Soft-Scope’

Remote-Target Debugger
for Windows 95 and Windows NT

Soft-Scope User’s Guide

Copyright and Trademark Information

Copyright 1994, 1997 Concurrent Sciences, Inc. All rights reserved.
Third edition, first printing May 1997.

No part of this publication may be reproduced, translated into another
language, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of Concurrent Sciences, Inc.

*Other brands and names are marked with an asterisk and are the
property of their respective owners.

Concurrent Sciences, Inc. makes no warranty of any kind with regard to
this material, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose. Concurrent

Sciences, Inc. assumes no responsibility for any errors that may appear in
this document. Concurrent Sciences, Inc. makes no commitment to
update or to keep current the information contained in this document.

Concurrent Sciences, Inc.
PO Box 9666 « Moscow, ID 83843 USA
(208) 882-0445 « Fax (208) 882-9774
info@consci.com « www.debugger.com

Soft-Scope User's Guide

Quick Contents

Quick Contents

1. INTRODUCTION ...outiiiiiiieieeee e 1-1
2. GETTING STARTED WITH SOFT-SCOPEcccovvviiiiiiiiiinn. 2-1
3. SOFT-SCOPEBASICS ... 3-
4. CONTROLLING PROGRAM EXECUTION WITH
SOFT-SCOPE. ..ottt 4-1
5. EXAMINING DATAWITH SOFT-SCOPE ..o 5-1
6. CONFIGURING SOFT-SCOPEccooiiiiiiiiieeeeeeeeee e 6-1 G
7. CREATING AND USING SOFT-SCOPE MACROS 7-1
8. TOOLS THAT SOFT-SCOPE SUPPORTS.........oovviiiiiiiii, 8-1 a
A. DATATYPES, OPERATORS, REGISTERS, AND

DESCRIPTORS ...

Soft-Scope User’s Guide iii

Documentation Conventions

Computer output and code examplesCourier , usually in a separate
paragraph.

Computer input: Courier 11bold , usually in a separate paragraph.

Dialog box prompt: Times, (data reference: or command:), in lower
case. Prompt is followed by computer input.

Command names and function nameds3old italic, as i.OAD
command omain() function.

Variables: Courier 11 italicit_busy).

File names, configuration options Times bold (configuration option
targ.dev), in lower case.

Mouse buttons, keyboard keys andames Initial capital, in angle
brackets, as in press <Enter> or double-click <Button-L>.

Key presses:An example of concurrent key presses is <Alt>+<Tab>.

Menu names and selections, dialog box names, button names,
window titles: Times bold, as iRile menu

Pull-down menu subfunctions:Times bold, as iRile/Load. The pull-
down menu subfunctions are named by the selection path used to
invoke them. The dots may be omitted in text.

NOTES: Indicate important information.

CAUTION : Indicate potential damage to hardware or data.

iv Soft-Scope User's Guide

Quick Contents (continued)

Quick Contents (continued)

B. ERROR MESSAGES ... B-1

C. DEBUGGING .EXE EXECUTABLE FILEScoovviiiiiiiii. C-1

D. HELPFUL HINTS ..o D-1

E. ADD ONS ...
F. INTEL FLOATING-POINT EMULATION .. F-1
IND EX e e e e INDEX-1

—]n]m[o]o

Soft-Scope User’s Guide %

vi

(This page blank)

Soft-Scope User's Guide

Contents

Contents
1. INTRODUCTION ...uttiiiiiiiiiiiiiee et e e e e e e e e e e e 1-1
OVEIVIEW ...ttt e e e e e e e e e e e e e e e e e et ar e e e e e eeaaaas 1-2
FAQs: Frequently Asked QUESTIONSceeevvvirerieiiiiiiiineeeeeee e e e eeeeeaeens 1-3
Chapter SUMMIAIIES.uuiiiiiiiiiiiiieiieie e e e e e e e e e as 1-5
2. GETTING STARTED WITH SOFT-SCOPEcccceevvveieeeiiiiiins 2-1
OVEBIVIBW ...ttt ettt e e e e e e e e e e e e e e e e s s bbb e e eee s 2-2
Installing Soft-Scope onthe HOStooviiiiiiiiiii 2-3
HOSt-SyStem ReQUIFEMENLS.ccooeviiiiieiiieiiiiieeee e 2-3
Soft-Scope Distribution DISKS..........uuiiiiiiiiieeeeeeccceeeeeee e 2-3
Soft-Scope Installation for Windows 95 and Windows.NT........... 2-4
Figure 2-1: Changing baud rate using Options windaw............. 2-5
INVOKING SOft=-SCOPE ...oovviiiieiiiiic e 2-6
MESSAGE WINUOW......oevviiiiieeeeieie et 2-6
Figure 2-2: Initial Soft-Scope window with connect message... 2-7
Loading Your First ApplICatioNcoooeiiiiiiiiiiiiiiiic e 2-8
Figure 2-3: File-Load dialog DQX...........uvviiiiiiiiiiiiiiiieeieiiis 2-9
Figure 2-4. Soft-Scope display after application load............... 2-9
Figure 2-5: Run application to first line of main()..................... 2-10
TroubIESNOOLING ..o 2-11
Symptoms Of Problems............oiiiiii e 2-11
Checklist of Corrective ACHIONS..........ccovvvieeeeiiiiiciiee e e e e e 2-11
3. SOFT-SCOPE BASICS ...ttt 3-1
OVEIVIBW ...ttt s e e e e e e e e e e e e e e e e et e e e et e e e e e e eeeaaens 3-3
PUll-DOWN MENU IMAP ...ttt e e e e e e e e e 3-4
Table 3-1: Pull-Down Menu Map.........ccooveeviiiiiiiiieeeeiiiceeeeeeeeinan, 3-4

Soft-Scope User’s Guide vii

WiINAOW PUI-DOWN MENU ... 3-7

FINAING @ SHNG.....ceeeeiiiiii e eeeeeeees 3-7
Figure 3-1: Find dialog DOX..........uuviiiiiiiiiiiiiiiiieee e 3-8
CapturingaWindowtoaLog File...........ccoooviiiriiiiiciiiee e, 3-9
Figure 3-2: Log window showing capture of Trace window....3-10
Saving WINAOW LAYOUL..........uuueiiieiiieeeeeeeeeeeeeeeeieien s e e e e e e e e 3-11
OPENWINAOW LISEt e e 3-11
ACCEIEIALON KBYS ...ttt 3-12
Double-ClICK FUNCHONuuiiiiiiiiiiiiieie e 3-14
Double-click in the Code WINAOW..............ceiiiiiiiieiiiiiiiiciiiiiins 3:14
Double-click on Data References............cccccuvvviiriiiiiiiiiinnnnennn. 3:14
Double-click 0N POINELS..........uuueiiiiiiieeceeii s 3-15
ONINEHEIP ... 3-16
Commands and Command LINE............cceuviiiiiieieeiiiieiiicieiivieee 3-17
Figure 3-3: Command line dialog hox.............coovvviiiiiiiinnnnnn. 3:17
Command Syntax Elements.............ooooviiiiiiiiiiiiiiieeeeen 3:19
Loading an ApPIICAtIONovieiiiiiiie e 3-21
1o = Lo PP 3-21.
Figure 3-4: File-Load dialog baX..............ccooovvvriiiiiiiiin, 3:22
SYymDBDOILoAad........uuuiiiiiiie e 3:24
Figure 3-5: File-Symbol load dialog boX..............ccoeeeeiiiinnnnns 3:24
RESIAI ... 3:25.
Figure 3-6: File-Restartdialog boX...........c.oooviiiiiiiiiiiiinne. 3-26
ATEr the LOAM........uuiiiiiiiiiiiiiiiiceeeee e 3:28
Figure 3-7: Soft-Scope after an application load................... 3-28
Soft-Scope .tMP FIlES.........uuviiiiiiiii 3:29
ComMMANA LINE.......cooiiiiiiiiiiieeee e 3-30

viii Soft-Scope User's Guide

4. CONTROLLING PROGRAM EXECUTION WITH SOFT-SCOPE

... 4-1
L@ YT V1= 4-3
Controlling Program EXECULIONcccceeeeeeiiiiiiiiiiiiiieee e ee e 4-3
Stepping through Code..........coooiiiiiiie e 4-4
10| Lo (= o SRR 4-4
Specify a Number of StEPS........coviiiiiiiiii e, 4-5
Step Command viathe Command LiNe...........ccevveeeeeiniiiiiiiiiiins 4-5
COE WINAOW ...ttt et e e e e e e e e e e e as 4-6
Figure 4-1: Code window in Source modecccceevviviieeeeeennnnee 4-7
Figure 4-2: Code reference dialog boX........cccceeeeveeeeiiiiiiiiiniinnn, 4-8
TOOIDAI BULLONS......eueiiiies et eeeaeaenees 4-8
Figure 4-3: Display modes dialog bOoX...........ccovvvviiiiiiinn. 4-9
Figure 4-4: Code window in Assembly mode with logical addrds$6s
Code Window Execution POINtELS...........coovvviiiiiiiiiiiiiiiiieeeee e 4-11
COode REFEIEINCEScoc e e e e e e e e e e 4-12
LINE NUMDEIS......iiiiiii e 4:12
SYMDBOINGMES ... 4:12
GUIdENINES.......cuviiiiiiiiiiiiiiiiee e ARLS
LOCAtING COUL ...t e e e e e e e e e e e e eeenneees 4-14
BreakpointS WINGOWccociiiiiiiiiiiiiicceeeeeee e 4-16
Figure 4-5: BreakpointS WINAOM...............covvvvveiiiiieeeieeeeeeen, 4:17
TOOIDAr BULIONS. e 4-:18
ComMMANA LINE.......cooiiiiiiiiiiiiiiiie et 4:19
Editing Breakpointscoooiiiiiiiiiiecceeie e 4-20
Figure 4-6: Breakpoint editdialog boX.............ccoeviiiiiiiinnnnne. 4:20
Software BreaKpOiNtSuevviiiiiiiriiiiiiiiiiiiisss e 4-22
Permanent Software Breakpoints.............cccccvvviereiiiiiiiiineeeneenn. 4-22
Temporary Software BreakpOointS............ceeevieeeeeeeeeeeneeeeeeeennnnns 4-23

Soft-Scope User’s Guide iX

Hardware Breakpointsooovvviiiiiiiiiiiiieee e 4-24

Data BreakpointsS............eceeiiienieeeiieeeieeeeeviiiiiiiiinnnn e 4224
ComMMANA LING.......uuuiiiiiee e e e e e e e e e eeeeanees 4:24
Debug REgIStEIS.......cciiiiieiieieiieeeeeeeeccee e ee e 4225
EXEC BreakpOiNtS.......ccviiiiiiiieeeeeeeeee e 4-26
ComMANA LINE.......cciiiiiiiiiiiee e 4:26
Executingto @ LoCatiONcccuviiiiiiiiiiic e 4-27
B0 it 4-21..
Goto a SpecCific LOCAtioN............cuvvviuiiiiiiieeieeeeeeeeeeeeeeeeeiaiaaan 4-27
Return fromaProcedure Call.............ccoeeiiiiiiiiiiiiiiiicee e, 4-28
GO toa Cursor POSITIONcoovviiiiiiiiiiiiiieiee e 4:28.
0] (0] o ISP 4-28..
Procedure Call SEQUENCEuuiiiiiiiiiiiiieeeee e 4-30
CallS WINAOW. ... 4:30
Figure 4-7: CallsWindOW............coooviiiiiiiiiiiiiiiee e 4:31
ComMMANA LING.......uueieiiiiie e e e e e e e e eeeeeaeees 4:31
Stack INfFOrMALIONuveiiiiie e 4-32
B2 Lo ST 1T [0 O 4-33
Figure 4-8: Trace window displaying procedures..................4-33
TOOIDAr BULIONS. ... e 4:34
Figure 4-9: Assembly display modes dialog bax...................4-35
Figure 4-10: Trace window displaying procedures and sourcd-36
ComMMANA LING......uuuiiiiiiei e eeeeeeeees 4:37
Figure 4-11: Trace window displaying procedures, source, and assembly
COOEB .o 4-31..
Trace BUITErcceeeeeeeieeeeeee e . 4238
TraCe File SIZE.......uuuiiiiiiiiiiiiiiic e 4:38

X Soft-Scope User's Guide

5. EXAMINING DATAWITH SOFT-SCOPE ..o 5-1

Chapter CONENTS......cceiiiiiiiiiiei e 5-1
L@ YT V1= 5-3
NUMDEIS ...ttt e e e e e e e e e e e e e e e e e e e s bbb b eeeee e 5-3
Setting the Default Base............cccccuiiiiiiiiiiiieeeeee e 5-4
Table 5-1: Default number bases..........ccccuveeieiiiiiiii, 5-5
(@ 01T = 1 (0] PN 5-6
Symbolic Operator EXamples..........cooooviiviiiiiiiiiiiiiiiiiiieeeeeeeeee 5-6
Arithmetic Operators Return Numeric Values...............cccceeevvvvnnne. 5-6
Logical Operator EXamples...........ccccuuuiiiiiiiiiiiiieieeeeeeee e 5-7
Table 5-2: C OPEratOrSuuvveiiiiieiee e eee et e e e e e e eees 5-8
Table 5-3: Soft-Scope specific operators and functions........... 5-9
SHIINTS -ttt e e e e e 5-10
ESCape SEQUENCEScvviiiiiiiii e 5:10....
Where to Enter StriNgS.......cooeveiiiiiiiiiineee e 5-11
Table 5-4: String eSCape SEQUENCES.......ccceviiiriiiiiieeeeeiiiiieee e 5-11
Reference SUMMAIY ..o 5-12
Table 5-5: Reference SUmmary.............eeeeeeeeeeeiieeeeeeennnnnnnnnns 5:12
The Data WINGOWccooiiiiieiiiiiiiee ettt 5-14
Figure 5-1: Data reference dialog bhax...........cccoeviiiiinnnnnn. 5:14
00| o F= Tl =0 11 0] 3 UPRSS 5:15
Figure 5-2: Display modes dialog boX.............cccoovvvvviinnn. 5:15
ComMMANA LING.......uuiiiiiieie e eeeeeeees 5:16
Figure 5-3: Datawindow in Evalmode............ccccoeeeiieeeeennnn.. 5:17
Double-click for Quick References..........ccoooeveiieiiiiiciiiiieeenn. 5:17
Figure 5-4: Data window in expanded format........................ 5-18
Data REfEIENCESeeeiiiiiiiiee e 5-19
Simple VariabIes.............oooiiii e 5-19
REferenCiNg ArTaYSueieei e e e eeee et e e e e e e e eee 5-20
Displaying an Entire Array........ccccceveevviieeeeeeiiiiee e 5-20
Displaying a Single Elementof an Array.............ccccoooveineee 5-20
Displaying a Selected Number of Arrays.............ccccevvvennnnnd -20

Soft-Scope User’s Guide Xi

Variables as SUDSCHPLS.........ccovvviiiieiiiccee e 5-21

Referencing StrUCIUIES........uvvviviiiiieee e 5:21
Referencing UNIONS............uuviiiiiiiiiiiiiiiee e 9:22
Referencing Bitfields...............ooovviiiiiiiiiiii e, 5:22
Referencing POINEELS...........oooi it 5:23
Dereferencing POINEIS.uuvveiiiieiiee e 5:23
Figure 5-5: Before double-click on“-=".............cccccooeiiiiiinnnnn. 5:23
Figure 5-6: After double-clickon“->"..........ccccceeiiiiiiinneeennn 5:23
Selector Is Not Stored in Memorycooooeee e, 5:24.
Making Complex ASSIgNMENLS.........ccoevrrrriiiiiiiiiiiieeeee e 5-24
ReferenCing MemMOTIYccoov i 5-25
Using the Symbols Window to Finab@e References................... 5-26
REfEreNCE SCOPING ..vvvieiiiiiiiiiie e 5-27
EXAMPIES. ... 5:27.
Table 5-6: Reference SCoping.......ccooovveeeeiiiiiiieiiiiiiiiins 5-28
Referencing Automatic (Stacked-based) Variables.................. 5-28
Referencing Register Variables................ccciiiiiiiiins 5-29
The WatCh WINUOWuuueiiiiiiiiee e e e e e e e eeeeeeneees 5-30
TooIbar BULIONS...........oooiiiiiiiiiiieeceeeeee e 5-31
Figure 5-7: Display modes dialog box.............cccevviiiiiiinnnnn. 5:31
Figure 5-8: Watch window in Normal display made................ 5-32
ComMMANA LINE.......cooiiiiiiiiiieeieeee e 5:33
WatChing @ POINTEY..........uuuiiiiiiiiiiiiiiiieeee e 5-33
WatChing MEMIONY.......cvueeiiei e 5-33
The SymboIS WINAOW.........ccooiiiiiiiiccceee e 5-34
L0 0] o= Tl =0 11 0] o PSRRI 5-34
ComMMANA LINE.......cooiiiiiiiiiiieeee e 5:35
Displaying Global Symbols................cooiiiiiin 9:36
Figure 5-9: Symbols window in Procedures mode................. 5-36

Xii Soft-Scope User's Guide

BUII-IN FUNCLIONS ..o e 5-37

Determining ADAreSSES........cooiiiiiiiiiiiiiiiiiee e 5-37
Using Return as a Memory Reference..........cccvvvveeeeeeiiiinnnnn 5-38
Determining How Many Elementsinan Artay..............ccccc.oo..nd 5-38
Reading and Writing to Port Addresses...........cceeeniveeeeeeeeeeee. 5-38
TYPE OVEITIAES ... e e e e e e e e e e e e e e e e e e eeeeaaneens 5-40
Applying a Type Overrideto a Variable.................ccccceeeeiiees 5-40
Applying a Type Override to an ADdresS.......ccccvveeeeeeeeeniiinnnns 5:41
Using a Variable to Superimpose its Data Type over the Address of An-
otherVariable............uuuuiiiii e 5:42
Using a User-declared Variable to Define a Type Ovetride....... 5-42
Changing the Amount of Memory Displayed.............ccccoeeeeeees 5-43
Using Expressions in Type Overrides To Do Mathematical Oper&tié8s
Assigning Values Using Type Overrides...........cccceveviieeeeeeeeeeene, 5-44
Displaying Data in its Most Useful Format.............cccceeveeeeeeeenn. 5-44
The DUMP WINUOWeviiiiiiiiiiiiiiiiee et 5-46
TOOIDAr BULIONS. ... e 5-47
Figure 5-10: Dump modes dialog boX.............evveeeeiiiiiiiieenenn. 5:47
ComMMANA LINE.......cooiiiiiiiiiiiieeeeeee e 5:49
Figure 5-11: Dump window in Byte mode, 8 bytes per.line.....5-49
Uploading Memory and REQISTErSccoouviiiiiiiiiiiiiiiiiiieeeeeee e 5-50
ComMMANA LINE.......coiiiiiiiiiiiiiieiceeeee e 5:51
Format of Upload Files............cccuuiiiiiiiiiiiiiieeeeeeeeeee 5-51
The RegiSters WINUOWcoovviviiiiiiiiieiiirs s e e e e e e e e e e 5-52
TOOIDAr BULIONS.......eiiieiee e 5-52
ComMMANA LING.......ueeiiiiiie e e e e e e e e eeeeenees 5:53
Accessing Registers When the Targetis Running..................... 5-53
Figure 5-12: Registers window for 80386EX target............... 5-54
Contents of the Registers Windaw................coevvvvviiiiiniieeeeeenn. 5:55

Soft-Scope User’s Guide Xiii

L@ O (8 o 11 | (= 5-56

Figure 5-13: IDT deSCrPLOLS.....ccuvvrruriiiiiieeeeeeeeeee e 5-56
Figure 5-14: Data window in Normal mode....................o...... 5-58
Figure 5-15: Datawindow in Eval mode................cccccvvvvnnee. 5-58
ComMMANA LING......uuiiiiiiiiee e eeeeeeeees 5:58
Table 5-7: Descriptor abbreviations............cccccceeviiiieeeeeinenn.. 5-59
Modifying a Descriptor Element..............ccooviiiiiiiiiiiiiinceeeeeinn 5-59
Real-M0Ode SITUCIUIESuveeiiiiee e e e e e e e e 5-60
Table 5-8: Peripheral Control BlockK.............ccccceeeiiiiieieeennnnn. 5-60
Table 5-8: Peripheral Control Block (continued).................... 5-61
BVECTOR[JAIAY ..ccviee ettt 5:-64
Application INPUYOULPULovvniiiiiiiiie e e 5-64
6. CONFIGURING SOFT-SCOPEcoeeeeeiiiiiiiiiiiieee e eeevieeee e 6-1
OVEBIVIBW ...ttt e e e e e e e e e e e e e e e e s e e s st b b e e eeeees 6-3
OPLONS WINOOW ...ttt e e e e e e e e e e e eeeannan s 6-3
B0 0] o= T =10 11 0] o PR 6-4
Save and Restore OPLIONScccvvvviiiiiiieieeeeeeeiiie e e e eeeeans 6-4
ComMMANA LING.......uieiiiiiiieee e e e e e e e e e e e e e eeeeeaeeees 6-5
Figure 6-1: Options window showing default values.................. 6-5
Soft-Scope Configuration OPLIONS..........ueiiiiiiieeeeeeeeeeeeeeeeeei e 6-6
Table 6-1: Soft-Scope configuration optians.................ooeeeeeneee 6-6
Control Default NUmMber Base..........cccuvvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeees 6-7
Change Log File Name@..........oooiiiiiiiiiii e 6-7
Define Initial Command.............cccuuuuiiiiiiiiiiiiiiee e 6-7
Define Initial Macro File...........oooooo i, 6-7
Configure Host To Target CommuniCations..............eeveeeeeeeeeeeeeeenn. 6-8
Control Screen RefresSh Rate...........ccvvvviiiiiiiiiiiiiiiiiiie 6-8
Control Command DElaY.............oooiiiimiiiiiiiiiiieeieeeeee e 6-8
Define ComMmMAaNG.............uuiiiiiiiiiiiiiiieiee e 6-9
Change Log File Size..........cooiiiiiiiiiiii e 6:-10
Define Path To Application Files.............cccccceeiiiiiiiiiiiiiiiiee 6-10

Xiv Soft-Scope User's Guide

Define Tabh SPaces.........ccoovvviiiiieeecce e 6-10

Define Case for Symbol Search............cccccoeviiiiid 6-10
Access CPU-specific Data TYPES.......uuuuiiiiiiiiiiiieieeeeeeeeee e 6-11
Display LDTR register value..............ccoeeviiiiiiiiiiiiiiciieeee e 6-11
Define Pointer Type Override Display...........ccccuvveeieieiiiiinenens 6-12
Specify Integer Data Type SIZe.........covvvvvveiiiiiiiiiiiiieeeeeeeeeeea) 6-13
Specify Floating Point Emulation Parameter.................cccccc...... 6-14
Control Memory Caching............uuuuuevriimiiiiiiiiieeeeee e e e e e 6:14
Control Code Memory Cache Flush..............cccccoviceennn. 6-14
Define Host Communication DeViICe.............cccvvvevvevvvvnnnnianeennn. 6-:15
Specify Where To Search For Memory Control Black.............. 6-15
Specify Where To Search for the NULL Device...........c.cc........ 6-16
Specify Size of Memory Reads............ccooevveiviiiiiiiiiiiiiiiiiienn) 6-16
Tell Soft-Scope that Interrupts are Disabled..............cccccee..... 6-16
Verify MemOory WIESoooiiieiiieiiiceee e 6-17
Specify temporary file location...............cceeeeieiiiiiiinnnnn 6-17
Specify the Size ofthe Trace File...........ccoviiiiiiiiiiiiii, 6-17
Preserve Trace Data across Applications...........cccccceeeeeeeiinnnns 6-18
7. CREATING AND USING SOFT-SCOPE MACROS 7-1
OVEIVIBW ...ttt e e e e e e e e et e et e e e bbb bb e a e e e e e e e eaaans 7-3
CreatiNng @ MACTOuiiiiiiiiiiiii e 7-3
Compiled Macro FlES.........uuuuiiiiiiee e 7-4
Built-in CPU Variables...........ooovuiiiiiiiiiiee e 7-5
1Y F= o3 10 VAV To [0 P PPPPPPPPPPRPRR 7-6
LoadingaMacCrO File..........ccoouviiiiiiiiiicc e 7-6
TOOIDAr BULLONS......eueiiiies et s e e e e e e e e e e e e e e eeeeeeannnnnes 7-6
Figure 7-1: MacroS WINAOW........cccceeeeeeeeeiriiieeiiiiiiiicse e e 7-7
COoMMANA LING.......uiiiiiiiieie e e e e e e e e e eeeeaeeees 7-7
Example Use of cmd.macamdoad.init_command......................... 7-8
Identify Macros in the Macros WindQw..............cceeeeeveeeiiinieceeeennnn, 7-9

Soft-Scope User’s Guide XV

1Y = Tod (0l =1 =1 £ A 1SL (= 5 T 7-10

Optional ParameterS.........cooeviie e 7:10
IO TYP ... 7:10
LITERAL PAramMeter........ccoovuiiiieeiieiiiiee et 7-11
TEXT Parameter........cccuuuiiiiiiiieeie ettt e 71-12
EXPRESSION Parameter............coooevvimiiiiieeeeeee e 1:12
REFERENCE Parameter...........ccoouuuiiiiiiiiiiiiiaeeeeeeiiee e 7-12
ADDRESS Parameter.........ccoooevvviviiiiiiiieiiiiiieeeeeeiiiineeeeeeeinn L3
LINE Parameter............ocooveeiiiiiieeeieiiiiee e eeeeenin e eeeeennn 213
MODULE and PROCEDURE Types........ccoovvvviivvviiiiiiiiieennnn 7-13
LOCAlI VANIADIESevveiiiiiiiiiee e 7-14
Declaring Local Variables...............ccoooiviiiiiiiiiiici e, 7-14
Defining One-dimensional AITays...........ccccuuvvieiiirrieieiieeeeeeeeens 7:15
Assigning Numeric Values to Arrays.............cccceeeeeveeevevvvvnnnnnnn 215
Assigning Pointer Values from Your Application......................... 7-16
MaCIO StAEMENTS ...t eeanes 7-17
ABORT .. 1-17.
BREAK ...ttt 1-17
IF, IF.ELSE ..o 1:11.
RESPOND ..ottt eeeeeeaeaeeiaeees 7-18.
RETURN ..ottt e e e e e e e e e e e eees 7-:18
WHILE ... 7-18
MACRO SUSPEND........cciiiiiiiiiieeeeeeeeeet e 7:19
MACRO RESUME.........coooviiiiiiiiiiiiieeee e 219
Custom Commands with an Extended Monitor......................... 7-20
Manipulating Windows from Macrosccccceeeeeeiiiiiiiiiiiciiiiineee 7-22
WIMOVE ... e 7:23
WRESIZE........c oo 7:23
WEFUNCTION ... 1:23
EXamPIES.....ccoooiii e 224

XVi

Soft-Scope User's Guide

MaCIo Print FUNCHON ..o 7-25

CONVErSION SPECITIEIS.......uuuiiiiiiiiiiiiie e 1:25
Table 7-1: Conversion SpecifierS..........ccccovvvvvvvveiiviicceeeen. 1:26
$ Parameter Prefix in Control Strings............ccceevvvveveeeeeennnnnn 227
ESCape SEQUENCESuviiiiiii e 1:21....
Directed Output from Macras.........cccceeeeevveeviiieeeeveeiiiiineeeenennn 227
Using Field-width Specifiers with PRINT or WPRINTE.............7-28
Specifying the Leading Zero Flag.............c.coooeiiiiiiiiiiiiiineee, 7:28
8. TOOLS THAT SOFT-SCOPE SUPPORTS.......cooviiriiiviiiiiiee e 8-1
TOOI SUMMANY ..ttt eaees 8-2
Table 8-1: Supported toolScooeeviviiiiiiiii e 8-2
SAMPIE FIES ... 8-4
Linking Your APPlICAtIONovviiiiiiiiii e 8-5
CSI-LINKT™ e e e e e e e e e e e e e e e e ennes 8-5
Generating Symbolic Information................ccceciiie, 8-6
SSBUG ...ttt ————————————— 8-6
o0] I BT = Tex 1) 8-7
BOMANG.....ciiiiiiieeeee e 8-7
1] PSR UURPPPPP 8-7
ASM86, ASM286 and ASM386coeevvevvvvrriiiiiiieieeeeeeeeeeee, 8-7
BND286/386 and BLD286/386c..uvvveeeeieeeeeiiiiiiiiiiiieeeeenn 8-8
Intel IC-86, iIC-286 and iC-386cccoovvviiiiieiiieeeeeeeeeeeeeeee 8-9
INtel LINKBB/LOCSB..........coeieiiiiiiiiiiiieeeeeeeeeee e 8-9
Intel PL/M-86, PL/M-286 and PL/M-386...............ccuvvneee. 8-10
METAWEANE ... 8:-10.
IMICIOSOM ..o 8-10
[0T T I o NPT PP PP PPPPPPPPPPPPPPR 8-11
Phar Lap LINKLOC...........cooiiiieeeeecee e 8-11
Phar Lap 386/ASMuuiiiiiiiiiiieeeeeeee e 8-12
WALCOM ... e e eaas 8:12

Soft-Scope User's Guide Xvii

A. DATATYPES, OPERATORS, REGISTERS, AND DESCRIPTORS

.. A-1
(2= 1= Y/ 01T PP A-2
Table A-1: Data types for use in type overrides........................ A-2
OPEBIALOIS ...ttt e e A-8
Table A-2: Soft-Scope Operators.......ccccvveeeveeeeeeeeeeeeeeeeeeeeeeeeeeeiiiees A-8
General-Purpose ReQIStErScovvviviiiieieeiiiie e A:-10.
Figure A-1: General-purpoSe regiSterS.........cvvvvvvviiiiieeeieeneeeenn. A-10
Figure A-2: FlagS regiSter.......cccooeeiiiieeeieeeeeeeeie e A-11
Figure A-3: SEgMENt regiSterS.uuuriiiiiiiiiiiiiiiiiieeieeee e A-12
N G =T 5] (] £ A-13.
Figure A-4: NPX regiSterS.......ccuuuiiiiieiiiiie et A-13
Protected-Mode ReQISTErS.........uuuiiiiiiiiiiiiieeeeee e A-14
Figure A-5: Control registers..........ceeiiiieeeeeiiieeeiecee e A-14
Figure A-6: Protected-mode registers..........cccovvvvvvvviiiinneeeenn. A-14
Descriptors and Subfields ... A:15
Table A-3: 386 protected-mode variables A:15.
Table A-4: Pagetable entries..........oovs A-15
Table A-5: Descriptor subfields............ccccooviiiiiiiiiiii, A-16
Table A-6: TSS386 subfields..............uieiiiiiiiiiiii A-17
Table A-6: TSS386 subfields (continued)..............ccccvvvvvrnnnnnee. A-18
B. ERROR MESSAGESco oottt B-1
(@Y = B-2
Address Error MESSAQESccovvveeveiiiiiiiiiieiaieeeeeeeeeeeeeeeeeeeasanann s B-3
Example Address Error Message..........ccoevevvevviiiieeeeeiiiiieeeeeeeiinn. B-3
EXPIANALON. ...t B-3
How To Interpret AddresSS Errorscooooeeeieiiiiiiiiiieeeeeeeee B-4
Table B-1: Conversion entry COAeS...........uevivriiiiiieeeeeenniiiinnins B-4
Table B-2: Address error meSSagesccoeeeeeeevnnnnnnmnnnnnnnnnnnnnnnnne. B-5
EITOr MESSAgES ...vuiiiiiti ettt e e e eaaas B-7

Xviii Soft-Scope User’s Guide

C. DEBUGGING .EXE EXECUTABLE FILEScooviiiiiiiii, C-1

OVEIVIEW ...ttt e e e e e et e ettt a e e e e e e e eaaaas C-2
Debugging .€Xe FIleSuuuiiiiiiiiiiiieieeee e C-2
Preparing Your APpliCation..............uuueeiiiiieiei e e C-2
Using the Special MONIOL...........coviiiiiiiiieiiii e C-3
Loading an .exe ApPliCation..............ceeuveveviiiiiiiiee e eeee e C-3
D. HELPFUL HINTS ...ttt D-1
L@ YT 1= D-2
HEIPTUTHINES .o D-3
Changing the EXecution POINL..............ccccoiiiiiiiiiiiieeeecceceee e D-3
SoUrce LiNe AAAIESS.......cooeeieiie ettt D-3
Changing an Executable InStruction.............cccooeveeviiiiiiiii i, D-4
Bypassing Start-up COde.........ccccuuiiiiiiiiiiiiiieeeeceeee e D-5
COPYING MEIMOIY......coeeiiiiiiiiiiee e e et e e e e e e e e e eeees D-5
RECEIVEr TIMEOULS ... ittt D-6
Segment Limit EXCERUEM.uuuuiiiiiiiiiiiiiiieeeeeeee D-6
E. ADD ONS ...ttt e et e e e e e e e e e e e e e e e e enne E-1
Real-Time Operating SyStems SUPPOIt.........coeeririiiiiimiiiieeeeeiiiiieee, E-2
KernNel ODJECEScoieeeeeeeeee e E-3
Figure E-1: SuperTask! kernel objects dialog box.................... E-3
= TS S I U E-4
Figure E-2: SuperTask! task list dialog hax...............ccoeeeennnin. E-4
CUMENETASK ... e e e e e e e e e eeeenenees E-4
Figure E-3: SuperTask! current task dialog box........................ E-4

Soft-Scope User’s Guide XiX

F. INTEL FLOATING-POINT EMULATION ..o, F-1

OVEBIVIEBW ...ttt e e e e e e e e e e e e e F-2
Intel Floating-Point EMUItioneeeeeiiiiiiiiiiiiie, F-2
INDEX .ottt INDEX-1

XX Soft-Scope User’s Guide

1. Introduction

Chapter Contents

OVEIVIBW ...ttt ettt e e e e e e e e e e e e e e e e ettt b e e e e e e eeeaaaas 1-2
FAQs: Frequently Asked QUESTIONSccevveviiiiiiiiiiiiiiieneee e e e e e e e e eeeeeens 1-3
Chapter SUMMAIIES.......ccoiiiiiiie e 1-5

Soft-Scope User’s Guide 11

Overview 1. Introduction

Overview

Soft-Scope is a remote-target, source-level debugger for embedded-
system development. It contains basic features found in other Windows-
based debuggers, such as pull-down menus, dialog and text boxes, display
and modification of symbols and CPU structures, source-code display,
execution trace, and single- or multiple- instruction execution control. This
version of Soft-Scope works with our CSi-Mon target-resident monitor.

See th€Si-Mon Monitor User's Guider information about installing

the monitor.

In the following pages, you will find answers to questions frequently asked
about Soft-Scope and CSi-Mon. The chapter closes with a brief summary
of each chapter in the manual.

1-2 Soft-Scope User's Guide

1. Introduction FAQs: Frequently Asked Questions

FAQs: Frequently Asked Questions

How do | get technical support?
If you have a current maintenance contract, contact our technical suppo
staff by telephone at (208) 882-0445 (9am - 5pm, Pacific Time), by email

at tech@consci.com, or by fax at (208) 882-9774. If you need to
purchase a maintenance contract, contact our sales staff at (800) 897-
3001, (208) 882-0445, or by email atinfo@consci.com.

What are the host-system requirements?

For you to install and run Soft-Scope properly, your host computer must
be able to run Windows 95 or NT version 3.5x or 4.0 and have 2MB of
free RAM and 6MB of free disk space.

For a list of the development tools (compilers, assemblers, linkers, and
locators) that Soft-Scope supports, see the chdptas that Soft-
Scope Supports

What are the target-system requirements?

The CSi-Mon monitor can be configured to support most of the x86 16-
and 32-bit processors running in real or protected mode. For a complete
list, refer to th€CSi-Mon Monitor User's Guide-or protected-mode
applications, the monitor requires approximately 8KB of code space and
20KB of combined data and stack space. Forreal mode, it requires 4KB
code space and 14KB data and stack space.

What are the communication requirements for Soft-Scope
and CSi-Mon?

Typically, the CSi-Mon monitor communicates with Soft-Scope via an RS-
232 serial link. CSi-Mon supports the NS16550, NS16450, 8251, and
8274 UARTs. Other UARTS can be supported by modifying the source

Soft-Scope User’s Guide 1-3

FAQs: Frequently Asked Questions 1. Introduction

14

file siuart.cand the header fitguart.h, which can be found among the
CSi-Mon source files. Soft-Scope uses the host PC’s serial port.

What other hardware and software can be used with Soft-

Scope?

Soft-Scope supports a variety of in-circuit emulators, logic analyzers,
evaluation boards, ROM emulators and RTOS kernels. Please contact our

technical sales department at (800) 897-3001, (208) 882-0445, and
info@consci.com for a complete list.

Soft-Scope User's Guide

1. Introduction Chapter Summaries

Chapter Summaries

ThisSoft-Scope User’s Guidentains the following chapters:

1

1. Introduction

This chapter contains some frequently asked questions and provides basic
information that will help you use this manual.

2. Getting Started with Soft-Scope

Read this chapter to learn how to install and invoke Soft-Scope, and how
to load your first application. There is a troubleshooting section at the end
of the chapter to help you resolve problems with getting Soft-Scope up
and running.

3. Soft-Scope Basics

This chapter contains general descriptions of Soft-Scope’s pull-down
menus, windows, and commands. It also discusses how to load an
application.

4. Controlling Program Execution in Soft-Scope

This chapter describes how to execute your application and view its source
code. Itdiscusses in detail how to reference the source code, single step,
step to a specified location, use breakpoints, and examine procedure-call
nesting.

5. Examining Data with Soft-Scope

Read this chapter to learn how to access data, as well as gsvdome

of the more advanced features of Soft-Scope. For example, in this chapter
you will learn how to directly reference memory, how to use type overrides
to display the most useful information, and how to use Soft-Scope’s built-in
functions.

Soft-Scope User’s Guide 1-5

Chapter Summaries 1. Introduction

6. Configuring Soft-Scope

Soft-Scope allows you to configure many of its functions and commands to
best fit your needs. This chapter provides detailed information about each
configuration option available.

7. Creating and Using Soft-Scope Macros

This chapter describes Soft-Scope’s macro language, which allows you to
customize the debugger to meet your specific needs.

8. Tools that Soft-Scope Supports

You should read this chapter before you start debugging an application. It
is a tool-by-tool explanation of how to prepare an application for
debugging so that it is fully compatible with Soft-Scope.

Appendix A: Data Types, Operators, Registers, and
Descriptors

This appendix contains tables and figures of supported data types,
registers, and CPU structures.

Appendix B: Error Messages
Refer to this appendix for a list of error messages and what they mean.

Appendix C: Debugging .exe Executable Files
Read this appendix for information about debuggarefiles on a target

Appendix D: Helpful Hints
Refer to this appendix for some helpful hints.

1-6 Soft-Scope User's Guide

1. Introduction Chapter Summaries

Appendix E: Add Ons

Includes information about RTOS support using the Soft-Scope Kernel
Awareness Standard.

Appendix F: Intel Floating-Point Emulation 1

This appendix describes how to configure Soft-Scope to recognize Intel
8087 floating-point emulation instructions.

Index

Soft-Scope User’s Guide 1-7

2. Getting Started with
Soft-Scope

Chapter Contents

OVEIVIBW ...ttt e e e e e et e bbbt e e e e e e e e e 2-2
Installing Soft-Scope 0N the HOSEuuiiiiiiiiiiii, 2-3
Host-System ReqUIrEMENLS.coeiiiie e eeeeeeeeeeeeeeeee e 2-3
Soft-Scope Distribution DiSKS........ccoooeeiiiiiiiiiiiiii e 2-3
Soft-Scope Installation for Windows 95 and Windows.NT........... 2-4
Figure 2-1: Changing baud rate using Options windaw............. 2-5
INVOKING SOft-SCOPE ..o 2-6
MESSAGE WINUOW.eeeeeiriiiiiiieee eees 2-6
Figure 2-2: Initial Soft-Scope window with connect message... 2-7
Loading Your First AppliCationcoooiiiiiiiiiiiiiiiiiceeeeee e 2-8
Figure 2-3: File-Load dialog boX............cccoeeeiiiiiiiiiiieee, 2-9
Figure 2-4: Soft-Scope display after application load............. 2-10
Figure 2-5: Run application to first line of main()........................ 2-11
TroubleSNOOINGvveiieee e 2-12
Symptoms Of Problems..........ccooooiiiiiiiiiee e 2-12
Checklist of Corrective ACHONS..........coeeeeiiiiiiiiiiiiiiieee 2-12

Soft-Scope User’s Guide 2-1

Overview 2. Getting Started with Soft-Scope

Overview

This chapter describes procedures for installing and invoking Soft-Scope
and loading your first application. A troubleshooting section is included to
help you resolve commonly encountered problems.

Itis assumed that you have already installed the CSi-Mon monitor on your
target board or PC. If not, see 8i-Mon Monitor User's Guidor
instructions on how to install the CSi-Mon monitor.

We recommend you read tteadme.wri file included on distribution disk
number one for any information about your version of Soft-Scope that
became available after this manual went to press.

2-2 Soft-Scope User's Guide

2. Getting Started with Soft-Scope Installing Soft-Scope on the Host

Installing Soft-Scope on the Host

Host-system Requirements

Your host computer must have at least an 80486 processor, a hard dri
with at least 6MB of free disk space, and at least 2MB of free RAM.
recommend you use a VGA monitor with 800x600 resolution.

A serial portis required to connect your host PC to the CSi-Mon monitor
running on your target board. See@®-Mon Monitor User’s Guide

for more details on communicating with your target board. Windows NT
version 3.5x, 4.0, or Windows 95 must be installed on the host.

Soft-Scope Distribution Disks

The Soft-Scope software comes on four distribution disks:

Disk 1 The Soft-Scope for Windows executable BeXin32.exg
support files, anceadme.wri.

Disk 2 Soft-Scopalll files.
Disk 3 Support files and sample programs in diredgamp
Disk 4 A ROMmable sample program.

For a detailed listing of installed files and where they are installed, see
contents.wrion disk one. After installation, this file amdme.wri will
be in the directory containimsgwin32.exgdefault =sswin).

Soft-Scope User’s Guide 2-3

Installing Soft-Scope on the Host 2. Getting Started with Soft-Scope

Soft-Scope Installation for Windows 95
and Windows NT

To install Soft-Scope to run under Windows 95/NT on your host
computer, follow these six steps:

1. Invoke Microsoft Windows.

2. Place disk 1 in the floppy disk drive from which you will install
Soft-Scope.

3. Choosé&tart/Run from the Windows taskbar. TRein dialog
box will open.

4. Typex:install in the Open text box, wheras the disk drive

from which you are installing. Choose OK.
Insert disks 2, 3, and 4 when prompted.

Serial communication parameters are defined gsthi®32.ini

file found in the directory where you installed Soft-Scope (default
=sswin). By default Soft-Scope will use the standard Windows
serial device driverfomm.drv), 9600 baud and the com2 port. If
you need to change these values, useigmay command from
theOptions pull-down menu. Soft-Scope supports baud rates up
to 115200. To select another baud rate, double-click <Button-L>
on connect.baudrate=9600 in @ytions window and enter the

new baud rate in the text box. To select another com port,
double-click <Button-L> on connect.comport=com?2 and enter the
new com port. See figure 2-1 for an example of changing the baud
rate to 115200.

2-4 Soft-Scope User's Guide

2. Getting Started with Soft-Scope Installing Soft-Scope on the Host

; J Soft-Scope]

File Code Data Break Macro Options Yiew *Window Help

i E|m|ole]1]| 2] w1]o]

|_| Meszzage !El m

Concurrent Sciences, Inc. [(C) 1989-1997 A1l rights reserwved.

1n) — e -
- K

set connect . baudrate= |'|152|]|] 2
[Cc

0K I Cancel |

connect . .baudrate=3600
connect . comport=com?
sy, wordsize=32

targ. dev=comn. drv
targ.verify=off

<]

Enter a new zet option walue

Figure 2-1: Changing baud rate using Options window

Soft-Scope User’s Guide 25

Invoking Soft-Scope 2. Getting Started with Soft-Scope

Invoking Soft-Scope

Before invoking Soft-Scope for the first time, you will need to startup the
CSi-Mon monitor running on your target (board or PC) and connect your
host PC to your target’s serial port. Make sure you are using the correct
com ports and both the host PC and target are using the same baud rate.
Use a serial communication program such as Kermit or HyperTerminal to
determine if your host PC can talk to your target.

To invoke Soft-Scope, seldtograms/Soft-Scope/Soft-Scopeom the
Windows taskbar or create a Windows shortcut. Upon execution, the
Soft-Scope main window will open followed by tlessagevindow.

Message Window

The initial Soft-Scope screen, as shown in figure 2-2, contains a menu bar
and theMessagevindow. Notice the messages inside the window
include version and copyright information, serial number, and a message
about establishing contact with the target. If Soft-Scope cannot make
contact with the target, you'll see the error message “Remote - Target not
responding” in the middle of your screen. Inthat case you'll need to
troubleshoot your serial connection to the target. S&edhbleshooting
section later in this chapter and in @®i-Mon Monitor User’s Guide

2-6 Soft-Scope User's Guide

2. Getting Started with Soft-Scope Invoking Soft-Scope

EJ Soft-Scope 00|

Fle Code Data Break Macro Options View window Help

i[Z[oo|e g

nHessage M=l E3

Soft-Scope (R} Debugger, 5.2 Full Version. 2
Concurrent Sciences, Ine, (C) 1988-1997 ALl rights reserved.

Windows V4. 0 Host, Remote Target.

Serisl No. Nancy-Dup - 3ingle User License.

[Connected to: "C3iMON-386EXP - Rommed V3.0 (Ex-Ewal (s3))"]
[Ioading CMF-386 Bootable file "C:Y33WINSZY\SAMPYVWCCIZEY(samp.ahs"]

1] |

4

Figure 2-2: Initial Soft-Scope window with connect message

Soft-Scope User’s Guide

Loading Your First Application 2. Getting Started with Soft-Scope

Loading Your First Application

Soft-Scope can be used to debug absolutely located, bootable files,
prepared with tools discussed in Tlo®ls that Soft-Scope Supports
chapter. Aloadable application image for Soft-Scope contains both
executable instructions and associated symbolic information.

In this section, we will load one of tbeampprograms found in theamp
subdirectory. For a complete discussion of loading applications, see the
sectiorLoading an Applicatiomn the chapteBoft-Scope Basics

“load. |
Symbal load...
Besztart. ..

Upload...
"Wiew log
Command line... Ctrl-L

Exit # Cluit Chrl-0

Use Soft-Scope to download bootable absolute files to the target by
following these steps:

1. Choose thkoad...command from thEile pull-down menu to open
thedialog box shown in figure 2-3.

2. Enter the file name, or chooseBnewse...button to select a file from
directory listings.

2-8 Soft-Scope User's Guide

2. Getting Started with Soft-Scope Loading Your First Application

i File-Load 1 |
File name IC:'||.SSWIN\SAMF’\MSCZEZF'\Csamp.ahs
Cancel

I Hardware setup I

Browse... I

History I
Restart I
Symbols I 2

Figure 2-3: File-Load dialog box

3. After making all of your selections in thge-Load dialog box, click
on theOK button. You should see the status line at the bottom of the
Soft-Scopewindow recording the percentage of file loaded as your
application is loaded. Tl@dewindow will then open showing your
application’s startup code in source mode as shown in figure 2-4.

-.—_J Soft-Scope =1
File Code Data Break Macro Options Miew Window Help
= |o|ele|-] 2] BT |sL]?|M] |
Message =T |
Soft—Scope (R) Debugger, 5.2 Full WVersion.
Concurrent Sciences, Inc. [(C) 1989-1997 All rights reserved.
Window=s Wid. 0 Host, Remote Target.
Seriml HNo. Hancy—-Dup — Zingle User License.
[Cconnected to: "CSiMON-3I86EXP — Rommed V3.0 [(Ex—Ewval (==))" 1
[Loading CMF-38F Bootable file "C:\SSWINYSAMPYWCCIZPYCsamp.abs™]
4| | vl
Bl Code =] E3
Unknown module - Application load L
=*=0z202:00000006 cli ; Di=zable interr';l
0208 : 00000007 cld
Oz08 : a000000s mow ax,cs: [00000000H]
0208 : 0000000£ o ==, ax ; New STACK SEGM_
o esp, 000010=0H 3 Imm = 4320
O0z08 : 00000016 oW ax,cs: [00000000H]
O0z08 : 00000014 oW ds,ax ; HNew segment
Nz ne - Nnnnnnt £ e = = - Wer =ecment _ILI
4 | Ll
For Help, press F1 S

Figure 2-4: Soft-Scope display after application load

Soft-Scope User’s Guide 29

Loading Your First Application 2. Getting Started with Soft-Scope

The arrow in th€odewindow shows which line of code is referenced by
the instruction pointer. To run your application to the first limesin.c ,
select th&o to...command from th€odepull-down menu and entgs
main in the text box as shown in figure

2-5.

= Soft-Scope / Win32 [=]
File Code Data Break Macra Options Yiew ‘window Help

I|E|m||ae|-1] 28] B T|sL|?|m]| |

Meszage o] 3 I
Soft-Scope (R) debugcer. 5.11 Full Version.
Concurre g
Windows =
cerial 1 Code reference: Igu main
[Connec OK I Cancel I
[Loadies T T T T T T
4| | |
H Code O] =]
:b1ErbeccHB2 - Application load i
#81 :* Only c= is vali=|
=30 cli ;* Disable interry
#53 :*
F#5 4 ;* The stack is setup here for debugging with SD'I_.
#85 ;* application will not make use of the stack unt
E:3=NS ;* been initialized.
#37 Had
ﬁnln T == tanrd ‘i.h— start =stack+? =
A 4 i
Type a procedure name, line number, or address i

Figure 2-5: Run application to first line of main()
You are now ready to set breakpoints and step through your application.

Detailed information about these and other commands are found later in
this user’s guide and in Soft-Scope’s online help.

2-10 Soft-Scope User's Guide

2. Getting Started with Soft-Scope Troubleshooting

Troubleshooting

This section will help you identify problems that may arise during your first
Soft-Scope session. For more information, seérthleshooting
section of th€Si-Mon Monitor User’s Guide

Symptoms of Problems %

» The Soft-Scope initial display doesn’t appear as expected.

» Soft-Scope reports it can not communicate with the CSi-Mon monitor.
» Soft-Scope printed an error message about a configuration option.

» The target application won't load.

» The target application loads, but won't execute properly.

Checklist of Corrective Actions

1. Have you accidentally altered the directory structure that Soft-Scope
created when it was installezbatents.wrilists that directory
structure)? If so, Soft-Scope won’t know where to find information
that it needs to operate.

2. Are all of your cable connections tight? If you are using a PC target or
if your hardware requires it, are you sure that your serial connection
has a null-modem configuration? [An easy way to affect this
configuration is to attach an inexpensive null-modem adapter to your
serial cable.]

3. Make sure you are using the correct com port and baud rate. Try
talking to your target using a terminal program such as Kermit or
HyperTerminal to confirm your serial connection is working properly.

Soft-Scope User’s Guide 2-11

Troubleshooting 2. Getting Started with Soft-Scope

4. Ifyou are loading a real-mode application, you must be running a real-
mode version of the CSi-Mon monitor on your target board or PC. A
protected-mode application requires a protected-mode monitor.

2-12 Soft-Scope User's Guide

3. Soft-Scope Basics

Chapter Contents

OVEBIVIBW ...ttt ettt ettt e e e e e e e e e e e e e e e e s s et b b eeneeeeees
PUll-DOWN MENU MAP ...oeviiiiiiieieieieie ettt
Table 3-1: Pull-Down Menu Map.

WINdow PUl-DOWN IMENU ...
FINAING 8 SHNG. ...ttt
Figure 3-1: Find dialog bOX..........ccevviiiiiiiiiiiiiee e

CapturingaWindowto aLog File...........coooriiiiiiiiiiiiiii e
Figure 3-2: Log window showing capture of Trace window....3-10
Saving WINAOW LayYOUL...........ccovuiiiiiiiiiiis e 3-11
OPENWINAOW LISL...coiiiiiiiieiiiiiii et 3-11
ACCEIEIAtOr KEYScceveeiiiiiiiiii ittt e e e e e e e e e e e e eanaaannaas 3-12
Double-Click FUNCHONiiiiiiee e 3-14
Double-click in the Code WINAOW..............ccevviieeeiieeiieiiieeeiiinnns 3:14
Double-click on Data References.............cccuvvvvviiiiiiniiiieeeeennn, 3:14
Double-click 0N POINLELS..........uuueiiiiiiieeeeee s 3-15
(@] 1T T 1o 3-16
Commands and Command LINe..............ciiiiiinniieiieiieeeeeeeeeiiii 3-17
Figure 3-3: Command line dialog hoX.............cccuvvviiviiiiinnnnnnn. 3:17
Command Syntax Elements.........cccccceeeeeeieiiieeeeeiccee e 3:19
Loading an APPlICALIONccccueiiiiiiiiiieii e 3-21
[0 =T PP PPPPPPPPP 3-21.
Figure 3-4: File-Load dialog baX...........ccovvivieiiiiiiiiiieececiiinn, 3:22
SYMDBOILOAA. ... 3:24
Figure 3-5: File-Symbol load dialog box................ccovvvvinnnnnn. 3:24
RESTAI ... 3:25.
Figure 3-6: File-Restart dialog boX.............ccccceeeiiiiiiiieeennnnn. 3-26

Soft-Scope User’s Guide 31

3. Soft-Scope Basics

Afterthe Load........ccccuuiiiiiiiiiiiiieeeece e 3:28

Figure 3-7: Soft-Scope after an application load................... 3-28
Soft-Scope IMP FIIES......ccocee s 3-29
ComMMANA LINE.......cooiiiiiiiiiiiieeeeece e 3-30

32 Soft-Scope User's Guide

3. Soft-Scope Basics Overview

Overview

Soft-Scope for the Microsoft Windows 95/NT operating system uses
Windows conventions whenever possible, so getting around in Soft-Scope
Is similar to using your other Windows applications. For details on how to
manipulate windows and use the PC keyboard and mouse, see Soft-
Scope’s online help and your Microsoft Windows user’s guide.

Soft-Scope offers features specific to debugging embedded applications.
Many of them, such as the window-capture feature, require special

understanding. This chapter describes these features and the applicatig
loading process.

3

Soft-Scope User’s Guide 33

Pull-Down Menu Map 3. Soft-Scope Basics

Pull-Down Menu Map

Table 3-1 lists the Soft-Scope menu map items and associated pull-down
commands. A brief summary is given for each command. Window, File,
and Help commands will be discussed in this chapter. The chapters that

follow will cover the rest of the pull-down commands.

Table 3-1: Pull-Down Menu Map

File

Code

Data

Load...
Download application symbols
and data.

Display...
Enter a reference to activate the
Code window.

Examine...
Evaluate a data expression.

Symbol load...
Download symbolic information
only.

Module
Display program modules in the
Symbols window.

Watch...
Place a variable into the Watch
window.

Restart...
Reset registers and reload
descriptor tables.

Calls
Display procedure call nesting.

Symbols
Display application symbols in
the Symbols window.

Upload...
Save memory/registers to a file
for later debugging.

Trace
Display execution trace.

Registers
Display CPU registers in the
Registers window.

View log
View the contents of the log
file.

Step into

Step over

Step into or over a procedure
call.

Dump...
Display memory in the Dump
window.

Command line...
Enter a command.

Go to return
Return from a procedure call.

CPU structures...

View a second menu listing the
CPU structures specific to your
target system.

Exit/Quit
Terminate Soft-Scope.

Go to...
Execute to the referenced
location.

Recently loaded file list.

Stop
Stop target execution.

34

Soft-Scope User's Guide

3. Soft-Scope Basics

Pull-Down Menu Map

Table 3-1: Pull-Down Menu Map (continued)

Break

Macro

Options

Display
Display and set breakpoints.

Display
Display a list of loaded macros.

Display
Display a list of current options.

Execution...
Set a software-execution
breakpoint.

Load...
Load and compile a macro.

Reload settings
Reload the options file.

Set a hardware-write breakpoin

=i

Access... Resume Save settings

Set a hardware-access Resume a suspended macro. Save current options to the
breakpoint. options file.

Write...

Exec...
Set a hardware-execution
breakpoint using debug

registers.

Table continued on next page.

Soft-Scope User’s Guide

35

Pull-Down Menu Map

3. Soft-Scope Basics

Table 3-1: Pull-Down Menu Map (continued)

View

Window

Help

Toolbar
Turn toolbar on/off.

Tile
Arrange open windows so
borders don't overlap.

Index
Display an Index of help topics.

Status bar
Turn status bar on/off.

Cascade
Arrange open windows in an
overlapping pattern.

Using help
Describes how to use help.

Arrange icons
Organize the icons displayed at
the bottom of the window.

About Soft-Scope...
Displays Soft-Scope's version
number.

Find string...
Search for a specified string.

Capture
Save the contents of the active
window to the log file.

Layout save
Save the window configuration.

List of open Soft-Scope
windows. Select a name to
activate that window.

36

Soft-Scope User's Guide

3. Soft-Scope Basics Window Pull-Down Menu

Window Pull-Down Menu

ﬂiﬁ do
Tile
LCazcade
Afrange jcons
Eind string... Chil-F
Capture Chrl-
Layout zave

1 Meszane
v 7 Code

TheWindow pull-down menu includes commands for doing standard
window icon manipulations suchBte, CascadeandArrange icons.
Consult Soft-Scope’s online help or your Microsoft Windows user’s guide
if you need instructions on using these functions. This section will discuss
Find string..., Capture, andLayout save

Finding a String

Select thé&ind string... command from thé&/indow pull-down menu to
search for a text string in a window. The search function completes a
search for a specific character string of not more than 40 characters and
works in any windovexcept th€odewindow when it is in assembly
mode.

Enter the string you want to find in thnd dialog box shown in figure 3-1.
When the string is found, the cursor moves to the first character in the
string and the string is displayed in the currently active window.

Soft-Scope User’s Guide 37

Window Pull-Down Menu 3. Soft-Scope Basics

Find what: | Find next
™ Match whole word only Direction

[~ Match case " Up & Down Cancel

ik

Figure 3-1: Find dialog box

TheFind dialog box gives you several options:

Match whole The search function finds strings thatatch

word only only what you enter into the text box. It
doesn't find strings that contain your search
string as a proper substring. For example, if
you typednodin the text box, the word
modulewould not be considered a match.

Match case The search function finds only strings that match
the case of the characters you enter.

Direction Controls the search direction (up/down).

Find next Searches for the next occurrence.

Cancel Cancels the search.

38 Soft-Scope User's Guide

3. Soft-Scope Basics Window Pull-Down Menu

Capturing a Window to a Log File

Using theCapture command from thé/indow pull-down menu, you can
capture the contents of the current window to a log file. All of the data
displayed in the current window is copied. See figure 3-2 for an example
of aLog window.

Specify aountfollowed by the accelerator key <CtrI>+<A> to capture a
countnumber of lines:

25 <Ctrl>+<A>

Specify the log file name and path with ¢hed.file configuration option, 3
which is explained in more detail in tBenfiguring Soft-Scopehapter.
The default log file name gswin32.log

If the file specified bgmd.file already exists, Soft-Scope gives you the
option to append your capture to the end of the file or to start over and
rewrite the file.

You can append any sort of data you want tadigevindow and log file
with theWPRINTF macro command, which is discussed fully in the
Macro Print Functionsection of the&Creating and Using Soft-Scope
Macroschapter:

wprintf (log, “%s”, “Print this in the log
window”)

Soft-Scope User’s Guide 39

Window Pull-Down Menu

3. Soft-Scope Basics

1] Soft-Scope / Win32
File Code Data EBEreak Macro Options Wiew ‘indow Help
iz |olo|le[+] 2] cf

— ﬂLog - sswin32. log [_[O] %] !IEI
6 o Oddh ;0028 -
#7 [icwain.maingl? - gocur]
#8 17 delay| speed)
0 [:eutils.delay(] - Into]
#10 #1277 {
11 o return
12 [Inside :cmain.main#l7 (044kh:0031) - Bre:
#13 17 delay| speed)
14 #18 c_datal);

o 15 lbhr :cmwain.mainHls
#16 L
#17 [tcwain.waingli - Break]
#18 4| | _'I |
#19 T -
< | =l

Faor Help, press F1 L

Figure 3-2: Log window showing capture of Trace window

To view the contents of the log file, use#@wv log command from the
File pull-down menu to open theg window. Although everything you
write to your log file is stored on disk, theg window can display only
the last 500 lines of the log file. See@uwnfiguring Soft-Scopehapter
for a discussion of the configuration optiog.winsize which enables you
to alter the number of lines in theg window.

To clear thé.og window and erase the entire contents of the current log

file, use theClear toolbar button.

3-10

Soft-Scope User's Guide

3. Soft-Scope Basics Window Pull-Down Menu

Saving Window Layout

Use thé.ayout savecommand from the/indow pull-down menu to
save the size and location of windows that have been moved or resized
during the current Soft-Scope session.

Open Window List

At the bottom of th&Vindow pull-down menu is a list of open windows.

A checkmark identifies the active window. To make another window in

the list the active window, click on it with your mouse <Button-L>.

Soft-Scope User’s Guide 311

Accelerator Keys 3. Soft-Scope Basics

Accelerator Keys

Soft-Scope pull-down menus and some of the commands can be invoked
with accelerator keys as shown below. Following the Windows
convention, the letter following the <Alt> key is usually the first letter of the
pull-down menu title as identified by the underscore. Soft-Scope
commands use the <Citrl> key followed by a letter.

These are the accelerator keys:

<Alt>+ Activates th@reak pull-down menu
<Alt>+<C> Activates th€odepull-down menu
<Alt>+<D> Activates thd®ata pull-down menu
<Alt>+<F> Activates thé&ile pull-down menu
<Alt>+<H> Activates thédelp pull-down menu
<Alt>+<M> Activates theévlacro pull-down menu
<Alt>+<O> Activates th®©ptions pull-down menu
<Alt>+<W> Activates th&Vindow pull-down menu
<Ctrl>+<A> Capture the current window to a file
<Ctrl>+<C> Cancels the current operation
<Ctrl>+<F> Opens theind dialog box
<Ctrl>+<L> OpengLommand linedialog box
<Ctrl>+<Q> Quits/Exits Soft-Scope; all work files are
erased except the temporary quick-reload file
<Ctrl>+<X> Closes the active window
<Ctrl>+<End> Displays last page of the current window
<Ctrl>+<Home> Displays first page of the current window

3-12 Soft-Scope User's Guide

3. Soft-Scope Basics Accelerator Keys

<Ctrl>+<PgDn> Pages down one-half of the current window
<CtrlI>+<PgUp> Pages up one-half of the current window
<Ctrl>+<Shift>+<Tab> Activates previous window in window queue
<Ctrl>+<Tab> Activates next window in window queue

Soft-Scope User’s Guide 3-13

Double-click Function 3. Soft-Scope Basics

Double-click Function

One of the most useful tools of the Soft-Scope user interface is the left
mouse button (<Button-L>) double-click. Double-clicking <Button-L>
allows you to accomplish a variety of tasks without having to touch your
keyboard or move elsewhere in 8wt-Scopewvindow.

In general, you can initiate the default function in any window except the
Breakpointswindow, by double-clicking <Button-L>. For example,
double-clicking <Button-L> on an item in téatch window will open the
Modify dialog box (the default function) and place it in the text box.

Double-click in the Code Window

Double-clicking <Button-L> evaluates the expression identified by the
cursor and places it in the appropriate window. For data references,
double-clicking <Button-L> will open tHatawindow and display the

reference in normal mode. For code references, double-clicking <Button-

L> will open theCodewindow and display the code associated with the
reference.

Double-click on Data References

By double-clicking <Button-L> on data references irDh&a andWatch

windows you can manipulate the way you view structures, unions, pointers

and classes. Assume the following structure:
strucl structure (...)

Double-click <Button-L> on or after the word “structure” to display the
entire structure. Double-click <Button-L> before the word “structure” to
place the structure in a dialog box for modification.

3-14 Soft-Scope User's Guide

3. Soft-Scope Basics Double-click Function

Double-click on Pointers

Double-click <Button-L> to reference pointers. Double-click <Button-L>
before the “->* to display the pointer in a dialog box for modification.
Double-click on the “->“ to dereference the pointer and display the
dereferenced data. To display the indirect data in a dialog box for
modification, double-click <Button-L> after the “->*.

Soft-Scope User’s Guide 3-15

Online Help 3. Soft-Scope Basics

Online Help

Soft-Scope’s online help contains much of the information found in this
user’s guide. The hypertext links between help topics provide an excellent
way to find the information you are looking for.

Index
Uzing help

About Soft-Scope...

TheHelp pull-down menu contains several options:

Index Displays an index of topics. Putthe cursor on
the item you want and click the left mouse
button.

Soft-Scope’s online help uses the standard
windows help engine. The menu bar and
toolbar contain functions to search for, print, set
bookmarks in and annotate a help topic.

Using help Displays the standard windows information
about usingrelp.

About Soft-Scope... Displays Soft-Scope’s version number and
copyright information.

3-16 Soft-Scope User's Guide

3. Soft-Scope Basics Commands and Command Line

Commands and Command Line

Soft-Scope commands are commonly invoked vi@tdmemand line

dialog box. The dialog box is activated by entering <Crtl>+<L>.
Commands are entered in the text box. Figure 3-3 shows the dialog box
and command for causing Soft-Scope to execute to the funion

Command : Igu main|

(0] 4 I Cancel I

Figure 3-3: Command line dialog box

Soft-Scope commands can also be used in macros as discussed in the
Creating and Using Soft-Scope Macobspter.

These are the Soft-Scope commands:

BR[EAKPT] [-] [[EXEC] coderef [when-then 1]
BR[EAKPT] [-] [[ACCESS | WRITE) memref [when-then]|
CALLS

DIS[ASM] [[TO] coderef]

DUMP [[TO] memref]

EVAL (memref | coderef)|, (memref | coderef) 1*
EXIT

G[O] [EXEC] coderef
G[O] [(WRITE | ACCESS) memref]
G[O] RETURN

HELP [keyword |
LINE[coderef]

Soft-Scope User’s Guide 3-17

Commands and Command Line

L[IST] [[TO] lineref]
LOAD filename

LOAD (RESTART | SYMBOLS) filename

MACRO [LIST][[TO] macronamel]]

MACRO LOADilename
MACRO DELETH macroname]
MACRO RESUME

MACRO SUSPEND

MESSAGEI[S]

MODULE [[TO]: modnamé
MODULE :modname = filename

PROCEDURES [[TO] coderef]
QUIT
REG

SET[[TO] optionname |
SET [RELOAD | SAVE]
SET [optionname = optionvalue

STACK [USAGE | RESET]
S[TEP] [INTO | OVER]

STOP

SYMBOLS [[TO] coderef]
TRACE

TYPE (memref | coderef)], (

UPLOAD memref [REGISTERI[S]]
UPLOADREGISTER[S] filename

VER[SION]
WATCH [memref [, memref ¥

3-18

]

memref |

filename

3. Soft-Scope Basics

coderef)I*

Soft-Scope User's Guide

3. Soft-Scope Basics Commands and Command Line

Command Syntax Elements

The command syntax elements listed below are used in both command-line
commands and in menu-selection dialog boxes. Optional entries are
defined by brackets ([]), and a vertical line (|) indicates a choice
between the items on either side of the line.

These are the command syntax elements:
address A logical, physical, or linear address
coderef address| [modnamé# linenum|

[[modname codesym

codesym The name of a procedure or label

dataref coderef | memref | lineref

datasym The name of a symbol

f Block device driver specification

filename A system-dependent identifier for a disk file

filename.bug A .bugfile name associated with a relocatable DOS or

OMF86 program, including a path to the file
hexnumber16 A 16-bit hexadecimal number

keyword A word to use for a Help search
linenum A line number found in the current module or in
modname
lineref : modname| [. modnamé# linenum |
[modname codesym
macroname The name of a macro from the currently loaded macros
memref address|lineref|

[[modname][codesym. datasym

Soft-Scope User’s Guide 3-19

Commands and Command Line 3. Soft-Scope Basics

3-20

modname
optionname
optionvalue
TO

A module name
The name of a configuration option
The value of a configuration option

Places the reference at the bottom of the window, and
fills the upper part of the window with what is before
the reference.

Soft-Scope User's Guide

3. Soft-Scope Basics Loading an Application

Loading an Application

Soft-Scope can be used to debug real- and protected-mode absolutely
located bootable files prepared with tools discussed in the chiapler

that Soft-Scope Supporté loadable application image for Soft-Scope
contains both executable instructions and associated symbolic information.

Soft-Scope’s format of choice for loadable files is#hsfile which is an
extended version of anmf file produced by our linker, CSi-Link. Other
formats can be used as long as Soft-Scope can access their symbolics.
For example, Soft-Scope can be used \eitiefiles prepared in the
special way discussed in the appem@buggingexeFiles, as well as 3
with files in OMF-86, OMF-286, HEX, and other formats (see the
chapterTools that Soft-Scope Suppdrts

Load

BT
Symbal load...
Bestart. ..

Uplaad...
Wiew log
Command line... Chrl-L

Exit # Cluit Chrl-0

To load a bootable absolute file to your target, seteand... from theFile
pull-down menu to open the dialog box shown in figure 3-4.

Soft-Scope User’s Guide 321

Loading an Application 3. Soft-Scope Basics

File name IC:'||.5SWIN\SAMP\MSCHP\Csamp.ahS

Cancel |

" Hardware setup I

Browse...

¥ Command Igﬂ main History |
Bestart |
Symbols |

Figure 3-4: File-Load dialog box

File name Enter the file name, or choose Brewse...button to
select a file from the directory listing.

Hardware setup Enter a command to be invaledoreyour
applicationis loaded. The check box toggles the
invocation on/off. For example, invoke a macro that
writes test data into memory to help you find
uninitialized-variable problems.

Command Enter a command for Soft-Scope to perfafterthe
application has been loaded. For example, gater
main to cause Soft-Scope to execute the application
up to the functiomain. The check box toggles the
invocation on/off. See tli@ommands and Command
Linesection of this chapter.

Browse... Displays the most recently accessed subdirectory and
its contents.

3-22 Soft-Scope User's Guide

3. Soft-Scope Basics Loading an Application

History Reviews file loads from the previous nine Soft-Scope
sessions.
Restart Resets the descriptor-table registers and program

counter.Restart will not reload the program code,
data or symboldRestart will not initialize data in
RAM. For example, udRestartif you have a stack
fault or step beyond your source code.

Symbols Reloads symbolic information only. It does not reload
the program code.

NOTE: You can load a recently loaded file by choosing its name
from the list of files at the bottom of thée pull-down
menu. The file will be loaded with the same entries for
Hardware Setup and Command that were used the last
time it was loaded.

Soft-Scope User’s Guide 3-23

Loading an Application 3. Soft-Scope Basics

Symbol Load

Load...

Symbal load...
Bestart. ..

Upload...

Wigw log

Cammand line... Chrl-L

Exit / Cluit Crl-0

SelecSymbol load.. from theFile pull-down menu to load symbolic
information without disturbing your application or changing register values.
This is useful if your application is already loaded or if you want to debug
an application with multiple symbol sets.

File/Symbol load...will open the following dialog box:

 File-Spmbolz 1
File name IC:'-.5SWIN\SAMP\MSCHP\Csamp.ahs
Cancel |

¥ Command |gu main
Browse...
History
Load
Bestart

il

Figure 3-5: File-Symbol load dialog box

3-24 Soft-Scope User's Guide

3. Soft-Scope Basics

Loading an Application

File name Enter the file name, or choose Br@ewse.. button to
select a file from the directory listing.

Command Enter a command for Soft-Scope to perfafterthe
application has been loaded. For example, gater
main to cause Soft-Scope to execute the application
up to the functiomain. The check box toggles the
invocation on/off. See tt@ommands and Command
Linesection of this chapter.

Browse... Displays the most recently accessed subdirectory and
its contents.

History Reviews file loads from the previous nine Soft-Scope 3
sessions.

Load Downloads program code, data and symbolic
information.

Restart Resets the descriptor-table registers and program
counter.Restart will not reload the program code,
data or symboldRestart will not initialize data in
RAM. For example, ufRestartif you have a stack
fault or step beyond your source code.

Restart
File
Load...
Symbol load...
Bestart. ..
Upload...
Wigw log

Cammand line... Chrl-L

Exit / Quit

Ctrl-2

Soft-Scope User’s Guide 3-25

Loading an Application 3. Soft-Scope Basics

SelecRestart...from theFile pull-down menu to load symbols and set

the initial register values. This is useful if the target system contains a load
image in ROM or if the load image has already been loaded by some other
means.

Becaus®estart...does not reload your applications data area, your
application may not execute the same way as it does when you do a
complete load, especially if it depends on initialized data.

File/Restart...will open the following dialog box:

i File-Restart 1
File name IC:'-,SSWIN\SAMP\HC32P\Csamp.ahsl
Cancel |

[Hardware setup I

Browse... |

¥ Command Igﬂ main History |
Symbols |
Load |

Figure 3-6: File-Restart dialog box

File name Enter the file name, or choose Brewse...button to
select a file from the directory listing.

Hardware setup Enter a command to be inviledareyour
application is loaded. The check box toggles the
invocation on/off. For example, invoke a macro that
writes test data into memory to help you find
uninitialized-variable problems.

Command Enter a command for Soft-Scope to perfafterthe
application has been loaded. For example, gater
main to cause Soft-Scope to execute the application
up to the functiomain. The check box toggles the

3-26 Soft-Scope User's Guide

3. Soft-Scope Basics Loading an Application

invocation on/off. See tt@ommands and Command
Linesection of this chapter.

Browse... Displays the most recently accessed subdirectory and
its contents.

History Reviews file loads from the previous nine Soft-Scope
sessions.

Symbols Reloads symbolic information only. It does not reload

the program code.

Load Downloads program code, data and symbolic
information.

Soft-Scope User’s Guide 3-27

Loading an Application 3. Soft-Scope Basics

After the Load

After making all of your selections in the dialog box, choos®ke

button. The status line at the bottom ofSb&-Scopewindow will

record the percentage of file loaded as your application is loading. The
Codewindow will open to show your application in source mode when
symbolic information is available. See figure 3-7 for an example.

-4 Soft-Scope / Win32
File Code Data Break Macro Options Yiew ‘Window Help
| =|wlolel-] 28] BlT[w]|?]M]
Message I =] S
Foft-Scope (R} debugger, 5.11 Full Version.
Concurrent Sciences, Inc. (<) 19859-1996 All rights reserved.
Windows ¥Wi4. 0 Host, Remote Target.
Serial Ho. HANCY-DUF - Single User License.
[Connected to: "CSiMON-38EEXP - PRomoned V3.0 [Ex—Ewval (=s))"]
[Loading CMF-386 Bootable file "C:%ZSSWINYSAMPYHC3ZPYCsamp.abs™]
« | 5l
E Code =] E3
-b3Z2pho._MWIMITI) - Application load i
37 -]
g :32] MOV AX, 3EG DGROUFP
#39 MOV DS, AX
40 MOV ES,AX
H41 FUSH COFFIET FPNAME i
HaZ FUSH 1
#43 CATLT main -
e | ol
For Help, press F1 i

Figure 3-7: Soft-Scope after an application load

3-28

Soft-Scope User's Guide

3. Soft-Scope Basics Loading an Application

Soft-Scope .tmp Files

When Soft-Scope loads an application, it must find or build an internal
representation of the application’s symbols. This information is initially read
from the absolutely locatedbsfile or a.bugfile (see the chapt&ools

that Soft-Scope Suppofts a discussion of this file type), and is placed

in a temporary filapplicationtmp, for examplegsamp.tmp

This.tmp file is built incrementally during the execution of an application, as
Soft-Scope actually makes use of the application’s symbolics. For an
application with a large amount of symbolic information, procedures not

called until later in the execution of the program will not have their

symbolics represented in th@p file until they are actually called.

When you exit Soft-Scope, the temporary file is saved in the directory that
contains the application file or symbolics file that was recently loaded and
fromwhich itis derived. Soft-Scope reusesting file the next time you

load the corresponding application, enabling a much faster load. If your
disk space is limited or faster loads are not important, you can erase any
and all temporary files with no harmful consequences for future Soft-Scope
sessions. Soft-Scope will automatically rebuild a ey file for any
application for which it can’t find one.

Soft-Scope User’s Guide 3-29

Loading an Application 3. Soft-Scope Basics

Command Line

3-30

You can load applicationE QAD), restart application& OAD

RESTART), or load just symbol4$ OAD SYMBOLS from the
Command linedialog box. To invoke the dialog box, enter <Ctrl>+<L>.
The syntax of theOAD command follows:

[couniLOAD [[RESTART | SYMBOLS]filenamég

Soft-Scope User's Guide

4. Controlling Program
Execution with Soft-Scope

Chapter Contents

OVEBIVIEBW ...ttt e e et e et e e e et e e e e e e e e e e
Controlling Program EXECULIONccccuuiiiiiiiiiiiiiieieeeeee e
Stepping through Code...........ooovviiiiiiiie e
SINGIE SEEP. .
Specify a Number of StepS.........ccooviviiiiieeecre e
Step Command viathe Command Line...........cccccceeeveieviiiiiineeenenns
(@00 {110 To [0 R
Figure 4-1: Code window in Source mode
Figure 4-2: Code reference dialog bOX.........cccooeveeeiiiiiiiiiiiiiinnnn.
TOOIDAr BULLONS......ueeiieies e e et e e e e e e e e e e e e eeeeeeenennnnes
Figure 4-3: Display modes dialog boX............ccoovvviiiiiiiiiiiininnnnn.

Figure 4-4: Code window in Assembly mode with logical addrds$6s
Code Window Execution POINtELS...........cooocivvviiiiiiiiiiiiiieeeeee e 4-11
COode REFEIEINCES ... 4-12

LINE NUMDEIS.o e e 4:12
SYMDOINAMESeeiiiiiii e, 4:12
GUIAENINES.....oii i, 213
[0 Tor= 1] 1o 0T - PR 4-14
BreakpointS WINAOWcoooiiiiiiiiiiiiiiin e 4-16
Figure 4-5: BreakpointS WindoW...............ooovvviiiiniiiiiiiiinne 4:17
TooIbar BULLONS..........ccooiiiiiiiiiiiieeceeeee e 4-18
ComMMANT LINE......ueiiiiiieee e e e e eeeeeeees 4:19
Editing BreakpOintSuueiiiiei e eeeeeeeeeceieiiisss s e e e e e e e e e e eeeeeeeenennnnns 4-20
Figure 4-6: Breakpoint edit dialog boX.............ccovvviiiiiiinnnnn. 4:20

Soft-Scope User’s Guide 4-1

4. Controlling Program Execution with Soft-Scope

Software BreaKpOiNtSuuvvuiiiiiiiiiiiiiiiiiiss s 4-22
Permanent Software Breakpoints...............coevvvvvieiiiiiinineneeeennn. 4-22
Temporary Software Breakpoints.............ccvviveeeiiiiininiinnines 4-23

Hardware Breakpointsoooovviiiiiiiiiiiiiee e 4-24
Data Breakpoints..........cccccvveiveiiiiieieiieeeeeeeeeeeeeeeeeeeiinnennnn. 4224
ComMANA LINE.......cciiiiiiiiiiiee e 4:24
Debug RegIStErS.........coiieiiiiiiieeeeeeieee e 4225
EXEC BreakpOiNtS.......cceiiiiiiiiieeeeeeeee e 4-26
ComMMANA LINE.......cooiiiiiiiiiieeecee e 4:26

EXeCUtiNg 10 @ LOCALIONvviiiiiiiiiiiiiie e 4-27
B0 i —————————— 4:21..

GO 1o a SPECIfiCc LOCAtION.......cccvveeiiiiee e 4-27
Return fromaProcedure Call............cccooeeeiiiiiiiiiiiiiiiceeee e 4-28
GO toa Cursor POSItIONccooviiiiiiiiiiiiiieeee e 4:28.
1) (o] o I TP PUPPPPPTTRR 4-28..

Procedure Call SEQUENCEc.cuuiiiiiiiiiiiiie et 4-30

CallS WINAOW........cooiiiiiiiieii e 4:30
Figure 4-7: CallS WINAOW..........cuuuiiiiiiiiiiiieeeieeeeeeeeeiiiee 4:31
ComMANA LINE.......ccoiiiiiiiiiiie e 4:31
Stack INFOrMALIONccoooiiiiiiiee e 4-32
B I t= Lo =T 1T [0 4-33
Figure 4-8: Trace window displaying procedures..................4-33
TOOIDAr BULIONS. 4:-34
Figure 4-9: Assembly display modes dialog bax...................4-35
Figure 4-10: Trace window displaying procedures and sourcé-36
ComMMANA LING.......uueiieiee e e e e e e e e e eeaneeees 4:37
Figure 4-11: Trace window displaying procedures, source, and assembly
(03010 [UPPPRPRTRR 4-317..
Trace BUFErevviiiiiiiiiiiiiiiiiiiiereeeeee . 4238
TraCe File SIZE......coeeeiiiiiiiceee e 4:38

4-2 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Controlling Program Execution

Overview

With Soft-Scope you can monitor your application’s source while

executing at the source or assembly level. This chapter will describe the
mechanisms that allow you to execute one source line at a time, execute to
a predetermined location, set hardware and software breakpoints, view
source code and trace Soft-Scope’s actions.

Controlling Program Execution

The basic target execution toolbar buttons, shown below, remain on the
toolbar at all times. Whenever a window becomes active, the buttons
specific to that window are added to the toolbar. When another windo
becomes active, the previous set of window specific buttons are replac
with a new set of buttons.

| E | m |||

Stop » Go ¢ Step into ¢ Step over » Go to return ¢« Go to cursor

Stop Stops execution without setting a breakpoint. This
function works only when your target contains an
interrupt-driven CSi-Mon monitor. To activate from the
keyboard press <S>.

Go Causes the target to execute until a breakpoint or fault
is encountered. Note, no breakpointis set. To activate
from the keyboard press <G>.

Step into Steps into the next procedure call. You may specify a
count,such agl , which will step twice and into
procedures if called on the lines executed. To activate
from the keyboard press <I>.

Soft-Scope User’s Guide 4-3

Controlling Program Execution 4. Controlling Program Execution with Soft-Scope

Step over Steps over the next procedure call. Acceptgsas
described above. To activate from the keyboard press
<O>.

Gotoreturn Returns to the calling procedure. You may specify a

count,such agR , which will return from four calls.
To activate from the keyboard press <R>.

Go to cursor Execution will continue until the cursor is encountered.
You may specify aount,such ag0C , which is
handy if you need to execute a loop several times. To
activate from the keyboard press <C>.

Stepping through Code

Stepping allows you to execute one source line at atime. You can single
step or step a specified number of times. You can also step into or step
over procedure calls.

Single Step

Press <Spacebar> to execute a single line of source or assembly code,
depending on theéodewindow’s display mode (source or assembly).

Use theMlode toolbar button in thEodewindow to set the default step
mode (into or over).

4-4 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Code Window

Specify a Number of Steps

Step a specified number of times by typing a number whitedte

window is currently active and pressing <Spacebar>. You can specify any
number from 1 to 65535. Pressing Steptoolbar button will terminate
execution immediately if you are using an interrupt driven CSi-Mon

monitor. The following example initiates 10 steps:

10 <Spacebar>

Step Command via the Command Line

Enter the following stepping commands, both irGbemand linedialog
box (<CtrI>+<L>) and in the body of macro definitioli &SI EP

automatically opens ti@dewindow:
S[TEP][INTO | OVER]

Soft-Scope User’s Guide 45

Code Window 4. Controlling Program Execution with Soft-Scope

Code Window

TheCodewindow is opened by selectiBgsplay... from theCodepull-
down menu shown below. From this window, you can step through your
code, set breakpoints and examine data references.

Dizplay. ..
Maodule
Callz

Trace

Step into
Step over
3o b retura
Goto...
Stop

Figure 4-1 shows t@odewindow in source mode. The current module,
procedure, and line number are identified on the status line at the top of the
Codewindow. Key words that describe the current execution status—
such as Break, Running, or General Protection Fault—are also displayed
here.

46 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Code Window

Fil= Code Data Break Macro Options Yiew *Window Help
i|=|m|ele|-1] 2] B T|v]?|M] ‘
E Code =] B3
:cmain.mainf16 - goCur 2
[H T HLITITUOE CULLI=IT ﬂ
#E
#7 unsigned char pattern;
#5 static int speed;
L=l
10 void mainf)
#11l {
1z speed = 1000;
13 pattern = 0;
14 while (1) {
#15 patternt+;
Ol display_lights(pattern };
#17 delay| speed };
18 = _datal); . 4
#19 3 -
< | Bl
Breakpoint :crain.main(] removed L

Figure 4-1: Code window in Source mode

Double-clicking <Button-L> on a data reference displays information
about the reference in tBatawindow. Double-clicking <Button-L>on
a code reference displays the source code associated with the reference.

TheDisplay command from th€ode pull-down menu opens a dialog

box prompting you for a code reference as shown in figure 4-2. This
reference is used to identify the source code that will be displayed in the
Codewindow. The text box in this example contains a command
instructing Soft-Scope to execute up to the beginning of the fumnaion

If you press <Enter> without entering a reference, the display defaults to
the current execution point.

Soft-Scope User’s Guide 4-7

Code Window 4. Controlling Program Execution with Soft-Scope

Code reference: Igu main)

Cancel |

Figure 4-2: Code reference dialog box

Toolbar Buttons

The following toolbar buttons allow you to set breakpoints, evaluate data
references, and control the contents ofxbeewindow:

B T[w]? M|

Break « Temp break ¢ Locate « Evaluate « Mode

Break Toggles a permanent software breakpoint on/off at the
current cursor position. For more information, see the
Software BreakpointandHardware Breakpoints
sections of this chapter. To activate from the keyboard
type .

Temp break Toggles a temporary software breakpoint on/off at the
current cursor position. This type of breakpoint clears
itself after the first time it is encountered. To activate from
the keyboard type <T>.

4-8 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Code Window

Locate Returns the cursor to the current execution point. To
activate from the keyboard type <Enter> or <L>.
Evaluate (?) Opens a dialog box where you enter a data reference to be
evaluated in thBatawindow. A move convenient
method is to double-click <Button-L> on a data reference
in theCodewindow. To activate from the keyboard type
<?>.
Mode Opens thBisplay modedialog box as shown in figure
4-3. To activate from the keyboard type <M>.
iDisplaymodes |
Code Execution Address
Source " Into ¢ Physical
" Assembly i+ Owver & Logical 4
" Hex
Ok I Cancel
Figure 4-3: Display modes dialog box
Code TheCoderadio buttons control the way in which source
code is displayedsourcemode is the default option.
Assemblymode shows both source and assembly code.
Hex mode shows source, assembly, and hex code. See
figure 4-1 for an example of source mode.
Execution TheExecutionradio buttons set the default step type.

Into steps into the next procedure c@llzer steps over
the next procedure call. A step is invoked by pressing
<Spacebar>.

Soft-Scope User’s Guide 49

Code Window 4. Controlling Program Execution with Soft-Scope

Address TheAddressradio buttons control whether assembly
code addresses are displayed as physical (with a “P”
suffix) or logical (in Segment:Offset format). See figure 4-
4 for an example of assembly mode using logical

addresses.
»,—._4] Soft-Scope =]
Fil= Code Data Break Macro Options Yiew ‘Window Help
I E|m|ele-1] 2] BT|v]?|M] ‘
H[:ode =] 3
:cmain.maindi 16 - Disaszembly S
02 10:0000001d mowv ebp,esp ﬂ
#12 speed = 1000; |
02 10:0000001F mov [0000047=H],000003e8H ; Imen = 1000
13 pattern = 0;
0z 10:000000z29 mov [0OC0047aH] , 00H ; Inm = 0
414 while (1) {
H15 patternt+;
0z 10:00000030 oy al, [00000478H]
02 10:00000035 ine al
02 10:00000037 mov [0OC00478H] ,al
1o display_lights(pattern };
@07 100000003 ¢ push eax
0z 10:0000003d call :cutils.display lights () ; §+238
0z 10:00000042 add esp, +04H ; Imm = 4 -
1 A larr i —smemdl .
A j v
4

Figure 4-4: Code window in Assembly mode with logical addresses

NOTE: When you scroll up (backwards) in thedewindow in
Assembly mode, Soft-Scope can't always show accurate
information. Approximated information is identified with a
guestion mark (?).

4-10 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Code References

Code Window Execution Pointers

Soft-Scope uses the far left side of@melewindow to indicate the
special status of certain source lines. The symbols used are as follows:

.

o

O

The execution pointers may be shown in combination with the breakpoi 4
indicators. For exampli@== indicates that execution has halted on a lind
where a permanent breakpoint is set.

A solid arrow means execution is stopped at that line of code.

An outline of an arrow indicates execution is stopped at a location
inside a source-level statement.

A solid octagon means there is a permanent breakpoint set at this
line of code.

An outline of an octagon means there is a temporary breakpoint
set at this line of code.

Soft-Scope User’s Guide 4-11

Code References 4. Controlling Program Execution with Soft-Scope

Code References

Line Numbers

You can access any program symbol or line of code that is currently loaded
into Soft-Scope. To reference a line of code, simply use the line-number
operator “#”

Code reference: #24

Symbol Names

To reference a procedure in the current module use its name:

Code reference: c_data

To reference a procedure in a module other than the current module, use
the module operator “.” and the symbol operator “.”:

Code reference: :cutils.c_data
You can reference code with a logical address:

Code reference: 203:0d1
You can reference code with a physical address:

Code reference: 20P

4-12 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Locating Code

Guidelines

Use the following guidelines when referencing code elements:
» Ifthey are in the module containing the execution pointer, use:

#line number
procedure name
memory address

» Ifthey are in a module other than the one containing the execution
pointer, use:

:module name#line number
:module name.procedure name#line number
memory address

If you can’t remember the exact name of the module, procedure, or 4
symbol, us€ode/Moduleor Data/Symbolspull-down menu commands
to look at the possible entries.

For more information, see tReference Scopirggction of the
Examining Data with Soft-Scophapter.

Soft-Scope User’s Guide 4-13

Locating Code

Locating Code

4. Controlling Program Execution with Soft-Scope

Several mechanisms are provided to let you see any part of your
application’s source code as shown below:

Dizplay...
Module
LCallz

Trace

Step into
Step over
Go bo return
Goto...
Stop

|i|

LIST[[TO] lineref]

Double-click
<Button-L>

4-14

Code/Display.. prompts you for a code
reference, and displays the code associated
with that reference in ti@odewindow. If no
reference is given, Soft-Scope displays the
code at the current execution point.

For example, if you entered #82 in the dialog
box, theCodewindow will display the code
located at line number 82.

TheCodewindow’'sLocatetoolbar button
returns th&€odewindow to the line where the
execution pointer is pointing.

From the command linelST will display
source lines froinerefdown. IfTOis used,
the list is from the bottom of ti@dewindow
up. UsaIST with nolinerefto open the
Codewindow at the current execution point.

Double-click <Button-L> on the symbol you
want to display. If the symbolis a code
symbol, th&€€odewindow opens and displays
the code where that symbol is located. If the
symbol is a data symbol (variable), Degta
window opens and displays the variable in
normal mode.

Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Breakpoints Window

NOTE: Because more than one logical address can resolve to a
single physical address, Soft-Scope cannot locate specific
source-code lines using a physical address. Using logical
addresses witGode/Display...will ensure the accurate
location and display of source code. This does not apply
toCode/Go to...and othe€odemenu choices.

Soft-Scope User’s Guide 4-15

Breakpoints Window 4. Controlling Program Execution with Soft-Scope

Breakpoints Window

TheBreakpoints window is opened by selectiBisplay from the
Break pull-down menu.

Dizplay
Execution...
Aocess.
Wirite. .
Exec...

TheBreakpoints window shows how many breakpoints are set and
identifies their type and location.

TheBreakpointswindow in figure 4-5 shows a variety of breakpoints.

The firstis a permanent software breakpoint S8t iDATAat line 80.

This is followed by a hardware breakpoint set to stop execution when the
address associated Wit DCUSTis accessed. The third is a hardware
breakpoint set to stop execution when the address associateiwith

BIT is written to. The final entry is a temporary software breakpoint setin
CUTILS.DELAY at line 128.

4-16 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Breakpoints Window

’i;‘] Soft-Scope [O] =]

File Code Data Break Macro Options Miew ‘window Help

I E|m|ole|] 2] wli]o]

eax=00000002 cs=0208 eip=00000466 =
ebx=00000000 =s=022Z8 esp=00001028 ebp=000010bL0O

ecx=60000000 ds=02Z8 esi=00000000 f==0000

edx=00001056 es=02Z8 edi=00000000 g==0000

ef1=00000212 [< rf nt iopl=0 of df IF tf sf =zf AF pf cf] -
[N | Ay
H Code = =] E3
scutilz. display_lights#112 - Access tcutilz.c_data.aldcust 2

#123 % DELAY [M=l E

#124 f********

135 id f rcutils. o data#20

#126 weL ; ar coess cutils.c_data.oldoust

" 127 int e rite :cutils.display lights.hi hit
O §128 { £ i icutils.delay#128 (Tewmp)

or

| KX | i3

For Help, press F1 4

Figure 4-5: Breakpoints window

Soft-Scope User’s Guide 4-17

Breakpoints Window 4. Controlling Program Execution with Soft-Scope

Toolbar Buttons

Breakpoints are manipulated by placing the cursor on a breakpoint listed in
theBreakpoints window and using one of the following toolbar buttons:

Wi 1|D
View ¢ Insert » Delete

View Opens the Code window and displays the code at the location
where the breakpoint is set. To activate from the keyboard press <Enter>
or <V>,

Insert Opens a dialog box where you can specify a new breakpoint.
For hardware breakpoints, enter a breakpoint type before the
reference. To activate from the keyboard press <I>.

Delete Deletes the breakpoint the cursor is on. To activate from the
keyboard press <D>.

To modify an existing breakpoint, double-click <Button-L> on it's entry in
theBreakpoints window.

For more information, see theliting BreakpointsSoftware
BreakpointsandHardware Breakpointsections of this chapter.

4-18 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Editing Breakpoints

Command Line

Enter the following commands in tGemmand linedialog box
(<CtrI>+<L>) to insert and remove breakpoints, and open the
Breakpoints window:

BR[EAKPT] [-] [coderef [when-then 1]
BR[EAKPT] [-] [EXEC coderef [when-then]]
BR[EAKPT] [-] [WRITE memref [when-then 1]
BR[EAKPT] [-] [ACCESS memref [when-then 1]]

BR[EAKPT] with nocoderef opens th&reakpoints window.
BR[EAKPT]- with nocoderef deletes all breakpoints.

The following example will set aaccesdreakpoint at the hex address 4
0f200:

br access 203:0f200

The next example will set a conditiomalte breakpoint on the variable
pattern when it's value equals 25. When the condition is met, the value
of lights[4] will be setto ‘X’

br write pattern when pattern==25 then
lights[4]=="X’

Soft-Scope User’s Guide 4-19

Editing Breakpoints 4. Controlling Program Execution with Soft-Scope

Editing Breakpoints

To edit a breakpoint open tBeeakpoint edit dialog box by double-
clicking <Button-L> on an item in tigreakpoints window, or using the
window’sInsert toolbar button.

The dialog box shown in figure 4-6 allows you to define breakpoint status,
conditions, and specify an action to be performed when the breakpoint is
encountered.

i Breakpoint edit I

Status
= lon:

" temp

Type IWrite Addr Ipattern

“YWhen |pattern==12

Then |print"Hello world"'

(0] % I Cancel I

Figure 4-6: Breakpoint edit dialog box

Status Statusallows you to turn the breakpoint on or off, or
designate it as a temporary break.

Type Type can be any breakpoint type supported by the target
processor you are using. Possible types are Write, Exec,
or Access. ThBreak pull-down menu contains the types
that are available to you.

The default type iSoftware, which does not display in the

4-20 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Editing Breakpoints

Addr

When

Then

edit field, and for which there is no predefined name.
Leave the text box blank and the default will apply.

AnAddr address can be any memory reference, including
symbol references. See tbede Referencegction of
this chapter for more information.

When s the breakpoint condition. The condition is
evaluated when the breakpoint is encountered. If the
condition is true, the action entered inThen text box is
performed. Otherwise, target execution continues.

If the condition is invalid, Soft-Scope displays an error
message that allows you to abort execution of the
condition, provide a true/false response to the condition, or
edit the breakpoint specification and try again.

The following condition stops execution when the variable 4
pattern equals 5:

When: pattern==

Use any C-based expression in\itieen text box. See
theOperatorsection in th&xamining Data with Soft-
Scopechapter and appendix A for a list of valid operators.

Thenis the action taken when the condition is true. An
action can be any valid Soft-Scope command or macro.
The default action is to stop execution. If an error is
encountered, a dialog box opens that gives you the options
of aborting the action, ignoring the error, or editing the
breakpoint and trying again.

An example action would be to execute a Soft-Scope
macro that prints the value of a particular variable, sets a
breakpoint at another code location, and then executes to
that location in memory.

The example in figure 4-6 turns on a permanent breakpoint aftitpeat
the location of the variablmttern . When the value ghttern is
equal to 12, the string “Hello world” is displayed in Messagevindow.

Soft-Scope User’s Guide 4-21

Software Breakpoints 4. Controlling Program Execution with Soft-Scope

Software Breakpoints

There are two types of software breakpoints, permanent and temporary.
A permanent software breakpoint persists until itis removed or you exit
Soft-Scope. Atemporary software breakpoint clears itself after the
breakpoint is encountered. Software breakpoints stop target execution
when the line of code associated with the breakpoint is executed.

Soft-Scope causes this to happen by inserting an INT3 software interrupt
instruction in place of the instruction at the location where you want to
break. The INT3 is later replaced by the original instruction. If you try to
set a software breakpoint in ROM, Soft-Scope will use the EXEC
breakpoint type discussed in thardware Breakpointsection of this
chapter.

Dizplay

E:.:Eel::l_ltil:lr'l. .

Arccess...
write,..
Exec...

Permanent Software Breakpoints

You can specify software breakpoints in several ways:

» Use thdxecution...command from thBreak pull-down menu.
Enter a code reference in the dialog box. The example below will set a
software breakpoint at source line number 45.

Code reference: #45

* Find the code in théodewindow where you want to stop execution.
Move the cursor to the desired line of code, and choo8rd¢h&
toolbar button. This sets a permanent breakpoint at that line.

4-22 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Software Breakpoints

Use thBREAKPTcommand in th€Eommand linedialog box
(<Ctrl>+<L>) using the following syntax:

BR[EAKPT] [-] [coderef [when-thel{

The following example sets a software breakpoint at source line
number 83 of theutils module.

Command: br :cutils#83

To delete permanent software breakpoints, do one of the following:

From theCodewindow put the cursor on the source line where you
want to remove the breakpoint and choos8tbak toolbar button.

From theBreakpoints window put the cursor on the breakpoint you
want removed and choose theletetoolbar button.

Use the minus (-) parameter with BREAKPT command line
command and code reference: 4

Command: br - coderef

NOTE: When you set a breakpoint using an address, make sure

that the address reference refers to the start of an
instruction. Otherwise, the result is unpredictable.

Temporary Software Breakpoints

To set a temporary software breakpoint, fronGbdewindow, put the
cursor on the source line where you want the breakpoint and choose the
Temp breaktoolbar button.

To remove a temporary breakpoint from@welewindow, put the cursor
on the line where the breakpoint is located and choo3erig break
toolbar button.

Soft-Scope permits up to 32 temporary breakpoints.

Soft-Scope User’s Guide 4-23

Hardware Breakpoints 4. Controlling Program Execution with Soft-Scope

Hardware Breakpoints

Even though Soft-Scope has no hardware components, it can provide
hardware type breakpoints by using the debug registers that are found on
386, 486 and Pentium processors. The debug registers make it possible to
provide breakpoint conditions (access, write, instruction execution) and set
a breakpoint in code that is running in ROM. Two types of hardware
breakpoints are provided: Data and Exec.

Data Breakpoints

Two conditions can be applied to the Data breakpoint, Access and Write.
When the condition is met, execution is halted immediattdythe
specified memory location.

NOTE: If you set a data breakpoint on a stack-based variable and
the contents of the stack is changed, the breakpoint is no
longer valid.

Data breakpoints persist until you explicitly remove them. Removal is
accomplished using tiBreakpoints windowDeletetoolbar button or
via the command line which is discussed below.

Data breakpoints are set usingBneak/Access..orBreak/Write...
pull-down menu command3teakpoints windowinsert toolbar button,
and command line. When using thgert toolbar button, entaccess
orwrite in theTypetext box.

Command Line

You can set data breakpoints using the following syntax {bdahemand
line dialog box (<Ctrl>+L):

4-24 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Hardware Breakpoints

BR[EAKPT] [-] [WRITE memref[when-theli
BR[EAKPT] [-] [ACCESSmemref[when-thelj

The abbreviatioBRcan also be used to invoke this command. The
referenced breakpoint may be deleted by using the optional minus (-) in the
command.

Debug Registers

Debug registers (DR0-DR3) are found on 386 and up processors.
Because of the way the four debug registers work, one hardware
breakpoint can use more than one register, which limits the number of
hardware breakpoints you can set.

The number of registers used depends on the following:

1. Alignment of starting address
2. Length of variable referenced

A single register can cover any one of the following ranges:

Length: Address:

1 byte anywhere

2 bytes aligned on a 2-byte boundary (word aligned)
4 bytes aligned on a 4-byte boundary (dword aligned)

For example, assume you have an 11-element artay , declared as
typechar, and that the first byte of the array begins at address 1007P.

Setting the following breakpoint would use all four registers: one for the
first byte from 1007P to 1008P, one for the next four bytes, another for the
next four bytes, and one for the last two bytes.

Command: br access arrayx

If you knew that all oairrayx was going to be accessed at the same time,
you could do the following and use only one register:

Command: br access byte arrayx

Soft-Scope User’s Guide 4-25

Hardware Breakpoints 4. Controlling Program Execution with Soft-Scope

Exec Breakpoints

Exec breakpoints make use of the debug registers anktieon
instruction execution onlgondition. They are provided to allow you to
set a breakpoint on an instruction that resides in ROM.

When you set a software breakpoint, Soft-Scope checks the reference you
entered to see ifitisa RAM or ROM address. Ifitisa ROM address, a
software breakpoint won’t work because software breakpoints save the
instruction that exists at the referenced location, then write over that
instruction at the referenced location with an INT3 break instruction. This
can’'t be done in ROM.

For ROM addresses, Soft-Scope automatically sets an Exec breakpoint.
So, most of the time, you don’t have to worry about whether the reference
isin RAM or ROM.

Sometimes, however, the RAM location where a breakpoint is set might be
written over by the application you are debugging. In such a case, Soft-
Scope checks the reference you entered and if it corresponds to a RAM
location, it sets a conventional software breakpoint. Then, when you run
the application, the code at the referenced location is overwritten, removing
the software breakpoint. To avoid this situation, use the Exec breakpoint
instead of a software breakpoint.

Command Line

Use the following syntax in tli@mmand linedialog box (<Ctrl>+<L>)
to set an Exec breakpoint:

BR[EAKPT] [-] [EXEC coderefwhen-thel

4-26 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Executing to a Location

Executing to a Location

Soft-Scope provides several methods to start target execution. Some of
them will stop execution at a specific location.

Go

Use théso toolbar buttoril or enteGOin theCommand linedialog
box (<Ctrl>+<L>) to start target execution until a breakpoint or fault is
encountered.

G[O] [WRITE | ACCESSnemref .
G[O] [[EXEC] coderef 4
G[O] [RETURN]

If you do not specify where you want execution to stop, and there are no
other breakpoints set, Soft-Scope opens a dialog box asking you to
confirm that you really want to start execution.

Go to a Specific Location

To execute to a specific location, use®@weto...command from the
Codepull-down menu. To specify a code location, enter a code reference
in the text box. To specify a memory location, enter a memory reference.

You can add a condition to the memory reference by entering a hardware
breakpoint specifier (access, write, exec) in front of the memory reference
using the following syntax:

[WRITE | ACCESSnemref
[[EXEC] coderef

Soft-Scope User’s Guide 4-27

Executing to a Location 4. Controlling Program Execution with Soft-Scope

Return from a Procedure Call

Use theGo to return toolbar buttorﬁl or theCode/Go to return
pull-down menu command to return from a called procedure.

Soft-Scope calculates the expected return address from the stack and sets
a breakpoint at that address. Target execution is started and continues until
that breakpoint or some other breakpoint in the same scope is
encountered.

Go to a Cursor Position

1. From th&€odewindow, move the cursor to the line where you want
execution to stop.

2. Click on thé&5o to cursortoolbar buttof'I .

Soft-Scope sets a temporary breakpoint on the line containing the cursor
and starts target execution. Execution continues until that breakpoint or
some other breakpoint in the same scope is encountered.

Stop

Use theStoptoolbar buttoril orStop command from th€odepull-
down menu to stop execution without setting a breakpoint. This function
works only when your target contains an interrupt-driven CSi-Mon
monitor.

Soft-Scope can only stop an interrupt-driven monitor when interrupts are
enabled. If you have long sections of critical code that disable interrupts,
don’t use th€ode/Stoppull-down menu command while that code is
executing.

4-28 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Executing to a Location

When interrupts are disabled, Soft-Scope continues to assume that you
have an interrupt-driven monitor, and receiver timeout messages may
result.

The configuration optiotarg.polling tells Soft-Scope when you are
debugging code that disables the interrupts. Udgisiay command
from theOptions pull-down menu to set this optiondio to eliminate
receiver-timeout messages:

targ.polling=on

Soft-Scope User’s Guide 4-29

Procedure Call Sequence 4. Controlling Program Execution with Soft-Scope

Procedure Call Sequence

To display the procedure-call sequence us€#tls command from the
Codepull-down menu.

Dizplay. ..
Maodule

| LCals
Trace |
Step into
Step over
3o b retura
Goto...
Stop

Calls Window

Figure 4-7 shows thealls window. The top entry is the current

execution point. Each entry that follows, called the entry on the line above
it.

To display the code for a specific call in @adewindow, double-click

<Button-L> on the call’'s entry or move the cursor to the desired call and
press th&iew toolbar button.

4-30 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Procedure Call Sequence

».—“d Soft-Scope H=] E3

File Code Data Break Macro Options Yiew *Window Help
|z |vlole-] 2] v

=ax=00000228 eos=0208 eip=000004s2
ehx=00000000 ss=022Z8 esp=000010a4 ebp=000010L0O
ecx=60000007 ds=0228 esi=00000000 f==0000

edx=000002 [N [_ O] =]
rcutils.delay fine (), Current execution point.
icutils.delay#129 Ll

scutils, delay_fine I S
s130 ||« | -+l |
#131
#132 j**'
4133 /* DELAY FINE
#134 f**'_l

=lg135 wvoid far delay fine[count | -
| | vl
For Help, press F1 i

Figure 4-7: Calls window

Command Line

To open th€allswindow,entelCALLS in theCommand linedialog
box (<Ctrl>+<L>).

Soft-Scope User’s Guide 4-31

Stack Information 4. Controlling Program Execution with Soft-Scope

Stack Information

If you have several nested calls, and you believe your application may be
running low on stack space, erS@IACK USAGEnN theCommand line
dialog box to display the following information in fdessagevindow:

» Range of addresses that the stack occupies
* Number of bytes free and the percentage of free stack space

» Number of bytes and corresponding percentage of stack space
available when the deepest nested call was made

EnterSTACK RESETin theCommand linedialog box (<Ctrl>+<L>)

to clear stack locations between the stack pointer and the bottom of the
stack. If you are at a specific execution point and want to see the stack
usage from this point on, USSACK RESET

After usingSTACK RESET run your application, then en®&FACK
USAGEIn theCommand linedialog box to see how close you have
come to overflowing your stack area.

4-32 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Trace Window

Trace Window

TheTrace window records all actions that affect execution. This
information is useful in determining how your application reached a
particular state. This information includes:

» Source lines executed via stepping

* Breakpoints encountered

Program faults encountered

Application loads and restarts

Modification of application registers

Modification of application memory

I/O port access

Breakpoints set and deleted 4
Procedures not stepped over

».—ud Soft-Scope [_[O] =]
File Code Data Break Macmo Options Wiew ‘wWindow Help
I3 |m|oe-1] T WIF'|S|A|B|M||
essage PR T ace ToT=] Ol =i
Concurrent S|(Start of trace buffer) -
renu file 1
oo main
[tcwain.main() — Break]
hr rcmain.maingls =~z
oo L 7]
[:cwain.main#l5 — Break]
Cod *
[seutils.display lights() - Into] =10 x|
o 0202 :0000049k v
[soutils.display lights#117 - goCur] j‘
oo return
[Inzide :cmain.main#le (0208 :00000074) - EBreal
4| | v
} -
| W oz
Faor Help, press F1 s

Figure 4-8: Trace window displaying procedures

Soft-Scope User’s Guide 4-33

Trace Window 4. Controlling Program Execution with Soft-Scope

Trace information is kept in a circular buffer that is stored in a disk file.
Controls for flushing the buffer and setting the file size are discussed later in
this section.

Dizplay. ..
Module
Callz

T |
Step into
Step over
3o b retur
Gaoto...
Stop

Open th@race window by selectindrace from theCodepull-down
menu.

Toolbar Buttons

TheTrace window displays information in four formats: Procedures,
Source, Assembly, and Bus. Select the format using the toolbar buttons
described below:

wlp[s[a[B[m]

View ¢ Procedures ¢« Source » Assembly ¢ Bus « Mode

View Displays selected code, as identified by the cursor position,
in theCodewindow. You can also double-click <Button-
L> on the code. To activate from the keyboard press
<Enter>or <V>,

4-34 Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Trace Window

Procedures Displays procedures and execution events. See figure 4-8.
To activate from the keyboard press <P>.

Source Displays procedures, execution events, and source for
each line executed. See figure 4-10. To activate from the
keyboard press <S>.

Assembly Displays procedures, execution events, source, and
assembly code for executed lines. See figure 4-11. To
activate from the keyboard press <A>.

Bus Same as Assembly for this version of Soft-Scope. To
activate from the keyboard press .
Mode Opens thAssembly display modeslialog box as
shown in figure 4-9. To activate from the keyboard press
<M>.
i Azzembly display modes |
Code—— Address
" Assembly " Physical
+ Hex & Logical
oK Cancel

Figure 4-9: Assembly display modes dialog box

Code TheCoderadio buttons control the way assembly source
is displayed Assemblymode is the default optioklex
mode adds opcodes in hex to the display.

Address Théddressradio buttons control whether assembly
code addresses are displayed as physical (with a “P”
suffix) or logical (in Segment:Offset format).

Soft-Scope User’s Guide 4-35

Trace Window

».—._4] Soft-Scope

File Code Data Break Macro Options Yiew Window Help

4. Controlling Program Execution with Soft-Scope

=1 E3

X

I E|m|e|el] 2] wle] S|A|B|M||

—|Of >

=1 E3

Concurrent Sﬂenu file 1 .I iIA
indows V. lgo meain J
Serial No. [:cmain.main() — Break]
10 woid main ()
[Cconnected |br :cmain.main#ls i
oo 4
[:cwain.main#li — Break]
Cod *
S
ﬁ'fmm #16 display lights(pattern }; v
14 [icutils.display lights() - Into] j‘
#15 #107 wvoid far display_ lights [ptrn |
g1 o 0208 : 0000049k

#17 [soutils.display lights#117 - goCur] =
416 < v
#19 T -
4| | v

For Help, press F1 A

4-36

Figure 4-10: Trace window displaying procedures and source

Soft-Scope User's Guide

4. Controlling Program Execution with Soft-Scope Trace Window

Command Line

EnterTRACEin theCommand linedialog box (<CtrI>+<L>) to open
theTrace window.

».—._4] Soft-Scope =] E3

File Code Data Break Macro Options Yiew Window Help

1w 2] we| S|A|B|M||

B _[O]=
= T— o %
Concurrent 3l(Start of trace huffer) -~
indows Wi. heenu file 1
Serisl No. o main
[tecwain.main() - EBreak]
[Connected [#10 woid madin () hd
0Z08:00000027 push ehx Ld P
br :cmain.main#ls M= 4
Tl i
:cmaln”“.malnm 6-B [:cmain.main#l5 — Break] o
#14 H#15 pattern++; j‘
#15 0Z08:00000052 oy eax, 00000Z2Z8H
a=l#16 0Z08:00000057 oy d=,ax
#17 0208 : 00000059 inc [Qo0000k4H] =
#1858 1| | v 2
#10 T -
| | ol
For Help. press F1 i

Figure 4-11: Trace window displaying procedures, source, and assembly
code

Soft-Scope User’s Guide 4-37

Trace Window 4. Controlling Program Execution with Soft-Scope

Trace Buffer

The trace buffer is a circular buffer that is flushed after each load operation.
If you want to display trace information for several loads, use the following
option in your configuration-optionsi file:

trace.load=off The trace buffer is flushed after each load.
Off is the default.
trace.load=on The trace buffer is not flushed.

Trace File Size

You can control the size of the trace file using the following option in your
configuration-optionsni file:

trace.filesize=128 Defaults to 128 kilobytes, but can be set
from 16 to 1024 kilobytes.

4-38 Soft-Scope User's Guide

5. Examining Data with
Soft-Scope

Chapter Contents

OVEBIVIBW ...ttt ettt ettt e e e e e e e e e e e e e e e e s s et b b eeneeeeees 5-3

NUMDEIS ... 5-3
Table 5-1: Default number bases..........ccccvveeieiiiiiiii, 5-5

(@ 01T = 1 (0] 1S PPTPN 5-6
Table 5-2: C OPEratorscooviiiiiiiiiiiii et 5-8
Table 5-3: Soft-Scope specific operators and functions........... 5-9

SHIINGS ettt e e e e e
Table 5-4: String eSCape SEQUENCESuuuurrrrrrrrernrrrrenrrereeeeeeeeeees

Reference SUMMAIY ..o
Table 5-5: Reference SUmMmary.............eeeeeeeeeeeiiieeeeiennninnnnnns 5:12

The Data WINGOWccooeiiiiiiiiiiiiiee ettt
Figure 5-1: Data reference dialogbax............ccoovviiiiinnnnnnn. 5:14
Figure 5-2: Display modes dialog boxX.............cccoovviviiiiinnnn. 5:15
Figure 5-3: Datawindow in Evalmode..............cccocovvvivinnnn. 5:17
Figure 5-4: Data window in expanded format........................ 5-18

Data REEIENCESuuuiiiiiiiiiiiiiiiiie e 5-19
Figure 5-5: Before double-click on“-="..........ccccoiviiinn. 5:23
Figure 5-6: After double-clickon“->"...........ccccceeiiiiiiiinnen. 5:23

ReferenCing MemOTIYcoooiiiiiieccee e 5-25

REfEIENCE SCOPING ...veeeiiiiiiiii e 5-27
Table 5-6: Reference Scoping........coooeeeeeeiieiiieieeiieeens 5-28

The WatCh WINAOWuvueiiiiiiieeee e 5-30
Figure 5-7: Display modes dialog boX..............euveveviiiiiinnnnnnn. 5:31
Figure 5-8: Watch window in Normal display made............... 5-32

Soft-Scope User’s Guide 51

5. Examining Data With Soft-Scope

The SymbBOoIS WINAOW.ovviiiiiiiiiee e 5-34
Figure 5-9: Symbols window in Procedures mode................. 5-36
BUIIt-IN FUNCHIONS ...uviiiiieiice e 5-37
TYPE OVEITIAES ... e e e e e e e e e e e e e e e aeaaaaeeas 5-40
The DUMP WINUOW ... 5-46
Figure 5-10: Dump modes dialog boX............covvvvvvvvvinnennnnnnn. 5:47
Figure 5-11: Dump window in Byte mode, 8 bytes per.line.....5-49
Uploading Memory and REQISTEISc.couiiiiiiiiiiiiiiiiiiieeeeee e 5-50
The RegiSters WINUOWoooviiiiiiiiieiiiire s e e 5-52
Figure 5-12: Registers window for 80386EX target............... 5-54
CPU SITUCIUIES ...t 5-56
Figure 5-13: IDT desCrPOLS......cccvvuiieeerieeiiiiee e e 5-56
Figure 5-14: Data window in Normal mode........................... 9-58
Figure 5-15: Datawindow in Eval mode................cccovvvnnnee. 5-58
Table 5-7: Descriptor abbreviations...........c.cccoocovviiinnld 5-59
Real-M0Ode SITUCIUIESuveeiiiee e e e e e e e e e aeeeannnes 5-60
Table 5-8: Peripheral Control BlocK.............ccooviiiviiiiiiniennnnd 5-60
Table 5-8: Peripheral Control Block (continued).................... 5-61

Application INPUYOULPULcooeiiiiieeeeeeee e 5-64

5-2 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Numbers

Overview

This chapter tells you how to reference and change data, and how to use
operators, functions, and type overrides to view data in a format that will
provide you with maximum information. You can reference and view static
symbols anywhere your application can access them, and you can access
many symbols outside the current execution context. In addition, you can
reference, change, and dump memory, and access and change registers
and CPU structures.

Numbers

Soft-Scope supports the following number formats and bases:

« Binary numbers consist of the digits 0 and 1 and are designated by the
Suffix “Y”.

» Decimal numberare made up of the digits 0..9 and are designated b 5
the suffix “T".

» Hexadecimal numbecsn be designated by the prefix “0x”, or with the
suffix “H”. They may contain the digits 0..9 and the letters A..F. Hex
numbers must start with a digit to distinguish them from symbol names:

e000ffa9H must be represented @D00ffa9H or
Oxeoooffa9

» Floating-point numbersontain a decimal point and an optional
fraction. They must begin with a digit (0..9) rather than a decimal point
to differentiate them from symbol names:

.132 must be represented@s32
» Exponential numbers use standard exponential format:

mantissa may have an optional + or -
must start with characters 0..9

Soft-Scope User’s Guide 5-3

Numbers 5. Examining Data With Soft-Scope

must contain a decimal point followed by some
combination of characters 0..9

exponent must begin with an “E”
may have an optional + or - followed by some
combination of characters 0..9

The following example demonstrates an exponential number:
-1.098567E+4

Setting the Default Base

If a number does not have a suffix or prefix, its base is determined from the
value of théaseconfiguration option. To change thesseoption value,

use théisplay command from th@ptions pull-down and th#lodify

toolbar button.

Thebaseoption may be set ttO or16. If the option is not set, numbers
default tdbase =10.

Some number bases are not determined by the base option. See table 5-1
for a list of number types and their default bases.

54 Soft-Scope User's Guide

5. Examining Data with Soft-Scope

Table 5-1: Default number bases

Numbers

Number Type

Default Base

b800:04ac Parts of a pointer always default to hex
#123 Line numbers are always assumed to be
:module#123 decimal

123 <Spacebar>

Counts are always decimal

byte at arrayx

Length counts are always assumed to be

len 123 decimal

array[123], Array subscripts are always assumed to be

array[2..6] decimal

8..20 Ranges of nhumbers default to decimal

Ox1fff>>x Operand for shift operations (x) default to
decimal

PORT 7f Ports default to hex

PORT (9000)

Ports with expression values (defined as
anything surrounded by parentheses) default to
decimal

RETURN (12)

Return counts default to decimal

SELECTOROF

Selector overrides default to hex

-4.000000045E+5

Exponential format defaults to decimal

Soft-Scope User’s Guide

55

Operators 5. Examining Data With Soft-Scope

Operators

Soft-Scope supports three classes of operators:
Symbolic Which provide quick access to data references
Arithmetic Which provide standard arithmetic operations

Logical Which provide standard, C-based true/false
operations

Symbolic Operator Examples

Symbolic operators are used as shortcuts to access data references.
Examples include pointer dereferencing, ranges, and type overrides:

*table_pointer
array_1[1..24], array_1[1...] and array_1[...24]
long at $ss:ebp

Arithmetic Operators Return Numeric
Values

Arithmetic operators are C-based arithmetic operators entered in the
Command ling ? (question mark), ddata/Examinedialog boxes. The
following is an example of the increment operator and module operator:

++i

i % 3

5-6 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Operators

Logical Operator Examples

Logical operators are those used in true/false C-based operations.
Examples include thendoperator &8 and thenot equabperator &):

i &&
i1=1

Soft-Scope operator precedence is the same as C operator precedence.
In table 5-2, operators on the same line have the same precedence, and
rows are ordered in decreasing order of precedence.

NOTE: Soft-Scope does not use C’s conditional operator (
and C’s comma operatar); Soft-Scope’s SIZEOF
parallels C’s sizeof.

Table 5-3 lists Soft-Scope specific operators and their precedence relative

to the C operators in table 5-2. .

Soft-Scope User’s Guide 57

Operators

Table 5-2: C operators

Operator
Precedence

<< >>

N
N
1
\%
\
I

Ro

&&

= *= /| = O%= &= "= =

1
1
+
1
1
|
|

5-8

<<=

5. Examining Data With Soft-Scope

Associativity

left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right

>>= right to left

Soft-Scope User's Guide

5. Examining Data with Soft-Scope Operators

Table 5-3: Soft-Scope specific operators and functions

Operator/Function Precedence
(:module#23) same as ->
Type overrides same as ++
OFFSETOF same as ++
SELECTOROF same as ++
LENGTHOF same as ++
LEN[GTH] same as ++
AT same as ++
PORT same as ++
RETURN same as ++
SIZEOF same as ++
(#123) same as ++
: (:module name) same as ++
. (.symbol name) same as ++

:(1234:5678)
.. (array[1..2])
... (array[...3])
... (array[4...])

For further information, see tperatorsection in appendix A.

Soft-Scope User’s Guide

between ++ and multiply

between add and <<

between add and <<

between add and <<

59

Strings 5. Examining Data With Soft-Scope

Strings

You can enter data in string format, delimited by either single or double
guotes and containing any printable ASCII character.

The only difference between the use of single and double quotes is that
Soft-Scope includes a terminating null character within the string delimited
by double quotes.

If you type Soft-Scope will create
“frogs” frogs\O
‘frog\'s’ frog’s

Escape Sequences

An escape sequence represents the name of a character, a hex or octal
number. Escape sequences start with the backslash (\).

NOTE: Escape sequences create a problem that Soft-Scope
solves the same way C does. If you actually want a
backslash in a string, you must use two of them (\\). For
example, if you want to define a string that contains a
subdirectory pathname, you must use the following format:
“C:SUB_DIRI\SUB_2”". Thisis not an issue when Soft-
Scope prompts for a file name.

The escape sequences listed in table 5-4 are supported within strings, and
are case-sensitive asin C.

5-10 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Strings

Where to Enter Strings

You can enter strings in t@®mmand line, ? (Question mark), data
dialog boxes.

Table 5-4: String escape sequences

Escape Sequence | Description Hex Value
\0 Null Character 0x00
\b Backspace 0x08
\t Horizontal Tab 0x09
\n Newline 0x0a
\r Carriage Return oxod
Double Quote 0x22
Single Quote 0x27
\\ Backslash 0x5c
\f Form Feed 0x0c
\a Audible Bell 0x07
\v Vertical Tab 0x0b
\xnn nn is hex value nn
\nnn nnn is octal value N/A

Soft-Scope User’s Guide

5-11

Reference Summary

5. Examining Data With Soft-Scope

Reference Summary

The following table summarizes how to reference a data element or a

memory address:

Table 5-5: Reference summary

1234.0ffff

12345678L
12345678P
arrayl

array1[1..3]

#Hlinenumber

. module#tlinenumber

:module.procname.variable

‘module.variable

pointername

* pointername

5-12

Refers to alogical address. Note the
“0” before the first “f.” Allnumbers
that start with an alpha character
(A..F) must be prefaced with a “0”.

Refers ta linear address.
Refers to a physical address.
Refers to an array (unqualified).

Refers to arange of elements in an
array.

Refers to aline in the current
module.

Refers to aline in a module other
than the current one.

Refers to a variable whose scope is
in another procedure in another
module.

Refers to a variable whose scope is
in another module.

Refers to the value of a pointer.

Refers to the area of memory where
a pointer points (a dereferenced
pointer).

Soft-Scope User's Guide

5. Examining Data with Soft-Scope Reference Summary

Table 5-5: Reference summary (continued)

pointername->elementname Refers to a single element of the
structure where a pointer points.

$register Refers to one of the target
processor’s registers.

stringat 200 0ffff Refers to a string at the given
memory location.

structurename Refers to a structure (unqualified).

pointername .elementname Refers to a single element of a
structure.

structxat 200:0ffff Refers to the display of the contents

of the given address in the format
defined by the data type stffuctx

typeoverride variable Refers to a memory location where
the variable is stored displayed as the
type specified bypeoverride

5

variable Refers to a variable in your program.
wordat$ss:$esp Refers to the word at the top of the
current stack.

Soft-Scope User’s Guide 5-13

The Data Window 5. Examining Data With Soft-Scope

The Data Window

The contents of memory locations associated with data are displayed in the
Data window as shown in figure 5-3. A variable can be evaluated in the
Data window by double-clicking <Button-L> on it in t@»dewindow.

Examine...
Wwiatch...
Symbalz
Benisters
Damp...

CPU structures... ®

To open th®atawindow, choos&xamine...from theData pull-down
menu. This opens tiata referencedialog box. Enter one or more

data references (separated by a comma) in the text box as shown in figure
5-1.

Data reference: ’paﬂﬂrn, :cmain.speed, lights[3]

Cancel [

Figure 5-1: Data reference dialog box

5-14 Soft-Scope User's Guide

5. Examining Data with Soft-Scope The Data Window

Toolbar Buttons

Items in théata window are manipulated by using the toolbar buttons
discussed below:

lerMlWl

Modify « Mode » Watch

Modify Modifies the value of a data reference. Place the cursor on
a data reference. Click <Button-L> on Medify
toolbar button and enter the new value in the dialog box.
Double-clicking <Button-L> on a data reference will also
open the dialog box. To activate from the keyboard press
<Enter>.

Watch Moves a data reference from thatawindow to the
Watch window. Place the cursor on a data reference ang
click <Button-L> on th&Vatch toolbar button. To
activate from the keyboard type <W>.

Mode Opens thBisplay modedialog box as shown in figure
5-2. To activate from the keyboard type <M>.

5

—kModes

~ Mormal ok]
i Ewral

T Twpes Cancel I
i~ Address

Figure 5-2: Display modes dialog box

Soft-Scope User’s Guide 5-15

The Data Window

Normal

Eval

Types
Address

5. Examining Data With Soft-Scope

Displays variable’s name and value. Display content varies
depending on the variable’s data type.

Displays additional information if available. Display
content for a pointer includes the LDT or GDT, physical
address, and number of bytes from the pointer location to
end of segment.

Displays reference name and type.

Displays selector, offset, and physical addresses associated
with a symbol.

Command Line

To display data references in ata window enter the following
commands in theommand linedialog box (<Ctrl>+<L>). EVAL opens
theData window in Eval mode. TYPE opens itin Type mode.

EVAL(memref coderef) [, (memref coderef)]*

TYPE (memref coderef) [, (memref coderef)]*

5-16

Soft-Scope User's Guide

5. Examining Data with Soft-Scope The Data Window
».—'_4] Soft-Scope =] B3
Fil= Code Data Break Macro Option: Yiew Window Help
I 3|me|e]] 2] MmM|w|
| Message =10] =]

-cutilz.c_dataf
#03
#94
#05
3=1
w*=ga7
#o8
#9909

4]

nawe [0] .

namwe[1]. .
. Ox74
. Ox68

name[2] .
name[3] .

name [4]. .
. OxZ0
. OxZ0

name [5] .
name[6] .

name[7]. .
. Ox35
. Ox35

phone [0]
phone[1]

phone[2] .
. Ox31
phone[4] .

phone[3]

Oxe5

Ox20

000

0x35

Ox32

+66
+101
+116
+104
+32
+32
+32
+0
+53
+53
+53
+49
+50

J|ioutils.c data.customerlist[0] structure
. 04z

g
‘e
.
e

a

L2 = ntnn o~

0100 0010
0110 0101
0111 0100
0110_100a0
0010_0ooo
0010_0ooo
0010 _oooo
00oo_oooo
0011 o101
0011 o101
0011 o101
0011 oool

0011 0010 =]
M oz

= init[i]);
one init[i]);

-

Figure 5-3: Data window in Eval mode

Double-click for Quick References

In theData andwatch windows, you can use the double-click <Button-

L> function to manipulate the way you view structures, unions, and
pointers. Assume the following structure:

strucl structure {...}

Double-clicking on <Button-L> or after the word “structure” toggles the
display between compressed format and expanded format shown in figure

5-4.

Soft-Scope User’s Guide

5-17

The Data Window 5. Examining Data With Soft-Scope

»,—.‘_4] Soft-Scope =] =

File Code Data Break Macro Option: Yiew ‘Window Help

I E|o|r|e1] 2] M M|w]

= Data C[OIx] =
Soft-Scope routils.o data.customerlist[0] structure =
Concurrent nawe[0..7]={'Beth %0'}
phone[0..7]={'5551234%0"'}
linkfor. . 0Z08:00000502 -> structure {...} -
roubils.e data.customerlist[1l] structure M2
[— name [0, . 7]={ "0V x06N0NONOx 10"}
phone [0..7]={'\040404040404040 ' =10 %]
Cootile o dataHay linkfor. . 0000:00000000 -> structure {...} v
#03 icutils.c_data.customerlist[Z2] Strmcture AI
#04 name [0. . 7]={""=x02%x05%0404bY=02040 '}
#95 phone[0..7]={"%a"0%0%0%x94 Y x 108080 '} Ht[i]);
HOB linkfor. . 0000:00000000 -> structure {...} Hnit[4i]);
a7 a | l
#O8 T O TOC ST = OO
#09 oldoust->linkfor = customer; -
4] | v

Figure 5-4: Data window in expanded format

Double-clicking <Button-L> before the word “structure” places the
structure in a dialog box for modification. Use this feature to reference
pointers as follows:

Double-click <Button-L> Displays the pointer in a dialog box before the
“->” for modification

Double-click <Button-L> Dereferences the pointer and on the “->”
displays the dereferenced data

Double-click <Button-L> Displays the indirect data in a dialog after the “-
>" box for modification

5-18 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Data References

Data References

Soft-Scope can reference and examine the following variable types:

Simple variables
Arrays
Structures
Pointers

Unions

Bit fields

If you use a Soft-Scope keyword, suctP@RT, INT, orOFFSETOF,
as a variable, you won'’t be able to examine it in the data window unless
you put a period in front of it to distinguish it from a symbol:

Datareferenceport
Simple Variables

Reference a variable by typing the variable’s name at the prompt. If the
variable isn’t a structure or array, Soft-Scope determines the variable’s
type and displays the hex and decimal values of the associated memory
locations:

Data referenceiattern
PATTERN = 0x00000041 +65

Soft-Scope User’s Guide 5-19

Data References 5. Examining Data With Soft-Scope

Referencing Arrays

If the variable is an array, referencing it without an index or subscript
implies you mean the entire array. You can also display single elements of
an array, or ranges of elements, by using the appropriate subscripts. You
can even use integer variables as subscripts.

Displaying an Entire Array
To reference an entire array, like the character array shown below, use the
array name:

Data referencetghts
LIGHTS[O..7]={**-**.x}

The display is similar for numeric arrays:

Datareferencaiumarray
NUMARRAY][0..9]={2,0,3,1,8,6,7,3,7,4}

Displaying a Single Element of an Array
To reference single elements of an array, use the array name with a
subscript:

Data referencelghts[2]
LIGHTS[2]={"*}

Displaying a Selected Number of Arrays

To reference several array elements, use the array name with a subscript
range:

Data referencetghts[2..6]
LIGHTS[2..6]={—*-*}

5-20 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Data References

Use the open-ended operators to reference array elements from or to a
specific element:

Datareferencetghts[2...]
Datareferencetghtsy...6]

Variables as Subscripts

You can use an integer variable as a subscript. If the valus 8fthe
following example demonstrates the reference and the resulting display:

Data referencetghts]i]
LIGHTS[3]={"-}

If you specify an index that is outside the defined size of an array, Soft-
Scope returns the value of the memory location specified, but a question
mark is displayed next to the index.

LIGHTS[97]= {*} 5

Referencing Structures

Soft-Scope handles structure references similarly to arrays. To reference
the entire structure namsiticI , use its unqualified name:

Data referencestruc1

To reference an individual element of a structure, type a period to separate
the structure’s name from the member’s name:

Data referencestruci.xint

Soft-Scope User’s Guide 5-21

Data References 5. Examining Data With Soft-Scope

Referencing Unions

Union-reference syntax is based on the syntax of structures; simply enter
the union’s name:

Data referencalate

union {
struct {
unsigned char day;
unsigned char month;
unsigned char year;
} today;
unsigned long days_since_year_0_ad;
} date;

Referencing Bitfields

Soft-Scope also handles bitfields like structures. To reference a structure
of bitfields, use the structure’s name:

Data referencesnet_pkt
struct enet_pkt_type {

unsigned int crc :2;
unsigned int data :16;
unsigned int pkt_type :3;

unsigned int source_addr 4

unsigned int dest_addr :4;
unsigned int preamble :3;
} enet_pkt;

To reference a single bitfield, separate the structure name from the bitfield
name with a period:

Data referencesnet_pkt.data

5-22 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Data References

Referencing Pointers

To reference the value of a pointer, use the pointer’s name:
Data referenceildcust

Dereferencing Pointers

To dereference a pointer, double-click <Button-L> on the pointer operator

(->) in theData orWatch window. See figures 5-5 and 5-6 for
examples.

[:; Data IMi[=] E3

cutils.c data.oldeust=(0340):0000 -»> structure {...}
« | 2

Figure 5-5: Before double-click on “->”

[Data

*icutils.c data.oldeust structure
nare [0..7]=4{'L40T 0450440 '}
phone[0..7]={ "' LNOehOh 27 x 053405 "}
linkfor. . (0540} :06c9 -» structure {...}

(| | 2

Figure 5-6: After double-click on “->"

Double-clicking <Button-L> before the pointer operator lets you modify

the pointer, and double-clicking <Button-L> after the pointer operator lets
you modify the indirect data.

Soft-Scope User’s Guide 5-23

Data References 5. Examining Data With Soft-Scope

When a pointer points to a structure, the pointer’'s name with the structure-
pointer operator (->), entered in a dialog box, references a single element
of the structure:

Data referenceaildcust->name

Selector Is Not Stored in Memory

Near pointer selectors for flat and small memory model applications aren’t
stored in memory. The offset is stored and the selector is assumed. When
a dereferenced near pointer has parentheses around its selector, Soft-
Scope is telling you that the selector is not actually stored in memory.

Making Complex Assignments

Use complex expressions in assignment statements. Expressions such as
b=c or a + (b=c) can assign values to arrays, GDTSs, or other complex

types:

byte at 100P len 5= byte at 40p len 5
byte at 20P len 5 + (byte at 100P len 5= byte at 40p
len 5)

5-24 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Referencing Memory

Referencing Memory

You can reference memory with any address, symbol name, or expression
that resolves to a memory location. You can even use data types to dictate
formatting.

» Use acode reference as a memory reference, because code is stored
inmemory:
symbolname

» Alogical address consists of a selector and an offset, separated by a
colon:

selector:offset

* Alinear address is an address that has not been passed through the
processor paging tables. Use the following syntax:

hexnumber L

» Aphysical address is the address as it appears on the data bus, arjs
identical to a linear address if paging is not enabled. Use the followi 5
syntax:

hexnumber P
» Use operators and values in any combination:

symbolname operator hexnumber

» Datareferences aren’t necessarily stored in memory, so you can’t use
them as memory references unless you know they resolve to memory
addresses:

variablename

Soft-Scope User’s Guide 5-25

Referencing Memory 5. Examining Data With Soft-Scope

Using the Symbols Window to Find Code
References

Use a code reference when you are referencing a program symbol:

Memory reference: display_lights

Use logical references when you know the selector of the memory you
want to view. The following example displays memory at offset 0f200 in
the segment given by selector 203 in the formsthaftx

Memory reference: structx at 203:0f200

If you know the name of the symbol you want to reference, but not the
logical address, use the ADDRESSOF operator (&). For example:

Command lineeval & lights
0228:000000b8 gdt [69] 00005238p - 4136 bytes

This example displays memonaticty in the format o$tructx

Memory reference: structx at &structy

Use a physical reference to view memory without regard to the segment
that contains it. The reference in the example below might be used to seta
hardware breakpoint on the first byte of a variable that begins at physical
address 20P:

Memory reference: byte at 20P

By using an expression as a memory reference, you can define memory
locations that you might not know the physical or logical address for. The
expression in the example below references a location 10 hex below the
base pointer register:

Memory reference: $ss:$ebp-0x10

5-26 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Reference Scoping

Reference Scoping

You can access the same variables your application can access.

You can also reference many variables outside of your current program
context by using the following basic guidelines:

* Putacolon in front of the module name.

 Use periods to separate modules from procedures and procedures
from variables.

Examples

See the examples below to learn when to use the module name, procedure
name, colon, and period to define a reference.

To reference a global variable or a static variable in the module where t
execution pointer is currently located, use the variable’s name: 5

Data reference:

You can reference a static variable in a procedure other than the one where
the execution pointer is located by separating the procedure name from the
variable name with a period:

Datareference:_data.i

Reference a variable declared in a module other than the one the execution
pointer is located in by putting a colon in front of the module name, and a
period between the module name and the variable name:

Data referencecutils.i

To reference a static variable defined in a procedure located in a module
other than the one where the execution pointer is, put a period between the
module and the procedure and the procedure and the variable:

Datareferencecutils.delay.i

Soft-Scope User’s Guide 5-27

Reference Scoping 5. Examining Data With Soft-Scope

By using the rules listed in table 5-6, you can reference any variable
located in any module or procedure as long as it is not a register variable or
automatic (stack-based) variable.

Table 5-6: Reference Scoping

Where is the variable declared? How should it be referenced?

Same procedure variablename
Global in scope variablename
In a different procedure, but the procname.variablename

same module, static

In a different module, but not in a | :modname.variablename
procedure

In a different module and in a :modname.procname.variablename
procedure, static

Referencing Automatic (Stacked-based)
Variables

Because stack-based variables are stored on the stack, they are only
accessible when the execution pointer is in the procedure where they are
located. Trying to reference these variables from outside the procedure in
which they are defined displays an error message.

If you try to examine a stack-based variable before it has been initialized, a
value may be displayed in tBatawindow, but it will probably be the

wrong value. There will be a question mark next to the reference in the
display because you have to step at least once in a procedure to initialize
the stack for that procedure.

5-28 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Reference Scoping

Also, before you examine variables that aren't initialized until the program
accesses them, you should execute to a point at least one line beyond the

one that assigns a value to them.

Referencing Register Variables

Register variables aren’t stored in memory, so Soft-Scope can’t access the
value of a register variable unless the execution pointer is in the procedure
where the variable is defined. Trying to reference these variables from
outside the procedure in which they are defined displays an error message.

Soft-Scope User’s Guide 5-29

The Watch Window 5. Examining Data With Soft-Scope

The Watch Window

TheWatch window is used to monitor data references as your application
executes on the target. The contents oMéeh window are updated

after every Soft-Scope command that causes the target to execute, such as
single stepping. If you are using an interrupt driven CSi-Mon monitor, the
window update rate is defined by thesc.refreshconfiguration option

(default value is zero seconds). SeeSbie-Scope Configuration
Optionssection in the chapt@onfiguring Soft-Scoper details on

using this option.

One way to place a data reference intdtagch window is by using the
Watch...command from thBata pull-down menu. Enter the data
reference you would like to monitor in the dialog box. To monitor more
than one reference at a time in\tatch window, enter multiple
references in the dialog box, separated with a comma.

Examine...

Symbalz

Beaisters

Dumnp...

CPU stuctures...

To place a data reference into¥iatch window from theCodewindow,
double-click <Button-L> on the data reference. This will move it to the
Datawindow. Then use th&atch toolbar button to place the data
reference into thé/atch window.

You can also use thatch toolbar button in th8ymbols Data, and
Registerswindows to place a reference in tatch window.

5-30 Soft-Scope User's Guide

5. Examining Data with Soft-Scope The Watch Window

Toolbar Buttons

Use the following toolbar buttons to manipulate items iN\tateh

window:

M| 1]0]
Modify « Mode ¢ Insert « Delete

Modify Assign a value to the scalar variable nearest the cursor
position. To activate from the keyboard press <Enter>.

Insert Insert a data reference in iMatch window by entering a
data reference in the dialog box. To activate from the
keyboard press <Ins> or <I>.

Delete Delete a data reference from Watch window identified
by the cursor position. To activate from the keyboard
press or <D>.

Mode Change thé/atch window display mode. Figure 5-7

shows th®isplay modesdialog box. To activate from
the keyboard press <M>.

Display modes Ed I

—hModes

= MNormal [ok 1]
i Ewal

T Twypes Cancel I
= Address

Figure 5-7: Display modes dialog box

Soft-Scope User’s Guide 5-31

The Watch Window

Normal

Eval
Types
Address

».—“_4] Soft-5cope

Fil= Code Data Break Macro Options %iew Window Help

5. Examining Data With Soft-Scope

Display variable name and value. Display content varies
depending on variable’s data type. See figure
5-8 for an example.

Display additional information if available.
Display reference name and type.
Display selector, offset, and physical address.

=] B3

| F|n|p|e|1] 2] smim[i1]p] ‘

E Dump 0228:000000b4 O] =]
0228 :000000k0 =

el 03 00 00 00 oo 00 ..

0228:000000k8 2d 2d 2d 24 2d 2d 2d 2a —--————-—- * —
0z228:000000c0 33 33 23 41 33 33 43 41 33#a33ca
0228 :000000c8 33 33 23 41 33 33 43 41 33#a33cha -
HHHHHHHHHHHH e ey
Ll
pattern=0x01 1 ' = 3
-culils.c._dataHa7 - goCur(2] rcwain. speed=0x000003 8 +1000 7
PEE lights[0..7]={"'-—-7———- ' ﬁ
#94 _pl
#95 . v . t[1i]);
HO6 strepyloustomerlist[i] .phone, phone init[i]);
=507 customer—>linkfor = NULL;
#0080 if (oldcust '= NULL)
#09 oldocust->linkfor = customer; -
.| | H oz
v

For Help, press F1

Figure 5-8: Watch window in Normal display mode

5-32

Soft-Scope User's Guide

5. Examining Data with Soft-Scope The Watch Window

Command Line

Use the following syntax in tt@mmand linedialog box (<Ctrl>+<L>),
to place a reference in ttéatch window:

WATCH [memref] [, memref]*

Watching a Pointer

When you place a pointer in tAéatch window, the value of the pointer
itself is monitored for change and not the location where the pointer is
pointing. To view the data pointed to by the poirttereferenceéhe
pointer by double-clicking <Button-L> on the pointer operator (->).

Watching Memory

To watch the contents of any other memory location, use a type overrid 5
The following command line example will cause the first byte at the addres
specified to be displayed in ttéatch window:

Command linewATCH BYTE AT 200:12

NOTE: A large number of references in iMatch window will
degrade Soft-Scope’s performance because it has to fetch
information from the target for each reference.

Soft-Scope User’s Guide 5-33

The Symbols Window 5. Examining Data With Soft-Scope

The Symbols Window

View the symbols of your application by opening3ienbolswindow.
BothData/SymbolsandCode/Modulepull-down commands open this
window, but the display mode is different.

Dizplay...
Exarmine... LCall=
Whatch... Trace
Symbolz Step into
Benisters Step over
Damp... (3o b return
CPU structures... ® Goto...

Stop

Toolbar Buttons

The toolbar buttons described below allow you to view your application’s
symbols:

wim[P|s|w|-]

View ¢ Modules ¢ Procedures » Symbols « Watch ¢ Assign

View Places the symbol identified by the cursor irCiat
window ifitis a variable, or opens tBedewindow at
the symbol’s location if it is a module or procedure. When
theCodewindow is open, you can press Lineate
toolbar button to return the display to the current execution
point. To activate from the keyboard press <Enter> or
<V>,

5-34 Soft-Scope User's Guide

5. Examining Data with Soft-Scope The Symbols Window

Modules Displays a list of your application’s modules. To activate
from the keyboard press <M>.

Procedures Changes the display to include your applicatioasles
and procedures. See figure 5-9 for an
example. To active from the keyboard press <P>.

Symbols Changes the display to show the application’s modules,
procedures, and symbols (variables). To activate from the
keyboard press <S>.

Watch Places the symbol identified by the cursor position in the
Watch window. To activate from the keyboard press
<W>.

Assign (=) Lets you assign a filename to the module identified by the
cursor position. To activate from the keyboard press <=>.

Command Line

Use the following syntax in tli@mmand linedialog box (<Ctrl>+<L>)

to select what information is placed in 8yenbolswindow:

MODULES [[TO]:modnamg
MODULES modname=filename

MODULES modname =filenamassigns a listing or source file to a
program module. This is useful to use in macros, or to specify a pathname:

modules :cmain="c:\progl\main.c”
PROCEDURES [[TOtoderef

SYMBOLS [[TO] coderef

If you use an address focaderef the window will open with the
procedure nearest the address displayed.

Soft-Scope User’s Guide 5-35

The Symbols Window 5. Examining Data With Soft-Scope

Displaying Global Symbols

Global symbols, including procedure names, are displayed at the top of the
Symbolswindow when you select either timceduresor Symbols

toolbar buttons. When you selectihedulestoolbar button, only the
headingGlobal Symbolss displayed.

».—“_4] Soft-5cope H=] B3

File Code Data Break Macra Options %iew ‘window Help

lzlwlolel+] 2| wim[pls|w|-]

000NNk i =] P I
S_l,lmhuls 0] x]
#lobal errno; AI
lobal get doserrno_ ptr;
Global get_errno_ptr;
remain "orhaswind samphwee3Zptomain. o S st
mainl) &z
reutil=. "o aswind sampiwec3Zphoutils. o _ O]
Soulieo ta :E:ZE:;? lights [} —_lﬁ
#93 L delayin =
#94 .
4o delay finef) - '
1| ol
#OE = - - — ilh;
o 2000 customer—->linkfor = NULL;
#98 if [oldcust != NULL)
#0009 oldoust->linkfor = customer; -
| | 2
For Help, presz F1 .z

Figure 5-9: Symbols window in Procedures mode

5-36 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Built-in Functions

Built-in Functions

Soft-Scope provides six functions that allow you to perform specialized
operations. They can be used in any valid expression (the parentheses
around the parameters are optional):

LENGTHOF) Returns the number of array elements
associated with reference

OFFSETOFX) Returns the offset portion of pointer

PORT) Performs target-hardware I/O at partOnly
8-bit, 16-bit, or 32-bit type overrides are
allowed with this function.

RETURN or Returns the expected return address of

RETURN () the current procedure. Retunh(wherenis an
integer parameter, calculates the return address
for the nth nested call.

SELECTOROFX) Returns the selector portion of poinker 5

SIZEOF(X) Returns the size @in bytes.

NOTE: Use a period (.) in front of these reserved words if you

have a variable of the same name.

Determining Addresses

OFFSETOF, SELECTOROF, and RETURN help you determine the
address of areference. Use the ADDRESSOF operator (&) with the first

two functions:

Data referencaiffsetof &lights

Soft-Scope User’s Guide

5-37

Built-in Functions 5. Examining Data With Soft-Scope

Using Return as a Memory Reference

RETURNCcan be used to find an expected return address, or in
combination with other Soft-Scope commands to define a memory
reference. The following example causes target execution until the
expected return address of the current procedure is reached:

Command: go return

This is the same as choosing®weeto return toolbar buttonEI.

Determining How Many Elements in an
Array

LENGTHOF s useful if you need to determine how many elements are in
an array. If the reference doesn’t represent an array, LENGTHOF returns
a‘l’. The following example shows a reference to the &glaig and the
resulting display:

Datareferenceaengthof lights

0x00000008 8

Reading and Writing to Port Addresses

You can read from or write to I/O port addresses using PORT. Valid port
addresses range from 0 to OFFFFH.

CAUTION: Be careful about reading what you have just written to an
I/O address. With some devices, reading from them may
change their state, and may not return a value just written
to them.

5-38 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Built-in Functions

Also, it is important that you reference the correct number of bytes when
reading to or writing from a port. For example, if you read 32 bits from a
16-bit port 3, Soft-Scope will read all of port 3 and 16 bits of port 4
(assuming port 4 is at least 16 bits).

If you write a byte to a word-length port, your target could hang while
waiting for an expected second byte of data.

To view the value of a port, reference the port il dialog box:

Data reference:port 3
The following example writes a byte-length value to port 3:

Data reference: port 3 = 04H
The next example reads 32 bits from port 2:

Data reference: dword port 2

Soft-Scope User’s Guide 5-39

Type Overrides 5. Examining Data With Soft-Scope

Type Overrides

By using a type override, you can cause a variable to be displsyed
thoughit were a type other than that declared in your application. Type
override does not perform a true type conversion on the variable, but
merely overlays a new type at its address.

This is especially helpful for logical, linear, or physical references, since they
have no types assigned to them, and for symbols that have been compiled
without type information.

Type overrides have two basic forms:
type-override variable
type-overrideAT address
The following can be used to instantigiee-override
* Any C datatype.

* Anydatatype listed itable A-1, “Data types for use in type
overrides,” in appendix A.

» Any user-defined variable that is currently accessible by your
application and Soft-Scope (stack-based variables must actually be on
the stack).

Applying a Type Override to a Variable

The simplest of the above forms specifies a type before a variable:
Data referenceong n

5-40 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Type Overrides

Applying a Type Override to an Address

Use the second form to apply type overrides to addresses, including
registers, selectors, and pointer (use the AT operator).

The following example displays the contents of the specified logical address
in pointer format:

Data referencepointer at 200:0ffff

The next example displays (as a double) the contents of the memory
specified by a logical reference:

Data referencedouble at $ss:$ebp
(Soft-Scope requires that register names begin with a‘$’.)

If you had just pushed the contents of the flags register and needed to
know what had been pushed, you could use the following to display the
data on the stack in flag format:

Data reference:fitype at $ss:$esp

fltype at 0040:000000d0 = 0x03e8 1000
[nt iopl=0 of df IF TF SF ZF af pf cf]

AT works with TSS overrides:

Data reference:TSS386 at $tr

You can use the ADDRESSOF operator (&) to specify an address for use
with the operator AT.

Soft-Scope User’s Guide 5-41

Type Overrides 5. Examining Data With Soft-Scope

Using a Variable to Superimpose its Data
Type over the Address of Another
Variable

You can also override the address of a symbolic reference to superimpose
the type of one reference over the address of another. Suppose two
structurestructx andstructy . Use the following override to display
structy in the format o$tructx

Data reference: structx at &structy

Or you can use an address to designate the location you want overlaid with
anew format:

Data reference: structx at 200:ffOf

Using a User-declared Variable to Define
a Type Override

A user-declared variable can also be a type override of data at a specified
address. The following example displays memadsysthebp-0x10
in the data-type format of the variable

Data reference:n at ($ss:$ebp - 0x10)

5-42 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Type Overrides

Changing the Amount of Memory
Displayed

The operator LEN[GTH] helps you specify how much memory you want
Soft-Scope to display.

This example displays 10 words beginning at the location of
Data referenceword n length 10

The next example dumps ten bytes beginning at the address specified:
Command:dump byte at 200:1df length 10

Using Expressions in Type Overrides To
Do Mathematical Operations

You can use expressions in type overrides. 5

The example below causes Soft-Scope to apply the type override to the
contents of the memory locationpfdd 2 to the value in that location,
and display the result:

Data referencdong n + 2
0x00000004 +4

The next example displays one word beginning at a stack memory location
10 (hex) less than the base pointer:

Data referenceword at ($ss:$ebp - 0x10)

Soft-Scope User’s Guide 5-43

Type Overrides 5. Examining Data With Soft-Scope

Assigning Values Using Type Overrides

You can assign a value to a variable using a type override.

The following example assigns a real value of 3.0 to the memory location
associated with the varialsleeed . The data type—float in this
example—and the value must be of the same type:

Data referencefloat speed = 3.0

Make complex assignments by using a type override on the right side of the
equal sign:

200P len 10 = byte at 100P len 10

If you want to examine the new value in the format of the override’s type,
be sure to reference the variable using the appropriate basic form:

Data reference:float speed

Use complex expressions in assignment statements. Expressions such as
b=c ora+(b=c) can assign values to arrays, GDTSs, or other complex

types:

byte at 100P len 5 = byte at 40p len 5
byte at 20P len 5 + (byte at 100P len 5 = byte at 40p
len 5)

Displaying Data in its Most Useful Format

Use type overrides to manipulate the way data is displayed so you can see
the information you need in a format that is easy to understand. Here are a
couple of examples.

Assume a C pointer calledv_names , declared as pointing thar (that
iS,char*dev_names):

Data reference:*dev_names

5-44 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Type Overrides

The example above only displays a single byte, because of the declared
type. If you knew that the pointer was pointing to a string of characters,
you could override the default display and display the entire string:

Data reference: string *dev_names
‘DISK\0’ 5

Use a variable defined as an array along with the operator AT to display a
section of memory in array format:

Data reference:arrayl at 400:6

There are other ways to do the same thing. For example, if in the example
abovearrayl is a3-elementarray fohg , the following creates the
same display:

Data reference:long at 400:6 length 3

Soft-Scope User’s Guide 5-45

The Dump Window 5. Examining Data With Soft-Scope

The Dump Window

TheDump window is used to modify the value of a target memory location
and display target memory in a formatted list. The display contains three
columns showing the memory address, hex representation, and ASCII
representation of memory values. See figure 5-11 for an example. The
display format is selected using Mede toolbar button described below.

Exarmnine...
Wwiatch...
Symbalz
Benisters

CPU structures... ®

One way to open tH2ump window is to use theump... command from
theData pull-down menu and entering a memory reference in the dialog
box. For example, entieyte at203:0f in the dialog box to open
theDump window and display memory starting at the logical address
203:0f with the byte highlighted.

NOTE: If you don’t specify an address the first time you open the
Dump window, memory will be displayed starting at
physical address 00000000P.

5-46 Soft-Scope User's Guide

5. Examining Data with Soft-Scope The Dump Window

Toolbar Buttons

Use the following toolbar buttons to modify items or change their display

format:
hm| M | 5 |

Modify « Mode ¢ Shift

Modify Change the value of the memory location identified by the
cursor position. Enter the new value in the dialog box. To
activate from the keyboard press <Enter>.

Shift Shift the starting address of each line forward by one byte to
align 16- or 32-bit fields. To activate from the keyboard press
<S>.
Mode Change thieump window display mode. Figure 5-10 shows
theDump modesdialog box. To activate from the keyboard
press <M>. 5
Modes
i~ Hword I~ Expand
0 YWard
QK I Cancel I

Figure 5-10: Dump modes dialog box

Soft-Scope User’s Guide 5-47

The Dump Window 5. Examining Data With Soft-Scope

Byte
Word

Hword
Dword
Expand

NOTE:

5-48

Set hex display width to byte (8 bits).

Set hex display width to word. The word will be either 16- or
32-bits depending on the value of slgen.wordsize
configuration option. The default valuesgfn.wordsizeis 32.
You can change its value usinghsplay command from the
Options pull-down menu as described in 8&ft-Scope
Configuration Optionsection of th€onfiguring Soft-
Scopechapter.

Set hex display width to half-word (16 bits). This radio button
appears whesym.wordsizeequals 32.

Set hex display width to dword (32 bits). This radio button
appears whesym.wordsizeequals 16.

Set display width to 16 bytes. This does not effect the value of
sym.wordsize

The address format depends on the type of memory
reference you used to open henp window. Fora

logical reference, the address format will be logical. For a
physical reference, the address format will be physical.

Soft-Scope User's Guide

5. Examining Data with Soft-Scope The Dump Window

Command Line

From the command line, enter a memory reference @dhenand line
dialog box (<Ctrl>+<L>) using the following syntax:

DUMP[[TO] memref]

».—“_4] Soft-5cope H=] B3
File Code Data Break Macra Options %iew ‘window Help
I F|s|o|@] 2] wmM]s]|
E Dump 0228:00001082 =]
: 00001040 Eeth -
0ZZ8:00001048 35 35 35 31 32 33 34 00 5551234,
0ZZ8:00001050 00 00 OO OO0 00 00 53 74 5t —
02Z8:00001058 Os 00 OO OO 78 10 00 00x...
Ty e Y ST S S =Y SR =TSR ST =M= S =T}] x
L« | i
& Code = 3
:cutile.c_datafas - golCur(2) A
#0 customer = scustomerlist[i]; -
#O5 strepyloustomerlist[i] .name, nawe _init[i]);
#O6 strepylcustomerlist[i] .phone, phone init[i]);
#97 customer—>linkfor = NULL;
o 3eE] if (oldoust !'= NULL) —
#0009 oldocust->linkfor = customer;
#100 i -
< | 27
Far Help, press F1 o

Figure 5-11: Dump window in Byte mode, 8 bytes per line

Soft-Scope User’s Guide 5-49

Uploading Memory and Registers 5. Examining Data With Soft-Scope

Uploading Memory and Registers

To save memory and register values in a disk file, usépioad...
command from thEile pull-down menu. From the disk file you can view
or edit these values and reload them usinfdhd... command from the
File pull-down menu.

Load...

Symbol load...

Bestart. .
T

Wigw log

Command line... Chl-L

1 CSAMP ABS

Exit / Cluit Crl-0

Enter the starting address, length (in bytes), and the name of the disk file
where you want to store this information inth@oad dialog box. To

save the register values, emégisters after the length and before the
file name. To save an entire procedure or module, enter its name in the
dialog box followed by the file name.

NOTE: If you enter an address without a length, only the address
is saved.

To store 8 bytes starting at the logical address 208:00000028 in the file
test.dat enter the following:

208:00000028 length 8 c:\temp\test.dat

To store thelelaymodule in a file nametklay.dat entedelay
testdat inthe dialog box.

5-50 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Uploading Memory and Registers

Command Line

Use the following syntax in tli@ommand linedialog box (<Ctrl>+<L>):

UPLOAD memrefREGISTER][S]filename
UPLOAD REGISTER([Slilename

Using the optional REGISTERS parameter causes the current register
image to be saved to the Upload file.

NOTE: If Soft-Scope determines that filenameyou give
already exists, it asks if you want to append to the file,
overwrite the file, or escape so you can try again with a
newfilename

Format of Upload Files

Upload files contain a series of one-line text records that you can editw
atext editor. The format, described below, must be maintained when yd
edit the file. Otherwise Soft-Scope will consider the file invalid or corrupt,
and it won't be able to load it.

» Eachfile contains a tag record that has the time and date the file was
saved.

» Eachrecord in the file begins with a ‘+’, which marks the record for
identification and format when reloaded.

» Eachregisteris listed as one record, in assignment format for easy
reading.

» Eachregion of uploaded memory contains the starting address, length,
and binary image. Atthe end of a line where binary data are
displayed, there is a \r\n (carriage-return/newline sequence), which
Soft-Scope uses for newline recognition.

Soft-Scope User’s Guide 551

The Registers Window 5. Examining Data With Soft-Scope

The Registers Window

TheRegisterswindow allows you to examine, modify, and monitor
register values. The contents of the window varies for different members
of the x86 family. Figure 5-12 shows the registers for a 80386EX target.

Examine...
Watch...
Sumbolz

Reqisters
Dump...
CPU structures... ®

To open th&egisterswindow,use th®isterscommand from the
Data pull-down menu.

Toolbar Buttons

The contents of a register can be modified or monitored using the toolbar
buttons described below:

lerWl

Modify « Watch

Modify Change the contents of the register identified by the cursor
position. Enter the new value in the dialog box. To access
an individual register fields, entéeldname inthe
dialog box. For example, to change the zero flag bitin the
efl register to 1, ent@efl.zf=1 in the dialog box. To
activate from the keyboard press <Enter>.

5-52 Soft-Scope User's Guide

5. Examining Data with Soft-Scope The Registers Window

Watch Place the register identified by the cursor position in the
Watch window. To activate from the keyboard press
<W>.

Command Line

EnterREG in theCommand linedialog box (<Ctrl>+<L>) to open the
Registerswindow.

Accessing Registers When the Target is
Running

If you are using an interrupt-driven CSi-Mon monitor and interrupts are not
disabled with the optiotarg.polling=on, you can access system registers

while your application is running. Question marks (?) identify registers th

are not displayed.

Soft-Scope User’s Guide 5-53

The Registers Window 5. Examining Data With Soft-Scope

».—u‘«] Soft-Scope =] E3

Fil= Code Data Break Macra Options Wiew ‘window Help

I Eslo|e|] 2] Mw

Dump 0228:00001082 =] -
~ Registers !lil-
DZZB:DE ax=00001040 c==0Z08 eip=0000042c -
Dz28 00 |Ekx=00001040 ss=0228 =sp=00000fel =bp=000010k4
.~ |ecx=60000000 d==022Z28 e=i=00000000 f==0000 i
=dx=00000000 e==0228 edi=00000000 gs=0000 i
=f1=00000202 [wm rf nt iopl=0 of df IF tf sf =zf af pf cof] E
~ . |er0=T7ifefff8 [pg ET TS em mp PE] ldtr=0000 tr=0230 .
cedtize & 5—_nopoooo0 [pfla=00000000 | gdb=00004akd gdl=025f f
ﬁgg Cr3=00000000 [pdbr=00000] idb=00004d10 1id1=03ff |=
goe (1] | 2l
4=l customer->linkfor = NULL;
*luog if f{oldeust != NULL) —
#0090 oldoust->linkfor = customer;
100 0 -
| | Moz
For Help, press F1 A

Figure 5-12: Registers window for 80386EX target

5-54 Soft-Scope User's Guide

5. Examining Data with Soft-Scope The Registers Window

Contents of the Registers Window

The contents of tHeegisterswindow display varies for different
applications. For example, 32-bit 80386 applications support different
registers than 16-bit 80286 applications. All register-subfield displays have
certain conventions in common:

See th®ata Types, Operators, Registers, and Descripapgzendix for

Subfields displayed with an equal sign and a value (pri=0) are made up
of more than one bit. See your processor reference manual to
determine the number of bits.

Subfields displayed in uppercase letters are iarilig) state.
Subfields displayed in lowercase letters are infih@) state.

Subfields are displayed right-to-left, with the least significant bit (LSB)
on the right and the most significant bit (MSB) on the left.

Subfields that will not change or that do not apply to your processor

are not displayed.
Subfield names are taken from Intel reference manuals. 5

more information.

Soft-Scope User’s Guide 5-55

CPU Structures 5. Examining Data With Soft-Scope

CPU Structures

CPU structures can be viewed and modified usinDa&teewindow.
Figure 5-13 shows@ata window containing IDT descriptors for an Intel
80386EX.

».—"‘4] Soft-Scope =] E3

File Code Data Break Macro Options Wiew ‘wWindow Help

I Eoe|eo] 2] MiM|w]

:0000001a DPL=0
$idt[1] 01=386 Int gate 0028 :00000027 DPL=0
$ide[2] 0Z=386 Int gate 0028 :0000007d DPL=0

§idt[3] 03=386 Int gate 0028:000000cd DEL=0 hd

$idt[4] 04=386 Int gate 0028:000000da DEL=0 H

$idt[5] 0553896 Int gate 0028:000000e7 DEL=0
e e i dt [6] 06=386 Int gate 002Z8:000000£4 DEL=0

coulis 6 dSSH e 9r[7] 07=386 Int gate 0028:00000101 DPL=0 Z

#94 L. 4r[8] 08=386 Int gate 0028:0000010= DEL=0 =l

#95 leidr[9] 089=386 Int gate 0028:0000011se DFL=0 LElill:
#96 eidt[10] 0s=386 Int gate 002%:0000012kb ppr=g fRitlills
#97 leidr[11] 0b=386 Int gate 0OOZ8:0000013b DPL=0

FHE98 leide[12] 0c=386 Int gat 0028:0000014b DPL=0 =
gate :
#98 l:idt[13] 0d=386 Int gate 0028:0000015h DEL=0
#100 o5 ar[14] De=386 Int gate 0028:0000016k DPL=D_I;| =
(A | v v
Far Help, press F1 i

Figure 5-13: IDT descriptors

To view your target's CPU structures in iata window, use thEPU
structures...command from thBata pull-down menu. Select what you
want to view from the companion menu. The menu example below shows
the structures and peripherals for an Intel 80386EX.

NOTE: The contents of theéPU structures...will vary depending
on your target.

5-56 Soft-Scope User's Guide

5. Examining Data with Soft-Scope CPU Structures

Symboalz

Beqisters

Dump...

CPU structures... FGOT(]

D

HOTI
S ectar(]
FFPagedir[]
Chip zelects
Senal ports

Timers

Parallel ports
Befresh contraol
LConfig contral
Interrupt
$BEMAPCFG
Fports2
Power/Clock

You can access individual descriptors by treating the GDT, IDT, and LDT
as if they were arrays of structures. To view the 9th GDT element, select
Data/Examine...and ente®gdt[8] in theData window dialog box.

NOTE: Put a dollar sign ($) in front of the descriptor name to
convert a symbolic reference into a CPU reference.

Soft-Scope User’s Guide 5-57

CPU Structures 5. Examining Data With Soft-Scope

[::Data _ O] x|
dt[3] 0040=Data WR-AC 00000410L offsets 0000..1197 DPL=0
J | ol

Figure 5-14: Data window in Normal mode

Figure 5-14 shows the descripatawindow in Normal mode. Figure
5-15 shows the same descriptor witha¢a window in Eval mode. See
table 5-7 for a list of descriptor abbreviations used iD#ta window.

[::Data _ O] x|
gdt[8] 0040=Data WR-AC 000004100 Lin~O01197H DEL=0 ghP av
<| | 2

Figure 5-15: Data window in Eval mode

Command Line

To place a CPU structure in hata window, use the following syntax in
theCommand linedialog box (<Ctrl>+<L>):

EVAL (memref coderej [, (memreficoderef]*

NOTE: To view page tables, use the Page macro found in the
macro filessswin32.mac

5-58 Soft-Scope User's Guide

5. Examining Data with Soft-Scope CPU Structures

Table 5-7: Descriptor abbreviations

Abbreviation Meaning

WR Write/read
ED Expand down
AC Access

RO Read only

Modifying a Descriptor Element

To modify an element from tiata window, complete the following
steps:

1. Putthe cursor on the element you want to change.
2. Select th#odify toolbar button.

A dialog box containing something like the following appears:
3.

Delete the equal sign (=).

Enter a period (.), subfield and an equal sign.
5. Enterthe new value and press <Enter>.
Your modified dialog box might look like the following:
$gdt[2].limit=4fffh
NOTE: If you enter a new value after the equal sign (=) without the
period (.), an error message will appear.

For Intel 80386EX, $SDA is the State Dump Area.
$SDA is a structure defined in SMM memory that holds
the machine state. $SDA is restored when entering and
leaving SMI.

Soft-Scope User’s Guide 5-59

Real-Mode Structures 5. Examining Data With Soft-Scope

Real-Mode Structures

The peripheral control block (PCB) is supported only for applications
running on Intel’s 80186/188 microprocessors. You can access this
structure by choosirgata/CPU structures../$PCB.

The $PCB structure members and subfields are displayed in a format
similar to the format used below. Changingipeb.rr.slavebit does not
change the display of the interrupt controller structbpel.pic)

immediately; you must exit tieegisterswindow and reopen it to see the
changed structure. Note that subfields of structure members are enclosed
in brackets, and members are not.

If your code changes the contents of the relocation register, use the
configuration optioarg.pcb=16-bit number. Thel6-bit numbers the
value that the $PCB relocation register should contain. Semyalur
80186/188, 80C186/C188 Hardware Reference Ma(huial order
#270788-001) for more information.

Table 5-8: Peripheral Control Block

$pch.rr Relocation register
[et slave ms base=fff]
$pch.timer[0..2] Timer/counter structure (three element
array)

count Current value of timer/counter
max_a Max countvalue a
max_b Max countvalue b (not used on timer[2])

control Timer control word
[en inh int riu mc rtg p ext alt cont]

5-60 Soft-Scope User's Guide

5. Examining Data with Soft-Scope Real-Mode Structures

Table 5-8: Peripheral Control Block (continued)

$pcb.pic Interrupt controller structure (Master
mode)

irg Interrupt request register
[iI3 12 i1 i0 dmal dma0 tm]

service In-service register
[i13 12 i1 i0 dmal dma0 tm]

mask Interrupt mask register
[i3 i2 i1 i0 dmal dma0 tm]

primask Interrupt priority mask register
[pri=0]

status Interrupt status register
[dhit tm2 tm1 tmO0]

poll Poll and poll-status register contents
[ir s4 s3 s2 sl sO]
eoi End of interrupt register

[spec s4 s3 s2 sl s0]
timers Timer control register

[msk pri=0]

dma0 DMA channel 0 control register
[msk pri=0]

dmal DMA channel 1 control register
[msk pri=0]

int0 Interrupt O control register

[sfnm c Itm msk pri=0]

Table 5-8: Peripheral Control Block (continued)

intl Interrupt 1 control register
[sfnm ¢ Itm msk pri=0]

Soft-Scope User’s Guide 5-61

Real-Mode Structures

$pch.pic

5-62

int2

int3

5. Examining Data With Soft-Scope

Interrupt 2 control register
[Itm msk pri=0]

Interrupt 3 control register
[Itm msk pri=0]

Interrupt controller structure (Slave
mode)

irg Interrupt request register

service
mask
primask
status
eoi

vector
timerO

[tm2 tm1 dmal dma0 tmO]

In-service register
[tm2 tm1 dmal dma0 tmO]

Interrupt mask register
[tm2 tm1 dmal dmaO tmO]

Interrupt priority mask register
[pri=0]

Interrupt status register
[dhlt tm2 tm1 tmO]

Specific end of interrupt register
[pri=0]
Interrupt vector register

Timer O control register
[msk pri=0]

Table 5-8: Peripheral Control Block (continued)

dma0

dmal

timerl

DMA channel O control register
[msk pri=0]

DMA channel 1 control register
[msk pri=0]

Timer 1 control register
[msk pri=0]

Soft-Scope User's Guide

5. Examining Data with Soft-Scope Real-Mode Structures

timer2
$pcb.dmal0..2]

src_ptr
dst_ptr
count

control

Timer 2 control register
[msk pri=0]

DMA controller structure (two-element
array)

Source pointer
Destination pointer
Transfer count
DMA control word

[dm dd di sm sd si tc int syn=0 pri tm2 st=0 wd]

$pch.umcs
$pch.Imcs
$pcb.pacs

$pch.mmcs

Upper memory chip select
[size=0 rdy=0]

Lower memory chip select
[size=0 rdy=0]

Peripheral address chip select
[base=0 rdy=0] 5
Midrange memory chip select

[base=0 rdy=0]

Table 5-8: Peripheral Control Block (continued)

$pcb.mpcs

$pch.pdcon
$pch.edram
$pch.cdram

$pcb.mdram

Soft-Scope User’s Guide

Memory/peripheral chip select
[size=0 ex ms rdy=0]

Power-down control register
[en div=0]

DRAM control register
[en time=0]

DRAM control register
[count=0]

DRAM control register
[base=0]

5-63

Application Input/Output 5. Examining Data With Soft-Scope

$VECTOR][] Array

$VECTORIs a built-in array that spans the real-mode interrupt vector
table. Itis an array of 256 32-bit far pointers, starting at linear address
00000000L. This feature is only applicable to virtual-86 and real-mode
applications.

To view the vector table in tiRegisterswindow, use thEPU
structures command in thBata pull-down menu and select
$Vector[].

Application Input/Output

Application I/0 allows you to receive output from, or send input to, the
target application, using the same serial line that Soft-Scope uses to
communicate with the target.

To view Application 1/O displayed in tihessagavindow, you can scroll

up or down and left or right using the cursor keys or your mouse. You can
also move or enlargeeMessagevindow. However, because input

goes directly to the target without being displayed in this window, you
cannot enter a line of input text and then edit it.

When theApplication I/O window is open, all cursor movements and key
sequences are sent to the target, which makes it impossible to support the
window manipulation functions available in other windows.

Press <F10> to toggle tAgplication I/O window open and closed.

5-64 Soft-Scope User's Guide

6. Configuring Soft-Scope

Chapter Contents

L@ YT 1= 6-3

(00 1T0] 0 53N VAY/ T To [0 1Y 6-3
TOOIDAr BULLONS......eeiiiiiiese et e e e e eeeeeeeannees 6-4
Save and Restore OPLiONSovvvveerereririiiiiririiiinreeierrna—.- 6-4
ComMMANA LING.......uiiiiiiiiiie e eeeeaeeees 6-5

Figure 6-1: Options window showing defaultvalues.................. 6-5
Soft-Scope Configuration OPtiONS............eceeieiiieeeeeeieeeeeeee 6-6
Table 6-1: Soft-Scope configuration optians..................cceeeeeeee 6-6

Control Default NUMbEr Base..........cccuvviviiiiiiiiiiiiiieeeeeeeeeeeee s 6-7
Change Log File Name...........ccooviiiiiiiiiiiice e 6-7
Define Initial Command............ooovviiiiiiiiiiiiie e 6-7
Define Initial Macro File............uvveviiiiiiiiiieiee e 6-7
Configure Host To Target CommuniCations..............eevevevieeeeeeeeeenn. 6-8
Control Screen Refresh Rate............ooovvvvviviiiiiiiiii s 6-8
Control Command Delay.............cceeiiiiiiiiieiiiiieeeece e 6-8
Define ComMMEAN..........uuueiiiiieee e e e e e e e eeeeeees 6-9
Change LOogFile Size..........coooviiiieeecciee e 6-10
Define Path To Application Files...............ouviiiiiiiiiiiieeee 6-10
Define Tab SPACES.........coooiiiiiiiiiiiieeeeeee e 6-10
Define Case for Symbol Search...........ccccoooviiiiiiiid 6-10
Access CPU-specific Data TYPES.......uuuiiiriiiiiiiiieieeeeeeeeeeeeeeee 6-11
Display LDTR register Value............ccceeeeviviveeeeeiiiieeee e eeeeee 6-11
Define Pointer Type Override Display.............cccccvvevieeivieiinnnl 6-12
Specify Integer Data TYPe SIZE.......ccovvveeeeeiiiiiiiiiiiiiiiiiien) 6-13

Soft-Scope User’s Guide 6-1

Chapter Contents Configuring Soft-Scope

Specify Floating Point Emulation Parameter................cccccceenn.. 6-14
Control Memory Caching...........ccoevuiiiiiiiiiiii e 6-14
Control Code Memory Cache Flush............ccccovvvviiiiiiicciennn. 6-14
Define Host Communication DEVICE............ceveviiiiiiieeeeeeniiiiiinns 6-:15
Specify Where To Search For Memory Control Black.............. 6-15
Specify Where To Search for the NULL Device............cccceun.... 6-16
Specify Size of Memory Reads...........ccooevevveiiiiiiieveiiiiieceeennd 6-16
Tell Soft-Scope that Interrupts are Disabled........................... 6-16
Verify Memory WIESoooveveecceee e 6-17
Specify temporary file location...............ccceeeeveiinnnnn 6-17
Specify the Size of the Trace File.........cccooveeiiiieiiiiiiieiie 6:17
Preserve Trace Data across Applications...........ccccceeeeeevevnnnnnn. 6:18

6-2 Soft-Scope User's Guide

Configuring Soft-Scope Overview

Overview

Soft-Scope uses a Windows-type initialization file (defasfiwin32.in)
containing a list of parameters and their values to configure many of its
features. Throughout this manual these options are explained in the context
of the features they control. However, for clarity and convenience, this
chapter contains a description of each of the available options, and how to
modify, add, or delete individual options in yeawin32.inifile.

Options Window

TheOptions window displays the current Soft-Scope configuration
options based on the Options section osgvan32.inifile. See figure 6-
1 for an example of t@ptions window.

Use thisplay command from th@ptions pull-down menu to open the
Options window.

Options

Dizplay

Feload zettings
Save zettings

Soft-Scope User’s Guide 6-3

Options Window Configuring Soft-Scope

Toolbar Buttons

The following toolbar buttons are used to modify, insert and delete

configuration options:
bM| 1 | D
Modify « Insert « Delete
Modify Change the value of an option identified by the cursor

position. Enter the new value in the dialog box. To
activate from the keyboard press <Enter>.

Insert Insert a new option and value by entering them in the
dialog box. To activate from the keyboard press <Ins> or
<[>,

Delete Delete the option identified by the cursor position. To

activate from the keyboard press or <D>.

Save and Restore Options

To save the current options in #ssvin32.inifile for the next Soft-Scope
session, use ttgave settinggommand from th®ptions pull-down
menu. To restore the current option settings froredivn32.inifile, use
theReload settingcommand from th®ptions pull-down menu.

6-4 Soft-Scope User's Guide

Configuring Soft-Scope Options Window

Command Line

You can use the command line to operGpgons window, save and
reload option settings, and modify an option value. Enter the following
syntax in th&€ommand linedialog box (<Ctrl>+<L>):

SET [[TO] optionname] open Option window
SET RELOAD | SAVE reload/save options
SET optionname=optionvalue modify an option

».—._4] Soft-Scope =] E3

File Code Data Break Macro Option: Yiew ‘window Help

ililt‘l}l{‘}‘l{'}"l»ll_| wi| 1| D

0228:00001040 42 65 74 68 Z0 Z0 20 00 Eeth -
0228:00001048 35 35 35 31 22 33 34 00 5551234,

0zzg8:00001050 00 OO0 00 00 OO0 00 53 74 =3 s
0ZZ8 00001058 06 o
SRR - Otions uﬁlm -
- < connect.bgmdrate=115700 ALY
onnect . compoxt=con? ~Ioix]
sculilz.c_dataos - gaCur(2) [F 70" wordsize=32 i
504 targ. dev=conmm. dev [il, ;I
#95 carg.verify=off ame, name_init[il) ;
HOB hone, phone_init[i]);
207 N I i :
o8 if (oldcust != NULL) —
#o9 oldcust->linkfor = customer;
#100 } -
<] | A
Option connect.baudrate redefined i

Figure 6-1: Options window showing default values

Soft-Scope User’s Guide 6-5

Soft-Scope Configuration Options Configuring Soft-Scope

Soft-Scope Configuration Options

Table 6-1 contains a list of the configuration options. Each option is
discussed below.

NOTE: Spaces are not allowed before or after the “=" when
assigning a value to an option.

Table 6-1: Soft-Scope configuration options

base log.winsize targ.dos_mcb_end
cmd.file src.path targ.dos_mcb_start
cmd.initial src.tab targ.dos_nul_end
cmd.macro sym.case targ.dos_nul_start
connect.baudrate sym.cpu targ.grain
connect.comport sym.Idt targ.polling
exec.refresh sym.pointer targ.verify
exec.wait sym.wordsize tmp.path
load.init_command targ.87emulate trace.filesize
load.init_enable targ.cache trace.load

load.setup_command targ.code_cache

load.setup_enable targ.dev

NOTE: The [File] and [Layout] sections of teswin32.ini
initialization file are modified by Soft-Scope as a result of
menu selections or dialog-box options. Do not modify
them manually by editing the file.

6-6 Soft-Scope User's Guide

Configuring Soft-Scope Soft-Scope Configuration Options

Control Default Number Base

base=10| 16

Setbaseto the decimal value of the number base you want to use when
inputting numbers (i.ebase=16ets it to hexadecimal). The choices are
10 or 16. Defaultbase=10

Change Log File Name

cmd.file=log filename

Use this option to specify a log file name. If you change the file name while
a debug sessionis in progress, the contents bbtheindow are not
changed unless you do a window captWenflow/Capture) or select
File/View log. Default:cmd.file=sswin32.log

Define Initial Command

cmd.initial=command
When Soft-Scope is invoked, it will perform the Command line comman

specified byommand befori¢loads an application. Default: None.

Define Initial Macro File

cmd.macro=macrofilename;...;macrofilename

This option lets you define the initial macro file(s) that is loaded when Soft-
Scope isfirstinvoked. Eaamaciofilenamenust include a complete

path, unless it’s located in the current working directory. Default:
cmd.macro=sswin32.mac

Soft-Scope User’s Guide 6-7

Soft-Scope Configuration Options Configuring Soft-Scope

Configure Host To Target
Communications

connect.baudratesbaudrate

This option is only valid for serial connections. The value diduelrate
can be either 300, 1200, 2400, 9600, 19200, 38400, 57600, or 115200.

connect.comportcomport

This is only valid for serial connections. The value ottmporican be
either "com1”, "com2", "com3", or "com4".

Control Screen Refresh Rate

exec.refresh=0 p

Set this option equal to the number of seconpgdqu want Soft-Scope to
wait before refreshing the screen while your application is running,
assuming your CSi-Mon monitor is interrupt driven. Zero disables the
screen-refresh function. Defawdkec.refresh=Fseconds).

Control Command Delay

exec.waitvalue

You can control the amount of timea{ueis in seconds) Soft-Scope waits
before attempting to process the next command. This is useful when
stepping, because if you step over a procedure that takes several seconds
to execute, Soft-Scope doesn'’t attempt to step again until the time
specified by this option expires. Press <Esc> to escape from the waiting
mode. Defauliexec.wait=3(seconds).

6-8 Soft-Scope User's Guide

Configuring Soft-Scope Soft-Scope Configuration Options

Define Command

load.init_command=command

This option allows you to specify a Command line command to execute
afteryour application is loaded. Typically, itis used to go to the section of
code being debugged, or to set initial breakpoints. Use it to call a macro
that does both.

Definecommandising the Command text box found inEile-Load,
File-Symbols andrFile-Restartdialog boxes. Default: None.

load.init_enable=on | off

This option provides a way to togggad.init_commandon and off. The
option is set using the Command check box found iRitkd.oad, File-
Symbols andrile-Restartdialog boxes. Defaulbad.init_enable=off.

load.setup_commandsommand

Use this option to specify a Command line command that will execute
beforeyour application is loaded. You could use this option to invoke a
macro that writes test data into memory to help you find uninitialized-
variable problems.

Definecommandising the Hardware Setup text box found irFites
Load andFile-Restartdialog boxes. Default: None.

load.setup_enable=on | off

This option provides a way to tog¢pad.setup_commandn and off.
Set the option using the Hardware Setup check box foundriig¢he
Load andFile-Restart dialog boxes. Defaulbad.setup_enable=off

Soft-Scope User’s Guide 6-9

Soft-Scope Configuration Options Configuring Soft-Scope

Change Log File Size

log.winsize=

The option changes the number of lines stored iop@vindow
temporary file. The value ofcan range from 16 to 1024. Default:
log.winsize=500

Define Path To Application Files

src.path=d:\subdin.. \subdin*.asm...;d:\subdin.. \subdii*.c

Use this option to define a path to your application. If you specify a path
when you load your application, Soft-Scope searches in the specified path
before searching the one definedshy path. Default: None.

Define Tab Spaces

src.tab=n

This option defines the number of blank characters that are used when
expanding a tab character in @@dewindow. Default: Dependent on
source language.

Define Case for Symbol Search

sym.case=on | off

When Soft-Scope searches the symbol table it will match the case of the
symbol whersym.case=on Defaultsym.caseoff.

6-10 Soft-Scope User's Guide

Configuring Soft-Scope Soft-Scope Configuration Options

Access CPU-specific Data Types

sym.cpu=cpu

This option allows you to access different CPU-defined types. For
example, if your application is for a 186 but you want to use 386EX
specific register types in type overrides,sy88.cpu=386EX

This option also changes the way code is disassembled. The default is the
actual CPU in your target. Set this option to any of the following values:

Pentium 486SX 486DX 486 386EX
386SX 386DX 386 376 286
188EA 186EA 188EB 186EB 188EC
186EC 188XL 186XL C188 C186
V20 V30 V40 V50 188
186 88 86 Am386Elan

Display LDTR register value

sym.ldt=on | off

Soft-Scope has the ability to reference code and symbols whose addr
don’t use the current LDTR. This option allows you to see which LDT is
used. Isym.ldt=on, the address display includes the LDT selector. If thi
option isoff, the LDT is not shown. Defaustym.ldt=off.

Soft-Scope User’s Guide 6-11

Soft-Scope Configuration Options Configuring Soft-Scope

Define Pointer Type Override Display

sym.pointer=value

When you uspointer as a type override, Soft-Scope can interpret itin
four different ways. To control this interpretation vsdtieto one of the
following:

farl6 selector with 16-bit offset
far32 selector with 32-bit offset
nearlé 16-bitoffsetonly
near32 32-bit offset only

Remember that a far pointer is a 16-bit selector and a 16- or 32-bit offset.
A near pointer has only an offset with a default selector. Default:
sym.pointer=far16.

6-12 Soft-Scope User's Guide

Configuring Soft-Scope Soft-Scope Configuration Options

Specify Integer Data Type Size

sym.wordsize=16 | 32

This option defines the size of the C integer dataibypéf you set this
option equal td 6, you can select from the following display modes:

Byte Select byte-width (8-bits) hex display with ASCII on the
right

Word Select word-width (16-bits) hex display with ASCII on the
right

Dword Select dword-width (32-bits) hex display with ASCII on
the right

If you set this option equal 82, you can select from the following display
modes:

Byte Select byte-width (8 bits) hex display with ASCII on the
right

Hword Select half-word-width (16-bits) hex display with ASCII
on the right

Word Select word-width (32-bits) hex display with ASCII on thﬂ
right

Default: 16

Soft-Scope User’s Guide 6-13

Soft-Scope Configuration Options Configuring Soft-Scope

Specify Floating Point Emulation
Parameter

targ.87emulate=value

This option is discussed in thgel Floating Point Emulatioappendix.
Thevalueyou specify here is the value of the first interrupt that is used by
the emulation library that lets Soft-Scope disassemble emulated instructions
as floating-point instructions. Default: None.

Control Memory Caching

targ.cache=on | off

Settarg.cache=orto enable Soft-Scope’s normal caching of previously
read memory. You might find this useful if you are actually reading from a
memory-mapped I/O device instead of memory, or if some other device,
e.g., a DMA device, is writing to memory. Defatdtg.cache=on

Control Code Memory Cache Flush

targ.code_cache=off | on

If you settarg.code_cacheon, Soft-Scope does not flush memory areas
that correspond to code when it executes your application. This provides
an increase in performance on some machines. Default:
targ.code_cache=off.

6-14 Soft-Scope User's Guide

Configuring Soft-Scope Soft-Scope Configuration Options

Define Host Communication Device

targ.dev=devicename

This option specifies the name of the device that Soft-Scope uses to
communicate with the CSi-Mon monitor on the target. To change
devicenamguse th®ptionswindow. This option cannot be changed
while Soft-Scope is running. Defautirg.dev=comm.drv.

Specify Where To Search For Memory
Control Block

targ.dos_mcb_start=address
targ.dos_mcb_endaddress

These options are used to define an area in memory where Soft-Scope can
search for the first DOS MCB (Memory Control Block) header file. See

the appendiXpebugging .exe Executable Filésr more information.
Defaults:targ.dos_mcb_start=00000701L
targ.dos_mcb_start=000106ffL

Soft-Scope User’s Guide 6-15

Soft-Scope Configuration Options Configuring Soft-Scope

Specify Where To Search for the NULL
Device

targ.dos_nul_start=address
targ.dos_nul_end-address

When debugging DOS device drivers, Soft-Scope must search target
memory for the NULL device, which begins the device-driver chain in
memory. However, the NULL device and its location in memory are not
documented. If Soft-Scope cannot find the NULL device in the default
range, use these options to define a new search range. See appendix,
Debugging .exe Executable Filésr more information. Defaults:
targ.dos_nul_start=00000701}t targ.dos_nul_end=000106ffL

Specify Size of Memory Reads

targ.grain=1|2|4

If your target is configured to read memory 2 or 4 bytes at a time, you can
define the memory access size with this configuration option. Set this option
to allow memory accesses of 1, 2, or 4 bytes. Defaudt.grain=1.

Tell Soft-Scope that Interrupts are
Disabled

targ.polling=on | off

Soft-Scope can only stop an interrupt-driven monitor when interrupts are
enabled. When interrupts are disabled, Soft-Scope continues to assume
you have an interrupt-driven monitor, and receiver time-out messages may

result. Set this option tmto eliminate the receiver time-out messages.
Default: None.

6-16 Soft-Scope User's Guide

Configuring Soft-Scope Soft-Scope Configuration Options

Verify Memory Writes

targ.verify=off | on

When set ton, this option causes Soft-Scope to perform read-after-write
verification of all memory writes. When setib, no verification is
performed. Defaultarg.verify=on.

Specify temporary file location

tmp.path=d:\subdin.. \subdir

The first time you debug an application, Soft-Scope creates a temporary
file calledapplicationtmp. Itis used to store initialization information
needed to load the application.

The next time you invoke Soft-Scope and load the application, it searches
the path defined with this option fapplicationtmp. Ifit finds it, and the
application has not been modified, Soft-Scope uses it to load the
application. Default: Current directory.

Specify the Size of the Trace File ﬂ

trace.filesize=16K | ... | 1024K

This option controls the size of the temporary file where trace information is
stored. Defaultrace.filesize=128K

Soft-Scope User’s Guide 6-17

Soft-Scope Configuration Options

Configuring Soft-Scope

Preserve Trace Data across Applications

6-18

trace.load=off | on

If you set this option ton, the trace buffer shows trace information across
multiple loads. Useff to cause the trace buffer to be flushed each time
you load an application. Defautace.load=off.

NOTE: During execution, Soft-Scope creates several temporary
files. The names of these files are determined by your host
operating system. The location of these files are
determined by thiemp environment variable.

Soft-Scope User's Guide

/. Creating and Using
Soft-Scope Macros

Chapter Contents

OVBIVIBW ...ttt e e e e e e e e e e e et e e e ettt a e e e e e e eaaaans 7-3
CreatiNng @ MACTOuiiiiiiiiiiiiie e 7-3
Compiled Macro FlES..........ccovvuuiiiii e 7-4
Built-in CPU VariabIles............ovvuviiiiiiiiiiee e 7-5
1Y/ F= Vo 0 R4V T T [1 SR 7-6
LoadingaMacCroFile..........ccoouuviiiiiiiiic e 7-6
TOOIDAr BULLONS......euiiiieies e et e e e e e e e e e e e e e eeeeeeaennnnes 7-6
Figure 7-1: MacroS WINAOW........cccceeeeeeeeiiiiiieeiiiiiiiiese e 7-7
ComMMANA LING.......eiiiiiiiiieie e e e e e e e eeeeaeeens 7-7
Example Use of cmd.macamdoad.init_command......................... 7-8
Identify Macros in the Macros WindQw...............ceeeveveviviinieeeeeennnn, 7-9
MACIO ParameterSccouuiiiiiiie et 7-10
Optional ParameterS........cccovviieeeeeiiiieeeeeeeeee e 7:10
INtEOEN TYP ... 7-10
LITERAL PArameter...........oviiiiiiiiiiieeceee et
TEXT Parameter.......coocuuiiiiiiie et e et e ean e eees 1-12
EXPRESSION Parameter............ooviiiiiiiiiinieeeeeiiiiee e 7:12
REFERENCE Parameter.........cccooiiiiiiiiiiieiiineeeiineeeiiee e 1-12
ADDRESS Parameter..........ccooooeviiiiiiiiiiiiiiiieeeeeeiieeeeeeeeennn . 213
LINE Parameter.........ccooovvveeiiiiiiieeeeiiiiee e eseeviinn e eeennnn 213
MODULE and PROCEDURE TYPES......ccuuuvviviiiiiiiiieieeeeeaaaeenns 7-13
LOCAI Vari@bhIESooeeieeieiiiiiiiiee e 7-14
Declaring Local Variables..................ouviiiiiiiiiieeeeeeceeeeeeeias 7-14
Defining One-dimensional ArrayS...........oovvvvviviiiiiiiiineneeee e 7:15

Soft-Scope User’s Guide 7-1

7. Creating and Using Soft-Scope Macros

Assigning Numeric Values to Arrays............cccceeeeeevvveeevvvvnnnnnnnn 21D
Assigning Pointer Values from Your Application......................... 7-16
MaCIO StAEMENTS ... 7-17
ABORT ... 1-17
BREAK ...ttt 1-17
IF IFLELSE .. 7:17.
RESPONDccoiiiiiiiiciiee e 7-18.
S 1L R 7:18
WHILE ...ttt 7-18
MACRO SUSPEND.......ccoiiiiiiiiiieeeeee e 7:19
MACRO RESUME............ccccoiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee . 219
Custom Commands with an Extended Monitor......................... 7-20
Manipulating Windows from Macrosccccceeeeeeiiiiiiiiiiiiciiiinee 7-22
WIMOVE ...ttt 7:23
WRESIZE....... ..ottt 7:23
WEFUNCTION ...ttt 71:23
EXamMPIES.....ccoooiii e 224
Macro Print FUNCHONcooiiiiiiieeeiies e 7-25
CoNVErsiON SPECIIEIS. ... ccoiie e 1:25
Table 7-1: Conversion SPECIfierS........ccccvvvvviiiiieiiiiieiieeeeeeenn. 7:26
$ Parameter Prefix in Control Strings.............ccooceeevvvvvvvvvvennnnnn 227
ESCAPE SEQUENCES ... 1:21....
Directed Output from Macras..........cccccccccceeeiiieieeeeeeeeeeeeeeenennnn 227
Using Field-width Specifiers with PRINT or WPRINTE.............7-28
Specifying the Leading Zero Flag...........ccovvviiiiiiiiiis 7:28

7-2 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Overview

Overview

Soft-Scope’s macro facility lets you create your own macros that can:
* Rename a Soft-Scope command

» Create pseudo-command files of commands

» Create new Soft-Scope pseudo-commands

Look in the directory where you installed Soft-Scope for the example
macro filesswin32.mac It contains several macros that you can examine
or modify to meet your special needs.

Creating a Macro

Use an ASCII text editor to create macros. Macro source files have the
following characteristics:

* You can declare an unlimited number of macros in a macro source file.
* Macro files must use the file extensiorac
» Each declaration must look similar to a C-function declaration.

* The keywordMACRO should be used where the C function return
type would be.

* You can use control statements and function calls within the 7
declaration.

» The use of semicolons after source lines is optional, except after the
macro header line. Placing a semicolon after the first line of the macro
name and parameters results in an error message.

» The syntax shown below defines a Soft-Scope macro:

MACROmacroname [parameter_list K statements }

Soft-Scope User’s Guide 7-3

Creating a Macro 7. Creating and Using Soft-Scope Macros

Any of the following can be Soft-Scope macro statements:

* Any Soft-Scope command discussed in the ch&u#+Scope Basics
in theCommands and Command Ligection.

» AC-type expression, including mathematical expressions, Soft-Scope
type overrides, and Soft-Scope functions.

A macro control statement.
* A macro function.

* A compound statement that is enclosed in braces. Unlike the
compound statementin C, a Soft-Scope compound statement may not
contain local-variable declarations.

The following example macro makes use of Soft-Scope type overrides to
substitute an opcode for every byte of a source-code line:

macro arr_chg ($line, $value)

{
byte at &#$line

length(sizeof#$line)=0x$value;

}

Compiled Macro Files

The first time you load a macro fifdlenamemac, the file is compiled and
afilenamemobfile is created that contains the compiled code. The next
time you load the macro file, Soft-Scope looks for the correspomdoiy
file. Ifit exists and if the originainacfile has not been edited since its
creation, Soft-Scope loads theobfile. Compiledmobfiles load and
execute faster thamacfiles.

If the.mobfile does not exist or the originatacfile has been edited since
the compiled version was created, Soft-Scope recompiles the original and
creates a newnobfile.

7-4 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Creating a Macro

Built-in CPU Variables

Soft-Scope contains a set of built-in CPU variables that you can use to
return information to macros. For example, you can determine if your
targetis stopped or running, as in the following:

go; /¥ Stop before */
while (! $stopped); /* opening Calls window */
calls; I* Open Calls window */

The following is a list of built-in CPU variables and their possible values:

$CPU This is the processor type as reported by the CSi-Mon
monitor. Possible values are 80586, 80486, 80386, etc.
SNPX Use this to determine if a coprocessor is present. Ifa

coprocessor is present, the value of SNPX is the
coprocessor’s name. Ifitis not present, the value is 0.

$STOPPED Reports the execution state of your application. If
stopped, the value is 1. If running, the value is 0.

Soft-Scope User’s Guide 75

Macros Window 7. Creating and Using Soft-Scope Macros

Macros Window

TheMacros window shows which macros are currently loaded. Use the
Display command from thiglacro pull-down menu to open the window.
Figure 7-1 shows an example dflacros window.

Dizplay

Loading a Macro File

To load and compile a macro source file, usétiael command from the
Macro pull-down menu.

Toolbar Buttons

From theMacros window you can run or delete loaded macros using the
toolbar buttons described below:

o]

Run ¢ Delete

Run Runs the macro identified by the cursor position. To
activate from the keyboard press <Enter> or <R>.

Delete Deletes the macro identified by the cursor position from the
current Soft-Scope session. The macro source file is not

erased. To activate from the keyboard press or
<D>.

7-6 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros

Macros Window

».—ud Soft-5cope =]
Fil= Code Data Break Macro Options Yiew ‘Window Help
F|=mlo|e|+] 2] «|bp|
H[iode = O] =]
:cmain. main() - Break
#1 ,-"’***‘-
#2 i* CSAMP Sample Program
#3 /***
#4
#5 #include "mutils.h"
HE B Macros == &3
#7 gowrval — Bun 386 or higher target until wvarishle 1
#a gobrval — Bun any x86 target until warisble has wal
#9 loopn — Loop n btimes from a coderef
*l#10 ¥lfillpattern — Fill memory with pattern
#11 {nullparam - Optional parsmeter exsmple —
#12 a | |
#1132 —F -
14 while (1) {
#15 nattern++: x
4] | M
For Help, press F1 L

Figure 7-1: Macros window

Command Line

Macros can also be loaded, displayed, and deleted using the following

syntax in th&€ommand linedialog box (<Ctrl>+<L>):

MACRO [LIST] [TO] [macronamg
MACRO LOAD filename
MACRO DELETE macronamg

To run a macro that is already loaded, enter the macro name and

applicable parameters in the dialog box. For example, the following would

run the macrtestdiscussed later in this chapter:

Command: test 2 #26 “Go to line 26 two times”

Soft-Scope User’s Guide 7-7

Macros Window 7. Creating and Using Soft-Scope Macros

NOTE: Loaded macros are stored inside Soft-Scope. Changesto
their source do not affect the macros until the source file is
loaded (and compiled) again.

Example Use of cmd.macro and
load.init_command

A macro can be loaded and executed as part of the Soft-Scope invocation
by using themd.macroandoad.init_commandconfiguration options.

To do this you will need to set these configuration options in the
sswin32.inifile as follows:

cmd.macro=sample.mad._oads thesample.maanacro source
file.

load.init_command=setbreak Executes thsetbreakmacro found
in sample.mac Because macros are
a subset of Soft-Scope commands, it
isn’t necessary to prefasetbreak
with a command such BR&JN or
LOAD.

The example below executes a macro that sets a breakpoint, executes to it,
and evaluates the symizdlin theData window.

macro setbreak ()
{

br :cutils.c_data#98;

go;
eval :cutils.strcpy.si;

7-8 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Macros Window

|ldentify Macros in the Macros Window

Use a text string, placed inside quotes between a macro name and the first
parenthesis, to identify or otherwise customize the macro name in the
Macros window.

“setbreak breaks at line number 98"
Quotation marks with no text between them tell Soft-Scope not to display

that macro in thMlacroswindow. This is helpful if you have a macro that
exists only to provide data to another macro.

Soft-Scope User’s Guide 7-9

Macro Parameters 7. Creating and Using Soft-Scope Macros

Macro Parameters

In the macro source file, a parameter is recognized by a dollar sign ($)
preceding the parameter name:

$length

You can specify macro parameters as any type (except arrays) listed in
table A-1, “Data types for use in type overrides,” in appendix A

Optional Parameters

The number of parameters passed to a macro must match the number of
parameters that the macro expects, unless the parameters are specified as
optional. Th©PT keyword defines all parameters that follow it in the list

as optional. Inthe following exampistart andslength are both

optional.

macro fill (reference $memref,opt int $start,int
$length)

Integer Type

You can also ugdEX andDEC as keywordsHEX specifies an integer
as a hex number, so you don't have to use the prefix 0x, or the suffix H
when entering parameter values. A parameter withH{@keyword
won't accept a hex value:

macro test (hex int $memref, dec int $length)

7-10 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Macro Parameters

LITERAL Parameter

TheLITERAL parameter type causes direct replacement during macro
execution. When you enter values, the literal strings are parsed and
inserted in the appropriate places.

LITERAL parameters can be used for most common macro parameters,
and are most useful when a parameter need not be evaluated at the
beginning of the macro.

For example, the macro below uses Soft-Scope type overrides to
substitute an opcode for every byte of a source-code line:

macro src_chg (literal $line, literal $value)

{

}

If you ran this macro by selecting it from tacros window, you could
enter something like the following when prompted:

23 90

The numeric value 23 would be passed as the valg##or , and the hex
number 90 would be passed as the valugvigre . Keep in mind that a
LITERAL is a string of nonblank characters. The following would be
interpreted as a single LITERAL parameter value:

2390

byte at $line length(sizeof#$line)=0x$value;

Soft-Scope User’s Guide 7-11

Macro Parameters 7. Creating and Using Soft-Scope Macros

TEXT Parameter

TEXT parameters are parsed and turned into string constants. No
processing of the string takes place (e.g., \n is not converted to Oxa).

The following example prints a string in a window:

macro printstr (
literal $win,
text $outstr)

{

}
For example, enter the values when prompted as shown below:

wprintf (“$win”, “%s\n”, $outstr)

printstr: log “macro succeeded”

EXPRESSION Parameter

This type allows any valid Soft-Scope expression to be input as a
parameter. The advantage over the ‘literal’ parameter type is that the
expression is evaluated only once at the time the macro is invoked. Any
syntax errors within the expression are trapped and reported before calling
the macros.

REFERENCE Parameter

A reference parameter is similar to an expression parameter but has an
additional requirement that it must be assignable. For example, you can
assign the register $ax a value (for example, $ax=00002fe8), but you
cannot assign a constant a value (for example, 5=3). As with expression
parameters, reference parameters are evaluated only once when the macro
IS invoked.

7-12 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Macro Parameters

ADDRESS Parameter

ADDRESS types have all of the characteristics of reference types, except
they must have a port or memory address. For example, you can use
target variable names as ADDRESS types.

LINE Parameter

LINE types have all of the characteristics of reference types, except they
must be line numbers. Any number you use is interpreted as a line number.

MODULE and PROCEDURE Types

MODULE types must be module names. PROCEDURE types must be
procedure names.

Soft-Scope User’s Guide 7-13

Local Variables 7. Creating and Using Soft-Scope Macros

Local Variables

Local variables may be declared as any type found in table A-1, “Data
types for use in type overrides,” in appendix A.

Local variables may be used anywhere you would use a parameter within
the body of a macro.

Declaring Local Variables

Variable names may contain up to 40 characters, and the number of
variables that can be declared is limited only by available memory. Once a
macro is terminated, the value of the variable is lost.

Variables must be declared by inserting the keywdf@iO and a type
before the variable name, immediately after the opening brace. The
example below declar@sounter as a local variable:

macro test (int $value,
reference $coderef,
text $str)

auto int $counter

$counter = 0
print (“%s”, $str)
while (1) {
go $coderef
$counter++
if ($counter == $value)
break

7-14 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Local Variables

NOTE: Because the dollar sign ($) is used to designate macro
variables and is also used to specify the names of CPU
structures, care should be taken when naming variables to

avoid conflicts.

Defining One-dimensional Arrays

In addition, you can define variables as one-dimensional arrays. To define
an array, use an index in the declaration:

auto char $str[5]

Then simply assign a value to the character array in your macro using the
equal sign and quotation marks. You can assign a character string to any
array, regardless of the array’s type:

$str="Hello”

Assigning Numeric Values to Arrays

To initialize an entire array to zero, use the array name without an index.
For example, the following sets all the elements of $arr[8] to O:
$arr=0

However, to set each element of the integer array $arr[8] to a different 7
value, you must assign the values individually:

$arr[0]=1
$arr[1]=2
$arr[2]=3 ...

You can use two declarations to define a pointer in a macro:

auto char *$ptr
auto far32 $ptr

Soft-Scope User’s Guide 7-15

Local Variables 7. Creating and Using Soft-Scope Macros

Assigning Pointer Values from Your
Application

The only restriction is that you must assign the pointer an address defined in
your application:

$ptr=name_init[0]

7-16 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Macro Statements

Macro Statements

The Soft-Scope macro language supports the following control statements:

ABORT

ABORT [(* format " [, optional parameters D

ABORT returns execution to the command line. Typically, itis used when
a severe error occurs in a macro and you want to stop execution. An
aborted macro cannot be resumed Mé#tro/Resume.ABORT also

lets you print a comment to the screen when a macro is aborted.

abort (“Macro halted—value out of bounds,%d”,
$value)

BREAK

BREAK functions the same as the C break: it exits the current block.

IF, IF...ELSE

IF (condition) statement
IF (condition) statemen tELSE statement

The IF/ELSE control statement functions just like its C counterpart. The 7
conditioncan be any Soft-Scope expression that evaluates to a number?
If it evaluates to any number except 0, the statements after the IF are
executed. Ifitevaluatesto 0, the statements after the ELSE are executed.
Enclose multiple statements in braces.

Soft-Scope User’s Guide 7-17

Macro Statements 7. Creating and Using Soft-Scope Macros

RESPOND

RESPOND (“resp ")

RESPOND allows you to respond to Soft-Scope questions from within a
macro, so Soft-Scope doesn’t need to prompt you. The following
example responds to a query to append or overwrite the log file:

respond (“a”)

Responses are limited to a single character, and should be placed early in
the macro, before the response is needed.

RETURN

RETURN functions like its C counterpart, returning execution to the place
from which its containing block was called.

WHILE

WHILE (condition) statement

WHILE parallels its C-language counterpart. ¢teditioncan be any
Soft-Scope expression that evaluates to a numbsonditionevaluates

to any number except&iatementwhich can be a compound statement
in braces, is executed. Ifit evaluates to O, control passes to the next
command after the loop. To create an endless loop, simply make the
condition 1 (e.g., WHILE (1) {...}).

7-18 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Macro Statements

MACRO SUSPEND

You can suspend a macro that is running by using the MACRO
SUSPEND command inside the macro.

This is handy if you want to track and possibly change the value of an
application variable at different stages of macro execution, or, in
combination with an IF statement, when an error condition occurs. You
cannot change the value of a local variable while a macro is suspended.

This command is not available in themmand linedialog box
(<CtrI>+<L>) or the pull-down menus.

MACRO RESUME

Resume a suspended macro usingRérsimecommand from thiglacro
pull-down menu.

You can also resume a macro fromGeenmand linedialog box
(<Ctrl>+<L>) using the following syntax:

MACRO RESUME

Soft-Scope User’s Guide 7-19

Macro Statements 7. Creating and Using Soft-Scope Macros

Custom Commands with an Extended
Monitor

The USER_ macro command enables direct communication with the
monitor by allowing the user to send predefined and user-defined
commands to it.

Output responses to any USER_command appearMesgsage
window. Syntax for the macro command is as follows:

USER MONITOR Command_Stririg
USER MONHOLD Command_String

MONITOR Output from the monitor in response to
“Command_Stririgs displayed in thélessage
window, and then the display returns immediately to the
previously active Soft-Scope window.

MONHOLD Output appears in tidessagevindow and the
window persists until you press <F9>.

Note that the difference between the MONIT@® MONHOLD
versions of this command is that MONHOLRBRuses the output window
to remain open so you can study monitor output.

An example of how this might be applied would be to use the MONITOR
version for the first several commands in a series and the MONHOLD
version for the last monitor command. That way, the macro would execute
until all the commands were completed before stopping to show you the
results.

The “Command_Stririgcan be any monitor command defined in the
default configuration of the monitor or any user-defined monitor-extension
command. TheCommand_Stririgcan also contain the following
parameter specifiers:

%c, %d, ..., %% Any of the conversion specifiers listed in table
7-1, “Conversion specifiersgan be used with
the exception of %p, which cannot be used with
default monitor commands in _USER _.

7-20 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Macro Statements

$parameter_name Passes a literal value to a macro. Can be any
local variable, application variable, or macro
parameter.

The substitution specifier “%” allows you to generate specifier parameter
values symbolically. For example, you can use the functions
SELECTOROFRANAOFFSETOHnNside the macro.

The following macro returns the address where the monitor is located:
macro whereis_carmen_csimonitor ()
{
message
wprintf(message, “\nThis is where the monitor
is:\n”

user monhold “EQ”

}

Soft-Scope User’s Guide 7-21

Manipulating Windows from Macros 7. Creating and Using Soft-Scope Macros

Manipulating Windows from Macros

You can use the following commands to manipulate windows and the
cursor from within macros (the double-quotation marks are required):

WFUNCTION (“window _id ",* key sequence ")
WMOVE (“window _id ", newr, newc)
WRESIZE (* window _id ", width , height)

where,

window _id

newr

newc

width

height

key sequence

7-22

Is awindow name. Use any of the following names;
breakpoints, calls, code, data, dump, log, macros,
options, registers, symbols, task, trace, watch.

Is a decimal number that specifies a row on the screen.
(0-23, top to bottom).

Is a decimal number that specifies a column on the
screen. (0-79, left to right).

Is a decimal number that specifies the width of a
window in character columns, not greater than 80.

Is a decimal number that specifies the height of a
window in character rows, not greater than 24.

Is any sequence of keys, up to 80 characters in length,
that are valid in the window specified. Window

buttons, accelerator keys, and counts are valid. Use
the following names for the indicated keys. Note that
the left and right braces are part of the key name, and
that all letters in key names are lowercase.

Enter {enter} | ~| "M, where (*) represents
<Ctrl>

Up/Down {up}/{down}
Left/Right {left}/{right}

Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Manipulating Windows from Macros

Page up {pgup}
Page down {pgdn}

Home/End {home}/{end}
Left brace {3
Rightbrace {}}

If you specify a parameter that is outside the screen or window size, the
parameter will be truncated when a border is reached.

WMOVE

WMOVE places the upper, left-hand corner of the windaveat,
newc

WRESIZE

WRESIZE changes the size of the window relative to the upper, left-hand
corner of the window, which remains in a constant position.

Any changes made to windows that are not open change the defaults, so
when you do open the window the new size and location are used.

WFUNCTION
If the window specified in a WFUNCTION command is not open, it .

attempts to perform the function specified by the key sequence on the
current window. To ensure that the window specified is open, simply place
the command that opens it before the WFUNCTION in your macro. For
example, thBUMP command opens tizimp window.

Soft-Scope User’s Guide 7-23

Manipulating Windows from Macros 7. Creating and Using Soft-Scope Macros

Examples
wfunction(“trace”, “") Makes the specified window
the current window.
wfunction(“data”, “/X”) Closes the specified window.

Use WFUNCTION to specify information for dialog boxes. For example,
the following changes the code window mode to Assembly:

wfunction(“code”, “MA”")
The following example uses a count to move the cursor down 10 lines:
wfunction (“options”, “10{down}")

The following example uses the brace keys to modify the first configuration
option:

wfunction (“options”, “{enter};{{};{}};{enter}")

7-24 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Macro Print Function

Macro Print Function

PRINT

PRINT (* control_string” [, optional parameters)

This command functions much like C’s formatted print command, allowing
you to print formatted output to tessagavindow. Unless there are
conversion specifiers embedded within the control string, everything inside
the quotes is printed to the screen.

Conversion Specifiers

Conversion specifiers have the following format:
%CHAR
CHAR can be any one of the conversion characters listed in table 7-1.

If you use a conversion specifier in a control string, Soft-Scope expects a
substitute value to be in the parameter list following the string. Justasin C,
you should separate parameters with commas.

The first parameter in the list is substituted for the first conversion specifie
in the control string, the second parameter for the second specifier, an
on. If the parameter and the conversion specifier have different types,
Soft-Scope applies a type override to the parameter.

Soft-Scope User’s Guide 7-25

Macro Print Function 7. Creating and Using Soft-Scope Macros

Table 7-1: Conversion specifiers

Conversion Description
Character
c Specifies a character. One byte will be displayed

for this operator. If the character is
non-printable, its value will be displayed in hex.

d Specifies a signed integer. Leading zeros are
suppressed.

f Specifies a double (64-bit double-precision
floating-point number). Leading zeros are
suppressed.

p Specifies an address: logical, linear, or physical.

Suffix L or P, specifying a linear or a physical
address, is not removed. The colon is not
removed from logical addresses.

s Specifies a character string. The entire character
string will be displayed, with non-printable
characters displayed in hex.

u Specifies an unsigned integer. Leading zeros are
suppressed.

X Specifies an unsigned hexadecimal integer.
Leading zeros are suppressed.

% Escapes the percent sign that starts the format
specifier.

7-26 Soft-Scope User's Guide

7. Creating and Using Soft-Scope Macros Macro Print Function

$ Parameter Prefix in Control Strings

When “$” occurs as a parameter prefix in a control string, a direct
substitution is performed. If this is not what you want, the best solution is
to rename the conflicting parameter.

Escape Sequences

The control string can also contain C-type escape sequences, which are
listed in table 5-4.

When specifying an octal number, use one, two, or three octal digits (0-7).
An error occurs if the octal number is greater than 377 (255 in decimal).

You can specify a hex number that contains one or two hex digits by using
the “\X” escape sequence. Errors are generated if the first number after the
x is not a hex digit, (i.e., 0-9, a-for A-F).

Directed Output from Macros

To direct formatted output from macros to a selected destination, use the
following syntax:

WPRINTF (“destination, “ control string[,optional parameteil$ 7

All of the following destinations are Soft-Scope windows except Status,

which is the Status line at the bottom of the Soft-Scope display. Place
guotation marks arourntbstination

Log Message Status rake

Soft-Scope User’s Guide 7-27

Macro Print Function 7. Creating and Using Soft-Scope Macros

Using Field-width Specifiers with PRINT
or WPRINTF

Use decimal integer constants as field-width specifiers in control strings as
part of the format specification. For example, the following specifies a field
width of 8 characters:

wprintf(“message”, “%8d”, $value)

If $value was equal to 45522601, the following would be printed in the
Messagewindow:

45522601
601

If $value does not contain eight characters, padding is inserted in front of
the needed spaces.$illue was equal to 601, the above example
shows how it would be displayed.

The first five spaces are left blank as paddingvdfie is more than
eight characters, the field width is expanded to display as many characters
as needed.

You can also specify field width, as in C, with the asterisk “*”, which
causes a typet argument to be substituted for the field width. Inthe
following example, the field width is 5:

wprintf(“trace”, “unit=%*d”, 5, 12)

Specifying the Leading Zero Flag

A leading minimum field-width specifier as defined above is required to
specify the leading zero flag. Use this only with integer-type conversion
specifiers, that is, %d, %u, and %x:

print(“%04x”, 3)
Prints the following:
0003

7-28 Soft-Scope User's Guide

8. Tools that Soft-Scope
Supports

This chapter provides information to help you insure that your application is
fully compatible with Soft-Scope. If you need to learn more about the
tools that Soft-Scope supports, consult the appropriate development-tool
reference guide.

Chapter Contents

TOOI SUMMANY ... e e e e e e e e 8-2
Table 8-1: SupportedtoOlSccooeiiiiiiiiiiiiieeee e 8-2
SAMPIE FIlES.....eeeeeei e 8-4
Linking YOur APPIICAtION coeviiiiiiiiiiine e 8-5
CSI-LINKT™ e e e e 8-5
Generating Symbolic Information..............cccoovviiiiiiiiiie e, 8-6
SSBUG ...ttt a e e e e e e e e 8-6
TOOI DIFECHIVES ...ttt e e e e e e as 8-7
BOXIaNd......cooiee 8-7
1] PP 8-7
METAWAE ... e 8-10.
IMICTOSORE ... e e e e e e eeeeeeees 8-10
o T T = T o S 8-1
WALCOM ... 8-12

Soft-Scope User’s Guide 81

Tool Summary 8. Tools that Soft-Scope Supports

Tool Summary

Below is a list of tools that can be used to build applications that can be
debugged using Soft-Scope. New versions of these tools are constantly
being released. See tkadme.wrifile on distribution disk one or in the
directory where you installed Soft-Scope, for the most current list.

NOTE: For information on Microsoft, Borland, Watcom, and
MetaWare compiler and assembler controls, see3ine

Link Users Guide

Table 8-1: Supported tools

Supported 16-bit 16-bit 32-bit 32-bit
Tools Real Protected Protected Protected
Mode Mode Mode Mode
Flat Segmented
Borland C++ X X
Borland TASM X X
CSi-Link X X X X
Intel ASM86 X
Intel ASM286 X
Intel ASM386 X X
Intel BND286-BLD286 X
Intel BND386-BLD386 X X
Intel iC-86 X
Intel iC-286 X
Intel iC-386 X X
8-2 Soft-Scope User's Guide

8. Tools that Soft-Scope Supports Tool Summary

Table 8-1: Supported tools (continued)

Supported 16-bit 16-bit 32-bit 32-bit
Tools Real Protected | Protected Protected
Mode Mode Mode Mode
Flat Segmented

Intel LINK86/LOC86

Intel PLM86

Intel PLM286 X

Intel PLM386 X

MetaWare High C/C++

Microsoft MASM X X X

Microsoft Visual C/C++ X X

version 1x

Microsoft Visual C/C++ X

version 2x or greater

Phar Lap 386/ASM X X

Phar Lap LinkLoc X X X X
Linker

Watcom C/C++ X X X X

Watcom WASM

Soft-Scope User’s Guide 8-3

Tool

Summary 8. Tools that Soft-Scope Supports

Sample Files

8-4

We have included real- and protected-mode sample applications for each
of the supported tools in tleampsubdirectory. Whin/sampis a series

of subdirectories for each compiler. The subdirectory name includes the
compiler vendor, number of bits, and mode. For examgiel 6pf

contains a Microsoft C/C++, 16-bit, protected-mode, flat-model sample.
The Borland C/C++ compiler appeardas, Watcom C/C++ compiler
aswcc, and MetaWare’s High C compilerfas

Themapi32p subdirectory includes a sample that demonstrates application
I/0O using Soft-Scope®essagavindow. The subdirectoribscexe
andmscexenclude a sample in the form of a DOS executable which can
be debugged with Soft-Scope.

Included with each sample is its source, makefile, CSi-Link command file,
map file, listing and debug file. The samples were run on Intel 386EX,
AMD 186EM/ES evaluation boards and a target PC.

Soft-Scope User's Guide

8. Tools that Soft-Scope Supports Linking Your Application

Linking Your Application

CSi-Link ™

We created the CSi-Link linker/locator so you could use the popular C/
C++ compilers from Microsoft, Borland, Watcom, and MetaWare to
develop an embedded application. CSi-Link createsbadebug file

that Soft-Scope uses to download your application to your target board or
a.hexor.bin binary file so you can burn it into ROM.

CSi-Link creates an absolute image of your application by linking your
object and library files and locating the segments, classes and groups that
make up an x86 program. It builds 16- and 32-bit protected mode CPU
structures, including the GDT, IDT, LDT, gates, page tables, and TSSs.
CSi-Link supports multiple-mode or mixed-mode applications.

For more information, see tB&Si-Link User's Guide

Soft-Scope User’s Guide 85

Generating Symbolic Information 8. Tools that Soft-Scope Supports

Generating Symbolic Information

SSBUG

8-6

The SSBUG utility makes it possible to use Soft-Scope for debugging real-
mode applications built with CSi-Link, Phar Lap’s LinkLoc, Paradigm’s
LOCATE and Intel's LINK86/LOC86. SSBUG producebag file that
includes symbolic information for Soft-Scope.

Debugging amexeapplication running on a target PC with Soft-Scope is
also made possible by SSBUG.

To invoke SSBUG from the DOS prompt, enter the following:

ssbug filename .abs

Soft-Scope User's Guide

8. Tools that Soft-Scope Supports

Tool Directives

Tool Directives

This section lists the tool directives to use when building an application for

debugging.

Borland

Consult theCSi-Link User’s Guidéor tool directive information.

Intel

NOTE: Since Intel tools are no longer on the market, our support
ison an “asis” basis.

ASM86, ASM286 and ASM386

Use with Intel's linker/locator or builder/binder, whichever is appropriate.

Use these controls: Don't use these controls:

type
debug

Soft-Scope User’s Guide

nodebug

notype

noobject

nolist

noprint

optimize(2) or optimize(3)

8-7

Tool Directives 8. Tools that Soft-Scope Supports

Use these directives in your assembly modules:

name
proc/endp

Example invocation:
asm386 init.a38 type debug

BND286/386 and BLD286/386

Use this control: Don’t use this control:
noload purge

Controls for BLD286 and BLD386 are shown inthadme.wrifile.

Example invocation:

bnd386 cmain.obj name(csamp) oj(csamp.Ink)
noload
bld386 csamp.Ink bf(csamp.bld) oj(csamp.abs)

88 Soft-Scope User's Guide

8. Tools that Soft-Scope Supports Tool Directives

Intel iC-86, iIC-286 and iC-386

Use with the appropriate Intel linker/locator or binder/builder.

Use this control: Don't use these controls:
debug nodebug
notype
optimize(2) or optimize(3) type
noprint
noobject
nolist

Example invocation:
ic86 cmain.c debug

Intel LINK86/LOC86

Use with Intel iC, PL/M, ASM, and FORTRAN-386 compilers.

Don't use this control:
purge

We used a filter file to specify controls to the locator when preparing the
sample programs. To view a sample filter file, sessth@me.wrifile.

Example invocation:

link86 cmain.obj to csamp.lnk
loc86 csamp.lnk < csamp.flt

Soft-Scope User’s Guide 89

Tool Directives 8. Tools that Soft-Scope Supports

Intel PL/M-86, PL/M-286 and PL/M-386

Use with the appropriate Intel linker/locator or binder/builder.

Use this control: Don’t use these controls:
debug nodebug
noobject
nolist
notype
noprint
optimize(2) or optimize(3)

Example invocation:
plm386 pmain.p38 debug optimize(0) large

MetaWare

Consult theCSi-Link User’s Guid#or tool directive information.

Microsoft

Consult theCSi-Link User’s Guidéor tool directive information.

8-10 Soft-Scope User's Guide

8. Tools that Soft-Scope Supports Tool Directives

Phar Lap

Phar Lap LinkLoc

Use with MetaWare High C/C++.

Use these controls:
-symbols Include symbol table
-compat softscope Using Soft-Scope
-omfboot Produce OMF boot-loadable file

To build the sample programs, we used a command file that usually has the
extensionlnk to specify controls.

When preparing 386/486 protected-mode applications, it is important to
specify correct controls to ensure that the proper symbolics are generated
and the GDTs and IDTs are set up properly. To see a 386 command file
look atcsamp.Inkin the/lsamp/hcxxxsubdirectories where you installed
Soft-Scope.

Example invocation:
linkloc @csamp

Soft-Scope User’s Guide 8-11

Tool Directives 8. Tools that Soft-Scope Supports

Phar Lap 386/ASM

Use these controls:

Use the386P, -386, -286P, 286 or-86switch on the command line to
specify the instruction format you want.

-cV Debug information
Example invocation:

386asm -386P preamble.asm
NOTE: \ersion 2.2d does not produce line-number information.

Watcom

Consult the€Si-Link User’s Guidéor tool directive information.

8-12 Soft-Scope User's Guide

A. Data Types, Operators,
Registers, and Descriptors

This appendix contains a table of data types for use in type overrides,
operators, descriptors, subfields, and figures of registers for the Intel386,
Intel486", and Pentiufmprocessors. For more information on using or
accessing these items in Soft-Scope, see the cHaxaenjning Data

with Soft-ScopeFor more detailed information about the registers, see
the IntelProgrammer’s Reference Manual the processor you are

using.

Chapter Contents

Data TYPES ..ceeeiiieeieei et A-2
(O] 01T = 1 (0] (PO UPPRTR A-8
General-Purpose ReQIStEerSccovvviviii i A:-10.
NPX REQISIEIS ..ottt A-13.
Protected-Mode RegiSters..........ooovvvvvvivvviiiiiiiiieeeeeeeeeeeeeeeeeinn A =14
Descriptors and Subfields ... A:-15

Soft-Scope User’s Guide A-1

Data Types A. Data Types, Operators,
Registers, and Descriptors

Data Types

The following table lists data types that can be used with Soft-Scope type
overrides. Some of the types have subfields that can be identified in the
register tables later in this appendix. [NOTE: Pentium s listed as 586.]

Table A-1: Data types for use in type overrides

Data Type Description CPU/NPX

BCD NPX data type, 10-byte 87/187/287/387/486/586
BCD integer

BITO - BIT31 These overrides provide All

access to individual bits in
the specified reference

BOOLEAN 1-byte boolean (O0OH=false, All
otherwise true)

BYTE 8-bit unsigned integer All

CHAR 8-bit signed character All

CROTYPE 32-hit $cr0 image 376/386/486/586
CR2TYPE 32-bit $cr2 image 386/486/586

CR3TYPE 32-bit $cr3 image 386/486/586

CWTYPE NPX80x87 control word 87/187/287/387/486/586

Table continued on next page.

A-2 Soft-Scope User's Guide

A. Data Types, Operators,
Registers, and Descriptors

Data Types

Table A-1: Data types for use in type overrides (continued)

Data Type | Description CPU/NPX
DESC Protected-mode descriptor 286/376/386/486/586
DOUBLE 64-bit real All
DWORD Double-length unsigned All
integer, bit length
sym.wordsize *2
EFLTYPE 32-hit $efl image 376/386/486/586
EXTINT 64-bit signed integer All
FAR16 Far 16-bit offset pointer All
FAR32 Far 32-bit offset pointer All
FLOAT 32-hit real All
FLTYPE 16-bit $FL image All
GDBTYPE GDT base address type 286/376/386/486/586
HWORD Half length unsigned integer, | All
bit length is sym.wordsize/2
IDBTYPE IDT base address type 286/376/386/486/586
INT Signed integer, bit length is All
sym.wordsize

Table continued on next page.

Soft-Scope User’s Guide

A-3

Data Types

A. Data Types, Operators,
Registers, and Descriptors

Table A-1: Data types for use in type overrides (continued)

Data Type Description CPU/NPX
LDTRTYPE LDT table selector image 286/376/386/486/586
LINEAR 32-bit linear address 376/386/486/586
LONG 32-hit signed integer All
MSWTYPE 16-bit $msw image 286/376/386/486/586
NEAR16 Near 16-bit offset pointer All
NEAR32 Near 32-bit offset pointer 376/386/486/586
NPX16R 16-bit real-mode NPX 87/187/287/387
save image 486/586
NPX16P 16-bit protected-mode 287/387/486/586
NPX save image
NPX32R 32-bit real-mode NPX 387/486/586
save image
NPX32P 32-hit protected-mode 387/486/586
NPX save image
NPX Displays the NPX save As defined in option
image file
PAGEDIRTYPE | 32-bit page directory 386/486/586
image

Table continued on next page.

A-4

Soft-Scope User's Guide

A. Data Types, Operators,
Registers, and Descriptors

Data Types

Table A-1: Data types for use in type overrides (continued)

Data Type Description CPU/NPX
PAGETABLETYPE | 32-bit page table image 386/486/586
PCBTYPE Peripheral control block 186/188
PHYSICAL 32-bit physical address 376/386/486/586
POINTER This type is set by setting | All
sym.pointer to: NEAR16,
NEAR32, FAR16, or
FAR32
QWORD Unsigned integer, bit All
length is sym.wordsize*4.
Not valid if
sym.wordsize=32
SELECTOR 16-bit selector All
SHORT 16-bit signed integer All
SIGNED Signed integer, bit length All
is sym.wordsize
SIGNED BYTE 8-bit signed integer All
SIGNED DWORD Signed integer, bit length All
is sym.wordsize*2

Table continued on next page.

Soft-Scope User’s Guide

A-5

Data Types

A. Data Types, Operators,
Registers, and Descriptors

Table A-1: Data types for use in type overrides (continued)

Data Type Description CPU/NPX
SIGNED QWORD | Signed integer, bit All

length is

sym.wordsize*4. Not

valid if

sym.wordsize=32
SIGNED WORD Signed integer, bit All

length is sym.wordsize
STRING Zero-terminated string | All

(max 255 characters)
SWTYPE NPX 80x87 status 87/187/287/387/486

word
TEMPREAL 80-hit real All
TR3TYPE Test register 3 486
TRATYPE Test register 4 486
TR5TYPE Test register 5 486
TR6TYPE Test register 6 376/386/486
TR7TYPE Test register 7 376/386/486

Table continued on next page.

A-6

Soft-Scope User's Guide

A. Data Types, Operators,
Registers, and Descriptors

Data Types

Table A-1: Data types for use in type overrides (continued)

Data Type Description CPU/NPX
TSS286 286 task state 286/376/386/486/586
segment
TSS386 386 task state 376/386/486/586
segment
TWTYPE NPX80x87 tag word | 87/187/287/387/486/586
UNSIGNED Unsigned integer, bit | All
length is
sym.wordsize
UNSIGNED CHAR 8-bit unsigned All
UNSIGNED EXTINT | 64-bit unsigned All
UNSIGNED INT Unsigned integer, bit | All
length is
sym.wordsize
UNSIGNED LONG 32-bit unsigned All
integer
UNSIGNED SHORT | 16-bit unsigned All
integer
WORD Unsigned integer, bit | All

length sym.wordsize

Soft-Scope User’s Guide

A-7

Operators A. Data Types, Operators,

Registers, and Descriptors

Operators

In addition to the Soft-Scope operators described in the table below, you
can use all C operators except the ternary conditional operator (?:) and the

comma operator(,).

Table A-2: Soft-Scope operators

Operator | Description Example

* Displays the symbolic reference *Xyz
pointed to by the pointer

-> Displays a single element of the structname->
structure pointed to by the pointer
Creates a numeric range for accessing | array[1..9]
arrays
Specifies a range, starting at the first array]...5]
address of the array array[5...]

& Obtains the address of a symbolic &xyz
reference
Identifies a module name Xyz
Constructs a pointer from a selector 1234:1234
value and a 16- or 32-bit offset

Table continued on next page.

A-8

Soft-Scope User's Guide

A. Data Types, Operators, Operators
Registers, and Descriptors

Table A-2: Soft-Scope operators (continued)

Operator | Description Example

Prefixes a program symbol name to Joad
prevent confusion with Soft-Scope
commands. For example, a variable

named load
Separates module names from variable .:abc.xyz
names
Accesses members of a structure or abc.xyz
variables within a procedure (or named
block)
length Specifies how much memory beyond the byte at

referenced location to include in an 1234:456
operation length 5

Converts an unsigned integer to a #89 ::xyz#89
line-number

at Converts an address into a null-type at 0000:0000

symbolic reference

at Dereferences the following address byte at &abc

$ Identifies register and CPU structure $GDT
names

$ Designates macro symbols and By
parameters

Soft-Scope User’s Guide A-9

General-Purpose Registers A. Data Types, Operators,
Registers, and Descriptors

General-Purpose Registers

31 15 0
$ax $ah $al
$eax $ax
$bx $bh $bl
$ebx $bx
$cx $ch $cl
$ecx $cx
$dx $dh $dl
$edx $dx
$ebp $bp

Figure A-1: General-purpose registers

A-10 Soft-Scope User's Guide

A. Data Types, Operators, General-Purpose Registers
Registers, and Descriptors

31 15 0
$edi $di
$esi $si
$esp $sp
$eip $ip

Figure A-1: General-purpose registers (continued)

31 15 0
$efl $fl

subfields fl [t fEIFFEF | f

|:| Reserved

Figure A-2: Flags register

Soft-Scope User’s Guide A-11

General-Purpose Registers A. Data Types, Operators,
Registers, and Descriptors

15 0 15 0
$cs $fs
$ds $gs
$es $ss

Figure A-3: Segment registers

A-12 Soft-Scope User's Guide

A. Data Types, Operators, NPX Registers
Registers, and Descriptors

NPX Registers

15 0

I T .

$ew rc |pc plujo|zd|i

L] m m m mm

m
c| T Tlclclckkpl bz

$SWb3 t|0p|‘ZL(‘1eeeeeTe

tag|tag |tag [tag |tag |tag |tag ftag
$w 6|5 4 [3 p 1 (
7978 6463 0
$st0-$st7 sign exponent mantissa

(80 bits each)

Figure A-4: NPX registers

Soft-Scope User’s Guide A-13

Protected-Mode Registers A. Data Types, Operators,
Registers, and Descriptors

Protected-Mode Registers

31 15 0

$cro

1)
©
[¢)

$msw

$crl

$cr2 pfla--32 bits

$cr3 pdbr--20 bits

m| |pldftp
$cra c elsyV
. i

[

|:| Reserved Figure A-5: Control registers

31 15 0

$gdb

$gdl

$idb

$idl

$ldtr

Figure A-6: Protected-mode registers

A-14 Soft-Scope User's Guide

A. Data Types, Operators, Descriptors and Subfields
Registers, and Descriptors

Descriptors and Subfields

Table A-3: 386 protected-mode variables

Structure |Description

$GDT An array reference that spans the current global descriptor
table. Use $GDT[n] to access a specific element. Use
$GDTIn] to view the G, B, P, and AV bits and the actual limit
value in the descriptor.

$IDT An array reference that spans the current interrupt descriptor
table. It can be referenced the same way as GDT.

$LDT An array reference that spans the current local descriptor table.

$PAGEDIR | An array representation of the current 386 page table directory.

Table A-4: Page table entries

Name | Description Starting Bit Jize (bits) CPU

frame | Page frame address 12 20 386/486/Pentium
avail | Available for use 9 3 386/486/Pentium
d Dirty 6 1 386/486/Pentium
a Accessed 5 1 386/486/Pentium
pcd Page cache disable 4 1 486/Pentium

pwt Page write transparent | 3 1 486/Pentium

us User/Supervisor 2 1 386/486/Pentium
rw Read/Write 1 1 386/486/Pentium
p Present 0 1 386/486/Pentium

Soft-Scope User’s Guide A-15

Descriptors and Subfields A. Data Types, Operators,
Registers, and Descriptors

Table A-5: Descriptor subfields

Name Description Starting Bit Size (bits)
base Segment base 56,16 8,24
g Granularity 55 1

b Big 54 1

d Default 54 1

av Available 52 1

lim Segment limit 48,0 4,16
limit Segment limit 48,0 4,16
offset Offset in segment 48,0 16,16
p Present 47 1

dpl Descriptor privelege level 45 2
type Segment type 40 5

dt Descriptor type 44 1
code or data | Code or data 43 1

ed or cfm Expand down or conforming 42 1

wr or rd Write or read 41 1

ac Accessed 40 1
count Dword count 32 5
seg Segment selector 16 16
sel Segment selector 16 16

A-16 Soft-Scope User's Guide

A. Data Types, Operators, Descriptors and Subfields
Registers, and Descriptors

Table A-6: TSS386 subfields

Name Description Starting Bit Jize (bits)
io_map | I/0 map offet from start of TSS 102 16
idtr Register image 96 16
gs Register image 92 16
fs Register image 88 16
ds Register image 84 16
ss Register image 80 16
cs Register image 76 16
es Register image 72 16
edi Register image 68 32
esi Register image 64 32
ebp Register image 60 32
esp Register image 56 32
ebx Register image 52 32
edx Register image 48 32
ecx Register image 44 32
eax Register image 40 32
efl Register image 36 32
eip Register image 32 32
cr3 Register image 28 32

Table continued on next page.

Soft-Scope User’s Guide A-17

Descriptors and Subfields A. Data Types, Operators,
Registers, and Descriptors

Table A-6: TSS386 subfields (continued)

Name Description Starting Bit Jize (bits)
ss2 Level 2 stack segment 24 16
esp2 Level 2 stack pointer 20 32
ssl Level 1 stack segment 16 16
espl Level 1 stack pointer 12 32
ssO Level O stack segment 8 16
esp0 Level O stack pointer 4 32
link Backlink 0 16

A-18 Soft-Scope User's Guide

B. Error Messages

Chapter Contents

OVEIVIEW ...ttt ettt e e e e e e e e e e et e e et e e e e e e e aeaeaas B-2
AdAress Error MESSAQESccuvvuuruuiiiiiiiieeeeeeeeeeeeeeeesssansnnae s e e e e e aaaaaes B-3
Example Address Error Message.........ccoovvvvveviiiiieevceiiiiie e, B-3
EXPIANALON. ... B-3
How To Interpret AddresSS Errorscoooeeeeeeeeiiceciieeeeeeeeeeee, B-4
Table B-1: Conversion entry COUES........coouvveeeeeriiieeeeiiiiiiiinnn B-4
Table B-2: Address error MESSAQESccuvveeviiivririiieeeeiiiiieeeeaaeeans B-5
EITOr MEBSSA0ES ..ovuiiiiiiii ettt aaaas B-7

Soft-Scope User’s Guide B-1

Overview B. Error Messages

Overview

Soft-Scope generates an error message when it cannot execute a
command. Many of the error messages are displayed with a line of carets
(“ V) displayed beneath some part of the problematic command. The
carets show where in the command Soft-Scope ran aground. Some of the
messages in this chapter are warning messages and are identified as such in
the message text.

When possible, error messages are discussed in the following format:
1. <errormessage>

2. Explanation describing why the error message was displayed

3. Whatto do to eliminate the error message or avoid it in the future
Error messages are presented in alphanumerical order.

B-2 Soft-Scope User's Guide

B. Error Messages Address Error Messages

Address Error Messages

Because memory management, especially in protected-mode applicatio
and applications using the processor’s paging tables, is complex and d
not allow descriptions of all possible memory errors, we have provided
information to help you interpret address error messages.

All address error messages have the following format:
<Address- cvt ...- cvt - error message>

The variablevtis an address where a conversion was attempted, and
how the conversion was done. In all cases, theduted where the error
occurred.

Example Address Error Message

The following example describes an extremely complicated error message.
Most of the error messages you see won't be this complicated:

Reference: mysymbol

struct {

<Address - ffff:12345678 fffb[8191] -
fffb:0000fff8 gdt[8191] - fffff123L
Page[1023][1023] - 00000123P - Page not present >

Explanation

» Logical address ffff:12345678 with noncurrent LDT, fffb, required the
LDT entry in LDT fffb.

» Toread the descriptor, gdt[8191] had to be read.

Soft-Scope User’s Guide B-3

Address Error Messages

B. Error Messages

* Reading the GDT entry at linear address fffff123L caused the page
table entry for page[1023][1023] to be read from physical address

00000123P.

* Page[1023][1023] is missing or corrupted.

How To Interpret Address Errors

Table B-1 below lists all possible valuesdut If you get an address

error message, compare theentries with the table and determine what
conversion was taking place when the error occurred. Then look in table
B-2 on the next page to determine what the error part of the message
means. You should be able to identify what happened to cause the error.

Table B-1: Conversion entry codes

Conversion entry (cvt) El)escription

logical_addr gdt[0]

286/386 gdt[|

logical_addr Idt[0]

286/386 current Idt[]

logical_addr 0000[0]

286/386 noncurrent Idt[]

logical_addr cs_desc

CPU segment register cache

logical _addr v86

virtual 86 logical to linear mode translation

logical_addr real

real mode

linear_addr page[O]

page directory

linear_addr page[0][0]

page table entry

B-4

Soft-Scope User's Guide

B. Error Messages Address Error Messages

Table B-2: Address error messages

Message Description

Address wrap Address attempted to wrap a segment, linear
memory, or physical memory

GDT limit exceeded Soft-Scope trapped a reference outside the
bounds defined by the GDL register (the GDT
limit)

LDT via LDT selector | The LTR register caontains a LDT selector

Memory bounds The memory location that Soft-Scope is trying
exceeded to access is out of range

Non-addressable The descriptor specified does not have an
segment type addressable segment associated with it

Not code segment Soft-Scope requires code memory for the

attempted operation

Not data segment Soft-Scope requires data memory for the
attempted operation

Not IDT segment The selector given for the IDT indicated a GDT
slot that did not specify an IDT segment

Not LDT segment The selector given for the LDT indicated a GDT
slot that did not specify an LDT segment

NULL selector Zero is not a valid selector for protected mode

Page not present Either the page-table page or the final memory

page was missing

Table continued on next page.

Soft-Scope User’s Guide B-5

Address Error Messages

B. Error Messages

Table B-2: Address error messages (continued)

Message Description
Physical limit The address specified is outside the limit of
exceeded physical memory

Segment limit
exceeded

The address specified is outside the segment
limit or an attempt was made to use an offset
greater than Oxffff in real mode

Segment not
addressable

The descriptor associated with address
specifies a segment type that is not
addressable

Segment not present

The descriptor specified is not present in
memory

Stack frame not set
up

The referenced symbol is in a procedure that is
not in the current scope and doesn't have an
address. You can still inspect its type

Target limit exceeded

The address specified is beyond the memory
range available in the computer

Write fall

Either no memory exists at the location
specified or it is in ROM

B-6

Soft-Scope User's Guide

B. Error Messages Error Messages

Error Messages

< filename linenum/column - msg >

Soft-Scope encountered an invalid configuration-option specification whi
executing the specified line of flikename The message is Soft-Scope’s
explanation of what caused the error.

Check your configuration-options file, usuawin32.inj for options that
are not defined as specified in the chaj@enfiguring Soft-Scope

< (selector) notfound inload object >
Theselectogiven in this message is not part of the expected load object.

Make sure that the load object you specify irFiteeLoad dialog box is
a valid load object for your current application.

<:name... not found in “ filename ">
Soft-Scope can't find the module you have referenced.

Check to see that the module name is entered in the dialog box correctly.
Ifitis, and you are sure the module existdémame make sure the
application is built according to the instructions in the chapdets that
Soft-Scope Supporand that the file is not corrupted.

< Application task running >

The function or command that you are attempting to execute requires target
execution to be stopped.

If you have an interrupt-driven monitor, use@uele/Stopcommand to
halt target execution.

Soft-Scope User’s Guide B-7

Error Messages B. Error Messages

< Application $gdt[0..x] can’t hold CSiMon $gdt[0..y]
>

The application was built without enough reserved GDT slots for
CSi-Mon.

Rebuild the application, reserving GDT slots 0 thru 63.

< Application $idt[0..x] can’t hold CSiMon $idt[0..y]
>

The application was built without enough reserved IDT slots for
CSi-Mon.

Rebuild the application, reserving IDT slots 0 thru 39.

< Attempted division by zero >

The specified expression resolves to a division by zero.

< Bad type for increment/decrement >

Anincrement or decrement operator (i#e,,—) exists with a variable
that has an invalid data type for that operation. For example:
“GDT[5]++".

Increment and decrement operators only work on scalar variables.

< Break is only valid inside while - "token” at line ###, col ### >

The macro compiler has encounter&REAK statement outside of a
loop.

UseBREAK statements only withWWHILE statements to terminate
loops.

B-8 Soft-Scope User's Guide

B. Error Messages Error Messages

< Breakpoint already set >

The referenced memory location or data area already has a breakpoint set
forit.

Check in th&reakpoints window to see what breakpoints are set.
Perhaps you will have to delete one and replace it with a new type. Fo
example, delete a hardware breakpoint so you can replace it with an
execution breakpoint.

< Breakpoint has not been set >
There is no breakpoint at the referenced location.
Check in th&reakpoints window for a list of existing breakpoints.

< Can’t increment constant or expression >

Increment or decrement operators (i+6,,—i) are set on a constant
expression or array.

Increment and decrement operators work only on scalar variables.

< Can't turn this into an array >
The operand above the carats is not a memory reference.
Use the length operatoEN[GTH] only with memory references.

< Cannot display local variables in data window >

The value of a local variable in a macro is not saved when the macro is
terminated. Therefore, a local variable cannot be placed\vettad or
Data windows.

Use the macrBRINT command to display the values of local variables
(see théviacro Print Functiorsection in the chapteCreating and
Using Soft-Scope Macrps

Soft-Scope User’s Guide B-9

Error Messages B. Error Messages

< Cannot unzoom window >

Soft-Scope was attempting to unzoom a window but could not allocate
enough memory to do so.

You may need to quit other Windows applications to create more memory.

< Count not in range 1..9999 >

Soft-Scope does not support counts outside the given rangelft®the
command.

< CSi-Mon — description >

The target is reporting an error to Soft-Scopedbaatriptionexplains.

< Ctrl-C break >
<Ctrl>+<C> aborted the executing command.

< Cursor not on execution breakpoint >

The breakpoint under the cursor is a data breakpoint. Soft-Scope can
only display source code for execution breakpoints.

The source code for some data breakpoints can be viewed by locating the
reference in your code using Bymbolswindow for variables or the
Codewindow in Assembly mode for addresses. Once you have located
the address or variable, switch @@dewindow to Source mode.

< Cursor not on line with address >
Soft-Scope can't set a breakpoint on the line the execution pointer is on.

Possibly the current module has no line numbers or you are on a line
beyond the end of the module.

B-10 Soft-Scope User's Guide

B. Error Messages Error Messages

< Expected “=" >
Soft-Scope found an assignment operator missing in the initialization file.

Modify your configuratiorsswin32.inifile and verify that for each option
there is an equal sign between the option and its value.

< Expected “macro” keyword - “token” at line ###, col
H#HH# >

While compiling a macro file, the macro compiler was expecting the start of
a macro but gabkeninstead.

Examine your macro file and make sure the macro at the given line number
has the keywortlACRO as the first word on the header line, and that all
of the braces are in the right places.

< Expected %s - “token” at line ##, col #i# >

While scanning the format string of a print statement, the macro compiler
expected a string-format specifier and didn’t find one.

Examine your macro file and make sure the print statement on the given line
conforms to the specifications in the chapfieeating and Using Soft-
Scope Macros.

< Expected closing paren - ‘token” at line ####, col ##H
>

While parsing the current macro’s argumentsWi-HLE orPRINT
statement, the macro compiler expected a closing parenthesis but got
tokeninstead.

Examine the macro at the given line number. Make sure the parentheses
are used according to the specifications in the ch&pesating and
Using Soft-Scope Macros.

Soft-Scope User’s Guide B-11

Error Messages B. Error Messages

< Expected comma - “token” at line ##, col #i# >
Instead of a comma, which delimits arguments in a list, the compiler found
token
Check to make sure there is not a typographical error at the given line
number.

< Expected format string - ‘token” at line ###, col #HH#

>

While parsing #RINT statement, the macro compiler expected a string
indicating the format but gtikeninstead.

Examine the macro at the given line number. Make suRRIT
statement meets the specifications laid out i€tleating and Using Soft-
Scope Macroshapter.

< Expected identifier - “token” at line ##, col #i# >

The macro compiler has foutakeninstead of a parameter or local
variable.

Look in your macro file and make sure the identified line has no
typographical errors and meets the specifications @rémegting and
Using Soft-Scope Macrabsapter.

< Expected macro name - “token” at line ##, col #i# >

Instead of a macro name afterk&CRO keyword, the macro compiler
foundtoken

This is usually a typographical error at the given line number.

< Expected opening brace - “token” line ###, col ### >

The macro compiler expected a brace (“{") to start the macro but got
tokeninstead.

Look in the chapteCreating and Using Soft-Scope Magcrfms rules
defining braces in macros.

B-12 Soft-Scope User's Guide

B. Error Messages Error Messages

< Expected opening paren - ‘token” at line ####, col ##H#
>

While parsing a neMACRO, PRINT, orWHILE statement, the
compiler foundokeninstead of an opening parenthesis.

Examine the macro at the given line number. Make sure the parenthes
are used according to the specifications in the ch&pesating and
Using Soft-Scope Macros.

< Expected parameter or variable - ‘token” atline ###, col
HHt >

Instead of a parameter or variable, the compiler foakeh

Look at the given line number in your macro file for typographical errors.
You may want to review the rules for using parameters and variables in the
chapterCreating and Using Soft-Scope Macros.

< Expected quoted string >
Soft-Scope expected a quoted string to be entered.

Please check that you are using the correct syntax for the RiidNG
command. ThBRINT command is discussed in tlacro Print
Functionssection in the chapteZreating and Using Soft-Scope
Macros.

< Expression is too complex >

You are attempting to evaluate an expression that has more than 10
pending operators, for example, A+(B+(C+(D+...))).

Simplify the expression.

<< Fatal exception: msg >>
Soft-Scope encountered a severe emsg, and it aborted execution.
Please restart Soft-Scope and reload your application.

Soft-Scope User’s Guide B-13

Error Messages B. Error Messages

< Hardware breakpoint already set at this address address
>

There is already a data breakpoint setdadress

Look in theBreakpoints window for a complete list of currently set
breakpoints.

< Help not available >
The topic you have entered does not have any help associated with it.

To see alist of help topics, seleletp/Index from the menu, or press
<F1>.

< Identifier already defined - “ token” at line ###,col
HtH >

The macro compiler encountered a duplicate symbol declaration in the
source file.

Check the macro file at the line number identified by the message, and
correct any errors according to the specifications given in the chapter,
Creating and Using Soft-Scope Macros.

< Initial task register is an Idt selector >

The initial task register was defined so that a selector in a local descriptor
table was selected (warning only).

< Initial task register is outside gdt limit >

The initial task register was defined outside the limits of the initial GDT
(warning only).

< Initial TR->non-TSS type descriptor >

The GDT entry that the initial task register pointed to is notan Intel386
task- state segment descriptor (warning only).

B-14 Soft-Scope User's Guide

B. Error Messages Error Messages

<< Insufficient memory >>
Soft-Scope was unable to allocate memory for window data structures.

You may need remove some TSR (Terminate but Stay Resident) utilitie
device drivers to free memory for Soft-Scope.

< Insufficient memory to store option >

Soft-Scope was attempting to allocate memory to store a configuration
option but could not allocate enough memaory.

You may need to quit other Windows applications to create more memory.

< Internal error [- message] >

Soft-Scope has encountered either data or a situation that was thought to
never occur but has in this particular case.

Please report this error to us (see title page for contact information), along
with as much information as possible on why this error might have
occurred.

< Invalid field near ###H#H#H: “ filename ">

A bad symbolic record was found in the loadffienameat offset
ML

You may have to recompile and rebuild your application. This usually
means the application file is corrupted.

< Invalid file: filename >
The load file specified is not recognized by Soft-Scope.

This could mean the file is corrupted, or not prepared according to the
specifications in the chapt&@opnfiguring CSi-Morof theCSi-Mon
Monitor User’s Guide

Soft-Scope User’s Guide B-15

Error Messages B. Error Messages

< Invalid file: filename >
The load file specified is not recognized by Soft-Scope.

This could mean the file is corrupted, or the file was not prepared
according to the specifications in the chagiieo|s that Soft-Scope
Supports.

< Invalid macro compiler version >

Your macro object file contains a version number that does not match the
version Soft-Scope was expecting.

Erasdilenamemob so Soft-Scope will recompile your macros.

< Invalid macro object file >

The macro compiler produced bad object code, or some other process
corrupted its output.

Try erasing the filelenamemob so the macro compiler recompiles your
macros.

< Invalid macro opcode >

While executing a macro, Soft-Scope has encountered an unknown macro
command in the macro object file.

Look in your macro file for typographical errors. If you can't find any
mistakes, you might want to review the macro commands given in the
chapterCreating and Using Soft-Scope Macros.

< Invalid number format >

Soft-Scope can’t understand the specified numberXexgl234Q5H.

This usually means the number or variable has an invalid base attribute.
Valid bases are as follows: T = base 10, H = base 16. Searntizers
section in the chaptdtxamining Data with Soft-Scope

B-16 Soft-Scope User's Guide

B. Error Messages Error Messages

< Invalid override >

Either the attempted override is adsibverride of a reference that does
not contain bitx(e.g., bit20 $al), or the override contains two data types
that do not produce a meaningful type (es\gtype tss386s not
meaningful, busigned byteis).

See appendix A for list of data types usable in type overrides.

< Invalid override for processor type >
The specified type is not valid for your processor.
See appendix A for supported data types and their descriptions.

< Invalid Range >
The range specified has a starting value greater than its ending value.

Please retype the range.

< Invalid size for I/O port >

Overrides for the 1/0 port must be 8-bit, 16-bit, or 32-bits long. The
specified type doesn’t match the processor port sizesé¢engreal port
0, which attempts to specify a 10-byte type to port 0).

See appendix A for supported data types and their descriptions.

< Invalid value for parameter >
You have specified an invalid parameter with the fun@BmURN.

Please specify an integer value.

< Line number out of range (### to ###) >

The line number specified isn’t within the range of line numbers for the
module or procedure you're currently in or for the module/procedure
specified.

Soft-Scope User’s Guide B-17

Error Messages B. Error Messages

< Line too long: “ filename ">
The given text file contains a line that is too long to be processed.
Edit the file and shorten the line.

< Listing file invalid: Improper listing end >

Soft-Scope doesn’'t recognize a file you've specified as a listing file.
Possibly the file isn’t a listing file, or at least some character within the file
isn’'t recognized by Soft-Scope (e.g., you're using a version of some
language that Soft-Scope doesn’t yet understand).

Please review the information in the chapleqgls that Soft-Scope
Supportsto see what tools Soft-Scope supports.

< Listing file invalid: Improper listing header >

Soft-Scope doesn’'t recognize a file specified as a listing file. Possibly the
file isn't alisting file, or at least some character within the file isn’t
recognized by Soft-Scope (i.e., it was prepared using a version of some
language that Soft-Scope doesn’t yet understand).

Please review the information in the chapleqgls that Soft-Scope
Supportsto see what versions of tools Soft-Scope supports.

< Macro Abort >
A macro executed an abort command.
This happens when a macro containABORT statement.

< Macro execution halted - current macro has been deleted
>

A macro deleted the macro that called it, making it impossible to return.

The original macro file stored on your disk is not erased when this
happens. Editthe called macro so it doesn’t delete the calling macro,
reload the macro file into Soft-Scope, and try again.

B-18 Soft-Scope User's Guide

B. Error Messages Error Messages

< Macro name expected >
Soft-Scope is expecting a valid macro name.
UseMacro/Display to see which macros are loaded.

< Macro nesting too deep >
Macro execution has executed too many nested macros.
Only ten macros may be nested.

< Minimum field width specifier required with O padding
>

Soft-Scope doesn’t know how many padding zeros to use in the output of
your macrd®RINT orWPRINTF statement.

See théMacro Print Functionsection in the chapteCreating and
Using Soft-Scope Macros

< Mismatched ()'s >
Soft-Scope is expecting another right parenthesis.

Make sure your macro has the correct number of right and left
parentheses.

< Mismatched []'s >
You've forgotten a right bracket (“]”) or have used too many left brackets
()

Make sure your macro has the correct number of right and left brackets.

< modnamecontains no lines >

The modulenodnaméhat you've specified or are currently in doesn’t
contain line numbers. Possibly the module is empty, has not been built with
line numbers, or is an assembly-language module.

Soft-Scope User’s Guide B-19

Error Messages B. Error Messages

Look in the chapteffools that Soft-Scope Suppottssee how to build
your application with line numbers.

< Module not found >
Soft-Scope cannot find the specified module name.

Make sure the module name doesn’t contain typographical errors. If it
doesn’t, make sure itis located in the current application.

< More parameters given than the macro defined >

You've tried to invoke a macro, and specified more parameters than the
macro needs.

Retype the macro invocation. You may have to shell out to a text editor to
examine the macro file and refresh your memory.

< No address associated with reference >
The expression entered has no address associated with it.

This is usually a typographical error. If you can't find an error, look in the
Symbolswindow to refresh your memory of symbol spellings.

< No breakpoint to edit >
User has tried to edit a breakpoint, but there is no breakpoint displayed

under the cursor.

< No initial TSS is defined >

During loading, the TR (Task Register) value was set to 0 (warning only).

< No macro currently running >

You have attempted to suspend a macro, but no macro is currently running.

B-20 Soft-Scope User's Guide

B. Error Messages Error Messages

< No macro currently suspended >

You have attempted to resume a macro but no macro is currently
suspended.

< No macros defined >

A macro file (with one or more macros) has not been loaded into Soft-
Scope.

UseMacro/Load to load a macro file, and then seletcro/Display to
list the macros it contains in tM&acros window.

< No modules loaded >

The given command requires a default module, and there are no modules
found in Soft-Scope’s symbolic database.

UseFile/Load to load an application.

< No modules loaded and application task running >

Soft-Scope cannot find symbolics to display inGloeewindow and the
current task is running.

UseFile/Symbol loadto load symbolic information for the running
application.

< No modules loaded and no target attached >
The connection to your target has failed.

Check your cable to make sure itis properly connected. If the problem
persists, see the section on troubleshooting i@ #&idvon Monitor
User’'s Guide

Soft-Scope User’s Guide B-21

Error Messages B. Error Messages

< No return address available >

The specified return address isn’t resolvable RETURN()). Review
the specifications given in the chapli@ols that Soft-Scope Suppotts,
make sure your application is properly built.

< No source available for address >
Soft-Scope cannot display the source foattdresshown.

Perhaps the address is in an assembly module and doesn’t have source, or
it wasn’t prepared with debug information. See the chatels that
Soft-Scope Supports,see how to prepare an application with debug
information.

< No symbolic information loaded > or
< No symbols loaded >

Soft-Scope can't find any symbols loaded.

Possibly you haven't yet loaded an application, or your application is
loaded but not built for debugging. See the chapbets that Soft-
Scope Support&r information on how to build an application for
debugging with Soft-Scope.

< No target attached >
Soft-Scope can’'t communicate with the target.

See the section on troubleshooting inG&-Mon Monitor User’s Guide

< Not 286/386 absolute file >

The file you are trying to debug is not compiled in the right format, or it is
not a 286/38@bsfile.

See the chapté@pols that Soft-Scope Suppddsinformation
describing how to use specific compilers and other tools.

B-22 Soft-Scope User's Guide

B. Error Messages Error Messages

< Not valid for processor >
The CPU doesn’t contain the register you've specified.
See appendix A for applicable registers.

< Number too large >

The specified floating-point value is too large to be converted to a valid
floating-point number.

The NPX register supports any floating point number with a 15-bit
exponent and a 64-bit mantissa. See appendix A.

< Only 64 options permitted >

Soft-Scope allows up to 64 configuration options to be specified at one
time.

Perhaps you have some options you can delete because you are using the
default values.

< Option “src.tab” - Must be 1 to 16 >

In your initialization file, the entry for tab stops is set to something other
than one of the integers between 1 and 16.

Open thé®ptions window to see whatrc.tabis setto. Click the
Modify toolbar button to change the setting. See the chapter
Configuring Soft-Scope.

< Option “sym.case” - Must be ON or OFF >

In your initialization file, the entrgym.cases set to something other than
on oroff.

Open théptionswindow to see whalym.casas set to. Click the
Modify toolbar button to change the setting. See the chapter
Configuring Soft-Scope

Soft-Scope User’s Guide B-23

Error Messages B. Error Messages

< Option “sym.pointer” - Must be FAR16, FAR32, NEAR16,
NEAR32 >

Thesym.pointeroption must be set to one of the specified values.

Open theptions window to see whatym.pointeris setto. Click the
Modify toolbar button to change the setting. See the chapter,
Configuring Soft-Scope

< Option name expected >
TheSET TOcommand requires that an option name be specified.
See th&ETcommand syntax in the chapt®aft-Scope Basics

< Option not defined >

You are attempting to uSET and Soft-Scope did not find the specified
option name.

The available configurations are in the chafeft-Scope Basics.

< Option optionname - Must be defined >

The optioroptionnamesn’t defined in your initializatiofile, and is
required for the operation you've just attempted.

See the available options in the chaf@enfiguring Soft-ScopdaJse the
Insert toolbar button of th®ptionswindow to put the needed option in
your initialization filesswin32.ini

< Out of hardware breaks >

The processor debug registers are full. Either too many data breakpoints
are set or the reference you gave includes too much memory.

For information explaining the registers and how to use them efficiently, see
the chapterControlling Program Execution with Soft-Scope.

B-24 Soft-Scope User's Guide

B. Error Messages Error Messages

< Out of memory for trace buffer >
Your host machine doesn’'t have enough memory for a trace buffer.

Try setting the optiotnace.filesizeto a lower value.

< Out of symbol space >

The macro compiler has exceeded its limit of 100 symbols (including
keywords) in a macro.

Try breaking the macro into one or more smaller macros.

< QOverride not permitted on non byte-aligned bitfield
>

Soft-Scope trapped an attempted bitfield type override.

Possibly the override is not a supported data type, or there is a
typographical error in the specification.

< Port addresses must be 0 to OffffH >
The specified port address is not between 0 and OffffH.
Retype the specification with an acceptable port address.

< Read-only register GDB >
The GDB (GDT base register) can only be changed by an application load.

< Read-only register IDB >

The IDB (IDT base register) can only be changed by an application load.

< Received fatal error trying to reset >
Soft-Scope received a fatal error while trying to initialize your target.
You may need to manually reset your target.

Soft-Scope User’s Guide B-25

Error Messages B. Error Messages

< Register doesn’t contain this flag >
The register specified doesn’t contain the flag specified.
See th&egisterswindow for a display of all registers and their flags.

< Return (#) address unknown >

Soft-Scope was unable to calculate a return address for the current
procedure or for the #th nested call.

Perhaps #is too large, if specified. This error may also appear if your
application is built incorrectly.

< Serial error — Data overrun >

Your host machine can'tinterpret data from the target as fast as itis
arriving.

Lower the baud rate as specified inlth&alling Soft-Scope on the Host
section in the chaptegetting Started with Soft-Scape

< Size of override exceeds size of non-memory operand
>

Soft-Scope can't override a smaller variable with a larger type. (e.g.,
overriding a WORD register with a DWORD type).

See appendix A for a list of data types that can be used as type overrides
in Soft-Scope.

< Stack location is not known >
Soft-Scope was unable to locate the stack.

Perhaps you are using the SMALL memory model where stack and data
are in the same segment.

B-26 Soft-Scope User's Guide

B. Error Messages Error Messages

< String too long >

The string type override was applied to memory starting at the specified
address, but Soft-Scope didn't find a terminating null character (\0) within
the first 255 characters.

Use the char type override and specify the number of bytes to view as
characters using the length operator LEN[GTH]. For example:

char at 1000p length 5

< Subscript ranges on pointers are not supported >
Soft-Scope only recognizes a single reference (e.g., PTR[5]) for pointers.
Soft-Scope does support array-subscript ranges (e.g., array1[5..20]).

< Subscripts must be integers or ranges of integers >
The specified subscript or range is invalid.

Possibly the subscriptisn’t an integer, or there is a typographical error in
the range operator. See Deta Referencesection in the chapter,
Examining Data with Soft-Scope

< Symbol not found >
Soft-Scope has no record of the specified symbol.

Make sure the symbol is in the module you are currently executing in, that
you have specified the correct module with a colon (:), as described in the
chapterExamining Data with Soft-Scop® that the symbol is public.

< Symbol without base —Invalid field >
There is an invalid field in the OMF file.

Please verify that you have correctly built your application using the
information presented in the chapf@ols that Soft-Scope Supports.
Contact us (see title page for contact information) if you cannot eliminate
this problem.

Soft-Scope User’s Guide B-27

Error Messages B. Error Messages

< Symbolic name expected >
The parameter above the carets is not a symbolic name.
Look in theSymbolswindow for a list of application symbols.

< Syntax error >

The specified command is an invalid command or an invalid form of a valid
command. Complete command syntax can be found in the cl@xgter,
Scope Basics

< System - filename too long >
Thefilenamgincludingpathnamgis longer than 66 characters.
Shorten thdilenameorpathname

< System - not enough memory >

Soft-Scope was attempting to allocate memory and was unable to do so.
You may need to quit other Windows applications to create more memory.

< Target not responding >

Soft-Scope tried to open communication with the target, but could not
synchronize I/O.

Check your cable connections and baud rate, reset the target, and try
again.

< Target still not responding >
Soft-Scope cannot communicate with the target.

Check your cable connections and baud rate, reset the target, and try
again. If the problem persists, see the troubleshooting sectioiCigithe
Mon Monitor User’s Guide

B-28 Soft-Scope User's Guide

B. Error Messages Error Messages

< Target timeout on read >

Soft-Scope has asked the target for specific information, but the
information wasn'’t available or the target couldn’t transmit.

This could be a serial communication problem, such as a data overrun.
resetting the target, and re-invoking Soft-Scope. If the problem persist
we recommend you install a FIFO UART.

< These addresses are not compatible >

Soft-Scope cannot perform the specified operation because the addresses
given have different types.

When Soft-Scope attempts an operation on two addresses, it expects
them to be of the same type (logical, linear, or physical), and it expects
logical addresses to have the same selector.

< These are in the wrong order >
The two parameters above the carets are in the wrong order.
Try the command again, switching the placement of these two parameters.

< These are not comparable >

The two parameters above the carets are of incomparable data types.

< These operands are not compatible >

The addition or subtraction operation uses two operands that are not
compatible.

< These types are not compatible >

The types of the variables above the carats are not compatible for
assignments.

Soft-Scope User’s Guide B-29

Error Messages B. Error Messages

For example, structures can only be assigned to structures of the same
type.

< This address has no associated symbols >
The specified module contains no symbolic information.
UseCode/Moduleto see which modules are available.

< This is not a code reference >

The parameter above the carets does not refer to executable code, and the
command you attempted expected this parameter to reference executable
code.

Look in theSymbolswindow for a list of application symbols.

< This is not a logical address expression >
The parameter above the carets must evaluate to a logical address.
See the chapteExamining Data with Soft-Scope.

< This is not a memory reference >

The parameter above the carets must evaluate to a memory location or
address.

See the chapteExamining Data with Soft-Scope.

< This is not a module reference >
The parameter above the carets must evaluate to a module.

Possibly you've misspelled the module name, or forgotten to preface the
name with a colon (e.gcmain). It might help to refresh your memory if
you open th&ymbolswindow and examine the list of application
symbols. See the chaptExamining Data with Soft-Scope.

B-30 Soft-Scope User's Guide

B. Error Messages Error Messages

< This is not a numeric expression >

Soft-Scope is expecting a number, and the parameter above the carets
doesn’t resolve to one. See the chajieamining Data with Soft-
Scope.

< This is not a pointer >
The parameter above the carets is not a pointer.

Find out the type of the variable by placing it inEtaa window and
switching to Types mode.

< This is not a pointer or address >
The parameter above the carets is not a pointer or a memory address.

Find the variable’s type by placing it in thatawindow and changing to
Types mode.

< This is not a structure or union pointer >
The dereferenced variable is not a pointer to a structure or union.

Find the variable’s type by placing it in thatawindow and changing to
Types mode.

< This is not a symbolic reference >
The reference is not a symbol or variable.

Soft-Scope defines a symbolic reference as something you can assign a
value to. For exampleis a symbolic reference, wheés not.

< This is not an array or pointer >

The parameter above the carets is not an array.

Soft-Scope User’s Guide B-31

Error Messages B. Error Messages

Perhaps you have provided subscripts on a variable that does not require
subscripts. See the chaptexamining Data with Soft-Scope.

< This is not an integer expression >
The given expression does not evaluate to an integer.

Try checking the types of variables in the expression by placing them in the
Data window and changing to Types mode.

< This module was not compiled for debugging >

The module name above the carets does not contain debugging
information, and Soft-Scope only knows that it's a module without debug
information.

Make sure the application was prepared using the specifications givenin
the chapterJools that Soft-Scope Supports.

< This reference contains no lines >
The referenced source file contains no source lines.

Make sure the application was prepared using the specifications givenin
the chapterJools that Soft-Scope Supports.

< This subscript indexes to before the array >

The subscript above the carets evaluates to a number less than the first
elementin that array.

Try examining in thBata window any variables you have used in the
index to make sure their values are what you thought they were.

< This type cannot have members >

The specified type doesn’t support subfields. SeledkeeReferences
section in the chaptdtxamining Data with Soft-Scope.

< Too many breakpoints are set >
B-32 Soft-Scope User's Guide

B. Error Messages Error Messages

Soft-Scope supports up to 32 execution breakpoints.

You cannot set another breakpoint without removing an already set
breakpoint.

< Too many jump targets > or <Too many jumps >

The macro compiler has exceeded its internal limit of 200 jumps per
macro. Here are two examples of these “jumps”: the compiled code for a
while-statement contains one jump and so does the code for an if-
statement

Try rewriting the macro as two or more macros.

< Too many parameters >

The specified function doesn’t require as many parameters as were
supplied.

< Too many subscripts >
The reference specifies more subscripts than there are array dimensions.
Examine the array in tiizata window to see the array size.

< Undefined identifier - “ token " at line ####, col ###
>

The macro compiler has parsed an identifier that it can’t find in its symbol
table.

Define the identifier in the macro itis in. See the cha@tegting and
Using Soft-Scope Macrdey defining macros.

Soft-Scope User’s Guide B-33

Error Messages B. Error Messages

< Unexpected end of file - ‘token” at line ###, col #H##
>

The macro compiler has unexpectedly encountered the end of file while
parsing fotoken

Check to see if the macro file is corrupted, or if an opening comment
delimiter is not matched with a closing one.

< Unexpected end of line >

The macro compiler has unexpectedly encountered the end of a line while
parsing for a token.

Edit the macro file and make sure the macro is written according to the
specifications given in the chapt€reating and Using Soft-Scope
Macros.

< Unexpected end-of-file >

Soft-Scope was attempting to read data from a file and encountered the
end-of-file before reading all expected data.

Perhaps the file is corrupted.

< Unknown macro name >
Soft-Scope was unable to find the macro you specified.
UseMacro/Display to see which macros are loaded.

< Unknown member >

The member above the carets doesn’t exist for that structure, union, or
register.

Possibly a misspelled member name or a reference to the wrong structure.
Examine the structure in tBeta window to see what members it
contains.

B-34 Soft-Scope User's Guide

B. Error Messages Error Messages

< Unknown window name >

The name specified iVEMOVE, WRESIZE, orWFUNCTION
macro command does not refer to a Soft-Scope window.

See the chaptereating and Using Soft-Scope Macrus a list of
Soft-Scope window names usable with these functions.

< Unsupported assignment operation >

The parameter above the carets cannot be assigned to the value attempted
(e.g., GDT[5]=GDT][0] or $ax="abcde").

< Warning: Lines ### to ### are missing for modname>

A line number record has been generated in your object moddieame
for which there is no line number in your source or listing file. This may
indicate a problem with your compiler.

< Warning: Not connected to CSi-Mon or CodeTAP >

Soft-Scope cannot read the CSi-Mon version string to determine what
your target processor is.

The CSi-Mon licensing agreement forbids modification of the version
string.

< Warning: Target processor assumed to be 8086 >
The CSi-Mon version string has been modified and Soft-Scope cannot

read it to determine what your target processor is.

The CSi-Mon licensing agreement forbids modification of the version
string.

Soft-Scope User’s Guide B-35

Error Messages B. Error Messages

B-36

< WFUNCTION output buffer too large, maximum=128
characters >

TheWFUNCTION macro command output requires more memory than
is allocated to the buffer.

EachwFUNCTION command is assigned an individual buffer. Use

more than on&/FUNCTION command to perform the desired
operations.

Soft-Scope User's Guide

C. Debugging .exe
Executable Files

Chapter Contents

OVEIVIEW ...ttt ettt e e e e e e e e e e et e e et e e e e e e e aeaeaas C-2

Debugging .e€Xe FilEScooi i C-2
Preparing Your Application..............ueiiiiiiiiiiiii e C-2
Using the Special MONITOL...........coviiiiiiiiieiii e C-3
Loading an .exe Application...............ouvvveiiiiiiiiieie e C-3

Soft-Scope User’s Guide C-1

Debugging .exe Files C. Debugging .exe Executable Files

Overview

This appendix discusses how to debugaeexecutable file using the
SSBUG utility and a special version of CSi-Mon.

Debugging .exe Files

NOTE: Soft-Scope cannot debigxeapplications for which
memory assignments may change during execution, such as
applications designed to run under Microsoft Windows or
Quarterdeck DESQview.

Preparing Your Application

To debug arexeor.expfile, Soft-Scope needs access to the
application’s symbolic information and CSi-Mon needs to take control
when the application starts executing. This is accomplished using the
SSBUG utility and linking an assembly routine to your application as
described below:

1. Use the SSBUG utility, which is described in the chdpias that
Soft-Scope Support® create éug file from your.exeor.expfile.
The.bugfile contains your application’s symbolic information.

2. Link the assembly routiss_brkexe located in the file
\samp\mscexe\brkexe.asmo your application. Cak_brkexeto
invoke a special interrupt that will cause CSi-Mon to stop your
application and take control so you can begin debugging. Make sure
to callss_brkexebefore you reach the area of your application that
you wish to debug.

C-2 Soft-Scope User's Guide

C. Debugging .exe Executable Files Debugging .exe Files

Using the Special Monitor

A special version of the CSi-Mon monitexedbg.exeis required to
debug anexefile. See the chaptegZonfiguring CSi-Monin theCSi-
Mon Monitor User’s Guidéor details on installing the monitor on your
target PC.

The monitor can be invoked from the DOS prompt or as a device drive C
From the DOS prompt, tygsedbg . To install the monitor as a device
driver, add the following line to your @&t PCsonfig.sysfile:

device=drivename:\pathname\exedbg.exe

Loading an .exe Application

When you boot the target PC with the device-driver specification shown
above in itgonfig.sysfile, or invoke the monitor as aexefile, CSi-Mon

is installed on the target machine as a Terminate but Stay Resident (TSR)
program. To debug your application, do the following:

1. Runthe application from the DOS prompt on the target. When it hits
the breakpoint set [3s_brkexe it will stop.

2. Invoke Soft-Scope on your host computer. Do not include an
application load on the invocation line.

3. Choosé&ile/Symbol load...and enter theathname andfilename
of the.bugfile created by the SSBUG utility.

To load symbols from tHe@ommand linedialog box (<CtrI>+<L>), use
the following syntax:

FILENAME.BUG [filename |

FILENAME.BUG:device | f:
FILENAMEBUG (SEGMENT [JOB) relocationseg
FILENAME.BUG A .bugfile name associated with a relocatable

DOS program, including a path to the file

Soft-Scope User’s Guide C-3

Debugging .exe Files C. Debugging .exe Executable Files

flename Executable file whose name differs from
FILENAME
: device The name of a character device driver. The

(:) differentiates the device driver from an
ordinary DOS application

f The name of a block device driver
JOB DOS job handle (PSP segment)
relocationseg A segment specified in hex

FILENAME.BU{ filename]is used to attach symbolics to a relocatable
DOS executable program (e.g.,@xefile). If flename is not given,
thefilename part offilenamebugwill be used to search for a matching
.exefile. If afilename is given, Soft-Scope will search the current
directory on the target for an exact match.

Soft-Scope searches target memory for DOS’s memory control-block
(MCB) chain. Since the structure of DOS MCBs and the probable
starting location are undocumented, Soft-Scope searches target memory
between linear addresses 701 and 106ffl for the first MCB header, which
contains the bytes 4d 08 00.

If Soft-Scope does not find the first MCB header, you can specify another
memory range to search using the following options ingsawiN32.ini
initialization file:

targ.dos_mcb_start=0x start
targ.dos_mcb_end=0x end

Wherestartis the linear address where you want Soft-Scope to begin the
search andndis the linear address where the search is to stop.

FILENAMEBUG :device | fis used to attach symbolics to a DOS
device driverdevices used for character device drivers amnslused for
block device drivers.

This command requires Soft-Scope to search target memory between the
linear addresses 701 and 106ff for the NUL device, which begins the

Cc4 Soft-Scope User's Guide

C. Debugging .exe Executable Files Debugging .exe Files

device-driver chain. However, because the NUL device and its location
are undocumented and the search may fail, you can redefine the search
range by using the following options in ysawin32.inifile:

targ.dos_nul_start=0x start
targ.dos_nul_end=0x end

Wherestartis the linear address where you want Soft-Scope to begin the
search andndis the linear address where the search is to stop.

FILENAMEBUG JOBrelocationsegs used to attach symbolics using a C
DOS job handle (PSP segment).

4. Now you can control the DOS application through Soft-Scope, using
breakpoints and the various commands and functions to stop and start
execution.

Soft-Scope User’s Guide C-5

Debugging .exe Files C. Debugging .exe Executable Files

(This page blank)

C-6 Soft-Scope User's Guide

D. Helpful Hints

Chapter Contents

OVEIVIEW ...ttt et et ettt e e e e e e e e e aaas D-2

HEIPTULHINES ... D-3
Changing the Execution POINL..............ccoovvvviiiiiiiiiciiiee e, D-3
SOUICE LINE AQUIESS.....cceeiiiieiiiiiiiee ettt D-3
Changing an Executable INStruction...............cccooveeiiiiiiiiiiiiiiiee D-4
Bypassing Start-up COUE............couvviveiiiiiiiiie e D-5
COPYING MEIMOIY......uuuiiiiiiiiiiieie e D-5
RECEIVEN TIMEOULScoeieiiiiiiieie ittt D-6
Segment Limit EXCeeded...........coooviiiiiiiiiiiiiciiie e D-6

Soft-Scope User’s Guide D-1

Helpful Hints D. Helpful Hints

Overview

This appendix explains features that the experienced user might find useful
in special circumstances. Itis important that you read the introductory
paragraph for each topic because it may contain warnings or limitations that
you should be aware of.

If you discover an undocumented or unusual way to use Soft-Scope,
and would like to share your discovery with other users, call (208)
882-0445, fax (208) 882-9774, or email tech@consci.com and tell us
about it. If possible, we will include your new idea in this appendix
the next time we update the manual.

D-2 Soft-Scope User's Guide

D. Helpful Hints Helpful Hints

Helpful Hints

Changing the Execution Point

By modifying the value of thgeipregister, you can change the execution
point. However, you must be sure that the stack and registers are set up
properly for the new execution poinfou should not use this feature to
move to a function you are not currently lfiyou do, the program

stack will be incorrect for that function and the results will be

unpredictable.

To change the execution point, do the following:
1. Choose thRegisterscommand from thBata pull-down menu
2. Move the cursor to ti$eipregister
3. Click theModify toolbar button
4. Enterthe new value in the dialog box
Be sure to specify hex by placidgin front of the value:
$eip = 0x123

Source Line Address

You can determine the address of a source line by using the line number
with theADDRESSOF &) operator in thBata/Examinedialog box:

Data reference#45

You can set th$eipto the address of a source line in one step using the
OFFSETOF operator in an expression like the one below, whicbesets
to the offset of line number 45:

$eip = offsetof(-)

Soft-Scope User’s Guide D-3

Helpful Hints D. Helpful Hints

Changing an Executable Instruction

Itis possible to change an executable instruction. The following statement
assigns the value 90H (NOP), the no-operation opcode, to every byte of
source line 99:

byte at c length (sizeof #99) = 90H
This command is made up of the following subexpressions:

byte in one-byte increments
at c athe address of the beginning of line 99
length for the length of...

(sizeof #99) the number of bytes that make up line 99
=90H assign the value 90H

The macro shown below can be used to substitute an opcode for every
byte of a source-code line.

macro arr_chg (line $line, hex int $value)

{
}

byte at &#$line length(sizeof #$line)=%value;

D-4 Soft-Scope User's Guide

D. Helpful Hints

Bypassing Start-up Code

If the compiler you are using places a preamble module of assembly start-
up code at the beginning of your application, Soft-Scope will always
display that module when you load.

You can use an initial macro to go to main. In 8swin32.ini
configuration file, make the following assignments:

cmd.macro=sswin.mac
load.init_command=go main

You can set the optidoad.init_commandto a command or a macro
name.

Alternatively, you can use t@®@mmandtext box in th&ile-Load dialog
box to go tanain

Copying Memory

You can copy a block of memory from one location to another while in
Soft-Scope. Use type-override syntax with an equal sign. The types must
be compatible, as in the following example:

byte at 200P len 10 = byte at 100P len 10

Soft-Scope User’s Guide D-5

D. Helpful Hints

Receiver Timeouts

If you experience receiver timeouts, try addarg.debug=filenameto
yoursswin32.iniconfiguration options file. This option will create a log file
that contains the communication stream between Soft-Scope and CSi-
Mon. This log was designed for internal use and the format is very cryptic,
however you may find it helpful when trying to understand where the
receiver timeout occurs.

NOTE: The log file can become very large, so be sure and remove
the option fronsswin32.iniwhen it is no longer needed.

Segment Limit Exceeded

If you encounter the error message “Segment limit exceeded fox@DT][
during an application load, insure that the TSS for the application matches
the CSi-Mon/target you are using. Itis possible that an application built for
a 286TSS is being downloaded to a 386 or higher monitor/target. When
Soft-Scope updates the IP portion of the EIP register, the EIP may have
contained a value greater than 64K. This value may be larger than the
application’s GDT entry, since 286 descriptors are limited to 64K.

D-6 Soft-Scope User's Guide

E. Add Ons

Chapter Contents

Real-Time Operating Systems SUPPOIt.......ccoeeeeeiiiiiiiiiiiiieee e E-2
Kernel ODJECESvviiiiieiiiiie e E-3
Figure E-1: SuperTask! kernel objects dialog box.................... E-3
TASK LIS, .ttt e e s E-4
Figure E-2: SuperTask! task listdialoghax..............cccccuvvvvnnnene. E-4
CUIMENE TASK ...t E-4
Figure E-3: SuperTask! current task dialog box........................ E-4

Soft-Scope User’s Guide E-1

Real-Time Operating Systems Support E. Add-Ons

Real-Time Operating Systems
Support

Debugging an application that contains a real-time operating system
(RTOS) can be a very big challenge. To overcome this challenge, itis
important to be able to view the state of various kernel objects such as
events, resources and tasks.

From the perspective of a debugger, itis difficult to assist in this debugging
process because every RTOS is different, not only in implementation but
alsoin nomenclature. Some RTOSs, for example, have tasks whereas
others have jobs, some have resources whereas others have semaphores.
Furthermore, different RTOSs may even use completely different
paradigms. Because of these differences, we have adopted an industry
standard for providing kernel awareness for your RTOS to Soft-Scope.

If your RTOS vendor supports the Soft-Scope Kernel Awareness
Standard, then they can provide you with software for adding support to
Soft-Scope for their RTOS. If you wrote your own, then we can provide
you with the necessary documentation so you can develop kernel
awareness support yourself.

After you have obtained the kernel awareness software from your RTOS
vendor, you will need to install it according to their instructions. Once the
software has been installed, when you start Soft-Scope, a new kernel
awareness menu item will appear on the menu bar. The new item is usually
the name of the RTOS you are using.

The following examples were created using the SuperTask! RTOS from
US Software.

E-2 Soft-Scope User's Guide

E. Add-Ons Real-Time Operating Systems Support

Dizplay abje
Tazks...

Current tazk. ..

The kernel awareness pull-down menu provides three comniisgdiag
objects.., Tasks.., andCurrent task...). Each command opens a dialog
box that contains information about the RTOS. The contents of the dialog
box varies, depending on how the RTOS vendor chose to implement the
Soft-Scope Kernel Awareness Standard.

Kernel Objects

This dialog box contains details about tasks and other kernel objects s
as resources, semaphores, events and mailboxes.

SuperT ask! kemel objects

& Tasks ~ Free memory © Events " Bulffers -

' Mailbozes " Local memary € Event groups € Time queus Task info... |
" Fesources " Global memory About... |
ID Hame PRI Start Addr Status

1 test1 188 B8x86685183C in run queue

2 time keeper 258 Bx8085AEFC waiting for event B
3 test2a 255 BxBees5346 <{RUHMIHG>

| | i

Figure E-1: SuperTask! kernel objects dialog box

Soft-Scope User’s Guide E-3

Real-Time Operating Systems Support E. Add-Ons

Task List
This dialog box lists the currently existent tasks in your application and their
status.
Taskir |
Mame Handl= Status
test] 1 FReady
time_keeper 2 Wt aiting
testZ2a 3 <RUMMIMNG >
Figure E-2: SuperTask! task list dialog box
Current Task

This dialog box shows the name and handle of the current task.

i Current T ask Ed
Task HMHame - testZZa
Task Handle: A1 3chG o

Figure E-3: SuperTask! current task dialog box

E-4 Soft-Scope User's Guide

E. Add-Ons Real-Time Operating Systems Support

For the latest list of supported RTOSs, contact technical sales at (800)
897-3001, (208) 882-0445, or info@consci.com. To obtain a copy of
the Kernel Awareness Specification, contact technical support at (208)

882-0445 or tech@consci.com.

Soft-Scope User’s Guide E-5

Real-Time Operating Systems Support E. Add-Ons

(This page blank)

E-6 Soft-Scope User's Guide

F. Intel Floating-Point
Emulation

Chapter Contents

OVEBIVIEBW ...ttt e e e e e e e e e e -
Intel Floating-Point EMUIationeeeviiiiiiiiiee, F-2

Soft-Scope User’s Guide F-1

Intel Floating-Point Emulation F. Intel Floating-Point Emulation

Overview

This appendix describes how you can configure Soft-Scope to interpret
Intel 8087 floating-point emulation. This information is only applicable if
you are using Intel tools to build your application.

Intel Floating-Point Emulation

When you step, Soft-Scope inserts a temporary breakpoint at the end of
the instruction to be executed and internally iss@S eommand. Soft-
Scope then executes your application at full-speed until it finds a
breakpoint, which it does as soon as it prepares to execute the next
instruction.

When the target application is linked with a floating-point emulation library
instead of an 8087 chip, the linker modifies the numeric instructions in such
a way that Soft-Scope cannot determine the end of an instruction, and
cannot step correctly.

When the compiler sees a line of code that requires a floating-point
instruction, it inserts the 8087 opcode at that point and marks this location
for afixup. Afixup is a compiler-allocated area in the object code where
the linker/locator can replace the existing code with other values.

In the case of floating-point emulation, the fixup inserts an interrupt into the
op-code of the floating-point instruction. The interrupt number points to a
dedicated vector for handling this floating-point instruction.

Floating-point emulation interrupt vectors are a range, one vector per
floating-point instruction. Floating-point emulation libraries are linked into
the load module. Each floating-point interrupt vector points to the library
entry for that floating-point routine. From the interrupt vector given, the
emulator can determine the length of this instruction and can execute
correctly, but Soft-Scope will need to be informed that numeric emulations
are being performed.

F-2 Soft-Scope User's Guide

F. Intel Floating-Point Emulation Intel Floating-Point Emulation

For Soft-Scope to function correctly in this environment, if your application
contains floating point instructions and uses Intel 8087 instruction emulation
(by linking to the librariee8087.libande8087, you must set
targ.87emulateto the value of the first interrupt vector. These libraries
default to 20 decimal.

If you are using DOS 8087 instruction emulation (by linking to the libraries
de8087.libandde8087, you must setirg.87emulateto the first
interrupt vector. These libraries default to 212 decimal.

Soft-Scope User’s Guide F-3

Intel Floating-Point Emulation F. Intel Floating-Point Emulation

F-4

You may setarg.87emulaten eithersswin32.inior in theCommand
line dialog box using thBET command. The former method sets the
option every time you load an application.

Using floating-point emulation instead of an 8087 numeric coprocessor
causes stepping of floating-point instructions to be slow.

(This page blank)

Soft-Scope User's Guide

Index

Index

Symbols ... [Data/Watch window symbol: com-
) pressed format] 5-17

[operator: line-number] 4-12, 5-12 ..x [open-ended operators] 5-21

$ [Command-line and text-box syntax: _abs absolute file 3-21

CPU-structure name prefix] 5-57, A-9 aye executable file 3-21
register-name prefix] 5-13, 5-52, A-9 how to debug C-2

$ [macros: parameter-name prefix and fieldname (command syntax element) 5-52
local-variable prefix] 7-10, 7-27 .ini configuration options file 4-38

$CPU (CPU variable) 7-5 .mac macro source file 7-4

$cr0-Ser4 registers A-14 .mob compiled macro file 7-4

$eip register D-3 .mob file. See under extensions.

$NPX (CPU variable) 7-5 omffile 3-21

$STOPPED (CPU variable) 7-5 tmp files. See temporary files.

& [memory-reference operator: addressof . [address operator: selector-offset separa-
operator] 5-26, 5-37, 5-41, A-8, D-3 tOf] 5-12, 5-13, 5-25, A-8

() [command metasymbol: alternative or - [operator: module] 4-12, 5-12, 5-27, A-8

required] 3-17 <Alt>+ [opens Break pull-down menu]
() [Data/Watch window operator: selector 312
not stored in memory] 5-24 <Alt>+<C> [opens Code pull-down menu]
* [data reference operator: pointer- 3-12
dereference operator] 5-12 <Alt>+<D> [opens Data pull-down menu]
+ [upload-file symbol: begins each file 312
record] 5-51 <Alt>+<F> [opens File pull-down menu] 3-
- [command parameter (BREAKPT): delete 12
breakpoint] 4-23, 4-25 . <Alt>+<H> [opens Help pull-down menu]
-> [Data/Watch window operator pointer] 312
5-13, 5-18, 5-24, A-8 <Alt>+<M> [opens Macro pull-down
. [data reference operator: menu] 3-12
keyword prefixin commands] 5-19, A-9 <At>+<0O> [opens Options pull-down
structure member selector] 5-61, A-9 menu] 3-12
. [operator: symbol] 4-12, 5-12, 5-13, 5-27 <p|t>+<W> [opens Window pull-down
.. [subscript range operators] 5-20 menu] 3-12
... [data reference operator: open-ended <Ctrl>+<A> [captures current window to
and closed range of array] 5-21, A-8 log file] 3-9, 3-12

Soft-Scope User’s Guide Index-1

<CtrI>+<C> [cancels current operation] 3-
12
<CtrI>+<End> [displays last page of
currentwindow] 3-12
<Ctrl>+<F> [opens Find dialog box] 3-12
<Ctrl>+<Home> [displays first page of
current window] 3-12
<Ctrl>+<L>[opens Command line dialog
box] 3-12, 7-19
<Ctrl>+<PgDn> [pages down half of
currentwindow] 3-13
<CtrI>+<PgUp> [pages up half of current
window] 3-13
<Ctrl>+<Q> [exits Soft-Scope] 3-12
<CtrI>+<Shift>+<Tab> [moves to previous
window in queue] 3-13
<CtrI>+<Tab> [moves to next window in
queue] 3-13
<Ctrl>+<X> [closes active window] 3-12
<F10> [toggles Application I/O
window open/closed] 5-64

<Spacebar> [steps once in Code window]

4-4, 49
= [Configuration-option assignment
operator] 6-6

= [Registers window symbol: subfield used

with, has more than one bit] 5-55

= [Symbols window toolbar button:
filename assignment for module] 5-35

? [Code window symbol indicates
approximated information] 4-10

? [Data/Watch window symbol: indicates
uninitialized stack variable] 5-28

? [in displays] 5-21

? [Registers window symbol: register not
displayed] 5-53

[] [command metasymbol: optional entries]

317

Index-2

Index

[File] (configuration-file section) 6-6

[Layout] (configuration-layout section) 6-6

\r\n [upload-file symbols: ends each line of
binary data] 5-51

{} [macro WFUNCTION: keyboard-key

names] 7-22

| [command metasymbol: alternatives] 3-17

00000000P (default starting address for
Dump window data) 5-46

ABORT (macro statement) 7-17
absolute file (.abs) 3-21
accelerator keys
list of 3-12
ACCESS (keyword) 4-19, 4-25, 4-27
action at a breakpoint 4-21
address
as code references 4-12
as macro parameters 7-13
command syntax element 3-19
determining 5-37
format of 4-10, 5-25
ifin RAM or ROM checked for
breakpoints 4-26
LDT as part of 6-11
linear 5-25
logical 4-10, 4-12, 4-15, 5-25
as memory references 5-25
in Dump window 5-48
with type overrides 5-40
mode (display mode) 5-16, 5-32
of symbolic references and type over-
rides 5-42
physical 4-10, 4-12, 4-15, 5-25, 5-26
in Dump window 5-46

Soft-Scope User's Guide

Index

radio buttons
Logical 4-10
Physical 4-10
selector:offset format 5-25
type overrides useful with 5-40, 5-42

assembly
display modes (dialog box)
example of 4-35
radio buttons, Address 4-35
radio buttons, Code 4-35

ADDRESS (parameter type with macros) 7- mode (of Code window) 4-9

13

example of 4-10

ADDRESSOF operator (&) 5-26, 5-37, D-3assignment statements

with type overrides 5-41
application
after load, example of 3-28
full compatibility with Soft-Scope, how
to assure,
I/O 5-64
1/0O (input/output) window
description of 5-64
loading
confirmation of 2-9, 3-28
howto 3-21
path to, defining 6-10
arithmetic operators 5-6
arr_chg (macro example) 7-4
array
built-in
$VECTOR 5-64
data references to 5-20
entire array 5-20
range of elements of 5-20
single element of 5-20
variable subscripts with 5-21
indexes out of range 5-21
local variables in macros 7-14
number of elements returned by
LENGTHOF 5-38
subscript, number base (default) 5-5
arrow (graphic)
outline of (in Code window) 4-11
solid (in Code window) 4-11

Soft-Scope User’s Guide

assigning values to complex types 5-24
AT (operator)
examples of use 5-45
use with type overrides 5-41
AUTO (keyword, local-variable
declarations, macros) 7-14

B

backslash (\)
escape character 5-10
base
configuration option 5-4, 6-7
number (default) 5-4
baud rates 2-4, 6-8
binary numbers (with suffix Y) 5-3
bitfield
data references to 5-22
single, data references to 5-22
block of memory, copying from one
location to another D-5
Borland 8-2, 8-7
sample applications 8-4
BR[EAKPT] (command) 4-19, 4-23, 4-25
braces ({}) (used in WFUNCTION for key
names) 7-22
BREAK (macro statement) 7-17

Index-3

breakpoint
access (see also ACCESS) 4-19
action at 4-21
addresses used to specify 4-23
break pull-down menu options
Access 4-24
Display 4-16
Execution... 4-22
Write... 4-24
break toolbar button 4-22
conditions 4-20
data 4-24
limitations 4-24
defining new 4-20
deleting 4-18, 4-23, 4-25
hardware 4-24
software 4-23
temporary 4-23
edit (dialog box)
Addr (options) 4-21
example of 4-20
how to open 4-20
Status (options) 4-20
Status radio buttons 4-20
Then (options) 4-21
Type (options) 4-20
When (options) 4-21
editing 4-20—4-21
exec (see also EXEC) 4-26
execution 4-22—4-23
deleting, how to 4-23
exec breakpoint as special form of 4-
26
if address in RAM or ROM 4-26
RAM (not all in) 4-26
specifying, how to 4-22—-4-23

Index-4

Index

hardware 4-24—4-26
debug registers 4-25
example of 4-16
resources of, used by exec
breakpoints 4-26
ROM addresses 4-26
specifiers 4-27
two kinds (Data and Exec) 4-24
how many are set 4-16
indicators 4-11
insert 4-18
limitations 4-25
modify 4-18
processor debug registers 4-25
software
permanent 4-22
temporary 4-23
software (see also breakpoint, execu-
tion), 4-22—-4-23
status 4-20
temporary 4-28
temporary software 4-8
how to set and remove 4-23
then condition 4-21
types 4-20
variables, stack-based 4-24
view 4-18
when condition 4-21
window
adding breakpoints in 4-19
deleting breakpointsin 4-19, 4-23
double-click function in 4-18, 4-20
example of 4-17
open breakpoint edit dialog box from
4-20
toolbar button, Delete 4-18, 4-24
toolbar button, Insert 4-18, 4-20, 4-
24
toolbar button, View 4-18

Soft-Scope User's Guide

Index

write (see also WRITE) 4-19
built-in CPU variables

$CPU 7-5

$NPX 7-5

$STOPPED 7-5
buttons. See under toolbar buttons.

C

C (language)
data types and type overrides 5-40
escape sequences 7-27

expressions as breakpoint conditions 4-

21
formatted output function 7-25

operators (see also arithmetic/logical

operators)
table of 5-8

Soft-Scope expressions and operators 5-

6
statements
break 7-17
if-else 7-17
return 7-18
while 7-18
caching memory, Soft-Scope's 6-14
call sequence 4-30
CALLS (command) 4-31
calls window
double-clicking to display code 4-30
example of 4-31
how to open 4-31
opening (see Code pull-down menu
options, Calls) 4-30
capture command
window contents to a file 3-9
case of symbols 6-10
chapter summaries 1-5-1-7

Soft-Scope User’s Guide

cmd.file (configuration option) 3-9, 6-7
cmd.initial (configuration option) 6-7
cmd.macro (configuration option) 6-7, 7-8
code
caching 6-14
disassembly and CPU type 6-11
location 4-14
pull-down menu options
Calls 4-30
Display 4-7, 4-14, 4-15
Goto... 2-10, 4-15, 4-27
Module 4-13, 5-34
Stop 4-28
Trace 4-34
references 4-12—4-13
as memory references 5-25
double-click to examine 4-7
examples 4-12, 4-22
symbols 4-14
how to find 4-13
window 4-6—4-11
arrow (graphic) 2-10, 4-11
dialog box (see under display modes)
49
double-clicking in 4-7
execution pointer in, how to return to
4-14
in assembly mode (example) 4-10
in source mode (example) 4-7
modes of 4-9
octagon (graphic) 4-11
opening from Trace window 4-34
opening with LIST command 4-14
pointer 4-11
scrolling up (backwards) in 4-10
symbols used in 4-11
toolbar button, Break 4-8, 4-22, 4-23
toolbar button, Evaluate (?) 4-9
toolbar button, Go to return 5-38

Index-5

toolbar button, Locate 4-9, 4-14
toolbar button, Mode 4-4, 4-9
toolbar button, Temp break 4-8;23
coderef (command syntax element) 3-19
codesym (command syntax element) 3-19
com port 2-4, 6-8
comma operator (,) (C language) 5-7
command
examples 4-23, 4-25, 5-35, 5-38, 5-
43, 552
execute after load 6-9
execute before load 6-7, 6-9
line
commands, list of 3-17
commands, syntax 3-17
dialog box, example 3-8

metasymbols used in syntax statements

of 3-17-3-19
Soft-Scope, complete list of 3-17-3-19
syntax elements of 3-19-3-21
communication
device 6-15
host to target 6-8
parameters, serial
how to change 2-4
with monitor 7-20
compiling macros 7-4
compressed format data representation
toggles between, and expanded format
5-17
Concurrent Sciences, Inc.
email address D-2
fax number D-2
phone number D-2
conditional operator (?:) (C language) 5-7

Index-6

Index

configuration
options (see also individual options)
file (sswin32.ini) 6-3
how to modify a value 6-5
how to save and reload 6-4
list of all 6-6
Windows-type .ini file for 4-38
connect.baudrate (configuration option) 6-
8
connect.comport (configuration option) 6-
8
control strings (in formatted output
macros) 7-25
conventions. See documentation conven-
tions.
conversion specifiers (for formatted
output) 7-25
table of 7-26
coprocessor 7-5
copy memory from one location to another
D-5
copyright information, Soft-Scope's 2-6
count
number base (default) 5-5
CPU
data types 6-11
structures 5-56-5-59
chip selects 5-56
config control 5-56
descriptor abbreviations 5-59
displayed in Data window 5-56
how to display or view 5-56
how to modify 5-59
interrupt 5-56
page dir 5-56
parallel ports 5-56
power/clock 5-56
refresh control 5-56
serial ports 5-56

Soft-Scope User's Guide

Index

timers 5-56
vector 5-56
variables 7-5
CSi-Link 8-5
currenttask E-4

D

data
breakpoints. See under breakpoints.
bus
how addresses appear on 5-25
display of in most useful format 5-44
pull-down menu options
CPU structures 5-56
CPU structures (to view vector table)
5-64
Dump 5-46
Examine 5-14, 5-57
Registers 5-52, D-3
Symbols 4-13, 5-34
Watch 5-30
reference 5-19-5-24
double-clicking to examine 4-7
examine with ? command/toolbar
button 4-9
example uses of 5-19, 5-20, 5-21, 5-
22, 5-24, 5-27, 5-37, 5-38, 5-40, 5-
41, 542, 5-43, 5-44, D-3
not necessarily memory references 5-
25
summary of 5-12
symbols 4-14
types A-2-A-8
for type overrides, subfields used in
A-2
for type overrides, table of A204--
A209

Soft-Scope User’s Guide

descriptor subfields, table of A-16
device driver, serial 2-4
dialog boxes

window 5-14-5-18
CPU structures displayed in 5-56
double-click function in 5-17, 5-23
open display modes (dialog box)
[Code window] 4-9
pointer dereferencing in 5-23
question mark in 5-28
toolbar button, Mode 5-15
toolbar button, Modify 5-15, 5-
59, D3
toolbar button, Watch 5-15

dataref (command syntax element) 3-19
datasym (command syntax element) 3-19
debug

.exe executable file C-2
registers 4-25
and hardware breakpoints 4-25
efficient use of 4-24
example usage of 4-25
number of registers used 4-25

DEC (keyword with macro parameters) 7-10
decimal numbers (with suffix T) 5-3
DELETE (keyword) 7-7

deleting

breakpoints 4-23, 4-24

Assembly display modes 4-35
Breakpoint edit 4-20

Code reference 4-7
Command line 3-17

Data reference 5-14

Display modes 5-15, 5-31
Dump modes 5-47

File-Load 3-21

File-Restart 3-26

File-Symbols 3-24

Index-7

Find 3-8
specify information for, using macro
WFUNCTION 7-24
direct memory access (DMA) 6-14
disassembling code and CPU type 6-11
display

format of data, with type overrides 5-44

modes (dialog box) [Code window] 4-7
example of 4-9
radio buttons, Address 4-10
radio buttons, Code 4-9
radio buttons, Execution 4-9
modes (dialog box) [Data window]
example of 5-15
opened from Watch window 5-31
radio buttons, Modes 5-16
distribution disks
Soft-Scope 2-3
documentation conventions iv
double-click function 3-14
on datareferences 3-14, 4-7
to modify existing breakpoint 4-18
to reference pointers 3-15
use in Breakpoints window 4-18, 4-20
use in Code window 3-14, 4-7, 4-14
use in Datawindow 4-14, 5-17, 5-23
use in Watch window 5-17, 5-23, 5-33
view code for specific call 4-30
dump
modes (dialog box)
example of 5-47
Expand check box 5-48
Modes radio buttons (Byte) 5-48
Modes radio buttons (Dword) 5-48
Modes radio buttons (Hword) 5-48
Modes radio buttons (Word) 5-48

Index-8

Index

window 5-46-5-49

address format used to open 5-46
default starting address of dump 5-46
example of 5-49
how to open 5-46
modes of 5-47
toolbar buttons, Mode 5-47
toolbar buttons, Modify 5-47
toolbar buttons, Shift 5-47

DUMP (command) 5-49

E

E (prefix of exponent) 5-4
emulation, floating-point
targ.87emulate F-2, F-3
environment variable 6-18
equal sign (=) toolbar button
(Symbols window) 5-35
error
condition
action at breakpoint 4-21
messages
address B-3
general B-7
escape sequences (for strings) 5-10
table of 5-11
use in (formatted output) control strings
7-27
EVAL (command) 5-16, 5-58
Eval mode (display mode) 5-16, 5-32
examining data 5-83--5-146 5-1
EXEC (keyword) (see also breakpoint, exec)
4-19, 4-26, 4-27
exec.refresh (configuration option) 6-8
exec.wait (configuration option) 6-8
executable
file (exe) 3-21
instruction, changing D-4

Soft-Scope User's Guide

Index

execution
breakpoint. See under breakpoint.
events
displayed in Trace window 4-33, 4-35
point, current 4-6, 4-9, 4-14
changing D-3
pointer 4-13
how to return Code window to 4-14
radio buttons
Into 4-9
Over 4-9
expanded format data representation
(...)
toggles between, and compressed
format 5-17
exponential numbers 5-3
exponents (of floating-point numbers)
number base (default) 5-5

extensions

.abs 3-21, 8-5
.bug 8-6, C-2
.exe 3-21, 8-6
.exe C-257--C262
.exp C-2

.ini 4-38

.mac 7-4

.mob 7-4

names

backslashes in strings 5-10

pull-down menu options

Load 2-8, 5-50
Restart 3-26
Upload 5-50
View log 3-10, 6-7

file-load (dialog box)
example of 2-9, 3-22

EXPRESSION (parameter type with macros) parts of

7-12
expressions
as memory references 5-26
assignable, as macro parameters 7-12
complex, used in assignment statements
5-24
in type overrides 5-43

F

file-restart (dialog box)
example of 3-26
parts of

farl6 (value for sym.pointer
configuration option) 6-12
far32 (value for sym.pointer
configuration option) 6-12
field-width specifiers (in print macros) 7-28
file

Browse... 3-22
Command 3-22

File name 3-22
Hardware setup 3-22
History 3-23

Restart 3-23
Symbols 3-23

Browse... 3-27
Command 3-26

File name 3-26
Hardware setup 3-26
History 3-27

Load 3-27

Symbols 3-27

file-symbol load (dialog box)

Soft-Scope User’s Guide

Index-9

example of 3-24

parts of
Browse... 3-25
Command 3-25
File name 3-25
History 3-25
Load 3-25
Restart 3-25

filename (command syntax element) 3-19
filename.bug (command syntax element) 3-

19
files
sample 8-4
temporary. See temporary files.
find (dialog box)
example of 3-8
parts of
Cancel 3-8
Direction 3-8
Find next 3-8
Match case 3-8
Match whole word only 3-8
Find string 3-7
flag format (flitype) 5-41
flags register 5-41
modifying 5-52
floating-point
emulation 6-14
targ.87emulate F-2, F-3
numbers 5-3
fltype (data type in type overrides) 5-41
formatted output (print macros) 7-25
frequently asked questions 1-3-1-4
functions, built-in Soft-Scope 5-37
table of 5-9

Index-10

Index

G

global
descriptor table
displaying 5-57
example display 5-58
subfields, table of A-16
variables A-15
symbols
in Symbols window 5-36
go
toolbar button 4-3
until cursor position 4-4
GO (command) 4-27

H

H (suffix) for hexadecimal numbers 5-3
hardware breakpoint. See under breakpoint.
4-24
HELP (command) 3-16
Help pull-down menu options
About Soft-Scope 3-16
Index 3-16
Using help 3-16
helpful hints for power user D263--D266
HEX (keyword with macro parameters) 7-10
hexadecimal numbers
0x (prefix for) 5-3
H (suffix for) 5-3
hexnumberl6 (command syntax element) 3-
19
host system requirements 2-3

Soft-Scope User's Guide

Index

I/O
device, memory-mapped 6-14
port
reading/writing use PORT 5-38
restrictions on reading from 5-38
IF (macro statement 7-17
IF...ELSE (macro statement) 7-17
indexes, array 5-20
installation instructions
host system requirements 2-3
Soft-Scope for Windows 95/NT 2-4
instruction
changing D-4
pointer 2-10
integer data type, size of 6-13
Intel
ASM86, ASM286 and ASM386 8-7
BLD286/386 8-8
BND286/386 8-8
iC-86,iC-286 and iC-386 8-9
LINK86/LOC86 8-9

PL/M-86, PL/M-286 and PL/M-386 8-10

register subfield names used by
Soft-Scope come from 5-55
interrupt
descriptor table
displaying 5-57
subfields, table of A-16
variables A-15
disable 6-16
driven CSi-Mon 4-28
INTO (keyword) 4-5
into, stepping 4-3, 4-4
invoking Soft-Scope 2-6—2-7

Soft-Scope User’s Guide

K

kernel
awareness E-3
objects E-3
key_sequence (with macro function
WFUNCTION) 7-22
keyboard keys
activate pull-down menus using 3-12
concurrent presses of iv
open dialog boxes using 3-12
selecting menu commands using 3-12
keyword
(command parameters)
as variables in data references 5-19
use of period (.) with 5-19
(see also individual keyword)
keyword (command syntax element) 3-19

L

L (suffix for linear address) 5-12, 5-25
LDTR register 6-11
leading zero flag (in conversion specifiers)
7-28

LEN[GTH] (operator) 5-43, 5-50

number base (default) 5-5
LENGTHOF (function) 5-37, 5-38
LINE

(command) 4-9

(parameter type with macros) 7-13
line number

as macro parameter 7-13

how to find address of D-3

number base (default) 5-5

operator (#) 4-12
linenum (command syntax element) 3-19
lineref (command syntax element) 3-19
linker (CSi-Link) 8-5
linking your application 8-5

Index-11

Index

LinkLoc (Phar Lap linker locator) 8-11 window
LIST how to open 3-10

(command) 4-14 log-file name change 6-7

(keyword) 7-7 specify size 3-10, 6-10
LITERAL (parameter type with macros) 7- toolbar button, Clear 3-10

11 log.winsize (configuration option) 3-10, 6-

LOAD 10

(command) 3-30 logical operators 5-7

(keyword) 7-7
load.init_command (configuration option) M

69, 78 MACRO

command executed after load 6-9
example use of D-5

load.init_enable (configuration option) 6-9

load.setup_command (configuration
option) 6-9
command executed before load 6-9

load.setup_enable (configuration option)

69
loading
.exe application C-3—C-5
application (see application loading)
memory and registers 5-50
symbolics only 3-24
local
descriptor table
and address displays 6-11
subfields, table of A-16
variables A-15

variables, macro. See under macros.

locator 8-5
log
file (see also Window menu option,
Capture)
capturing a window to 3-9
default name 3-9
specifying name 3-9, 6-7

Index-12

(command) 7-7

(keyword in macro definitions) 7-3
RESUME (macro statement) 7-19
SUSPEND (macro statement) 7-19

macro

assign
array value 7-15
pointer value 7-16
compiling to .mob file 7-4
CPU variables 7-5
creating 7-3
currently loaded 7-6
deleting 7-6, 7-7
displaying name in Macros window 7-9
examples
arr_chg 7-4, D-4
printstr 7-12
src_chg 7-11
test 7-10, 7-14
file of, loading 7-6
files. See sswin32.mac
functions
PRINT 7-25, 7-28
WFUNCTION 7-22, 7-23
WMOVE 7-22, 7-23
WPRINTF 7-28
WRESIZE 7-22, 7-23

Soft-Scope User's Guide

Index

initial macro file load 6-7 source files of 7-3
invoking/running statements 7-17-7-21
from Command line 7-7 _USER_ MONHOLD 7-20
from Macros window 7-6 _USER_ MONITOR 7-20
local variables 7-14-7-16 ABORT 7-17
any type in table A-1 7-14 BREAK 7-17
AUTO required in declaration 7-14 IF 7-17
can be arrays (one-dimensional) 7-15 IF..ELSE 7-17
how to declare 7-14 MACRO RESUME 7-19
names begin with $ 7-15 MACRO SUSPEND 7-19
pointers 7-15 MONHOLD 7-20
name customizing for Macros window 7- MONITOR 7-20
9 RESPOND 7-18
output 7-25, 7-27 RETURN 7-18
parameter types WHILE 7-18
ADDRESS 7-13 syntax of 7-3
EXPRESSION 7-12 window 7-6—7-9
LINE 7-13 customizing names for 7-9
LITERAL 7-11 example of 7-7
MODULE 7-13 how to open 7-6
PROCEDURE 7-13 not displaying selected names in 7-9
REFERENCE 7-12 toolbar button, Delete 7-6
TEXT 7-12 toolbar button, Run 7-6
parameters 7-10-7-13 macroname (command syntax element) 3-19,
any type in table A-1 except arrays 7-manipulating windows from macros 7-22—
10 7-24
names begin with $ 7-10 memory
print macros 7-25-7-28 access size 6-16
control strings 7-25 cache flush 6-14
conversion characters 7-25 caching 6-14
escape sequences 7-27 control block search 6-15
field-width specifiers 7-28 copying a block of from one location to
leading zero flag 7-28 another D-5
wprintf 7-28 modify 5-46
pull-down menu options reference
Display 7-6 examples of 5-26
Load 7-6 references 5-25-5-26
Resume 7-19 summary of 5-12

running 7-6, 7-7

Soft-Scope User’s Guide Index-13

Index

using expressions for 5-26 configuration option) 6-12
save in disk file 5-50 nested calls
write verification 6-17 return addresses of 5-37
writes, read-after-write verification of 6- stack usage 4-32
17 NOP (assembly-language instruction--no
memory-mapped I/O device 6-14 operation)
memref (command syntax element) 3-19 changing instructions to D-4
menu map, Soft-Scope's pull-down Normal mode (display mode) 5-16, 5-32
table of 3-4-3-6 null
message character (\0) 5-10
window device search 6-16
description of 2-6 null-modem configuration 2-11
example of 2-7 numbers
MESSAGE (command) 2-6 base changing 6-7
messages, error base of (default) 5-4
address B-3 formats/bases supported by Soft-Scope
general B-7 5-3-5-5
MetaWare 8-2, 8-10
sample applications 8-4 O

Microsoft 8-2, 8-10 octagon (graphic)

sample applications 8-4 outline of (in Code window) 4-11
modname (command syntax element) 3-20 solid (in Code window) 4-11

module octal number, specified with escape

names 7.13 sequences 7-27
as macro paralere OFFSETOF (function) 5-37, D-3
ow to assign file to 5-35 OME file 3-21

how to find 4-13
operator (1) 4-12
MODULE (parameter type with macros) 7-

open-ended operator (with arrays) (...) 5-21
Operation codes, modify D-4
operators

13 .y
built-in Soft-Scope 5-6—-5-9
MODULES (command) 5-35 precedence of 5-7
N Soft-Scope specific, table of A-8—A-9
table of 5-9
nearl6 (value for sym.pointer three classes of 5-6
configuration option) 6-12 offsetof D-3
near32 (value for sym.pointer OPT (keyword with macro parameters) 7-10

optionname (command syntax element) 3-

Index-14 Soft-Scope User's Guide

Index

20 LinkLoc 8-11
options pointers
configuration file 6-3 as type overrides
pull-down menu options how to interpret 6-12
Display 2-4, 4-29, 6-3 data references to 5-17, 5-23
Reload settings 6-4 dereferencing 5-23, 5-33
Save settings 6-4 far 6-12
window macro local variables as 7-15
example of 6-5 near 5-24, 6-12
toolbar button, Delete 6-4 number base (default) 5-5
toolbar button, Insert 6-4 PORT (function) 5-37
toolbar button, Modify 5-4, 6-4 number base (default) 5-5
optionvalue (command syntax element) 3-port I/O using PORT (command) 5-37
20 power user, helpful hints for D263--D266
out-of-range array indexes 5-21 printstr (macro example) 7-12
OVER (keyword) 4-5 procedure
over, stepping 4-4 call, return from 4-28
call sequence 4-30
P names
: ;)) as macro parameters 7-13
P(su1ff2|?< f;;ghysmal address) 4-10, 5 how to find 4-13

referencing in current module 4-12
referencing in different module 4-12

PROCEDURE (parameter type with macros)
7-13

PROCEDURES (command) 5-35

processor type 7-5

pull-down menu map

table of 3-4-3-6

page
directory
macros for displaying tables of 5-58
variables A-15
table entries, table of A-15
paging
when disabled, linear address equals
physical address 5-25

path to application, defining 6-10 Q
PC target CSi-Mon monitor C-3
peripheral control block (PCB) guestions, frequently asked 1-3-1-4
table of 5-60-5-63 quick contents (table of) iii
permanent software breakpoints 4-22 guotation marks
Phar Lap in macro functions 7-22
386/ASM 8-12 single or double 5-10

Soft-Scope User’s Guide Index-15

Index

R subfield
displays 5-55
RAM address names 5-55
and breakpoints 4-26 systems, list of 5-55
ranges, number base (default) 5-5 window 5-52—5-55
read-after-write verification 6-17 display different for different applica-
real mode tions 5-55
interrupt vector table 5-64 example of 5-54
structures 5-60-5-63 toolbar button, Modify 5-52
real-time operating systems support E-2 toolbar button, Watch 5-53
receiver timeouts D-6 REGISTER[S] (keyword) 5-51
reference RELOAD (keyword) 6-5
scoping 5-27-5-28 RESPOND (macro statement) 7-18
rules for 5-28 restart application 3-26
summary 5-12 RETURN
REFERENCE (parameter type with macros) (function) 5-37, 5-38
712 number base (default) 5-5
referencing structures (keyword) 4-27
arrays of structures 5-21 (macro statement) 7-18
individual elements 5-21 return
REG (command) 5-53 from procedure call 4-28
register to calling procedure 4-4
$cr0-$crd A-14 ROM address
$eip, changing D-3 and breakpoints 4-26
accessto 5-52, 5-53 RTOS, supported
control 5-52, A-14 list of E-5
flags A-11
general-purpose A-10-A-11 S
modifying 5-52
names begin with $ 5-52 S[TEP] (command) 4-5
NPX A-13 sample . .
protected mode A-14 applications, directory located in 8-4

save in disk file 5-50 fles 8-4
segment A-12 programs disk 2-3
SAVE (keyword) 6-5
scoping, references 5-27-5-28
screen refresh 6-8
segment limit exceeded D-6
segment:offset format (addresses) 4-10

Index-16 Soft-Scope User's Guide

Index

selector
and offset 5-24, 5-25
in parentheses 5-24
near pointer 5-24
SELECTOROF (function) 5-37
number base (default) 5-5
serial
communication parameters
how to change 2-4
device driver 2-4
number, Soft-Scope's 2-6
SET (command) 6-5
setbreak (macro)
as initial command 7-8
shift-operators (>>, <<), operand of
number base (default) 5-5
single step 4-4
SIZEOF (function) 5-37
small memory model applications 5-24
Soft-Scope
commands, table of 3-17-3-19
copyright information for 2-6, 3-16
how to invoke 2-6—-2-7
Kernel Awareness Standard E-2
operators, table of A-8—A-9
pull-down menu map
table of 3-4-3-6
serial number 2-6
version information for 2-6, 3-16

src.path (configuration option) 6-10
src.tab (configuration option) 6-10
src_chg (macro example) 7-11
SSBUG (conversion utility) 8-6, C-2
sswin (directory) 2-3
sswin32.exe (executable file) 2-3
sswin32.ini (default configuration file) 6-4
sswin32.log (log file) 3-9, 6-7
sswin32.mac (macro file) 5-58, 6-7, 7-3
STACK (command)

reset 4-32

usage 4-32
start target execution 4-27
start-up code

how to jump over when debugging D-5
status line

tells when application is loading 2-9, 3-

28

step 4-4

default mode of 4-4

into 4-4

into next procedure call 4-3

over 4-4

over next procedure call 4-4

single 4-4

specify number of steps 4-5
STEP (command) 4-4
STOP (command) 4-28
stop execution toolbar button 4-3, 4-28

software breakpoint. See under breakpoinstrings 5-10-5-11

source
code
displaying sections of 4-15
files
and modules 5-35
pathto 6-10
mode (of Code window) 4-7
specify a number of steps 4-4

Soft-Scope User’s Guide

and escape sequences 5-10
where to enter 5-11
structures
data references to 5-17
members of, data references to 5-21
subscripts used in data references
to array elements 5-20

Index-17

Index

superimposing types with type overrides T

542
SuperTask! E-2 T (suffix) for decimal numbers 5-3
sym.case (configuration option) 6-10 tab character 6-10
sym.cpu (configuration option) 6-11 targ.87emulate (configuration option) 6-
sym.ldt (configuration option) 6-11 14, F-2, F3

sym.pointer (configuration option) 6-12 targ.cache (configuration option) 6-14
sym.wordsize (configuration option) 5- targ.code_cache (configuration option) 6-

48, 6-13, A-3, A5, A6, A7 14
symbol targ.dev (configuration option) 6-15
case 6-10 targ.dos_mcb_end (configuration option)
loading 3-24 6-15
names, how to find 4-13 targ.dos_mcb_start (configuration option)
operator (.) 4-12 6-15
window 5-34-5-36 targ.dos_nul_end (configuration option) 6-
display mode described 5-34 16
display modes exemplified 5-36 targ.dos_nul_start (configuration option)
examples of 5-36 6-16
opening, how to 5-34 targ.grain (configuration option) 6-16
toolbar button, Assign (=) 5-35 targ.pcb (configuration option) 5-60
toolbar button, Modules 5-35 targ.polling (configuration option) 4-29, 6-
toolbar button, Procedures 5-35 16 _ _ _
toolbar button, Symbols 5-35 targ.verify (configuration option) 6-17
toolbar button, View 5-34 target execution
toolbar button, Watch 5-35 toolbar buttons
use, to find code references 5-26 Go 4-3, 4-27
symbolic Goto cursor 4-4
and uploading memory and registers 5- Gotoreturn 4-4
51 Step into 4-3
information 3-21, 8-6 Step over 4-4
loading 3-24 S_top 4-3
operators 5-6 task list E-4
SYMBOLS (command) 5-35 temp (environment variable) 6-18
syntax temporary breakpoint. See under
command 3-17 breakp_oint.
elements of commands 3-19 temporary files
system location 6-17
register access 5-53 Soft-Scope's 3-29, 6-18

requirements 2-3

Index-18 Soft-Scope User's Guide

Index

Terminate but Stay Resident (TSR) progrartools supported by Soft-Scope 8-191--8-

C3

test (macro example) 7-10, 7-14
TEXT (parameter type with macros) 7-12
tmp.path (configuration option) 6-17
TO (keyword) 3-20, 6-5

environments of use 5-35, 5-49, 7-7
tool

directives 8-197--8-202

summary 8-2
toolbar buttons

Assembly 4-35

Assign (=) 5-35

Break 4-8

Bus 4-35

Delete 4-18, 5-31, 6-4, 7-6

Evaluate (?) 4-9

Go 4-3, 4-27

Gotocursor 4-4, 4-28

Gotoreturn 4-4, 4-28

Insert 4-18, 4-24, 5-31, 6-4

Locate 4-9, 4-14

Mode 4-9, 4-35, 5-15, 5-31, 5-47

Modify 5-15, 5-31, 5-47, 5-52, 6-4, D-

3

Modules 5-35

Procedures 4-35, 5-35

Run 7-6

Shift 5-47

Source 4-35

Step into 4-3

Step over 4-4

Stop 4-3, 4-28

Symbols 5-35

Temp break 4-8, 4-23

View 4-18, 4-30, 4-345-34

Watch 5-15, 5-35, 5-53

Soft-Scope User’s Guide

202
table of 8-2
trace
buffer size limited 4-38
data access multiple loads 6-18
file size 6-17
information across multiple loads 6-18
temporary file where trace information
stored 6-17
window 4-33-4-38
example of 4-33, 4-36, 4-37
how to open 4-34
toolbar button, Assembly 4-35
toolbar button, Bus 4-35
toolbar button, Mode 4-35
toolbar button, Procedures 4-35
toolbar button, Source 4-35
toolbar button, View 4-34
TRACE (command) 4-37
trace.filesize (configuration option) 4-
38, 6-17
trace.load (configuration option) 4-38, 6-
18
troubleshooting 2-11-2-12
TSR (Terminate but Stay Resident) program
C3
TSS386
subfields, table of A-17-A-18
TYPE (command) 5-16
type overrides 5-40-5-45
and Watch window data 5-33
data types for
complete list of A204--A209
expressionsin 5-43
for displaying data in most useful format
5-44
for memory copying D-5
not true type conversion 5-40

Index-19

Index

permissible types with 5-40 and type overrides 5-40
complete list of A204--A209 A-2 referencing 5-28
using pointers in uninitialized, with ? in Data window 5-
how to interpret 6-12 28
Types mode (display mode) 5-16, 5-32 static, referencing 5-27
typographical conventions. See use of subscript in array references 5-21
documentation conventions. user-declared as type overrides 5-42
vector table
U how to view in Registers window 5-64

real-mode interrupt 5-64

unions
data references to 5-22 VERSION (command) 3-16 ,
upload version information, Soft-Scope's 2-6
dialog box W
example of entry 5-50
file wait to execute next command 6-8
format of 5-51 watch
UPLOAD (command) 5-51 memory 5-33
uploading memory and registers 5-50-5-51 window 5-30-5-33
reloading uploaded memory and adding references, how to 5-30
registers 5-50 and type overrides 5-33
description of 5-17
\4 display modes described 5-31

double-click function in 5-17, 5-23
example of 5-32
how many references can be watched

variables (see also data symbols)
and type overrides 5-40
assigning values to,

using type overrides 5-44 >33 i

automatic (nonstatic) 5-28 opened with Data/Watch command 5-
CPU 7-5 0 -
data references 5-19 pointer dereferencing in 5-23, 5-33
global, referencing 5-27 references in, how to add 5-30

keywords as, in data references 5-19 toolbar button, Delete 5-31
protected-mode, table of A-15 toolbar button, Insert 5-31

referencing, outside current toolbar button, Modg 531
program context 5-27 toolbar button, Modify 5-31
update frequency 5-30

register
how to reference 5-29 WATCH (command) 5-33
scalar 5-31 Watcom 8-2, 8-12

stack-based sample applications 8-4

Index-20 Soft-Scope User's Guide

Index

WFUNCTION (macro function) 7-22, 7-23
examples of 7-24
key sequencein 7-22
WHILE (macro statement) 7-18
window
name (for macro WFUNCTION) 7-22
pull-down menu options
Capture 3-9
Find string 3-7
Layout save 3-11
Soft-Scope's
manipulating, from macros 7-22—7-24
windows
Application /O 5-64
Breakpoints 4-16
Calls 4-30
Code 4-6
Data 5-14
Dump 5-46
Log 3-10
Macro 7-6
Message 2-6
Options 6-3
Registers 5-52
Symbols 5-34
Trace 4-33
Watch 5-30
WMOVE (macro function) 7-22, 7-23
WPRINTF (macro)
output from 7-27
sending output to log file from 3-9
WRESIZE (macro function) 7-22, 7-23
WRITE (keyword) 4-19, 4-25, 4-27

Y

Y (suffix) for binary numbers 5-3

Soft-Scope User’s Guide Index-21

Index

Index-22 Soft-Scope User's Guide

	1. Introduction
	2. Getting Started with Soft-Scope
	3. Soft-Scope Basics
	4. Controlling Program Execution with Soft-Scope
	5. Examining Data with Soft-Scope
	6. Configuring Soft-Scope
	7. Creating and Using Soft-Scope Macros
	8. Tools that Soft-Scope Supports
	A. Data Types, Operators, Registers, and Descriptors
	B. Error Messages
	C. Debugging .exe Executable Files
	D. Helpful Hints
	E. Add Ons
	F. Intel Floating-Point Emulation
	Index
	1. Introduction
	Overview
	FAQs: Frequently Asked Questions
	Chapter Summaries
	2. Getting Started with Soft-Scope
	Overview
	Installing Soft-Scope on the Host
	Host-system Requirements
	Soft-Scope Distribution Disks
	Soft-Scope Installation for Windows 95 and Windows NT
	Figure 2-1: Changing baud rate using Options window
	Invoking Soft-Scope
	Message Window
	Figure 2-2: Initial Soft-Scope window with connect message
	Loading Your First Application
	Figure 2-3: File-Load dialog box
	Figure 2-4: Soft-Scope display after application load
	Figure 2-5: Run application to first line of main()
	Troubleshooting
	Symptoms of Problems
	Checklist of Corrective Actions
	3. Soft-Scope Basics
	Overview
	Pull-Down Menu Map
	Table 3-1: Pull-Down Menu Map
	Window Pull-Down Menu
	Finding a String
	Figure 3-1: Find dialog box
	Capturing a Window to a Log File
	Figure 3-2: Log window showing capture of Trace window
	Saving Window Layout
	Open Window List
	Accelerator Keys
	Double-click Function
	Double-click in the Code Window
	Double-click on Data References
	Double-click on Pointers
	Online Help
	Commands and Command Line
	Figure 3-3: Command line dialog box
	Command Syntax Elements
	Loading an Application
	Load
	Figure 3-4: File-Load dialog box
	Symbol Load
	Figure 3-5: File-Symbol load dialog box
	Restart
	Figure 3-6: File-Restart dialog box
	After the Load
	Figure 3-7: Soft-Scope after an application load
	Soft-Scope .tmp Files
	Command Line
	4. Controlling Program Execution with Soft-Scope
	Overview
	Controlling Program Execution
	Stepping through Code
	Single Step
	Specify a Number of Steps
	Step Command via the Command Line
	Code Window
	Figure 4-1: Code window in Source mode
	Figure 4-2: Code reference dialog box
	Toolbar Buttons
	Figure 4-3: Display modes dialog box
	Figure 4-4: Code window in Assembly mode with logical addresses
	Code Window Execution Pointers
	Code References
	Line Numbers
	Symbol Names
	Guidelines
	Locating Code
	Breakpoints Window
	Figure 4-5: Breakpoints window
	Toolbar Buttons
	Command Line
	Editing Breakpoints
	Figure 4-6: Breakpoint edit dialog box
	Software Breakpoints
	Permanent Software Breakpoints
	Temporary Software Breakpoints
	Hardware Breakpoints
	Data Breakpoints
	Command Line
	Debug Registers
	Exec Breakpoints
	Command Line
	Executing to a Location
	Go
	Go to a Specific Location
	Return from a Procedure Call
	Go to a Cursor Position
	Stop
	Procedure Call Sequence
	Calls Window
	Figure 4-7: Calls window
	Command Line
	Stack Information
	Trace Window
	Figure 4-8: Trace window displaying procedures
	Toolbar Buttons
	Figure 4-9: Assembly display modes dialog box
	Figure 4-10: Trace window displaying procedures and source
	Command Line
	Figure 4-11: Trace window displaying procedures, source, and assembly code
	Trace Buffer
	Trace File Size
	5. Examining Data with Soft-Scope
	Chapter Contents
	Overview
	Numbers
	Setting the Default Base
	Table 5-1: Default number bases
	Operators
	Symbolic Operator Examples
	Arithmetic Operators Return Numeric Values
	Logical Operator Examples
	Table 5-2: C operators
	Table 5-3: Soft-Scope specific operators and functions
	Strings
	Escape Sequences
	Where to Enter Strings
	Table 5-4: String escape sequences
	Reference Summary
	Table 5-5: Reference summary
	The Data Window
	Figure 5-1: Data reference dialog box
	Toolbar Buttons
	Figure 5-2: Display modes dialog box
	Command Line
	Figure 5-3: Data window in Eval mode
	Double-click for Quick References
	Figure 5-4: Data window in expanded format
	Data References
	Simple Variables
	Referencing Arrays
	Displaying an Entire Array
	Displaying a Single Element of an Array
	Displaying a Selected Number of Arrays
	Variables as Subscripts
	Referencing Structures
	Referencing Unions
	Referencing Bitfields
	Referencing Pointers
	Dereferencing Pointers
	Figure 5-5: Before double-click on "->"
	Figure 5-6: After double-click on "->"
	Selector Is Not Stored in Memory
	Making Complex Assignments
	Referencing Memory
	Using the Symbols Window to Find Code References
	Reference Scoping
	Examples
	Table 5-6: Reference Scoping
	Referencing Automatic (Stacked-based) Variables
	Referencing Register Variables
	The Watch Window
	Toolbar Buttons
	Figure 5-7: Display modes dialog box
	Figure 5-8: Watch window in Normal display mode
	Command Line
	Watching a Pointer
	Watching Memory
	The Symbols Window
	Toolbar Buttons
	Command Line
	Displaying Global Symbols
	Figure 5-9: Symbols window in Procedures mode
	Built-in Functions
	Determining Addresses
	Using Return as a Memory Reference
	Determining How Many Elements in an Array
	Reading and Writing to Port Addresses
	Type Overrides
	Applying a Type Override to a Variable
	Applying a Type Override to an Address
	Using a Variable to Superimpose its Data Type over the Address of Another Variable
	Using a User-declared Variable to Define a Type Override
	Changing the Amount of Memory Displayed
	Using Expressions in Type Overrides To Do Mathematical Operations
	Assigning Values Using Type Overrides
	Displaying Data in its Most Useful Format
	The Dump Window
	Toolbar Buttons
	Figure 5-10: Dump modes dialog box
	Command Line
	Figure 5-11: Dump window in Byte mode, 8 bytes per line
	Uploading Memory and Registers
	Command Line
	Format of Upload Files
	The Registers Window
	Toolbar Buttons
	Command Line
	Accessing Registers When the Target is Running
	Figure 5-12: Registers window for 80386EX target
	Contents of the Registers Window
	CPU Structures
	Figure 5-13: IDT descriptors
	Figure 5-14: Data window in Normal mode
	Figure 5-15: Data window in Eval mode
	Command Line
	Table 5-7: Descriptor abbreviations
	Modifying a Descriptor Element
	Real-Mode Structures
	Table 5-8: Peripheral Control Block
	Table 5-8: Peripheral Control Block (continued)
	$VECTOR[] Array
	Application Input/Output
	6. Configuring Soft-Scope
	Overview
	Options Window
	Toolbar Buttons
	Save and Restore Options
	Command Line
	Figure 6-1: Options window showing default values
	Soft-Scope Configuration Options
	Table 6-1: Soft-Scope configuration options
	Control Default Number Base
	Change Log File Name
	Define Initial Command
	Define Initial Macro File
	Configure Host To Target Communications
	Control Screen Refresh Rate
	Control Command Delay
	Define Command
	Change Log File Size
	Define Path To Application Files
	Define Tab Spaces
	Define Case for Symbol Search
	Access CPU-specific Data Types
	Display LDTR register value
	Define Pointer Type Override Display
	Specify Integer Data Type Size
	Specify Floating Point Emulation Parameter
	Control Memory Caching
	Control Code Memory Cache Flush
	Define Host Communication Device
	Specify Where To Search For Memory Control Block
	Specify Where To Search for the NULL Device
	Specify Size of Memory Reads
	Tell Soft-Scope that Interrupts are Disabled
	Verify Memory Writes
	Specify temporary file location
	Specify the Size of the Trace File
	Preserve Trace Data across Applications
	7. Creating and Using Soft-Scope Macros
	Overview
	Creating a Macro
	Compiled Macro Files
	Built-in CPU Variables
	Macros Window
	Loading a Macro File
	Toolbar Buttons
	Figure 7-1: Macros window
	Command Line
	Example Use of cmd.macro and load.init_command
	Identify Macros in the Macros Window
	Macro Parameters
	Optional Parameters
	Integer Type
	LITERAL Parameter
	TEXT Parameter
	EXPRESSION Parameter
	REFERENCE Parameter
	ADDRESS Parameter
	LINE Parameter
	MODULE and PROCEDURE Types
	Local Variables
	Declaring Local Variables
	Defining One-dimensional Arrays
	Assigning Numeric Values to Arrays
	Assigning Pointer Values from Your Application
	Macro Statements
	ABORT
	BREAK
	IF, IF...ELSE
	RESPOND
	RETURN
	WHILE
	MACRO SUSPEND
	MACRO RESUME
	Custom Commands with an Extended Monitor
	Manipulating Windows from Macros
	WMOVE
	WRESIZE
	WFUNCTION
	Examples
	Macro Print Function
	PRINT
	Conversion Specifiers
	Table 7-1: Conversion specifiers
	$ Parameter Prefix in Control Strings
	Escape Sequences
	Directed Output from Macros
	Using Field-width Specifiers with PRINT or WPRINTF
	Specifying the Leading Zero Flag
	8. Tools that Soft-Scope Supports
	Tool Summary
	Table 8-1: Supported tools
	Sample Files
	Linking Your Application
	CSi-Link™
	Generating Symbolic Information
	SSBUG
	Tool Directives
	Borland
	Intel
	ASM86, ASM286 and ASM386
	BND286/386 and BLD286/386
	Intel iC-86, iC-286 and iC-386
	Intel LINK86/LOC86
	Intel PL/M-86, PL/M-286 and PL/M-386
	MetaWare
	Microsoft
	Phar Lap
	Phar Lap LinkLoc
	Phar Lap 386/ASM
	Watcom
	A. Data Types, Operators, Registers, and Descriptors
	Data Types
	Table A-1: Data types for use in type overrides
	Operators
	Table A-2: Soft-Scope operators
	General-Purpose Registers
	Figure A-1: General-purpose registers
	Figure A-2: Flags register
	Figure A-3: Segment registers
	NPX Registers
	Figure A-4: NPX registers
	Protected-Mode Registers
	Figure A-5: Control registers
	Figure A-6: Protected-mode registers
	Descriptors and Subfields
	Table A-3: 386 protected-mode variables
	Table A-4: Page table entries
	Table A-5: Descriptor subfields
	Table A-6: TSS386 subfields
	Table A-6: TSS386 subfields (continued)
	B. Error Messages
	Overview
	Address Error Messages
	Example Address Error Message
	Explanation
	How To Interpret Address Errors
	Table B-1: Conversion entry codes
	Table B-2: Address error messages
	Error Messages
	C. Debugging .exe Executable Files
	Overview
	Debugging .exe Files
	Preparing Your Application
	Using the Special Monitor
	Loading an .exe Application
	D. Helpful Hints
	Overview
	Helpful Hints
	Changing the Execution Point
	Source Line Address
	Changing an Executable Instruction
	Bypassing Start-up Code
	Copying Memory
	Receiver Timeouts
	Segment Limit Exceeded
	E. Add Ons
	Real-Time Operating Systems Support
	Kernel Objects
	Figure E-1: SuperTask! kernel objects dialog box
	Task List
	Figure E-2: SuperTask! task list dialog box
	Current Task
	Figure E-3: SuperTask! current task dialog box
	F. Intel Floating-Point Emulation
	Overview
	Intel Floating-Point Emulation
	Index
	
	Overview
	FAQs: Frequently Asked Questions
	Chapter Summaries
	Overview
	Installing Soft-Scope on the Host
	Host-system Requirements
	Soft-Scope Distribution Disks
	Soft-Scope Installation for Windows 95 and Windows NT
	Figure 2-1: Changing baud rate using Options window
	Invoking Soft-Scope
	Message Window
	Figure 2-2: Initial Soft-Scope window with connect message
	Loading Your First Application
	Figure 2-3: File-Load dialog box
	Figure 2-4: Soft-Scope display after application load
	Figure 2-5: Run application to first line of main()
	Troubleshooting
	Symptoms of Problems
	Checklist of Corrective Actions
	
	Overview
	Pull-Down Menu Map
	Table 3-1: Pull-Down Menu Map
	Window Pull-Down Menu
	Finding a String
	Figure 3-1: Find dialog box
	Capturing a Window to a Log File
	Figure 3-2: Log window showing capture of Trace window
	Saving Window Layout
	Open Window List
	Accelerator Keys
	Double-click Function
	Double-click in the Code Window
	Double-click on Data References
	Double-click on Pointers
	Online Help
	Commands and Command Line
	Figure 3-3: Command line dialog box
	Command Syntax Elements
	Loading an Application
	Load
	Figure 3-4: File-Load dialog box
	Symbol Load
	Figure 3-5: File-Symbol load dialog box
	Restart
	Figure 3-6: File-Restart dialog box
	After the Load
	Figure 3-7: Soft-Scope after an application load
	Soft-Scope .tmp Files
	Command Line
	
	Overview
	Controlling Program Execution
	Stepping through Code
	Single Step
	Specify a Number of Steps
	Step Command via the Command Line
	Code Window
	Figure 4-1: Code window in Source mode
	Figure 4-2: Code reference dialog box
	Toolbar Buttons
	Figure 4-3: Display modes dialog box
	Figure 4-4: Code window in Assembly mode with logical addresses
	Code Window Execution Pointers
	Code References
	Line Numbers
	Symbol Names
	Guidelines
	Locating Code
	Breakpoints Window
	Figure 4-5: Breakpoints window
	Toolbar Buttons
	Command Line
	Editing Breakpoints
	Figure 4-6: Breakpoint edit dialog box
	Software Breakpoints
	Permanent Software Breakpoints
	Temporary Software Breakpoints
	Hardware Breakpoints
	Data Breakpoints
	Command Line
	Debug Registers
	Exec Breakpoints
	Command Line
	Executing to a Location
	Go
	Go to a Specific Location
	Return from a Procedure Call
	Go to a Cursor Position
	Stop
	Procedure Call Sequence
	Calls Window
	Figure 4-7: Calls window
	Command Line
	Stack Information
	Trace Window
	Figure 4-8: Trace window displaying procedures
	Toolbar Buttons
	Figure 4-9: Assembly display modes dialog box
	Figure 4-10: Trace window displaying procedures and source
	Command Line
	Figure 4-11: Trace window displaying procedures, source, and assembly code
	Trace Buffer
	Trace File Size
	
	Overview
	Numbers
	Table 5-1: Default number bases
	Operators
	Table 5-2: C operators
	Table 5-3: Soft-Scope specific operators and functions
	Strings
	Table 5-4: String escape sequences
	Reference Summary
	Table 5-5: Reference summary
	The Data Window
	Figure 5-1: Data reference dialog box
	Figure 5-2: Display modes dialog box
	Figure 5-3: Data window in Eval mode
	Figure 5-4: Data window in expanded format
	Data References
	Figure 5-5: Before double-click on "->"
	Figure 5-6: After double-click on "->"
	Referencing Memory
	Reference Scoping
	Table 5-6: Reference Scoping
	The Watch Window
	Figure 5-7: Display modes dialog box
	Figure 5-8: Watch window in Normal display mode
	The Symbols Window
	Figure 5-9: Symbols window in Procedures mode
	Built-in Functions
	Type Overrides
	The Dump Window
	Figure 5-10: Dump modes dialog box
	Figure 5-11: Dump window in Byte mode, 8 bytes per line
	Uploading Memory and Registers
	The Registers Window
	Figure 5-12: Registers window for 80386EX target
	CPU Structures
	Figure 5-13: IDT descriptors
	Figure 5-14: Data window in Normal mode
	Figure 5-15: Data window in Eval mode
	Table 5-7: Descriptor abbreviations
	Real-Mode Structures
	Table 5-8: Peripheral Control Block
	Table 5-8: Peripheral Control Block (continued)
	Application Input/Output
	
	Overview
	Options Window
	Toolbar Buttons
	Save and Restore Options
	Command Line
	Figure 6-1: Options window showing default values
	Soft-Scope Configuration Options
	Table 6-1: Soft-Scope configuration options
	Control Default Number Base
	Change Log File Name
	Define Initial Command
	Define Initial Macro File
	Configure Host To Target Communications
	Control Screen Refresh Rate
	Control Command Delay
	Define Command
	Change Log File Size
	Define Path To Application Files
	Define Tab Spaces
	Define Case for Symbol Search
	Access CPU-specific Data Types
	Display LDTR register value
	Define Pointer Type Override Display
	Specify Integer Data Type Size
	Specify Floating Point Emulation Parameter
	Control Memory Caching
	Control Code Memory Cache Flush
	Define Host Communication Device
	Specify Where To Search For Memory Control Block
	Specify Where To Search for the NULL Device
	Specify Size of Memory Reads
	Tell Soft-Scope that Interrupts are Disabled
	Verify Memory Writes
	Specify temporary file location
	Specify the Size of the Trace File
	Preserve Trace Data across Applications
	
	Overview
	Creating a Macro
	Compiled Macro Files
	Built-in CPU Variables
	Macros Window
	Loading a Macro File
	Toolbar Buttons
	Figure 7-1: Macros window
	Command Line
	Example Use of cmd.macro and load.init_command
	Identify Macros in the Macros Window
	Macro Parameters
	Optional Parameters
	Integer Type
	LITERAL Parameter
	TEXT Parameter
	EXPRESSION Parameter
	REFERENCE Parameter
	ADDRESS Parameter
	LINE Parameter
	MODULE and PROCEDURE Types
	Local Variables
	Declaring Local Variables
	Defining One-dimensional Arrays
	Assigning Numeric Values to Arrays
	Assigning Pointer Values from Your Application
	Macro Statements
	ABORT
	BREAK
	IF, IF...ELSE
	RESPOND
	RETURN
	WHILE
	MACRO SUSPEND
	MACRO RESUME
	Custom Commands with an Extended Monitor
	Manipulating Windows from Macros
	WMOVE
	WRESIZE
	WFUNCTION
	Examples
	Macro Print Function
	PRINT
	Conversion Specifiers
	Table 7-1: Conversion specifiers
	$ Parameter Prefix in Control Strings
	Escape Sequences
	Directed Output from Macros
	Using Field-width Specifiers with PRINT or WPRINTF
	Specifying the Leading Zero Flag
	
	Tool Summary
	Table 8-1: Supported tools
	Sample Files
	Linking Your Application
	CSi-Link™
	Generating Symbolic Information
	SSBUG
	Tool Directives
	Borland
	Intel
	MetaWare
	Microsoft
	Phar Lap
	Watcom
	
	Data Types
	Operators
	General-Purpose Registers
	NPX Registers
	Protected-Mode Registers
	Descriptors and Subfields
	
	Overview
	Address Error Messages
	Example Address Error Message
	Explanation
	How To Interpret Address Errors
	Table B-1: Conversion entry codes
	Table B-2: Address error messages
	Error Messages
	
	Overview
	Debugging .exe Files
	Preparing Your Application
	Using the Special Monitor
	Loading an .exe Application
	
	Overview
	Helpful Hints
	Changing the Execution Point
	Source Line Address
	Changing an Executable Instruction
	Bypassing Start-up Code
	Copying Memory
	Receiver Timeouts
	Segment Limit Exceeded
	
	Real-Time Operating Systems Support
	Kernel Objects
	Figure E-1: SuperTask! kernel objects dialog box
	Task List
	Figure E-2: SuperTask! task list dialog box
	Current Task
	Figure E-3: SuperTask! current task dialog box
	
	Overview
	Intel Floating-Point Emulation

