made with the maximum bus width supported by the processor.  
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Typical-only Timing Estimates 
The FPAC functions do not have “maximum” timing values. This reflects the extreme 
difficulty in choosing values that will consume the maximum instruction cycles. Instead, 
the function timing estimates are built up from a combination of basic operator timings – 
tuned for the manner in which the basic operators are used with the particular function. 
Once these basic operator timings, added to the execution time of surrounding 
instructions, are summed, an adjustment is applied to insure that the typical timing given 
will only rarely be exceeding in practice. The adjustment factor is routine dependent and 
is generally in the range of three to ten percent.  
 
 

9.10 The Polynomial Function Evaluation Routine (#139) 
 

The functions supplied by the FPAC/DPAC library are of general utility. Some users, 
though, need special purpose functions in addition to the standard FPAC/DPAC 
functions. When constructing the code to perform the special purpose function 
evaluation, it can be necessary to compute the value of a polynomial function. In 
addition, a general polynomial function evaluator may be required for some FPAC/DPAC 
applications. Making the polynomial evaluator, which is internal to the FPAC/DPAC 
library, can serve both needs.  
 
Evaluation of any polynomial function requires three items: the function argument (the 
“x” value), the list of coefficients, and the number of coefficients. The table below 
illustrates the method that is used to supply the function argument.  
 
FPAC/DPAC Argument Use Routine_______ 
Z-80 FAC LDPAC or LDFACD 
8085 FAC LDPAC or LDFACD  
8051 FAC LDPAC or LDFACD 
8096 FAC LDPAC or LDFACD 
68HC11 FAC LDPAC or LDFACD 
6801 FAC LDPAC or LDFACD 
6301 FAC LDPAC or LDFACD 
8086 user mem – none – (DS:DI pointer) 
80386 registers LDOP1 or DLDOP1 
68000 registers GETFP1 or GETDP1 
 
The 68000 routine is internal to FPAC/DPAC. The user must place the argument value 
on the stack, then a four byte value (simulating a return address), then call the internal 
routine to properly load the appropriate registers. For more details, see the header 
comments associated with the internal routines.  
 
The coefficient list is pointed to by a register containing the base address of a list of 
floating point values in IEEE floating point format. The first constant in the list is applied 
to the highest power of the function argument, followed by succeedingly lower power 
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argument coefficients, finally reaching the constant (zero power) coefficient. The table 
below indicates the register used to hold the coefficient table pointer.  
 
FPAC/DPAC Coefficient Pointer Register 
Z-80 HL 
8085 HL 
8051 DPTR coefficients reside in ROM 
8096 FPPNTR coefficients reside in ROM 
68HC11 X 
6801 X 
6301 X 
8086 SI coefficients reside in CS 
80386 EBX coefficients reside in CS 
68000 A1 
 
The number of coefficients, (which is the degree of the polynomial plus one), is supplied 
in a register. The specific register is given below: 
 
FPAC/DPAC Number of Coefficients
Z-80 A 
8085 A 
8051 A 
8096 FACTMP  (on-chip dedicated RAM location) 
68HC11 A 
6801 A 
6301 A 
8086 AX 
80386 ECX 
68000 D7 
 
Once the values have been prepared for the polynomial evaluator, the user calls one of 
two routines. The two routines provided allow a polynomial in powers of the function 
argument or in squared powers of the function argument (generally associated with 
trigonometric functions). The table below gives the names of these routines.  
 
FPAC/DPAC Standard Squared 
Z-80 XSER or DXSER XXSER or DXXSER 
8085 XSER or DXSER XXSER or DXXSER  
8051 XSER or DXSER XXSER or DXXSER 
8096 XSER or DXSER  XXSER or DXXSER 
68HC11 XSER or DXSER X2SER or DX2SER 
6801 XSER or DXSER X2SER or DX2SER 
6301 XSER or DXSER X2SER or DX2SER 
8086 XSER XSQRSER 
80386 XSER or DXSER X2SER or DX2SER 
68000 XSER or DXSER X2SER or DX2SER 
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Note that the single and double precision forms of the polynomial evaluation routines for 
the 8086 are in different modules. If they are made public, they would have to have 
different names. 
 
The polynomial function evaluators return the result in the same way the parameter is 
supplied. The “inverse” routine to the loading routine is used to store the result for the 
8051, 8085, Z-80, 8096, and 80386 FPAC/DPACs. The 8086 FPAC/DPAC overwrites 
the argument at DS:DI with the result.  
 
The 68000 FPAC/DPAC has internal routines FOPRSL and DOPRSL which round, 
compress, and place the in-register value on the stack. To invoke one of these routines, 
the user places the return address in A0, and then jumps to the appropriate routine’s entry 
point.  
 
As with many efforts in software implementation, it is often easier to learn from existing 
functional code than to independently develop and debug code. For this reason, it is 
advisable to examine the exponentiation (EXP) and the simple trigonometric routines 
(SIN/COS) for examples of how to use the standard and squared power polynomial 
evaluation routines. These functions can serve as effective templates for the successful 
implementation of custom FPAC/DPAC functions.  
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