
Soft-Scope User’s Guide i

Soft-Scope®

Remote-Target Debugger
for Windows 95 and Windows NT

ii Soft-Scope User’s Guide

Copyright and Trademark Information

Copyright 1994, 1997 Concurrent Sciences, Inc. All rights reserved.
Third edition, first printing May 1997.

No part of this publication may be reproduced, translated into another
language, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of Concurrent Sciences, Inc.

*Other brands and names are marked with an asterisk and are the
property of their respective owners.

Concurrent Sciences, Inc. makes no warranty of any kind with regard to
this material, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose. Concurrent
Sciences, Inc. assumes no responsibility for any errors that may appear in
this document. Concurrent Sciences, Inc. makes no commitment to
update or to keep current the information contained in this document.

Concurrent Sciences, Inc.
PO Box 9666 • Moscow, ID 83843 USA

(208) 882-0445 • Fax (208) 882-9774
info@consci.com • www.debugger.com

Soft-Scope User’s Guide iii

Quick Contents

2

1

3

4

 7

5

 8

 6

 A

1. INTRODUCTION...1-1

2. GETTING STARTED WITH SOFT-SCOPE2-1

3. SOFT-SCOPE BASICS ...3-1

4. CONTROLLING PROGRAM EXECUTION WITH
SOFT-SCOPE...4-1

5. EXAMINING DATA WITH SOFT-SCOPE5-1

6. CONFIGURING SOFT-SCOPE ..6-1

7. CREATING AND USING SOFT-SCOPE MACROS7-1

8. TOOLS THAT SOFT-SCOPE SUPPORTS...................................8-1

A. DATA TYPES, OPERATORS, REGISTERS, AND
DESCRIPTORS.. A-1

Quick Contents

iv Soft-Scope User’s Guide

Documentation Conventions

Computer output and code examples: Courier , usually in a separate
paragraph.

Computer input: Courier 11 bold , usually in a separate paragraph.

Dialog box prompt: Times, (data reference: or command:), in lower
case. Prompt is followed by computer input.

Command names and function names: Bold italic, as in LOAD
command or main() function.

Variables: Courier 11 italic (mt_busy).

File names, configuration options: Times bold (configuration option
targ.dev), in lower case.

Mouse buttons, keyboard keys and names: Initial capital, in angle
brackets, as in press <Enter> or double-click <Button-L>.

Key presses: An example of concurrent key presses is <Alt>+<Tab>.

 Menu names and selections, dialog box names, button names,
window titles: Times bold, as in File menu.

Pull-down menu subfunctions: Times bold, as in File/Load. The pull-
down menu subfunctions are named by the selection path used to
invoke them. The dots may be omitted in text.

NOTES: Indicate important information.

CAUTION : Indicate potential damage to hardware or data.

Soft-Scope User’s Guide v

Quick Contents (continued)

F

B

E

C

D

I

B. ERROR MESSAGES ... B-1

C. DEBUGGING .EXE EXECUTABLE FILES C-1

D. HELPFUL HINTS ...D-1

E. ADD ONS... E-1

F. INTEL FLOATING-POINT EMULATION F-1

INDEX ... INDEX-1

Quick Contents (continued)

vi Soft-Scope User’s Guide

(This page blank)

Soft-Scope User’s Guide vii

Contents

Contents

1. INTRODUCTION...1-1
Overview ...1-2
FAQs: Frequently Asked Questions ..1-3
Chapter Summaries..1-5

2. GETTING STARTED WITH SOFT-SCOPE2-1
Overview ...2-2
Installing Soft-Scope on the Host ..2-3

Host-system Requirements.. 2-3
Soft-Scope Distribution Disks... 2-3
Soft-Scope Installation for Windows 95 and Windows NT................ 2-4

Figure 2-1: Changing baud rate using Options window................... 2-5
Invoking Soft-Scope ...2-6

Message Window... 2-6
Figure 2-2: Initial Soft-Scope window with connect message.......... 2-7

Loading Your First Application ...2-8
Figure 2-3: File-Load dialog box... 2-9
Figure 2-4: Soft-Scope display after application load...................... 2-9
Figure 2-5: Run application to first line of main()...........................2-10

Troubleshooting .. 2-11
Symptoms of Problems..2-11
Checklist of Corrective Actions..2-11

3. SOFT-SCOPE BASICS ...3-1
Overview ...3-3
Pull-Down Menu Map ..3-4

Table 3-1: Pull-Down Menu Map.. 3-4

viii Soft-Scope User’s Guide

Window Pull-Down Menu ...3-7
Finding a String... 3-7

Figure 3-1: Find dialog box.. 3-8
Capturing a Window to a Log File... 3-9

Figure 3-2: Log window showing capture of Trace window..........3-10
Saving Window Layout..3-11
Open Window List..3-11

Accelerator Keys ..3-12
Double-click Function...3-14

Double-click in the Code Window..3-14
Double-click on Data References..3-14
Double-click on Pointers...3-15

Online Help ...3-16
Commands and Command Line...3-17

Figure 3-3: Command line dialog box...3-17
Command Syntax Elements...3-19

Loading an Application ...3-21
Load..3-21

Figure 3-4: File-Load dialog box...3-22
Symbol Load..3-24

Figure 3-5: File-Symbol load dialog box......................................3-24
Restart...3-25

Figure 3-6: File-Restart dialog box...3-26
After the Load..3-28

Figure 3-7: Soft-Scope after an application load...........................3-28
Soft-Scope .tmp Files...3-29
Command Line...3-30

Soft-Scope User’s Guide ix

4. CONTROLLING PROGRAM EXECUTION WITH SOFT-SCOPE
...4-1

Overview ...4-3
Controlling Program Execution ..4-3

Stepping through Code... 4-4
Single Step... 4-4
Specify a Number of Steps... 4-5
Step Command via the Command Line... 4-5

Code Window..4-6
Figure 4-1: Code window in Source mode 4-7
Figure 4-2: Code reference dialog box... 4-8

Toolbar Buttons.. 4-8
Figure 4-3: Display modes dialog box.. 4-9
Figure 4-4: Code window in Assembly mode with logical addresses4-10

Code Window Execution Pointers..4-11
Code References ..4-12

Line Numbers...4-12
Symbol Names...4-12
Guidelines...4-13

Locating Code ...4-14
Breakpoints Window ..4-16

Figure 4-5: Breakpoints window..4-17
Toolbar Buttons..4-18
Command Line...4-19

Editing Breakpoints ..4-20
Figure 4-6: Breakpoint edit dialog box...4-20

Software Breakpoints ...4-22
Permanent Software Breakpoints..4-22
Temporary Software Breakpoints..4-23

x Soft-Scope User’s Guide

Hardware Breakpoints ...4-24
Data Breakpoints..4-24
Command Line...4-24
Debug Registers...4-25
Exec Breakpoints...4-26
Command Line...4-26

Executing to a Location ..4-27
Go ...4-27
Go to a Specific Location...4-27
Return from a Procedure Call..4-28
Go to a Cursor Position ..4-28
Stop ...4-28

Procedure Call Sequence ...4-30
Calls Window...4-30

Figure 4-7: Calls window...4-31
Command Line...4-31

Stack Information ...4-32
Trace Window ...4-33

Figure 4-8: Trace window displaying procedures..........................4-33
Toolbar Buttons..4-34

Figure 4-9: Assembly display modes dialog box...........................4-35
Figure 4-10: Trace window displaying procedures and source......4-36

Command Line...4-37
Figure 4-11: Trace window displaying procedures, source, and assembly
code ..4-37

Trace Buffer ...4-38
Trace File Size..4-38

Soft-Scope User’s Guide xi

5. EXAMINING DATA WITH SOFT-SCOPE5-1
Chapter Contents... 5-1

Overview ...5-3
Numbers..5-3

Setting the Default Base.. 5-4
Table 5-1: Default number bases.. 5-5

Operators ..5-6
Symbolic Operator Examples.. 5-6
Arithmetic Operators Return Numeric Values.................................... 5-6
Logical Operator Examples... 5-7

Table 5-2: C operators .. 5-8
Table 5-3: Soft-Scope specific operators and functions.................. 5-9

Strings ...5-10
Escape Sequences ..5-10
Where to Enter Strings...5-11

Table 5-4: String escape sequences...5-11
Reference Summary ...5-12

Table 5-5: Reference summary...5-12
The Data Window...5-14

Figure 5-1: Data reference dialog box..5-14
Toolbar Buttons..5-15

Figure 5-2: Display modes dialog box..5-15
Command Line...5-16

Figure 5-3: Data window in Eval mode..5-17
Double-click for Quick References...5-17

Figure 5-4: Data window in expanded format...............................5-18
Data References ...5-19

Simple Variables...5-19
Referencing Arrays...5-20

Displaying an Entire Array...5-20
Displaying a Single Element of an Array.....................................5-20
Displaying a Selected Number of Arrays...................................5-20

xii Soft-Scope User’s Guide

Variables as Subscripts...5-21
Referencing Structures..5-21
Referencing Unions...5-22
Referencing Bitfields...5-22
Referencing Pointers...5-23
Dereferencing Pointers..5-23

Figure 5-5: Before double-click on “->”.......................................5-23
Figure 5-6: After double-click on “->”...5-23

Selector Is Not Stored in Memory ..5-24
Making Complex Assignments..5-24

Referencing Memory ...5-25
Using the Symbols Window to Find Code References.....................5-26

Reference Scoping ..5-27
Examples..5-27

Table 5-6: Reference Scoping..5-28
Referencing Automatic (Stacked-based) Variables...........................5-28
Referencing Register Variables..5-29

The Watch Window ...5-30
Toolbar Buttons..5-31

Figure 5-7: Display modes dialog box..5-31
Figure 5-8: Watch window in Normal display mode.....................5-32

Command Line...5-33
Watching a Pointer..5-33
Watching Memory..5-33

The Symbols Window...5-34
Toolbar Buttons..5-34
Command Line...5-35
Displaying Global Symbols..5-36

Figure 5-9: Symbols window in Procedures mode........................5-36

Soft-Scope User’s Guide xiii

Built-in Functions ..5-37
Determining Addresses...5-37
Using Return as a Memory Reference...5-38
Determining How Many Elements in an Array..................................5-38
Reading and Writing to Port Addresses...5-38

Type Overrides ...5-40
Applying a Type Override to a Variable...5-40
Applying a Type Override to an Address...5-41
Using a Variable to Superimpose its Data Type over the Address of An-
other Variable...5-42
Using a User-declared Variable to Define a Type Override..............5-42
Changing the Amount of Memory Displayed....................................5-43
Using Expressions in Type Overrides To Do Mathematical Operations5-43
Assigning Values Using Type Overrides...5-44
Displaying Data in its Most Useful Format.......................................5-44

The Dump Window ...5-46
Toolbar Buttons..5-47

Figure 5-10: Dump modes dialog box..5-47
Command Line...5-49

Figure 5-11: Dump window in Byte mode, 8 bytes per line...........5-49
Uploading Memory and Registers ...5-50

Command Line...5-51
Format of Upload Files...5-51

The Registers Window ...5-52
Toolbar Buttons..5-52
Command Line...5-53
Accessing Registers When the Target is Running..............................5-53

Figure 5-12: Registers window for 80386EX target......................5-54
Contents of the Registers Window...5-55

xiv Soft-Scope User’s Guide

CPU Structures...5-56
Figure 5-13: IDT descriptors...5-56
Figure 5-14: Data window in Normal mode.................................5-58
Figure 5-15: Data window in Eval mode......................................5-58

Command Line...5-58
Table 5-7: Descriptor abbreviations...5-59

Modifying a Descriptor Element..5-59
Real-Mode Structures ..5-60

Table 5-8: Peripheral Control Block...5-60
Table 5-8: Peripheral Control Block (continued)...........................5-61

$VECTOR[] Array...5-64
Application Input/Output ..5-64

6. CONFIGURING SOFT-SCOPE ..6-1
Overview ...6-3
Options Window..6-3

Toolbar Buttons.. 6-4
Save and Restore Options .. 6-4
Command Line... 6-5

Figure 6-1: Options window showing default values........................ 6-5
Soft-Scope Configuration Options...6-6

Table 6-1: Soft-Scope configuration options................................... 6-6
Control Default Number Base... 6-7
Change Log File Name... 6-7
Define Initial Command... 6-7
Define Initial Macro File.. 6-7
Configure Host To Target Communications.. 6-8
Control Screen Refresh Rate... 6-8
Control Command Delay.. 6-8
Define Command.. 6-9
Change Log File Size..6-10
Define Path To Application Files...6-10

Soft-Scope User’s Guide xv

Define Tab Spaces..6-10
Define Case for Symbol Search..6-10
Access CPU-specific Data Types..6-11
Display LDTR register value..6-11
Define Pointer Type Override Display...6-12
Specify Integer Data Type Size...6-13
Specify Floating Point Emulation Parameter.....................................6-14
Control Memory Caching...6-14
Control Code Memory Cache Flush...6-14
Define Host Communication Device..6-15
Specify Where To Search For Memory Control Block....................6-15
Specify Where To Search for the NULL Device..............................6-16
Specify Size of Memory Reads...6-16
Tell Soft-Scope that Interrupts are Disabled....................................6-16
Verify Memory Writes...6-17
Specify temporary file location..6-17
Specify the Size of the Trace File...6-17
Preserve Trace Data across Applications...6-18

7. CREATING AND USING SOFT-SCOPE MACROS7-1
Overview ...7-3
Creating a Macro ...7-3

Compiled Macro Files.. 7-4
Built-in CPU Variables.. 7-5

Macros Window ..7-6
Loading a Macro File... 7-6
Toolbar Buttons.. 7-6

Figure 7-1: Macros window.. 7-7
Command Line... 7-7
Example Use of cmd.macro and load.init_command.......................... 7-8
Identify Macros in the Macros Window... 7-9

xvi Soft-Scope User’s Guide

Macro Parameters ..7-10
Optional Parameters...7-10
Integer Type...7-10
LITERAL Parameter...7-11
TEXT Parameter..7-12
EXPRESSION Parameter..7-12
REFERENCE Parameter..7-12
ADDRESS Parameter..7-13
LINE Parameter...7-13
MODULE and PROCEDURE Types...7-13

Local Variables ...7-14
Declaring Local Variables..7-14
Defining One-dimensional Arrays..7-15
Assigning Numeric Values to Arrays..7-15
Assigning Pointer Values from Your Application...............................7-16

Macro Statements ..7-17
ABORT..7-17
BREAK..7-17
IF, IF...ELSE ..7-17
RESPOND...7-18
RETURN...7-18
WHILE ..7-18
MACRO SUSPEND..7-19
MACRO RESUME..7-19

Custom Commands with an Extended Monitor................................7-20
Manipulating Windows from Macros ..7-22

WMOVE ...7-23
WRESIZE..7-23
WFUNCTION...7-23

Examples..7-24

Soft-Scope User’s Guide xvii

Macro Print Function ..7-25
PRINT ...7-25

Conversion Specifiers...7-25
Table 7-1: Conversion specifiers..7-26

$ Parameter Prefix in Control Strings...7-27
Escape Sequences ..7-27
Directed Output from Macros...7-27
Using Field-width Specifiers with PRINT or WPRINTF..................7-28
Specifying the Leading Zero Flag..7-28

8. TOOLS THAT SOFT-SCOPE SUPPORTS...................................8-1
Tool Summary ...8-2

Table 8-1: Supported tools .. 8-2
Sample Files... 8-4

Linking Your Application ..8-5
CSi-Link™ .. 8-5

Generating Symbolic Information..8-6
SSBUG.. 8-6

Tool Directives ..8-7
Borland.. 8-7
Intel.. 8-7

ASM86, ASM286 and ASM386 ... 8-7
BND286/386 and BLD286/386 ... 8-8
Intel iC-86, iC-286 and iC-386 .. 8-9
Intel LINK86/LOC86.. 8-9
Intel PL/M-86, PL/M-286 and PL/M-3868-10

MetaWare ..8-10
Microsoft ...8-10
Phar Lap...8-11

Phar Lap LinkLoc...8-11
Phar Lap 386/ASM..8-12

Watcom...8-12

xviii Soft-Scope User’s Guide

A. DATA TYPES, OPERATORS, REGISTERS, AND DESCRIPTORS
.. A-1

Data Types ... A-2
Table A-1: Data types for use in type overrides..............................A-2

Operators ... A-8
Table A-2: Soft-Scope operators...A-8

General-Purpose Registers ...A-10
Figure A-1: General-purpose registers...A-10
Figure A-2: Flags register.. A-11
Figure A-3: Segment registers..A-12

NPX Registers ...A-13
Figure A-4: NPX registers...A-13

Protected-Mode Registers ..A-14
Figure A-5: Control registers...A-14
Figure A-6: Protected-mode registers..A-14

Descriptors and Subfields ...A-15
Table A-3: 386 protected-mode variablesA-15
Table A-4: Page table entries...A-15
Table A-5: Descriptor subfields..A-16
Table A-6: TSS386 subfields...A-17
Table A-6: TSS386 subfields (continued).....................................A-18

B. ERROR MESSAGES ... B-1
Overview .. B-2
Address Error Messages .. B-3

Example Address Error Message.. B-3
Explanation... B-3
How To Interpret Address Errors ... B-4

Table B-1: Conversion entry codes.. B-4
Table B-2: Address error messages ... B-5

Error Messages ... B-7

Soft-Scope User’s Guide xix

C. DEBUGGING .EXE EXECUTABLE FILES C-1
Overview .. C-2
Debugging .exe Files ... C-2

Preparing Your Application...C-2
Using the Special Monitor...C-3
Loading an .exe Application..C-3

D. HELPFUL HINTS ...D-1
Overview ..D-2
Helpful Hints ..D-3

Changing the Execution Point..D-3
Source Line Address..D-3
Changing an Executable Instruction...D-4
Bypassing Start-up Code..D-5
Copying Memory...D-5
Receiver Timeouts..D-6
Segment Limit Exceeded...D-6

E. ADD ONS... E-1
Real-Time Operating Systems Support .. E-2

Kernel Objects ... E-3
Figure E-1: SuperTask! kernel objects dialog box.......................... E-3

Task List.. E-4
Figure E-2: SuperTask! task list dialog box.................................... E-4

Current Task.. E-4
Figure E-3: SuperTask! current task dialog box.............................. E-4

xx Soft-Scope User’s Guide

F. INTEL FLOATING-POINT EMULATION F-1
Overview .. F-2
Intel Floating-Point Emulation .. F-2

INDEX ... INDEX-1

Soft-Scope User’s Guide 1-1

1

1. Introduction

Chapter Contents

Overview ...1-2
FAQs: Frequently Asked Questions ..1-3
Chapter Summaries..1-5

1-2 Soft-Scope User’s Guide

1. Introduction

Overview

Soft-Scope is a remote-target, source-level debugger for embedded-
system development. It contains basic features found in other Windows-
based debuggers, such as pull-down menus, dialog and text boxes, display
and modification of symbols and CPU structures, source-code display,
execution trace, and single- or multiple- instruction execution control. This
version of Soft-Scope works with our CSi-Mon target-resident monitor.
See the CSi-Mon Monitor User's Guide for information about installing
the monitor.

In the following pages, you will find answers to questions frequently asked
about Soft-Scope and CSi-Mon. The chapter closes with a brief summary
of each chapter in the manual.

Overview

Soft-Scope User’s Guide 1-3

1. Introduction

1

FAQs: Frequently Asked Questions

How do I get technical support?
If you have a current maintenance contract, contact our technical support
staff by telephone at (208) 882-0445 (9am - 5pm, Pacific Time), by email
at tech@consci.com, or by fax at (208) 882-9774. If you need to
purchase a maintenance contract, contact our sales staff at (800) 897-
3001, (208) 882-0445, or by email at info@consci.com.

What are the host-system requirements?
For you to install and run Soft-Scope properly, your host computer must
be able to run Windows 95 or NT version 3.5x or 4.0 and have 2MB of
free RAM and 6MB of free disk space.

For a list of the development tools (compilers, assemblers, linkers, and
locators) that Soft-Scope supports, see the chapter, Tools that Soft-
Scope Supports.

What are the target-system requirements?
The CSi-Mon monitor can be configured to support most of the x86 16-
and 32-bit processors running in real or protected mode. For a complete
list, refer to the CSi-Mon Monitor User's Guide. For protected-mode
applications, the monitor requires approximately 8KB of code space and
20KB of combined data and stack space. For real mode, it requires 4KB
code space and 14KB data and stack space.

What are the communication requirements for Soft-Scope
and CSi-Mon?
Typically, the CSi-Mon monitor communicates with Soft-Scope via an RS-
232 serial link. CSi-Mon supports the NS16550, NS16450, 8251, and
8274 UARTs. Other UARTS can be supported by modifying the source

FAQs: Frequently Asked Questions

1-4 Soft-Scope User’s Guide

1. Introduction

file siuart.c and the header file siuart.h, which can be found among the
CSi-Mon source files. Soft-Scope uses the host PC’s serial port.

What other hardware and software can be used with Soft-
Scope?
Soft-Scope supports a variety of in-circuit emulators, logic analyzers,
evaluation boards, ROM emulators and RTOS kernels. Please contact our
technical sales department at (800) 897-3001, (208) 882-0445, and
info@consci.com for a complete list.

FAQs: Frequently Asked Questions

Soft-Scope User’s Guide 1-5

1. Introduction

1

Chapter Summaries

This Soft-Scope User’s Guide contains the following chapters:

1. Introduction
This chapter contains some frequently asked questions and provides basic
information that will help you use this manual.

2. Getting Started with Soft-Scope
Read this chapter to learn how to install and invoke Soft-Scope, and how
to load your first application. There is a troubleshooting section at the end
of the chapter to help you resolve problems with getting Soft-Scope up
and running.

3. Soft-Scope Basics
This chapter contains general descriptions of Soft-Scope’s pull-down
menus, windows, and commands. It also discusses how to load an
application.

4. Controlling Program Execution in Soft-Scope
This chapter describes how to execute your application and view its source
code. It discusses in detail how to reference the source code, single step,
step to a specified location, use breakpoints, and examine procedure-call
nesting.

5. Examining Data with Soft-Scope
Read this chapter to learn how to access data, as well as how to use some
of the more advanced features of Soft-Scope. For example, in this chapter
you will learn how to directly reference memory, how to use type overrides
to display the most useful information, and how to use Soft-Scope’s built-in
functions.

Chapter Summaries

1-6 Soft-Scope User’s Guide

1. Introduction

6. Configuring Soft-Scope
Soft-Scope allows you to configure many of its functions and commands to
best fit your needs. This chapter provides detailed information about each
configuration option available.

7. Creating and Using Soft-Scope Macros
This chapter describes Soft-Scope’s macro language, which allows you to
customize the debugger to meet your specific needs.

8. Tools that Soft-Scope Supports
You should read this chapter before you start debugging an application. It
is a tool-by-tool explanation of how to prepare an application for
debugging so that it is fully compatible with Soft-Scope.

Appendix A: Data Types, Operators, Registers, and
Descriptors
This appendix contains tables and figures of supported data types,
registers, and CPU structures.

Appendix B: Error Messages
Refer to this appendix for a list of error messages and what they mean.

Appendix C: Debugging .exe Executable Files
Read this appendix for information about debugging .exe files on a target
PC.

Appendix D: Helpful Hints
Refer to this appendix for some helpful hints.

Chapter Summaries

Soft-Scope User’s Guide 1-7

1. Introduction

1

Appendix E: Add Ons
Includes information about RTOS support using the Soft-Scope Kernel
Awareness Standard.

Appendix F: Intel Floating-Point Emulation
This appendix describes how to configure Soft-Scope to recognize Intel
8087 floating-point emulation instructions.

Index

Chapter Summaries

Soft-Scope User’s Guide 2-1

2

2. Getting Started with
Soft-Scope

Chapter Contents

Overview ...2-2
Installing Soft-Scope on the Host ..2-3

Host-system Requirements.. 2-3
Soft-Scope Distribution Disks... 2-3
Soft-Scope Installation for Windows 95 and Windows NT................ 2-4

Figure 2-1: Changing baud rate using Options window................... 2-5
Invoking Soft-Scope ...2-6

Message Window... 2-6
Figure 2-2: Initial Soft-Scope window with connect message.......... 2-7

Loading Your First Application ...2-8
Figure 2-3: File-Load dialog box... 2-9
Figure 2-4: Soft-Scope display after application load....................2-10
Figure 2-5: Run application to first line of main()............................2-11

Troubleshooting ..2-12
Symptoms of Problems...2-12
Checklist of Corrective Actions...2-12

2-2 Soft-Scope User’s Guide

2. Getting Started with Soft-Scope

Overview

This chapter describes procedures for installing and invoking Soft-Scope
and loading your first application. A troubleshooting section is included to
help you resolve commonly encountered problems.

It is assumed that you have already installed the CSi-Mon monitor on your
target board or PC. If not, see the CSi-Mon Monitor User’s Guide for
instructions on how to install the CSi-Mon monitor.

We recommend you read the readme.wri file included on distribution disk
number one for any information about your version of Soft-Scope that
became available after this manual went to press.

Overview

Soft-Scope User’s Guide 2-3

2. Getting Started with Soft-Scope

2

Installing Soft-Scope on the Host

Host-system Requirements

Your host computer must have at least an 80486 processor, a hard drive
with at least 6MB of free disk space, and at least 2MB of free RAM. We
recommend you use a VGA monitor with 800x600 resolution.

A serial port is required to connect your host PC to the CSi-Mon monitor
running on your target board. See the CSi-Mon Monitor User’s Guide
for more details on communicating with your target board. Windows NT
version 3.5x, 4.0, or Windows 95 must be installed on the host.

Soft-Scope Distribution Disks

The Soft-Scope software comes on four distribution disks:

Disk 1 The Soft-Scope for Windows executable file (sswin32.exe),
support files, and readme.wri.

Disk 2 Soft-Scope .dll files.

Disk 3 Support files and sample programs in directory \samp.

Disk 4 A ROMmable sample program.

For a detailed listing of installed files and where they are installed, see
contents.wri on disk one. After installation, this file and readme.wri will
be in the directory containing sswin32.exe (default = sswin).

Installing Soft-Scope on the Host

2-4 Soft-Scope User’s Guide

2. Getting Started with Soft-Scope

Soft-Scope Installation for Windows 95
and Windows NT

To install Soft-Scope to run under Windows 95/NT on your host
computer, follow these six steps:

1. Invoke Microsoft Windows.

2. Place disk 1 in the floppy disk drive from which you will install
Soft-Scope.

3. Choose Start/Run from the Windows taskbar. The Run dialog
box will open.

4. Type x:install in the Open text box, where x is the disk drive
from which you are installing. Choose OK.

5. Insert disks 2, 3, and 4 when prompted.

6. Serial communication parameters are defined in the sswin32.ini
file found in the directory where you installed Soft-Scope (default
= sswin). By default Soft-Scope will use the standard Windows
serial device driver (comm.drv), 9600 baud and the com2 port. If
you need to change these values, use the Display command from
the Options pull-down menu. Soft-Scope supports baud rates up
to 115200. To select another baud rate, double-click <Button-L>
on connect.baudrate=9600 in the Options window and enter the
new baud rate in the text box. To select another com port,
double-click <Button-L> on connect.comport=com2 and enter the
new com port. See figure 2-1 for an example of changing the baud
rate to 115200.

Installing Soft-Scope on the Host

Soft-Scope User’s Guide 2-5

2. Getting Started with Soft-Scope

2

Figure 2-1: Changing baud rate using Options window

Installing Soft-Scope on the Host

2-6 Soft-Scope User’s Guide

2. Getting Started with Soft-Scope

Invoking Soft-Scope

Before invoking Soft-Scope for the first time, you will need to startup the
CSi-Mon monitor running on your target (board or PC) and connect your
host PC to your target’s serial port. Make sure you are using the correct
com ports and both the host PC and target are using the same baud rate.
Use a serial communication program such as Kermit or HyperTerminal to
determine if your host PC can talk to your target.

To invoke Soft-Scope, select Programs/Soft-Scope/Soft-Scope from the
Windows taskbar or create a Windows shortcut. Upon execution, the
Soft-Scope main window will open followed by the Message window.

Message Window

The initial Soft-Scope screen, as shown in figure 2-2, contains a menu bar
and the Message window. Notice the messages inside the window
include version and copyright information, serial number, and a message
about establishing contact with the target. If Soft-Scope cannot make
contact with the target, you’ll see the error message “Remote - Target not
responding” in the middle of your screen. In that case you’ll need to
troubleshoot your serial connection to the target. See the Troubleshooting
section later in this chapter and in the CSi-Mon Monitor User’s Guide.

Invoking Soft-Scope

Soft-Scope User’s Guide 2-7

2. Getting Started with Soft-Scope

2

Figure 2-2: Initial Soft-Scope window with connect message

Invoking Soft-Scope

2-8 Soft-Scope User’s Guide

2. Getting Started with Soft-Scope

Loading Your First Application

Soft-Scope can be used to debug absolutely located, bootable files,
prepared with tools discussed in the Tools that Soft-Scope Supports
chapter. A loadable application image for Soft-Scope contains both
executable instructions and associated symbolic information.

In this section, we will load one of the csamp programs found in the \samp
subdirectory. For a complete discussion of loading applications, see the
section Loading an Application in the chapter Soft-Scope Basics.

Use Soft-Scope to download bootable absolute files to the target by
following these steps:

1. Choose the Load... command from the File pull-down menu to open
the dialog box shown in figure 2-3.

2. Enter the file name, or choose the Browse... button to select a file from
directory listings.

Loading Your First Application

Soft-Scope User’s Guide 2-9

2. Getting Started with Soft-Scope

2

Figure 2-3: File-Load dialog box

3. After making all of your selections in the File-Load dialog box, click
on the OK button. You should see the status line at the bottom of the
Soft-Scope window recording the percentage of file loaded as your
application is loaded. The Code window will then open showing your
application’s startup code in source mode as shown in figure 2-4.

Figure 2-4: Soft-Scope display after application load

Loading Your First Application

2-10 Soft-Scope User’s Guide

2. Getting Started with Soft-Scope

The arrow in the Code window shows which line of code is referenced by
the instruction pointer. To run your application to the first line in main.c ,
select the Go to... command from the Code pull-down menu and enter go
main in the text box as shown in figure
2-5.

Figure 2-5: Run application to first line of main()

You are now ready to set breakpoints and step through your application.
Detailed information about these and other commands are found later in
this user’s guide and in Soft-Scope’s online help.

Loading Your First Application

Soft-Scope User’s Guide 2-11

2. Getting Started with Soft-Scope

2

Troubleshooting

This section will help you identify problems that may arise during your first
Soft-Scope session. For more information, see the Troubleshooting
section of the CSi-Mon Monitor User’s Guide.

Symptoms of Problems

• The Soft-Scope initial display doesn’t appear as expected.

• Soft-Scope reports it can not communicate with the CSi-Mon monitor.

• Soft-Scope printed an error message about a configuration option.

• The target application won’t load.

• The target application loads, but won’t execute properly.

Checklist of Corrective Actions

1. Have you accidentally altered the directory structure that Soft-Scope
created when it was installed (contents.wri lists that directory
structure)? If so, Soft-Scope won’t know where to find information
that it needs to operate.

2. Are all of your cable connections tight? If you are using a PC target or
if your hardware requires it, are you sure that your serial connection
has a null-modem configuration? [An easy way to affect this
configuration is to attach an inexpensive null-modem adapter to your
serial cable.]

3. Make sure you are using the correct com port and baud rate. Try
talking to your target using a terminal program such as Kermit or
HyperTerminal to confirm your serial connection is working properly.

Troubleshooting

2-12 Soft-Scope User’s Guide

2. Getting Started with Soft-Scope

4. If you are loading a real-mode application, you must be running a real-
mode version of the CSi-Mon monitor on your target board or PC. A
protected-mode application requires a protected-mode monitor.

Troubleshooting

Soft-Scope User’s Guide 3-1

3

3. Soft-Scope Basics

Chapter Contents

Overview ...3-3
Pull-Down Menu Map ..3-4

Table 3-1: Pull-Down Menu Map.. 3-4
Window Pull-Down Menu ...3-7

Finding a String... 3-7
Figure 3-1: Find dialog box.. 3-8

Capturing a Window to a Log File... 3-9
Figure 3-2: Log window showing capture of Trace window..........3-10

Saving Window Layout..3-11
Open Window List..3-11

Accelerator Keys ..3-12
Double-click Function...3-14

Double-click in the Code Window..3-14
Double-click on Data References..3-14
Double-click on Pointers...3-15

Online Help ...3-16
Commands and Command Line...3-17

Figure 3-3: Command line dialog box...3-17
Command Syntax Elements...3-19

Loading an Application ...3-21
Load..3-21

Figure 3-4: File-Load dialog box...3-22
Symbol Load..3-24

Figure 3-5: File-Symbol load dialog box......................................3-24
Restart...3-25

Figure 3-6: File-Restart dialog box...3-26

3-2 Soft-Scope User’s Guide

3. Soft-Scope Basics

After the Load..3-28
Figure 3-7: Soft-Scope after an application load...........................3-28

Soft-Scope .tmp Files...3-29
Command Line...3-30

Soft-Scope User’s Guide 3-3

3. Soft-Scope Basics

3

Overview

Soft-Scope for the Microsoft Windows 95/NT operating system uses
Windows conventions whenever possible, so getting around in Soft-Scope
is similar to using your other Windows applications. For details on how to
manipulate windows and use the PC keyboard and mouse, see Soft-
Scope’s online help and your Microsoft Windows user’s guide.

Soft-Scope offers features specific to debugging embedded applications.
Many of them, such as the window-capture feature, require special
understanding. This chapter describes these features and the application
loading process.

Overview

3-4 Soft-Scope User’s Guide

3. Soft-Scope Basics

Pull-Down Menu Map
Table 3-1 lists the Soft-Scope menu map items and associated pull-down
commands. A brief summary is given for each command. Window, File,
and Help commands will be discussed in this chapter. The chapters that
follow will cover the rest of the pull-down commands.

Table 3-1: Pull-Down Menu Map

File Code Data

Load...
Download application symbols
and data.

Display...
Enter a reference to activate the
Code window.

Examine...
Evaluate a data expression.

Symbol load...
Download symbolic information
only.

Module
Display program modules in the
Symbols window.

Watch...
Place a variable into the Watch
window.

Restart...
Reset registers and reload
descriptor tables.

Calls
Display procedure call nesting.

Symbols
Display application symbols in
the Symbols window.

Upload...
Save memory/registers to a file
for later debugging.

Trace
Display execution trace.

Registers
Display CPU registers in the
Registers window.

View log
View the contents of the log
file.

Step into
Step over
Step into or over a procedure
call.

Dump...
Display memory in the Dump
window.

Command line...
Enter a command.

Go to return
Return from a procedure call.

CPU structures...
View a second menu listing the
CPU structures specific to your
target system.

Exit/Quit
Terminate Soft-Scope.

Go to...
Execute to the referenced
location.

Recently loaded file list. Stop
Stop target execution.

Pull-Down Menu Map

Soft-Scope User’s Guide 3-5

3. Soft-Scope Basics

3

Table 3-1: Pull-Down Menu Map (continued)

Table continued on next page.

Break Macro Options

Display
Display and set breakpoints.

Display
Display a list of loaded macros.

Display
Display a list of current options.

Execution...
Set a software-execution
breakpoint.

Load...
Load and compile a macro.

Reload settings
Reload the options file.

Access...
Set a hardware-access
breakpoint.

Resume
Resume a suspended macro.

Save settings
Save current options to the
options file.

Write...
Set a hardware-write breakpoint.

Exec...
Set a hardware-execution
breakpoint using debug
registers.

Pull-Down Menu Map

3-6 Soft-Scope User’s Guide

3. Soft-Scope Basics

Table 3-1: Pull-Down Menu Map (continued)

View Window Help

Toolbar
Turn toolbar on/off.

Tile
Arrange open windows so
borders don't overlap.

Index
Display an Index of help topics.

Status bar
Turn status bar on/off.

Cascade
Arrange open windows in an
overlapping pattern.

Using help
Describes how to use help.

Arrange icons
Organize the icons displayed at
the bottom of the window.

About Soft-Scope...
Displays Soft-Scope's version
number.

Find string...
Search for a specified string.

Capture
Save the contents of the active
window to the log file.

Layout save
Save the window configuration.

List of open Soft-Scope
windows. Select a name to
activate that window.

Pull-Down Menu Map

Soft-Scope User’s Guide 3-7

3. Soft-Scope Basics

3

Window Pull-Down Menu

The Window pull-down menu includes commands for doing standard
window icon manipulations such as Tile, Cascade and Arrange icons.
Consult Soft-Scope’s online help or your Microsoft Windows user’s guide
if you need instructions on using these functions. This section will discuss
Find string..., Capture, and Layout save.

Finding a String

Select the Find string... command from the Window pull-down menu to
search for a text string in a window. The search function completes a
search for a specific character string of not more than 40 characters and
works in any window except the Code window when it is in assembly
mode.

Enter the string you want to find in the Find dialog box shown in figure 3-1.
When the string is found, the cursor moves to the first character in the
string and the string is displayed in the currently active window.

Window Pull-Down Menu

3-8 Soft-Scope User’s Guide

3. Soft-Scope Basics

Figure 3-1: Find dialog box

The Find dialog box gives you several options:

Match whole The search function finds strings thatmatch
word only only what you enter into the text box. It

doesn’t find strings that contain your search
string as a proper substring. For example, if
you typed mod in the text box, the word
module would not be considered a match.

Match case The search function finds only strings that match
the case of the characters you enter.

Direction Controls the search direction (up/down).

Find next Searches for the next occurrence.

Cancel Cancels the search.

Window Pull-Down Menu

Soft-Scope User’s Guide 3-9

3. Soft-Scope Basics

3

Capturing a Window to a Log File

Using the Capture command from the Window pull-down menu, you can
capture the contents of the current window to a log file. All of the data
displayed in the current window is copied. See figure 3-2 for an example
of a Log window.

Specify a count followed by the accelerator key <Ctrl>+<A> to capture a
count number of lines:

25 <Ctrl>+<A>

Specify the log file name and path with the cmd.file configuration option,
which is explained in more detail in the Configuring Soft-Scope chapter.
The default log file name is sswin32.log.

If the file specified by cmd.file already exists, Soft-Scope gives you the
option to append your capture to the end of the file or to start over and
rewrite the file.

You can append any sort of data you want to the Log window and log file
with the WPRINTF macro command, which is discussed fully in the
Macro Print Functions section of the Creating and Using Soft-Scope
Macros chapter:

wprintf (log, “%s”, “Print this in the log
window”)

Window Pull-Down Menu

3-10 Soft-Scope User’s Guide

3. Soft-Scope Basics

Figure 3-2: Log window showing capture of Trace window

To view the contents of the log file, use the View log command from the
File pull-down menu to open the Log window. Although everything you
write to your log file is stored on disk, the Log window can display only
the last 500 lines of the log file. See the Configuring Soft-Scope chapter
for a discussion of the configuration option log.winsize, which enables you
to alter the number of lines in the Log window.

To clear the Log window and erase the entire contents of the current log
file, use the Clear toolbar button.

Window Pull-Down Menu

Soft-Scope User’s Guide 3-11

3. Soft-Scope Basics

3

Saving Window Layout

Use the Layout save command from the Window pull-down menu to
save the size and location of windows that have been moved or resized
during the current Soft-Scope session.

Open Window List

At the bottom of the Window pull-down menu is a list of open windows.
A checkmark identifies the active window. To make another window in
the list the active window, click on it with your mouse <Button-L>.

Window Pull-Down Menu

3-12 Soft-Scope User’s Guide

3. Soft-Scope Basics

Accelerator Keys

Soft-Scope pull-down menus and some of the commands can be invoked
with accelerator keys as shown below. Following the Windows
convention, the letter following the <Alt> key is usually the first letter of the
pull-down menu title as identified by the underscore. Soft-Scope
commands use the <Ctrl> key followed by a letter.

These are the accelerator keys:

<Alt>+ Activates the Break pull-down menu

<Alt>+<C> Activates the Code pull-down menu

<Alt>+<D> Activates the Data pull-down menu

<Alt>+<F> Activates the File pull-down menu

<Alt>+<H> Activates the Help pull-down menu

<Alt>+<M> Activates the Macro pull-down menu

<Alt>+<O> Activates the Options pull-down menu

<Alt>+<W> Activates the Window pull-down menu

<Ctrl>+<A> Capture the current window to a file

<Ctrl>+<C> Cancels the current operation

<Ctrl>+<F> Opens the Find dialog box

<Ctrl>+<L> Opens Command line dialog box

<Ctrl>+<Q> Quits/Exits Soft-Scope; all work files are
erased except the temporary quick-reload file

<Ctrl>+<X> Closes the active window

<Ctrl>+<End> Displays last page of the current window

<Ctrl>+<Home> Displays first page of the current window

Accelerator Keys

Soft-Scope User’s Guide 3-13

3. Soft-Scope Basics

3

<Ctrl>+<PgDn> Pages down one-half of the current window

<Ctrl>+<PgUp> Pages up one-half of the current window

<Ctrl>+<Shift>+<Tab> Activates previous window in window queue

<Ctrl>+<Tab> Activates next window in window queue

Accelerator Keys

3-14 Soft-Scope User’s Guide

3. Soft-Scope Basics

Double-click Function

One of the most useful tools of the Soft-Scope user interface is the left
mouse button (<Button-L>) double-click. Double-clicking <Button-L>
allows you to accomplish a variety of tasks without having to touch your
keyboard or move elsewhere in the Soft-Scope window.

In general, you can initiate the default function in any window except the
Breakpoints window, by double-clicking <Button-L>. For example,
double-clicking <Button-L> on an item in the Watch window will open the
Modify dialog box (the default function) and place it in the text box.

Double-click in the Code Window

Double-clicking <Button-L> evaluates the expression identified by the
cursor and places it in the appropriate window. For data references,
double-clicking <Button-L> will open the Data window and display the
reference in normal mode. For code references, double-clicking <Button-
L> will open the Code window and display the code associated with the
reference.

Double-click on Data References

By double-clicking <Button-L> on data references in the Data and Watch
windows you can manipulate the way you view structures, unions, pointers
and classes. Assume the following structure:

struc1 structure (...)

Double-click <Button-L> on or after the word “structure” to display the
entire structure. Double-click <Button-L> before the word “structure” to
place the structure in a dialog box for modification.

Double-click Function

Soft-Scope User’s Guide 3-15

3. Soft-Scope Basics

3

Double-click on Pointers

Double-click <Button-L> to reference pointers. Double-click <Button-L>
before the “->“ to display the pointer in a dialog box for modification.
Double-click on the “->“ to dereference the pointer and display the
dereferenced data. To display the indirect data in a dialog box for
modification, double-click <Button-L> after the “->“.

Double-click Function

3-16 Soft-Scope User’s Guide

3. Soft-Scope Basics

Online Help

Soft-Scope’s online help contains much of the information found in this
user’s guide. The hypertext links between help topics provide an excellent
way to find the information you are looking for.

The Help pull-down menu contains several options:

Index Displays an index of topics. Put the cursor on
the item you want and click the left mouse
button.

Soft-Scope’s online help uses the standard
windows help engine. The menu bar and
toolbar contain functions to search for, print, set
bookmarks in and annotate a help topic.

Using help Displays the standard windows information
about using Help.

About Soft-Scope... Displays Soft-Scope’s version number and
copyright information.

Online Help

Soft-Scope User’s Guide 3-17

3. Soft-Scope Basics

3

Commands and Command Line

Soft-Scope commands are commonly invoked via the Command line
dialog box. The dialog box is activated by entering <Crtl>+<L>.
Commands are entered in the text box. Figure 3-3 shows the dialog box
and command for causing Soft-Scope to execute to the function main.

Figure 3-3: Command line dialog box

Soft-Scope commands can also be used in macros as discussed in the
Creating and Using Soft-Scope Macros chapter.

These are the Soft-Scope commands:

BR[EAKPT] [-] [[EXEC] coderef [when-then]]
BR[EAKPT] [-] [(ACCESS | WRITE) memref [when-then]]

CALLS

DIS[ASM] [[TO] coderef]

DUMP [[TO] memref]

EVAL (memref | coderef) [, (memref | coderef)]*

EXIT

G[O] [EXEC] coderef
G[O] [(WRITE | ACCESS) memref]
G[O] RETURN

HELP [keyword]

LINE [coderef]

Commands and Command Line

3-18 Soft-Scope User’s Guide

3. Soft-Scope Basics

L[IST] [[TO] lineref]

LOAD filename
LOAD (RESTART | SYMBOLS) filename

MACRO [LIST] [[TO] macroname]]
MACRO LOAD filename
MACRO DELETE [macroname]
MACRO RESUME
MACRO SUSPEND

MESSAGE[S]

MODULE [[TO] : modname]
MODULE :modname = filename

PROCEDURES [[TO] coderef]

QUIT

REG

SET [[TO] optionname]
SET [RELOAD | SAVE]
SET [optionname = optionvalue]

STACK [USAGE | RESET]

S[TEP] [INTO | OVER]

STOP

SYMBOLS [[TO] coderef]

TRACE

TYPE (memref | coderef) [, (memref | coderef)]*

UPLOAD memref [REGISTER[S]] filename
UPLOAD REGISTER[S] filename

VER[SION]

WATCH [memref [, memref]*]

Commands and Command Line

Soft-Scope User’s Guide 3-19

3. Soft-Scope Basics

3

Command Syntax Elements

The command syntax elements listed below are used in both command-line
commands and in menu-selection dialog boxes. Optional entries are
defined by brackets ([]), and a vertical line (|) indicates a choice
between the items on either side of the line.

These are the command syntax elements:

address A logical, physical, or linear address

coderef address | [: modname]# linenum |

[: modname.] codesym

codesym The name of a procedure or label

dataref coderef | memref | lineref

datasym The name of a symbol

f: Block device driver specification

filename A system-dependent identifier for a disk file

filename.bug A .bug file name associated with a relocatable DOS or
OMF86 program, including a path to the file

hexnumber16 A 16-bit hexadecimal number

keyword A word to use for a Help search

linenum A line number found in the current module or in
modname

lineref : modname | [: modname]# linenum |
[: modname.] codesym

macroname The name of a macro from the currently loaded macros

memref address | lineref |
[: modname.][codesym.] datasym

Commands and Command Line

3-20 Soft-Scope User’s Guide

3. Soft-Scope Basics

modname A module name

optionname The name of a configuration option

optionvalue The value of a configuration option

TO Places the reference at the bottom of the window, and
fills the upper part of the window with what is before
the reference.

Commands and Command Line

Soft-Scope User’s Guide 3-21

3. Soft-Scope Basics

3

Loading an Application

Soft-Scope can be used to debug real- and protected-mode absolutely
located bootable files prepared with tools discussed in the chapter Tools
that Soft-Scope Supports. A loadable application image for Soft-Scope
contains both executable instructions and associated symbolic information.

Soft-Scope’s format of choice for loadable files is the .abs file which is an
extended version of an .omf file produced by our linker, CSi-Link. Other
formats can be used as long as Soft-Scope can access their symbolics.
For example, Soft-Scope can be used with .exe files prepared in the
special way discussed in the appendix Debugging .exe Files, as well as
with files in OMF-86, OMF-286, HEX, and other formats (see the
chapter Tools that Soft-Scope Supports).

Load

To load a bootable absolute file to your target, select Load... from the File
pull-down menu to open the dialog box shown in figure 3-4.

Loading an Application

3-22 Soft-Scope User’s Guide

3. Soft-Scope Basics

Figure 3-4: File-Load dialog box

File name Enter the file name, or choose the Browse... button to
select a file from the directory listing.

Hardware setup Enter a command to be invoked before your
application is loaded. The check box toggles the
invocation on/off. For example, invoke a macro that
writes test data into memory to help you find
uninitialized-variable problems.

Command Enter a command for Soft-Scope to perform after the
application has been loaded. For example, enter go
main to cause Soft-Scope to execute the application
up to the function main. The check box toggles the
invocation on/off. See the Commands and Command
Line section of this chapter.

Browse... Displays the most recently accessed subdirectory and
its contents.

Loading an Application

Soft-Scope User’s Guide 3-23

3. Soft-Scope Basics

3

History Reviews file loads from the previous nine Soft-Scope
sessions.

Restart Resets the descriptor-table registers and program
counter. Restart will not reload the program code,
data or symbols. Restart will not initialize data in
RAM. For example, use Restart if you have a stack
fault or step beyond your source code.

Symbols Reloads symbolic information only. It does not reload
the program code.

NOTE: You can load a recently loaded file by choosing its name
from the list of files at the bottom of the File pull-down
menu. The file will be loaded with the same entries for
Hardware Setup and Command that were used the last
time it was loaded.

Loading an Application

3-24 Soft-Scope User’s Guide

3. Soft-Scope Basics

Symbol Load

Select Symbol load... from the File pull-down menu to load symbolic
information without disturbing your application or changing register values.
This is useful if your application is already loaded or if you want to debug
an application with multiple symbol sets.

File/Symbol load... will open the following dialog box:

Figure 3-5: File-Symbol load dialog box

Loading an Application

Soft-Scope User’s Guide 3-25

3. Soft-Scope Basics

3

File name Enter the file name, or choose the Browse... button to
select a file from the directory listing.

Command Enter a command for Soft-Scope to perform after the
application has been loaded. For example, enter go
main to cause Soft-Scope to execute the application
up to the function main. The check box toggles the
invocation on/off. See the Commands and Command
Line section of this chapter.

Browse... Displays the most recently accessed subdirectory and
its contents.

History Reviews file loads from the previous nine Soft-Scope
sessions.

Load Downloads program code, data and symbolic
information.

Restart Resets the descriptor-table registers and program
counter. Restart will not reload the program code,
data or symbols. Restart will not initialize data in
RAM. For example, use Restart if you have a stack
fault or step beyond your source code.

Restart

Loading an Application

3-26 Soft-Scope User’s Guide

3. Soft-Scope Basics

Select Restart... from the File pull-down menu to load symbols and set
the initial register values. This is useful if the target system contains a load
image in ROM or if the load image has already been loaded by some other
means.

Because Restart... does not reload your applications data area, your
application may not execute the same way as it does when you do a
complete load, especially if it depends on initialized data.

File/Restart... will open the following dialog box:

Figure 3-6: File-Restart dialog box

File name Enter the file name, or choose the Browse... button to
select a file from the directory listing.

Hardware setup Enter a command to be invoked before your
application is loaded. The check box toggles the
invocation on/off. For example, invoke a macro that
writes test data into memory to help you find
uninitialized-variable problems.

Command Enter a command for Soft-Scope to perform after the
application has been loaded. For example, enter go
main to cause Soft-Scope to execute the application
up to the function main. The check box toggles the

Loading an Application

Soft-Scope User’s Guide 3-27

3. Soft-Scope Basics

3

invocation on/off. See the Commands and Command
Line section of this chapter.

Browse... Displays the most recently accessed subdirectory and
its contents.

History Reviews file loads from the previous nine Soft-Scope
sessions.

Symbols Reloads symbolic information only. It does not reload
the program code.

Load Downloads program code, data and symbolic
information.

Loading an Application

3-28 Soft-Scope User’s Guide

3. Soft-Scope Basics

After the Load

After making all of your selections in the dialog box, choose the OK
button. The status line at the bottom of the Soft-Scope window will
record the percentage of file loaded as your application is loading. The
Code window will open to show your application in source mode when
symbolic information is available. See figure 3-7 for an example.

Figure 3-7: Soft-Scope after an application load

Loading an Application

Soft-Scope User’s Guide 3-29

3. Soft-Scope Basics

3

Soft-Scope .tmp Files

When Soft-Scope loads an application, it must find or build an internal
representation of the application’s symbols. This information is initially read
from the absolutely located .abs file or a .bug file (see the chapter Tools
that Soft-Scope Supports for a discussion of this file type), and is placed
in a temporary file application.tmp, for example, csamp.tmp.

This .tmp file is built incrementally during the execution of an application, as
Soft-Scope actually makes use of the application’s symbolics. For an
application with a large amount of symbolic information, procedures not
called until later in the execution of the program will not have their
symbolics represented in the .tmp file until they are actually called.

When you exit Soft-Scope, the temporary file is saved in the directory that
contains the application file or symbolics file that was recently loaded and
from which it is derived. Soft-Scope reuses the .tmp file the next time you
load the corresponding application, enabling a much faster load. If your
disk space is limited or faster loads are not important, you can erase any
and all temporary files with no harmful consequences for future Soft-Scope
sessions. Soft-Scope will automatically rebuild a new .tmp file for any
application for which it can’t find one.

Loading an Application

3-30 Soft-Scope User’s Guide

3. Soft-Scope Basics

Command Line

You can load applications (LOAD), restart applications (LOAD
RESTART), or load just symbols (LOAD SYMBOLS) from the
Command line dialog box. To invoke the dialog box, enter <Ctrl>+<L>.
The syntax of the LOAD command follows:

[count] LOAD [[RESTART | SYMBOLS] filename]

Loading an Application

Soft-Scope User’s Guide 4-1

4

4. Controlling Program
Execution with Soft-Scope

Chapter Contents

Overview ...4-3
Controlling Program Execution ..4-3

Stepping through Code... 4-4
Single Step... 4-4
Specify a Number of Steps... 4-5
Step Command via the Command Line... 4-5

Code Window..4-6
Figure 4-1: Code window in Source mode 4-7
Figure 4-2: Code reference dialog box... 4-8

Toolbar Buttons.. 4-8
Figure 4-3: Display modes dialog box.. 4-9
Figure 4-4: Code window in Assembly mode with logical addresses4-10

Code Window Execution Pointers..4-11
Code References ..4-12

Line Numbers...4-12
Symbol Names...4-12
Guidelines...4-13

Locating Code ...4-14
Breakpoints Window ..4-16

Figure 4-5: Breakpoints window..4-17
Toolbar Buttons..4-18
Command Line...4-19

Editing Breakpoints ..4-20
Figure 4-6: Breakpoint edit dialog box...4-20

4-2 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Software Breakpoints ...4-22
Permanent Software Breakpoints..4-22
Temporary Software Breakpoints..4-23

Hardware Breakpoints ...4-24
Data Breakpoints..4-24
Command Line...4-24
Debug Registers...4-25
Exec Breakpoints...4-26
Command Line...4-26

Executing to a Location ..4-27
Go ...4-27
Go to a Specific Location...4-27
Return from a Procedure Call..4-28
Go to a Cursor Position ..4-28
Stop ...4-28

Procedure Call Sequence ...4-30
Calls Window...4-30

Figure 4-7: Calls window...4-31
Command Line...4-31

Stack Information ...4-32
Trace Window ...4-33

Figure 4-8: Trace window displaying procedures..........................4-33
Toolbar Buttons..4-34

Figure 4-9: Assembly display modes dialog box...........................4-35
Figure 4-10: Trace window displaying procedures and source......4-36

Command Line...4-37
Figure 4-11: Trace window displaying procedures, source, and assembly
code ..4-37

Trace Buffer ...4-38
Trace File Size..4-38

Soft-Scope User’s Guide 4-3

4. Controlling Program Execution with Soft-Scope

4

Overview

With Soft-Scope you can monitor your application’s source while
executing at the source or assembly level. This chapter will describe the
mechanisms that allow you to execute one source line at a time, execute to
a predetermined location, set hardware and software breakpoints, view
source code and trace Soft-Scope’s actions.

Controlling Program Execution

The basic target execution toolbar buttons, shown below, remain on the
toolbar at all times. Whenever a window becomes active, the buttons
specific to that window are added to the toolbar. When another window
becomes active, the previous set of window specific buttons are replaced
with a new set of buttons.

Stop • Go • Step into • Step over • Go to return • Go to cursor

Stop Stops execution without setting a breakpoint. This
function works only when your target contains an
interrupt-driven CSi-Mon monitor. To activate from the
keyboard press <S>.

Go Causes the target to execute until a breakpoint or fault
is encountered. Note, no breakpoint is set. To activate
from the keyboard press <G>.

Step into Steps into the next procedure call. You may specify a
count, such as 2 I , which will step twice and into
procedures if called on the lines executed. To activate
from the keyboard press <I>.

Controlling Program Execution

4-4 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Step over Steps over the next procedure call. Accepts counts as
described above. To activate from the keyboard press
<O>.

Go to return Returns to the calling procedure. You may specify a
count, such as 4 R , which will return from four calls.
To activate from the keyboard press <R>.

Go to cursor Execution will continue until the cursor is encountered.
You may specify a count, such as 10 C , which is
handy if you need to execute a loop several times. To
activate from the keyboard press <C>.

Stepping through Code

Stepping allows you to execute one source line at a time. You can single
step or step a specified number of times. You can also step into or step
over procedure calls.

Single Step

Press <Spacebar> to execute a single line of source or assembly code,
depending on the Code window’s display mode (source or assembly).
Use the Mode toolbar button in the Code window to set the default step
mode (into or over).

Controlling Program Execution

Soft-Scope User’s Guide 4-5

4. Controlling Program Execution with Soft-Scope

4

Specify a Number of Steps

Step a specified number of times by typing a number while the Code
window is currently active and pressing <Spacebar>. You can specify any
number from 1 to 65535. Pressing the Stop toolbar button will terminate
execution immediately if you are using an interrupt driven CSi-Mon
monitor. The following example initiates 10 steps:

10 <Spacebar>

Step Command via the Command Line

Enter the following stepping commands, both in the Command line dialog
box (<Ctrl>+<L>) and in the body of macro definitions. STEP
automatically opens the Code window:

S[TEP] [INTO | OVER]

Code Window

4-6 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Code Window

The Code window is opened by selecting Display... from the Code pull-
down menu shown below. From this window, you can step through your
code, set breakpoints and examine data references.

Figure 4-1 shows the Code window in source mode. The current module,
procedure, and line number are identified on the status line at the top of the
Code window. Key words that describe the current execution status—
such as Break, Running, or General Protection Fault—are also displayed
here.

Code Window

Soft-Scope User’s Guide 4-7

4. Controlling Program Execution with Soft-Scope

4

Figure 4-1: Code window in Source mode

Double-clicking <Button-L> on a data reference displays information
about the reference in the Data window. Double-clicking <Button-L> on
a code reference displays the source code associated with the reference.

The Display command from the Code pull-down menu opens a dialog
box prompting you for a code reference as shown in figure 4-2. This
reference is used to identify the source code that will be displayed in the
Code window. The text box in this example contains a command
instructing Soft-Scope to execute up to the beginning of the function main.
If you press <Enter> without entering a reference, the display defaults to
the current execution point.

Code Window

4-8 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Figure 4-2: Code reference dialog box

Toolbar Buttons

The following toolbar buttons allow you to set breakpoints, evaluate data
references, and control the contents of the Code window:

Break • Temp break • Locate • Evaluate • Mode

Break Toggles a permanent software breakpoint on/off at the
current cursor position. For more information, see the
Software Breakpoints and Hardware Breakpoints
sections of this chapter. To activate from the keyboard
type .

Temp break Toggles a temporary software breakpoint on/off at the
current cursor position. This type of breakpoint clears
itself after the first time it is encountered. To activate from
the keyboard type <T>.

Code Window

Soft-Scope User’s Guide 4-9

4. Controlling Program Execution with Soft-Scope

4

Locate Returns the cursor to the current execution point. To
activate from the keyboard type <Enter> or <L>.

Evaluate (?) Opens a dialog box where you enter a data reference to be
evaluated in the Data window. A move convenient
method is to double-click <Button-L> on a data reference
in the Code window. To activate from the keyboard type
<?>.

Mode Opens the Display modes dialog box as shown in figure
4-3. To activate from the keyboard type <M>.

Figure 4-3: Display modes dialog box

Code The Code radio buttons control the way in which source
code is displayed. Source mode is the default option.
Assembly mode shows both source and assembly code.
Hex mode shows source, assembly, and hex code. See
figure 4-1 for an example of source mode.

Execution The Execution radio buttons set the default step type.
Into steps into the next procedure call. Over steps over
the next procedure call. A step is invoked by pressing
<Spacebar>.

Code Window

4-10 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Address The Address radio buttons control whether assembly
code addresses are displayed as physical (with a “P”
suffix) or logical (in Segment:Offset format). See figure 4-
4 for an example of assembly mode using logical
addresses.

Figure 4-4: Code window in Assembly mode with logical addresses

NOTE: When you scroll up (backwards) in the Code window in
Assembly mode, Soft-Scope can’t always show accurate
information. Approximated information is identified with a
question mark (?).

Code Window

Soft-Scope User’s Guide 4-11

4. Controlling Program Execution with Soft-Scope

4

Code Window Execution Pointers

Soft-Scope uses the far left side of the Code window to indicate the
special status of certain source lines. The symbols used are as follows:

A solid arrow means execution is stopped at that line of code.

An outline of an arrow indicates execution is stopped at a location
inside a source-level statement.

A solid octagon means there is a permanent breakpoint set at this
line of code.

An outline of an octagon means there is a temporary breakpoint
set at this line of code.

The execution pointers may be shown in combination with the breakpoint
indicators. For example, indicates that execution has halted on a line
where a permanent breakpoint is set.

Code References

4-12 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Code References

Line Numbers

You can access any program symbol or line of code that is currently loaded
into Soft-Scope. To reference a line of code, simply use the line-number
operator “#”:

Code reference: #24

Symbol Names

To reference a procedure in the current module use its name:

Code reference: c_data

To reference a procedure in a module other than the current module, use
the module operator “:” and the symbol operator “.”:

Code reference: :cuti ls.c_data

You can reference code with a logical address:

Code reference: 203:0d1

You can reference code with a physical address:

Code reference: 20P

Code References

Soft-Scope User’s Guide 4-13

4. Controlling Program Execution with Soft-Scope

4

Guidelines

Use the following guidelines when referencing code elements:

• If they are in the module containing the execution pointer, use:

#line number
procedure name
memory address

• If they are in a module other than the one containing the execution
pointer, use:

:module name#line number
:module name.procedure name#line number
memory address

If you can’t remember the exact name of the module, procedure, or
symbol, use Code/Module or Data/Symbols pull-down menu commands
to look at the possible entries.

For more information, see the Reference Scoping section of the
Examining Data with Soft-Scope chapter.

Locating Code

4-14 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Locating Code

Several mechanisms are provided to let you see any part of your
application’s source code as shown below:

Code/Display... prompts you for a code
reference, and displays the code associated
with that reference in the Code window. If no
reference is given, Soft-Scope displays the
code at the current execution point.

For example, if you entered #82 in the dialog
box, the Code window will display the code
located at line number 82.

The Code window’s Locate toolbar button
returns the Code window to the line where the
execution pointer is pointing.

LIST [[TO] lineref] From the command line, LIST will display
source lines from lineref down. If TO is used,
the list is from the bottom of the Code window
up. Use LIST with no lineref to open the
Code window at the current execution point.

Double-click Double-click <Button-L> on the symbol you
<Button-L> want to display. If the symbol is a code

symbol, the Code window opens and displays
the code where that symbol is located. If the
symbol is a data symbol (variable), the Data
window opens and displays the variable in
normal mode.

Locating Code

Soft-Scope User’s Guide 4-15

4. Controlling Program Execution with Soft-Scope

4

NOTE: Because more than one logical address can resolve to a
single physical address, Soft-Scope cannot locate specific
source-code lines using a physical address. Using logical
addresses with Code/Display... will ensure the accurate
location and display of source code. This does not apply
to Code/Go to... and other Code menu choices.

Breakpoints Window

4-16 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Breakpoints Window

The Breakpoints window is opened by selecting Display from the
Break pull-down menu.

The Breakpoints window shows how many breakpoints are set and
identifies their type and location.

The Breakpoints window in figure 4-5 shows a variety of breakpoints.
The first is a permanent software breakpoint set in C_DATA at line 80.
This is followed by a hardware breakpoint set to stop execution when the
address associated with OLDCUST is accessed. The third is a hardware
breakpoint set to stop execution when the address associated with HI-
BIT is written to. The final entry is a temporary software breakpoint set in
CUTILS.DELAY at line 128.

Breakpoints Window

Soft-Scope User’s Guide 4-17

4. Controlling Program Execution with Soft-Scope

4
yuh

Figure 4-5: Breakpoints window

Breakpoints Window

4-18 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Toolbar Buttons

Breakpoints are manipulated by placing the cursor on a breakpoint listed in
the Breakpoints window and using one of the following toolbar buttons:

View • Insert • Delete

View Opens the Code window and displays the code at the location
where the breakpoint is set. To activate from the keyboard press <Enter>

or <V>.

Insert Opens a dialog box where you can specify a new breakpoint.
For hardware breakpoints, enter a breakpoint type before the
reference. To activate from the keyboard press <I>.

Delete Deletes the breakpoint the cursor is on. To activate from the
keyboard press <D>.

To modify an existing breakpoint, double-click <Button-L> on it’s entry in
the Breakpoints window.

For more information, see the Editing Breakpoints, Software
Breakpoints, and Hardware Breakpoints sections of this chapter.

Breakpoints Window

Soft-Scope User’s Guide 4-19

4. Controlling Program Execution with Soft-Scope

4

Command Line

Enter the following commands in the Command line dialog box
(<Ctrl>+<L>) to insert and remove breakpoints, and open the
Breakpoints window:

BR[EAKPT] [-] [coderef [when-then]]

BR[EAKPT] [-] [EXEC coderef [when-then]]

BR[EAKPT] [-] [WRITE memref [when-then]]

BR[EAKPT] [-] [ACCESS memref [when-then]]

BR[EAKPT] with no coderef opens the Breakpoints window.
BR[EAKPT] - with no coderef deletes all breakpoints.

The following example will set an access breakpoint at the hex address
0f200:

br access 203:0f200

The next example will set a conditional write breakpoint on the variable
pattern when it’s value equals 25. When the condition is met, the value
of lights[4] will be set to ‘x’:

br write pattern when pattern==25 then
lights[4]==’x’

Editing Breakpoints

4-20 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Editing Breakpoints

To edit a breakpoint open the Breakpoint edit dialog box by double-
clicking <Button-L> on an item in the Breakpoints window, or using the
window’s Insert toolbar button.

The dialog box shown in figure 4-6 allows you to define breakpoint status,
conditions, and specify an action to be performed when the breakpoint is
encountered.

Figure 4-6: Breakpoint edit dialog box

Status Status allows you to turn the breakpoint on or off, or
designate it as a temporary break.

Type Type can be any breakpoint type supported by the target
processor you are using. Possible types are Write, Exec,
or Access. The Break pull-down menu contains the types
that are available to you.

The default type is Software, which does not display in the

Editing Breakpoints

Soft-Scope User’s Guide 4-21

4. Controlling Program Execution with Soft-Scope

4

edit field, and for which there is no predefined name.
Leave the text box blank and the default will apply.

Addr An Addr address can be any memory reference, including
symbol references. See the Code References section of
this chapter for more information.

When When is the breakpoint condition. The condition is
evaluated when the breakpoint is encountered. If the
condition is true, the action entered in the Then text box is
performed. Otherwise, target execution continues.

If the condition is invalid, Soft-Scope displays an error
message that allows you to abort execution of the
condition, provide a true/false response to the condition, or
edit the breakpoint specification and try again.

The following condition stops execution when the variable
pattern equals 5:

When: pattern==5

Use any C-based expression in the When text box. See
the Operator section in the Examining Data with Soft-
Scope chapter and appendix A for a list of valid operators.

 Then Then is the action taken when the condition is true. An
action can be any valid Soft-Scope command or macro.
The default action is to stop execution. If an error is
encountered, a dialog box opens that gives you the options
of aborting the action, ignoring the error, or editing the
breakpoint and trying again.

An example action would be to execute a Soft-Scope
macro that prints the value of a particular variable, sets a
breakpoint at another code location, and then executes to
that location in memory.

The example in figure 4-6 turns on a permanent breakpoint of type write at
the location of the variable pattern . When the value of pattern is
equal to 12, the string “Hello world” is displayed in the Message window.

Editing Breakpoints

4-22 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Software Breakpoints

There are two types of software breakpoints, permanent and temporary.
A permanent software breakpoint persists until it is removed or you exit
Soft-Scope. A temporary software breakpoint clears itself after the
breakpoint is encountered. Software breakpoints stop target execution
when the line of code associated with the breakpoint is executed.

Soft-Scope causes this to happen by inserting an INT3 software interrupt
instruction in place of the instruction at the location where you want to
break. The INT3 is later replaced by the original instruction. If you try to
set a software breakpoint in ROM, Soft-Scope will use the EXEC
breakpoint type discussed in the Hardware Breakpoints section of this
chapter.

Permanent Software Breakpoints

You can specify software breakpoints in several ways:

• Use the Execution... command from the Break pull-down menu.
Enter a code reference in the dialog box. The example below will set a
software breakpoint at source line number 45.

Code reference: #45

• Find the code in the Code window where you want to stop execution.
Move the cursor to the desired line of code, and choose the Break
toolbar button. This sets a permanent breakpoint at that line.

Software Breakpoints

Soft-Scope User’s Guide 4-23

4. Controlling Program Execution with Soft-Scope

4

• Use the BREAKPT command in the Command line dialog box
(<Ctrl>+<L>) using the following syntax:

 BR[EAKPT] [-] [coderef [when-then]]

The following example sets a software breakpoint at source line
number 83 of the cutils module.

Command: br :cutils#83

To delete permanent software breakpoints, do one of the following:

• From the Code window put the cursor on the source line where you
want to remove the breakpoint and choose the Break toolbar button.

• From the Breakpoints window put the cursor on the breakpoint you
want removed and choose the Delete toolbar button.

• Use the minus (-) parameter with the BREAKPT command line
command and code reference:

Command: br - coderef

NOTE: When you set a breakpoint using an address, make sure
that the address reference refers to the start of an
instruction. Otherwise, the result is unpredictable.

Temporary Software Breakpoints

To set a temporary software breakpoint, from the Code window, put the
cursor on the source line where you want the breakpoint and choose the
Temp break toolbar button.

To remove a temporary breakpoint from the Code window, put the cursor
on the line where the breakpoint is located and choose the Temp break
toolbar button.

Soft-Scope permits up to 32 temporary breakpoints.

Software Breakpoints

4-24 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Hardware Breakpoints

Even though Soft-Scope has no hardware components, it can provide
hardware type breakpoints by using the debug registers that are found on
386, 486 and Pentium processors. The debug registers make it possible to
provide breakpoint conditions (access, write, instruction execution) and set
a breakpoint in code that is running in ROM. Two types of hardware
breakpoints are provided: Data and Exec.

Data Breakpoints

Two conditions can be applied to the Data breakpoint, Access and Write.
When the condition is met, execution is halted immediately after the
specified memory location.

NOTE: If you set a data breakpoint on a stack-based variable and
the contents of the stack is changed, the breakpoint is no
longer valid.

Data breakpoints persist until you explicitly remove them. Removal is
accomplished using the Breakpoints window Delete toolbar button or
via the command line which is discussed below.

Data breakpoints are set using the Break/Access... or Break/Write...
pull-down menu commands, Breakpoints window Insert toolbar button,
and command line. When using the Insert toolbar button, enter access
or write in the Type text box.

Command Line

You can set data breakpoints using the following syntax in the Command
line dialog box (<Ctrl>+L):

Hardware Breakpoints

Soft-Scope User’s Guide 4-25

4. Controlling Program Execution with Soft-Scope

4

BR[EAKPT] [-] [WRITE memref [when-then]]
BR[EAKPT] [-] [ACCESS memref [when-then]]

The abbreviation BR can also be used to invoke this command. The
referenced breakpoint may be deleted by using the optional minus (-) in the
command.

Debug Registers

Debug registers (DR0-DR3) are found on 386 and up processors.
Because of the way the four debug registers work, one hardware
breakpoint can use more than one register, which limits the number of
hardware breakpoints you can set.

The number of registers used depends on the following:

1. Alignment of starting address

2. Length of variable referenced

A single register can cover any one of the following ranges:

Length: Address:

1 byte anywhere
2 bytes aligned on a 2-byte boundary (word aligned)
4 bytes aligned on a 4-byte boundary (dword aligned)

For example, assume you have an 11-element array, arrayx , declared as
type char, and that the first byte of the array begins at address 1007P.

Setting the following breakpoint would use all four registers: one for the
first byte from 1007P to 1008P, one for the next four bytes, another for the
next four bytes, and one for the last two bytes.

Command: br access arrayx

If you knew that all of arrayx was going to be accessed at the same time,
you could do the following and use only one register:

Command: br access byte arrayx

Hardware Breakpoints

4-26 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Exec Breakpoints

Exec breakpoints make use of the debug registers and the break on
instruction execution only condition. They are provided to allow you to
set a breakpoint on an instruction that resides in ROM.

When you set a software breakpoint, Soft-Scope checks the reference you
entered to see if it is a RAM or ROM address. If it is a ROM address, a
software breakpoint won’t work because software breakpoints save the
instruction that exists at the referenced location, then write over that
instruction at the referenced location with an INT3 break instruction. This
can’t be done in ROM.

For ROM addresses, Soft-Scope automatically sets an Exec breakpoint.
So, most of the time, you don’t have to worry about whether the reference
is in RAM or ROM.

Sometimes, however, the RAM location where a breakpoint is set might be
written over by the application you are debugging. In such a case, Soft-
Scope checks the reference you entered and if it corresponds to a RAM
location, it sets a conventional software breakpoint. Then, when you run
the application, the code at the referenced location is overwritten, removing
the software breakpoint. To avoid this situation, use the Exec breakpoint
instead of a software breakpoint.

Command Line

Use the following syntax in the Command line dialog box (<Ctrl>+<L>)
to set an Exec breakpoint:

BR[EAKPT] [-] [EXEC coderef [when-then]]

Hardware Breakpoints

Soft-Scope User’s Guide 4-27

4. Controlling Program Execution with Soft-Scope

4

Executing to a Location

Soft-Scope provides several methods to start target execution. Some of
them will stop execution at a specific location.

Go

Use the Go toolbar button or enter GO in the Command line dialog
box (<Ctrl>+<L>) to start target execution until a breakpoint or fault is
encountered.

G[O] [WRITE | ACCESS memref]
G[O] [[EXEC] coderef]
G[O] [RETURN]

If you do not specify where you want execution to stop, and there are no
other breakpoints set, Soft-Scope opens a dialog box asking you to
confirm that you really want to start execution.

Go to a Specific Location

To execute to a specific location, use the Go to... command from the
Code pull-down menu. To specify a code location, enter a code reference
in the text box. To specify a memory location, enter a memory reference.

You can add a condition to the memory reference by entering a hardware
breakpoint specifier (access, write, exec) in front of the memory reference
using the following syntax:

[WRITE | ACCESS memref]
[[EXEC] coderef]

Executing to a Location

4-28 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Return from a Procedure Call

Use the Go to return toolbar button or the Code/Go to return
pull-down menu command to return from a called procedure.

Soft-Scope calculates the expected return address from the stack and sets
a breakpoint at that address. Target execution is started and continues until
that breakpoint or some other breakpoint in the same scope is
encountered.

Go to a Cursor Position

1. From the Code window, move the cursor to the line where you want
execution to stop.

2. Click on the Go to cursor toolbar button .

Soft-Scope sets a temporary breakpoint on the line containing the cursor
and starts target execution. Execution continues until that breakpoint or
some other breakpoint in the same scope is encountered.

Stop

Use the Stop toolbar button or Stop command from the Code pull-
down menu to stop execution without setting a breakpoint. This function
works only when your target contains an interrupt-driven CSi-Mon
monitor.

Soft-Scope can only stop an interrupt-driven monitor when interrupts are
enabled. If you have long sections of critical code that disable interrupts,
don’t use the Code/Stop pull-down menu command while that code is
executing.

Executing to a Location

Soft-Scope User’s Guide 4-29

4. Controlling Program Execution with Soft-Scope

4

When interrupts are disabled, Soft-Scope continues to assume that you
have an interrupt-driven monitor, and receiver timeout messages may
result.

The configuration option targ.polling tells Soft-Scope when you are
debugging code that disables the interrupts. Use the Display command
from the Options pull-down menu to set this option to on to eliminate
receiver-timeout messages:

targ.poll ing=on

Executing to a Location

4-30 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Procedure Call Sequence

To display the procedure-call sequence use the Calls command from the
Code pull-down menu.

Calls Window

Figure 4-7 shows the Calls window. The top entry is the current
execution point. Each entry that follows, called the entry on the line above
it.

To display the code for a specific call in the Code window, double-click
<Button-L> on the call’s entry or move the cursor to the desired call and
press the View toolbar button.

Procedure Call Sequence

Soft-Scope User’s Guide 4-31

4. Controlling Program Execution with Soft-Scope

4

Figure 4-7: Calls window

Command Line

To open the Calls window, enter CALLS in the Command line dialog
box (<Ctrl>+<L>).

Procedure Call Sequence

4-32 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Stack Information

If you have several nested calls, and you believe your application may be
running low on stack space, enter STACK USAGE in the Command line
dialog box to display the following information in the Message window:

• Range of addresses that the stack occupies

• Number of bytes free and the percentage of free stack space

• Number of bytes and corresponding percentage of stack space
available when the deepest nested call was made

Enter STACK RESET in the Command line dialog box (<Ctrl>+<L>)
to clear stack locations between the stack pointer and the bottom of the
stack. If you are at a specific execution point and want to see the stack
usage from this point on, use STACK RESET.

After using STACK RESET, run your application, then enter STACK
USAGE in the Command line dialog box to see how close you have
come to overflowing your stack area.

Stack Information

Soft-Scope User’s Guide 4-33

4. Controlling Program Execution with Soft-Scope

4

Trace Window

The Trace window records all actions that affect execution. This
information is useful in determining how your application reached a
particular state. This information includes:

• Source lines executed via stepping
• Breakpoints encountered
• Program faults encountered
• Application loads and restarts
• Modification of application registers
• Modification of application memory
• I/O port access
• Breakpoints set and deleted
• Procedures not stepped over

Figure 4-8: Trace window displaying procedures

Trace Window

4-34 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Trace information is kept in a circular buffer that is stored in a disk file.
Controls for flushing the buffer and setting the file size are discussed later in
this section.

Open the Trace window by selecting Trace from the Code pull-down
menu.

Toolbar Buttons

The Trace window displays information in four formats: Procedures,
Source, Assembly, and Bus. Select the format using the toolbar buttons
described below:

View • Procedures • Source • Assembly • Bus • Mode

View Displays selected code, as identified by the cursor position,
in the Code window. You can also double-click <Button-
L> on the code. To activate from the keyboard press
<Enter> or <V>.

Trace Window

Soft-Scope User’s Guide 4-35

4. Controlling Program Execution with Soft-Scope

4

Procedures Displays procedures and execution events. See figure 4-8.
To activate from the keyboard press <P>.

Source Displays procedures, execution events, and source for
each line executed. See figure 4-10. To activate from the
keyboard press <S>.

Assembly Displays procedures, execution events, source, and
assembly code for executed lines. See figure 4-11. To
activate from the keyboard press <A>.

Bus Same as Assembly for this version of Soft-Scope. To
activate from the keyboard press .

Mode Opens the Assembly display modes dialog box as
shown in figure 4-9. To activate from the keyboard press
<M>.

Figure 4-9: Assembly display modes dialog box

Code The Code radio buttons control the way assembly source
is displayed. Assembly mode is the default option. Hex
mode adds opcodes in hex to the display.

Address The Address radio buttons control whether assembly
code addresses are displayed as physical (with a “P”
suffix) or logical (in Segment:Offset format).

Trace Window

4-36 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-Scope

Figure 4-10: Trace window displaying procedures and source

Trace Window

Soft-Scope User’s Guide 4-37

4. Controlling Program Execution with Soft-Scope

4

Command Line

Enter TRACE in the Command line dialog box (<Ctrl>+<L>) to open
the Trace window.

Figure 4-11: Trace window displaying procedures, source, and assembly
code

Trace Window

4-38 Soft-Scope User’s Guide

4. Controlling Program Execution with Soft-ScopeTrace Window

Trace Buffer

The trace buffer is a circular buffer that is flushed after each load operation.
If you want to display trace information for several loads, use the following
option in your configuration-options .ini file:

trace.load=off The trace buffer is flushed after each load.
Off is the default.

trace.load=on The trace buffer is not flushed.

Trace File Size

You can control the size of the trace file using the following option in your
configuration-options .ini file:

trace.filesize=128 Defaults to 128 kilobytes, but can be set
from 16 to 1024 kilobytes.

Soft-Scope User’s Guide 5-1

5

5. Examining Data with
Soft-Scope

Chapter Contents

Overview ...5-3
Numbers..5-3

Table 5-1: Default number bases.. 5-5
Operators ..5-6

Table 5-2: C operators .. 5-8
Table 5-3: Soft-Scope specific operators and functions.................. 5-9

Strings ...5-10
Table 5-4: String escape sequences...5-11

Reference Summary ...5-12
Table 5-5: Reference summary...5-12

The Data Window...5-14
Figure 5-1: Data reference dialog box..5-14
Figure 5-2: Display modes dialog box..5-15
Figure 5-3: Data window in Eval mode..5-17
Figure 5-4: Data window in expanded format...............................5-18

Data References ...5-19
Figure 5-5: Before double-click on “->”.......................................5-23
Figure 5-6: After double-click on “->”...5-23

Referencing Memory ...5-25
Reference Scoping ..5-27

Table 5-6: Reference Scoping..5-28
The Watch Window ...5-30

Figure 5-7: Display modes dialog box..5-31
Figure 5-8: Watch window in Normal display mode.....................5-32

5-2 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

The Symbols Window...5-34
Figure 5-9: Symbols window in Procedures mode........................5-36

Built-in Functions ..5-37
Type Overrides ...5-40
The Dump Window ...5-46

Figure 5-10: Dump modes dialog box..5-47
Figure 5-11: Dump window in Byte mode, 8 bytes per line...........5-49

Uploading Memory and Registers ...5-50
The Registers Window ...5-52

Figure 5-12: Registers window for 80386EX target......................5-54
CPU Structures...5-56

Figure 5-13: IDT descriptors...5-56
Figure 5-14: Data window in Normal mode.................................5-58
Figure 5-15: Data window in Eval mode......................................5-58
Table 5-7: Descriptor abbreviations...5-59

Real-Mode Structures ..5-60
Table 5-8: Peripheral Control Block...5-60
Table 5-8: Peripheral Control Block (continued)...........................5-61

Application Input/Output ..5-64

Soft-Scope User’s Guide 5-3

5. Examining Data with Soft-Scope

5

Overview

This chapter tells you how to reference and change data, and how to use
operators, functions, and type overrides to view data in a format that will
provide you with maximum information. You can reference and view static
symbols anywhere your application can access them, and you can access
many symbols outside the current execution context. In addition, you can
reference, change, and dump memory, and access and change registers
and CPU structures.

Numbers

Soft-Scope supports the following number formats and bases:

• Binary numbers consist of the digits 0 and 1 and are designated by the
suffix “Y”.

• Decimal numbers are made up of the digits 0..9 and are designated by
the suffix “T”.

• Hexadecimal numbers can be designated by the prefix “0x”, or with the
suffix “H”. They may contain the digits 0..9 and the letters A..F. Hex
numbers must start with a digit to distinguish them from symbol names:

e000ffa9H must be represented as 0e000ffa9H or
0xeoooffa9

• Floating-point numbers contain a decimal point and an optional
fraction. They must begin with a digit (0..9) rather than a decimal point
to differentiate them from symbol names:

.132 must be represented as 0.132

• Exponential numbers use standard exponential format:

mantissa may have an optional + or -
must start with characters 0..9

Numbers

5-4 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

must contain a decimal point followed by some
combination of characters 0..9

exponent must begin with an “E”
may have an optional + or - followed by some
combination of characters 0..9

The following example demonstrates an exponential number:

-1.098567E+4

Setting the Default Base

If a number does not have a suffix or prefix, its base is determined from the
value of the base configuration option. To change the base option value,
use the Display command from the Options pull-down and the Modify
toolbar button.

The base option may be set to 10 or 16. If the option is not set, numbers
default to base = 10.

Some number bases are not determined by the base option. See table 5-1
for a list of number types and their default bases.

Numbers

Soft-Scope User’s Guide 5-5

5. Examining Data with Soft-Scope

5

Table 5-1: Default number bases

Number Type Default Base

b800:04ac Parts of a pointer always default to hex

#123
:module#123

Line numbers are always assumed to be
decimal

123 <Spacebar> Counts are always decimal

byte at arrayx
len 123

Length counts are always assumed to be
decimal

array[123],
array[2..6]

Array subscripts are always assumed to be
decimal

8..20 Ranges of numbers default to decimal

0x1fff>>x Operand for shift operations (x) default to
decimal

PORT 7f Ports default to hex

PORT (9000) Ports with expression values (defined as
anything surrounded by parentheses) default to
decimal

RETURN (12) Return counts default to decimal

SELECTOROF Selector overrides default to hex

-4.000000045E+5 Exponential format defaults to decimal

Numbers

5-6 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Operators

Soft-Scope supports three classes of operators:

Symbolic Which provide quick access to data references

Arithmetic Which provide standard arithmetic operations

Logical Which provide standard, C-based true/false
operations

Symbolic Operator Examples

Symbolic operators are used as shortcuts to access data references.
Examples include pointer dereferencing, ranges, and type overrides:

*table_pointer

array_1[1..24], array_1[1...] and array_1[...24]

long at $ss:ebp

Arithmetic Operators Return Numeric
Values

Arithmetic operators are C-based arithmetic operators entered in the
Command line, ? (question mark), or Data/Examine dialog boxes. The
following is an example of the increment operator and module operator:

++ i

i % 3

Operators

Soft-Scope User’s Guide 5-7

5. Examining Data with Soft-Scope

5

Logical Operator Examples

Logical operators are those used in true/false C-based operations.
Examples include the and operator (&&) and the not equal operator (!=):

i && y

i != 1

Soft-Scope operator precedence is the same as C operator precedence.
In table 5-2, operators on the same line have the same precedence, and
rows are ordered in decreasing order of precedence.

NOTE: Soft-Scope does not use C’s conditional operator (?:)
and C’s comma operator (,); Soft-Scope’s SIZEOF
parallels C’s sizeof.

Table 5-3 lists Soft-Scope specific operators and their precedence relative
to the C operators in table 5-2.

Operators

5-8 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Table 5-2: C operators

Operator
Precedence Associativity

() [] -> . left to right

! ~ ++ -- + - * & right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

= = != left to right

& left to right

^ left to right

| left to right

&& left to right

| | left to right

= = += -= *= / = %= &= ^= | = <<= >>= right to left

Operators

Soft-Scope User’s Guide 5-9

5. Examining Data with Soft-Scope

5

Table 5-3: Soft-Scope specific operators and functions

Operator/Function Precedence
(:module#23) same as ->

Type overrides same as ++

OFFSETOF same as ++

SELECTOROF same as ++

LENGTHOF same as ++

LEN[GTH] same as ++

AT same as ++

PORT same as ++

RETURN same as ++

SIZEOF same as ++

(#123) same as ++

: (:module name) same as ++

. (.symbol name) same as ++

: (1234:5678) between ++ and multiply

.. (array[1..2]) between add and <<

... (array[...3]) between add and <<

... (array[4...]) between add and <<

For further information, see the Operator section in appendix A.

Operators

5-10 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Strings

You can enter data in string format, delimited by either single or double
quotes and containing any printable ASCII character.

The only difference between the use of single and double quotes is that
Soft-Scope includes a terminating null character within the string delimited
by double quotes.

If you type Soft-Scope will create

“frogs” frogs\0

‘frog\’s’ frog’s

Escape Sequences

An escape sequence represents the name of a character, a hex or octal
number. Escape sequences start with the backslash (\).

NOTE: Escape sequences create a problem that Soft-Scope
solves the same way C does. If you actually want a
backslash in a string, you must use two of them (\\). For
example, if you want to define a string that contains a
subdirectory pathname, you must use the following format:
“C:SUB_DIR1\\SUB_2”. This is not an issue when Soft-
Scope prompts for a file name.

The escape sequences listed in table 5-4 are supported within strings, and
are case-sensitive as in C.

Strings

Soft-Scope User’s Guide 5-11

5. Examining Data with Soft-Scope

5

Where to Enter Strings

You can enter strings in the Command line, ? (question mark), or Data
dialog boxes.

Table 5-4: String escape sequences

Escape Sequence Description Hex Value

\0 Null Character 0x00

\b Backspace 0x08

\t Horizontal Tab 0x09

\n Newline 0x0a

\r Carriage Return 0x0d

\" Double Quote 0x22

\' Single Quote 0x27

\\ Backslash 0x5c

\f Form Feed 0x0c

\a Audible Bell 0x07

\v Vertical Tab 0x0b

\xnn nn is hex value nn

\nnn nnn is octal value N/A

Strings

5-12 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Reference Summary

The following table summarizes how to reference a data element or a
memory address:

Table 5-5: Reference summary

1234:0ffff Refers to a logical address. Note the
“0” before the first “f.” All numbers
that start with an alpha character
(A..F) must be prefaced with a “0”.

12345678L Refers to a linear address.

12345678P Refers to a physical address.

array1 Refers to an array (unqualified).

array1[1..3] Refers to a range of elements in an
array.

#linenumber Refers to a line in the current
module.

: module#linenumber Refers to a line in a module other
than the current one.

:module.procname.variable Refers to a variable whose scope is
in another procedure in another
module.

:module.variable Refers to a variable whose scope is
in another module.

pointername Refers to the value of a pointer.

*pointername Refers to the area of memory where
a pointer points (a dereferenced
pointer).

Reference Summary

Soft-Scope User’s Guide 5-13

5. Examining Data with Soft-Scope

5

Table 5-5: Reference summary (continued)

pointername->elementname Refers to a single element of the
structure where a pointer points.

$register Refers to one of the target
processor’s registers.

string at 200:0ffff Refers to a string at the given
memory location.

structurename Refers to a structure (unqualified).

pointername .elementname Refers to a single element of a
structure.

structx at 200:0ffff Refers to the display of the contents
of the given address in the format
defined by the data type of structx .

typeoverride variable Refers to a memory location where
the variable is stored displayed as the
type specified by typeoverride .

variable Refers to a variable in your program.

word at $ss:$esp Refers to the word at the top of the
current stack.

Reference Summary

5-14 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

The Data Window

The contents of memory locations associated with data are displayed in the
Data window as shown in figure 5-3. A variable can be evaluated in the
Data window by double-clicking <Button-L> on it in the Code window.

To open the Data window, choose Examine... from the Data pull-down
menu. This opens the Data reference dialog box. Enter one or more
data references (separated by a comma) in the text box as shown in figure
5-1.

Figure 5-1: Data reference dialog box

The Data Window

Soft-Scope User’s Guide 5-15

5. Examining Data with Soft-Scope

5

Toolbar Buttons

Items in the Data window are manipulated by using the toolbar buttons
discussed below:

 Modify • Mode • Watch

Modify Modifies the value of a data reference. Place the cursor on
a data reference. Click <Button-L> on the Modify
toolbar button and enter the new value in the dialog box.
Double-clicking <Button-L> on a data reference will also
open the dialog box. To activate from the keyboard press
<Enter>.

Watch Moves a data reference from the Data window to the
Watch window. Place the cursor on a data reference and
click <Button-L> on the Watch toolbar button. To
activate from the keyboard type <W>.

Mode Opens the Display modes dialog box as shown in figure
5-2. To activate from the keyboard type <M>.

Figure 5-2: Display modes dialog box

The Data Window

5-16 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Normal Displays variable’s name and value. Display content varies
depending on the variable’s data type.

Eval Displays additional information if available. Display
content for a pointer includes the LDT or GDT, physical
address, and number of bytes from the pointer location to
end of segment.

Types Displays reference name and type.

Address Displays selector, offset, and physical addresses associated
with a symbol.

Command Line

To display data references in the Data window enter the following
commands in the Command line dialog box (<Ctrl>+<L>). EVAL opens
the Data window in Eval mode. TYPE opens it in Type mode.

EVAL(memref | coderef) [, (memref | coderef)]*

TYPE (memref | coderef) [, (memref | coderef)]*

The Data Window

Soft-Scope User’s Guide 5-17

5. Examining Data with Soft-Scope

5
Figure 5-3: Data window in Eval mode

Double-click for Quick References

In the Data and Watch windows, you can use the double-click <Button-
L> function to manipulate the way you view structures, unions, and
pointers. Assume the following structure:

struc1 structure {...}

Double-clicking on <Button-L> or after the word “structure” toggles the
display between compressed format and expanded format shown in figure
5-4.

The Data Window

5-18 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Figure 5-4: Data window in expanded format

Double-clicking <Button-L> before the word “structure” places the
structure in a dialog box for modification. Use this feature to reference
pointers as follows:

Double-click <Button-L> Displays the pointer in a dialog box before the
“->” for modification

Double-click <Button-L> Dereferences the pointer and on the “->”
displays the dereferenced data

Double-click <Button-L> Displays the indirect data in a dialog after the “-
>” box for modification

The Data Window

Soft-Scope User’s Guide 5-19

5. Examining Data with Soft-Scope

5

Data References

Soft-Scope can reference and examine the following variable types:

• Simple variables

• Arrays

• Structures

• Pointers

• Unions

• Bit fields

If you use a Soft-Scope keyword, such as PORT, INT, or OFFSETOF,
as a variable, you won’t be able to examine it in the data window unless
you put a period in front of it to distinguish it from a symbol:

Data reference:.port

Simple Variables

Reference a variable by typing the variable’s name at the prompt. If the
variable isn’t a structure or array, Soft-Scope determines the variable’s
type and displays the hex and decimal values of the associated memory
locations:

Data reference:pattern

PATTERN = 0x00000041 +65

Data References

5-20 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Referencing Arrays

If the variable is an array, referencing it without an index or subscript
implies you mean the entire array. You can also display single elements of
an array, or ranges of elements, by using the appropriate subscripts. You
can even use integer variables as subscripts.

Displaying an Entire Array

To reference an entire array, like the character array shown below, use the
array name:

Data reference:l ights

LIGHTS[0..7]={‘**-***-*’}

The display is similar for numeric arrays:

Data reference:numarray

NUMARRAY[0..9]={2,0,3,1,8,6,7,3,7,4}

Displaying a Single Element of an Array

To reference single elements of an array, use the array name with a
subscript:

Data reference:l ights[2]

LIGHTS[2]={‘*’}

Displaying a Selected Number of Arrays

To reference several array elements, use the array name with a subscript
range:

Data reference:l ights[2..6]

LIGHTS[2..6]={‘—*-*’}

Data References

Soft-Scope User’s Guide 5-21

5. Examining Data with Soft-Scope

5

Use the open-ended operators to reference array elements from or to a
specific element:

Data reference:l ights[2...]

Data reference:l ights[...6]

Variables as Subscripts

You can use an integer variable as a subscript. If the value of i is 3, the
following example demonstrates the reference and the resulting display:

Data reference:l ights[i]

LIGHTS[3]={‘-’}

If you specify an index that is outside the defined size of an array, Soft-
Scope returns the value of the memory location specified, but a question
mark is displayed next to the index.

LIGHTS[9?]= {‘*’}

Referencing Structures

Soft-Scope handles structure references similarly to arrays. To reference
the entire structure named struc1 , use its unqualified name:

Data reference:struc1

To reference an individual element of a structure, type a period to separate
the structure’s name from the member’s name:

Data reference:struc1.xint

Data References

5-22 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Referencing Unions

Union-reference syntax is based on the syntax of structures; simply enter
the union’s name:

Data reference:date

union {
struct {

unsigned char day;
unsigned char month;
unsigned char year;

} today;
unsigned long days_since_year_0_ad;

} date;

Referencing Bitfields

Soft-Scope also handles bitfields like structures. To reference a structure
of bitfields, use the structure’s name:

Data reference:enet_pkt

struct enet_pkt_type {
unsigned int crc :2;
unsigned int data :16;
unsigned int pkt_type :3;
unsigned int source_addr :4;
unsigned int dest_addr :4;
unsigned int preamble :3;

} enet_pkt;

To reference a single bitfield, separate the structure name from the bitfield
name with a period:

Data reference:enet_pkt.data

Data References

Soft-Scope User’s Guide 5-23

5. Examining Data with Soft-Scope

5

Referencing Pointers

To reference the value of a pointer, use the pointer’s name:

Data reference:oldcust

Dereferencing Pointers

To dereference a pointer, double-click <Button-L> on the pointer operator
(->) in the Data or Watch window. See figures 5-5 and 5-6 for
examples.

Figure 5-5: Before double-click on “->”

Figure 5-6: After double-click on “->”

Double-clicking <Button-L> before the pointer operator lets you modify
the pointer, and double-clicking <Button-L> after the pointer operator lets
you modify the indirect data.

Data References

5-24 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

When a pointer points to a structure, the pointer’s name with the structure-
pointer operator (->), entered in a dialog box, references a single element
of the structure:

Data reference:oldcust->name

Selector Is Not Stored in Memory

Near pointer selectors for flat and small memory model applications aren’t
stored in memory. The offset is stored and the selector is assumed. When
a dereferenced near pointer has parentheses around its selector, Soft-
Scope is telling you that the selector is not actually stored in memory.

Making Complex Assignments

Use complex expressions in assignment statements. Expressions such as
b=c or a + (b=c) can assign values to arrays, GDTs, or other complex
types:

byte at 100P len 5= byte at 40p len 5
byte at 20P len 5 + (byte at 100P len 5= byte at 40p
len 5)

Data References

Soft-Scope User’s Guide 5-25

5. Examining Data with Soft-Scope

5

Referencing Memory

You can reference memory with any address, symbol name, or expression
that resolves to a memory location. You can even use data types to dictate
formatting.

• Use a code reference as a memory reference, because code is stored
in memory:

symbolname

• A logical address consists of a selector and an offset, separated by a
colon:

selector:offset

• A linear address is an address that has not been passed through the
processor paging tables. Use the following syntax:

hexnumber L

• A physical address is the address as it appears on the data bus, and is
identical to a linear address if paging is not enabled. Use the following
syntax:

hexnumber P

• Use operators and values in any combination:

symbolname operator hexnumber

• Data references aren’t necessarily stored in memory, so you can’t use
them as memory references unless you know they resolve to memory
addresses:

variablename

Referencing Memory

5-26 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Using the Symbols Window to Find Code
References

Use a code reference when you are referencing a program symbol:

Memory reference: display_lights

Use logical references when you know the selector of the memory you
want to view. The following example displays memory at offset 0f200 in
the segment given by selector 203 in the format of structx :

Memory reference: structx at 203:0f200

If you know the name of the symbol you want to reference, but not the
logical address, use the ADDRESSOF operator (&). For example:

Command line:eval & lights

0228:000000b8 gdt [69] 00005238p - 4136 bytes

This example displays memory at structy in the format of structx :

Memory reference: structx at &structy

Use a physical reference to view memory without regard to the segment
that contains it. The reference in the example below might be used to set a
hardware breakpoint on the first byte of a variable that begins at physical
address 20P:

Memory reference: byte at 20P

By using an expression as a memory reference, you can define memory
locations that you might not know the physical or logical address for. The
expression in the example below references a location 10 hex below the
base pointer register:

Memory reference: $ss:$ebp-0x10

Referencing Memory

Soft-Scope User’s Guide 5-27

5. Examining Data with Soft-Scope

5

Reference Scoping

You can access the same variables your application can access.

You can also reference many variables outside of your current program
context by using the following basic guidelines:

• Put a colon in front of the module name.

• Use periods to separate modules from procedures and procedures
from variables.

Examples

See the examples below to learn when to use the module name, procedure
name, colon, and period to define a reference.

To reference a global variable or a static variable in the module where the
execution pointer is currently located, use the variable’s name:

Data reference:c

You can reference a static variable in a procedure other than the one where
the execution pointer is located by separating the procedure name from the
variable name with a period:

Data reference:c_data.i

Reference a variable declared in a module other than the one the execution
pointer is located in by putting a colon in front of the module name, and a
period between the module name and the variable name:

Data reference::cuti ls. i

To reference a static variable defined in a procedure located in a module
other than the one where the execution pointer is, put a period between the
module and the procedure and the procedure and the variable:

Data reference::cuti ls.delay.i

Reference Scoping

5-28 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

By using the rules listed in table 5-6, you can reference any variable
located in any module or procedure as long as it is not a register variable or
automatic (stack-based) variable.

Table 5-6: Reference Scoping

Referencing Automatic (Stacked-based)
Variables

Because stack-based variables are stored on the stack, they are only
accessible when the execution pointer is in the procedure where they are
located. Trying to reference these variables from outside the procedure in
which they are defined displays an error message.

If you try to examine a stack-based variable before it has been initialized, a
value may be displayed in the Data window, but it will probably be the
wrong value. There will be a question mark next to the reference in the
display because you have to step at least once in a procedure to initialize
the stack for that procedure.

Where is the variable declared? How should it be referenced?

Same procedure variablename

Global in scope variablename

In a different procedure, but the
same module, static

procname.variablename

In a different module, but not in a
procedure

:modname.variablename

In a different module and in a
procedure, static

:modname.procname.variablename

Reference Scoping

Soft-Scope User’s Guide 5-29

5. Examining Data with Soft-Scope

5

Also, before you examine variables that aren’t initialized until the program
accesses them, you should execute to a point at least one line beyond the
one that assigns a value to them.

Referencing Register Variables

Register variables aren’t stored in memory, so Soft-Scope can’t access the
value of a register variable unless the execution pointer is in the procedure
where the variable is defined. Trying to reference these variables from
outside the procedure in which they are defined displays an error message.

Reference Scoping

5-30 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

The Watch Window

The Watch window is used to monitor data references as your application
executes on the target. The contents of the Watch window are updated
after every Soft-Scope command that causes the target to execute, such as
single stepping. If you are using an interrupt driven CSi-Mon monitor, the
window update rate is defined by the exec.refresh configuration option
(default value is zero seconds). See the Soft-Scope Configuration
Options section in the chapter Configuring Soft-Scope for details on
using this option.

One way to place a data reference into the Watch window is by using the
Watch... command from the Data pull-down menu. Enter the data
reference you would like to monitor in the dialog box. To monitor more
than one reference at a time in the Watch window, enter multiple
references in the dialog box, separated with a comma.

To place a data reference into the Watch window from the Code window,
double-click <Button-L> on the data reference. This will move it to the
Data window. Then use the Watch toolbar button to place the data
reference into the Watch window.

You can also use the Watch toolbar button in the Symbols, Data, and
Registers windows to place a reference in the Watch window.

The Watch Window

Soft-Scope User’s Guide 5-31

5. Examining Data with Soft-Scope

5

Toolbar Buttons

Use the following toolbar buttons to manipulate items in the Watch
window:

 Modify • Mode • Insert • Delete

Modify Assign a value to the scalar variable nearest the cursor
position. To activate from the keyboard press <Enter>.

Insert Insert a data reference in the Watch window by entering a
data reference in the dialog box. To activate from the
keyboard press <Ins> or <I>.

Delete Delete a data reference from the Watch window identified
by the cursor position. To activate from the keyboard
press or <D>.

Mode Change the Watch window display mode. Figure 5-7
shows the Display modes dialog box. To activate from
the keyboard press <M>.

Figure 5-7: Display modes dialog box

The Watch Window

5-32 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Normal Display variable name and value. Display content varies
depending on variable’s data type. See figure
5-8 for an example.

Eval Display additional information if available.

Types Display reference name and type.

Address Display selector, offset, and physical address.

Figure 5-8: Watch window in Normal display mode

The Watch Window

Soft-Scope User’s Guide 5-33

5. Examining Data with Soft-Scope

5

Command Line

Use the following syntax in the Command line dialog box (<Ctrl>+<L>),
to place a reference in the Watch window:

WATCH [memref] [, memref]*

Watching a Pointer

When you place a pointer in the Watch window, the value of the pointer
itself is monitored for change and not the location where the pointer is
pointing. To view the data pointed to by the pointer, dereference the
pointer by double-clicking <Button-L> on the pointer operator (->).

Watching Memory

To watch the contents of any other memory location, use a type override.
The following command line example will cause the first byte at the address
specified to be displayed in the Watch window:

Command line:WATCH BYTE AT 200:12

NOTE: A large number of references in the Watch window will
degrade Soft-Scope’s performance because it has to fetch
information from the target for each reference.

The Watch Window

5-34 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

The Symbols Window

View the symbols of your application by opening the Symbols window.
Both Data/Symbols and Code/Module pull-down commands open this
window, but the display mode is different.

Toolbar Buttons

The toolbar buttons described below allow you to view your application’s
symbols:

 View • Modules • Procedures • Symbols • Watch • Assign

View Places the symbol identified by the cursor in the Data
window if it is a variable, or opens the Code window at
the symbol’s location if it is a module or procedure. When
the Code window is open, you can press the Locate
toolbar button to return the display to the current execution
point. To activate from the keyboard press <Enter> or
<V>.

The Symbols Window

Soft-Scope User’s Guide 5-35

5. Examining Data with Soft-Scope

5

Modules Displays a list of your application’s modules. To activate
from the keyboard press <M>.

Procedures Changes the display to include your application’s modules
and procedures. See figure 5-9 for an
example. To active from the keyboard press <P>.

Symbols Changes the display to show the application’s modules,
procedures, and symbols (variables). To activate from the
keyboard press <S>.

Watch Places the symbol identified by the cursor position in the
Watch window. To activate from the keyboard press
<W>.

Assign (=) Lets you assign a filename to the module identified by the
cursor position. To activate from the keyboard press <=>.

Command Line

Use the following syntax in the Command line dialog box (<Ctrl>+<L>)
to select what information is placed in the Symbols window:

MODULES [[TO] :modname]
MODULES :modname=filename

MODULES :modname =filename assigns a listing or source file to a
program module. This is useful to use in macros, or to specify a pathname:

modules :cmain=”c:\prog1\main.c”

PROCEDURES [[TO] coderef]

SYMBOLS [[TO] coderef]

If you use an address for a coderef, the window will open with the
procedure nearest the address displayed.

The Symbols Window

5-36 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Displaying Global Symbols

Global symbols, including procedure names, are displayed at the top of the
Symbols window when you select either the Procedures or Symbols
toolbar buttons. When you select the Modules toolbar button, only the
heading, Global Symbols, is displayed.

Figure 5-9: Symbols window in Procedures mode

The Symbols Window

Soft-Scope User’s Guide 5-37

5. Examining Data with Soft-Scope

5

Built-in Functions

Soft-Scope provides six functions that allow you to perform specialized
operations. They can be used in any valid expression (the parentheses
around the parameters are optional):

LENGTHOF (x) Returns the number of array elements
associated with reference x.

OFFSETOF (x) Returns the offset portion of pointer x.

PORT (x) Performs target-hardware I/O at port x. Only
8-bit, 16-bit, or 32-bit type overrides are
allowed with this function.

RETURN or Returns the expected return address of

RETURN (n) the current procedure. Return(n), where n is an
integer parameter, calculates the return address
for the nth nested call.

SELECTOROF (x) Returns the selector portion of pointer x.

SIZEOF (x) Returns the size of x in bytes.

NOTE: Use a period (.) in front of these reserved words if you
have a variable of the same name.

Determining Addresses

OFFSETOF, SELECTOROF, and RETURN help you determine the
address of a reference. Use the ADDRESSOF operator (&) with the first
two functions:

Data reference:offsetof &lights

Built-in Functions

5-38 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Using Return as a Memory Reference

RETURN can be used to find an expected return address, or in
combination with other Soft-Scope commands to define a memory
reference. The following example causes target execution until the
expected return address of the current procedure is reached:

Command: go return

This is the same as choosing the Go to return toolbar button .

Determining How Many Elements in an
Array

LENGTHOF is useful if you need to determine how many elements are in
an array. If the reference doesn’t represent an array, LENGTHOF returns
a ‘1’. The following example shows a reference to the array lights and the
resulting display:

Data reference:lengthof lights

0x00000008 8

Reading and Writing to Port Addresses

You can read from or write to I/O port addresses using PORT. Valid port
addresses range from 0 to 0FFFFH.

CAUTION: Be careful about reading what you have just written to an
I/O address. With some devices, reading from them may
change their state, and may not return a value just written
to them.

Built-in Functions

Soft-Scope User’s Guide 5-39

5. Examining Data with Soft-Scope

5

Also, it is important that you reference the correct number of bytes when
reading to or writing from a port. For example, if you read 32 bits from a
16-bit port 3, Soft-Scope will read all of port 3 and 16 bits of port 4
(assuming port 4 is at least 16 bits).

If you write a byte to a word-length port, your target could hang while
waiting for an expected second byte of data.

To view the value of a port, reference the port in the Data dialog box:

Data reference: port 3

The following example writes a byte-length value to port 3:

Data reference: port 3 = 04H

The next example reads 32 bits from port 2:

Data reference: dword port 2

Built-in Functions

5-40 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Type Overrides

By using a type override, you can cause a variable to be displayed as
though it were a type other than that declared in your application. Type
override does not perform a true type conversion on the variable, but
merely overlays a new type at its address.

This is especially helpful for logical, linear, or physical references, since they
have no types assigned to them, and for symbols that have been compiled
without type information.

Type overrides have two basic forms:

type-override variable

type-override AT address

The following can be used to instantiate type-override:

• Any C data type.

• Any data type listed in table A-1, “Data types for use in type
overrides,” in appendix A.

• Any user-defined variable that is currently accessible by your
application and Soft-Scope (stack-based variables must actually be on
the stack).

Applying a Type Override to a Variable

The simplest of the above forms specifies a type before a variable:

Data reference: long n

Type Overrides

Soft-Scope User’s Guide 5-41

5. Examining Data with Soft-Scope

5

Applying a Type Override to an Address

Use the second form to apply type overrides to addresses, including
registers, selectors, and pointer (use the AT operator).

The following example displays the contents of the specified logical address
in pointer format:

Data reference: pointer at 200:0ffff

The next example displays (as a double) the contents of the memory
specified by a logical reference:

Data reference: double at $ss:$ebp

(Soft-Scope requires that register names begin with a ‘$’.)

If you had just pushed the contents of the flags register and needed to
know what had been pushed, you could use the following to display the
data on the stack in flag format:

Data reference: fltype at $ss:$esp

fltype at 0040:000000d0 = 0x03e8 1000
 [nt iopl=0 of df IF TF SF ZF af pf cf]

AT works with TSS overrides:

Data reference: TSS386 at $tr

You can use the ADDRESSOF operator (&) to specify an address for use
with the operator AT.

Type Overrides

5-42 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Using a Variable to Superimpose its Data
Type over the Address of Another
Variable

You can also override the address of a symbolic reference to superimpose
the type of one reference over the address of another. Suppose two
structures structx and structy . Use the following override to display
structy in the format of structx :

Data reference: structx at &structy

Or you can use an address to designate the location you want overlaid with
a new format:

Data reference: structx at 200:ff0f

Using a User-declared Variable to Define
a Type Override

A user-declared variable can also be a type override of data at a specified
address. The following example displays memory at $ss:$ebp - 0x10
in the data-type format of the variable n.

Data reference: n at ($ss:$ebp - 0x10)

Type Overrides

Soft-Scope User’s Guide 5-43

5. Examining Data with Soft-Scope

5

Changing the Amount of Memory
Displayed

The operator LEN[GTH] helps you specify how much memory you want
Soft-Scope to display.

This example displays 10 words beginning at the location of n:

Data reference: word n length 10

The next example dumps ten bytes beginning at the address specified:

Command: dump byte at 200:1df length 10

Using Expressions in Type Overrides To
Do Mathematical Operations

You can use expressions in type overrides.

The example below causes Soft-Scope to apply the type override to the
contents of the memory location of n, add 2 to the value in that location,
and display the result:

Data reference: long n + 2

0x00000004 +4

The next example displays one word beginning at a stack memory location
10 (hex) less than the base pointer:

Data reference: word at ($ss:$ebp - 0x10)

Type Overrides

5-44 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Assigning Values Using Type Overrides

You can assign a value to a variable using a type override.

The following example assigns a real value of 3.0 to the memory location
associated with the variable speed . The data type—float in this
example—and the value must be of the same type:

Data reference: float speed = 3.0

Make complex assignments by using a type override on the right side of the
equal sign:

200P len 10 = byte at 100P len 10

If you want to examine the new value in the format of the override’s type,
be sure to reference the variable using the appropriate basic form:

Data reference: float speed

Use complex expressions in assignment statements. Expressions such as
b=c or a + (b=c) can assign values to arrays, GDTs, or other complex
types:

byte at 100P len 5 = byte at 40p len 5
byte at 20P len 5 + (byte at 100P len 5 = byte at 40p
len 5)

Displaying Data in its Most Useful Format

Use type overrides to manipulate the way data is displayed so you can see
the information you need in a format that is easy to understand. Here are a
couple of examples.

Assume a C pointer called dev_names , declared as pointing to char (that
is, char *dev_names):

Data reference: *dev_names

Type Overrides

Soft-Scope User’s Guide 5-45

5. Examining Data with Soft-Scope

5

The example above only displays a single byte, because of the declared
type. If you knew that the pointer was pointing to a string of characters,
you could override the default display and display the entire string:

Data reference: string *dev_names

‘DISK\0’ 5

Use a variable defined as an array along with the operator AT to display a
section of memory in array format:

Data reference: array1 at 400:6

There are other ways to do the same thing. For example, if in the example
above array1 is a 3-element array of long , the following creates the
same display:

Data reference: long at 400:6 length 3

Type Overrides

5-46 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

The Dump Window

The Dump window is used to modify the value of a target memory location
and display target memory in a formatted list. The display contains three
columns showing the memory address, hex representation, and ASCII
representation of memory values. See figure 5-11 for an example. The
display format is selected using the Mode toolbar button described below.

One way to open the Dump window is to use the Dump... command from
the Data pull-down menu and entering a memory reference in the dialog
box. For example, enter byte at 203:0f in the dialog box to open
the Dump window and display memory starting at the logical address
203:0f with the byte highlighted.

NOTE: If you don’t specify an address the first time you open the
Dump window, memory will be displayed starting at
physical address 00000000P.

The Dump Window

Soft-Scope User’s Guide 5-47

5. Examining Data with Soft-Scope

5

Toolbar Buttons

Use the following toolbar buttons to modify items or change their display
format:

 Modify • Mode • Shift

Modify Change the value of the memory location identified by the
cursor position. Enter the new value in the dialog box. To
activate from the keyboard press <Enter>.

Shift Shift the starting address of each line forward by one byte to
align 16- or 32-bit fields. To activate from the keyboard press
<S>.

Mode Change the Dump window display mode. Figure 5-10 shows
the Dump modes dialog box. To activate from the keyboard
press <M>.

Figure 5-10: Dump modes dialog box

The Dump Window

5-48 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Byte Set hex display width to byte (8 bits).

Word Set hex display width to word. The word will be either 16- or
32-bits depending on the value of the sym.wordsize
configuration option. The default value of sym.wordsize is 32.
You can change its value using the Display command from the
Options pull-down menu as described in the Soft-Scope
Configuration Options section of the Configuring Soft-
Scope chapter.

Hword Set hex display width to half-word (16 bits). This radio button
appears when sym.wordsize equals 32.

Dword Set hex display width to dword (32 bits). This radio button
appears when sym.wordsize equals 16.

Expand Set display width to 16 bytes. This does not effect the value of
sym.wordsize.

NOTE: The address format depends on the type of memory
reference you used to open the Dump window. For a
logical reference, the address format will be logical. For a
physical reference, the address format will be physical.

The Dump Window

Soft-Scope User’s Guide 5-49

5. Examining Data with Soft-Scope

5

Command Line

From the command line, enter a memory reference in the Command line
dialog box (<Ctrl>+<L>) using the following syntax:

DUMP[[TO] memref]

Figure 5-11: Dump window in Byte mode, 8 bytes per line

The Dump Window

5-50 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Uploading Memory and Registers

To save memory and register values in a disk file, use the Upload...
command from the File pull-down menu. From the disk file you can view
or edit these values and reload them using the Load... command from the
File pull-down menu.

Enter the starting address, length (in bytes), and the name of the disk file
where you want to store this information in the Upload dialog box. To
save the register values, enter registers after the length and before the
file name. To save an entire procedure or module, enter its name in the
dialog box followed by the file name.

NOTE: If you enter an address without a length, only the address
is saved.

To store 8 bytes starting at the logical address 208:00000028 in the file
test.dat, enter the following:

208:00000028 length 8 c:\temp\test.dat

To store the delay module in a file named delay.dat, enter delay
test.dat in the dialog box.

Uploading Memory and Registers

Soft-Scope User’s Guide 5-51

5. Examining Data with Soft-Scope

5

Command Line

Use the following syntax in the Command line dialog box (<Ctrl>+<L>):

UPLOAD memref [REGISTER[S]] filename
UPLOAD REGISTER[S] filename

Using the optional REGISTERS parameter causes the current register
image to be saved to the Upload file.

NOTE: If Soft-Scope determines that the filename you give
already exists, it asks if you want to append to the file,
overwrite the file, or escape so you can try again with a
new filename.

Format of Upload Files

Upload files contain a series of one-line text records that you can edit with
a text editor. The format, described below, must be maintained when you
edit the file. Otherwise Soft-Scope will consider the file invalid or corrupt,
and it won’t be able to load it.

• Each file contains a tag record that has the time and date the file was
saved.

• Each record in the file begins with a ‘+’, which marks the record for
identification and format when reloaded.

• Each register is listed as one record, in assignment format for easy
reading.

• Each region of uploaded memory contains the starting address, length,
and binary image. At the end of a line where binary data are
displayed, there is a \r\n (carriage-return/newline sequence), which
Soft-Scope uses for newline recognition.

Uploading Memory and Registers

5-52 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

The Registers Window

The Registers window allows you to examine, modify, and monitor
register values. The contents of the window varies for different members
of the x86 family. Figure 5-12 shows the registers for a 80386EX target.

To open the Registers window, use the Registers command from the
Data pull-down menu.

Toolbar Buttons

The contents of a register can be modified or monitored using the toolbar
buttons described below:

 Modify • Watch

Modify Change the contents of the register identified by the cursor
position. Enter the new value in the dialog box. To access
an individual register fields, enter .fieldname in the
dialog box. For example, to change the zero flag bit in the
efl register to 1, enter $efl.zf=1 in the dialog box. To
activate from the keyboard press <Enter>.

The Registers Window

Soft-Scope User’s Guide 5-53

5. Examining Data with Soft-Scope

5

Watch Place the register identified by the cursor position in the
Watch window. To activate from the keyboard press
<W>.

Command Line

Enter REG in the Command line dialog box (<Ctrl>+<L>) to open the
Registers window.

Accessing Registers When the Target is
Running

If you are using an interrupt-driven CSi-Mon monitor and interrupts are not
disabled with the option targ.polling=on, you can access system registers
while your application is running. Question marks (?) identify registers that
are not displayed.

The Registers Window

5-54 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Figure 5-12: Registers window for 80386EX target

The Registers Window

Soft-Scope User’s Guide 5-55

5. Examining Data with Soft-Scope

5

Contents of the Registers Window

The contents of the Registers window display varies for different
applications. For example, 32-bit 80386 applications support different
registers than 16-bit 80286 applications. All register-subfield displays have
certain conventions in common:

• Subfields displayed with an equal sign and a value (pri=0) are made up
of more than one bit. See your processor reference manual to
determine the number of bits.

• Subfields displayed in uppercase letters are in the on (1) state.

• Subfields displayed in lowercase letters are in the off (0) state.

• Subfields are displayed right-to-left, with the least significant bit (LSB)
on the right and the most significant bit (MSB) on the left.

• Subfields that will not change or that do not apply to your processor
are not displayed.

• Subfield names are taken from Intel reference manuals.

See the Data Types, Operators, Registers, and Descriptors appendix for
more information.

The Registers Window

5-56 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

CPU Structures

CPU structures can be viewed and modified using the Data window.
Figure 5-13 shows a Data window containing IDT descriptors for an Intel
80386EX.

Figure 5-13: IDT descriptors

To view your target’s CPU structures in the Data window, use the CPU
structures... command from the Data pull-down menu. Select what you
want to view from the companion menu. The menu example below shows
the structures and peripherals for an Intel 80386EX.

NOTE: The contents of the CPU structures... will vary depending
on your target.

CPU Structures

Soft-Scope User’s Guide 5-57

5. Examining Data with Soft-Scope

5

You can access individual descriptors by treating the GDT, IDT, and LDT
as if they were arrays of structures. To view the 9th GDT element, select
Data/Examine... and enter $gdt[8] in the Data window dialog box.

NOTE: Put a dollar sign ($) in front of the descriptor name to
convert a symbolic reference into a CPU reference.

CPU Structures

5-58 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Figure 5-14: Data window in Normal mode

Figure 5-14 shows the descriptor Data window in Normal mode. Figure
5-15 shows the same descriptor with the Data window in Eval mode. See
table 5-7 for a list of descriptor abbreviations used in the Data window.

Figure 5-15: Data window in Eval mode

Command Line

To place a CPU structure in the Data window, use the following syntax in
the Command line dialog box (<Ctrl>+<L>):

EVAL (memref | coderef) [, (memref | coderef)]*

NOTE: To view page tables, use the Page macro found in the
macro file sswin32.mac.

CPU Structures

Soft-Scope User’s Guide 5-59

5. Examining Data with Soft-Scope

5

Table 5-7: Descriptor abbreviations

Abbreviation Meaning

WR Write/read
ED Expand down
AC Access
RO Read only

Modifying a Descriptor Element

To modify an element from the Data window, complete the following
steps:

1. Put the cursor on the element you want to change.

2. Select the Modify toolbar button.

A dialog box containing something like the following appears:

$gdt[2]=

3. Delete the equal sign (=).

4. Enter a period (.), subfield and an equal sign.

5. Enter the new value and press <Enter>.

Your modified dialog box might look like the following:

$gdt[2].limit=4fffh

NOTE: If you enter a new value after the equal sign (=) without the
period (.), an error message will appear.

For Intel 80386EX, $SDA is the State Dump Area.
$SDA is a structure defined in SMM memory that holds
the machine state. $SDA is restored when entering and
leaving SMI.

CPU Structures

5-60 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

Real-Mode Structures

The peripheral control block (PCB) is supported only for applications
running on Intel’s 80186/188 microprocessors. You can access this
structure by choosing Data/CPU structures.../$PCB.

The $PCB structure members and subfields are displayed in a format
similar to the format used below. Changing the $pcb.rr.slave bit does not
change the display of the interrupt controller structure ($pcb.pic)
immediately; you must exit the Registers window and reopen it to see the
changed structure. Note that subfields of structure members are enclosed
in brackets, and members are not.

If your code changes the contents of the relocation register, use the
configuration option targ.pcb=16-bit number. The 16-bit number is the
value that the $PCB relocation register should contain. See your Intel
80186/188, 80C186/C188 Hardware Reference Manual (Intel order
#270788-001) for more information.

Table 5-8: Peripheral Control Block

$pcb.rr Relocation register
[et slave ms base=fff]

$pcb.timer [0..2] Timer/counter structure (three element
array)

count Current value of timer/counter

max_a Max count value a

max_b Max count value b (not used on timer[2])

control Timer control word
[en inh int riu mc rtg p ext alt cont]

Real-Mode Structures

Soft-Scope User’s Guide 5-61

5. Examining Data with Soft-Scope

5

Table 5-8: Peripheral Control Block (continued)

$pcb.pic Interrupt controller structure (Master
mode)

irqInterrupt request register
[i3 i2 i1 i0 dma1 dma0 tm]

service In-service register
[i3 i2 i1 i0 dma1 dma0 tm]

mask Interrupt mask register
[i3 i2 i1 i0 dma1 dma0 tm]

primask Interrupt priority mask register
[pri=0]

status Interrupt status register
[dhlt tm2 tm1 tm0]

poll Poll and poll-status register contents
[ir s4 s3 s2 s1 s0]

eoi End of interrupt register
[spec s4 s3 s2 s1 s0]

timers Timer control register
[msk pri=0]

dma0 DMA channel 0 control register
[msk pri=0]

dma1 DMA channel 1 control register
[msk pri=0]

int0 Interrupt 0 control register
[sfnm c ltm msk pri=0]

Table 5-8: Peripheral Control Block (continued)

int1 Interrupt 1 control register
[sfnm c ltm msk pri=0]

Real-Mode Structures

5-62 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

int2 Interrupt 2 control register
[ltm msk pri=0]

int3 Interrupt 3 control register
[ltm msk pri=0]

$pcb.pic Interrupt controller structure (Slave
mode)

irqInterrupt request register
[tm2 tm1 dma1 dma0 tm0]

service In-service register
[tm2 tm1 dma1 dma0 tm0]

mask Interrupt mask register
[tm2 tm1 dma1 dma0 tm0]

primask Interrupt priority mask register
[pri=0]

status Interrupt status register
[dhlt tm2 tm1 tm0]

eoi Specific end of interrupt register
[pri=0]

vector Interrupt vector register

timer0 Timer 0 control register
[msk pri=0]

Table 5-8: Peripheral Control Block (continued)

dma0 DMA channel 0 control register
[msk pri=0]

dma1 DMA channel 1 control register
[msk pri=0]

timer1 Timer 1 control register
[msk pri=0]

Real-Mode Structures

Soft-Scope User’s Guide 5-63

5. Examining Data with Soft-Scope

5

timer2 Timer 2 control register
[msk pri=0]

$pcb.dma[0..2] DMA controller structure (two-element
array)

src_ptr Source pointer

dst_ptr Destination pointer

count Transfer count

control DMA control word

[dm dd di sm sd si tc int syn=0 pri tm2 st=0 wd]

$pcb.umcs Upper memory chip select
[size=0 rdy=0]

$pcb.lmcs Lower memory chip select
[size=0 rdy=0]

$pcb.pacs Peripheral address chip select
[base=0 rdy=0]

$pcb.mmcs Midrange memory chip select
[base=0 rdy=0]

Table 5-8: Peripheral Control Block (continued)

$pcb.mpcs Memory/peripheral chip select
[size=0 ex ms rdy=0]

$pcb.pdcon Power-down control register
[en div=0]

$pcb.edram DRAM control register
[en time=0]

$pcb.cdram DRAM control register
[count=0]

$pcb.mdram DRAM control register
[base=0]

Real-Mode Structures

5-64 Soft-Scope User’s Guide

5. Examining Data With Soft-Scope

$VECTOR[] Array

$VECTOR is a built-in array that spans the real-mode interrupt vector
table. It is an array of 256 32-bit far pointers, starting at linear address
00000000L. This feature is only applicable to virtual-86 and real-mode
applications.

To view the vector table in the Registers window, use the CPU
structures command in the Data pull-down menu and select
$Vector[].

Application Input/Output

Application I/O allows you to receive output from, or send input to, the
target application, using the same serial line that Soft-Scope uses to
communicate with the target.

To view Application I/O displayed in the Message window, you can scroll
up or down and left or right using the cursor keys or your mouse. You can
also move or enlarge the Message window. However, because input
goes directly to the target without being displayed in this window, you
cannot enter a line of input text and then edit it.

When the Application I/O window is open, all cursor movements and key
sequences are sent to the target, which makes it impossible to support the
window manipulation functions available in other windows.

Press <F10> to toggle the Application I/O window open and closed.

Application Input/Output

Soft-Scope User’s Guide 6-1

6

6. Configuring Soft-Scope

Chapter Contents

Overview ...6-3
Options Window..6-3

Toolbar Buttons.. 6-4
Save and Restore Options .. 6-4
Command Line... 6-5

Figure 6-1: Options window showing default values........................ 6-5
Soft-Scope Configuration Options...6-6

Table 6-1: Soft-Scope configuration options................................... 6-6
Control Default Number Base... 6-7
Change Log File Name... 6-7
Define Initial Command... 6-7
Define Initial Macro File.. 6-7
Configure Host To Target Communications.. 6-8
Control Screen Refresh Rate... 6-8
Control Command Delay.. 6-8
Define Command.. 6-9
Change Log File Size..6-10
Define Path To Application Files...6-10
Define Tab Spaces..6-10
Define Case for Symbol Search..6-10
Access CPU-specific Data Types..6-11
Display LDTR register value..6-11
Define Pointer Type Override Display...6-12
Specify Integer Data Type Size...6-13

6-2 Soft-Scope User’s Guide

Configuring Soft-ScopeChapter Contents

Specify Floating Point Emulation Parameter.....................................6-14
Control Memory Caching...6-14
Control Code Memory Cache Flush...6-14
Define Host Communication Device..6-15
Specify Where To Search For Memory Control Block....................6-15
Specify Where To Search for the NULL Device..............................6-16
Specify Size of Memory Reads...6-16
Tell Soft-Scope that Interrupts are Disabled....................................6-16
Verify Memory Writes...6-17
Specify temporary file location..6-17
Specify the Size of the Trace File...6-17
Preserve Trace Data across Applications...6-18

Soft-Scope User’s Guide 6-3

Configuring Soft-Scope

6

Overview

Soft-Scope uses a Windows-type initialization file (default = sswin32.ini)
containing a list of parameters and their values to configure many of its
features. Throughout this manual these options are explained in the context
of the features they control. However, for clarity and convenience, this
chapter contains a description of each of the available options, and how to
modify, add, or delete individual options in your sswin32.ini file.

Options Window

The Options window displays the current Soft-Scope configuration
options based on the Options section of the sswin32.ini file. See figure 6-
1 for an example of the Options window.

Use the Display command from the Options pull-down menu to open the
Options window.

Overview

6-4 Soft-Scope User’s Guide

Configuring Soft-Scope

Toolbar Buttons

The following toolbar buttons are used to modify, insert and delete
configuration options:

Modify • Insert • Delete

Modify Change the value of an option identified by the cursor
position. Enter the new value in the dialog box. To
activate from the keyboard press <Enter>.

Insert Insert a new option and value by entering them in the
dialog box. To activate from the keyboard press <Ins> or
<I>.

Delete Delete the option identified by the cursor position. To
activate from the keyboard press or <D>.

Save and Restore Options

To save the current options in the sswin32.ini file for the next Soft-Scope
session, use the Save settings command from the Options pull-down
menu. To restore the current option settings from the sswin32.ini file, use
the Reload settings command from the Options pull-down menu.

Options Window

Soft-Scope User’s Guide 6-5

Configuring Soft-Scope

6

Command Line

You can use the command line to open the Options window, save and
reload option settings, and modify an option value. Enter the following
syntax in the Command line dialog box (<Ctrl>+<L>):

SET [[TO] optionname] open Option window
SET RELOAD | SAVE reload/save options
SET optionname=optionvalue modify an option

Figure 6-1: Options window showing default values

Options Window

6-6 Soft-Scope User’s Guide

Configuring Soft-Scope

Soft-Scope Configuration Options

Table 6-1 contains a list of the configuration options. Each option is
discussed below.

NOTE: Spaces are not allowed before or after the “=” when
assigning a value to an option.

Table 6-1: Soft-Scope configuration options

base log.winsize targ.dos_mcb_end

cmd.file src.path targ.dos_mcb_start

cmd.initial src.tab targ.dos_nul_end

cmd.macro sym.case targ.dos_nul_start

connect.baudrate sym.cpu targ.grain

connect.comport sym.ldt targ.polling

exec.refresh sym.pointer targ.verify

exec.wait sym.wordsize tmp.path

load.init_command targ.87emulate trace.filesize

load.init_enable targ.cache trace.load

load.setup_command targ.code_cache

load.setup_enable targ.dev

NOTE: The [File] and [Layout] sections of the sswin32.ini
initialization file are modified by Soft-Scope as a result of
menu selections or dialog-box options. Do not modify
them manually by editing the file.

Soft-Scope Configuration Options

Soft-Scope User’s Guide 6-7

Configuring Soft-Scope

6

Control Default Number Base

base=10 | 16

Set base to the decimal value of the number base you want to use when
inputting numbers (i.e., base=16 sets it to hexadecimal). The choices are
10 or 16. Default: base=10.

Change Log File Name

cmd.file=log filename

Use this option to specify a log file name. If you change the file name while
a debug session is in progress, the contents of the Log window are not
changed unless you do a window capture (Window/Capture) or select
File/View log. Default: cmd.file=sswin32.log.

Define Initial Command

cmd.initial=command

When Soft-Scope is invoked, it will perform the Command line command
specified by command before it loads an application. Default: None.

Define Initial Macro File

cmd.macro=macrofilename;...;macrofilename

This option lets you define the initial macro file(s) that is loaded when Soft-
Scope is first invoked. Each macrofilename must include a complete
path, unless it’s located in the current working directory. Default:
cmd.macro=sswin32.mac.

Soft-Scope Configuration Options

6-8 Soft-Scope User’s Guide

Configuring Soft-Scope

Configure Host To Target
Communications

connect.baudrate=baudrate

This option is only valid for serial connections. The value of the baudrate
can be either 300, 1200, 2400, 9600, 19200, 38400, 57600, or 115200.

connect.comport=comport

This is only valid for serial connections. The value of the comport can be
either "com1", "com2", "com3", or "com4".

Control Screen Refresh Rate

exec.refresh=0 | n

Set this option equal to the number of seconds (n) you want Soft-Scope to
wait before refreshing the screen while your application is running,
assuming your CSi-Mon monitor is interrupt driven. Zero disables the
screen-refresh function. Default: exec.refresh=0 (seconds).

Control Command Delay

exec.wait=value

You can control the amount of time (value is in seconds) Soft-Scope waits
before attempting to process the next command. This is useful when
stepping, because if you step over a procedure that takes several seconds
to execute, Soft-Scope doesn’t attempt to step again until the time
specified by this option expires. Press <Esc> to escape from the waiting
mode. Default: exec.wait=3 (seconds).

Soft-Scope Configuration Options

Soft-Scope User’s Guide 6-9

Configuring Soft-Scope

6

Define Command

load.init_command=command

This option allows you to specify a Command line command to execute
after your application is loaded. Typically, it is used to go to the section of
code being debugged, or to set initial breakpoints. Use it to call a macro
that does both.

Define command using the Command text box found in the File-Load,
File-Symbols, and File-Restart dialog boxes. Default: None.

load.init_enable=on | off

This option provides a way to toggle load.init_command on and off. The
option is set using the Command check box found in the File-Load, File-
Symbols, and File-Restart dialog boxes. Default: load.init_enable=off.

load.setup_command=command

Use this option to specify a Command line command that will execute
before your application is loaded. You could use this option to invoke a
macro that writes test data into memory to help you find uninitialized-
variable problems.

Define command using the Hardware Setup text box found in the File-
Load and File-Restart dialog boxes. Default: None.

load.setup_enable=on | off

This option provides a way to toggle load.setup_command on and off.
Set the option using the Hardware Setup check box found in the File-
Load and File-Restart dialog boxes. Default: load.setup_enable=off.

Soft-Scope Configuration Options

6-10 Soft-Scope User’s Guide

Configuring Soft-Scope

Change Log File Size

log.winsize=n

The option changes the number of lines stored in the Log window
temporary file. The value of n can range from 16 to 1024. Default:
log.winsize=500.

Define Path To Application Files

src.path=d:\subdir\...\subdir* .asm;...;d:\subdir\...\subdir*.c

Use this option to define a path to your application. If you specify a path
when you load your application, Soft-Scope searches in the specified path
before searching the one defined by src.path. Default: None.

Define Tab Spaces

src.tab=n

This option defines the number of blank characters that are used when
expanding a tab character in the Code window. Default: Dependent on
source language.

Define Case for Symbol Search

sym.case=on | off

When Soft-Scope searches the symbol table it will match the case of the
symbol when sym.case=on. Default: sym.case=off.

Soft-Scope Configuration Options

Soft-Scope User’s Guide 6-11

Configuring Soft-Scope

6

Access CPU-specific Data Types

sym.cpu=cpu

This option allows you to access different CPU-defined types. For
example, if your application is for a 186 but you want to use 386EX
specific register types in type overrides, use sym.cpu=386EX.

This option also changes the way code is disassembled. The default is the
actual CPU in your target. Set this option to any of the following values:

Pentium 486SX 486DX 486 386EX
386SX 386DX 386 376 286
188EA 186EA 188EB 186EB 188EC
186EC 188XL 186XL C188 C186
V20 V30 V40 V50 188
186 88 86 Am386Elan

Display LDTR register value

sym.ldt=on | off

Soft-Scope has the ability to reference code and symbols whose addresses
don’t use the current LDTR. This option allows you to see which LDT is
used. If sym.ldt=on, the address display includes the LDT selector. If this
option is off, the LDT is not shown. Default: sym.ldt=off.

Soft-Scope Configuration Options

6-12 Soft-Scope User’s Guide

Configuring Soft-Scope

Define Pointer Type Override Display

sym.pointer=value

When you use pointer as a type override, Soft-Scope can interpret it in
four different ways. To control this interpretation, set value to one of the
following:

far16 selector with 16-bit offset

far32 selector with 32-bit offset

near16 16-bit offset only

near32 32-bit offset only

Remember that a far pointer is a 16-bit selector and a 16- or 32-bit offset.
A near pointer has only an offset with a default selector. Default:
sym.pointer=far16.

Soft-Scope Configuration Options

Soft-Scope User’s Guide 6-13

Configuring Soft-Scope

6

Specify Integer Data Type Size

sym.wordsize=16 | 32

This option defines the size of the C integer data type int . If you set this
option equal to 16, you can select from the following display modes:

Byte Select byte-width (8-bits) hex display with ASCII on the
right

Word Select word-width (16-bits) hex display with ASCII on the
right

Dword Select dword-width (32-bits) hex display with ASCII on
the right

If you set this option equal to 32, you can select from the following display
modes:

Byte Select byte-width (8 bits) hex display with ASCII on the
right

HWord Select half-word-width (16-bits) hex display with ASCII
on the right

Word Select word-width (32-bits) hex display with ASCII on the
right

Default: 16

Soft-Scope Configuration Options

6-14 Soft-Scope User’s Guide

Configuring Soft-Scope

Specify Floating Point Emulation
Parameter

targ.87emulate=value

This option is discussed in the Intel Floating Point Emulation appendix.
The value you specify here is the value of the first interrupt that is used by
the emulation library that lets Soft-Scope disassemble emulated instructions
as floating-point instructions. Default: None.

Control Memory Caching

targ.cache=on | off

Set targ.cache=on to enable Soft-Scope’s normal caching of previously
read memory. You might find this useful if you are actually reading from a
memory-mapped I/O device instead of memory, or if some other device,
e.g., a DMA device, is writing to memory. Default: targ.cache=on.

Control Code Memory Cache Flush

targ.code_cache=off | on

If you set targ.code_cache=on, Soft-Scope does not flush memory areas
that correspond to code when it executes your application. This provides
an increase in performance on some machines. Default:
targ.code_cache=off.

Soft-Scope Configuration Options

Soft-Scope User’s Guide 6-15

Configuring Soft-Scope

6

Define Host Communication Device

targ.dev=devicename

This option specifies the name of the device that Soft-Scope uses to
communicate with the CSi-Mon monitor on the target. To change
devicename, use the Options window. This option cannot be changed
while Soft-Scope is running. Default: targ.dev=comm.drv.

Specify Where To Search For Memory
Control Block

targ.dos_mcb_start=address
targ.dos_mcb_end=address

These options are used to define an area in memory where Soft-Scope can
search for the first DOS MCB (Memory Control Block) header file. See
the appendix, Debugging .exe Executable Files, for more information.
Defaults: targ.dos_mcb_start=00000701L;
targ.dos_mcb_start=000106ffL.

Soft-Scope Configuration Options

6-16 Soft-Scope User’s Guide

Configuring Soft-Scope

Specify Where To Search for the NULL
Device

targ.dos_nul_start=address
targ.dos_nul_end=address

When debugging DOS device drivers, Soft-Scope must search target
memory for the NULL device, which begins the device-driver chain in
memory. However, the NULL device and its location in memory are not
documented. If Soft-Scope cannot find the NULL device in the default
range, use these options to define a new search range. See appendix,
Debugging .exe Executable Files, for more information. Defaults:
targ.dos_nul_start=00000701L; targ.dos_nul_end=000106ffL.

Specify Size of Memory Reads

targ.grain=1 | 2 | 4

If your target is configured to read memory 2 or 4 bytes at a time, you can
define the memory access size with this configuration option. Set this option
to allow memory accesses of 1, 2, or 4 bytes. Default: targ.grain=1.

Tell Soft-Scope that Interrupts are
Disabled

targ.polling=on | off

Soft-Scope can only stop an interrupt-driven monitor when interrupts are
enabled. When interrupts are disabled, Soft-Scope continues to assume
you have an interrupt-driven monitor, and receiver time-out messages may
result. Set this option to on to eliminate the receiver time-out messages.
Default: None.

Soft-Scope Configuration Options

Soft-Scope User’s Guide 6-17

Configuring Soft-Scope

6

Verify Memory Writes

targ.verify=off | on

When set to on, this option causes Soft-Scope to perform read-after-write
verification of all memory writes. When set to off, no verification is
performed. Default: targ.verify=on.

Specify temporary file location

tmp.path=d:\subdir\...\subdir

The first time you debug an application, Soft-Scope creates a temporary
file called application.tmp. It is used to store initialization information
needed to load the application.

The next time you invoke Soft-Scope and load the application, it searches
the path defined with this option for application.tmp. If it finds it, and the
application has not been modified, Soft-Scope uses it to load the
application. Default: Current directory.

Specify the Size of the Trace File

trace.filesize=16K | ... | 1024K

This option controls the size of the temporary file where trace information is
stored. Default: trace.filesize=128K.

Soft-Scope Configuration Options

6-18 Soft-Scope User’s Guide

Configuring Soft-Scope

Preserve Trace Data across Applications

trace.load=off | on

If you set this option to on, the trace buffer shows trace information across
multiple loads. Use off to cause the trace buffer to be flushed each time
you load an application. Default: trace.load=off.

NOTE: During execution, Soft-Scope creates several temporary
files. The names of these files are determined by your host
operating system. The location of these files are
determined by the temp environment variable.

Soft-Scope Configuration Options

Soft-Scope User’s Guide 7-1

7

7. Creating and Using
Soft-Scope Macros

Chapter Contents

Overview ...7-3
Creating a Macro ...7-3

Compiled Macro Files.. 7-4
Built-in CPU Variables.. 7-5

Macros Window ..7-6
Loading a Macro File... 7-6
Toolbar Buttons.. 7-6

Figure 7-1: Macros window.. 7-7
Command Line... 7-7
Example Use of cmd.macro and load.init_command.......................... 7-8
Identify Macros in the Macros Window... 7-9

Macro Parameters ..7-10
Optional Parameters...7-10
Integer Type...7-10
LITERAL Parameter...7-11
TEXT Parameter..7-12
EXPRESSION Parameter..7-12
REFERENCE Parameter..7-12
ADDRESS Parameter..7-13
LINE Parameter...7-13
MODULE and PROCEDURE Types...7-13

Local Variables ...7-14
Declaring Local Variables..7-14
Defining One-dimensional Arrays..7-15

7-2 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

Assigning Numeric Values to Arrays..7-15
Assigning Pointer Values from Your Application...............................7-16

Macro Statements ..7-17
ABORT..7-17
BREAK..7-17
IF, IF...ELSE ..7-17
RESPOND...7-18
RETURN...7-18
WHILE ..7-18
MACRO SUSPEND..7-19
MACRO RESUME..7-19

Custom Commands with an Extended Monitor................................7-20
Manipulating Windows from Macros ..7-22

WMOVE ...7-23
WRESIZE..7-23
WFUNCTION...7-23

Examples..7-24
Macro Print Function ..7-25

PRINT ...7-25
Conversion Specifiers...7-25

Table 7-1: Conversion specifiers..7-26
$ Parameter Prefix in Control Strings...7-27
Escape Sequences ..7-27
Directed Output from Macros...7-27
Using Field-width Specifiers with PRINT or WPRINTF..................7-28
Specifying the Leading Zero Flag..7-28

Soft-Scope User’s Guide 7-3

7. Creating and Using Soft-Scope Macros

7

Overview

Soft-Scope’s macro facility lets you create your own macros that can:

• Rename a Soft-Scope command

• Create pseudo-command files of commands

• Create new Soft-Scope pseudo-commands

Look in the directory where you installed Soft-Scope for the example
macro file sswin32.mac. It contains several macros that you can examine
or modify to meet your special needs.

Creating a Macro

Use an ASCII text editor to create macros. Macro source files have the
following characteristics:

• You can declare an unlimited number of macros in a macro source file.

• Macro files must use the file extension .mac.

• Each declaration must look similar to a C-function declaration.

• The keyword MACRO should be used where the C function return
type would be.

• You can use control statements and function calls within the
declaration.

• The use of semicolons after source lines is optional, except after the
macro header line. Placing a semicolon after the first line of the macro
name and parameters results in an error message.

• The syntax shown below defines a Soft-Scope macro:

MACRO macroname [parameter_list]{ statements }

Overview

7-4 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

Any of the following can be Soft-Scope macro statements:

• Any Soft-Scope command discussed in the chapter Soft-Scope Basics
in the Commands and Command Line section.

• A C-type expression, including mathematical expressions, Soft-Scope
type overrides, and Soft-Scope functions.

• A macro control statement.

• A macro function.

• A compound statement that is enclosed in braces. Unlike the
compound statement in C, a Soft-Scope compound statement may not
contain local-variable declarations.

The following example macro makes use of Soft-Scope type overrides to
substitute an opcode for every byte of a source-code line:

macro arr_chg ($line, $value)
{
 byte at &#$line
length(sizeof#$line)=0x$value;
}

Compiled Macro Files

The first time you load a macro file, filename.mac, the file is compiled and
a filename.mob file is created that contains the compiled code. The next
time you load the macro file, Soft-Scope looks for the corresponding .mob
file. If it exists and if the original .mac file has not been edited since its
creation, Soft-Scope loads the .mob file. Compiled .mob files load and
execute faster than .mac files.

If the .mob file does not exist or the original .mac file has been edited since
the compiled version was created, Soft-Scope recompiles the original and
creates a new .mob file.

Creating a Macro

Soft-Scope User’s Guide 7-5

7. Creating and Using Soft-Scope Macros

7

Built-in CPU Variables

Soft-Scope contains a set of built-in CPU variables that you can use to
return information to macros. For example, you can determine if your
target is stopped or running, as in the following:

go; /* Stop before */
while (! $stopped); /* opening Calls window */
cal ls; /* Open Calls window */

The following is a list of built-in CPU variables and their possible values:

$CPU This is the processor type as reported by the CSi-Mon
monitor. Possible values are 80586, 80486, 80386, etc.

$NPX Use this to determine if a coprocessor is present. If a
coprocessor is present, the value of $NPX is the
coprocessor’s name. If it is not present, the value is 0.

$STOPPED Reports the execution state of your application. If
stopped, the value is 1. If running, the value is 0.

Creating a Macro

7-6 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

Macros Window

The Macros window shows which macros are currently loaded. Use the
Display command from the Macro pull-down menu to open the window.
Figure 7-1 shows an example of a Macros window.

Loading a Macro File

To load and compile a macro source file, use the Load command from the
Macro pull-down menu.

Toolbar Buttons

From the Macros window you can run or delete loaded macros using the
toolbar buttons described below:

Run • Delete

Run Runs the macro identified by the cursor position. To
activate from the keyboard press <Enter> or <R>.

Delete Deletes the macro identified by the cursor position from the
current Soft-Scope session. The macro source file is not
erased. To activate from the keyboard press or
<D>.

Macros Window

Soft-Scope User’s Guide 7-7

7. Creating and Using Soft-Scope Macros

7

Figure 7-1: Macros window

Command Line

Macros can also be loaded, displayed, and deleted using the following
syntax in the Command line dialog box (<Ctrl>+<L>):

MACRO [LIST] [TO] [macroname]
MACRO LOAD filename
MACRO DELETE [macroname]

To run a macro that is already loaded, enter the macro name and
applicable parameters in the dialog box. For example, the following would
run the macro test discussed later in this chapter:

Command: test 2 #26 “Go to line 26 two times”

Macros Window

7-8 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

NOTE: Loaded macros are stored inside Soft-Scope. Changes to
their source do not affect the macros until the source file is
loaded (and compiled) again.

Example Use of cmd.macro and
load.init_command

A macro can be loaded and executed as part of the Soft-Scope invocation
by using the cmd.macro and load.init_command configuration options.
To do this you will need to set these configuration options in the
sswin32.ini file as follows:

cmd.macro=sample.macLoads the sample.mac macro source
file.

load.init_command=setbreak Executes the setbreak macro found
in sample.mac. Because macros are
a subset of Soft-Scope commands, it
isn’t necessary to preface setbreak
with a command such as RUN or
LOAD.

The example below executes a macro that sets a breakpoint, executes to it,
and evaluates the symbol s1 in the Data window.

macro setbreak ()

{
br :cutils.c_data#98;
go ;
eval :cutils.strcpy.s1;

}

Macros Window

Soft-Scope User’s Guide 7-9

7. Creating and Using Soft-Scope Macros

7

Identify Macros in the Macros Window

Use a text string, placed inside quotes between a macro name and the first
parenthesis, to identify or otherwise customize the macro name in the
Macros window.

“setbreak breaks at line number 98”

Quotation marks with no text between them tell Soft-Scope not to display
that macro in the Macros window. This is helpful if you have a macro that
exists only to provide data to another macro.

Macros Window

7-10 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

Macro Parameters

In the macro source file, a parameter is recognized by a dollar sign ($)
preceding the parameter name:

$length

You can specify macro parameters as any type (except arrays) listed in
table A-1, “Data types for use in type overrides,” in appendix A.

Optional Parameters

The number of parameters passed to a macro must match the number of
parameters that the macro expects, unless the parameters are specified as
optional. The OPT keyword defines all parameters that follow it in the list
as optional. In the following example, $start and $length are both
optional.

macro fill (reference $memref,opt int $start,int
$length)

Integer Type

You can also use HEX and DEC as keywords. HEX specifies an integer
as a hex number, so you don’t have to use the prefix 0x, or the suffix H
when entering parameter values. A parameter with the DEC keyword
won’t accept a hex value:

macro test (hex int $memref, dec int $length)

Macro Parameters

Soft-Scope User’s Guide 7-11

7. Creating and Using Soft-Scope Macros

7

LITERAL Parameter

The LITERAL parameter type causes direct replacement during macro
execution. When you enter values, the literal strings are parsed and
inserted in the appropriate places.

LITERAL parameters can be used for most common macro parameters,
and are most useful when a parameter need not be evaluated at the
beginning of the macro.

For example, the macro below uses Soft-Scope type overrides to
substitute an opcode for every byte of a source-code line:

macro src_chg (literal $line, literal $value)
{
 byte at &#$line length(sizeof#$line)=0x$value;
}

If you ran this macro by selecting it from the Macros window, you could
enter something like the following when prompted:

23 90

The numeric value 23 would be passed as the value for $line , and the hex
number 90 would be passed as the value for $value . Keep in mind that a
LITERAL is a string of nonblank characters. The following would be
interpreted as a single LITERAL parameter value:

2390

Macro Parameters

7-12 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

TEXT Parameter

TEXT parameters are parsed and turned into string constants. No
processing of the string takes place (e.g., \n is not converted to 0xa).

The following example prints a string in a window:

macro printstr (
literal $win,
text $outstr)

{
wprintf (“$win”, “%s\n”, $outstr)

}

For example, enter the values when prompted as shown below:

printstr: log “macro succeeded”

EXPRESSION Parameter

This type allows any valid Soft-Scope expression to be input as a
parameter. The advantage over the ‘literal’ parameter type is that the
expression is evaluated only once at the time the macro is invoked. Any
syntax errors within the expression are trapped and reported before calling
the macros.

REFERENCE Parameter

A reference parameter is similar to an expression parameter but has an
additional requirement that it must be assignable. For example, you can
assign the register $ax a value (for example, $ax=00002fe8), but you
cannot assign a constant a value (for example, 5=3). As with expression
parameters, reference parameters are evaluated only once when the macro
is invoked.

Macro Parameters

Soft-Scope User’s Guide 7-13

7. Creating and Using Soft-Scope Macros

7

ADDRESS Parameter

ADDRESS types have all of the characteristics of reference types, except
they must have a port or memory address. For example, you can use
target variable names as ADDRESS types.

LINE Parameter

LINE types have all of the characteristics of reference types, except they
must be line numbers. Any number you use is interpreted as a line number.

MODULE and PROCEDURE Types

MODULE types must be module names. PROCEDURE types must be
procedure names.

Macro Parameters

7-14 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

Local Variables

Local variables may be declared as any type found in table A-1, “Data
types for use in type overrides,” in appendix A.

Local variables may be used anywhere you would use a parameter within
the body of a macro.

Declaring Local Variables

Variable names may contain up to 40 characters, and the number of
variables that can be declared is limited only by available memory. Once a
macro is terminated, the value of the variable is lost.

Variables must be declared by inserting the keyword AUTO and a type
before the variable name, immediately after the opening brace. The
example below declares $counter as a local variable:

macro test (int $value,
 reference $coderef,
 text $str)

{
auto int $counter

$counter = 0
print (“%s”, $str)
while (1) {
 go $coderef
 $counter++
 if ($counter == $value)
 break
}

}

Local Variables

Soft-Scope User’s Guide 7-15

7. Creating and Using Soft-Scope Macros

7

NOTE: Because the dollar sign ($) is used to designate macro
variables and is also used to specify the names of CPU
structures, care should be taken when naming variables to
avoid conflicts.

Defining One-dimensional Arrays

In addition, you can define variables as one-dimensional arrays. To define
an array, use an index in the declaration:

auto char $str[5]

Then simply assign a value to the character array in your macro using the
equal sign and quotation marks. You can assign a character string to any
array, regardless of the array’s type:

$str=”Hello”

Assigning Numeric Values to Arrays

To initialize an entire array to zero, use the array name without an index.
For example, the following sets all the elements of $arr[8] to 0:

$arr=0

However, to set each element of the integer array $arr[8] to a different
value, you must assign the values individually:

$arr[0]=1
$arr[1]=2
$arr[2]=3 ...

You can use two declarations to define a pointer in a macro:

auto char *$ptr
auto far32 $ptr

Local Variables

7-16 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

Assigning Pointer Values from Your
Application

The only restriction is that you must assign the pointer an address defined in
your application:

$ptr=name_init[0]

Local Variables

Soft-Scope User’s Guide 7-17

7. Creating and Using Soft-Scope Macros

7

Macro Statements

The Soft-Scope macro language supports the following control statements:

ABORT

ABORT [(“ format ” [, optional parameters])]

ABORT returns execution to the command line. Typically, it is used when
a severe error occurs in a macro and you want to stop execution. An
aborted macro cannot be resumed with Macro/Resume. ABORT also
lets you print a comment to the screen when a macro is aborted.

abort (“Macro halted—value out of bounds,%d”,
$value)

BREAK

BREAK functions the same as the C break: it exits the current block.

IF, IF...ELSE

IF (condition) statement
IF (condition) statemen t ELSE statement

The IF/ELSE control statement functions just like its C counterpart. The
condition can be any Soft-Scope expression that evaluates to a number.
If it evaluates to any number except 0, the statements after the IF are
executed. If it evaluates to 0, the statements after the ELSE are executed.
Enclose multiple statements in braces.

Macro Statements

7-18 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

RESPOND

RESPOND (“ resp ”)

RESPOND allows you to respond to Soft-Scope questions from within a
macro, so Soft-Scope doesn’t need to prompt you. The following
example responds to a query to append or overwrite the log file:

respond (“a”)

Responses are limited to a single character, and should be placed early in
the macro, before the response is needed.

RETURN

RETURN functions like its C counterpart, returning execution to the place
from which its containing block was called.

WHILE

WHILE (condition) statement

WHILE parallels its C-language counterpart. The condition can be any
Soft-Scope expression that evaluates to a number. If condition evaluates
to any number except 0, statement, which can be a compound statement
in braces, is executed. If it evaluates to 0, control passes to the next
command after the loop. To create an endless loop, simply make the
condition 1 (e.g., WHILE (1) {...}).

Macro Statements

Soft-Scope User’s Guide 7-19

7. Creating and Using Soft-Scope Macros

7

MACRO SUSPEND

You can suspend a macro that is running by using the MACRO
SUSPEND command inside the macro.

This is handy if you want to track and possibly change the value of an
application variable at different stages of macro execution, or, in
combination with an IF statement, when an error condition occurs. You
cannot change the value of a local variable while a macro is suspended.

This command is not available in the Command line dialog box
(<Ctrl>+<L>) or the pull-down menus.

MACRO RESUME

Resume a suspended macro using the Resume command from the Macro
pull-down menu.

You can also resume a macro from the Command line dialog box
(<Ctrl>+<L>) using the following syntax:

MACRO RESUME

Macro Statements

7-20 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

Custom Commands with an Extended
Monitor

The _USER_ macro command enables direct communication with the
monitor by allowing the user to send predefined and user-defined
commands to it.

Output responses to any _USER_ command appear in the Message
window. Syntax for the macro command is as follows:

USER MONITOR “Command_String”
USER MONHOLD “Command_String”

MONITOR Output from the monitor in response to
“Command_String” is displayed in the Message
window, and then the display returns immediately to the
previously active Soft-Scope window.

MONHOLD Output appears in the Message window and the
window persists until you press <F9>.

Note that the difference between the MONITOR and MONHOLD
versions of this command is that MONHOLD causes the output window
to remain open so you can study monitor output.

An example of how this might be applied would be to use the MONITOR
version for the first several commands in a series and the MONHOLD
version for the last monitor command. That way, the macro would execute
until all the commands were completed before stopping to show you the
results.

The “Command_String” can be any monitor command defined in the
default configuration of the monitor or any user-defined monitor-extension
command. The “Command_String” can also contain the following
parameter specifiers:

%c, %d, ..., %% Any of the conversion specifiers listed in table
7-1, “Conversion specifiers,” can be used with
the exception of %p, which cannot be used with
default monitor commands in _USER_.

Macro Statements

Soft-Scope User’s Guide 7-21

7. Creating and Using Soft-Scope Macros

7

$parameter_name Passes a literal value to a macro. Can be any
local variable, application variable, or macro
parameter.

The substitution specifier “%” allows you to generate specifier parameter
values symbolically. For example, you can use the functions
SELECTOROF and OFFSETOF inside the macro.

The following macro returns the address where the monitor is located:

macro whereis_carmen_csimonitor ()

{

 message

 wprintf(message, “\nThis is where the monitor
is:\n”
 user monhold “E0”
}

Macro Statements

7-22 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

Manipulating Windows from Macros

You can use the following commands to manipulate windows and the
cursor from within macros (the double-quotation marks are required):

WFUNCTION (“ window_id ”, “ key_sequence ”)
WMOVE (“window_id ”, newr , newc)
WRESIZE (“ window_id ”, width , height)

where,

window_id Is a window name. Use any of the following names;
breakpoints, calls, code, data, dump, log, macros,
options, registers, symbols, task, trace, watch.

newr Is a decimal number that specifies a row on the screen.
(0-23, top to bottom).

newc Is a decimal number that specifies a column on the
screen. (0-79, left to right).

width Is a decimal number that specifies the width of a
window in character columns, not greater than 80.

height Is a decimal number that specifies the height of a
window in character rows, not greater than 24.

key_sequence Is any sequence of keys, up to 80 characters in length,
that are valid in the window specified. Window
buttons, accelerator keys, and counts are valid. Use
the following names for the indicated keys. Note that
the left and right braces are part of the key name, and
that all letters in key names are lowercase.

Enter {enter} | ~ | ̂ M, where (^) represents
<Ctrl>

Up / Down {up} / {down}

Left / Right {left} / {right}

Manipulating Windows from Macros

Soft-Scope User’s Guide 7-23

7. Creating and Using Soft-Scope Macros

7

Page up {pgup}

Page down {pgdn}

Home /End {home} / {end}

Left brace {{}

Right brace {}}

If you specify a parameter that is outside the screen or window size, the
parameter will be truncated when a border is reached.

WMOVE

WMOVE places the upper, left-hand corner of the window at newr,
newc.

WRESIZE

WRESIZE changes the size of the window relative to the upper, left-hand
corner of the window, which remains in a constant position.

Any changes made to windows that are not open change the defaults, so
when you do open the window the new size and location are used.

WFUNCTION

If the window specified in a WFUNCTION command is not open, it
attempts to perform the function specified by the key sequence on the
current window. To ensure that the window specified is open, simply place
the command that opens it before the WFUNCTION in your macro. For
example, the DUMP command opens the Dump window.

Manipulating Windows from Macros

7-24 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

Examples

wfunction(“trace”, “”) Makes the specified window
the current window.

wfunction(“data”, “^X”) Closes the specified window.

Use WFUNCTION to specify information for dialog boxes. For example,
the following changes the code window mode to Assembly:

wfunction(“code”, “MA”)

The following example uses a count to move the cursor down 10 lines:

wfunction (“options”, “10{down}”)

The following example uses the brace keys to modify the first configuration
option:

wfunction (“options”, “{enter};{{};{}};{enter}”)

Manipulating Windows from Macros

Soft-Scope User’s Guide 7-25

7. Creating and Using Soft-Scope Macros

7

Macro Print Function

PRINT

PRINT (“ control_string” [, optional parameters])

This command functions much like C’s formatted print command, allowing
you to print formatted output to the Message window. Unless there are
conversion specifiers embedded within the control string, everything inside
the quotes is printed to the screen.

Conversion Specifiers

Conversion specifiers have the following format:

%CHAR

CHAR can be any one of the conversion characters listed in table 7-1.

If you use a conversion specifier in a control string, Soft-Scope expects a
substitute value to be in the parameter list following the string. Just as in C,
you should separate parameters with commas.

The first parameter in the list is substituted for the first conversion specifier
in the control string, the second parameter for the second specifier, and so
on. If the parameter and the conversion specifier have different types,
Soft-Scope applies a type override to the parameter.

Macro Print Function

7-26 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

Table 7-1: Conversion specifiers

Conversion
Character

Description

c Specifies a character. One byte will be displayed
for this operator. If the character is
non-printable, its value will be displayed in hex.

d Specifies a signed integer. Leading zeros are
suppressed.

f Specifies a double (64-bit double-precision
floating-point number). Leading zeros are
suppressed.

p Specifies an address: logical, linear, or physical.
Suffix L or P, specifying a linear or a physical
address, is not removed. The colon is not
removed from logical addresses.

s Specifies a character string. The entire character
string will be displayed, with non-printable
characters displayed in hex.

u Specifies an unsigned integer. Leading zeros are
suppressed.

x Specifies an unsigned hexadecimal integer.
Leading zeros are suppressed.

% Escapes the percent sign that starts the format
specifier.

Macro Print Function

Soft-Scope User’s Guide 7-27

7. Creating and Using Soft-Scope Macros

7

$ Parameter Prefix in Control Strings

When “$” occurs as a parameter prefix in a control string, a direct
substitution is performed. If this is not what you want, the best solution is
to rename the conflicting parameter.

Escape Sequences

The control string can also contain C-type escape sequences, which are
listed in table 5-4.

When specifying an octal number, use one, two, or three octal digits (0-7).
An error occurs if the octal number is greater than 377 (255 in decimal).

You can specify a hex number that contains one or two hex digits by using
the “\x” escape sequence. Errors are generated if the first number after the
x is not a hex digit, (i.e., 0-9, a-f or A-F).

Directed Output from Macros

To direct formatted output from macros to a selected destination, use the
following syntax:

WPRINTF (“destination”, “ control string”[,optional parameters])

All of the following destinations are Soft-Scope windows except Status,
which is the Status line at the bottom of the Soft-Scope display. Place
quotation marks around destination:

Log Message Status Trace

Macro Print Function

7-28 Soft-Scope User’s Guide

7. Creating and Using Soft-Scope Macros

Using Field-width Specifiers with PRINT
or WPRINTF

Use decimal integer constants as field-width specifiers in control strings as
part of the format specification. For example, the following specifies a field
width of 8 characters:

wprintf(“message”, “%8d”, $value)

If $value was equal to 45522601, the following would be printed in the
Message window:

45522601
 601

If $value does not contain eight characters, padding is inserted in front of
the needed spaces. If $value was equal to 601, the above example
shows how it would be displayed.

The first five spaces are left blank as padding. If $value is more than
eight characters, the field width is expanded to display as many characters
as needed.

You can also specify field width, as in C, with the asterisk “*”, which
causes a type int argument to be substituted for the field width. In the
following example, the field width is 5:

wprintf(“trace”, “unit=%*d”, 5, 12)

Specifying the Leading Zero Flag

A leading minimum field-width specifier as defined above is required to
specify the leading zero flag. Use this only with integer-type conversion
specifiers, that is, %d, %u, and %x:

print(“%04x”, 3)

Prints the following:

0003

Macro Print Function

Soft-Scope User’s Guide 8-1

8

8. Tools that Soft-Scope
Supports

This chapter provides information to help you insure that your application is
fully compatible with Soft-Scope. If you need to learn more about the
tools that Soft-Scope supports, consult the appropriate development-tool
reference guide.

Chapter Contents

Tool Summary ...8-2
Table 8-1: Supported tools .. 8-2

Sample Files... 8-4
Linking Your Application ..8-5

CSi-Link™ .. 8-5
Generating Symbolic Information..8-6

SSBUG.. 8-6
Tool Directives ..8-7

Borland.. 8-7
Intel.. 8-7
MetaWare ..8-10
Microsoft ...8-10
Phar Lap...8-11
Watcom...8-12

8-2 Soft-Scope User’s Guide

8. Tools that Soft-Scope Supports

Tool Summary

Below is a list of tools that can be used to build applications that can be
debugged using Soft-Scope. New versions of these tools are constantly
being released. See the readme.wri file on distribution disk one or in the
directory where you installed Soft-Scope, for the most current list.

NOTE: For information on Microsoft, Borland, Watcom, and
MetaWare compiler and assembler controls, see the CSi-
Link User’s Guide.

Table 8-1: Supported tools

Supported
Tools

16-bit
Real
Mode

16-bit
Protected

Mode

32-bit
Protected

Mode
Flat

32-bit
Protected

Mode
Segmented

Borland C++ X X X

Borland TASM X X X X

CSi-Link X X X X

Intel ASM86 X

Intel ASM286 X

Intel ASM386 X X

Intel BND286-BLD286 X

Intel BND386-BLD386 X X

Intel iC-86 X

Intel iC-286 X

Intel iC-386 X X

Tool Summary

Soft-Scope User’s Guide 8-3

8. Tools that Soft-Scope Supports

8

Table 8-1: Supported tools (continued)

Supported
Tools

16-bit
Real
Mode

16-bit
Protected

Mode

32-bit
Protected

Mode
Flat

32-bit
Protected

Mode
Segmented

Intel LINK86/LOC86 X

Intel PLM86 X

Intel PLM286 X

Intel PLM386 X

MetaWare High C/C++ X X

Microsoft MASM X X X X

Microsoft Visual C/C++
version 1x

X X

Microsoft Visual C/C++
version 2x or greater

X

Phar Lap 386/ASM X X X X

Phar Lap LinkLoc
Linker

X X X X

Watcom C/C++ X X X X

Watcom WASM X X X X

Tool Summary

8-4 Soft-Scope User’s Guide

8. Tools that Soft-Scope Supports

Sample Files

We have included real- and protected-mode sample applications for each
of the supported tools in the /samp subdirectory. Within /samp is a series
of subdirectories for each compiler. The subdirectory name includes the
compiler vendor, number of bits, and mode. For example, msc16pf
contains a Microsoft C/C++, 16-bit, protected-mode, flat-model sample.
The Borland C/C++ compiler appears as bcc, Watcom C/C++ compiler
as wcc, and MetaWare’s High C compiler as hc.

The mapi32p subdirectory includes a sample that demonstrates application
I/O using Soft-Scope’s Message window. The subdirectories bccexe
and mscexe include a sample in the form of a DOS executable which can
be debugged with Soft-Scope.

Included with each sample is its source, makefile, CSi-Link command file,
map file, listing and debug file. The samples were run on Intel 386EX,
AMD 186EM/ES evaluation boards and a target PC.

Tool Summary

Soft-Scope User’s Guide 8-5

8. Tools that Soft-Scope Supports

8

Linking Your Application

CSi-Link ™

We created the CSi-Link linker/locator so you could use the popular C/
C++ compilers from Microsoft, Borland, Watcom, and MetaWare to
develop an embedded application. CSi-Link creates an .abs debug file
that Soft-Scope uses to download your application to your target board or
a .hex or .bin binary file so you can burn it into ROM.

CSi-Link creates an absolute image of your application by linking your
object and library files and locating the segments, classes and groups that
make up an x86 program. It builds 16- and 32-bit protected mode CPU
structures, including the GDT, IDT, LDT, gates, page tables, and TSSs.
CSi-Link supports multiple-mode or mixed-mode applications.

For more information, see the CSi-Link User’s Guide.

Linking Your Application

8-6 Soft-Scope User’s Guide

8. Tools that Soft-Scope Supports

Generating Symbolic Information

SSBUG

The SSBUG utility makes it possible to use Soft-Scope for debugging real-
mode applications built with CSi-Link, Phar Lap’s LinkLoc, Paradigm’s
LOCATE and Intel’s LINK86/LOC86. SSBUG produces a .bug file that
includes symbolic information for Soft-Scope.

Debugging an .exe application running on a target PC with Soft-Scope is
also made possible by SSBUG.

To invoke SSBUG from the DOS prompt, enter the following:

ssbug filename .abs

Generating Symbolic Information

Soft-Scope User’s Guide 8-7

8. Tools that Soft-Scope Supports

8

Tool Directives

This section lists the tool directives to use when building an application for
debugging.

Borland

Consult the CSi-Link User’s Guide for tool directive information.

Intel

NOTE: Since Intel tools are no longer on the market, our support
is on an “as is” basis.

ASM86, ASM286 and ASM386

Use with Intel’s linker/locator or builder/binder, whichever is appropriate.

Use these controls: Don’t use these controls:
type nodebug
debug notype

noobject
nolist
noprint
optimize(2) or optimize(3)

Tool Directives

8-8 Soft-Scope User’s Guide

8. Tools that Soft-Scope Supports

Use these directives in your assembly modules:
name
proc/endp

Example invocation:
asm386 init.a38 type debug

BND286/386 and BLD286/386

Use this control: Don’t use this control:
noload purge

Controls for BLD286 and BLD386 are shown in the readme.wri file.

Example invocation:
bnd386 cmain.obj name(csamp) oj(csamp.lnk)
noload
bld386 csamp.lnk bf(csamp.bld) oj(csamp.abs)

Tool Directives

Soft-Scope User’s Guide 8-9

8. Tools that Soft-Scope Supports

8

Intel iC-86, iC-286 and iC-386

Use with the appropriate Intel linker/locator or binder/builder.

Use this control: Don’t use these controls:
debug nodebug

notype
optimize(2) or optimize(3) type
noprint
noobject
nolist

Example invocation:
ic86 cmain.c debug

Intel LINK86/LOC86

Use with Intel iC, PL/M, ASM, and FORTRAN-386 compilers.

Don’t use this control:
purge

We used a filter file to specify controls to the locator when preparing the
sample programs. To view a sample filter file, see the readme.wri file.

Example invocation:
link86 cmain.obj to csamp.lnk
loc86 csamp.lnk < csamp.flt

Tool Directives

8-10 Soft-Scope User’s Guide

8. Tools that Soft-Scope Supports

Intel PL/M-86, PL/M-286 and PL/M-386

Use with the appropriate Intel linker/locator or binder/builder.

Use this control: Don’t use these controls:
debug nodebug

noobject
nolist
notype
noprint
optimize(2) or optimize(3)

Example invocation:
plm386 pmain.p38 debug optimize(0) large

MetaWare

Consult the CSi-Link User’s Guide for tool directive information.

Microsoft

Consult the CSi-Link User’s Guide for tool directive information.

Tool Directives

Soft-Scope User’s Guide 8-11

8. Tools that Soft-Scope Supports

8

Phar Lap

Phar Lap LinkLoc

Use with MetaWare High C/C++.

Use these controls:
-symbols Include symbol table
-compat softscope Using Soft-Scope
-omfboot Produce OMF boot-loadable file

To build the sample programs, we used a command file that usually has the
extension .lnk to specify controls.

When preparing 386/486 protected-mode applications, it is important to
specify correct controls to ensure that the proper symbolics are generated
and the GDTs and IDTs are set up properly. To see a 386 command file
look at csamp.lnk in the /samp/hcxxx subdirectories where you installed
Soft-Scope.

Example invocation:
linkloc @csamp

Tool Directives

8-12 Soft-Scope User’s Guide

8. Tools that Soft-Scope Supports

Phar Lap 386/ASM

Use these controls:
Use the -386P, -386, -286P, 286, or -86 switch on the command line to
specify the instruction format you want.

-cv Debug information

Example invocation:
386asm -386P preamble.asm

NOTE: Version 2.2d does not produce line-number information.

Watcom

Consult the CSi-Link User’s Guide for tool directive information.

Tool Directives

Soft-Scope User’s Guide A-1

A

A. Data Types, Operators,
Registers, and Descriptors

This appendix contains a table of data types for use in type overrides,
operators, descriptors, subfields, and figures of registers for the Intel386,
Intel486™, and Pentium® processors. For more information on using or
accessing these items in Soft-Scope, see the chapter, Examining Data
with Soft-Scope. For more detailed information about the registers, see
the Intel Programmer’s Reference Manual for the processor you are
using.

Chapter Contents
Data Types ... A-2
Operators ... A-8
General-Purpose Registers ...A-10
NPX Registers ...A-13
Protected-Mode Registers ..A-14
Descriptors and Subfields ...A-15

A-2 Soft-Scope User’s Guide

A. Data Types, Operators,
Registers, and Descriptors

Data Types

The following table lists data types that can be used with Soft-Scope type
overrides. Some of the types have subfields that can be identified in the
register tables later in this appendix. [NOTE: Pentium is listed as 586.]

Table A-1: Data types for use in type overrides

Table continued on next page.

Data Type Description CPU/NPX

BCD NPX data type, 10-byte
BCD integer

87/187/287/387/486/586

BIT0 - BIT31 These overrides provide
access to individual bits in
the specified reference

All

BOOLEAN 1-byte boolean (00H=false,
otherwise true)

All

BYTE 8-bit unsigned integer All

CHAR 8-bit signed character All

CR0TYPE 32-bit $cr0 image 376/386/486/586

CR2TYPE 32-bit $cr2 image 386/486/586

CR3TYPE 32-bit $cr3 image 386/486/586

CWTYPE NPX80x87 control word 87/187/287/387/486/586

Data Types

Soft-Scope User’s Guide A-3

A

A. Data Types, Operators,
Registers, and Descriptors

Table A-1: Data types for use in type overrides (continued)

Table continued on next page.

Data Type Description CPU/NPX

DESC Protected-mode descriptor 286/376/386/486/586

DOUBLE 64-bit real All

DWORD Double-length unsigned
integer, bit length
sym.wordsize *2

All

EFLTYPE 32-bit $efl image 376/386/486/586

EXTINT 64-bit signed integer All

FAR16 Far 16-bit offset pointer All

FAR32 Far 32-bit offset pointer All

FLOAT 32-bit real All

FLTYPE 16-bit $FL image All

GDBTYPE GDT base address type 286/376/386/486/586

HWORD Half length unsigned integer,
bit length is sym.wordsize/2

All

IDBTYPE IDT base address type 286/376/386/486/586

INT Signed integer, bit length is
sym.wordsize

All

Data Types

A-4 Soft-Scope User’s Guide

A. Data Types, Operators,
Registers, and Descriptors

Table A-1: Data types for use in type overrides (continued)

Table continued on next page.

Data Types

Data Type Description CPU/NPX

LDTRTYPE LDT table selector image 286/376/386/486/586

LINEAR 32-bit linear address 376/386/486/586

LONG 32-bit signed integer All

MSWTYPE 16-bit $msw image 286/376/386/486/586

NEAR16 Near 16-bit offset pointer All

NEAR32 Near 32-bit offset pointer 376/386/486/586

NPX16R 16-bit real-mode NPX
save image

87/187/287/387
486/586

NPX16P 16-bit protected-mode
NPX save image

287/387/486/586

NPX32R 32-bit real-mode NPX
save image

387/486/586

NPX32P 32-bit protected-mode
NPX save image

387/486/586

NPX Displays the NPX save
image

As defined in option
file

PAGEDIRTYPE 32-bit page directory
image

386/486/586

Soft-Scope User’s Guide A-5

A

A. Data Types, Operators,
Registers, and Descriptors

Table A-1: Data types for use in type overrides (continued)

Table continued on next page.

Data Type Description CPU/NPX

PAGETABLETYPE 32-bit page table image 386/486/586

PCBTYPE Peripheral control block 186/188

PHYSICAL 32-bit physical address 376/386/486/586

POINTER This type is set by setting
sym.pointer to: NEAR16,
NEAR32, FAR16, or
FAR32

All

QWORD Unsigned integer, bit
length is sym.wordsize*4.
Not valid if
sym.wordsize=32

All

SELECTOR 16-bit selector All

SHORT 16-bit signed integer All

SIGNED Signed integer, bit length
is sym.wordsize

All

SIGNED BYTE 8-bit signed integer All

SIGNED DWORD Signed integer, bit length
is sym.wordsize*2

All

Data Types

A-6 Soft-Scope User’s Guide

A. Data Types, Operators,
Registers, and Descriptors

Table A-1: Data types for use in type overrides (continued)

Table continued on next page.

Data Type Description CPU/NPX

SIGNED QWORD Signed integer, bit
length is
sym.wordsize*4. Not
valid if
sym.wordsize=32

All

SIGNED WORD Signed integer, bit
length is sym.wordsize

All

STRING Zero-terminated string
(max 255 characters)

All

SWTYPE NPX 80x87 status
word

87/187/287/387/486

TEMPREAL 80-bit real All

TR3TYPE Test register 3 486

TR4TYPE Test register 4 486

TR5TYPE Test register 5 486

TR6TYPE Test register 6 376/386/486

TR7TYPE Test register 7 376/386/486

Data Types

Soft-Scope User’s Guide A-7

A

A. Data Types, Operators,
Registers, and Descriptors

Table A-1: Data types for use in type overrides (continued)

Data Type Description CPU/NPX

TSS286 286 task state
segment

286/376/386/486/586

TSS386 386 task state
segment

376/386/486/586

TWTYPE NPX80x87 tag word 87/187/287/387/486/586

UNSIGNED Unsigned integer, bit
length is
sym.wordsize

All

UNSIGNED CHAR 8-bit unsigned All

UNSIGNED EXTINT 64-bit unsigned All

UNSIGNED INT Unsigned integer, bit
length is
sym.wordsize

All

UNSIGNED LONG 32-bit unsigned
integer

All

UNSIGNED SHORT 16-bit unsigned
integer

All

WORD Unsigned integer, bit
length sym.wordsize

All

Data Types

A-8 Soft-Scope User’s Guide

A. Data Types, Operators,
Registers, and Descriptors

Operators

In addition to the Soft-Scope operators described in the table below, you
can use all C operators except the ternary conditional operator (?:) and the
comma operator(,).

Table A-2: Soft-Scope operators

Table continued on next page.

Operator Description Example

* Displays the symbolic reference
pointed to by the pointer

*xyz

-> Displays a single element of the
structure pointed to by the pointer

structname->

.. Creates a numeric range for accessing
arrays

array[1..9]

... Specifies a range, starting at the first
address of the array

array[...5]
array[5...]

& Obtains the address of a symbolic
reference

&xyz

: Identifies a module name :xyz

: Constructs a pointer from a selector
value and a 16- or 32-bit offset

1234:1234

Operators

Soft-Scope User’s Guide A-9

A

A. Data Types, Operators,
Registers, and Descriptors

Table A-2: Soft-Scope operators (continued)

Operator Description Example

. Prefixes a program symbol name to
prevent confusion with Soft-Scope
commands. For example, a variable
named load

.load

. Separates module names from variable
names

:abc.xyz

. Accesses members of a structure or
variables within a procedure (or named
block)

abc.xyz

length Specifies how much memory beyond the
referenced location to include in an
operation

byte at
1234:456
length 5

Converts an unsigned integer to a
 line-number

#89 ::xyz#89

at Converts an address into a null-type
symbolic reference

at 0000:0000

at Dereferences the following address byte at &abc

$ Identifies register and CPU structure
names

$GDT

$ Designates macro symbols and
parameters

$y

Operators

A-10 Soft-Scope User’s Guide

A. Data Types, Operators,
Registers, and Descriptors

General-Purpose Registers

31 15 0

$ax $ah $al

$eax $ax

$bx $bh $bl

$ebx $bx

$cx $ch $cl

$ecx $cx

$dx $dh $dl

$edx $dx

$ebp $bp

Figure A-1: General-purpose registers

General-Purpose Registers

Soft-Scope User’s Guide A-11

A

A. Data Types, Operators,
Registers, and Descriptors

31 15 0

$edi $di

$esi $si

$esp $sp

$eip $ip

Figure A-1: General-purpose registers (continued)

31 15 0

 $efl $fl
 a v r n iopl

 o d i t s z a p c
subfields c m f t f f f f f f f f f

Reserved

Figure A-2: Flags register

General-Purpose Registers

A-12 Soft-Scope User’s Guide

A. Data Types, Operators,
Registers, and Descriptors

15 0 15 0

 $cs $fs

 $ds $gs

 $es $ss

Figure A-3: Segment registers

General-Purpose Registers

Soft-Scope User’s Guide A-13

A

A. Data Types, Operators,
Registers, and Descriptors

NPX Registers

 15 0

$cw rc pc p u o z d i
 m m m m m

m

$sw b
 c top

 c c c e s p u o z d i
 3 2 1 0 s f e e e e e e

 $tw
 tag tag tag tag tag tag tag tag

 7 6 5 4 3 2 1 0

 79 78 64 63 0
 $st0-$st7 sign exponent mantissa
 (80 bits each)

Figure A-4: NPX registers

NPX Registers

A-14 Soft-Scope User’s Guide

A. Data Types, Operators,
Registers, and Descriptors

Protected-Mode Registers

 31 15 0

$cr0
 p e t e m p

 g t s m p e
 $msw

$cr1

$cr2 pfla--32 bits

$cr3 pdbr--20 bits

 m p d t p v
$cr4 c s e s v m

 e e d i e

 Reserved Figure A-5: Control registers

 31 15 0
$gdb

$gdl

$idb

$idl

$ldtr

Figure A-6: Protected-mode registers

Protected-Mode Registers

Soft-Scope User’s Guide A-15

A

A. Data Types, Operators,
Registers, and Descriptors

Descriptors and Subfields

Table A-3: 386 protected-mode variables

Table A-4: Page table entries

Name Description Starting Bit Size (bits) CPU

frame Page frame address 12 20 386/486/Pentium

avail Available for use 9 3 386/486/Pentium

d Dirty 6 1 386/486/Pentium

a Accessed 5 1 386/486/Pentium

pcd Page cache disable 4 1 486/Pentium

pwt Page write transparent 3 1 486/Pentium

us User/Supervisor 2 1 386/486/Pentium

rw Read/Write 1 1 386/486/Pentium

p Present 0 1 386/486/Pentium

Structure Description

$GDT An array reference that spans the current global descriptor
table. Use $GDT[n] to access a specific element. Use
$GDT[n] to view the G, B, P, and AV bits and the actual limit
value in the descriptor.

$IDT An array reference that spans the current interrupt descriptor
table. It can be referenced the same way as GDT.

$LDT An array reference that spans the current local descriptor table.

$PAGEDIR An array representation of the current 386 page table directory.

Descriptors and Subfields

A-16 Soft-Scope User’s Guide

A. Data Types, Operators,
Registers, and Descriptors

Table A-5: Descriptor subfields

Name Description Starting Bit Size (bits)

base Segment base 56,16 8,24

g Granularity 55 1

b Big 54 1

d Default 54 1

av Available 52 1

lim Segment limit 48,0 4,16

limit Segment limit 48,0 4,16

offset Offset in segment 48,0 16,16

p Present 47 1

dpl Descriptor privelege level 45 2

type Segment type 40 5

dt Descriptor type 44 1

code or data Code or data 43 1

ed or cfm Expand down or conforming 42 1

wr or rd Write or read 41 1

ac Accessed 40 1

count Dword count 32 5

seg Segment selector 16 16

sel Segment selector 16 16

Descriptors and Subfields

Soft-Scope User’s Guide A-17

A

A. Data Types, Operators,
Registers, and Descriptors

Table A-6: TSS386 subfields

Table continued on next page.

Name Description Starting Bit Size (bits)

io_map I/O map offet from start of TSS 102 16

idtr Register image 96 16

gs Register image 92 16

fs Register image 88 16

ds Register image 84 16

ss Register image 80 16

cs Register image 76 16

es Register image 72 16

edi Register image 68 32

esi Register image 64 32

ebp Register image 60 32

esp Register image 56 32

ebx Register image 52 32

edx Register image 48 32

ecx Register image 44 32

eax Register image 40 32

efl Register image 36 32

eip Register image 32 32

cr3 Register image 28 32

Descriptors and Subfields

A-18 Soft-Scope User’s Guide

A. Data Types, Operators,
Registers, and Descriptors

Table A-6: TSS386 subfields (continued)

Name Description Starting Bit Size (bits)

ss2 Level 2 stack segment 24 16

esp2 Level 2 stack pointer 20 32

ss1 Level 1 stack segment 16 16

esp1 Level 1 stack pointer 12 32

ss0 Level 0 stack segment 8 16

esp0 Level 0 stack pointer 4 32

link Backlink 0 16

Descriptors and Subfields

Soft-Scope User’s Guide B-1

B

B. Error Messages

Chapter Contents

Overview .. B-2
Address Error Messages .. B-3

Example Address Error Message.. B-3
Explanation... B-3
How To Interpret Address Errors ... B-4

Table B-1: Conversion entry codes.. B-4
Table B-2: Address error messages ... B-5

Error Messages ... B-7

B-2 Soft-Scope User’s Guide

B. Error Messages

Overview

Soft-Scope generates an error message when it cannot execute a
command. Many of the error messages are displayed with a line of carets
(“^^^^”) displayed beneath some part of the problematic command. The
carets show where in the command Soft-Scope ran aground. Some of the
messages in this chapter are warning messages and are identified as such in
the message text.

When possible, error messages are discussed in the following format:

1. < error message >

2. Explanation describing why the error message was displayed

3. What to do to eliminate the error message or avoid it in the future

Error messages are presented in alphanumerical order.

Overview

Soft-Scope User’s Guide B-3

B. Error Messages

B

Address Error Messages

Because memory management, especially in protected-mode applications
and applications using the processor’s paging tables, is complex and does
not allow descriptions of all possible memory errors, we have provided
information to help you interpret address error messages.

All address error messages have the following format:

<Address - cvt ... - cvt - error message>

The variable cvt is an address where a conversion was attempted, and
how the conversion was done. In all cases, the final cvt is where the error
occurred.

Example Address Error Message

The following example describes an extremely complicated error message.
Most of the error messages you see won’t be this complicated:

Reference: mysymbol

struct {
first128
next

<Address - ffff:12345678 fffb[8191] -
fffb:0000fff8 gdt[8191] - fffff123L
Page[1023][1023] - 00000123P - Page not present >

Explanation

• Logical address ffff:12345678 with noncurrent LDT, fffb, required the
LDT entry in LDT fffb.

• To read the descriptor, gdt[8191] had to be read.

Address Error Messages

B-4 Soft-Scope User’s Guide

B. Error Messages

• Reading the GDT entry at linear address fffff123L caused the page
table entry for page[1023][1023] to be read from physical address
00000123P.

• Page[1023][1023] is missing or corrupted.

How To Interpret Address Errors

Table B-1 below lists all possible values for cvt. If you get an address
error message, compare the cvt entries with the table and determine what
conversion was taking place when the error occurred. Then look in table
B-2 on the next page to determine what the error part of the message
means. You should be able to identify what happened to cause the error.

Table B-1: Conversion entry codes

Conversion entry (cvt) Description

logical_addr gdt[0] 286/386 gdt[]

logical_addr ldt[0] 286/386 current ldt[]

logical_addr 0000[0] 286/386 noncurrent ldt[]

logical_addr cs_desc CPU segment register cache

logical_addr v86 virtual 86 logical to linear mode translation

logical_addr real real mode

linear_addr page[0] page directory

linear_addr page[0][0] page table entry

Address Error Messages

Soft-Scope User’s Guide B-5

B. Error Messages

B

Table B-2: Address error messages

Table continued on next page.

Message Description

Address wrap Address attempted to wrap a segment, linear
memory, or physical memory

GDT limit exceeded Soft-Scope trapped a reference outside the
bounds defined by the GDL register (the GDT
limit)

LDT via LDT selector The LTR register caontains a LDT selector

Memory bounds
exceeded

The memory location that Soft-Scope is trying
to access is out of range

Non-addressable
segment type

The descriptor specified does not have an
addressable segment associated with it

Not code segment Soft-Scope requires code memory for the
attempted operation

Not data segment Soft-Scope requires data memory for the
attempted operation

Not IDT segment The selector given for the IDT indicated a GDT
slot that did not specify an IDT segment

Not LDT segment The selector given for the LDT indicated a GDT
slot that did not specify an LDT segment

NULL selector Zero is not a valid selector for protected mode

Page not present Either the page-table page or the final memory
page was missing

Address Error Messages

B-6 Soft-Scope User’s Guide

B. Error Messages

Table B-2: Address error messages (continued)

Message Description

Physical limit
exceeded

The address specified is outside the limit of
physical memory

Segment limit
exceeded

The address specified is outside the segment
limit or an attempt was made to use an offset
greater than 0xffff in real mode

Segment not
addressable

The descriptor associated with address
specifies a segment type that is not
addressable

Segment not present The descriptor specified is not present in
memory

Stack frame not set
up

The referenced symbol is in a procedure that is
not in the current scope and doesn't have an
address. You can still inspect its type

Target limit exceeded The address specified is beyond the memory
range available in the computer

Write fail Either no memory exists at the location
specified or it is in ROM

Address Error Messages

Soft-Scope User’s Guide B-7

B. Error Messages

B

Error Messages

< filename linenum/column - msg >

Soft-Scope encountered an invalid configuration-option specification while
executing the specified line of file filename. The message is Soft-Scope’s
explanation of what caused the error.

Check your configuration-options file, usually sswin32.ini, for options that
are not defined as specified in the chapter, Configuring Soft-Scope.

< (selector) not found in load object >

The selector given in this message is not part of the expected load object.

Make sure that the load object you specify in the File-Load dialog box is
a valid load object for your current application.

< :name... not found in “ filename ” >

Soft-Scope can’t find the module you have referenced.

Check to see that the module name is entered in the dialog box correctly.
If it is, and you are sure the module exists in filename, make sure the
application is built according to the instructions in the chapter, Tools that
Soft-Scope Supports, and that the file is not corrupted.

< Application task running >

The function or command that you are attempting to execute requires target
execution to be stopped.

If you have an interrupt-driven monitor, use the Code/Stop command to
halt target execution.

Error Messages

B-8 Soft-Scope User’s Guide

B. Error Messages

< Application $gdt[0..x] can’t hold CSiMon $gdt[0..y]
>

The application was built without enough reserved GDT slots for
CSi-Mon.

Rebuild the application, reserving GDT slots 0 thru 63.

< Application $idt[0..x] can’t hold CSiMon $idt[0..y]
>

The application was built without enough reserved IDT slots for
CSi-Mon.

Rebuild the application, reserving IDT slots 0 thru 39.

< Attempted division by zero >

The specified expression resolves to a division by zero.

< Bad type for increment/decrement >

An increment or decrement operator (i.e., i++, —i) exists with a variable
that has an invalid data type for that operation. For example:
“GDT[5]++”.

Increment and decrement operators only work on scalar variables.

< Break is only valid inside while - ”token” at line ###, col ### >

The macro compiler has encountered a BREAK statement outside of a
loop.

Use BREAK statements only within WHILE statements to terminate
loops.

Error Messages

Soft-Scope User’s Guide B-9

B. Error Messages

B

< Breakpoint already set >

The referenced memory location or data area already has a breakpoint set
for it.

Check in the Breakpoints window to see what breakpoints are set.
Perhaps you will have to delete one and replace it with a new type. For
example, delete a hardware breakpoint so you can replace it with an
execution breakpoint.

< Breakpoint has not been set >

There is no breakpoint at the referenced location.

Check in the Breakpoints window for a list of existing breakpoints.

< Can’t increment constant or expression >

Increment or decrement operators (i.e., i++, —i) are set on a constant
expression or array.

Increment and decrement operators work only on scalar variables.

< Can’t turn this into an array >

The operand above the carats is not a memory reference.

Use the length operator LEN[GTH] only with memory references.

< Cannot display local variables in data window >

The value of a local variable in a macro is not saved when the macro is
terminated. Therefore, a local variable cannot be placed in the Watch or
Data windows.

Use the macro PRINT command to display the values of local variables
(see the Macro Print Function section in the chapter, Creating and
Using Soft-Scope Macros).

Error Messages

B-10 Soft-Scope User’s Guide

B. Error Messages

< Cannot unzoom window >

Soft-Scope was attempting to unzoom a window but could not allocate
enough memory to do so.

You may need to quit other Windows applications to create more memory.

< Count not in range 1..9999 >

Soft-Scope does not support counts outside the given range for the LIST
command.

< CSi-Mon — description >

The target is reporting an error to Soft-Scope that description explains.

< Ctrl-C break >

<Ctrl>+<C> aborted the executing command.

< Cursor not on execution breakpoint >

The breakpoint under the cursor is a data breakpoint. Soft-Scope can
only display source code for execution breakpoints.

The source code for some data breakpoints can be viewed by locating the
reference in your code using the Symbols window for variables or the
Code window in Assembly mode for addresses. Once you have located
the address or variable, switch the Code window to Source mode.

< Cursor not on line with address >

Soft-Scope can’t set a breakpoint on the line the execution pointer is on.

Possibly the current module has no line numbers or you are on a line
beyond the end of the module.

Error Messages

Soft-Scope User’s Guide B-11

B. Error Messages

B

< Expected “=” >

Soft-Scope found an assignment operator missing in the initialization file.

Modify your configuration sswin32.ini file and verify that for each option
there is an equal sign between the option and its value.

< Expected “macro” keyword - “token” at line ###, col
>

While compiling a macro file, the macro compiler was expecting the start of
a macro but got token instead.

Examine your macro file and make sure the macro at the given line number
has the keyword MACRO as the first word on the header line, and that all
of the braces are in the right places.

< Expected %s - “token” at line ###, col ### >

While scanning the format string of a print statement, the macro compiler
expected a string-format specifier and didn’t find one.

Examine your macro file and make sure the print statement on the given line
conforms to the specifications in the chapter, Creating and Using Soft-
Scope Macros.

< Expected closing paren - “token” at line ###, col ###
>

While parsing the current macro’s arguments or a WHILE or PRINT
statement, the macro compiler expected a closing parenthesis but got
token instead.

Examine the macro at the given line number. Make sure the parentheses
are used according to the specifications in the chapter, Creating and
Using Soft-Scope Macros.

Error Messages

B-12 Soft-Scope User’s Guide

B. Error Messages

< Expected comma - “token” at line ###, col ### >

Instead of a comma, which delimits arguments in a list, the compiler found
token.

Check to make sure there is not a typographical error at the given line
number.

< Expected format string - “token” at line ###, col ###
>

While parsing a PRINT statement, the macro compiler expected a string
indicating the format but got token instead.

Examine the macro at the given line number. Make sure the PRINT
statement meets the specifications laid out in the Creating and Using Soft-
Scope Macros chapter.

< Expected identifier - “token” at line ###, col ### >

The macro compiler has found token instead of a parameter or local
variable.

Look in your macro file and make sure the identified line has no
typographical errors and meets the specifications in the Creating and
Using Soft-Scope Macros chapter.

< Expected macro name - “token” at line ###, col ### >

Instead of a macro name after the MACRO keyword, the macro compiler
found token.

This is usually a typographical error at the given line number.

< Expected opening brace - “token” line ###, col ### >

The macro compiler expected a brace (“{“) to start the macro but got
token instead.

Look in the chapter, Creating and Using Soft-Scope Macros, for rules
defining braces in macros.

Error Messages

Soft-Scope User’s Guide B-13

B. Error Messages

B

< Expected opening paren - “token” at line ###, col ###
>

While parsing a new MACRO, PRINT, or WHILE statement, the
compiler found token instead of an opening parenthesis.

Examine the macro at the given line number. Make sure the parentheses
are used according to the specifications in the chapter, Creating and
Using Soft-Scope Macros.

< Expected parameter or variable - “token” at line ###, col
>

Instead of a parameter or variable, the compiler found token.

Look at the given line number in your macro file for typographical errors.
You may want to review the rules for using parameters and variables in the
chapter, Creating and Using Soft-Scope Macros.

< Expected quoted string >

Soft-Scope expected a quoted string to be entered.

Please check that you are using the correct syntax for the macro PRINT
command. The PRINT command is discussed in the Macro Print
Functions section in the chapter, Creating and Using Soft-Scope
Macros.

< Expression is too complex >

You are attempting to evaluate an expression that has more than 10
pending operators, for example, A+(B+(C+(D+...))).

Simplify the expression.

<< Fatal exception: msg >>

Soft-Scope encountered a severe error (msg), and it aborted execution.

Please restart Soft-Scope and reload your application.

Error Messages

B-14 Soft-Scope User’s Guide

B. Error Messages

< Hardware breakpoint already set at this address address
>

There is already a data breakpoint set on address.

Look in the Breakpoints window for a complete list of currently set
breakpoints.

< Help not available >

The topic you have entered does not have any help associated with it.

To see a list of help topics, select Help/Index from the menu, or press
<F1>.

< Identifier already defined - “ token” at line ###,col
>

The macro compiler encountered a duplicate symbol declaration in the
source file.

Check the macro file at the line number identified by the message, and
correct any errors according to the specifications given in the chapter,
Creating and Using Soft-Scope Macros.

< Initial task register is an ldt selector >

The initial task register was defined so that a selector in a local descriptor
table was selected (warning only).

< Initial task register is outside gdt limit >

The initial task register was defined outside the limits of the initial GDT
(warning only).

< Initial TR->non-TSS type descriptor >

The GDT entry that the initial task register pointed to is not an Intel386
task- state segment descriptor (warning only).

Error Messages

Soft-Scope User’s Guide B-15

B. Error Messages

B

<< Insufficient memory >>

Soft-Scope was unable to allocate memory for window data structures.

You may need remove some TSR (Terminate but Stay Resident) utilities or
device drivers to free memory for Soft-Scope.

< Insufficient memory to store option >

Soft-Scope was attempting to allocate memory to store a configuration
option but could not allocate enough memory.

You may need to quit other Windows applications to create more memory.

< Internal error [- message] >

Soft-Scope has encountered either data or a situation that was thought to
never occur but has in this particular case.

Please report this error to us (see title page for contact information), along
with as much information as possible on why this error might have
occurred.

< Invalid field near ########: “ filename ” >

A bad symbolic record was found in the load file filename at offset
########.

You may have to recompile and rebuild your application. This usually
means the application file is corrupted.

< Invalid file: filename >

The load file specified is not recognized by Soft-Scope.

This could mean the file is corrupted, or not prepared according to the
specifications in the chapter, Configuring CSi-Mon of the CSi-Mon
Monitor User’s Guide.

Error Messages

B-16 Soft-Scope User’s Guide

B. Error Messages

< Invalid file: filename >

The load file specified is not recognized by Soft-Scope.

This could mean the file is corrupted, or the file was not prepared
according to the specifications in the chapter, Tools that Soft-Scope
Supports.

< Invalid macro compiler version >

Your macro object file contains a version number that does not match the
version Soft-Scope was expecting.

Erase filename.mob so Soft-Scope will recompile your macros.

< Invalid macro object file >

The macro compiler produced bad object code, or some other process
corrupted its output.

Try erasing the file filename.mob so the macro compiler recompiles your
macros.

< Invalid macro opcode >

While executing a macro, Soft-Scope has encountered an unknown macro
command in the macro object file.

Look in your macro file for typographical errors. If you can’t find any
mistakes, you might want to review the macro commands given in the
chapter, Creating and Using Soft-Scope Macros.

< Invalid number format >

Soft-Scope can’t understand the specified number (e.g., X = 1234Q5H).

This usually means the number or variable has an invalid base attribute.
Valid bases are as follows: T = base 10, H = base 16. See the Numbers
section in the chapter, Examining Data with Soft-Scope.

Error Messages

Soft-Scope User’s Guide B-17

B. Error Messages

B

 < Invalid override >

Either the attempted override is a bitxx override of a reference that does
not contain bitxx (e.g., bit20 $al), or the override contains two data types
that do not produce a meaningful type (e.g., swtype tss386 is not
meaningful, but signed byte is).

See appendix A for list of data types usable in type overrides.

< Invalid override for processor type >

The specified type is not valid for your processor.

See appendix A for supported data types and their descriptions.

< Invalid Range >

The range specified has a starting value greater than its ending value.

Please retype the range.

< Invalid size for I/O port >

Overrides for the I/O port must be 8-bit, 16-bit, or 32-bits long. The
specified type doesn’t match the processor port sizes (e.g., tempreal port
0, which attempts to specify a 10-byte type to port 0).

See appendix A for supported data types and their descriptions.

< Invalid value for parameter >

You have specified an invalid parameter with the function RETURN.

Please specify an integer value.

< Line number out of range (### to ###) >

The line number specified isn’t within the range of line numbers for the
module or procedure you’re currently in or for the module/procedure
specified.

Error Messages

B-18 Soft-Scope User’s Guide

B. Error Messages

< Line too long: “ filename ”>

The given text file contains a line that is too long to be processed.

Edit the file and shorten the line.

< Listing file invalid: Improper listing end >

Soft-Scope doesn’t recognize a file you’ve specified as a listing file.
Possibly the file isn’t a listing file, or at least some character within the file
isn’t recognized by Soft-Scope (e.g., you’re using a version of some
language that Soft-Scope doesn’t yet understand).

Please review the information in the chapter, Tools that Soft-Scope
Supports, to see what tools Soft-Scope supports.

< Listing file invalid: Improper listing header >

Soft-Scope doesn’t recognize a file specified as a listing file. Possibly the
file isn’t a listing file, or at least some character within the file isn’t
recognized by Soft-Scope (i.e., it was prepared using a version of some
language that Soft-Scope doesn’t yet understand).

Please review the information in the chapter, Tools that Soft-Scope
Supports, to see what versions of tools Soft-Scope supports.

< Macro Abort >

A macro executed an abort command.

This happens when a macro contains an ABORT statement.

< Macro execution halted - current macro has been deleted
>

A macro deleted the macro that called it, making it impossible to return.

The original macro file stored on your disk is not erased when this
happens. Edit the called macro so it doesn’t delete the calling macro,
reload the macro file into Soft-Scope, and try again.

Error Messages

Soft-Scope User’s Guide B-19

B. Error Messages

B

< Macro name expected >

Soft-Scope is expecting a valid macro name.

Use Macro/Display to see which macros are loaded.

< Macro nesting too deep >

Macro execution has executed too many nested macros.

Only ten macros may be nested.

< Minimum field width specifier required with 0 padding
>

Soft-Scope doesn’t know how many padding zeros to use in the output of
your macro PRINT or WPRINTF statement.

See the Macro Print Functions section in the chapter, Creating and
Using Soft-Scope Macros.

< Mismatched ()’s >

Soft-Scope is expecting another right parenthesis.

Make sure your macro has the correct number of right and left
parentheses.

< Mismatched []’s >

You’ve forgotten a right bracket (“]”) or have used too many left brackets
(“[“).

Make sure your macro has the correct number of right and left brackets.

< modname contains no lines >

The module modname that you’ve specified or are currently in doesn’t
contain line numbers. Possibly the module is empty, has not been built with
line numbers, or is an assembly-language module.

Error Messages

B-20 Soft-Scope User’s Guide

B. Error Messages

Look in the chapter, Tools that Soft-Scope Supports, to see how to build
your application with line numbers.

< Module not found >

Soft-Scope cannot find the specified module name.

Make sure the module name doesn’t contain typographical errors. If it
doesn’t, make sure it is located in the current application.

< More parameters given than the macro defined >

You’ve tried to invoke a macro, and specified more parameters than the
macro needs.

Retype the macro invocation. You may have to shell out to a text editor to
examine the macro file and refresh your memory.

< No address associated with reference >

The expression entered has no address associated with it.

This is usually a typographical error. If you can’t find an error, look in the
Symbols window to refresh your memory of symbol spellings.

< No breakpoint to edit >

User has tried to edit a breakpoint, but there is no breakpoint displayed
under the cursor.

< No initial TSS is defined >

During loading, the TR (Task Register) value was set to 0 (warning only).

< No macro currently running >

You have attempted to suspend a macro, but no macro is currently running.

Error Messages

Soft-Scope User’s Guide B-21

B. Error Messages

B

< No macro currently suspended >

You have attempted to resume a macro but no macro is currently
suspended.

< No macros defined >

A macro file (with one or more macros) has not been loaded into Soft-
Scope.

Use Macro/Load to load a macro file, and then select Macro/Display to
list the macros it contains in the Macros window.

< No modules loaded >

The given command requires a default module, and there are no modules
found in Soft-Scope’s symbolic database.

Use File/Load to load an application.

< No modules loaded and application task running >

Soft-Scope cannot find symbolics to display in the Code window and the
current task is running.

Use File/Symbol load to load symbolic information for the running
application.

< No modules loaded and no target attached >

The connection to your target has failed.

Check your cable to make sure it is properly connected. If the problem
persists, see the section on troubleshooting in the CSi-Mon Monitor
User’s Guide.

Error Messages

B-22 Soft-Scope User’s Guide

B. Error Messages

< No return address available >

The specified return address isn’t resolvable (i.e., RETURN()). Review
the specifications given in the chapter, Tools that Soft-Scope Supports, to
make sure your application is properly built.

< No source available for address >

Soft-Scope cannot display the source for the address shown.

Perhaps the address is in an assembly module and doesn’t have source, or
it wasn’t prepared with debug information. See the chapter, Tools that
Soft-Scope Supports, to see how to prepare an application with debug
information.

< No symbolic information loaded > or
< No symbols loaded >

Soft-Scope can’t find any symbols loaded.

Possibly you haven’t yet loaded an application, or your application is
loaded but not built for debugging. See the chapter, Tools that Soft-
Scope Supports, for information on how to build an application for
debugging with Soft-Scope.

< No target attached >

Soft-Scope can’t communicate with the target.

See the section on troubleshooting in the CSi-Mon Monitor User’s Guide.

< Not 286/386 absolute file >

The file you are trying to debug is not compiled in the right format, or it is
not a 286/386 .abs file.

See the chapter Tools that Soft-Scope Supports for information
describing how to use specific compilers and other tools.

Error Messages

Soft-Scope User’s Guide B-23

B. Error Messages

B

< Not valid for processor >

The CPU doesn’t contain the register you’ve specified.

See appendix A for applicable registers.

< Number too large >

The specified floating-point value is too large to be converted to a valid
floating-point number.

The NPX register supports any floating point number with a 15-bit
exponent and a 64-bit mantissa. See appendix A.

< Only 64 options permitted >

Soft-Scope allows up to 64 configuration options to be specified at one
time.

Perhaps you have some options you can delete because you are using the
default values.

< Option “src.tab” - Must be 1 to 16 >

In your initialization file, the entry for tab stops is set to something other
than one of the integers between 1 and 16.

Open the Options window to see what src.tab is set to. Click the
Modify toolbar button to change the setting. See the chapter
Configuring Soft-Scope.

< Option “sym.case” - Must be ON or OFF >

In your initialization file, the entry sym.case is set to something other than
on or off.

Open the Options window to see what sym.case is set to. Click the
Modify toolbar button to change the setting. See the chapter
Configuring Soft-Scope.

Error Messages

B-24 Soft-Scope User’s Guide

B. Error Messages

< Option “sym.pointer” - Must be FAR16, FAR32, NEAR16,
NEAR32 >

The sym.pointer option must be set to one of the specified values.

Open the Options window to see what sym.pointer is set to. Click the
Modify toolbar button to change the setting. See the chapter,
Configuring Soft-Scope.

< Option name expected >

The SET TO command requires that an option name be specified.

See the SET command syntax in the chapter, Soft-Scope Basics.

< Option not defined >

You are attempting to use SET and Soft-Scope did not find the specified
option name.

The available configurations are in the chapter, Soft-Scope Basics.

< Option optionname - Must be defined >

The option optionname isn’t defined in your initialization file, and is
required for the operation you’ve just attempted.

See the available options in the chapter, Configuring Soft-Scope. Use the
Insert toolbar button of the Options window to put the needed option in
your initialization file sswin32.ini.

< Out of hardware breaks >

The processor debug registers are full. Either too many data breakpoints
are set or the reference you gave includes too much memory.

For information explaining the registers and how to use them efficiently, see
the chapter, Controlling Program Execution with Soft-Scope.

Error Messages

Soft-Scope User’s Guide B-25

B. Error Messages

B

< Out of memory for trace buffer >

Your host machine doesn’t have enough memory for a trace buffer.

Try setting the option trace.filesize to a lower value.

< Out of symbol space >

The macro compiler has exceeded its limit of 100 symbols (including
keywords) in a macro.

Try breaking the macro into one or more smaller macros.

< Override not permitted on non byte-aligned bitfield
>

Soft-Scope trapped an attempted bitfield type override.

Possibly the override is not a supported data type, or there is a
typographical error in the specification.

< Port addresses must be 0 to 0ffffH >

The specified port address is not between 0 and 0ffffH.

Retype the specification with an acceptable port address.

< Read-only register GDB >

The GDB (GDT base register) can only be changed by an application load.

< Read-only register IDB >

The IDB (IDT base register) can only be changed by an application load.

< Received fatal error trying to reset >

Soft-Scope received a fatal error while trying to initialize your target.

You may need to manually reset your target.

Error Messages

B-26 Soft-Scope User’s Guide

B. Error Messages

< Register doesn’t contain this flag >

The register specified doesn’t contain the flag specified.

See the Registers window for a display of all registers and their flags.

< Return (#) address unknown >

Soft-Scope was unable to calculate a return address for the current
procedure or for the #th nested call.

Perhaps # is too large, if specified. This error may also appear if your
application is built incorrectly.

< Serial error — Data overrun >

Your host machine can’t interpret data from the target as fast as it is
arriving.

Lower the baud rate as specified in the Installing Soft-Scope on the Host
section in the chapter, Getting Started with Soft-Scope.

< Size of override exceeds size of non-memory operand
>

Soft-Scope can’t override a smaller variable with a larger type. (e.g.,
overriding a WORD register with a DWORD type).

See appendix A for a list of data types that can be used as type overrides
in Soft-Scope.

< Stack location is not known >

Soft-Scope was unable to locate the stack.

Perhaps you are using the SMALL memory model where stack and data
are in the same segment.

Error Messages

Soft-Scope User’s Guide B-27

B. Error Messages

B

< String too long >

The string type override was applied to memory starting at the specified
address, but Soft-Scope didn’t find a terminating null character (\0) within
the first 255 characters.

Use the char type override and specify the number of bytes to view as
characters using the length operator LEN[GTH]. For example:

char at 1000p length 5

< Subscript ranges on pointers are not supported >

Soft-Scope only recognizes a single reference (e.g., PTR[5]) for pointers.

Soft-Scope does support array-subscript ranges (e.g., array1[5..20]).

< Subscripts must be integers or ranges of integers >

The specified subscript or range is invalid.

Possibly the subscript isn’t an integer, or there is a typographical error in
the range operator. See the Data References section in the chapter,
Examining Data with Soft-Scope.

< Symbol not found >

Soft-Scope has no record of the specified symbol.

Make sure the symbol is in the module you are currently executing in, that
you have specified the correct module with a colon (:), as described in the
chapter, Examining Data with Soft-Scope, or that the symbol is public.

< Symbol without base –Invalid field >

There is an invalid field in the OMF file.

Please verify that you have correctly built your application using the
information presented in the chapter, Tools that Soft-Scope Supports.
Contact us (see title page for contact information) if you cannot eliminate
this problem.

Error Messages

B-28 Soft-Scope User’s Guide

B. Error Messages

< Symbolic name expected >

The parameter above the carets is not a symbolic name.

Look in the Symbols window for a list of application symbols.

< Syntax error >

The specified command is an invalid command or an invalid form of a valid
command. Complete command syntax can be found in the chapter, Soft-
Scope Basics.

< System - filename too long >

The filename (including pathname) is longer than 66 characters.

Shorten the filename or pathname.

< System - not enough memory >

Soft-Scope was attempting to allocate memory and was unable to do so.
You may need to quit other Windows applications to create more memory.

< Target not responding >

Soft-Scope tried to open communication with the target, but could not
synchronize I/O.

Check your cable connections and baud rate, reset the target, and try
again.

< Target still not responding >

Soft-Scope cannot communicate with the target.

Check your cable connections and baud rate, reset the target, and try
again. If the problem persists, see the troubleshooting section in the CSi-
Mon Monitor User’s Guide.

Error Messages

Soft-Scope User’s Guide B-29

B. Error Messages

B

< Target timeout on read >

Soft-Scope has asked the target for specific information, but the
information wasn’t available or the target couldn’t transmit.

This could be a serial communication problem, such as a data overrun. Try
resetting the target, and re-invoking Soft-Scope. If the problem persists,
we recommend you install a FIFO UART.

< These addresses are not compatible >

Soft-Scope cannot perform the specified operation because the addresses
given have different types.

When Soft-Scope attempts an operation on two addresses, it expects
them to be of the same type (logical, linear, or physical), and it expects
logical addresses to have the same selector.

< These are in the wrong order >

The two parameters above the carets are in the wrong order.

Try the command again, switching the placement of these two parameters.

< These are not comparable >

The two parameters above the carets are of incomparable data types.

< These operands are not compatible >

The addition or subtraction operation uses two operands that are not
compatible.

< These types are not compatible >

The types of the variables above the carats are not compatible for
assignments.

Error Messages

B-30 Soft-Scope User’s Guide

B. Error Messages

For example, structures can only be assigned to structures of the same
type.

< This address has no associated symbols >

The specified module contains no symbolic information.

Use Code/Module to see which modules are available.

< This is not a code reference >

The parameter above the carets does not refer to executable code, and the
command you attempted expected this parameter to reference executable
code.

Look in the Symbols window for a list of application symbols.

< This is not a logical address expression >

The parameter above the carets must evaluate to a logical address.

See the chapter, Examining Data with Soft-Scope.

< This is not a memory reference >

The parameter above the carets must evaluate to a memory location or
address.

See the chapter, Examining Data with Soft-Scope.

< This is not a module reference >

The parameter above the carets must evaluate to a module.

Possibly you’ve misspelled the module name, or forgotten to preface the
name with a colon (e.g. :cmain). It might help to refresh your memory if
you open the Symbols window and examine the list of application
symbols. See the chapter, Examining Data with Soft-Scope.

Error Messages

Soft-Scope User’s Guide B-31

B. Error Messages

B

< This is not a numeric expression >

Soft-Scope is expecting a number, and the parameter above the carets
doesn’t resolve to one. See the chapter, Examining Data with Soft-
Scope.

< This is not a pointer >

The parameter above the carets is not a pointer.

Find out the type of the variable by placing it in the Data window and
switching to Types mode.

< This is not a pointer or address >

The parameter above the carets is not a pointer or a memory address.

Find the variable’s type by placing it in the Data window and changing to
Types mode.

< This is not a structure or union pointer >

The dereferenced variable is not a pointer to a structure or union.

Find the variable’s type by placing it in the Data window and changing to
Types mode.

< This is not a symbolic reference >

The reference is not a symbol or variable.

Soft-Scope defines a symbolic reference as something you can assign a
value to. For example, i is a symbolic reference, while 5 is not.

< This is not an array or pointer >

The parameter above the carets is not an array.

Error Messages

B-32 Soft-Scope User’s Guide

B. Error Messages

Perhaps you have provided subscripts on a variable that does not require
subscripts. See the chapter, Examining Data with Soft-Scope.

< This is not an integer expression >

The given expression does not evaluate to an integer.

Try checking the types of variables in the expression by placing them in the
Data window and changing to Types mode.

< This module was not compiled for debugging >

The module name above the carets does not contain debugging
information, and Soft-Scope only knows that it’s a module without debug
information.

Make sure the application was prepared using the specifications given in
the chapter, Tools that Soft-Scope Supports.

< This reference contains no lines >

The referenced source file contains no source lines.

Make sure the application was prepared using the specifications given in
the chapter, Tools that Soft-Scope Supports.

< This subscript indexes to before the array >

The subscript above the carets evaluates to a number less than the first
element in that array.

Try examining in the Data window any variables you have used in the
index to make sure their values are what you thought they were.

< This type cannot have members >

The specified type doesn’t support subfields. See the Data References
section in the chapter, Examining Data with Soft-Scope.

< Too many breakpoints are set >

Error Messages

Soft-Scope User’s Guide B-33

B. Error Messages

B

Soft-Scope supports up to 32 execution breakpoints.

You cannot set another breakpoint without removing an already set
breakpoint.

< Too many jump targets > or < Too many jumps >

The macro compiler has exceeded its internal limit of 100 jumps per
macro. Here are two examples of these “jumps”: the compiled code for a
while-statement contains one jump and so does the code for an if-
statement

Try rewriting the macro as two or more macros.

< Too many parameters >

The specified function doesn’t require as many parameters as were
supplied.

< Too many subscripts >

The reference specifies more subscripts than there are array dimensions.

Examine the array in the Data window to see the array size.

< Undefined identifier - “ token ” at line ###, col ###
>

The macro compiler has parsed an identifier that it can’t find in its symbol
table.

Define the identifier in the macro it is in. See the chapter, Creating and
Using Soft-Scope Macros, for defining macros.

Error Messages

B-34 Soft-Scope User’s Guide

B. Error Messages

< Unexpected end of file - “token” at line ###, col ###
>

The macro compiler has unexpectedly encountered the end of file while
parsing for token.

Check to see if the macro file is corrupted, or if an opening comment
delimiter is not matched with a closing one.

< Unexpected end of line >

The macro compiler has unexpectedly encountered the end of a line while
parsing for a token.

Edit the macro file and make sure the macro is written according to the
specifications given in the chapter, Creating and Using Soft-Scope
Macros.

< Unexpected end-of-file >

Soft-Scope was attempting to read data from a file and encountered the
end-of-file before reading all expected data.

Perhaps the file is corrupted.

< Unknown macro name >

Soft-Scope was unable to find the macro you specified.

Use Macro/Display to see which macros are loaded.

< Unknown member >

The member above the carets doesn’t exist for that structure, union, or
register.

Possibly a misspelled member name or a reference to the wrong structure.
Examine the structure in the Data window to see what members it
contains.

Error Messages

Soft-Scope User’s Guide B-35

B. Error Messages

B

< Unknown window name >

The name specified in a WMOVE, WRESIZE, or WFUNCTION
macro command does not refer to a Soft-Scope window.

See the chapter, Creating and Using Soft-Scope Macros, for a list of
Soft-Scope window names usable with these functions.

< Unsupported assignment operation >

The parameter above the carets cannot be assigned to the value attempted
(e.g., GDT[5]=GDT[0] or $ax=”abcde”).

< Warning: Lines ### to ### are missing for modname >

A line number record has been generated in your object module modname
for which there is no line number in your source or listing file. This may
indicate a problem with your compiler.

< Warning: Not connected to CSi-Mon or CodeTAP >

Soft-Scope cannot read the CSi-Mon version string to determine what
your target processor is.

The CSi-Mon licensing agreement forbids modification of the version
string.

< Warning: Target processor assumed to be 8086 >

The CSi-Mon version string has been modified and Soft-Scope cannot
read it to determine what your target processor is.

The CSi-Mon licensing agreement forbids modification of the version
string.

Error Messages

B-36 Soft-Scope User’s Guide

B. Error Messages

< WFUNCTION output buffer too large, maximum=128
characters >

The WFUNCTION macro command output requires more memory than
is allocated to the buffer.

Each WFUNCTION command is assigned an individual buffer. Use
more than one WFUNCTION command to perform the desired
operations.

Error Messages

Soft-Scope User’s Guide C-1

C

C. Debugging .exe
Executable Files

Chapter Contents

Overview .. C-2
Debugging .exe Files ... C-2

Preparing Your Application...C-2
Using the Special Monitor...C-3
Loading an .exe Application..C-3

C-2 Soft-Scope User’s Guide

C. Debugging .exe Executable Files

Overview

This appendix discusses how to debug an .exe executable file using the
SSBUG utility and a special version of CSi-Mon.

Debugging .exe Files

NOTE: Soft-Scope cannot debug .exe applications for which
memory assignments may change during execution, such as
applications designed to run under Microsoft Windows or
Quarterdeck DESQview.

Preparing Your Application

To debug an .exe or .exp file, Soft-Scope needs access to the
application’s symbolic information and CSi-Mon needs to take control
when the application starts executing. This is accomplished using the
SSBUG utility and linking an assembly routine to your application as
described below:

1. Use the SSBUG utility, which is described in the chapter Tools that
Soft-Scope Supports, to create a .bug file from your .exe or .exp file.
The .bug file contains your application’s symbolic information.

2. Link the assembly routine ss_brkexe, located in the file
\samp\mscexe\brkexe.asm, to your application. Call ss_brkexe to
invoke a special interrupt that will cause CSi-Mon to stop your
application and take control so you can begin debugging. Make sure
to call ss_brkexe before you reach the area of your application that
you wish to debug.

Debugging .exe Files

Soft-Scope User’s Guide C-3

C. Debugging .exe Executable Files

C

Using the Special Monitor

A special version of the CSi-Mon monitor, exedbg.exe, is required to
debug an .exe file. See the chapter, Configuring CSi-Mon, in the CSi-
Mon Monitor User’s Guide for details on installing the monitor on your
target PC.

The monitor can be invoked from the DOS prompt or as a device driver.
From the DOS prompt, type exedbg . To install the monitor as a device
driver, add the following line to your target PCs config.sys file:

device=drivename:\pathname\exedbg.exe

Loading an .exe Application

When you boot the target PC with the device-driver specification shown
above in its config.sys file, or invoke the monitor as an .exe file, CSi-Mon
is installed on the target machine as a Terminate but Stay Resident (TSR)
program. To debug your application, do the following:

1. Run the application from the DOS prompt on the target. When it hits
the breakpoint set by ss_brkexe, it will stop.

2. Invoke Soft-Scope on your host computer. Do not include an
application load on the invocation line.

3. Choose File/Symbol load... and enter the pathname and filename
of the .bug file created by the SSBUG utility.

To load symbols from the Command line dialog box (<Ctrl>+<L>), use
the following syntax:

FILENAME.BUG [filename]
FILENAME.BUG :device | f:
FILENAME.BUG (SEGMENT | JOB) relocationseg

FILENAME.BUG A .bug file name associated with a relocatable
DOS program, including a path to the file

Debugging .exe Files

C-4 Soft-Scope User’s Guide

C. Debugging .exe Executable Files

filename Executable file whose name differs from
FILENAME

:device The name of a character device driver. The
(:) differentiates the device driver from an
ordinary DOS application

f: The name of a block device driver

JOB DOS job handle (PSP segment)

relocationseg A segment specified in hex

FILENAME.BUG [filename] is used to attach symbolics to a relocatable
DOS executable program (e.g., an .exe file). If filename is not given,
the filename part of filename.bug will be used to search for a matching
.exe file. If a filename is given, Soft-Scope will search the current
directory on the target for an exact match.

Soft-Scope searches target memory for DOS’s memory control-block
(MCB) chain. Since the structure of DOS MCBs and the probable
starting location are undocumented, Soft-Scope searches target memory
between linear addresses 701 and 106ffl for the first MCB header, which
contains the bytes 4d 08 00.

If Soft-Scope does not find the first MCB header, you can specify another
memory range to search using the following options in your sswin32.ini
initialization file:

targ.dos_mcb_start=0x start
targ.dos_mcb_end=0x end

Where start is the linear address where you want Soft-Scope to begin the
search and end is the linear address where the search is to stop.

FILENAME.BUG :device | f: is used to attach symbolics to a DOS
device driver. device is used for character device drivers and f: is used for
block device drivers.

This command requires Soft-Scope to search target memory between the
linear addresses 701 and 106ff for the NUL device, which begins the

Debugging .exe Files

Soft-Scope User’s Guide C-5

C. Debugging .exe Executable Files

C

device-driver chain. However, because the NUL device and its location
are undocumented and the search may fail, you can redefine the search
range by using the following options in your sswin32.ini file:

targ.dos_nul_start=0x start
targ.dos_nul_end=0x end

Where start is the linear address where you want Soft-Scope to begin the
search and end is the linear address where the search is to stop.

FILENAME.BUG JOB relocationseg is used to attach symbolics using a
DOS job handle (PSP segment).

4. Now you can control the DOS application through Soft-Scope, using
breakpoints and the various commands and functions to stop and start
execution.

Debugging .exe Files

C-6 Soft-Scope User’s Guide

C. Debugging .exe Executable Files

(This page blank)

Debugging .exe Files

Soft-Scope User’s Guide D-1

D

D. Helpful Hints

Chapter Contents

Overview ..D-2
Helpful Hints ..D-3

Changing the Execution Point..D-3
Source Line Address..D-3
Changing an Executable Instruction...D-4
Bypassing Start-up Code..D-5
Copying Memory...D-5
Receiver Timeouts..D-6
Segment Limit Exceeded...D-6

D-2 Soft-Scope User’s Guide

D. Helpful Hints

Overview

This appendix explains features that the experienced user might find useful
in special circumstances. It is important that you read the introductory
paragraph for each topic because it may contain warnings or limitations that
you should be aware of.

If you discover an undocumented or unusual way to use Soft-Scope,
and would like to share your discovery with other users, call (208)
882-0445, fax (208) 882-9774, or email tech@consci.com and tell us
about it. If possible, we will include your new idea in this appendix
the next time we update the manual.

Helpful Hints

Soft-Scope User’s Guide D-3

D. Helpful Hints

D

Helpful Hints

Changing the Execution Point

By modifying the value of the $eip register, you can change the execution
point. However, you must be sure that the stack and registers are set up
properly for the new execution point. You should not use this feature to
move to a function you are not currently in. If you do, the program
stack will be incorrect for that function and the results will be
unpredictable.

To change the execution point, do the following:

1. Choose the Registers command from the Data pull-down menu

2. Move the cursor to the $eip register

3. Click the Modify toolbar button

4. Enter the new value in the dialog box

Be sure to specify hex by placing 0x in front of the value:

$eip = 0x123

Source Line Address

You can determine the address of a source line by using the line number
with the ADDRESSOF (&) operator in the Data/Examine dialog box:

Data reference: -

You can set the $eip to the address of a source line in one step using the
OFFSETOF operator in an expression like the one below, which sets $eip
to the offset of line number 45:

$eip = offsetof(-)

Helpful Hints

D-4 Soft-Scope User’s Guide

D. Helpful Hints

Changing an Executable Instruction

It is possible to change an executable instruction. The following statement
assigns the value 90H (NOP), the no-operation opcode, to every byte of
source line 99:

 byte at c length (sizeof #99) = 90H

This command is made up of the following subexpressions:

byte in one-byte increments

at c at the address of the beginning of line 99

length for the length of...

(sizeof #99)the number of bytes that make up line 99

= 90H assign the value 90H

The macro shown below can be used to substitute an opcode for every
byte of a source-code line.

macro arr_chg (line $line, hex int $value)
{
 byte at &#$line length(sizeof #$line)=$value;
}

Helpful Hints

Soft-Scope User’s Guide D-5

D. Helpful Hints

D

Bypassing Start-up Code

If the compiler you are using places a preamble module of assembly start-
up code at the beginning of your application, Soft-Scope will always
display that module when you load.

You can use an initial macro to go to main. In your sswin32.ini
configuration file, make the following assignments:

cmd.macro=sswin.mac
load.init_command=go main

You can set the option load.init_command to a command or a macro
name.

Alternatively, you can use the Command text box in the File-Load dialog
box to go to main.

Copying Memory

You can copy a block of memory from one location to another while in
Soft-Scope. Use type-override syntax with an equal sign. The types must
be compatible, as in the following example:

byte at 200P len 10 = byte at 100P len 10

D-6 Soft-Scope User’s Guide

D. Helpful Hints

Receiver Timeouts

If you experience receiver timeouts, try adding targ.debug=filename to
your sswin32.ini configuration options file. This option will create a log file
that contains the communication stream between Soft-Scope and CSi-
Mon. This log was designed for internal use and the format is very cryptic,
however you may find it helpful when trying to understand where the
receiver timeout occurs.

NOTE: The log file can become very large, so be sure and remove
the option from sswin32.ini when it is no longer needed.

Segment Limit Exceeded

If you encounter the error message “Segment limit exceeded for GDT[xx]”
during an application load, insure that the TSS for the application matches
the CSi-Mon/target you are using. It is possible that an application built for
a 286TSS is being downloaded to a 386 or higher monitor/target. When
Soft-Scope updates the IP portion of the EIP register, the EIP may have
contained a value greater than 64K. This value may be larger than the
application’s GDT entry, since 286 descriptors are limited to 64K.

Soft-Scope User’s Guide E-1

E

E. Add Ons

Chapter Contents

Real-Time Operating Systems Support .. E-2
Kernel Objects ... E-3

Figure E-1: SuperTask! kernel objects dialog box.......................... E-3
Task List.. E-4

Figure E-2: SuperTask! task list dialog box.................................... E-4
Current Task.. E-4

Figure E-3: SuperTask! current task dialog box.............................. E-4

E-2 Soft-Scope User’s Guide

E. Add-Ons

Real-Time Operating Systems
Support

Debugging an application that contains a real-time operating system
(RTOS) can be a very big challenge. To overcome this challenge, it is
important to be able to view the state of various kernel objects such as
events, resources and tasks.

From the perspective of a debugger, it is difficult to assist in this debugging
process because every RTOS is different, not only in implementation but
also in nomenclature. Some RTOSs, for example, have tasks whereas
others have jobs, some have resources whereas others have semaphores.
Furthermore, different RTOSs may even use completely different
paradigms. Because of these differences, we have adopted an industry
standard for providing kernel awareness for your RTOS to Soft-Scope.

If your RTOS vendor supports the Soft-Scope Kernel Awareness
Standard, then they can provide you with software for adding support to
Soft-Scope for their RTOS. If you wrote your own, then we can provide
you with the necessary documentation so you can develop kernel
awareness support yourself.

After you have obtained the kernel awareness software from your RTOS
vendor, you will need to install it according to their instructions. Once the
software has been installed, when you start Soft-Scope, a new kernel
awareness menu item will appear on the menu bar. The new item is usually
the name of the RTOS you are using.

The following examples were created using the SuperTask! RTOS from
US Software.

Real-Time Operating Systems Support

Soft-Scope User’s Guide E-3

E. Add-Ons

E

The kernel awareness pull-down menu provides three commands (Display
objects..., Tasks..., and Current task...). Each command opens a dialog
box that contains information about the RTOS. The contents of the dialog
box varies, depending on how the RTOS vendor chose to implement the
Soft-Scope Kernel Awareness Standard.

Kernel Objects

This dialog box contains details about tasks and other kernel objects such
as resources, semaphores, events and mailboxes.

Figure E-1: SuperTask! kernel objects dialog box

Real-Time Operating Systems Support

E-4 Soft-Scope User’s Guide

E. Add-Ons

Task List

This dialog box lists the currently existent tasks in your application and their
status.

Figure E-2: SuperTask! task list dialog box

Current Task

This dialog box shows the name and handle of the current task.

Figure E-3: SuperTask! current task dialog box

Real-Time Operating Systems Support

Soft-Scope User’s Guide E-5

E. Add-Ons

E

For the latest list of supported RTOSs, contact technical sales at (800)
897-3001, (208) 882-0445, or info@consci.com. To obtain a copy of
the Kernel Awareness Specification, contact technical support at (208)
882-0445 or tech@consci.com.

Real-Time Operating Systems Support

E-6 Soft-Scope User’s Guide

E. Add-Ons

(This page blank)

Real-Time Operating Systems Support

Soft-Scope User’s Guide F-1

F

F. Intel Floating-Point
Emulation

Chapter Contents

Overview .. F-2
Intel Floating-Point Emulation .. F-2

F-2 Soft-Scope User’s Guide

F. Intel Floating-Point Emulation

Overview

This appendix describes how you can configure Soft-Scope to interpret
Intel 8087 floating-point emulation. This information is only applicable if
you are using Intel tools to build your application.

Intel Floating-Point Emulation

When you step, Soft-Scope inserts a temporary breakpoint at the end of
the instruction to be executed and internally issues a GO command. Soft-
Scope then executes your application at full-speed until it finds a
breakpoint, which it does as soon as it prepares to execute the next
instruction.

When the target application is linked with a floating-point emulation library
instead of an 8087 chip, the linker modifies the numeric instructions in such
a way that Soft-Scope cannot determine the end of an instruction, and
cannot step correctly.

When the compiler sees a line of code that requires a floating-point
instruction, it inserts the 8087 opcode at that point and marks this location
for a fixup. A fixup is a compiler-allocated area in the object code where
the linker/locator can replace the existing code with other values.

In the case of floating-point emulation, the fixup inserts an interrupt into the
op-code of the floating-point instruction. The interrupt number points to a
dedicated vector for handling this floating-point instruction.

Floating-point emulation interrupt vectors are a range, one vector per
floating-point instruction. Floating-point emulation libraries are linked into
the load module. Each floating-point interrupt vector points to the library
entry for that floating-point routine. From the interrupt vector given, the
emulator can determine the length of this instruction and can execute
correctly, but Soft-Scope will need to be informed that numeric emulations
are being performed.

Intel Floating-Point Emulation

Soft-Scope User’s Guide F-3

F. Intel Floating-Point Emulation

F

For Soft-Scope to function correctly in this environment, if your application
contains floating point instructions and uses Intel 8087 instruction emulation
(by linking to the libraries e8087.lib and e8087), you must set
targ.87emulate to the value of the first interrupt vector. These libraries
default to 20 decimal.

If you are using DOS 8087 instruction emulation (by linking to the libraries
de8087.lib and de8087), you must set targ.87emulate to the first
interrupt vector. These libraries default to 212 decimal.

Intel Floating-Point Emulation

F-4 Soft-Scope User’s Guide

F. Intel Floating-Point Emulation

You may set targ.87emulate in either sswin32.ini or in the Command
line dialog box using the SET command. The former method sets the
option every time you load an application.

Using floating-point emulation instead of an 8087 numeric coprocessor
causes stepping of floating-point instructions to be slow.

(This page blank)

Intel Floating-Point Emulation

Soft-Scope User’s Guide Index-1

Index

I

Symbols

[operator: line-number] 4-12, 5-12
$ [Command-line and text-box syntax:

CPU-structure name prefix] 5-57, A-9
register-name prefix] 5-13, 5-52, A-9

$ [macros: parameter-name prefix and
local-variable prefix] 7-10, 7-27

$CPU (CPU variable) 7-5
$cr0-$cr4 registers A-14
$eip register D-3
$NPX (CPU variable) 7-5
$STOPPED (CPU variable) 7-5
& [memory-reference operator: addressof

operator] 5-26, 5-37, 5-41, A-8, D-3
() [command metasymbol: alternative or

required] 3-17
() [Data/Watch window operator: selector

not stored in memory] 5-24
* [data reference operator: pointer-

dereference operator] 5-12
+ [upload-file symbol: begins each file

record] 5-51
- [command parameter (BREAKPT): delete

breakpoint] 4-23, 4-25
-> [Data/Watch window operator pointer]

5-13, 5-18, 5-24, A-8
. [data reference operator:

keyword prefix in commands] 5-19, A-9
structure member selector] 5-61, A-9

. [operator: symbol] 4-12, 5-12, 5-13, 5-27

.. [subscript range operators] 5-20

... [data reference operator: open-ended
and closed range of array] 5-21, A-8

... [Data/Watch window symbol: com-
pressed format] 5-17

...x [open-ended operators] 5-21

.abs absolute file 3-21

.exe executable file 3-21
how to debug C-2

.fieldname (command syntax element) 5-52

.ini configuration options file 4-38

.mac macro source file 7-4

.mob compiled macro file 7-4

.mob file. See under extensions.

.omf file 3-21

.tmp files. See temporary files.
: [address operator: selector-offset separa-

tor] 5-12, 5-13, 5-25, A-8
: [operator: module] 4-12, 5-12, 5-27, A-8
<Alt>+ [opens Break pull-down menu]

3-12
<Alt>+<C> [opens Code pull-down menu]

3-12
<Alt>+<D> [opens Data pull-down menu]

3-12
<Alt>+<F> [opens File pull-down menu] 3-

12
<Alt>+<H> [opens Help pull-down menu]

3-12
<Alt>+<M> [opens Macro pull-down

menu] 3-12
<Alt>+<O> [opens Options pull-down

menu] 3-12
<Alt>+<W> [opens Window pull-down

menu] 3-12
<Ctrl>+<A> [captures current window to

log file] 3-9, 3-12

Index

Index-2 Soft-Scope User’s Guide

Index

<Ctrl>+<C> [cancels current operation] 3-
12

<Ctrl>+<End> [displays last page of
current window] 3-12

<Ctrl>+<F> [opens Find dialog box] 3-12
<Ctrl>+<Home> [displays first page of

current window] 3-12
<Ctrl>+<L> [opens Command line dialog

box] 3-12, 7-19
<Ctrl>+<PgDn> [pages down half of

current window] 3-13
<Ctrl>+<PgUp> [pages up half of current

window] 3-13
<Ctrl>+<Q> [exits Soft-Scope] 3-12
<Ctrl>+<Shift>+<Tab> [moves to previous

window in queue] 3-13
<Ctrl>+<Tab> [moves to next window in

queue] 3-13
<Ctrl>+<X> [closes active window] 3-12
<F10> [toggles Application I/O

window open/closed] 5-64
<Spacebar> [steps once in Code window]

4-4, 4-9
= [Configuration-option assignment

operator] 6-6
= [Registers window symbol: subfield used

with, has more than one bit] 5-55
= [Symbols window toolbar button:

filename assignment for module] 5-35
? [Code window symbol indicates

approximated information] 4-10
? [Data/Watch window symbol: indicates

uninitialized stack variable] 5-28
? [in displays] 5-21
? [Registers window symbol: register not

displayed] 5-53
[] [command metasymbol: optional entries]

3-17

[File] (configuration-file section) 6-6
[Layout] (configuration-layout section) 6-6
\r\n [upload-file symbols: ends each line of

binary data] 5-51
{} [macro WFUNCTION: keyboard-key

names] 7-22
| [command metasymbol: alternatives] 3-17
00000000P (default starting address for

Dump window data) 5-46

A

ABORT (macro statement) 7-17
absolute file (.abs) 3-21
accelerator keys

list of 3-12
ACCESS (keyword) 4-19, 4-25, 4-27
action at a breakpoint 4-21
address

as code references 4-12
as macro parameters 7-13
command syntax element 3-19
determining 5-37
format of 4-10, 5-25
if in RAM or ROM checked for

breakpoints 4-26
LDT as part of 6-11
linear 5-25
logical 4-10, 4-12, 4-15, 5-25

as memory references 5-25
in Dump window 5-48
with type overrides 5-40

mode (display mode) 5-16, 5-32
of symbolic references and type over-

rides 5-42
physical 4-10, 4-12, 4-15, 5-25, 5-26

in Dump window 5-46

Soft-Scope User’s Guide Index-3

Index

I

radio buttons
Logical 4-10
Physical 4-10

selector:offset format 5-25
type overrides useful with 5-40, 5-42

ADDRESS (parameter type with macros) 7-
13

ADDRESSOF operator (&) 5-26, 5-37, D-3
with type overrides 5-41

application
after load, example of 3-28
full compatibility with Soft-Scope, how

to assure,
I/O 5-64

I/O (input/output) window
description of 5-64

loading
confirmation of 2-9, 3-28
how to 3-21

path to, defining 6-10
arithmetic operators 5-6
arr_chg (macro example) 7-4
array

built-in
$VECTOR 5-64

data references to 5-20
entire array 5-20
range of elements of 5-20
single element of 5-20
variable subscripts with 5-21

indexes out of range 5-21
local variables in macros 7-14
number of elements returned by

LENGTHOF 5-38
subscript, number base (default) 5-5

arrow (graphic)
outline of (in Code window) 4-11
solid (in Code window) 4-11

assembly
display modes (dialog box)

example of 4-35
radio buttons, Address 4-35
radio buttons, Code 4-35

mode (of Code window) 4-9
example of 4-10

assignment statements
assigning values to complex types 5-24

AT (operator)
examples of use 5-45
use with type overrides 5-41

AUTO (keyword, local-variable
declarations, macros) 7-14

B

backslash (\)
escape character 5-10

base
configuration option 5-4, 6-7
number (default) 5-4

baud rates 2-4, 6-8
binary numbers (with suffix Y) 5-3
bitfield

data references to 5-22
single, data references to 5-22

block of memory, copying from one
location to another D-5

Borland 8-2, 8-7
sample applications 8-4

BR[EAKPT] (command) 4-19, 4-23, 4-25
braces ({}) (used in WFUNCTION for key

names) 7-22
BREAK (macro statement) 7-17

Index-4 Soft-Scope User’s Guide

Index

breakpoint
access (see also ACCESS) 4-19
action at 4-21
addresses used to specify 4-23
break pull-down menu options

Access 4-24
Display 4-16
Execution... 4-22
Write... 4-24

break toolbar button 4-22
conditions 4-20
data 4-24

limitations 4-24
defining new 4-20
deleting 4-18, 4-23, 4-25

hardware 4-24
software 4-23
temporary 4-23

edit (dialog box)
Addr (options) 4-21
example of 4-20
how to open 4-20
Status (options) 4-20
Status radio buttons 4-20
Then (options) 4-21
Type (options) 4-20
When (options) 4-21

editing 4-20–4-21
exec (see also EXEC) 4-26
execution 4-22–4-23

deleting, how to 4-23
exec breakpoint as special form of 4-
26
if address in RAM or ROM 4-26
RAM (not all in) 4-26
specifying, how to 4-22–4-23

hardware 4-24–4-26
debug registers 4-25
example of 4-16
resources of, used by exec
breakpoints 4-26
ROM addresses 4-26
specifiers 4-27
two kinds (Data and Exec) 4-24

how many are set 4-16
indicators 4-11
insert 4-18
limitations 4-25
modify 4-18
processor debug registers 4-25
software

permanent 4-22
temporary 4-23

software (see also breakpoint, execu-
tion), 4-22–4-23

status 4-20
temporary 4-28
temporary software 4-8

how to set and remove 4-23
then condition 4-21
types 4-20
variables, stack-based 4-24
view 4-18
when condition 4-21
window

adding breakpoints in 4-19
deleting breakpoints in 4-19, 4-23
double-click function in 4-18, 4-20
example of 4-17
open breakpoint edit dialog box from
4-20
toolbar button, Delete 4-18, 4-24
toolbar button, Insert 4-18, 4-20, 4-
24
toolbar button, View 4-18

Soft-Scope User’s Guide Index-5

Index

I

write (see also WRITE) 4-19
built-in CPU variables

$CPU 7-5
$NPX 7-5
$STOPPED 7-5

buttons. See under toolbar buttons.

C

C (language)
data types and type overrides 5-40
escape sequences 7-27
expressions as breakpoint conditions 4-

21
formatted output function 7-25
operators (see also arithmetic/logical

operators)
table of 5-8

Soft-Scope expressions and operators 5-
6

statements
break 7-17
if-else 7-17
return 7-18
while 7-18

caching memory, Soft-Scope's 6-14
call sequence 4-30
CALLS (command) 4-31
calls window

double-clicking to display code 4-30
example of 4-31
how to open 4-31
opening (see Code pull-down menu

options, Calls) 4-30
capture command

window contents to a file 3-9
case of symbols 6-10
chapter summaries 1-5–1-7

cmd.file (configuration option) 3-9, 6-7
cmd.initial (configuration option) 6-7
cmd.macro (configuration option) 6-7, 7-8
code

caching 6-14
disassembly and CPU type 6-11
location 4-14
pull-down menu options

Calls 4-30
Display 4-7, 4-14, 4-15
Go to... 2-10, 4-15, 4-27
Module 4-13, 5-34
Stop 4-28
Trace 4-34

references 4-12–4-13
as memory references 5-25
double-click to examine 4-7
examples 4-12, 4-22

symbols 4-14
how to find 4-13

window 4-6–4-11
arrow (graphic) 2-10, 4-11
dialog box (see under display modes)
4-9
double-clicking in 4-7
execution pointer in, how to return to
4-14
in assembly mode (example) 4-10
in source mode (example) 4-7
modes of 4-9
octagon (graphic) 4-11
opening from Trace window 4-34
opening with LIST command 4-14
pointer 4-11
scrolling up (backwards) in 4-10
symbols used in 4-11
toolbar button, Break 4-8, 4-22, 4-23
toolbar button, Evaluate (?) 4-9
toolbar button, Go to return 5-38

Index-6 Soft-Scope User’s Guide

Index

toolbar button, Locate 4-9, 4-14
toolbar button, Mode 4-4, 4-9
toolbar button, Temp break 4-8,4-23

coderef (command syntax element) 3-19
codesym (command syntax element) 3-19
com port 2-4, 6-8
comma operator (,) (C language) 5-7
command

examples 4-23, 4-25, 5-35, 5-38, 5-
43, 5-52

execute after load 6-9
execute before load 6-7, 6-9
line

commands, list of 3-17
commands, syntax 3-17
dialog box, example 3-8

metasymbols used in syntax statements
of 3-17–3-19

Soft-Scope, complete list of 3-17–3-19
syntax elements of 3-19–3-21

communication
device 6-15
host to target 6-8
parameters, serial

how to change 2-4
with monitor 7-20

compiling macros 7-4
compressed format data representation

toggles between, and expanded format
5-17

Concurrent Sciences, Inc.
email address D-2
fax number D-2
phone number D-2

conditional operator (?:) (C language) 5-7

configuration
options (see also individual options)

file (sswin32.ini) 6-3
how to modify a value 6-5
how to save and reload 6-4
list of all 6-6

Windows-type .ini file for 4-38
connect.baudrate (configuration option) 6-

8
connect.comport (configuration option) 6-

8
control strings (in formatted output

macros) 7-25
conventions. See documentation conven-

tions.
conversion specifiers (for formatted

output) 7-25
table of 7-26

coprocessor 7-5
copy memory from one location to another

D-5
copyright information, Soft-Scope's 2-6
count

number base (default) 5-5
CPU

data types 6-11
structures 5-56–5-59

chip selects 5-56
config control 5-56
descriptor abbreviations 5-59
displayed in Data window 5-56
how to display or view 5-56
how to modify 5-59
interrupt 5-56
page dir 5-56
parallel ports 5-56
power/clock 5-56
refresh control 5-56
serial ports 5-56

Soft-Scope User’s Guide Index-7

Index

I

timers 5-56
vector 5-56

variables 7-5
CSi-Link 8-5
current task E-4

D

data
breakpoints. See under breakpoints.
bus

how addresses appear on 5-25
display of in most useful format 5-44
pull-down menu options

CPU structures 5-56
CPU structures (to view vector table)
5-64
Dump 5-46
Examine 5-14, 5-57
Registers 5-52, D-3
Symbols 4-13, 5-34
Watch 5-30

reference 5-19–5-24
double-clicking to examine 4-7
examine with ? command/toolbar
button 4-9
example uses of 5-19, 5-20, 5-21, 5-
22, 5-24, 5-27, 5-37, 5-38, 5-40, 5-
41, 5-42, 5-43, 5-44, D-3
not necessarily memory references 5-
25
summary of 5-12

symbols 4-14
types A-2–A-8

for type overrides, subfields used in
A-2
for type overrides, table of A204--
A209

window 5-14–5-18
CPU structures displayed in 5-56
double-click function in 5-17, 5-23
open display modes (dialog box)
[Code window] 4-9
pointer dereferencing in 5-23
question mark in 5-28
toolbar button, Mode 5-15
toolbar button, Modify 5-15, 5-
59, D-3
toolbar button, Watch 5-15

dataref (command syntax element) 3-19
datasym (command syntax element) 3-19
debug

.exe executable file C-2
registers 4-25

and hardware breakpoints 4-25
efficient use of 4-24
example usage of 4-25
number of registers used 4-25

DEC (keyword with macro parameters) 7-10
decimal numbers (with suffix T) 5-3
DELETE (keyword) 7-7
deleting

breakpoints 4-23, 4-24
descriptor subfields, table of A-16
device driver, serial 2-4
dialog boxes

Assembly display modes 4-35
Breakpoint edit 4-20
Code reference 4-7
Command line 3-17
Data reference 5-14
Display modes 5-15, 5-31
Dump modes 5-47
File-Load 3-21
File-Restart 3-26
File-Symbols 3-24

Index-8 Soft-Scope User’s Guide

Index

Find 3-8
specify information for, using macro

WFUNCTION 7-24
direct memory access (DMA) 6-14
disassembling code and CPU type 6-11
display

format of data, with type overrides 5-44
modes (dialog box) [Code window] 4-7

example of 4-9
radio buttons, Address 4-10
radio buttons, Code 4-9
radio buttons, Execution 4-9

modes (dialog box) [Data window]
example of 5-15
opened from Watch window 5-31
radio buttons, Modes 5-16

distribution disks
Soft-Scope 2-3

documentation conventions iv
double-click function 3-14

on data references 3-14, 4-7
to modify existing breakpoint 4-18
to reference pointers 3-15
use in Breakpoints window 4-18, 4-20
use in Code window 3-14, 4-7, 4-14
use in Data window 4-14, 5-17, 5-23
use in Watch window 5-17, 5-23, 5-33
view code for specific call 4-30

dump
modes (dialog box)

example of 5-47
Expand check box 5-48
Modes radio buttons (Byte) 5-48
Modes radio buttons (Dword) 5-48
Modes radio buttons (Hword) 5-48
Modes radio buttons (Word) 5-48

window 5-46–5-49
address format used to open 5-46
default starting address of dump 5-46
example of 5-49
how to open 5-46
modes of 5-47
toolbar buttons, Mode 5-47
toolbar buttons, Modify 5-47
toolbar buttons, Shift 5-47

DUMP (command) 5-49

E

E (prefix of exponent) 5-4
emulation, floating-point

targ.87emulate F-2, F-3
environment variable 6-18
equal sign (=) toolbar button

(Symbols window) 5-35
error

condition
action at breakpoint 4-21

messages
address B-3
general B-7

escape sequences (for strings) 5-10
table of 5-11
use in (formatted output) control strings

7-27
EVAL (command) 5-16, 5-58
Eval mode (display mode) 5-16, 5-32
examining data 5-83--5-146 5-1
EXEC (keyword) (see also breakpoint, exec)

4-19, 4-26, 4-27
exec.refresh (configuration option) 6-8
exec.wait (configuration option) 6-8
executable

file (.exe) 3-21
instruction, changing D-4

Soft-Scope User’s Guide Index-9

Index

I

execution
breakpoint. See under breakpoint.
events

displayed in Trace window 4-33, 4-35
point, current 4-6, 4-9, 4-14

changing D-3
pointer 4-13

how to return Code window to 4-14
radio buttons

Into 4-9
Over 4-9

expanded format data representation
(...)

toggles between, and compressed
format 5-17

exponential numbers 5-3
exponents (of floating-point numbers)

number base (default) 5-5
EXPRESSION (parameter type with macros)

7-12
expressions

as memory references 5-26
assignable, as macro parameters 7-12
complex, used in assignment statements

5-24
in type overrides 5-43

F

far16 (value for sym.pointer
configuration option) 6-12

far32 (value for sym.pointer
configuration option) 6-12

field-width specifiers (in print macros) 7-28
file

extensions
.abs 3-21, 8-5
.bug 8-6, C-2
.exe 3-21, 8-6
.exe C-257--C262
.exp C-2
.ini 4-38
.mac 7-4
.mob 7-4

names
backslashes in strings 5-10

pull-down menu options
Load 2-8, 5-50
Restart 3-26
Upload 5-50
View log 3-10, 6-7

file-load (dialog box)
example of 2-9, 3-22
parts of

Browse... 3-22
Command 3-22
File name 3-22
Hardware setup 3-22
History 3-23
Restart 3-23
Symbols 3-23

file-restart (dialog box)
example of 3-26
parts of

Browse... 3-27
Command 3-26
File name 3-26
Hardware setup 3-26
History 3-27
Load 3-27
Symbols 3-27

file-symbol load (dialog box)

Index-10 Soft-Scope User’s Guide

Index

example of 3-24
parts of

Browse... 3-25
Command 3-25
File name 3-25
History 3-25
Load 3-25
Restart 3-25

filename (command syntax element) 3-19
filename.bug (command syntax element) 3-

19
files

sample 8-4
temporary. See temporary files.

find (dialog box)
example of 3-8
parts of

Cancel 3-8
Direction 3-8
Find next 3-8
Match case 3-8
Match whole word only 3-8

Find string 3-7
flag format (fltype) 5-41
flags register 5-41

modifying 5-52
floating-point

emulation 6-14
targ.87emulate F-2, F-3

numbers 5-3
fltype (data type in type overrides) 5-41
formatted output (print macros) 7-25
frequently asked questions 1-3–1-4
functions, built-in Soft-Scope 5-37

table of 5-9

G

global
descriptor table

displaying 5-57
example display 5-58
subfields, table of A-16
variables A-15

symbols
in Symbols window 5-36

go
toolbar button 4-3
until cursor position 4-4

GO (command) 4-27

H

H (suffix) for hexadecimal numbers 5-3
hardware breakpoint. See under breakpoint.

4-24
HELP (command) 3-16
Help pull-down menu options

About Soft-Scope 3-16
Index 3-16
Using help 3-16

helpful hints for power user D263--D266
HEX (keyword with macro parameters) 7-10
hexadecimal numbers

0x (prefix for) 5-3
H (suffix for) 5-3

hexnumber16 (command syntax element) 3-
19

host system requirements 2-3

Soft-Scope User’s Guide Index-11

Index

I

I

I/O
device, memory-mapped 6-14
port

reading/writing use PORT 5-38
restrictions on reading from 5-38

IF (macro statement 7-17
IF...ELSE (macro statement) 7-17
indexes, array 5-20
installation instructions

host system requirements 2-3
Soft-Scope for Windows 95/NT 2-4

instruction
changing D-4
pointer 2-10

integer data type, size of 6-13
Intel

ASM86, ASM286 and ASM386 8-7
BLD286/386 8-8
BND286/386 8-8
iC-86, iC-286 and iC-386 8-9
LINK86/LOC86 8-9
PL/M-86, PL/M-286 and PL/M-386 8-10
register subfield names used by

Soft-Scope come from 5-55
interrupt

descriptor table
displaying 5-57
subfields, table of A-16
variables A-15

disable 6-16
driven CSi-Mon 4-28

INTO (keyword) 4-5
into, stepping 4-3, 4-4
invoking Soft-Scope 2-6–2-7

K

kernel
awareness E-3
objects E-3

key_sequence (with macro function
WFUNCTION) 7-22

keyboard keys
activate pull-down menus using 3-12
concurrent presses of iv
open dialog boxes using 3-12
selecting menu commands using 3-12

keyword
(command parameters)

as variables in data references 5-19
use of period (.) with 5-19

(see also individual keyword)
keyword (command syntax element) 3-19

L

L (suffix for linear address) 5-12, 5-25
LDTR register 6-11
leading zero flag (in conversion specifiers)

7-28
LEN[GTH] (operator) 5-43, 5-50

number base (default) 5-5
LENGTHOF (function) 5-37, 5-38
LINE

(command) 4-9
(parameter type with macros) 7-13

line number
as macro parameter 7-13
how to find address of D-3
number base (default) 5-5
operator (#) 4-12

linenum (command syntax element) 3-19
lineref (command syntax element) 3-19
linker (CSi-Link) 8-5
linking your application 8-5

Index-12 Soft-Scope User’s Guide

Index

LinkLoc (Phar Lap linker locator) 8-11
LIST

(command) 4-14
(keyword) 7-7

LITERAL (parameter type with macros) 7-
11

LOAD
(command) 3-30
(keyword) 7-7

load.init_command (configuration option)
6-9, 7-8

command executed after load 6-9
example use of D-5

load.init_enable (configuration option) 6-9
load.setup_command (configuration

option) 6-9
command executed before load 6-9

load.setup_enable (configuration option)
6-9

loading
.exe application C-3–C-5
application (see application loading)
memory and registers 5-50
symbolics only 3-24

local
descriptor table

and address displays 6-11
subfields, table of A-16
variables A-15

variables, macro. See under macros.
locator 8-5
log

file (see also Window menu option,
Capture)
capturing a window to 3-9
default name 3-9
specifying name 3-9, 6-7

window
how to open 3-10
log-file name change 6-7
specify size 3-10, 6-10
toolbar button, Clear 3-10

log.winsize (configuration option) 3-10, 6-
10

logical operators 5-7

M

MACRO
(command) 7-7
(keyword in macro definitions) 7-3
RESUME (macro statement) 7-19
SUSPEND (macro statement) 7-19

macro
assign

array value 7-15
pointer value 7-16

compiling to .mob file 7-4
CPU variables 7-5
creating 7-3
currently loaded 7-6
deleting 7-6, 7-7
displaying name in Macros window 7-9
examples

arr_chg 7-4, D-4
printstr 7-12
src_chg 7-11
test 7-10, 7-14

file of, loading 7-6
files. See sswin32.mac
functions

PRINT 7-25, 7-28
WFUNCTION 7-22, 7-23
WMOVE 7-22, 7-23
WPRINTF 7-28
WRESIZE 7-22, 7-23

Soft-Scope User’s Guide Index-13

Index

I

initial macro file load 6-7
invoking/running

from Command line 7-7
from Macros window 7-6

local variables 7-14–7-16
any type in table A-1 7-14
AUTO required in declaration 7-14
can be arrays (one-dimensional) 7-15
how to declare 7-14
names begin with $ 7-15
pointers 7-15

name customizing for Macros window 7-
9

output 7-25, 7-27
parameter types

ADDRESS 7-13
EXPRESSION 7-12
LINE 7-13
LITERAL 7-11
MODULE 7-13
PROCEDURE 7-13
REFERENCE 7-12
TEXT 7-12

parameters 7-10–7-13
any type in table A-1 except arrays 7-
10
names begin with $ 7-10

print macros 7-25–7-28
control strings 7-25
conversion characters 7-25
escape sequences 7-27
field-width specifiers 7-28
leading zero flag 7-28
wprintf 7-28

pull-down menu options
Display 7-6
Load 7-6
Resume 7-19

running 7-6, 7-7

source files of 7-3
statements 7-17–7-21

USER MONHOLD 7-20
USER MONITOR 7-20
ABORT 7-17
BREAK 7-17
IF 7-17
IF...ELSE 7-17
MACRO RESUME 7-19
MACRO SUSPEND 7-19
MONHOLD 7-20
MONITOR 7-20
RESPOND 7-18
RETURN 7-18
WHILE 7-18

syntax of 7-3
window 7-6–7-9

customizing names for 7-9
example of 7-7
how to open 7-6
not displaying selected names in 7-9
toolbar button, Delete 7-6
toolbar button, Run 7-6

macroname (command syntax element) 3-19
manipulating windows from macros 7-22–

7-24
memory

access size 6-16
cache flush 6-14
caching 6-14
control block search 6-15
copying a block of from one location to

another D-5
modify 5-46
reference

examples of 5-26
references 5-25–5-26

summary of 5-12

Index-14 Soft-Scope User’s Guide

Index

using expressions for 5-26
save in disk file 5-50
write verification 6-17
writes, read-after-write verification of 6-

17
memory-mapped I/O device 6-14
memref (command syntax element) 3-19
menu map, Soft-Scope's pull-down

table of 3-4–3-6
message

window
description of 2-6
example of 2-7

MESSAGE (command) 2-6
messages, error

address B-3
general B-7

MetaWare 8-2, 8-10
sample applications 8-4

Microsoft 8-2, 8-10
sample applications 8-4

modname (command syntax element) 3-20
module

names
as macro parameters 7-13
how to assign file to 5-35
how to find 4-13

operator (:) 4-12
MODULE (parameter type with macros) 7-

13
MODULES (command) 5-35

N

near16 (value for sym.pointer
configuration option) 6-12

near32 (value for sym.pointer

configuration option) 6-12
nested calls

return addresses of 5-37
stack usage 4-32

NOP (assembly-language instruction--no
operation)

changing instructions to D-4
Normal mode (display mode) 5-16, 5-32
null

character (\0) 5-10
device search 6-16

null-modem configuration 2-11
numbers

base changing 6-7
base of (default) 5-4
formats/bases supported by Soft-Scope

5-3–5-5

O

octagon (graphic)
outline of (in Code window) 4-11
solid (in Code window) 4-11

octal number, specified with escape
sequences 7-27

OFFSETOF (function) 5-37, D-3
OMF file 3-21
open-ended operator (with arrays) (...) 5-21
Operation codes, modify D-4
operators

built-in Soft-Scope 5-6–5-9
precedence of 5-7
Soft-Scope specific, table of A-8–A-9
table of 5-9
three classes of 5-6

offsetof D-3
OPT (keyword with macro parameters) 7-10
optionname (command syntax element) 3-

Soft-Scope User’s Guide Index-15

Index

I

20
options

configuration file 6-3
pull-down menu options

Display 2-4, 4-29, 6-3
Reload settings 6-4
Save settings 6-4

window
example of 6-5
toolbar button, Delete 6-4
toolbar button, Insert 6-4
toolbar button, Modify 5-4, 6-4

optionvalue (command syntax element) 3-
20

out-of-range array indexes 5-21
OVER (keyword) 4-5
over, stepping 4-4

P

P (suffix for physical address) 4-10, 5-
12, 5-25

page
directory

macros for displaying tables of 5-58
variables A-15

table entries, table of A-15
paging

when disabled, linear address equals
physical address 5-25

path to application, defining 6-10
PC target CSi-Mon monitor C-3
peripheral control block (PCB)

table of 5-60–5-63
permanent software breakpoints 4-22
Phar Lap

386/ASM 8-12

LinkLoc 8-11
pointers

as type overrides
how to interpret 6-12

data references to 5-17, 5-23
dereferencing 5-23, 5-33
far 6-12
macro local variables as 7-15
near 5-24, 6-12
number base (default) 5-5

PORT (function) 5-37
number base (default) 5-5

port I/O using PORT (command) 5-37
power user, helpful hints for D263--D266
printstr (macro example) 7-12
procedure

call, return from 4-28
call sequence 4-30
names

as macro parameters 7-13
how to find 4-13
referencing in current module 4-12
referencing in different module 4-12

PROCEDURE (parameter type with macros)
7-13

PROCEDURES (command) 5-35
processor type 7-5
pull-down menu map

table of 3-4–3-6

Q

questions, frequently asked 1-3–1-4
quick contents (table of) iii
quotation marks

in macro functions 7-22
single or double 5-10

Index-16 Soft-Scope User’s Guide

Index

R

RAM address
and breakpoints 4-26

ranges, number base (default) 5-5
read-after-write verification 6-17
real mode

interrupt vector table 5-64
structures 5-60–5-63

real-time operating systems support E-2
receiver timeouts D-6
reference

scoping 5-27–5-28
rules for 5-28

summary 5-12
REFERENCE (parameter type with macros)

7-12
referencing structures

arrays of structures 5-21
individual elements 5-21

REG (command) 5-53
register

$cr0-$cr4 A-14
$eip, changing D-3
access to 5-52, 5-53
control 5-52, A-14
flags A-11
general-purpose A-10–A-11
modifying 5-52
names begin with $ 5-52
NPX A-13
protected mode A-14
save in disk file 5-50
segment A-12

subfield
displays 5-55
names 5-55

systems, list of 5-55
window 5-52–5-55

display different for different applica-
tions 5-55
example of 5-54
toolbar button, Modify 5-52
toolbar button, Watch 5-53

REGISTER[S] (keyword) 5-51
RELOAD (keyword) 6-5
RESPOND (macro statement) 7-18
restart application 3-26
RETURN

(function) 5-37, 5-38
number base (default) 5-5

(keyword) 4-27
(macro statement) 7-18

return
from procedure call 4-28
to calling procedure 4-4

ROM address
and breakpoints 4-26

RTOS, supported
list of E-5

S

S[TEP] (command) 4-5
sample

applications, directory located in 8-4
files 8-4
programs disk 2-3

SAVE (keyword) 6-5
scoping, references 5-27–5-28
screen refresh 6-8
segment limit exceeded D-6
segment:offset format (addresses) 4-10

Soft-Scope User’s Guide Index-17

Index

I

selector
and offset 5-24, 5-25
in parentheses 5-24
near pointer 5-24

SELECTOROF (function) 5-37
number base (default) 5-5

serial
communication parameters

how to change 2-4
device driver 2-4
number, Soft-Scope's 2-6

SET (command) 6-5
setbreak (macro)

as initial command 7-8
shift-operators (>>, <<), operand of

number base (default) 5-5
single step 4-4
SIZEOF (function) 5-37
small memory model applications 5-24
Soft-Scope

commands, table of 3-17–3-19
copyright information for 2-6, 3-16
how to invoke 2-6–2-7
Kernel Awareness Standard E-2
operators, table of A-8–A-9
pull-down menu map

table of 3-4–3-6
serial number 2-6
version information for 2-6, 3-16

software breakpoint. See under breakpoint.
source

code
displaying sections of 4-15

files
and modules 5-35
path to 6-10

mode (of Code window) 4-7
specify a number of steps 4-4

src.path (configuration option) 6-10
src.tab (configuration option) 6-10
src_chg (macro example) 7-11
SSBUG (conversion utility) 8-6, C-2
sswin (directory) 2-3
sswin32.exe (executable file) 2-3
sswin32.ini (default configuration file) 6-4
sswin32.log (log file) 3-9, 6-7
sswin32.mac (macro file) 5-58, 6-7, 7-3
STACK (command)

reset 4-32
usage 4-32

start target execution 4-27
start-up code

how to jump over when debugging D-5
status line

tells when application is loading 2-9, 3-
28

step 4-4
default mode of 4-4
into 4-4
into next procedure call 4-3
over 4-4
over next procedure call 4-4
single 4-4
specify number of steps 4-5

STEP (command) 4-4
STOP (command) 4-28
stop execution toolbar button 4-3, 4-28
strings 5-10–5-11

and escape sequences 5-10
where to enter 5-11

structures
data references to 5-17
members of, data references to 5-21

subscripts used in data references
to array elements 5-20

Index-18 Soft-Scope User’s Guide

Index

superimposing types with type overrides
5-42

SuperTask! E-2
sym.case (configuration option) 6-10
sym.cpu (configuration option) 6-11
sym.ldt (configuration option) 6-11
sym.pointer (configuration option) 6-12
sym.wordsize (configuration option) 5-

48, 6-13, A-3, A-5, A-6, A-7
symbol

case 6-10
loading 3-24
names, how to find 4-13
operator (.) 4-12
window 5-34–5-36

display mode described 5-34
display modes exemplified 5-36
examples of 5-36
opening, how to 5-34
toolbar button, Assign (=) 5-35
toolbar button, Modules 5-35
toolbar button, Procedures 5-35
toolbar button, Symbols 5-35
toolbar button, View 5-34
toolbar button, Watch 5-35
use, to find code references 5-26

symbolic
and uploading memory and registers 5-

51
information 3-21, 8-6
loading 3-24
operators 5-6

SYMBOLS (command) 5-35
syntax

command 3-17
elements of commands 3-19

system
register access 5-53
requirements 2-3

T

T (suffix) for decimal numbers 5-3
tab character 6-10
targ.87emulate (configuration option) 6-

14, F-2, F-3
targ.cache (configuration option) 6-14
targ.code_cache (configuration option) 6-

14
targ.dev (configuration option) 6-15
targ.dos_mcb_end (configuration option)

6-15
targ.dos_mcb_start (configuration option)

6-15
targ.dos_nul_end (configuration option) 6-

16
targ.dos_nul_start (configuration option)

6-16
targ.grain (configuration option) 6-16
targ.pcb (configuration option) 5-60
targ.polling (configuration option) 4-29, 6-

16
targ.verify (configuration option) 6-17
target execution

toolbar buttons
Go 4-3, 4-27
Go to cursor 4-4
Go to return 4-4
Step into 4-3
Step over 4-4
Stop 4-3

task list E-4
temp (environment variable) 6-18
temporary breakpoint. See under

breakpoint.
temporary files

location 6-17
Soft-Scope's 3-29, 6-18

Soft-Scope User’s Guide Index-19

Index

I

Terminate but Stay Resident (TSR) program
C-3

test (macro example) 7-10, 7-14
TEXT (parameter type with macros) 7-12
tmp.path (configuration option) 6-17
TO (keyword) 3-20, 6-5

environments of use 5-35, 5-49, 7-7
tool

directives 8-197--8-202
summary 8-2

toolbar buttons
Assembly 4-35
Assign (=) 5-35
Break 4-8
Bus 4-35
Delete 4-18, 5-31, 6-4, 7-6
Evaluate (?) 4-9
Go 4-3, 4-27
Go to cursor 4-4, 4-28
Go to return 4-4, 4-28
Insert 4-18, 4-24, 5-31, 6-4
Locate 4-9, 4-14
Mode 4-9, 4-35, 5-15, 5-31, 5-47
Modify 5-15, 5-31, 5-47, 5-52, 6-4, D-

3
Modules 5-35
Procedures 4-35, 5-35
Run 7-6
Shift 5-47
Source 4-35
Step into 4-3
Step over 4-4
Stop 4-3, 4-28
Symbols 5-35
Temp break 4-8, 4-23
View 4-18, 4-30, 4-34,5-34
Watch 5-15, 5-35, 5-53

tools supported by Soft-Scope 8-191--8-
202

table of 8-2
trace

buffer size limited 4-38
data access multiple loads 6-18
file size 6-17
information across multiple loads 6-18
temporary file where trace information

stored 6-17
window 4-33–4-38

example of 4-33, 4-36, 4-37
how to open 4-34
toolbar button, Assembly 4-35
toolbar button, Bus 4-35
toolbar button, Mode 4-35
toolbar button, Procedures 4-35
toolbar button, Source 4-35
toolbar button, View 4-34

TRACE (command) 4-37
trace.filesize (configuration option) 4-

38, 6-17
trace.load (configuration option) 4-38, 6-

18
troubleshooting 2-11–2-12
TSR (Terminate but Stay Resident) program

C-3
TSS386

subfields, table of A-17–A-18
TYPE (command) 5-16
type overrides 5-40–5-45

and Watch window data 5-33
data types for

complete list of A204--A209
expressions in 5-43
for displaying data in most useful format

5-44
for memory copying D-5
not true type conversion 5-40

Index-20 Soft-Scope User’s Guide

Index

permissible types with 5-40
complete list of A204--A209 A-2

using pointers in
how to interpret 6-12

Types mode (display mode) 5-16, 5-32
typographical conventions. See

documentation conventions.

U

unions
data references to 5-22

upload
dialog box

example of entry 5-50
file

format of 5-51
UPLOAD (command) 5-51
uploading memory and registers 5-50–5-51

reloading uploaded memory and
registers 5-50

V

variables (see also data symbols)
and type overrides 5-40
assigning values to,

using type overrides 5-44
automatic (nonstatic) 5-28
CPU 7-5
data references 5-19
global, referencing 5-27
keywords as, in data references 5-19
protected-mode, table of A-15
referencing, outside current

program context 5-27
register

how to reference 5-29
scalar 5-31
stack-based

and type overrides 5-40
referencing 5-28
uninitialized, with ? in Data window 5-
28

static, referencing 5-27
use of subscript in array references 5-21
user-declared as type overrides 5-42

vector table
how to view in Registers window 5-64
real-mode interrupt 5-64

VERSION (command) 3-16
version information, Soft-Scope's 2-6

W

wait to execute next command 6-8
watch

memory 5-33
window 5-30–5-33

adding references, how to 5-30
and type overrides 5-33
description of 5-17
display modes described 5-31
double-click function in 5-17, 5-23
example of 5-32
how many references can be watched
5-33
opened with Data/Watch command 5-
30
pointer dereferencing in 5-23, 5-33
references in, how to add 5-30
toolbar button, Delete 5-31
toolbar button, Insert 5-31
toolbar button, Mode 5-31
toolbar button, Modify 5-31
update frequency 5-30

WATCH (command) 5-33
Watcom 8-2, 8-12

sample applications 8-4

Soft-Scope User’s Guide Index-21

Index

I

WFUNCTION (macro function) 7-22, 7-23
examples of 7-24
key_sequence in 7-22

WHILE (macro statement) 7-18
window

name (for macro WFUNCTION) 7-22
pull-down menu options

Capture 3-9
Find string 3-7
Layout save 3-11

Soft-Scope's
manipulating, from macros 7-22–7-24

windows
Application I/O 5-64
Breakpoints 4-16
Calls 4-30
Code 4-6
Data 5-14
Dump 5-46
Log 3-10
Macro 7-6
Message 2-6
Options 6-3
Registers 5-52
Symbols 5-34
Trace 4-33
Watch 5-30

WMOVE (macro function) 7-22, 7-23
WPRINTF (macro)

output from 7-27
sending output to log file from 3-9

WRESIZE (macro function) 7-22, 7-23
WRITE (keyword) 4-19, 4-25, 4-27

Y

Y (suffix) for binary numbers 5-3

Index-22 Soft-Scope User’s Guide

Index

	1. Introduction
	2. Getting Started with Soft-Scope
	3. Soft-Scope Basics
	4. Controlling Program Execution with Soft-Scope
	5. Examining Data with Soft-Scope
	6. Configuring Soft-Scope
	7. Creating and Using Soft-Scope Macros
	8. Tools that Soft-Scope Supports
	A. Data Types, Operators, Registers, and Descriptors
	B. Error Messages
	C. Debugging .exe Executable Files
	D. Helpful Hints
	E. Add Ons
	F. Intel Floating-Point Emulation
	Index
	1. Introduction
	Overview
	FAQs: Frequently Asked Questions
	Chapter Summaries
	2. Getting Started with Soft-Scope
	Overview
	Installing Soft-Scope on the Host
	Host-system Requirements
	Soft-Scope Distribution Disks
	Soft-Scope Installation for Windows 95 and Windows NT
	Figure 2-1: Changing baud rate using Options window
	Invoking Soft-Scope
	Message Window
	Figure 2-2: Initial Soft-Scope window with connect message
	Loading Your First Application
	Figure 2-3: File-Load dialog box
	Figure 2-4: Soft-Scope display after application load
	Figure 2-5: Run application to first line of main()
	Troubleshooting
	Symptoms of Problems
	Checklist of Corrective Actions
	3. Soft-Scope Basics
	Overview
	Pull-Down Menu Map
	Table 3-1: Pull-Down Menu Map
	Window Pull-Down Menu
	Finding a String
	Figure 3-1: Find dialog box
	Capturing a Window to a Log File
	Figure 3-2: Log window showing capture of Trace window
	Saving Window Layout
	Open Window List
	Accelerator Keys
	Double-click Function
	Double-click in the Code Window
	Double-click on Data References
	Double-click on Pointers
	Online Help
	Commands and Command Line
	Figure 3-3: Command line dialog box
	Command Syntax Elements
	Loading an Application
	Load
	Figure 3-4: File-Load dialog box
	Symbol Load
	Figure 3-5: File-Symbol load dialog box
	Restart
	Figure 3-6: File-Restart dialog box
	After the Load
	Figure 3-7: Soft-Scope after an application load
	Soft-Scope .tmp Files
	Command Line
	4. Controlling Program Execution with Soft-Scope
	Overview
	Controlling Program Execution
	Stepping through Code
	Single Step
	Specify a Number of Steps
	Step Command via the Command Line
	Code Window
	Figure 4-1: Code window in Source mode
	Figure 4-2: Code reference dialog box
	Toolbar Buttons
	Figure 4-3: Display modes dialog box
	Figure 4-4: Code window in Assembly mode with logical addresses
	Code Window Execution Pointers
	Code References
	Line Numbers
	Symbol Names
	Guidelines
	Locating Code
	Breakpoints Window
	Figure 4-5: Breakpoints window
	Toolbar Buttons
	Command Line
	Editing Breakpoints
	Figure 4-6: Breakpoint edit dialog box
	Software Breakpoints
	Permanent Software Breakpoints
	Temporary Software Breakpoints
	Hardware Breakpoints
	Data Breakpoints
	Command Line
	Debug Registers
	Exec Breakpoints
	Command Line
	Executing to a Location
	Go
	Go to a Specific Location
	Return from a Procedure Call
	Go to a Cursor Position
	Stop
	Procedure Call Sequence
	Calls Window
	Figure 4-7: Calls window
	Command Line
	Stack Information
	Trace Window
	Figure 4-8: Trace window displaying procedures
	Toolbar Buttons
	Figure 4-9: Assembly display modes dialog box
	Figure 4-10: Trace window displaying procedures and source
	Command Line
	Figure 4-11: Trace window displaying procedures, source, and assembly code
	Trace Buffer
	Trace File Size
	5. Examining Data with Soft-Scope
	Chapter Contents
	Overview
	Numbers
	Setting the Default Base
	Table 5-1: Default number bases
	Operators
	Symbolic Operator Examples
	Arithmetic Operators Return Numeric Values
	Logical Operator Examples
	Table 5-2: C operators
	Table 5-3: Soft-Scope specific operators and functions
	Strings
	Escape Sequences
	Where to Enter Strings
	Table 5-4: String escape sequences
	Reference Summary
	Table 5-5: Reference summary
	The Data Window
	Figure 5-1: Data reference dialog box
	Toolbar Buttons
	Figure 5-2: Display modes dialog box
	Command Line
	Figure 5-3: Data window in Eval mode
	Double-click for Quick References
	Figure 5-4: Data window in expanded format
	Data References
	Simple Variables
	Referencing Arrays
	Displaying an Entire Array
	Displaying a Single Element of an Array
	Displaying a Selected Number of Arrays
	Variables as Subscripts
	Referencing Structures
	Referencing Unions
	Referencing Bitfields
	Referencing Pointers
	Dereferencing Pointers
	Figure 5-5: Before double-click on "->"
	Figure 5-6: After double-click on "->"
	Selector Is Not Stored in Memory
	Making Complex Assignments
	Referencing Memory
	Using the Symbols Window to Find Code References
	Reference Scoping
	Examples
	Table 5-6: Reference Scoping
	Referencing Automatic (Stacked-based) Variables
	Referencing Register Variables
	The Watch Window
	Toolbar Buttons
	Figure 5-7: Display modes dialog box
	Figure 5-8: Watch window in Normal display mode
	Command Line
	Watching a Pointer
	Watching Memory
	The Symbols Window
	Toolbar Buttons
	Command Line
	Displaying Global Symbols
	Figure 5-9: Symbols window in Procedures mode
	Built-in Functions
	Determining Addresses
	Using Return as a Memory Reference
	Determining How Many Elements in an Array
	Reading and Writing to Port Addresses
	Type Overrides
	Applying a Type Override to a Variable
	Applying a Type Override to an Address
	Using a Variable to Superimpose its Data Type over the Address of Another Variable
	Using a User-declared Variable to Define a Type Override
	Changing the Amount of Memory Displayed
	Using Expressions in Type Overrides To Do Mathematical Operations
	Assigning Values Using Type Overrides
	Displaying Data in its Most Useful Format
	The Dump Window
	Toolbar Buttons
	Figure 5-10: Dump modes dialog box
	Command Line
	Figure 5-11: Dump window in Byte mode, 8 bytes per line
	Uploading Memory and Registers
	Command Line
	Format of Upload Files
	The Registers Window
	Toolbar Buttons
	Command Line
	Accessing Registers When the Target is Running
	Figure 5-12: Registers window for 80386EX target
	Contents of the Registers Window
	CPU Structures
	Figure 5-13: IDT descriptors
	Figure 5-14: Data window in Normal mode
	Figure 5-15: Data window in Eval mode
	Command Line
	Table 5-7: Descriptor abbreviations
	Modifying a Descriptor Element
	Real-Mode Structures
	Table 5-8: Peripheral Control Block
	Table 5-8: Peripheral Control Block (continued)
	$VECTOR[] Array
	Application Input/Output
	6. Configuring Soft-Scope
	Overview
	Options Window
	Toolbar Buttons
	Save and Restore Options
	Command Line
	Figure 6-1: Options window showing default values
	Soft-Scope Configuration Options
	Table 6-1: Soft-Scope configuration options
	Control Default Number Base
	Change Log File Name
	Define Initial Command
	Define Initial Macro File
	Configure Host To Target Communications
	Control Screen Refresh Rate
	Control Command Delay
	Define Command
	Change Log File Size
	Define Path To Application Files
	Define Tab Spaces
	Define Case for Symbol Search
	Access CPU-specific Data Types
	Display LDTR register value
	Define Pointer Type Override Display
	Specify Integer Data Type Size
	Specify Floating Point Emulation Parameter
	Control Memory Caching
	Control Code Memory Cache Flush
	Define Host Communication Device
	Specify Where To Search For Memory Control Block
	Specify Where To Search for the NULL Device
	Specify Size of Memory Reads
	Tell Soft-Scope that Interrupts are Disabled
	Verify Memory Writes
	Specify temporary file location
	Specify the Size of the Trace File
	Preserve Trace Data across Applications
	7. Creating and Using Soft-Scope Macros
	Overview
	Creating a Macro
	Compiled Macro Files
	Built-in CPU Variables
	Macros Window
	Loading a Macro File
	Toolbar Buttons
	Figure 7-1: Macros window
	Command Line
	Example Use of cmd.macro and load.init_command
	Identify Macros in the Macros Window
	Macro Parameters
	Optional Parameters
	Integer Type
	LITERAL Parameter
	TEXT Parameter
	EXPRESSION Parameter
	REFERENCE Parameter
	ADDRESS Parameter
	LINE Parameter
	MODULE and PROCEDURE Types
	Local Variables
	Declaring Local Variables
	Defining One-dimensional Arrays
	Assigning Numeric Values to Arrays
	Assigning Pointer Values from Your Application
	Macro Statements
	ABORT
	BREAK
	IF, IF...ELSE
	RESPOND
	RETURN
	WHILE
	MACRO SUSPEND
	MACRO RESUME
	Custom Commands with an Extended Monitor
	Manipulating Windows from Macros
	WMOVE
	WRESIZE
	WFUNCTION
	Examples
	Macro Print Function
	PRINT
	Conversion Specifiers
	Table 7-1: Conversion specifiers
	$ Parameter Prefix in Control Strings
	Escape Sequences
	Directed Output from Macros
	Using Field-width Specifiers with PRINT or WPRINTF
	Specifying the Leading Zero Flag
	8. Tools that Soft-Scope Supports
	Tool Summary
	Table 8-1: Supported tools
	Sample Files
	Linking Your Application
	CSi-Link™
	Generating Symbolic Information
	SSBUG
	Tool Directives
	Borland
	Intel
	ASM86, ASM286 and ASM386
	BND286/386 and BLD286/386
	Intel iC-86, iC-286 and iC-386
	Intel LINK86/LOC86
	Intel PL/M-86, PL/M-286 and PL/M-386
	MetaWare
	Microsoft
	Phar Lap
	Phar Lap LinkLoc
	Phar Lap 386/ASM
	Watcom
	A. Data Types, Operators, Registers, and Descriptors
	Data Types
	Table A-1: Data types for use in type overrides
	Operators
	Table A-2: Soft-Scope operators
	General-Purpose Registers
	Figure A-1: General-purpose registers
	Figure A-2: Flags register
	Figure A-3: Segment registers
	NPX Registers
	Figure A-4: NPX registers
	Protected-Mode Registers
	Figure A-5: Control registers
	Figure A-6: Protected-mode registers
	Descriptors and Subfields
	Table A-3: 386 protected-mode variables
	Table A-4: Page table entries
	Table A-5: Descriptor subfields
	Table A-6: TSS386 subfields
	Table A-6: TSS386 subfields (continued)
	B. Error Messages
	Overview
	Address Error Messages
	Example Address Error Message
	Explanation
	How To Interpret Address Errors
	Table B-1: Conversion entry codes
	Table B-2: Address error messages
	Error Messages
	C. Debugging .exe Executable Files
	Overview
	Debugging .exe Files
	Preparing Your Application
	Using the Special Monitor
	Loading an .exe Application
	D. Helpful Hints
	Overview
	Helpful Hints
	Changing the Execution Point
	Source Line Address
	Changing an Executable Instruction
	Bypassing Start-up Code
	Copying Memory
	Receiver Timeouts
	Segment Limit Exceeded
	E. Add Ons
	Real-Time Operating Systems Support
	Kernel Objects
	Figure E-1: SuperTask! kernel objects dialog box
	Task List
	Figure E-2: SuperTask! task list dialog box
	Current Task
	Figure E-3: SuperTask! current task dialog box
	F. Intel Floating-Point Emulation
	Overview
	Intel Floating-Point Emulation
	Index
	
	Overview
	FAQs: Frequently Asked Questions
	Chapter Summaries
	Overview
	Installing Soft-Scope on the Host
	Host-system Requirements
	Soft-Scope Distribution Disks
	Soft-Scope Installation for Windows 95 and Windows NT
	Figure 2-1: Changing baud rate using Options window
	Invoking Soft-Scope
	Message Window
	Figure 2-2: Initial Soft-Scope window with connect message
	Loading Your First Application
	Figure 2-3: File-Load dialog box
	Figure 2-4: Soft-Scope display after application load
	Figure 2-5: Run application to first line of main()
	Troubleshooting
	Symptoms of Problems
	Checklist of Corrective Actions
	
	Overview
	Pull-Down Menu Map
	Table 3-1: Pull-Down Menu Map
	Window Pull-Down Menu
	Finding a String
	Figure 3-1: Find dialog box
	Capturing a Window to a Log File
	Figure 3-2: Log window showing capture of Trace window
	Saving Window Layout
	Open Window List
	Accelerator Keys
	Double-click Function
	Double-click in the Code Window
	Double-click on Data References
	Double-click on Pointers
	Online Help
	Commands and Command Line
	Figure 3-3: Command line dialog box
	Command Syntax Elements
	Loading an Application
	Load
	Figure 3-4: File-Load dialog box
	Symbol Load
	Figure 3-5: File-Symbol load dialog box
	Restart
	Figure 3-6: File-Restart dialog box
	After the Load
	Figure 3-7: Soft-Scope after an application load
	Soft-Scope .tmp Files
	Command Line
	
	Overview
	Controlling Program Execution
	Stepping through Code
	Single Step
	Specify a Number of Steps
	Step Command via the Command Line
	Code Window
	Figure 4-1: Code window in Source mode
	Figure 4-2: Code reference dialog box
	Toolbar Buttons
	Figure 4-3: Display modes dialog box
	Figure 4-4: Code window in Assembly mode with logical addresses
	Code Window Execution Pointers
	Code References
	Line Numbers
	Symbol Names
	Guidelines
	Locating Code
	Breakpoints Window
	Figure 4-5: Breakpoints window
	Toolbar Buttons
	Command Line
	Editing Breakpoints
	Figure 4-6: Breakpoint edit dialog box
	Software Breakpoints
	Permanent Software Breakpoints
	Temporary Software Breakpoints
	Hardware Breakpoints
	Data Breakpoints
	Command Line
	Debug Registers
	Exec Breakpoints
	Command Line
	Executing to a Location
	Go
	Go to a Specific Location
	Return from a Procedure Call
	Go to a Cursor Position
	Stop
	Procedure Call Sequence
	Calls Window
	Figure 4-7: Calls window
	Command Line
	Stack Information
	Trace Window
	Figure 4-8: Trace window displaying procedures
	Toolbar Buttons
	Figure 4-9: Assembly display modes dialog box
	Figure 4-10: Trace window displaying procedures and source
	Command Line
	Figure 4-11: Trace window displaying procedures, source, and assembly code
	Trace Buffer
	Trace File Size
	
	Overview
	Numbers
	Table 5-1: Default number bases
	Operators
	Table 5-2: C operators
	Table 5-3: Soft-Scope specific operators and functions
	Strings
	Table 5-4: String escape sequences
	Reference Summary
	Table 5-5: Reference summary
	The Data Window
	Figure 5-1: Data reference dialog box
	Figure 5-2: Display modes dialog box
	Figure 5-3: Data window in Eval mode
	Figure 5-4: Data window in expanded format
	Data References
	Figure 5-5: Before double-click on "->"
	Figure 5-6: After double-click on "->"
	Referencing Memory
	Reference Scoping
	Table 5-6: Reference Scoping
	The Watch Window
	Figure 5-7: Display modes dialog box
	Figure 5-8: Watch window in Normal display mode
	The Symbols Window
	Figure 5-9: Symbols window in Procedures mode
	Built-in Functions
	Type Overrides
	The Dump Window
	Figure 5-10: Dump modes dialog box
	Figure 5-11: Dump window in Byte mode, 8 bytes per line
	Uploading Memory and Registers
	The Registers Window
	Figure 5-12: Registers window for 80386EX target
	CPU Structures
	Figure 5-13: IDT descriptors
	Figure 5-14: Data window in Normal mode
	Figure 5-15: Data window in Eval mode
	Table 5-7: Descriptor abbreviations
	Real-Mode Structures
	Table 5-8: Peripheral Control Block
	Table 5-8: Peripheral Control Block (continued)
	Application Input/Output
	
	Overview
	Options Window
	Toolbar Buttons
	Save and Restore Options
	Command Line
	Figure 6-1: Options window showing default values
	Soft-Scope Configuration Options
	Table 6-1: Soft-Scope configuration options
	Control Default Number Base
	Change Log File Name
	Define Initial Command
	Define Initial Macro File
	Configure Host To Target Communications
	Control Screen Refresh Rate
	Control Command Delay
	Define Command
	Change Log File Size
	Define Path To Application Files
	Define Tab Spaces
	Define Case for Symbol Search
	Access CPU-specific Data Types
	Display LDTR register value
	Define Pointer Type Override Display
	Specify Integer Data Type Size
	Specify Floating Point Emulation Parameter
	Control Memory Caching
	Control Code Memory Cache Flush
	Define Host Communication Device
	Specify Where To Search For Memory Control Block
	Specify Where To Search for the NULL Device
	Specify Size of Memory Reads
	Tell Soft-Scope that Interrupts are Disabled
	Verify Memory Writes
	Specify temporary file location
	Specify the Size of the Trace File
	Preserve Trace Data across Applications
	
	Overview
	Creating a Macro
	Compiled Macro Files
	Built-in CPU Variables
	Macros Window
	Loading a Macro File
	Toolbar Buttons
	Figure 7-1: Macros window
	Command Line
	Example Use of cmd.macro and load.init_command
	Identify Macros in the Macros Window
	Macro Parameters
	Optional Parameters
	Integer Type
	LITERAL Parameter
	TEXT Parameter
	EXPRESSION Parameter
	REFERENCE Parameter
	ADDRESS Parameter
	LINE Parameter
	MODULE and PROCEDURE Types
	Local Variables
	Declaring Local Variables
	Defining One-dimensional Arrays
	Assigning Numeric Values to Arrays
	Assigning Pointer Values from Your Application
	Macro Statements
	ABORT
	BREAK
	IF, IF...ELSE
	RESPOND
	RETURN
	WHILE
	MACRO SUSPEND
	MACRO RESUME
	Custom Commands with an Extended Monitor
	Manipulating Windows from Macros
	WMOVE
	WRESIZE
	WFUNCTION
	Examples
	Macro Print Function
	PRINT
	Conversion Specifiers
	Table 7-1: Conversion specifiers
	$ Parameter Prefix in Control Strings
	Escape Sequences
	Directed Output from Macros
	Using Field-width Specifiers with PRINT or WPRINTF
	Specifying the Leading Zero Flag
	
	Tool Summary
	Table 8-1: Supported tools
	Sample Files
	Linking Your Application
	CSi-Link™
	Generating Symbolic Information
	SSBUG
	Tool Directives
	Borland
	Intel
	MetaWare
	Microsoft
	Phar Lap
	Watcom
	
	Data Types
	Operators
	General-Purpose Registers
	NPX Registers
	Protected-Mode Registers
	Descriptors and Subfields
	
	Overview
	Address Error Messages
	Example Address Error Message
	Explanation
	How To Interpret Address Errors
	Table B-1: Conversion entry codes
	Table B-2: Address error messages
	Error Messages
	
	Overview
	Debugging .exe Files
	Preparing Your Application
	Using the Special Monitor
	Loading an .exe Application
	
	Overview
	Helpful Hints
	Changing the Execution Point
	Source Line Address
	Changing an Executable Instruction
	Bypassing Start-up Code
	Copying Memory
	Receiver Timeouts
	Segment Limit Exceeded
	
	Real-Time Operating Systems Support
	Kernel Objects
	Figure E-1: SuperTask! kernel objects dialog box
	Task List
	Figure E-2: SuperTask! task list dialog box
	Current Task
	Figure E-3: SuperTask! current task dialog box
	
	Overview
	Intel Floating-Point Emulation

