

smxUSBDTM User’s Guide

USB Device Stack

Version 2.60
February 23, 2024

by Yingbo Hu

1. Overview ... 1

2. Files ... 2
2.1 Directory Structure .. 2
2.2 Files... 2

3. smxUSBD Code and Demos .. 5
3.1 smxUSBD Configuration .. 5
3.2 Building the Code ... 14
3.3 Building and Running the Demos ... 14
3.4 Initialization .. 16

4. Function Drivers .. 17
4.1 Audio .. 17
4.2 Device Firmware Upgrade (DFU)... 23
4.3 HID Communication ... 26
4.4 Keyboard ... 28
4.5 Mass Storage ... 29
4.6 Media Transfer Protocol (MTP) ... 30
4.7 Mouse ... 34
4.8 Ethernet over USB .. 35
4.9 Serial (CDC-ACM) ... 38
4.10 Video .. 42

5. Writing a New Function Driver .. 46
5.1 Function Driver Interface .. 46
5.2 Function Operation Interface .. 47
5.3 Device Information ... 48
5.4 Configuration Information .. 49
5.5 Send Request ... 51
5.6 Select Endpoint Number ... 51

6. Writing a New Device Controller Driver ... 52
6.1 Device Controller Operation Interface .. 52
6.2 Handle Device Controller Interrupt .. 55
6.3 Logical Endpoint Number and Physical Endpoint Number .. 56

7. Composite Device ... 58
7.1 Composite Device Framework .. 58
7.2 Adding an Existing Function to the Composite Device Framework ... 58
7.3 Composite Device Product and Interface IDs ... 59
7.4 Composite Device Limitations .. 60

8. Hardware Porting Notes ... 61
8.1 udport.h ... 61
8.2 udport.c ... 61
8.3 DMA Transfer ... 63

9. Windows Drivers / Application .. 64
9.1 Multiple Port Serial Device (or Single Port Limited Endpoints) .. 65
9.2 Device Firmware Upgrade (DFU) Device .. 66
9.3 HID Communication ... 69

10. Application Notes ... 71
10.1 Flow Control of the Serial Port ... 71
10.2 Mass Storage and File System Share the Same Media .. 71
10.3 Switching to Different Functions at Run Time .. 72
10.4 Mass Storage Function Driver Buffer Size ... 73
10.5 Improving USB to Serial Function Driver Performance ... 74
10.6 Linux Support ... 75
10.7 MAC OS X Support .. 75
10.8 USB Device Controller Soft Connect Feature .. 75
10.9 Opening a Serial Port on the Host ... 75
10.10 Multiple Same Type Devices on the Same USB Host .. 75
10.11 HID vs. Serial for Data Communication ... 76
10.12 HID Communication Multiple Reports ... 76
10.13 Video Camera Software .. 77

Appendix A. Memory Usage and Performance Summary ... 78
A.1 Size ... 78
A.2 Performance ... 81

Appendix B. Block Device Driver Interface .. 83

Appendix C. Installing Devices under Windows 2000 .. 84
C.1 Audio .. 84
C.2 Mass Storage .. 86
C.3 Mouse/Keyboard .. 86
C.4 Ethernet over USB ... 89
C.5 Serial Port ... 96

Appendix D. Installing Devices under Windows XP ... 101
D.1 Audio ... 101
D.2 Device Firmware Upgrade (DFU) .. 103
D.3 Mass Storage .. 114
D.4 Media Transfer Protocol (MTP) .. 114
D.5 Mouse/Keyboard .. 119
D.6 Ethernet over USB ... 119
D.7 Serial Port .. 121
D.8 Video .. 127

Appendix E. Installing Devices under Windows Vista, 7, and 8 .. 131
E.1 Audio .. 131
E.2 Device Firmware Upgrade (DFU) .. 134
E.3 Mass Storage .. 140
E.4 Media Transfer Protocol (MTP) ... 140
E.5 Mouse/Keyboard .. 143
E.6 Ethernet over USB .. 143
E.7 Serial Port ... 143
E.8 Video .. 154

Appendix F. Specification Reference ... 156
F.1 USB Specifications ... 156
F.2 Device Controller Specifications .. 156
F.3 Audio Devices Specifications ... 156
F.4 Communication Devices Specifications .. 156
F.5 Device Firmware Upgrade (DFU) Specifications ... 156
F.6 HID Specifications .. 156
F.7 Mass Storage Specifications ... 157
F.8 Media Transfer Protocol (MTP) Specifications .. 157
F.9 Remote NDIS Specifications .. 157
F.10 Video Device Specifications ... 157

Appendix G. Testing .. 158

Appendix H. Host OS Certification .. 159
H.1 Windows Logo Program / Windows Hardware Certification Program .. 159

Appendix I. Glossary ... 161

© Copyright 2005-2024

Micro Digital Associates, Inc.
 (714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved.

smxUSBD is a Trademark of Micro Digital, Inc.

smx is a Registered Trademark of Micro Digital, Inc.

 1

1. Overview
smxUSBDTM is a full-featured USB device stack for the SMX® RTOS. It offers a clean, modular design
that allows embedded system developers to easily add USB device capabilities to their projects.
Normally this is done to permit connection to a PC in order to upload or download data, tables, code,
etc.

For easy connectivity to a PC, smxUSBD offers these function drivers: audio, keyboard, mouse,
mass storage, MTP/PTP, Ethernet over USB, serial, and video. Each is compatible with the
corresponding Windows USB class driver. Thus, a device using the above smxUSBD function drivers
does not require a custom Windows driver in order to connect to a PC. Some other smxUSBD function
drivers, such as DFU, do need a Windows driver to make it work on Windows. For details, see chapter
9. Windows Drivers / Application. You need to decide which device connection is most appropriate for
your device and to use the corresponding API for that device. See chapter 4. Function Drivers.

smxUSBD function drivers are also supported by Linux and MAC OS X. You don’t need write your
own driver for them.

The reader should be familiar with the USB 2.0 specification. All USB specifications can be found at
www.usb.org/.

smxUSBD has four layers:

Figure 1 smxUSBD Structure

Application

Function Driver
Mouse, Mass Storage, Serial…

Device Core
Default control pipe, Device configuration…

Device Controller Driver
ISP1181, ISP158X…

USB Device Hardware

Porting Layer
Timer, Mutex,
hardware I/O

http://www.usb.org/

 2

1. Function Driver Layer: Provides different USB functions to the high level application, such as
serial emulator, mouse, and mass storage.

2. Device Core Layer: Provides the common USB Device framework. See chapter 9 in the USB 2.0
specification for details.

3. Device Controller Driver (DCD) Layer: Provides a unique interface for different USB device
controllers such as ISP1181 (ISP1161, ISP1362) or ISP158x (ISP1761).

4. Porting Layer: Provides functions related to the hardware and compiler.

smxUSBD supports processors that can only do 16-bit memory addressing, such as some Texas
Instruments DSPs. See discussion of SB_CPU_MEM_ADDR_8BIT and
SB_PACKED_STRUCT_SUPPORT in the smxBase User’s Guide. These settings have been tested for
the core code, serial function driver, and ISP1161/81/1362 driver. Other function drivers and device
controller drivers have not been tested, and may require modification.

2. Files
Like other SMX® RTOS products, all source code for smxUSBD is stored in its own directory, named
“XUSBD”, under the main SMX directory. Below is a summary of the directory structure.

2.1 Directory Structure

SMX
 APP
 DEMO usbddemo.c (for SMX)
 NORTOS Build directory for standalone (non-SMX) releases. Has demo too.
 XUSBD Configuration and porting layer files
 XX.YY Build directory for SMX releases
 Core Device code layer support
 DCD All device controller drivers
 Function All function drivers such as serial, mouse, and mass storage

2.2 Files

2.2.1 Main Files

FILE DESCRIPTION
smxusbd.h smxUSBD API header file. Use in application files.
udcfg.h smxUSBD configuration file. Allows enabling/disabling

main components of smxUSBD.
udinit.c,h Initialization of the USB device stack, including the

selected function driver and selected device controller.
udintern.h Main internal header file. Included by smxUSBD files

 3

rather than including individual header files, in order to
ensure files are included in the proper order.

2.2.2 Porting Layer

FILE DESCRIPTION
udport.c,h Porting files.

2.2.3 Device Core

FILE DESCRIPTION
udutil.h Common utility inline functions.
uddesc.h USB descriptor definition.
uddcd.c,h Device controller driver interface. Provides a unique

interface between the device controller driver and device
stack core layer.

uddevice.c,h The core of the USB device stack
udfunc.c,h Function driver interface. Provides a method to let the

function driver register with the device core stack
udep0.c,h Handles the default control pipe (endpoint 0) request.

2.2.4 Function Driver

FILE DESCRIPTION
udaudio.c,h USB Audio/MIDI function driver.
udcompos.c,h USB Composite Device framework driver.
uddfu.c,h USB Device Firmware Upgrade function driver.
udftempl.c,h USB Function Driver template.
udhidcom.c,h USB HID Communication function driver.
udkbd.c,h USB Keyboard function driver.
udmouse.c,h USB Mouse function driver.
udmstor.c,h USB Mass Storage driver.
udmtp.c,h USB MTP function driver.
udnet.c,h USB Ethernet over USB driver.
udserial.c,h USB Serial Emulator function driver.
udvideo.c,h USB Video function driver.
*.inf Installation files to install devices on Windows. See:

Appendix C. Installing Devices under Windows 2000,
Appendix D. Installing Devices under Windows XP,
Appendix E. Installing Devices under Windows Vista, 7

 4

2.2.5 Device Controller Driver

FILE DESCRIPTION
ud1181.c,h NXP ISP1181-compatible device controller driver. Also

supports ISP1161 and ISP1362.
ud158x.c,h NXP ISP1582/3-compatible device controller driver. Also

supports ISP1761.
ud2272.c,h PLX Net2272 USB device controller driver.
ud720150.c,h NEC uPD720150 device controller driver.
upd720150.c,h NEC uPD720150 low-level register access routines. May

need to be built into the BSP code instead of the USBD
code.

udat91.c,h Atmel AT91SAM7S/7X/7A3, AT91SAM9260/61/63,
AT91SAM9XE512, AT91RM9200 USB device controller
driver.

udat91hs.c,h Atmel AT91SAM9G45/M10/RL64, SAM3U4, CAP9 USB
high speed device controller driver.

udat91o.c,h Atmel AT91SAM3X USB high speed device controller
driver.

udblkfn.c,h Analog Devices Blackfin USB high speed device controller
driver.

udcf522x.c,h Freescale CF5225x/1x/2x USB device controller driver.
udcf5329.c,h Freescale CF532x/7x USB device controller driver.
udcf548x.c,h Freescale CF548x/7x USB device controller driver.
udip3511.c,h NPX LPC55SXX USB device controller driver.
udlh7a4.c,h Sharp LH7A400/4 USB device controller driver.
udlm3s.c,h Luminary Micro LM3Sxxxx USB device controller driver.
udlpc.c,h NXP LPCxxxx USB device controller driver.
udmx1.c,h Freescale i.MX1/MXL USB device controller driver.
udstr7.c,h ST STR710, 711, 720, STR912 USB device controller

driver.
udsyndwc.c,h Synopsys DesignWare IP driver.
udctempl.c,h Device Controller Driver template.

 5

3. smxUSBD Code and Demos
This section documents details of configuration and building the code and demos.

3.1 smxUSBD Configuration

3.1.1 udcfg.h
smxUSBD can be configured so that it includes support for specific USB devices, thus saving code
space. The following sections describe the settings.

Operating System Selection

Operating System is selected in bcfg.h in smxBase. Please see the smxBase User’s Guide for detailed
information.

Controller Selection

SUD_AT91

Set to “1” to include support for an Atmel AT91 USB full speed device controller such as
AT91SAM7S/7X, AT91SAM9, and AT91RM9200 device controllers. Set to “0” to exclude
support.

SUD_AT91HS

Set to “1” to include support for an Atmel AT91 USB high speed device controller such as
AT91SAM9RL64 device controllers. Set to “0” to exclude support.

SUD_AT91OTG

Set to “1” to include support for an Atmel AT91 SAM3X USB high speed device controller. Set
to “0” to exclude support.

SUD_BLACKFIN

Set to “1” to include support for an Analog Devices Blackfin USB high speed device controller
such as BF527 device controller. Set to “0” to exclude support.

SUD_CF522XX

Set to “1” to include support for a Freescale CF5225x/CF5221x/CF5222x USB device
controller. Set to “0” to exclude support.

SUD_CF5227X

Set to “1” to include support for a Freescale CF5227x USB device controller. Set to “0” to
exclude support. Uses the CF5329 driver.

 6

SUD_CF5251

Set to “1” to include support for a Freescale CF5251 USB device controller. Set to “0” to
exclude support.

SUD_CF5272

Set to “1” to include support for a Freescale CF5272 USB device controller. Set to “0” to
exclude support. Not done; only mouse works.

SUD_CF5329

Set to “1” to include support for a Freescale CF532x USB device controller. Set to “0” to
exclude support.

SUD_CF5373

Set to “1” to include support for a Freescale CF537x USB device controller. Set to “0” to
exclude support. Uses the CF5329 driver.

SUD_CF54455

Set to “1” to include support for a Freescale CF5445x USB device controller. Set to “0” to
exclude support. Uses the CF5329 driver.

SUD_CF548X

Set to “1” to include support for a Freescale CF548x/7x USB device controller. Set to “0” to
exclude support.

SUD_IMX1

Set to “1” to include support for a Freescale i.MX1/MXL USB device controller. Set to “0” to
exclude support.

SUD_IMX31

Set to “1” to include support for a Freescale i.MX31 USB device controller. Set to “0” to
exclude support. Uses the CF5329 driver.

SUD_ISP1161

Set to “1” to include support for an NXP ISP1161 device controller. Set to “0” to exclude
support.

SUD_IP3511

Set to “1” to include support for a LPC55SXX device controller. Set to “0” to exclude support.

SUD_ISP1181

Set to “1” to include support for an NXP ISP1181 device controller. Set to “0” to exclude
support.

 7

SUD_ISP1362

Set to “1” to include support for an NXP ISP1362 device controller. Set to “0” to exclude
support.

SUD_ISP158X

Set to “1” to include support for an NXP ISP158x device controller. Set to “0” to exclude
support.

SUD_ISP1761

Set to “1” to include support for an NXP ISP1761 device controller. Set to “0” to exclude
support.

SUD_LH7A4

Set to “1” to include support for a Sharp LH7A400/4 USB device controller. Set to “0” to
exclude support.

SUD_LM3S

Set to “1” to include support for a Luminary Micro LM3Sxxxx USB device controller. Set to
“0” to exclude support.

SUD_LPC

Set to “1” to include support for an NXP LPCxxxx USB device controller such as that on
LPC23xx, 24xx, 3180, and 32x0 processors. Set to “0” to exclude support.

SUD_MAX342X

Set to “1” to include support for a Maxim MAX342x USB device controller. Set to “0” to
exclude support.

SUD_NET2272

Set to “1” to include support for PLX Net2272 USB device controller. We only tested it on the
Analog Devices Blackfin USB-LAN EZ-EXTENDER board and BF533 EZLite board.

SUD_PD720150

Set to “1” to include support for the NEC uPD720150 USB controller. The driver has only been
tested on the LPC1788 Embedded Artists board and uPD720150 Application Board (part
#ET-D720150-HP) using a custom interface board.

Because the device controller and host controller share some registers, separate low-level
register access routines are needed in the case the application needs both host and device
features. Register access and pipe allocation need to be protected by a mutex. These routines are
within upd720150.c/h, which is part of the BSP code (so both host and device controller driver
can use it). udport.c/h does not include any uPD720150 low-level access code.

 8

SUD_STM

Set to “1” to include support for STMicroelectronics STM32F103/2 and STM32F30x/37x USB
device controllers. Set to “0” to exclude support.

SUD_STR7

Set to “1” to include support for an STMicroelectronics STR7 USB device controller such as
that on STR710, STR711, and STR720 processors. Set to “0” to exclude support.

SUD_STR9

Set to “1” to include support for an STMicroelectronics STR9 USB device controller such as
that on STR912 processor. Set to “0” to exclude support. SUD_STR7 will also be set to “1” if
you include this support.

SUD_SYNOPSYS

Set to “1” to include support for Synopsys DesignWare USB IP. Only Slave mode is supported.
Tested only on STM32F107/5 and STM32F20x processors.

Note: Please only set ONE device controller macro to “1”. smxUSBD does not currently support
the use of multiple types of device controller simultaneously.

SUD_HIGH_SPEED

Set to “1” if your device controller supports USB 2.0 high speed capability. Set to “0” if it is
only a full speed controller.

On the Go Support

SUD_OTG

Set to “1” if smxUSBD is being used with smxUSBO to support OTG feature. You must also
enable smxUSBO in your project. Set to “0” to disable this feature.

Device Support

SUD_COMPOSITE

Set to “1” to include support for a Composite device. You also need to enable at least two of
the following devices, which will be combined into the composite device. Set to “0” to exclude
support. Some combinations of composite devices require you to write a Windows driver,
such as Multiple Port Serial + Mass Storage. See the section 7.3 Composite Device Product
and Interface IDs for details.

Note: When SUD_COMPOSITE is 0, set only ONE of the following device function macros to
“1”. Multiple device functions can be used only if composite device support is enabled.

 9

SUD_AUDIO

Set to “1” to include support for an Audio device. Set to “0” to exclude support.

SUD_DFU

Set to “1” to include support for a Device Firmware Upgrade device. Set to “0” to exclude
support.

SUD_HIDCOM

Set to “1” to include support for a HID device for simple communication. Set to “0” to exclude
support.

SUD_KBD

Set to “1” to include support for a Keyboard device. Set to “0” to exclude support.

SUD_MOUSE

Set to “1” to include support for a Mouse device. Set to “0” to exclude support.

SUD_MSTOR

Set to “1” to include support for Mass Storage class devices. Set to “0” to exclude support.

SUD_MTP

Set to “1” to include support for Media Transfer Protocol (MTP) class devices. Set to “0” to
exclude support. This driver also supports Picture Transfer Protocol (PTP).

SUD_NET

Set to “1” to include support for an Ethernet over USB device. Set to “0” to exclude support.
Requires a TCP/IP stack such as smxNS.

SUD_ECM
SUD_NCM
SUD_RNDIS

Options for Ethernet over USB device. In order to let Windows, MacOS, Linux all support this
function driver, enable both RNDIS and either ECM or NCM. Do not enable both ECM and
NCM. For MacOS or Linux only, RNDIS may be disabled. For Windows only, both ECM and
NCM may be disabled.

SUD_SERIAL

Set to “1” to include support for a Serial Emulator device. Set to “0” to exclude support.

SUD_VIDEO

Set to “1” to include support for a Video device. Set to “0” to exclude support.

 10

SUD_FTEMPL

Set to “1” to include support for a generic function driver template. Set to “0” to exclude
support.

SUD_HID

Set to “1” to include HID class specific descriptor handler. It is set to “1” automatically when
SUD_KBD or SUD_MOUSE is set to “1”.

SUD_CDC

Set to “1” to include CDC class specific descriptor handler. It is set to “1” automatically when
SUD_NET is set to “1”.

SUD_NEED_IAD

Set to “1” if your device has multiple interfaces and needs IAD to associate them together. It is
set to “1” automatically when any of SUD_AUDIO, SUD_VIDEO, SUD_NET or
SUD_COMPOSITE are set to “1”.

Miscellaneous Settings

SUD_MIN_RAM

Set to “1” for targets with very little RAM, such as SoC’s that don’t support external memory.

SUD_EP0_BUFFER_SIZE

Set the EP0 buffer data size. This size is related to which functions you have enabled. For
example, the Audio function needs more data buffers to transfer class-specific descriptors.

SUD_MANUFACTURER_NAME

Manufacturer’s name string, such as “MDI” for Micro Digital Inc.

SUD_SELFPOWERED

Set to “1” if your device is self powered. Set to “0” if your device needs USB to provide the
power.

SUD_DEBUG_LEVEL

Specifies the debug level. The following values are supported:

0 disables all debug output and debug statements are null macros

1 only output fatal error information

2 output additional warning information

3 output additional status information

4 output additional device change information

 11

5 output additional data transfer information

6 output interrupt information

SUD_BULK_IN_EPx, SUD_BULK_OUT_EPx

Logical Bulk type IN/OUT Endpoint number used by the function driver. See the note about
Endpoint Settings below.

SUD_INT_IN_EPx, SUD_INT_OUT_EPx

Logical Interrupt type IN/OUT Endpoint number used by the function driver. See the note about
Endpoint Settings below.

SUD_ISOC_IN_EPx, SUD_ISOC_OUT_EPx

Logical Isochronous type IN/OUT Endpoint number used by the function driver. See the note
about Endpoint Settings below.

Endpoint Settings: Each endpoint number must be unique, and there may be limitations in the use of
each endpoint by your USB controller. For example, the Sharp LH7A404 only has 4 endpoints, and EP3
is the only one that supports Interrupt IN transfers. The others have specific uses too. Better USB
controllers have more endpoints, and each endpoint can be set for any transfer type. You must set the
endpoint numbers as appropriate for your hardware.

SUD_xxx_PRODUCT_NAME

 Product’s name string, such as "smxUSBD Mouse"

SUD_xxx_VENDORID

 Vendor ID of your device. You may need to apply for a vendor ID from USB-IF.

SUD_xxx_PRODUCTID

Product ID of your device. You can choose this number yourself.

SUD_xxx_NUMBER_STR

Serial number of your device. You can set it as an empty string (“”) to disable this feature.

SUD_xxx_MAXPOWER

 Maximum power (in milliamps) that your device will request from the USB controller.

SUD_xxx_MAX_NUM

Maximum number of the same type devices you want to support. Currently, only mass storage
and serial devices support multiple device instances. For Mouse and Ethernet over USB devices,
only set it to 1.

SUD_xxx_IN_ENDPOINT

Bulk IN endpoint number for the function driver. The default value is SUD_BULK_IN_EP but
you may need to calculate it manually if you are using composite device.

 12

SUD_xxx_OUT_ENDPOINT

Bulk OUT endpoint number for the function driver. The default value is SUD_BULK_OUT_EP
but you may need to calculate it manually if you are using composite device.

SUD_xxx_INT_ENDPOINT

Interrupt IN endpoint number for the function driver. The default value is SUD_INT_IN_EP but
you may need to calculate it manually if you are using composite device.

SUD_DFU_TRANSFER_SIZE

DFU download/upload transfer size.

SUD_DFU_INCLUDE_INTERN_FLASH
SUD_DFU_INCLUDE_SPI_FLASH
SUD_DFU_INCLUDE_NOR_FLASH
SUD_DFU_INCLUDE_NAND_FLASH

Specifies which segment your device has for the DFU driver. Set to “1” to enable that segment

SUD_DFU_WILL_DETACH
SUD_DFU_MANIFESTATION
SUD_DFU_UPLOAD
SUD_DFU_DNLOAD

DFU driver capability of your device. Set to “1” to enable it.

SUD_HID_IN_PACKET_SIZE
SUD_HID_OUT_PACKET_SIZE

 HID communication device input and output packet size. At most 64 bytes.

SUD_HID_IN_INTERVAL
SUD_HID_OUT_INTERVAL

 HID communication device input and output polling interval.

SUD_HID_REPORT_NUM

 Number of HID communication device reports.

SUD_SERIAL_USE_INT_ENDPOINT

The default setting is ”1”, which lets you use the Windows built-in serial driver usbser.sys to
support this device.

Set to “0” if you do not want to use an INT endpoint in the Serial function driver, to conserve
endpoints, allowing support of more serial channels or more device functions. However you will
need to use the Micro Digital Multiple Port USB-Serial Adapter Windows driver, available at
extra cost.

 13

SUD_SERIAL_SUPPORT_ACM

Set to “1” if you want the Linux CDC-ACM driver to support the serial function driver. It adds
an interface descriptor to meet the ACM requirement. It also need to be set to “1” if you need to
support multi-port serial configuration, unless you are using the Micro Digital multi-port serial
driver. See section 9.1 Multiple Port Serial Device (or Single Port Limited Endpoints).

SUD_SERIAL_MTU

Internal serial port receive ring buffer size. Reduce it if your system has limited RAM.

SUD_MSTOR_ASYNC_ACCESS

Set to “1” to create a separate task to handle the actual media access. This feature increases the
performance of smxUSBD mass storage but requires a multitasking environment and requires
more RAM since it increases the internal mass storage buffer size by
3*SUD_MSTOR_PACKET_SIZE.

SUD_MSTOR_PACKET_SIZE

Internal Mass Storage buffer size. Reduce it if your system has limited RAM. Ensure it is a
multiple of one sector’s size and at least one sector. See 10.4 Mass Storage Function Driver
Buffer Size for details.

SUD_MSTOR_TASK_STACK

Mass storage async task stack size. Size depends on the low level disk driver. RAM disk may
only need 100 bytes, but the smxNAND flash driver may need 1000.

SUD_MTP_PACKET_SIZE

Internal Media Transfer Protocol (MTP) transfer buffer size.

SUD_VIDEO_USE_11

Use UVC spec 1.1 or not. Because Windows XP and Vista can only support v1.0, we
recommend you to set this option to 0 for best compatibility.

SUD_VIDEO_INCLUDE_IN

 Set to 1 to include IN (like a web camera) interface in the video function driver.

SUD_VIDEO_INCLUDE_OUT

 Set to 1 to include OUT (like a display) interface in the video function driver.

SUD_VIDEO_IN_STILL_IMAGE

 Set to 1 to include still image capture support. Not tested yet.

SUD_VIDEO_USE_YUV422

Set to 1 to use YUV422 for uncompressed data. Set to 0 to use YUV420.

 14

SUD_VIDEO_IN_FORMAT_xxx

Video Streaming IN Format. Enable at least one. MPEG2TS is not tested yet.

SUD_VIDEO_OUT_FORMAT_xxx

Video Streaming OUT Format. Enable at least one. MPEG2TS is not tested yet.

3.1.2 udport.h
The following are smxUSBD-specific hardware-related configuration settings. In addition to these, it
may be necessary to re-implement the functions in udhdw.c for your hardware. See chapter 8. Hardware
Porting Notes.

SUD_ISP1181_BASE, SUD_ISP1181_IRQ

Set to the base address and IRQ number for your device controller.

SUD_ISP158X_BASE, SUD_ISP158X_IRQ

Set to the base address and IRQ number for your device controller.

3.2 Building the Code
After configuring udcfg.h (see previous section), add the XUSBD source files and paths to the
application project, if not already in it.

3.3 Building and Running the Demos
For non-SMX releases, a simple demo is provided in \SMX\APP\NORTOS\usbddemo.c. For SMX
releases, the demos are in \SMX\APP\DEMO\usbddemo.c.

The demo file is integrated with the smx Protosystem. It is enabled just like all other SMX module
demos, as documented in the SMX Quick Start.

Each device demo is enabled when that device function is enabled in udcfg.h (e.g. SUD_MOUSE). If
you enable composite device support, multiple demos can run at the same time, for example, mouse and
mass storage device. Micro Digital recommends that you run the mouse demo first since it is the
simplest.

Note that when you plug in the USB cable, Windows will detect your target board as a USB device and
it will often pop up the “Found New Hardware” wizard. See Appendix C. Installing Devices under
Windows 2000; Appendix D. Installing Devices under Windows XP; Appendix E. Installing Devices
under Windows Vista, 7 for help with this. Be patient; it takes Windows several seconds to detect and
mount the device.

The following is a summary of what each device demo does:

 15

HID Communication This demo will get any data sent from the host and send the same data back to
the host, using usbhid.exe (provided with smxUSBD) on Windows. Please check the Windows host
utility usbhid source code for how to communicate with this HID device in Windows. We currently do
not provide a host application for any other operating system, such as Linux or OSX.

Keyboard This demo generates key press and release events and sends them to the PC. It sends the
text message “abcdefghijklmnopqrstuvwxyz1234567890” to the host and repeats forever. Please be sure
to open an empty document first (e.g. Notepad) before you plug in the cable. Otherwise those simulated
key inputs may corrupt whatever document is in the currently active window.

Mouse This demo generates mouse movement events and sends them to the PC. In Windows, you will
see the mouse pointer move. By default it traces a diamond shape. Other choices can be selected in
demo.c or usbddemo.c. Every time it traces the diamond, it pauses a few seconds so you can use your
real mouse to control Windows, e.g. to stop the debugger. The demo purposely does not generate button
events to avoid clicking on something and causing a problem.

Mass Storage This demo makes the target board look like a flash disk to the Windows PC. You can
copy files to it, just like a normal flash disk. It uses 4MB, 8MB, or 16MB RAM on the target
(configurable by setting RAMDISK_SIZE at the top of usbddemo.c). To test this demo, you can copy
files to this disk and back to your hard disk and do a file compare against the originals. Also, you can
copy PDF files to it and open them in Acrobat. The status information printed to the terminal indicates
the number of bytes read from and written to the disk. The demo automatically formats the disk.

Tips:

1. If you change RAMDISK_SIZE and Windows stops seeing the disk, unplug and re-plug the USB
cable.

2. Unplug and re-plug the cable to force Windows to read files from the mass storage device rather
than the cache.

Serial Port Emulator This demo waits to receive some bytes from the USB host and then immediately
echoes them back. If you run a terminal emulator program such as HyperTerminal or Tera Term, you
can see the echo of what you typed.

You can also run against our TestComm utility (in the BIN dir). With TestComm, you can select a file,
with different options for automated full duplex sending and receiving. On processors with limited
internal RAM and no external RAM (i.e. those for which SUD_MIN_RAM is 1), packets can be lost
due to insufficient heap, and the number of received bytes, as reported by TestComm, will be less than
the number of sent bytes. The demo uses a 64-byte buffer for the incoming data. It calls
sud_SerialWriteData() to echo the data back. But if that function fails to allocate a buffer, due to limited
heap space, the received data cannot be sent and is lost. For these processors, specify a TestComm
Packet Size <= 64 bytes. TestComm sends out packets continuously. Windows waits 1 or 2 ms between
packets, so if the TestComm Packet Size is <= 64 bytes, the demo can keep up. Larger packets are
broken into 64 byte frames, and Windows sends these frames immediately one after another, so the
demo may not be able to keep up.

Ethernet over USB This demo needs a TCP/IP stack, such as smxNS, to run properly. It waits to
receive some bytes from the USB host and then immediately echoes them back. To the OS, this USB

 16

device looks like a Network Adapter, and you can use any program which can send and receive socket
data to test it. You can also run against our TestSocket utility (Windows only, in the BIN dir).

Audio This demo sends pre-recorded sound data to the USB host. You can use the Windows Sound
Recorder program to record the sound on Windows. The pre-recorded data format is 44100
samples/second, 16 bits per sample, and 2 channels. You need to set Sound Recorder to use the same
format, if you plan to playback the data to this audio device. The demo displays the number of bytes it
received from the host.

Video This demo sends pre-recorded video data (only one frame, 160x120 YUV422 format) to the
USB host. You can go to the Windows Control Panel->Scanners and Cameras and double click the
USB Video Device to view the video data. For OSX and Linux use the web camera utility of those OS
to view the video data. Remember to set the resolution to 160x120.

MTP This demo uses the smxFS API to access the disk, so SMXFS must also be enabled. Your device
will look like a Digital Still Camera device to Windows, and you can use a Windows built-in utility to
import the pictures or videos. The MTP interface implementation in usbddemo.c is not fully tested
for all types of image files. You can use it as starting point but you need to carefully test it and
make any necessary changes/fixes to meet your system’s requirements.

DFU This demo simulates firmware download and upload operations. Downloaded firmware is just
discarded. Uploaded firmware is 32KB of a fixed pattern. You may need our Windows driver and
utility usbdfu.exe or DFUHost.exe to run the demo, in the BIN directory. You can also use other DFU
compatible driver, such as libUSB and dfu-util.exe to do the same demo.

3.4 Initialization
smxUSBD is automatically initialized by an SMX application, if SMXUSBD is defined by the
application project file. This is done by smxusbd_init() which is called by smx_modules_init(), called
by ainit(). For non-SMX applications, call sud_Initialize() from your initialization code.

Note that the hardware initialization requires delays. These are done with a polling loop (see
sb_DelayUsec() and sb_DelayMsec()). These are implemented using the constant SB_CPU_MHZ.
Check bsp.h (in BSP) to ensure this is configured properly for your target. Otherwise, the delays could
be much longer (or shorter) than expected.

 17

4. Function Drivers
This section gives an overview of each device function and documents the API of each, in detail. The
overall structure of the application interface to a device depends on the type of device.

4.1 Audio
The Audio function driver makes your device look like a simple sound card to the USB host, such as
Windows, Macintosh, or Linux. You can include a speaker and/or microphone in this audio device so
you can playback and/or record sound. Advanced features of a sound card such as Mixer Unit and
Process Unit are not supported. You can integrate a MIDI port into this Audio device so it can also
accept MIDI data. There is no need to install any driver or .inf file in Windows to support this device
but you may need to implement the sound device driver by yourself, according to your system hardware
and software environment to control your audio codec chipset.

The application must register a notification function to get events sent by the host. Possible events
include start/stop recording, start/stop playback, and received playback data. The application also needs
to send audio data to the host every 1 ms, after the recording is started by the host.

The application interface is defined in udaudio.h.

int sud_AudioIsConnected(int port);
int sud_AudioSendAudioData(int port, u8 *pData, int iLen);
int sud_AudioGetAudioData(int port, u8 *pData, int iLen);
int sud_AudioGetCurSpkSettings(int port, SUD_AUDIO_SETTINGS *pSettings);
int sud_AudioGetCurMicSettings(int port, SUD_AUDIO_SETTINGS *pSettings);
int sud_AudioSendMIDIData(int port, u8 *pData, int iLen);
int sud_AudioGetMIDIData(int port, u8 *pData, int iLen);
void sud_AudioRegisterNotify(int port, PAUDIOFUNC handler);
int sud_AudioPackMIDIEvent(int port, u8 *pData, SUD_AUDIO_MIDI_EVENT *pEvent);
int sud_AudioUnpackMIDIEvent(int port, u8 *pData, SUD_AUDIO_MIDI_EVENT *pEvent);

 18

int sud_AudioIsConnected(int port);

Summary Indicates whether the USB device is connected and the host controller has configured this

device.

Details Can be called any time after sud_Initialize() has been called.

Parameters port Audio device port index. For the current version, only pass 0.

Returns 1 Host has configured this device.
 0 Cable is not connected or the host does not support this device.

See Also sud_AudioRegisterNotify()

int sud_AudioSendAudioData(int port, u8 *pData, int iLen);

Summary Send some Audio streaming data (sound) to the host.

Details When the Host is recording the sound, call this function to send the sound data to the host.

Normally this function should be called after you get a MIC_START event, every 1 ms.
Stop calling it after you get a MIC_STOP event. The data in the buffer should be the data
for one (1) millisecond. For example, if the recording format is 48000 samples/second, 16
bits and 2 channels/sample, then the data length for 1 millisecond is calculated as
48000*16/8*2/1000 = 192 bytes

Parameters port Audio device port index. For the current version, only pass 0.
 pData The data buffer pointer.
 iLen The length of the buffer.

Returns 0 Data have been sent to the host.
 -1 Error occurred when sending data.

See Also sud_AudioRegisterNotify()

 19

int sud_AudioGetAudioData(int port, u8 *pData, int iLen);

Summary Get the received Audio streaming data (sound).

Details When Host is playing back the sound, call this function to get the received sound data from

the host. Normally it should be called after you get an ISOCDATAREADY event.

Parameters port Audio device port index. For the current version, only pass 0.
 pData The data buffer pointer.
 iLen The length of the buffer.

Returns > 0 Received data length.
 -1 Error occurred when receiving data.

See Also sud_AudioRegisterNotify()

int sud_AudioSendMIDIData(int port, u8 *pData, int iLen);

Summary Send some MIDI streaming data (notes) to the host.

Details When Host is recording the music, call this function to send the MIDI data to the host.

Parameters port Audio device port index. For the current version, only pass 0.
 pData The data buffer pointer.
 iLen The length of the buffer.

Returns 0 Data have been sent to the host.
 -1 Error occurred when sending data.

See Also sud_AudioRegisterNotify()

int sud_AudioGetMIDIData(int port, u8 *pData, int iLen);

Summary Get the received MIDI streaming data (notes).

Details When Host is playing back the music, call this function to get the received MIDI data from

the host. Normally you should call this function after you get a BULKDATAREADY
event.

 20

Parameters port Audio device port index. For the current version, only pass 0.
 pData The data buffer pointer.
 iLen The length of the buffer.

Returns > 0 Received data length.
 -1 Error occurred when receiving data.

See Also sud_AudioRegisterNotify()

int sud_AudioGetCurSpkSettings(int port, SUD_AUDIO_SETTINGS *pSettings);

Summary Get current Speaker sound format settings.

Details Before Host plays back the sound, it will set up the sound data format. Call this function to

get the format set by the host. Normally you should call this function after you get a
SPK_START event. You may need to set the playback hardware to match these settings.

 SUD_AUDIO_SETTINGS is defined as:
typedef struct
{
 uint iFormat;
 uint iChannels;
 uint iBits;
 u32 dwSampleRate;
 u16 wVolume[7];
 u16 wMuteEnabled[7];
}SUD_AUDIO_SETTINGS;
iFormat is the format of the data, for example, PCM.
iChannels is the number of data channels, for example, 1 or 2.
iBits is the number of bits per sample, for example 8 or 16.
dwSampleRate is the current sample rate, for example, 48000.
wVolume is the current volume settings for each channels.
wMuteEnabled is the mute feature for each channel.

Parameters port Audio device port index. For the current version, only pass 0.
 pSettings Audio settings structure pointer. See above.

Returns 0 Get the current settings.
 -1 Error occurred when getting the settings.

See Also sud_AudioRegisterNotify()

 21

int sud_AudioGetCurMicSettings(int port, SUD_AUDIO_SETTINGS *pSettings);

Summary Get current Microphone sound format settings.

Details Before Host records the sound, it will set up the sound data format. Call this function to get

the format set by the host. Normally you should call this function after you get a
MIC_START event. You may need to set the recording hardware to match these settings

Parameters port Audio device port index. For the current version, only pass 0.
 pSettings Audio settings structure pointer. See above.

Returns 0 Get the current settings.
 -1 Error occurred when getting the settings.

See Also sud_AudioRegisterNotify()

void sud_AudioPackMIDIEvent (int port, u8 *pData, SUD_AUDIO_MIDI_EVENT *pEvent);

Summary Generate a USB packet from a MIDI event.

Details You must call this function generate a USB packet from a MIDI event.
 A MIDI event is defined as:

typedef struct
{
 uint iCN;
 uint iCIN;
 uint iMIDI_0;
 uint iMIDI_1;
 uint iMIDI_2;
}SUD_AUDIO_MIDI_EVENT;
iCN is the cable number
iCIN is the Code Index Number.
iMIDI_0, iMIDI_1,iMIDI_2 is the MIDI data. For details, please refer to USB Device
Class Definition for MIDI Device.

Parameters port Audio device port index. For the current version, only pass 0.
 pData USB MIDI packet buffer pointer. Data length should be 4 bytes.
 pEvent Pointer to MIDI event.

Returns 0 Success.
 -1 Error occurred.

See Also sud_AudioSendMIDData()

 22

void sud_ sud_AudioUnpackMIDIEvent (int port, u8 *pData, SUD_AUDIO_MIDI_EVENT *pEvent);

Summary Parse a USB packet to generate a MIDI event.

Details You must call this function to parse the received USB packet to generate a MIDI event.

Parameters port Audio device port index. For the current version, only pass 0.

pData USB MIDI packet buffer pointer received by sud_AudioGetMIDIData().
Data length should be 4 bytes.

 pEvent Pointer to MIDI event.

Returns 0 Success.
 -1 Error occurred.

See Also sud_AudioGetMIDData()

void sud_AudioRegisterNotify(int port, PAUDIOFUNC handler);

Summary Set the notification handler for the audio device.

Details You must call this function to register an event notification handler so you can process

events for the USB audio device.
 The notification is defined as:

SUD_AUDIO_NOTIFY_ISOCDATAREADY
SUD_AUDIO_NOTIFY_BULKDATAREADY
SUD_AUDIO_NOTIFY_SPK_START_STOP
SUD_AUDIO_NOTIFY_MIC_START_STOP

Parameters port Audio device port index. For the current version, only pass 0.
 handler Function pointer for the notification handler.

Returns none

See Also none

 23

4.2 Device Firmware Upgrade (DFU)
The DFU function driver provides part of the ability to update the firmware in your device. Specifically,
it implements the communication protocol in the USB DFU specification. You must handle the format
of the image file, manifest it in flash, and create a bootloader (if desired), as explained in this section.

A USB DFU enabled device normally works in two modes: Runtime mode and DFU mode. Runtime
mode only report to the host that this device has DFU capability, and the device will work mainly for
other functions such as serial and mass storage. In this case you also need composite device framework.
Whenever the USB host needs to download or upload the firmware, the device needs to switch to the
DFU mode first, and then all run time functions, such as serial, mass storage, etc., will be disabled.

It is also possible to use the DFU mode directly for firmware upgrade only in a boot loader

The DFU specification does not define the format of the firmware data, it can be binary or hex or any
other format (even encrypted) that will be used on both host and device side. Encode/decode of the
format of the firmware itself should be done by your host application and device. It is transparent to
DFU. The suffix, which contains the CRC of the firmware data, version, and vendor information, needs
to be added to the firmware file before the download process begins so the DFU driver can check and
verify it before the real download procedure starts. Our windows driver provides the API to add and
check the suffix.

USB DFU specification only defines the communication protocol to transfer the firmware over the USB
bus. It does NOT define how you will write the firmware to the flash and manifest the firmware. For
example you may write the binary firmware code directly to flash or you may use some kind of
mapping layer to translate the physical and logical flash address, like smxNAND or smxNOR. To
manifest the firmware, you may create two partitions for your flash, one is active partition and another
is backup partition and you may need to switch between these two partitions after the upgrade is done.
All these details must be done by your application and are not handled by the DFU driver. The
DFU driver provides you the APIs to let your application to register the interface to access your flash
(sud_DFURegisterInterface()) and notify the host when the manifestation is done
(sud_DFUWriteDone()).

The Windows operating system does not have a built-in driver for DFU, so you need to use the driver
provided by MDI or another driver such as the open source drivers libUSB and dfu-util.exe. See section
9.2 Device Firmware Upgrade (DFU) Device for more information about the requirements for the host
side. On the device side, the DFU function may be part of your runtime function such as serial or mass
storage, in which case you also need to composite device framework.

The device-side application interface is defined in uddfu.h.

int sud_DFUIsConnected(void);
void sud_DFURegisterInterface (SUD_DFU_IF *pIF);
void sud_DFUWriteDone (uint result, uint condition);
int sud_DFUIsRuntimeMode(void);

 24

int sud_DFUIsConnected (void)

Summary Check if the DFU device is connected and enumerated by the USB host.

Details Check if the DFU device is connected and enumerated by the USB host. Can be called any

time after sud_Initialize() has been called.

Parameters none

Returns 1 Device connected and enumerated to the host.
 0 Device is not connected or enumerated to the host.
See Also none

void sud_ DFURegisterInterface (SUD_DFU_IF *pIF)

Summary Register the DFU application interface function to the DFU

Details The application should implement its hardware related memory function and register it to

the DFU function driver so the DFU does not need to know anything special about the
target memory. Nonvolatile memory write operations are normally time-consuming, so we
recommend doing the actual write operation in a separate task. See the demo code in our
usbddemo.c for how we simulate this kind of asynchronous operation.

Parameters pIF The interface of the application memory
 SUD_DFU_IF is defined as

typedef struct
{
 int (*DFUInit)(uint segment);
 int (*DFUWrite)(uint segment, u32 dwOffset, u8 *pData, uint iSize);
 int (*DFURead)(uint segment, u32 dwOffset, u8 *pData, uint iSize);
 int (*DFUDone)(uint segment);
} SUD_DFU_IF;

DFUInit() is called whenever the DFU driver needs to init the firmware segment. You
may return the status of that segment, which is defined in uddfu.h as
SUD_DFU_STATUS_xxx. For example, if the device could not find the valid firmware
on that segment, return SUD_DFU_STATUS_errFIRMWARE. Otherwise, return
SUD_DFU_STATUS_OK.
DFUWrite() is called whenever the DFU driver receives a downloaded packet of the
firmware. You can buffer the received data until it will fill one whole block. segment is
the memory segment. dwOffset is the offset of this packet from the beginning of that

 25

segment. pData is the data buffer. iSize is the data buffer size. Return value should be
the data size written to the buffer or memory.
DFURead() is called whenever the DFU driver needs the firmware data to upload.
segment is the memory segment. dwOffset is the offset of this packet from the beginning
of that segment. pData is the data buffer. iSize is the data buffer size. Return value is the
read data size. If the firmware size is a multiple of the packet size, the last read operation
should return 0.
DFUDone() is called whenever the DFU driver has no more data to download. The
application may need to do the manifestation after this function is called.

Returns none

See Also sud_DFUWriteDone()

void sud_DFUWriteDone (uint result, uint condition)

Summary Notifies the DFU driver that the memory write or manifestation is done.

Details Normally flash write operations take awhile, so we recommend the application do it in a

separate task instead of in the DFUWrite() interface function. If DFUWrite() will only
write the downloaded firmware to a buffer, the application still needs to call this function
after the memory copy.

Parameters result The result of this block write or manifestation. It is defined as

SUD_DFU_STATUS_xxx in uddfu.h
 condition Which write operation is done, either

SUD_DFU_WRITE_BLOCK_DONE or
SUD_DFU_MANIFESTATION_DONE.

Returns none

See Also sud_DFURegisterInterface ()

void sud_DFUIsRuntimeMode (void)

Summary Checks if the DFU device is in the runtime mode.

Details A DFU device can work under two modes. Runtime mode is actually a composite device,

and the DFU function only reports the DFU capacity to the USB host. The host will send
the DFU request to the device DFU runtime interface to let it switch to the DFU mode. The

 26

host will reset and re-enumerate device after the device switches to the DFU mode. Under
DFU mode, the device will report different descriptors to the host, so the host can do the
actual firmware download/upload.

Parameters none.

Returns 1 Device is in the runtime mode.

0 Device is in the DFU mode.
1

See Also none

4.3 HID Communication
The HID communication function driver can be used to transfer data to and from a USB host. You
don’t need to install any driver on the Windows PC, but you need to write a special Windows
application to send and receive data.

An HID communication device will use both Interrupt IN and OUT endpoints to do full duplex data
transfer between USB device and host. However, the Interrupt endpoint is not designed to transfer a
large amount of data, so the data transfer speed of the HID Communication device is slow.

The device-side application interface is defined in udhidcom.h.

int sud_HIDIsConnected(void);
int sud_HIDSendInput(uint iReportID, void *pDataBuf, uint size);
void sud_HIDRegisterOutputNotify(PHIDFUNC handler);

int sud_HIDIsConnected(void);

Summary Indicates whether this USB device is connected and the host controller has configured it.

Details Can be called any time after sud_Initialize() has been called.

Parameters none

Returns 1 Host has configured this device.
 0 Cable is not connected or the host does not support this device.

See Also sud_HIDRegisterOutputNotify()

 27

int sud_HIDSendInput (uint iReportID, void *pDataBuf, uint size);

Summary Send data to the USB host.

Details Can be called any time after sud_Initialize() has been called.

Parameters iReportID the report ID of the input; if there is only one report, use 1

pDataBuf pointer to the data buffer
 Size size of the data

Returns 1 Data sent out.
 0 Cable is not connected, the host does not support this device, or send data failed.

See Also sud_HIDRegisterOutputNotify()

void sud_HIDRegisterOutputNotify (PHIDFUNC handler);

Summary Register the output data ready callback function.

Details Can be called any time after sud_Initialize() has been called.
 The callback function is defined as

typedef void (* PHIDFUNC)(uint iReportID, void *pDataBuf, uint size);
iReportID is the output report ID.
pDataBuf is the output (incoming for device) payload data pointer. The data does not
include report id.
size is the output payload data size.
Within the callback function, the application needs to copy the data to the application
buffer and wake up another task to process the data. You cannot block or wait for
something within this callback function.
See our HID communication sample code in usbddemo.c.

Parameters handler callback function pointer

Returns none

See Also sud_HIDSendInput()

 28

4.4 Keyboard
The Keyboard function driver makes your device look like an HID keyboard to the USB host, such as
Windows, Macintosh, or Linux. The interface is simple. To use the function driver, the application
simply sends keyboard event such as key pressed or released to the host.

The application interface is defined in udkbd.h.

int sud_KBDInput(u8 bModifier, u8 *pKey, uint count);

int sud_KBDInput (u8 bModifier, u8 *pKey, uint count)

Summary Sends a key event to the USB host.

Details Sends a key press/release event to the USB host, indicating key modifier and state of

multiple keys pressed/released. Can be called any time after sud_Initialize() has been called.

Parameters bModifier The Modifier bitmap value for special function keys. They are defined as:

SUD_KBD_LEFT_CTRL
SUD_KBD_LEFT_SHIFT
SUD_KBD_LEFT_ALT
SUD_KBD_LEFT_GUI
SUD_KBD_RIGHT_CTRL
SUD_KBD_RIGHT_SHIFT
SUD_KBD_RIGHT_ALT
SUD_KBD_RIGHT_GUI

 pKey Up to 6 bytes of data for the key state. Each byte presents one key. The key code

is defined in udkbd.h as SUD_KEY_CODE_xx. To see how to use the key codes, look
at the demo code in usbddemo.c.

 count The data size of the pKey. Maximum value is 6.

Returns 1 Keyboard event has been sent to the host.
 0 Cable is not connected or the host does not support this device.

 29

4.5 Mass Storage
The Mass Storage function driver makes your device look like a removable disk to the USB host, such
as Windows, Macintosh, or Linux. You can copy files to and from it. The Mass Storage Specification
only defines the protocol for transferring media disk data, at the sector level. It did not involve any
details about how to read/write your actual media, such as flash or SD card. The application must
register a disk driver so the mass storage driver can call the disk driver interface functions to write data
to or read data from the actual media. The disk driver interface functions that must be supplied are
shown in Appendix B. Block Device Driver Interface. It is a typical block-device driver interface, as is
used in smxFS and other file systems. We provide some drivers such as RAM disk, NAND flash, NOR
flash, SD/MMC card, CompactFlash, etc. which can be used in your application, but if you are using
other media which we don’t support yet, you may need to provide/implement it yourself.

If SUD_MSTOR_ASYNC_ACCESS is set to 1 in udcfg.h, the mass storage driver will create a
separate task to handle the disk access operations, while the USB is still transferring the required data.
Part of the data can be read/written to the disk simultaneously. This asynchronous operation will
improve mass storage device driver performance significantly, especially if your disk access speed and
USB data transfer speed are almost the same. Theoretically, the overall performance should be the
slower of the USB data transfer speed and disk access speed.

The application interface is defined in udmstor.h.

void sud_MSRegisterDisk(const SBD_IF *pDiskOper, int iLUN);

void sud_MSRegisterDisk(const SBD_IF *pDiskOper, int iLUN);

Summary Registers a disk driver to the mass storage function driver.

Details The mass storage driver calls the disk driver functions to read/write the data transferred by

USB to the real storage media. Can be called any time after sud_Initialize() has been called.

Parameters iLUN The logical unit number of this disk. Should be 0 to

SUD_MSTOR_MAX_NUM - 1.
 pDiskOper The generic block device driver interface. The block device driver interface

is also used in our smxFS product. See Appendix B. Block Device Driver
Interface for the details about how to implement this interface.

Returns None

 30

4.6 Media Transfer Protocol (MTP)
The MTP function driver makes your device look like a media device to the USB host, such as
Windows, Macintosh, or Linux. Unlike the mass storage function driver, which is based on block
device level access, the MTP function driver is based on file level access. File system details are beyond
the scope of MTP specification. You need to add/implement the file system interface in your
application. usbddemo.c provides sample code to interface to smxFS that can be used in your
application if you are using smxFS. There is no need to install any driver or .inf file in Windows to
support this device but you may need to implement the file system interface by yourself, according to
your system’s hardware and software environment. You may also need to implement the interface to get
the properties of the files your device will support, such as the JPEG image width, height, and
thumbnail.

Capture-related functions must also be implemented by the application according to your hardware and
software.

The application interface is defined in udmtp.h.

int sud_MTPIsConnected(int port);
void sud_MTPRegisterInterface(const SUD_MTP_IF *pObjOper);
int sud_MTPSendEvent(u32 dwEventCode, uint iNumParameter, u32 *pdwParameter);

int sud_MTPConnected(int port);

Summary Indicates whether the USB device is connected and the host controller has configured it.

Details Can be called any time after sud_Initialize() has been called.

Parameters port MTP device port index. For the current version, only pass 0.

Returns 1 Host has configured this device.
 0 Cable is not connected or the host does not support this device.

See Also none

void sud sud_MTPRegisterInterface(const SUD_MTP_IF *pObjOper);

Summary Register the application level interface for the MTP device.

Details Can be called any time after sud_Initialize() has been called.

 31

Parameters pObjOper Application interface to support the operations of this MTP device.
 The application interface is defined as:

typedef struct
{
 int (*MTPDiskMounted)(uint index);
 int (*MTPStorageNum)(void);
 void *(*MTPOpen)(uint index, char *pFileName, uint iMode);
 int (*MTPClose)(void *pFileHandle);
 int (*MTPRead)(u8 * pRAMAddr, u32 dwSize, void *pFileHandle);
 int (*MTPWrite)(u8 * pRAMAddr, u32 dwSize, void *pFileHandle);
 int (*MTPMkDir)(uint index, char *pPathName);
 int (*MTPRmDir)(uint index, char *pPathName);
 int (*MTPDelete)(uint index, char *pFileName);
 int (*MTPTotalSize)(uint index);
 int (*MTPFreeSize)(uint index);
 int (*MTPFindFirst)(uint index, char *pFindSpec, SUD_MTP_FILE_INFO

*pFileInfo);
 int (*MTPFindNext)(uint iID, SUD_MTP_FILE_INFO *pFileInfo);
 int (*MTPFindClose)(SUD_MTP_FILE_INFO *pFileInfo);
 int (*MTPGetImgProp)(uint index, char *pFileName, uint *piWidth,

uint *piHeight, uint *piBits, uint *piThumbSize, uint *piThumbFormat,
uint *piThumbWidth, uint *piThumbHeight);

 void *(*MTPOpenImgThumb)(uint index, char *pFileName);
 int (*MTPReadImgThumb)(u8 * pRAMAddr, u32 dwSize, void *pHandle);
 int (*MTPCloseImgThumb)(void *pHandle);
 int (*MTPGetFormat)(uint index, char *pFileName, u16 *pwFormat);
 int (*MTPInitCapture)(u32 index, u32 format);
 int (*MTPStartCapture)(void);
 int (*MTPStopCapture)(void);
} SUD_MTP_IF;

MTP function driver will call MTPDiskMounted() when the USB host tries to enumerate
all the storage IDs. Parameter index is the index of the disk.

MTP function driver will call MTPStorageNum() to get the total disk on your device.

MTP function driver will call MTPOpen() to open an object (file) on your disk. Index is
the storage (disk) ID. pFileName is the full path of that object, for example
“\path1\image1.jpg”. If your file system is not using “\” as path separator, change it within
this function before you pass the file name to your file system call. iMode is one of the
following constants:
SUD_MTP_OBJ_MODE_READWRITE
SUD_MTP_OBJ_MODE_READONLY

 32

The return value should be the file handle. It will be used by the following
MTPRead()/MTPWrite() operation.

MTP function driver will call MTPClose() to close the opened object. Parameter
pFileHandle is the file handle returned by MTPOpen().

MTP function driver will call MTPRead() to read the data of the object and send them to
the USB host. Parameter pRAMAddr is the pointer to the data buffer. dwSize is the size of
the data buffer. pFileHandle is the file handle returned by MTPOpen().

MTP function driver will call MTPWrite() to write the object data from the USB host.
Parameter pRAMAddr is the pointer to the data buffer. dwSize is the size of the data buffer.
pFileHandle is the file handle returned by MTPOpen(). Currently it is not used.

MTP function driver will call MTPMkDir() to create a new file folder on your disk. Index
is the storage ID. pPathName is the full path. Currently it is not used.

MTP function driver will call MTPRmDir() to remove an existing file folder on your disk.
Index is the storage ID. pPathName is the full path. Currently it is not used.

MTP function driver will call MTPDelete() to remove an existing object on your disk.
Index is the storage ID. pFileName is the full path name of that object.

MTP function driver will call MTPTotalSize() to get the total size of the storage. Index is
the storage ID. The unit of the return value is KB (1024 bytes).

MTP function driver will call MTPFreeSize() to get the free size of the storage. Index is
the storage ID. The unit of the return value is KB (1024 bytes).

MTP function driver will call MTPFindFirst() to get/list the object information on your
disk. Index is the storage ID. pFindSpec is the search pattern, such as “\DCIM*.*” or
“DCIM\Image1.jpg”. pFileInfo is a pointer to SUD_MTP_FILE_INFO to hold the object’s
information. SUD_MTP_FILE_INFO is defined as:

typedef struct
{
 u8 name[260];
 uint attr;
 u32 st_size_l;
 u32 st_size_h;
 SUD_MTP_DATETIME st_ctime;
 SUD_MTP_DATETIME st_mtime;
 SUD_MTP_DATETIME st_atime;
 void *pPrivate;
}SUD_MTP_FILE_INFO;

 33

Return value is the internal search ID. -1 means no more files found.

MTP function driver will call MTPFindNext() to search more object information on your
disk. iID is the internal search ID returned by MTPFIndFirst()/MTPFindNext(). pFileInfo
is a pointer to SUD_MTP_FILE_INFO to hold the object’s information.

MTP function driver will call MTPFindClose() when the search is finished, You can
release any resources allocated by MTPFindFirst() here.

MTP function driver will call MTPGetImgProp() to get the image’s properties of the
object on your disk. Index is the storage (disk) ID. pFileName is the full path of that object.
piWidth is the width of that image. piHeight is the height of that image. piBit is the color
depth of that image. piThumbSize is the size of the thumbnail image in bytes.
piThumbFormat is the image format of the thumbnail. piThumbWidth is the width of the
thumbnail. piThumbHeight is the height of the thumbnail.

MTP function driver will call MTPOpenImgThumb() to open an image’s thumbnail on
your disk. Index is the storage (disk) ID. pFileName is the full path of that object.
Thumbnail maybe stored in the EXIF/JPEG file or in separate thumbs.db file. It depends
on your implementation. The return value should be the file handle. It will be used by the
following MTPReadImgThumb()/MTPCloseImgThumb() operation.

MTP function driver will call MTPReadImgThumb() to read the thumbnail of the object
and send it to the USB host. Parameter pRAMAddr is the pointer to the data buffer,
dwSize is the size of the data buffer, pHandle is the file handle returned by
MTPOpenImgThumb()

MTP function driver will call MTPCloseImgThumb() to close the open thumbnail.
Parameter pHandle is the file handle returned by MTPOpenImgThumb().

MTP function driver will call MTPGetFormat() to get the format of the object. Parameter
index is the storage ID. pFileName is the full path name of that object. pwFormat is the
returned the format, which is one of the SUD_MTP_OBJ_FMT_xxx defined in udmtp.h

MTP function driver will call MTPInitCapture() to prepare and set up the capture format.
Index is the storage ID. format is the object format you want to capture, which is one of the
SUD_MTP_OBJ_FMT_xxx defined in udmtp.h.

MTP function driver will call MTPStartCapture() to start the capture.

MTP function driver will call MTPStopCapture() to stop the capture.

 34

Returns none

See Also none

int MTPSendEvent(u32 dwEventCode, uint iNumParameter, u32 *pdwParameter);

Summary Send MTP event to the host, such as the storage is removed.

Details Can be called any time after sud_MTPIsConnected() returns 1.

Parameters dwEventCode MTP event. For details check the MTP specification.
 iNumParameter The number of parameters of the event. For details, check the MTP

specification for what parameters you should pass for each event.
 pdwParameter The array of parameters. Each parameter is 32-bit data, which is one of

the SUD_MTP_EVT_xxx defined in udmtp.h.

Returns 0 Event is sent out
 -1 Send failed

See Also none

4.7 Mouse
The Mouse function driver makes your device look like an HID mouse to the USB host, such as
Windows, Macintosh, or Linux. The interface is simple. To use the function driver, the application
simply sends a mouse event, such as new coordinates and/or button pressed or released, to the host. It
moves the mouse cursor on your PC.

The application interface is defined in udmouse.h.

int sud_MouseInput(u16 button, s16 x, s16 y, s8 wheel);

int sud_MouseInput (u16 button, s16 x, s16 y, s8 wheel)

Summary Sends a mouse event to the USB host.

Details Sends a mouse event to the USB host, indicating button state, position, and wheel state.

Can be called any time after sud_Initialize() has been called.

 35

Parameters button The bitmap encoding the button state. When a bit is set to ‘1’, it indicates that the
corresponding button is pressed. The following buttons are supported:

SUD_MOUSE_BTN_LEFT
SUD_MOUSE_BTN_RIGHT
SUD_MOUSE_BTN_MIDDLE
SUD_MOUSE_BTN_SIDE
SUD_MOUSE_BTN_EXTRA

 x The movement along the x-axis, using a right-handed coordinate system. If the

user is facing the USB mouse, then the reported values should increase as the mouse is
moved from left to right. Movement is relative to the current mouse position. A negative
value moves the pointer left.

 y The movement along the y-axis, using a right-handed coordinate system. If the
user is facing the USB mouse, then the reported values should increase as the mouse is
dragged nearer to the user. Movement is relative to the current mouse position. A
negative value moves the pointer up.

 wheel The direction of mouse wheel rotation. SUD_MOUSE_WHEEL_UP indicates
that the wheel is rolling up, and SUD_MOUSE_WHEEL_DOWN indicates that the
wheel is rolling down.

Returns 1 Mouse event has been sent to the host.
 0 Cable is not connected or the host does not support this device.

4.8 Ethernet over USB
The Ethernet over USB function driver makes your device look like a Network Adapter to a Windows
or MacOS/Linux USB host. This function can be configured to use either RNDIS or CDC-ECM/NCM
or both. RNDIS is a Microsoft extension for the CDC Ethernet driver which MacOS does not support.
In order to let Windows and MacOS/Linux to support this driver without any custom driver, you need
to enable both RNDIS and CDC-ECM or NCM. The PC can communicate with this device via Ethernet
data packets. Normally you will need a TCP/IP stack on your device and use the APIs provided by this
function driver to emulate an Ethernet device and add it to your network stack. The Ethernet over USB
function driver has been integrated with Micro Digital’s TCP/IP stack, smxNS. For other TCP/IP
stacks, you need to add a virtual Ethernet driver (using the following APIs) to your stack. The USB host
and your device can communicate with each other by TCP/IP with a USB cable instead of an Ethernet
cable. One use of Ethernet over USB is to allow configuring a device from the web browser on a host
PC communicating with a web server on your device. This is especially useful if your processor has
only a USB device controller and no Ethernet controller on chip.

Note: If both RNDIS and CDC-ECM or NCM are enabled you cannot configure it also as part of
composite device.

 36

The application interface is defined in udnet.h.

int sud_NetIsPortConnected(int port);
int sud_NetIsAggregationSupported(int port);
int sud_NetWriteData(int port, u8 *pBuf[], u16 len[], uint packets);
void sud_NetRegisterPortNotify(int port, PNETFUNC handler);
void sud_NetSetEthernetAddr(int port, u8 *pMACAddr);

int sud_NetIsPortConnected (int port)

Summary Indicates whether the USB device is connected and the host controller has configured this

device.

Details Can be called any time after sud_Initialize() has been called.

Parameters port Ethernet over USB device port index. For the current version, only pass 0.

Returns 1 Host has configured this device.
 0 Cable is not connected or the host does not support this device.

See Also sud_NetRegisterPortNotify()

int sud_NetIsAggregationSupported (int port)

Summary Indicates whether the USB is configured to support packets aggregation. For the current

version only CDC-NCM will support packets aggregation.

Details Can be called any time after sud_Initialize() has been called.

Parameters port Ethernet over USB device port index. For the current version, only pass 0.

Returns 1 Host has configured this device to the mode that support packets aggregation.
 0 This device currently does not support packets aggregation.

See Also sud_NetRegisterPortNotify()

 37

int sud_NetWriteData(int port, u8 *pBuf[], u16 len[], uint packets)

Summary TCP/IP calls to send Ethernet data to the USB host.

Details Can be called any time after sud_Initialize() has been called to send Ethernet data. If CDC-

NCM is enabled and configured by the USB host, this function allows the Ethernet over
USB driver to aggregate multiple Ethernet frames into one USB transfer. It is vey useful if
the TCP/IP stack has multiple small packets it needs to send. The system also needs to be
configured to have enough USB buffers to send that aggregated USB transfer.

 If the USB host did not configure to use NCM mode, the function will only send the first
packet in the array. Other elements, if supplied, will be ignored. Use
sud_NetIsAggregationSupported() to check if aggregation is supported.

Parameters port Ethernet over USB device port index. For the current version, only pass 0.
 pBuf Data buffer pointer array if aggregation is supported.
 len Data buffer length array if aggregation is supported.
 packets Number of packets of the packet array.

Returns >= 0 The data length (number of bytes) sent to the host.
 -1 Cable is not connected or out of memory or the host does not support this device.

See Also sud_NetRegisterPortNotify(), sud_NetIsAggregationSupported()

void sud_NetRegisterPortNotify(int port, PNETFUNC handler)

Summary Registers a notification function for the Ethernet over USB device.

Details This notification function will be called after the Ethernet over USB function driver

receives new data. Can be called any time after sud_Initialize() has been called.

Parameters port Ethernet over USB device index. For the current version, only pass 0.
 handler Function pointer to the notification function. The function is defined as:

typedef int (* PNETFUNC)(int port, u8 *pBuf, uint len);
pBuf is the new received data buffer pointer and len is the buffer length. You need
to copy the data to another buffer if you need to use the data after this function
returns.

Returns None

See Also sud_NETWriteData()

 38

void sud_NetSetEthernetAddr(int port, u8 * pMACAddr)

Summary Set up the Ethernet MAC address.

Details Can be called any time after sud_Initialize() has been called. An Ethernet over USB device

is not a real Ethernet adapter so the TCP/IP stack must tell this driver what its Ethernet
address is.

Parameters port Ethernet over USB device index. For the current version, only pass 0.
 pMACAddr Ethernet address; a 6-byte array.

Returns None

See Also None

4.9 Serial (CDC-ACM)
The Serial function driver makes your device look like one or more COM ports to a Windows 7, Vista,
XP, or 2000 USB host. For serial devices, the application can call the API functions immediately since
they are self-initializing. (They call sud_SerialIsPortConnected() to check if communication is
possible.) The Windows built-in USB serial driver makes it look like the USB port is another COM
port. This allows Windows applications written for a true serial port, such as HyperTerminal, to run un-
changed. To them, it looks like the target board is connected via an RS232 port.

For the multi-port option, you need to use Windows XP SP3 or a later version of Windows. You also
need to set SU_COMPOSITE and SUD_SERIAL_SUPPORT_ACM to 1. Set
SUD_SERIAL_MAX_NUM to the number of port you need. Also make sure your USB device
controller has enough endpoints (each serial port needs 3 endpoints). If you don’t have enough
endpoints, we provide a custom Windows driver which allows only two endpoints for each port.

The application interface is defined in udserial.h.

int sud_SerialIsPortConnected(int port);
int sud_SerialWriteData(int port, u8 *pBuf, uint len);
int sud_SerialDataLen(int port);
int sud_SerialReadData(int port, u8 *pBuf, uint len);
int sud_SerialSetLineState(int port, uint iState);
int sud_SerialGetLineState(int port, uint *piState);
int sud_SerialGetLineCoding(int port, u32 *pdwDTERate, u8 *pbParityType, u8 *pbDataBits,

 u8 *pbStopBits);
void sud_SerialRegisterPortNotify(int port, PSERIALFUNC handler);

 39

int sud_SerialIsPortConnected (int port)

Summary Indicates the host controller has configured this device and this port has been opened by a

serial port application on the host machine.

Details Can be called any time after sud_Initialize() has been called.

Parameters port Serial port index. From 0 to SUD_SERIAL_MAX_NUM - 1.

Returns 1 Host has opened this serial port.
 0 Cable is not connected, host does not support this device, or port is not opened by

the host’s application.

See Also sud_SerialRegisterPortNotify()

int sud_SerialWriteData(int port, u8 *pBuf, uint len)

Summary Sends data to the USB host.

Details Can be called any time after sud_Initialize() has been called.

Parameters port Serial port index. From 0 to SUD_SERIAL_MAX_NUM - 1.
 pBuf Data buffer pointer.
 len Data buffer length.

Returns > 0 The data length (number of bytes) sent to the host.
 -1 Cable is not connected or the host does not support this device.

See Also sud_SerialReadData()

int sud_SerialDataLen (int port)

Summary Gets the data length (number of bytes) in the receive buffer.

Details The serial function driver maintains an internal data buffer to store received data. This

function returns the number of valid data bytes in this buffer. Can be called any time after
sud_Initialize() has been called.

Parameters port Serial port index. From 0 to SUD_SERIAL_MAX_NUM - 1.

 40

Returns >= 0 Data length (number of bytes) in the receive buffer.
 -1 Cable is not connected or the host does not support this device.

See Also sud_SerialReadData()

int sud_SerialReadData(int port, u8 *pBuf, uint len)

Summary Reads serial data received from the USB host.

Details This function retrieves the data stored in the internal receive buffer. Can be called any time

after sud_Initialize() has been called.

Parameters port Serial port index. From 0 to SUD_SERIAL_MAX_NUM - 1.
 pBuf Data buffer pointer.
 len Data buffer length.

Returns > 0 The data length (bytes) read from the internal buffer.
 -1 Cable is not connected or the host does not support this device.

See Also sud_SerialDataLen()

int sud_SerialSetLineState(int port, uint iState)

Summary Notifies the USB host that the serial line state has changed.

Details This is just like the serial line state change interrupt that indicates that some serial signal

has been set or line error detected. This function should be used to relay this information to
the USB host. Can be called any time after sud_Initialize() has been called.

Parameters port Serial port index. From 0 to SUD_SERIAL_MAX_NUM - 1.
 iState New line state. Logical OR of the following constants:

SUD_CDC_LINE_IN_DCD
SUD_CDC_LINE_IN_DSR
SUD_CDC_LINE_IN_BRK
SUD_CDC_LINE_IN_RI
SUD_CDC_LINE_IN_FRAMING
SUD_CDC_LINE_IN_PARITY
SUD_CDC_LINE_IN_OVERRUN

Returns 1 New state has been sent to the host.
 0 Cable is not connected or the host does not support this device.

 41

See Also sud_SerialGetLineState()

int sud_SerialGetLineState(int port, uint *piState)

Summary Gets the current line state set by the USB host.

Details This should be called by the callback function that is called by smxUSBD when the USB

host changes the line state. Can also be called any time to get the current state after
sud_Initialize() has been called.

Parameters port Serial port index. From 0 to SUD_SERIAL_MAX_NUM - 1.
 piState New line state. Logical OR of the following constants:

SUD_CDC_LINE_OUT_DTR
SUD_CDC_LINE_OUT_RTS

Returns 1 Got the new line state.
 0 Cable is not connected or the host does not support this device.

See Also sud_SerialSetLineState(),sud_SerialRegisterPortNotify()

int sud_SerialGetLineCoding(int port, u32 *pdwDTERate, u8 *pbParityType,
 u8 *pbDataBits, u8 *pbStopBits)

Summary Gets the current line coding set by the USB host.

Details Normally called after you receive notification that line state has changed. The default value

is set to baud rate 115200, no parity, 8 data bits and 1 stop bit. Can be called any time after
sud_Initialize() has been called.

Parameters port Serial port index. From 0 to SUD_SERIAL_MAX_NUM - 1.
 pdwDTERate Pointer to return baud rate.
 pbParityType Pointer to return the parity type setting, with one of the following values:

SUD_CDC_PARITY_NONE
SUD_CDC_PARITY_ODD
SUD_CDC_PARITY_EVEN
SUD_CDC_PARITY_MARK
SUD_CDC_PARITY_SPACE

 pbDataBits Pointer to return the number of data bits setting.
 pbStopBits Pointer to return the number of stop bits setting, with one of the following

values:

 42

SUD_CDC_STOP_BITS_1
SUD_CDC_STOP_BITS_1_5
SUD_CDC_STOP_BITS_2

Returns 1 New line coding returned.
 0 Cable is not connected or the host does not support this device.

See Also sud_SerialGetLineState(),sud_SerialRegisterPortNotify()

void sud_SerialRegisterPortNotify(int port, PSERIALFUNC handler)

Summary Registers a notification function for the serial port.

Details The handler function will be called after the serial function driver receives new data or the

line state or line coding changes. Can be called any time after sud_Initialize() has been
called.

Parameters port Serial port index. From 0 to SUD_SERIAL_MAX_NUM - 1.
 handler Function pointer to the notification function.

typedef void (* PSERIALFUNC)(int port, int notification);

Returns None

See Also sud_SerialGetLineState(),sud_SerialGetLineCoding()

4.10 Video
The Video function driver makes your device look like a web camera to the USB host, such as
Windows, Macintosh, or Linux. There is no need to install any driver or .inf file in Windows to support
this device but you may need to implement the camera sensor driver by yourself, according to your
system’s hardware and software environment. You may also need to customize the configuration in
udvideo.c for your real hardware features, such as the set of features your camera sensor will support.

See section 10.13 Video Camera Software for important notes.

The application interface is defined in udvideo.h.

int sud_VideoIsConnected(int port);
int sud_VideoSendVideoData(int port, u8 *pData, int iLen);
int sud_VideoGetVideoData(int port, u8 *pData, int iLen);
void sud_VideoRegisterNotify(int port, SUD_PVIDEOFUNC handler);

 43

int sud_VideoIsConnected(int port);

Summary Indicates whether the USB device is connected and the host controller has configured this

device.

Details Can be called any time after sud_Initialize() has been called.

Parameters port Video device port index. For the current version, only pass 0.

Returns 1 Host has configured this device.
 0 Cable is not connected or the host does not support this device.

See Also sud_VideoRegisterNotify()

int sud_VideoSendVideoData(int port, u8 *pData, int iLen);

Summary Send one frame of video streaming data to the host.

Details When the Host is capturing the video, call this function to send one frame of video data to

the host. Normally this function should be called after you get an IN_START event. Stop
calling it after you get an IN_STOP event. The data in the buffer should be the data of one
frame. For example, the format of the video streaming is 160x120 YUV422, calculated as
160*120*2 = 38400 bytes.

Parameters port Video device port index. For the current version, only pass 0.
 pData The data buffer pointer.
 iLen The length of the buffer.

Returns 0 Data have been sent to the host.
 -1 Error occurred when sending data.

See Also sud_VideoRegisterNotify()

int sud_VideoGetVideoData(int port, u8 *pData, int iLen);

Summary Get the received video streaming data (display).

Details When the Host is sending data to the display, call this function to get the received sound

data from the host. Normally it should be called after you get an ISOCDATAREADY
event.

 44

Parameters port Video device port index. For the current version, only pass 0.
 pData The data buffer pointer.
 iLen The length of the buffer.

Returns > 0 Received data length.
 -1 Error occurred when receiving data.

See Also sud_VideoRegisterNotify()

void sud_VideoRegisterNotify(int port, SUD_PVIDEOFUNC handler);

Summary Set the notification handler for the video device.

Details You must call this function to register an event notification handler so you can process

events for the USB video device.
 The notification is defined as:

SUD_VIDEO_NOTIFY_ISOCDATAREADY
SUD_VIDEO_NOTIFY_IN_START_STOP
SUD_VIDEO_NOTIFY_OUT_START_STOP
SUD_VIDEO_NOTIFY_INIT_DEF_SETTINGS
SUD_VIDEO_NOTIFY_INIT_MIN_SETTINGS
SUD_VIDEO_NOTIFY_INIT_MAX_SETTINGS
SUD_VIDEO_NOTIFY_INIT_INFO_SETTINGS
SUD_VIDEO_NOTIFY_SET_SETTINGS
SUD_VIDEO_NOTIFY_SET_PROBE_FORMAT
SUD_VIDEO_NOTIFY_SET_STILL_FORMAT
Notification handler is defined as
typedef void (* SUD_PVIDEOFUNC)(int port, int notification, u32 parameter);

Notification handler is called by SUD_VIDEO_NOTIFY_ISOCDATAREADY when the
device gets an incoming video frame from the host. This only happens when
SUD_VIDEO_INCLUDE_OUT is set to 1.

Notification handler is called by SUD_VIDEO_NOTIFY_IN_START_STOP when the
host starts/stops the video IN interface. Parameter is 1 for start, 0 for stop.

Notification handler is called by SUD_VIDEO_NOTIFY_OUT_START_STOP when the
host starts/stops the video OUT interface. Parameter is 1 for start, 0 for stop. This only
happens when SUD_VIDEO_INCLUDE_OUT is set to 1.

Notification handler is called by SUD_VIDEO_NOTIFY_INIT_DEF_SETTINGS when
the device needs to init the default settings of the video device. Parameter is a pointer to

 45

structure SUD_VIDEO_SETTINGS. The application can fill the fields of that structure for
the customized default settings.

Notification handler is called by SUD_VIDEO_NOTIFY_INIT_MIN_SETTINGS when
the device needs to init the minimum settings of the video device. Parameter is a pointer to
structure SUD_VIDEO_MIN_MAX. The application can fill the fields of that structure for
the customized minimum settings.

Notification handler is called by SUD_VIDEO_NOTIFY_INIT_MAX_SETTINGS when
the device needs to init the maximum settings of the video device. Parameter is a pointer to
structure SUD_VIDEO_MIN_MAX. The application can fill the fields of that structure for
the customized maximum settings.

Notification handler is called by SUD_VIDEO_NOTIFY_INIT_INFO_SETTINGS when
the device needs to init the information settings of the video device. Parameter is a pointer
to structure SUD_VIDEO_INFO. The application can fill the fields of that structure for the
customized information settings. For the meaning of the one byte information, check the
USB Video Class Specification.

Notification handler is called by SUD_VIDEO_NOTIFY_SET_SETTINGS when the host
tries to change the video device settings. Parameter is a pointer to structure
SUD_VIDEO_SETTINGS. The application may need to compare these settings with the
saved ones to find out which have changed and also set the corresponding hardware
properly.

Notification handler is called by SUD_VIDEO_NOTIFY_SET_ PROBE_FORMAT when
the host tries to change the video device probe (video capture) settings. Parameter is a
pointer to structure SUD_VIDEO_FORMAT. The application may need to set the
corresponding hardware properly.

Notification handler is called by SUD_VIDEO_NOTIFY_SET_ STILL_FORMAT when
the host tries to change the video device still (photo capture) settings. Parameter is a
pointer to structure SUD_VIDEO_FORMAT. The application may need to set the
corresponding hardware properly.

Parameters port Video device port index. For the current version, only pass 0.
 handler Function pointer for the notification handler.

Returns none

See Also none

 46

5. Writing a New Function Driver
Note: Writing a new function driver is not easy, and may require assistance from Micro Digital.
Please discuss this with Micro Digital before you decide to do it.

This section describes how to write a new smxUSBD function driver.

Function drivers are a separate sub-module of smxUSBD. You do not need to know the details about
the other parts, such as the device controller driver (6.1 Device Controller Operation Interface) and the
smxUSBD core layer.

Adding a new function driver is very simple for smxUSBD. The only thing you need to do is implement
a function driver interface and then register it with the smxUSBD core layer in udinit.c, by calling
sud_RegisterFunction(). The function should be called before the device controller driver register
function.

We provide a working function driver template so you can study the source code and the following
description to understand how it works. You can also use it as a startup point to create your own
function driver. See XUSBD\Function\udftempl.*.

5.1 Function Driver Interface
The function driver interface provides all the necessary information to the smxUSBD core layer. This
information includes a set of operation function pointers and device and configuration descriptor
information. The interface is defined in udfunc.h as the following structure:

typedef struct SUD_Function_Driver_T
{
 const char *pFunctionName;
 const SUD_FUNCTION_OPER_T *pOperation;

 /* device and configuration information */
 SUD_DEVICE_INFO_T *pDeviceInfo;
 SUD_CONFIGURATION_INFO_T *pConfigurationInfo;

 /* device and configuration descriptor */
 SUD_DEVICE_DESC_T *pDeviceDescriptor;
 SUD_CONFIGURATION_HANDLE_T *pConfigurationHandle;

 /* number of configuration */
 uint iConfigurations;

#if SUD_HIGH_SPEED
 SUD_DEV_QUALIFIER_DESC_T *pDevQualifierDescriptor;
#endif
}SUD_FUNCTION_DRIVER_T;

Only the first three fields and iConfigurations field need to be provided by your code. smxUSBD will
automatically fill in the other fields according to the information you provided.

 47

5.2 Function Operation Interface
The function operation interface is a set of function pointers which will be called by the smxUSBD core
layer when it receives requests from the device controller. These function pointers are defined in
udfunc.h as:

typedef struct
{

void (*DoEvent) (SUD_DEVICE_HANDLE_T *pDevice, uint event);
int (*RequestSentDone) (SUD_REQUESTINFO_T *pRequestInfo, int status);
int (*ReceiveRequest) (SUD_REQUESTINFO_T *pRequestInfo);
int (*ReceiveSetup) (SUD_REQUESTINFO_T *pRequestInfo);

}SUD_FUNCTION_OPER_T;

Your new function driver must initialize these function pointers and create the functions, as
documented below.

5.2.1 DoEvent()
When the USB state has changed, this function is called by the smxUSBD core layer. Four important
events you need to handle are as follows:

1. SUD_DEVICE_CREATE
This event is called when smxUSBD is starting up. You can allocate private data structures in
this event.

2. SUD_DEVICE_CONFIGURED
This event is called when the USB host has configured the device. After this, your function can
begin to work.

3. SUD_DEVICE_DE_CONFIGURED
This event is called when the USB host has de-configured the device or the cable has been
unplugged from the port. The function driver should stop doing work after getting this event.

4. SUD_DEVICE_DESTROY
This event is called when smxUSBD is shutting down. You should free any private data
allocated in the CREATE event.

5.2.2 RequestSentDone()
This is the callback function that is called when the request to the host has been sent. You can notify
your application using this callback function. If status is 0, it means success; otherwise, an error has
occurred.

You can access pRequestInfo->iActualLength to get the actual sent data size. Normally it should be the
same as pRequestInfo->iDataLength which was set when you made the send request.

5.2.3 ReceiveRequest()
This is the callback function that is called when the host has sent your function driver some data. You
can pass the received data to your application.

 48

pRequestInfo->pBuffer points to the data buffer.
pRequestInfo->iActualLength is the received data size.

5.2.4 ReceiveSetup()
This is the callback function that is called when the host has received a class/vendor request and it does
not know how to handle it.

pRequestInfo->RequestStru holds the request header.
pRequestInfo->pBuffer points to the received data buffer.
pRequestInfo->iActualLength is the data size.

If you need to send data back to the host, just copy the data to pRequestInfo->pBuffer, set
pRequestInfo->iActualLength to 0, and set pRequestInfo->iDataLength to the data size you want to
send back. The core sends back the response data automatically.

If you need to send back a zero length Status package, set pRequestInfo->iSendNotify to 1.

This function returns -1 if there is an error; otherwise it returns 0.

5.3 Device Information
Device information tells the smxUSBD core layer what your device function looks like. The smxUSBD
core layer generates the device descriptor according to the information provided here and sends it to the
host, matching the device driver to the device. Device information is defined in uddevice.h as:

typedef struct
{
 u8 bDeviceClass;
 u8 bDeviceSubClass;
 u8 bDeviceProtocol;
 u8 bPadding;

 u16 idVendor;
 u16 idProduct;

 char *iManufacturer;
 char *iProduct;
 char *iSerialNumber;
}SUD_DEVICE_INFO_T;

bDeviceClass, bDeviceSubClass, and bDeviceProtocol describe your device’s class information. See
the USB defined class codes document to check which values to use. In some cases they can be set to 0
and the host will then check the configuration descriptor and/or interface descriptor to match the driver.

idVendor and idProduct is your device’s Vendor ID and Product ID. Vendor ID is allocated by USB-IF.
You can choose the product ID yourself.

iManufacturer, iProduct, and iSerialNumber describe your device. Any strings are acceptable.

 49

5.4 Configuration Information
Configuration information tells the host how many configurations, interfaces, and endpoints are used in
your device function and their attributes. This structure is defined in uddevice.h as:

typedef struct
{
 char *iConfiguration;
 u8 bmAttributes;
 u8 bMaxPower;
 u16 wPadding;
 uint bInterfaceNum;
 SUD_INTERFACE_INFO_T *pInterfaceInfo;
 #if SUD_COMPOSITE
 uint bIADNum;
 SUD_IAD_INFO_T *pIADInfo;
 #endif
}SUD_CONFIGURATION_INFO_T;

iConfiguration is the description for this configuration. Any string is acceptable.

bmAttributes is the attribute for this configuration. Valid values include:
SUD_BMATTRIBUTE_RESERVED and SUD_BMATTRIBUTE_SELF_POWERED.

You can OR these together if the device is self powered.

bMaxPower is the maximum power your device will consume.

bInterfaceNum is the size of your interface information array.

pInterfaceInfo is the interface information array of your interface. Each element of the array is a
structure pointer defined in uddevice.h as:

typedef struct
{
 char *iInterface;
 u8 bInterfaceClass;
 u8 bInterfaceSubClass;
 u8 bInterfaceProtocol;
 u8 bPadding;
 uint iAlternateNum;
 SUD_ALTERNATE_INFO_T *pAlternateInfo;
}SUD_INTERFACE_INFO_T;

iInterface is the description for this endpoint. Any string is acceptable.

bInterfaceClass, bInterfaceSubClass, and bInterfaceProtocol comprise the interface class code of this
interface. See the USB defined class codes document to check which value you should use.

iAlternateNum is the size of your alternate information array.

pAlternateInfo is the alternate setting array for your interface. Each element of the array is a structure
pointer defined in uddevice.h as:

 50

typedef struct
{
 char *iInterface;
 uint bAlternateSetting;
 uint bClassNum;
 SUD_CLASS_INFO_T *pClassInfo;
 uint bEndpointNum;
 SUD_ENDPOINT_INFO_T *pEndpointInfo;
}SUD_ALTERNATE_INFO_T;

iInterface is the description of this alternate setting.

bAlternateSetting is this alternate setting’s index.

bClassNum is the size of class information array. If you have no class specified information, set it to 0.

pClassInfo is the class information array pointer. If you have no class specified information, set it to
NULL.

bEndpointNum is the size of your endpoint information array.

pEndpointInfo is the endpoint information array. Each element of the array is a structure pointer defined
in uddevice.h as

typedef struct
{
 u8 bEndpointAddress;
 u8 bmAttributes;
 u16 wMaxPacketSize;
 u8 bInterval;
 u8 bDirection;
}SUD_ENDPOINT_INFO_T;

bEndpointAddress is your endpoint’s logical address. Numbering should start at 1.

bmAttributes is the attributes of your endpoint. Valid combinations include
SUD_ENDPOINT_XFER_CONTROL, SUD_ENDPOINT_XFER_ISOC,
SUD_ENDPOINT_XFER_BULK, and SUD_ENDPOINT_XFER_INT.

wMaxPacketSize is the max packet size of this endpoint. Check your device controller to determine the
value. For a USB 1.1 device, the BULK endpoint’s packet size is 64.

bInterval is the interrupt transfer interval, in milliseconds. For BULK and CONTROL endpoints, sent it
to 0.

bDirection is this endpoint’s direction. SUD_DIR_IN means IN endpoint; SUD_DIR_OUT means
OUT endpoint.

dwTransferSize is the maximum data transfer size. It depends on your function driver’s internal data
buffer size.

 51

5.5 Send Request
If your device has an IN endpoint, you may need to send data to the host. To do that, you should:

1. Call sud_AllocateRequestInfo() to allocate a request info structure.
2. Copy your data to pRequestInfo->pBuffer and set pRequestInfo-> iDataLength to the buffer size

value. Set pRequestInfo-> iActualLength to 0.
3. Call sud_SendRequest() to send out the request. The callback function defined in

RequestSentDone() will be called after sud_SendRequest() completes.

5.6 Select Endpoint Number
There are no software device driver restrictions for endpoint number definitions. You can select any
number less than 16 for your endpoint number. However some USB device controllers use fixed
endpoint numbers for certain types of endpoints. For example, with the LPC3180 USB device
controller, endpoint number 1 can only be Interrupt, and endpoint number 2 can only be Bulk. In this
case, you need to change the value of macros SUD_xxx_IN_EP and/or SUD_xxx_OUT_EP, defined in
ucfg.h, to meet the requirements of the device controller.

 52

6. Writing a New Device Controller Driver
Note: Writing a new device controller driver is difficult and may require a lot of assistance from
Micro Digital. It is not recommended that you write one yourself. Please discuss this with Micro
Digital before you decide to do it.

This section describes how to write a new smxUSBD device controller driver.

The USB device controller drivers are a sub-module of smxUSBD. You do not need to know the details
about the other parts such as the function drivers (5.1 Function Driver Interface) and the smxUSBD
core layer.

Adding a new USB device driver is very simple for smxUSBD. The only thing you need to do is
implement a Device Controller operation interface and then register it with the smxUSBD core layer in
udinit.c, by calling sud_DCRegister(). This function should be called after any other smxUSBD
initialization function calls.

We provide a DCD template in the DCD directory to use as a starting point. Check all comments
marked “TODO” and implement those sections according to the instructions.

6.1 Device Controller Operation Interface
The device controller operation interface is defined in uddevice.h as:

typedef struct
{
 int (*DCInit) (void);
 int (*DCRelease) (void);
 int (*DCStartXmit) (SUD_ENDPOINT_HANDLE *pEndpoint);
 int (*DCStallEndpoint) (uint ep, uint stall);
 int (*DCSetAddress) (u8 address);
 int (*DCEndpointHalted)(uint ep);
 int (*DCSetupOneEndpoint)(SUD_DEVICE_HANDLE_T *pDevice, uint ep,

SUD_ENDPOINT_HANDLE *pEndpoint);
 int (*DCSetupEndpointDone)(SUD_DEVICE_HANDLE_T *pDevice);
 int (*DCDisableEndpoint)(uint ep);
 int (*DCConnect)(void);
 int (*DCDisconnect)(void);
 int (*DCEnable)(SUD_DEVICE_HANDLE_T *pDevice);
 int (*DCDisable)(void);
 int (*DCEnableInt)(void);
 int (*DCDisableInt)(void);
 int (*DCEP0PacketSize)(void);
 int (*DCMaxEndpoints)(void);
 int (*DCStartup)(SUD_DEVICE_HANDLE_T *pDevice);
 int (*DCMapEndpoint)(uint ep);
 int (*DCFrameNum)(void);
}SUD_DC_OPERATION_T;

Your new device controller must initialize these device controller pointers and create the functions, as
documented below.

 53

6.1.1 DCInit()
The smxUSBD core layer calls this function first to do any necessary DC initialization. Returns 0 for
success; -1 for error.

6.1.2 DCRelease()
The smxUSBD core layer calls this function before it shuts down, to do any necessary DC cleanup.
Returns 0 for success; -1 for error.

6.1.3 DCStartXmit()
The smxUSBD core layer calls this function when the application wants to send some data to the host
by an IN endpoint. The request data structure is in pEndpoint->pCurRequestInfo. You can get the data
through this pointer. The data buffer is pRequestInfo->pBuffer. Data size is pRequestInfo-
>iDataLength. The size of data already sent is pRequestInfo->iActualLength. Return 0 for success; -1
for error.

6.1.4 DCStallEndpoint()
The smxUSBD core layer calls this function when it needs to stall an endpoint. Normally you need to
write a DC register to force stalling an endpoint. Return 0 for success; -1 for error.

6.1.5 DCSetAddress()
The smxUSBD core layer calls this function after it gets the SET ADDRESS request. Setting the
address to 0 means the device is de-configured. Normally you should write a DC register to inform DC
the new address. Return 0 for success; -1 for error.

6.1.6 DCEndpointHalted()
The smxUSBD core layer calls this function to determine if the endpoint is stalled or not. Normally you
should read a DC register to get the information. Return 1 if it is halted (stalled); return 0 if not stalled.

6.1.7 DCSetupOneEndpoint()

The smxUSBD core layer calls this function to set up each endpoint’s properties such as the type,
direction, and max packet size. You may also need to initialize the FIFO associated with this endpoint
and enable the interrupt for this endpoint. Return 0 for success; -1 for error.

6.1.8 DCSetupEndpointDone()
The smxUSBD core layer calls this function after all the endpoints have been set up. Normally the
device is now in the configured state and can begin to work. You can do any job required by the device
controller in the configured state. Return 0 for success; -1 for error.

 54

6.1.9 DCDisableEndpoint()
The smxUSBD core layer calls this function to disable an endpoint. Return 0 for success; -1 for error.

6.1.10 DCConnect()
The smxUSBD core layer calls this function after it has connected to the USB and is ready to be
enumerated by the host. Return 0 for success; -1 for error.

6.1.11 DCDisconnect()
The smxUSBD core layer calls this function after it has been disconnected from the USB. Return 0 for
success; -1 for error.

6.1.12 DCEnable()
The smxUSBD core layer calls this function to enable the device controller module. Return 0 for
success; -1 for error.

6.1.13 DCDisable()
The smxUSBD core layer calls this function to disable the device controller module. Return 0 for
success; -1 for error.

6.1.14 DCEnableInt()
The smxUSBD core layer calls this function to enable the device controller module interrupt. Return 0
for success; -1 for error.

6.1.15 DCDisableInt()
The smxUSBD core layer calls this function to disable the device controller module interrupt. Return 0
for success; -1 for error.

6.1.16 DCEP0PacketSize()
The smxUSBD core layer calls this function to get the default control endpoint (EP0) max packet size.

6.1.17 DCMaxEndpoints()
The smxUSBD core layer calls this function to get the max number of logical endpoints (including
ep0).

6.1.18 DCStartup()
The smxUSBD core layer calls this function to start the device controller. Normally you should call the
following two functions and then set up the default controller endpoint.

 55

 sud_DoDeviceEvent (pDevice, SUD_DEVICE_INIT);
sud_DoDeviceEvent (pDevice, SUD_DEVICE_CREATE);

You may also need to enable the corresponding interrupt for your device controller so it can get the
correct interrupt, and you may need to allocate a global EP0 Request data to handle the EP0 request and
data.

6.1.19 DCMapEndpoint()
The smxUSBD core layer calls this function to map a logical endpoint to the device controller’s
physical endpoint.

6.1.20 DCFrameNum()
The smxUSBD function driver, such as video, may call this function to get the current frame number.

6.2 Handle Device Controller Interrupt
The interrupt handler is the most important part of the device controller driver. Different device
controllers have different implementations, so you should study the device controller’s data sheet or
sample code to understand the details, and then make it work for the MDI interface. The following
interrupts need to be handled correctly to make the device controller work. Some device controllers may
not have all these interrupts.

6.2.1 BUS Reset Done
The device controller will generate this interrupt when it detects the hub’s reset signal has completed.
You should setup and enable endpoint 0, the default control endpoint, to be ready to get the
enumeration request from the host. Normally you should call

 sud_DoDeviceEvent (SUD_DEVICE_HUB_CONFIGURED);
 sud_DoDeviceEvent (SUD_DEVICE_RESET);

in this interrupt service routine.

6.2.2 Suspend
The device controller will generate this interrupt if the device has been detached from the USB or the
host suspends the bus. Normally you should call

 sud_DoDeviceEvent (pDevice, SUD_DEVICE_BUS_INACTIVE);

to force the device stack to the de-configured state.

 56

6.2.3 Resume
The device controller will generate this interrupt if the host resumes the bus. Normally you should call

 sud_DoDeviceEvent (pDevice, SUD_DEVICE_BUS_ACTIVITY);

6.2.4 SETUP
The device controller will interrupt if it receives a SETUP packet. You need to:

1. Read the request header into EP0Request.RequestStru.

2. Wait and receive the data into EP0Request.pBuffer and set up the data length to
EP0Request.iActualLength and iDataLength if the setup request has a data phase.

3. When all data is received, call function sud_ProcessSetupPacket(&EP0Request) to pass the data
to the smxUSBD core layer. If this function returns 0, send the data in EP0Request.pBuffer and
EP0Request.iDataLength to the host. If EP0Request.iSendNotify is 1, send a zero length status
packet. If sud_ProcessSetupPacket() returns error, stall endpoint 0.

4. Call function sud_RequestSendDone (&EP0RequestInfo, SUD_SEND_FINISHED_OK) when
all the data has been sent out.

6.2.5 EPx
The device controller will interrupt if it receives a data packet of endpoint x. You need to:

1. For an IN endpoint, check if all data has been sent out. If not, continue sending data in
pEndpoint->pCurRequest. Once all the data has been sent, call function
sud_TransmitCompleted() to pass the information to the smxUSBD core layer. After that, check
if pEndpoint->pCurRequest is empty, to send the next request in the same endpoint. If there is
still some data left in the pRequestInfo->pBuffer then update pRequestInfo->iActualLength and
wait for the next interrupt.

2. For an OUT endpoint, check if you received a short packet or zero length packet, which means

the data transfer has completed. If yes, call function sud_RecvCompleted() to pass the data to
the smxUSBD core layer. Otherwise, copy the data to pRequestInfo->pBuffer, update the buffer
size of pRequestInfo->iActualLength, and wait for the next interrupt.

6.3 Logical Endpoint Number and Physical Endpoint Number
A logical endpoint number is used by the smxUSBD core layer in the endpoint descriptor. But the
device controller may map the logical endpoint number to another physical endpoint number if its
endpoints have a fixed transfer mode or direction. For example, in the LPC3180 USB device controller,
Logical Endpoint 1 is an interrupt endpoint and mapped to two physical endpoints 2 and 3 for OUT and
IN transfer. The smxUSBD core layer uses physical endpoint numbers in all Device Controller Driver
functions, so DCMapEndpoint() is called by the core layer to convert the logical endpoint used within

 57

the core layer to the physical endpoint when it needs to call a DCD interface function. You must
implement this mapping function carefully if your device controller maps endpoints like this.

 58

7. Composite Device
A device that has multiple interfaces for multiple functions in one configuration that are active at the
same time while using a single device controller chip is a composite device. An alternate way to have
multiple devices is to use multiple device controllers connected by an internal hub.

smxUSBD supports creating a composite device by providing a general composite device framework
and by reusing existing function driver code. So from the application’s point of view, all existing
function driver APIs can still be used, and the application does not know whether it is implementing a
composite device or multiple devices.

7.1 Composite Device Framework
The smxUSBD composite device framework combines all the existing functions together to generate a
new composite device and registers it with the core layer. The framework defines a new device
descriptor and configuration descriptor that is special for a composite device. It re-uses the interface
information and function operation pointer to do the real, function related job, so the composite device
framework does not need to know the details of its sub-function, such as the SCSI commands of the
mass storage device or the line coding of the serial port.

7.2 Adding an Existing Function to the Composite Device Framework
If you have already written a function driver, such as Audio, and you want to add it to the composite
device framework, define SUD_COMPOSITE in the file udcfg.h and do the following:

7.2.1. Add Two New Functions in the Function Driver
#if SUD_COMPOSITE
void *sud_AudioGetOps();
void *sud_AudioGetInterface();
#endif

#if SUD_COMPOSITE
void *sud_AudioGetOps()
{
 return &AudioOps;
}

void *sud_AudioGetInterface()
{
 return &AudioInterface[0];
}
#endif

These two functions return the function operation pointer and interface information so the composite
device framework can use it to handle the request and data transfer.

 59

7.2.2. Modify the Init and Release Functions
int sud_AudioInit(void)
{
#if !SUD_COMPOSITE
 if (sud_RegisterFunction (&AudioFuncDriver))
 {
 return -1;
 }
#endif

 return 0;
}

void sud_AudioRelease(void)
{
#if !SUD_COMPOSITE
 sud_DeregisterFunction (&AudioFuncDriver);
#endif
}

These modifications will not register the audio function driver with the device stack core layer; the
composite device will register itself.

7.2.3. Add the New Device to the Composite Device (udcompos.c)
1. Add the Audio device interface to the composite device in sud_CompositeInit() and the

CompositeInterface array.
2. Add the Audio device event handler to CompositeEventHandler().
3. Add the Audio request sent done handler to CompositeRequestSent().
4. Add the Audio receive request handler to CompositeReceiveRequest().
5. Add the Audio class request handler to CompositeRecvSetup().

7.2.4. Adjust Endpoint Number for Different Functions
Make sure all the endpoint numbers for different functions in your composite device are unique. Your
USB device controller may have some restrictions for the endpoint transfer type and direction. You may
need to study the data sheet of your device controller or contact Micro Digital for help.

7.3 Composite Device Product and Interface IDs
It is necessary to define a unique Product ID for your particular combination of functions. If you later
add or remove a function, you need to assign a new Product ID. Otherwise, it will confuse the host (e.g.
Windows), and you will need to uninstall the old driver on the host. udcfg.h defines IDs using a series
of conditionals for different functions (e.g. serial, audio, video), but that cannot handle every case. You
should clean out unneeded lines from that section and set the ID as desired.

 60

For Windows .inf files, it is necessary to specify the interface ID, as in the MI_00 in the following:

%SERIAL%=SerialInstall, USB\VID_04CC&PID_0010&MI_00

The number after MI_ is the index into CompositeInterface[] in udcompos.c for the corresponding
function. It is necessary to adjust the numbers in the .inf files we provide, to match which lines are
present in that table.

7.4 Composite Device Limitations

1. If the function within the composite device has only one interface, then most host stacks such as

Windows, Linux, and our smxUSBH can support it without any problem. But if the function needs
two or more interfaces, such as Ethernet over USB, Serial with ACM support, or Serial multi-port,
you need the IAD (Interface Association Descriptor) to tell the host which interfaces should be
associated together to format a function. IAD is only supported for Windows XP SP3 and later
versions such as Vista and Windows 7/8. (For older versions of Windows, to use serial in a
composite device, set SUD_SERIAL_SUPPORT_ACM to 0.)

We collected the following information from the Internet about this problem:

Microsoft WHDC has some information for composite device support:
(www.microsoft.com/whdc/archive/IAD.mspx)

Windows Operating System Support

Microsoft is currently working with IHVs to develop devices that support IAD. A beta version of
USBCCGP.sys that supports IAD is currently available for testing on Windows XP (SP1) systems.

Microsoft will support IAD in the Windows Vista operating system. Windows XP (SP2) might
support IAD.

To avoid compatibility concerns, you should work closely with your Windows liaison to ensure that
IAD is implemented correctly in your device. Microsoft considers IAD to be most applicable to
composite devices that contain the following device classes:

• USB Video Class Specification (Class Code - 0x0E)
• USB Audio Class Specification (Class Code - 0x01)
• USB Bluetooth Class Specification (Class Code - 0xE0)

2. Ethernet over USB function driver (SUD_NET) needs two configurations if both RNDIS and CDC-
ECM/NCM are enabled. smxUSBD composite device framework only work on one configuration
so you cannot enable SUD_COMPOSITE and both RNDIS and CDC-ECM/NCM.

http://www.microsoft.com/whdc/archive/IAD.mspx

 61

8. Hardware Porting Notes
The hardware porting layer is in udport.h and udport.c. These files contain definitions, macros, and
functions to port smxUSBD to particular target hardware.

8.1 udport.h

smxBase handles most of the hardware porting defines. Below are the ones that are smxUSBD-specific.

1. SUD_BUS_INVERTED: Set this to 1 if you have a big endian CPU and you inverted the

connection of the device controller to the data bus. (If you are designing your own hardware, we
recommend you do this for better performance, so there is no need to invert data i/o to device
controller registers in smxUSBD.)

2. Driver BASE and IRQ settings: Set these to the proper addresses for your device controller.

3. Settings for specific controllers: See comments in this file.

8.2 udport.c
Some of the functions in udport.c may need to be adapted for your target.

sud_HdwInit()

This function is called first when initializing the smxUSBD device stack. It does the following:

Initializes the hardware platform’s USB subsystem. For example, it enables the USB device
controller, and sets up the clock.

Determines the Device Controller’s I/O base, memory base, and IRQ number.

Initializes other hardware required by smxUSBD. For example, it opens a serial port and sets up
the parameters for the sud_DebugL() function to output debug information.

sud_HdwRelease()

Disables the USB subsystem of the hardware.

sud_GetSerialNum()

Get the unique serial number of this USB device. Some USB hosts, such as Windows, use
Vendor ID/Product ID/Serial Number to identify the USB device. If you may plug in multiple
devices (such as USB serial) into one such USB host, a unique serial number is required for
multiple devices to work properly, simultaneously. Sometimes you can use the MAC address of
your device or OTP bytes of your flash memory as a serial number for the USB.

 62

Returning a NULL pointer from this function will cause smxUSBD to use the default serial
number defined in udcfg.h.

sud_GetISP1181Base(), sud_GetISP1181Interrupt()

These functions return the NXP ISP1181-compatible device controller I/O base address and IRQ
found in sud_HdwInit(). You should not need to change the default implementation.

sud_GetISP1181IntSetting()

This function returns your system’s interrupt setting such as whether it is level/edge trigged and
output polarity. Change the value according to your hardware’s implementation.

sud_ISP1181Read32(), sud_ISP1181Read16(), sud_ISP1181Write32(), sud_ISP1181Write16()

These functions are used when the smxUSBD NXP ISP1181 device controller driver accesses
I/O registers. You may need to tune the implementation of these functions to meet the
timing requirement of ISP1181 according to your hardware implementation.

sud_ISP1181ReadBuf(), sud_ISP1181WriteBuf()

These functions are used when the smxUSBD NXP ISP1181 device controller driver accesses
the FIFO buffer. You may need to tune the implementation of these functions to meet the
timing requirement of ISP1181 according to your hardware implementation.

sud_GetISP158XBase(), sud_GetISP158XInterrupt()

These functions only return the NXP ISP158x-compatible device controller I/O base address
and IRQ found in sud_HdwInit(). You should not need to change the default
implementation.

sud_GetISP158XIntSetting()

This function will return your system’s interrupt setting such as whether it is level/edge trigged
and output polarity. You should change the value according to your hardware’s
implementation.

sud_ISP158XRead32(), sud_ISP158XRead16(), sud_ISP158XWrite32(),
sud_ISP158XWrite16(),sud_ISP158XSet16(),sud_ISP158XClear16()

These functions are used when the smxUSBD NXP ISP158x device controller driver accesses
I/O registers. You may need to tune the implementation of these functions to meet the
timing requirement of ISP158x according to your hardware implementation.

ISP1761 has an erratum about the timing:

If there is a RD_N pulse, occurring in less than 60 ns after WR_N to the Endpoint Index or
Control Function register, data corruption occurs, irrespective of the CS_N signal. The data
corruption problem occurs intermittently.

 63

So if you are using a fast processor, you may need to add the following delay function to
sud_ISP158XWrite16() to avoid this problem.

sud_IODelay(5);

sud_ISP158XReadBuf(), sud_ISP158XWriteBuf()

These functions are used when the smxUSBD NXP ISP158x device controller driver accesses
the FIFO buffer. You may need to tune the implementation of these functions to meet the
timing requirement of ISP158x according to your hardware implementation.

8.3 DMA Transfer
Most smxUSBD external Device Controller Drivers do not use DMA transfer. For ISP1181 and
ISP1581 external USB device controller chips, DMA transfer of data from the microprocessor to those
chips’ internal FIFO is an option. DMA is highly dependent on the microprocessor so it is hard to write
general, efficient, and portable DMA code. Contact Micro Digital for more information if DMA is
necessary.

 64

9. Windows Drivers / Application
Most smxUSBD device functions work with standard Windows drivers. This section documents
Windows drivers and applications we have developed for special functions.

These drivers are tested on Windows XP 32-bit, Windows 7 32-bit and 64-bit, and Windows 8 64-bit.
For Windows 8, use the Windows 7 drivers.

For Windows 64-bit, you need to sign the driver package. Check the following URLs for detailed
information about this.

http://msdn.microsoft.com/en-us/library/ff552289(v=vs.85)

During development, you can test-sign the driver using the information provided at the following URL.
Our testing is based on this approach.

http://msdn.microsoft.com/en-us/library/ff546236.aspx

Alternatively, for Windows 7 and Windows 8 64-bit, it is possible to temporarily disable driver
signature enforcement when you boot up Windows, so you can try the smxUSBD demo without having
to go through the steps above. For Windows 7, press F8 during the Windows boot up procedure and
select the option “Disable Driver Signature Enforcement”. For Windows 8, go to
PC settings->General->Advanced startup->Start Now, wait a few seconds then
Troubleshoot->Advanced options->Startup Settings->Restart. After the PC restarts, use 7 or F7 to
disable driver signature enforcement. You need to do this every time you install or use the unsigned
64-bit driver. Each time you reboot your PC, if you don’t select this option, the unsigned driver will not
work at all even if you already installed it by disabling the driver signature enforcement. Windows may
report the following message:

Windows cannot verify the digital signature for the drivers required for this device. A recent hardware
or software change might have installed a file that is signed incorrectly or damaged, or that might be
malicious software from an unknown source. (Code 52)

After you have run the smxUSBD demo, you should study the information at the URLs above to learn
how to sign the driver to permanently avoid the problem.

Tip: During development, if you did not install the correct serial port driver, next time Windows may
use another COM port number. For example, if COM8 installation failed, next time Windows will try
to use COM9. To reclaim those unused COM ports, you need to change the ComDB key value in the
Windows registry HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\COM Name
Arbiter. ComDB key is a bitmask of which COM ports are in use (8 ports per byte, starting from
COM1). For example, to reclaim COM8 you need to clear the highest bit of the first byte of that key.

Tip: During development, if there was a problem installing a driver, and you need to completely
uninstall it, delete the driver package using the pnputil.exe utility. To use this utility, go to
Start->Accessories->Command Prompt, right click it and select “Run as administrator”. To list all the

http://msdn.microsoft.com/en-us/library/ff552289(v=vs.85)
http://msdn.microsoft.com/en-us/library/ff546236.aspx

 65

OEM drivers installed, use pnputil.exe –e. check the output messages to find out which oem*.inf is the
driver you want to delete. For example,

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Windows\system32>pnputil -e
Microsoft PnP Utility

Published name : oem5.inf
Driver package provider : Micro Digital Inc
Class : Ports (COM & LPT)
Driver date and version : 02/12/2013 1.0.2
Signer name :

oem5.inf is the Micro Digital Inc multiple port USB-Serial adapter driver. To delete it use the following
command:

C:\Windows\system32>pnputil -f -d oem5.inf

Microsoft PnP Utility

Driver package deleted successfully.

9.1 Multiple Port Serial Device (or Single Port Limited Endpoints)
A multiple port serial device can be supported by the built-in Windows driver usbser.sys, for Windows
XP SP3 and later versions of Windows, if you have enough endpoints. Each port needs two BULK
endpoints and one interrupt endpoint. For this case, use XUSBD\Function\Serial\mdiserialm.inf.

If you don’t have enough endpoints, you can use the WDM driver we developed, named usbserm.sys,
for multiple port serial devices, using only two endpoints per port. The device can be single function
device or composite device. To install the Windows driver, you need to use
XUSBD\Function\SerialM\mdiserialm.inf for a single function device or
XUSBD\Function\SerialM\mdiserialmc.inf for a composite device. If your serial device has only one
port but you don’t want to use an INT endpoint, you still need to use this Windows driver and
XUSBD\Function\SerialM\mdiserials.inf, and you need to set SUD_SERIAL_USE_INT_ENDPOINT
to 0 in udcfg.h. This conserves endpoints, allowing you to support more serial channels or more device
functions. However for Windows 7 and newer, it requires the driver to be signed or else Windows will
not intall it. Refer to Appendix H. Host OS Certification for more information. This Windows driver is
provided only with the smxUSBD multiple port serial driver.

This Windows Driver is based on Windows DDK serial sample code, and we modified it to make it
work for USB device.

 66

9.2 Device Firmware Upgrade (DFU) Device
Windows has no built-in DFU class driver. MDI provides a DFU Windows driver and utility in the BIN
directory. usbdfu.exe is a command-line version of the utility, and DFUHost.exe is a GUI version. Both
run on Windows. Alternatively, you can use another driver, such as open source driver libUSB and dfu-
util.exe.

usbdfu.h and usbdfu.c are the Windows DFU class driver, running in the user space. You can build this
driver with your own application if you don’t want to use our utilities. usbdfu.sys is still needed because
this kernel mode driver provides the basic USB functions to the DFU class driver in user space.

usbdfu_cmd.c has the main function of the command line utility. It is a good starting point if you want
to integrate the USB DFU function into your application. To build the command line utility, you may
need the Windows Driver Kit package. The WDK can be downloaded from Microsoft web site, for free.

DFUHost is a Visual C++ and GUI application. It basically does the same thing as the usbdfu.exe but
with a graphical user interface.

DFU Class Driver API includes:

int UsbDfuOpen(HWND hWnd);
int UsbDfuClose(void);
int UsbDfuGetSegNum(void);
int UsbDfuGetSegName(int index, char *pSegName, ULONG size);
int UsbDfuCheckSuffix(const char *pDFUFile, USHORT idVendor, USHORT idProduct);
int UsbDfuAddSuffix(const char *pFirmwareFile, const char *pDFUFile, USHORT idVendor,

 USHORT idProduct, USHORT wDeviceVersion);
int UsbDfuDo(const char *pDFUFile, BOOLEAN bDownload, int iSegment);

int UsbDfuOpen (HWND hWnd)

Summary Open the DFU device.

Details Call this function to open the DFU device. Also pass the handle of the windows if you

need to get the notification messages.

Parameters hWnd The handle of the windows which will receive the notifications from the DFU class

driver.

Returns 0 Found DFU device and opened it.
 -1 Could not find or open the DFU device

See Also UsbDfuClose()

 67

int UsbDfuClose (void)

Summary Close the open DFU device.

Details After you are done uploading or downloading the firmware, call this function to release the

device.

Parameters None

Returns 0 Device closed.
 -1 Device is not opened.

See Also UsbDfuOpen()

int UsbDfuGetSegNum (void)

Summary Get memory segment number.

Details The device may provide multiple memory segments, such as NOR flash for code and SPI

flash for the configuration. This function lets you retrieve the number of the memory
segment. You should call UsbDfuOpen() first.

Parameters None

Returns >0 Memory segment number.
 -1 Device is not opened.

See Also UsbDfuGetSegName ()

int UsbDfuGetSegName (int index, char *pSegName, ULONG size)

Summary Get the memory segment name.

Details The device may provide a string to display the name of each memory segment. Call this

function to get the name by the index. You should call UsbDfuOpen() first.

Parameters index Memory segment index, from 0 to UsbDfuGetSegNum() – 1
 pSegName String buffer for the name.
 size Size of the string buffer.

Returns >=0 String buffer length.
 -1 Device is not opened.

 68

See Also UsbDfuGetSegNum()

int UsbDfuCheckSuffix(const char *pDFUFile, USHORT idVendor, USHORT idProduct)

Summary Check if the DFU file contains a valid suffix.

Details The suffix is used to check the consistency of the firmware, such as the vendor ID, product

ID, and CRC. You can call this function without even opening the device, to check that the
firmware is valid.

Parameters pDFUFile DFU file full path name.
 idVendor Desired Vendor ID. Pass 0xFFFF if don’t care.
 idProduct Desired Product ID. Pass 0xFFFF if don’t care.

Returns 0 Suffix is valid.
 -1 Could not open file or suffix is invalid.

See Also UsbDfuAddSuffix ()

int UsbDfuAddSuffix (const char *pFirmwareFile, const char *pDFUFile, USHORT idVendor, USHORT

idProduct, USHORT wDeviceVersion)

Summary Generate a DFU file with suffix from the raw firmware file.

Details The suffix is used to check the consistency of the firmware, such as the vendor ID, product

ID, and CRC. You can call this function to generate a DFU file that contains the original
firmware data and suffix. You don’t need to open the device first.

Parameters pFirmwareFile Raw firmware file full path name.
 pDFUFile Generated DFU file with suffix.
 idVendor Vendor ID. Pass 0xFFFF if don’t care.
 idProduct Product ID. Pass 0xFFFF if don’t care.
 wDeviceVersion Version of this firmware.

Returns 0 DFU file is generated.
 -1 File generation failed.

See Also UsbDfuCheckSuffix ()

 69

int UsbDfuDo (const char *pDFUFile, BOOLEAN bDownload, int iSegment)

Summary Download/Upload the firmware to the specific memory segment.

Details Call this function to download or upload the firmware to the device’s memory segment.
 Downloading/uploading firmware takes some time so you may call this function in a

separate thread. You need to call UsbDfuOpen() first.

Parameters pDFUFile DFU file to download or upload.
 bDownload TRUE for download, FALSE for upload.
 iSegment Memory segment index, from 0 to UsbDfuGetSegNum() - 1

Returns 0 Operation success.
 -1 Operation failed.

See Also UsbDfuOpen ()

9.3 HID Communication
HID device does not need any special driver, not even an .inf file on Windows, but you need to write a
special Windows application to handle the communication. Check usbhid.exe source code in
BIN\WinDrv\usbhid\exe for the details. It needs the Windows DDK to build but you can modify the
code to build it without DDK if you know the HID device’s GUID or you know the device’s full name.

To open the HID device:

GUID GUID_USB_HID;
HidD_GetHidGuid(&GUID_USB_HID);

if (!GetUsbDeviceFileName((LPGUID) &GUID_USB_HID, deviceName, MAX_LENGTH))
{
 printf("Failed to GetUsbDeviceFileName err - %d\n", GetLastError());
 return INVALID_HANDLE_VALUE;
}
HidDevice = CreateFile(deviceName,
 GENERIC_WRITE | GENERIC_READ,
 FILE_SHARE_WRITE | FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 0,
 NULL);

To write and read data:

You can use Win32 API WriteFile() and ReadFile() to send and receive data to and from the device.
You need to add one extra byte before your payload data. That is for the report ID of the HID
device. By the default the report ID starts from 1.

 70

Buffer[0] = 1;
memcpy(Buffer + 1, pPayload, 63);
WriteFile (HidDevice,Buffer, 64, &bytesWritten, NULL);
…
memset(Buffer, 0, 64);
Buffer[0] = 1;
ReadFile (HidDevice, Buffer, 64, &bytesRead, NULL);
if(bytesRead == 64)
 memcpy(pPayload, Buffer + 1, 63);

 71

10. Application Notes

10.1 Flow Control of the Serial Port
The serial port function uses an internal ring buffer to cache received data. However, because a USB
transfer is faster than a normal RS232 port, if the USB host is sending data too fast and your firmware
is a little slow to process the received data, you need to do some kind of flow control to prevent losing
data. Basically, you need to handle the received data this way:

1. Allocate an application buffer which is bigger than the serial port internal ring buffer
2. Create a separate task to process the received data. After the code get

SUD_CDC_NOTIFY_DATA_READY event in the Notification function, wake up that task and
in that task, copy the received data from the internal ring buffer to the application buffer by
calling sud_SerialDataLen() and sud_SerialDataRead(). Do not do any lengthy processing job
within the notification function because it will block the whole USBD stack.

3. If you find the application buffer is almost full, for example 80%, then call the following serial
port API to disable RTS, so the USB host will stop sending more data.
sud_SerialSetLineState(0, SUD_CDC_LINE_OUT_DTR);

4. After you process the received data and you get more space in your application buffer, for
example, 80% empty, call the following API to enable RTS, so the USB host will resume the
data sending.
sud_SerialSetLineState(0, SUD_CDC_LINE_OUT_DTR| SUD_CDC_LINE_OUT_RTS);

10.2 Mass Storage and File System Share the Same Media
It is possible to have a file system in your target to share the same media with smxUSBD mass storage.
This technique allows plugging your target into a USB host such as Windows, and then operating on
your target’s media like a USB flash disk. In this case, Windows has its own file system that has its own
view of the disk. smxUSBD only uses a block device driver to access sectors. The problem is that with
two file systems accessing the disk, errors will be introduced because neither is aware of changes the
other is making. For example, one may have part of the FAT modified in cache but not yet written to
the media. The other may make changes to the same sector of the FAT.

The solution is to permit access to only one at a time and each un-mounts before letting the other access
the media. Before plugging in the USB cable, you should close all open files and un-mount your file
system. When done with USB access, you can re-mount the file system. Before unplugging the USB
cable, the user should do Safely Remove Hardware to shut down the disk just like he would before
unplugging a USB flash disk, or you can force smxUSBD to shut down the mass storage device.

 72

The following code shows an example of how to share a RAM disk between smxFS and smxUSBD.

sfs_init();
sud_Initialize();

/* Now register the RAM disk so smxFS can use it. But smxUSBD cannot access mass storage device at
this time. */
sfs_devreg(sfs_GetRAM0Interface(), 0);

/* Create a sample file */
fp = sfs_fopen(“A:\\fscreate.txt”, “wb”);
if(fp)
 sfs_fclose(fp);

/* Do other smxFS operations here. */

/* Shut down the disk for smxFS. */
sf_devunreg(0);

/* Now register the device driver with smxUSBD. */
sud_MSRegisterDisk(sfs_GetRAM0Interface(),0);

/* Tell the user to plug in the USB cable so USB host can access the disk. */

/* Do other smxUSBD operations here by USB Host through USB link. */

/* Force shutdown of the USBD mass storage device. Then the USB host will not access it. */
sud_MSRegisterDisk(NULL,0);

/* Register it with smxFS again. If the USB host changed anything on the disk you will see it now. */
sfs_devreg(sfs_GetRAM0Interface(), 0);

This same technique should be applied if, for some reason, another file system is able to access the
media (while mounted in your target).

10.3 Switching to Different Functions at Run Time
Your device may need to report to the USB host that it is a different function at different times. For
example, normally it may be a mass storage device, but sometimes it may need to report to the host that
it is a USB Ethernet over USB device, in order to change some administration settings. This is
controlled by the application within your device. You need to cause the USB host to re-enumerate the
device. Follow these steps:

If you are using smxUSBD v2.53 or later:

1. Enable multiple functions, such as SUD_MSTOR and SUD_NET in udcfg.h.
2. Call sud_Initialize(SUD_MSTOR_MASK) to initialize the device’s function to Mass Storage

first.
3. When you need to switch the function, you need to call sud_Release() first, wait about 100 ms

and then call sud_Initialize(SUD_NET_MASK) again switch to the Ethernet over USB function.

 73

4. If you don’t want to shutdown the whole stack, as is done in step 3, you can call
sud_Reconfig(SUD_NET_MASK) first and then call sud_ReAttach() to force the host to re-
enumerate the device. When using this approach, you need to make sure the host and device will
not transfer any data and/or request during that period.

If you are using smxUSBD v2.52 or earlier:

1. Modify sud_Initialize() and sud_Release() prototype to add a flag parameter to indicate which
function you want to use. For example;
#define SUD_FUNC_NET 0
#define SUD_FUNC_MS 1
int sud_Initialize(uint iFunction);

2. Enable both functions you want to use, in ucfg.h
3. Modify the code in sud_Initialize() and sud_Release() to register and release the function driver

according to the new parameter.
if (iFunction == SUD_FUNC_MS)
{
 if(sud_MSInit())
 return 0;
}
else if (iFunction == SUD_FUNC_NET)
{
 if(sud_NetInit())
 return 0;
}

if (iFunction == SUD_FUNC_MS)
{
 sud_MSRelease();
}
else if(iFunction == SUD_FUNC_NET)
{
 sud_NetRelease();
}

4. Initialize the USBD stack with the default function parameters.

5. When you are ready to switch the function, first call sud_Release() to shutdown the whole stack
then call sud_Initialize() with a different function flag. After this is done, shut it down again and
restore it to the default function.

10.4 Mass Storage Function Driver Buffer Size
The mass storage function driver should have a buffer large enough to hold at least one sector data of
the block device driver, because the block device can only be accessed by sector. Normally one sector is
512 bytes but it can be a multiple of 512. For example, if you are using the smxFFS NAND flash driver,
the sector size may be 2048 for some large flash chips. So ensure SUD_MSTOR_PACKET_SIZE in
ucfg.h is at least one sector. The default setting is 2048 which should meet all requirements. If

 74

SUD_MIN_RAM is set to “1”, it becomes 512 which may not be correct if you are using a large NAND
flash chip.

You may need to increase this buffer size if you are using some other media like MMC/SD card. If you
write only 2048 byte for each MMC/SD Write Block Data command, you will not get the best write
performance for most MMC/SD card. Windows PC normally may write a chunk of 64KB data for large
data write operation through USB. If you increase this buffer size to 64KB and then write them at once
to the media card, you can get the best performance based on your hardware. There is no big difference
for reading with small or large buffer size.

If SUD_MSTOR_ASYNC_ACCESS is set to 1 in udcfg.h, the mass storage driver needs to allocate
more memory to handle asynchronous media disk accesses. The additional memory requirement is
3*SUD_MSTOR_PACKET_SIZE. See 3.1.1 udcfg.h for more information about this option.

10.5 Improving USB to Serial Function Driver Performance
A real serial port (RS232 or UART) is byte oriented, but USB data transfer is packet oriented. So only
sending one byte each time to the USB is not a good design from the memory usage and performance
point of view.

• For memory, the USB stack needs to allocate some extra data to maintain each data transfer
request. For the current smxUSBD implementation, besides the payload, each data transfer
request needs an additional 48 bytes. If you only transfer one byte each time, the memory
overhead is 4800%. But if you transfer 128 bytes each time, the overhead is only 37.5%. The
memory overhead is very important for small memory systems.

• For performance, each IN or OUT data transfer needs three packets, Token, Data, and
Handshake. The overhead for the extra packets and header is called Protocol Overhead. For a
full speed BULK transfer, the protocol overhead is 13 bytes (3 SYNC bytes, 3 PID bytes, 2
Endpoint + CRC bytes, 2 CRC bytes, and a 3-byte inter-packet delay). If you are transferring
one byte each time, the performance overhead is 1300%. But if you transfer 128 bytes each time,
the overhead is only 23.4%.

Based on the above calculations, you cannot use the same programming approach of real serial port to
program for a USB to Serial function driver.

Recommendations for best efficiency:

• On the host side, your application should call the USB host stack APIs to transfer as much data
as possible each time. Always pass a buffer whose size is a multiple of the maximum USB
packet size (64 bytes for full speed and 512 bytes for high speed) to the USB host stack. Never
transfer only one or a few bytes unless it is required by the protocol.

• On the device side, cache the received data as much as possible in a buffer first, and then send
the cached data by calling sud_SerialWriteData(). Never send one or only a few bytes unless you
do not receive any more data or it is required by your protocol.

 75

10.6 Linux Support
All smxUSBD function drivers are supported by Linux. We tested them using Fedora 6, kernel 2.6.18.
However, there are some special issues for Serial Port function drivers.

Serial Port: If you want the serial port to be supported by the Linux CDC-ACM class driver, you need
to set SUD_SERIAL_SUPPORT_ACM to 1 in udcfg.h. We also found that the internal write buffer
within the Linux CDC-ACM class driver by default has only two 64-byte buffers, so if you call write()
to send more than 128 bytes data, some data will be truncated. You need to check the return value of
write(); if it is less than the data buffer size, call it again to send remaining data.

10.7 MAC OS X Support
All the function drivers of the smxUSBD were tested using iBook G4 and OS X 10.5.6. But there is a
special issue for the Serial Port function driver.

Serial Port; If you want the serial port to be supported by the MAC OS CDC-ACM class driver, you
need to set SUD_SERIAL_SUPPORT_ACM to 1 in udcfg.h.

10.8 USB Device Controller Soft Connect Feature
Some USB device controllers, such as NXP’s, have the Soft Connect feature, which means if the
SoftConnect bit is enabled by the driver, the controller will apply an internal 1.5KB pull up resistor to
the D+ pin so the USB host port can detect a USB device is plugged in. Our device controller driver
will by default enable this feature (in the DCConnect() function). If you applied an external pull up
resistor or you want to set you device as low speed (apply pull up resistor on D-), you may need to
manually disable this feature in the source code of device controller driver. SoftConnect is useful if you
want to force the USB host to re-enumerate the device without the need to remove the cable.

10.9 Opening a Serial Port on the Host
When you use any API on your host PC to open a USB serial port, be sure to set the DTR signal to 1.
Our serial function driver checks that signal to ensure the serial port on the host has been opened.

10.10 Multiple Same Type Devices on the Same USB Host

Some USB hosts, such as Windows, use Vendor ID/Product ID/Serial Number to identify the USB
device. If you may plug in multiple devices (such as USB serial) into one such USB host, a unique
serial number is required for multiple devices to work properly, simultaneously. Sometimes you can use
the Ethernet MAC address of your device or OTP bytes of your flash memory as a serial number for the
USB.

Plugging two serial devices that have the same VID/PIO/SerialNum into a Windows XP PC will
cause Windows to hang.

 76

10.11 HID vs. Serial for Data Communication

The user can choose whether to use the HID communication or serial function driver to do data transfer
between the USB device and host PC.

Advantages for HID device

1. There is no need to install a driver on the host, so the user need not have administrator
privileges.

2. HID device is well-supported by most commercial operating systems.

Disadvantages for HID device

1. It is only suitable for small amounts of data. You can only transfer 64 bytes of data in each
packet, and the interrupt polling interval is a few milliseconds, so you can not get high
throughput

2. Interrupt transfer may lose data.

3. You need to write a special host application to access the HID device.

Advantages for serial device

1. You may get very high performance.

2. Bulk transfer is reliable.

3. You can re-use most existing legacy serial port application code or utilities.

Disadvantages for serial device

1. You need to install a driver on Windows (or at least an .inf file). For 64-bit Windows, you may
need to sign the driver.

2. There are always some limitations for the serial class driver in the operating system.

10.12 HID Communication Multiple Reports

The HID Communication function driver supports multiple reports. It is similar to multiple serial ports
to transfer data for different functions within the same USB device.

By default the HID Communication function driver will use only one report for both Input and Output.
The default report ID is 1.

 77

To enable multiple reports, you need to:

1. Set SUD_HID_REPORT_NUM to the number of reports you want to have.

2. Modify the HID descriptor defined in udhidcom.c for the reports’ ID, count, and size if the
default setting does not meet your requirement. If SUD_HID_REPORT_NUM is larger than 4,
you may need to add more entries to the descriptor.

3. Check the setting SUD_EP0_BUFFER_SIZE in udcfg.h to make sure it is big enough to hold
the whole HID descriptor. The default size for the HID device is 256.

10.13 Video Camera Software

Camera software packages vary a lot in their operation. Some require setting the resolution to match the
image output by our demo. Some require switching from a built-in webcam to the smxUSBD device or
to start/stop it.

The Windows 8 camera app does not seem to allow setting the desired resolution and instead selects the
highest resolution the driver says it supports, so if no data is actually supplied for that case (as may be
true in our demo), nothing will display. In uvideo.c, change the VideoInUncompressedFrameCfg[]
definition to have only lines for the resolutions you will actually use and set that number of lines in
SUD_VIDEO_FORMAT_UNCOMPRESSED_NUM. Also, it requires images to be QVGA (320x240)
or larger, which we found from experimentation. It displays nothing for smaller images.

 78

Appendix A. Memory Usage and Performance Summary

A.1 Size

A.1.1 Code Size
Code size will vary widely depending upon CPU, compiler, and optimization level. The figures below
are intended as examples.

Component ARM
Thumb
IAR v4.41

ARM
Thumb-2
IAR v6.10

ARM

IAR v4.41

Blackfin

VisualDSP

CF

CW v6.4

Core 5 KB 4 KB 8 KB 12 KB 9 KB

Audio driver 3 KB 3 KB 6 KB 3.5 KB 6.5 KB

DFU driver N/A N/A 2 KB N/A N/A

HID Communication driver 0.5 KB 0.5 KB 1 KB 1 KB 1 KB

Keyboard driver 0.5 KB 0.5 KB 1 KB 1 KB 1 KB

Mass Storage driver 3.1 KB 3 KB 5 KB 5.5 KB 5 KB

Mouse driver 0.5 KB 0.5 KB 1 KB 1 KB 1 KB

MTP driver N/A N/A 8 KB N/A N/A

Ethernet over USB driver 2.5 KB 2 KB 3.5 KB 2.5 KB 4.7 KB

Serial driver 1.5 KB 1.5 KB 2.5 KB 2.5 KB 2.7 KB

Video driver N/A 11 KB 16 KB N/A N/A

Composite driver 0.5 KB 0.5 KB 1 KB 1 KB 1 KB

Device Controller Drivers

Analog Devices Blackfin N/A N/A N/A 3.3 KB N/A

Atmel AT91SAM9260/1/3,
AT91SAM9SE, AT91RM9200

2 KB N/A 3 KB N/A N/A

Atmel AT91SAM9M10/G45,
AT91SAM9RL64, AT91CAP9,
AT91SAM3U4

N/A N/A 4 KB N/A N/A

Freescale CF5225x/1x/2x, Kxx N/A 4 KB N/A 5 KB

Freescale CF532x/7x, 525x,
5445x, iMX31, LPC3131/41/51

N/A N/A 3.5KB N/A 4 KB

 79

Freescale CF548x N/A N/A N/A N/A 9 KB

Freescale i.MX1 N/A N/A 5.4 KB (CW) N/A N/A

Maxim MAX342x N/A N/A 3.5 KB N/A N/A

NEC uPD720150 N/A 2 KB N/A N/A N/A

NXP ISP1181, ISP1161,
ISP1362

N/A N/A N/A N/A 4 KB

NXP ISP158x, ISP1761/3 N/A N/A N/A N/A N/A

NXP LPCxxxx 2.6 KB 2 KB 4 KB N/A N/A

PLX Net2272 N/A N/A N/A 4.5 KB N/A

Sharp LH7A400/4 2.5 KB N/A 4 KB N/A N/A

STMicro STR7/9,
STM32F101/2/3

2.5 KB N/A 4 KB N/A N/A

Synopsys, STMicro
STM32F105/7, STM32F20x

N/A 2.5 KB N/A N/A N/A

TI AM1x/AM35x, LM3Sxxxx N/A 2 KB 3 KB N/A N/A

 80

A.1.2 Data Size (RAM Requirement)
The following is a table of RAM usage.

Component Size

Core 1.5 KB

Audio driver 2 KB

DFU driver 1 KB

HID Communication driver 0.5 KB

Keyboard driver 0.5 KB

Mass Storage driver 2 KB

Mouse driver 0.5 KB

MTP driver 6 KB +
ObjectsNum*64

Ethernet over USB driver 2 KB

Serial driver (each port) 1 KB

Video driver (full speed)
Video driver (high speed)

4 KB
7 KB

Composite driver 0.5 KB

Device Controller Drivers

Analog Devices Blackfin 0.5 KB

Atmel AT91SAM9260/1/3, AT91SAM9SE, AT91RM9200 0.5 KB

Atmel AT91SAM9M10/G45, AT91SAM9RL64, AT91CAP9,
AT91SAM3U4

0.5 KB

Freescale CF5225x/1x/2x, Kxx 1 KB

Freescale CF532x/7x, 525x, 5445x, iMX31, LPC3131/41/51 1 KB

Freescale CF548x 1 KB

Freescale i.MX1 0.5 KB

Maxim MAX342x 0.5 KB

NEC uPD720150 0.5 KB

NXP ISP1181/1161/1362 0.5 KB

NXP ISP158x/1761/1763 1 KB

NXP LPCxxxx 0.5 KB

 81

PLX Net2272 0.5 KB

Sharp LH7A400/4 0.5 KB

STMicro STR7/9, STM32F101/2/3 0.5 KB

Synopsys, STMicro STM32F105/7, STM32F20x 0.5 KB

TI AM1x/AM35x, LM3Sxxxx 0.5 KB

A.1.3 Stack Size (RAM Requirement)
smxUSBD has one internal task in the device controller driver that uses about 1KB stack (an additional
1KB for MTP). Application tasks typically use 0.5 to 1.5KB depending on the function driver.

A.2 Performance
For theoretical performance limits, refer to the tables in Chapter 5 of the Universal Serial Bus
Specification, Revision 2.0. Keep in mind that they do not account for software overhead, and the class
driver also introduces some overhead. Reaching even 60% of the limit in real world use is a very good
result, especially for high speed.

A.2.1 Mass Storage Performance
The following is a table of read/write performance (based on RAM disk).

Device Controller Reading Writing

Analog Devices Blackfin 5000 KB/s 5000 KB/s

NXP ISP1181 1071 KB/s 1071 KB/s

NXP ISP158x 5300 KB/s 3890 KB/s

A.2.2 Remote NDIS Performance
Device Controller Packet Size Sending/Receiving

Freescale CF532x/7x 512 265 KB/s

A.2.3 Serial Performance
The following is a table of sending/receiving bi-directional data performance.

Device Controller Packet Size Sending/Receiving

Analog Devices Blackfin 256 800 KB/s

Analog Devices Blackfin 1024 2500 KB/s

 82

Freescale MCF54455 16K 8000 KB/s

NXP ISP1181 64 140 KB/s

NXP ISP1181 256 460 KB/s

NXP ISP1181 512 804 KB/s

NXP ISP1181 1024 887 KB/s

NXP ISP158x 512 1830 KB/s

NXP ISP158x 1024 2870 KB/s

 83

Appendix B. Block Device Driver Interface
smxBase defines a generic block device driver interface that can be used for any block device, such as
smxFS and smxUSBD Mass Storage driver. This interface is defined in XBASE\bbd.h, and it is not
dependent on any other component of the SMX RTOS. Please see the smxBase User’s Guide for the
details of this Block Device Interface.

 84

Appendix C. Installing Devices under Windows 2000
smxUSBD devices are supported by Windows 2000 built-in drivers. The following screen shots show
the steps for Windows 2000. If it doesn’t work after installing the device driver, try ending the target
debug session and starting a new one. If that doesn’t work, try restarting Windows. Contact Micro
Digital if you still have trouble.

First see section 3.3 Building and Running the Demos before running the demos.

C.1 Audio
Windows 2000 will install the audio device automatically when you plug in the device (your target
board). After installation, you can check the audio device in Device Manager.

.

 85

You can also check the device in Control Panel | Sounds and Audio Devices | Audio

Speaker and Microphone volume control (Mixer):

 86

C.2 Mass Storage
Windows will install the mass storage device automatically when you plug in the device (your target
board). Our demo program (which emulates a flash disk using RAM on your board) automatically
partitions and formats the RAM disk.

C.3 Mouse/Keyboard
Windows 2000 will install the mouse/keyboard driver automatically when you plug in the device (your
target board).

 87

De-select all choices:

 88

 89

C.4 Ethernet over USB
To install the Ethernet over USB driver, you may need an .inf file and two Microsoft Windows 2000
patch files. Use mdirndis.inf provided in the smxUSBD Function subdirectory. The patch files
(rndismpy.sys and usb8023y.sys in the RNDISW2K subdirectory of the Function directory) are
provided by Microsoft to support this feature on Windows 2000. We provide them for convenience,
since they are normally part of a large package (Microsoft Remote NDIS USB Driver Kit, available at
www.microsoft.com/whdc/device/network/default.mspx).

Windows 2000 will pop up a dialog when you plug in your target, to inform you it has found new
hardware.

http://www.microsoft.com/whdc/device/network/default.mspx

 90

Let Windows search for a suitable driver:

 91

You may need to copy mdirndis.inf and the two driver files to a temporary directory:

 92

 93

In the Device Manager, you will see a new Network Adapter has been added:

 94

You can use Control Panel | Network Connections to check the status of this virtual adapter:

Click the Properties button and manually configure the IP address and mask. This step is not necessary
if you are using the smxNS DHCP server, since the address is assigned automatically.

 95

You can use our TestSocket.exe utility to test it:

 96

C.5 Serial Port
To install the serial port driver, you may need an .inf file. Several are provided in the
XUSBD\Function\Serial and SerialM directories for different cases (single port, multi-port, composite,
and whether it uses the Windows built-in driver or the Micro Digital driver. The files in
XUSBD\Function\Serial are for the Windows driver; the files in XUSBD\Function\SerialM are for the
Micro Digital Driver. See section 9.1 Multiple Port Serial Device (or Single Port Limited Endpoints)
for more information. Note that for Windows 2000, multi-port serial requires the Micro Digital driver.

 97

 98

 99

See Appendix H. Host OS Certification for more information about this warning.

Windows will search for the driver usbser.sys. It may prompt you to insert your Windows installation
CD if this file is not in your Driver Cache or Service Pack .cab file.

 100

You should see USB Serial Port (COMx) listed under Ports in Device Manager. If not, try restarting
Windows.

You can use HyperTerminal to test if your serial port emulator works properly. Or you can use our
TestComm utility to do the performance and stress testing. It is in the BIN directory. TestComm
initially selects the highest COM port because that is the most likely one to be for the smxUSBD target
just plugged in. If you started TestComm before plugging in the USB cable, click the refresh button to
update the COM port list.

 101

Appendix D. Installing Devices under Windows XP
smxUSBD devices are supported by Windows XP built-in drivers. The following screen shots show
Windows XP installation steps. Because Windows XP has better USB support than Windows 2000, the
steps are simpler. If it doesn’t work after installing the device driver, try ending the target debug session
and starting a new one. If that doesn’t work, try restarting Windows. Contact Micro Digital if you still
have trouble.

First see section 3.3 Building and Running the Demos before running the demos

D.1 Audio
Windows XP will install the audio device automatically when you plug in the device (your target board).
After installation you can check the audio device in Device Manager.

.

 102

You can also check the device in Control Panel | Sounds and Audio Devices | Audio

Speaker and Microphone volume control (Mixer):

 103

D.2 Device Firmware Upgrade (DFU)
Windows XP has no built-in driver and utility for the DFU device. You need to install the driver
provided by MDI or another. See section 9.2 Device Firmware Upgrade (DFU) Device.

A DFU device has two modes. One is the runtime mode, which shows the normal function and DFU
ability. The other is DFU mode, which is for firmware upgrade only. These two modes may use
different VID/PID, so you may need to install the driver twice.

Here are screenshots for runtime mode:

 104

 105

 106

 107

You can use our BIN\usbdfu.exe command line utility to upload/download firmware. This command
line utility provides a simple way to verify your device’s DFU ability. It is more like a testing tool. To
re-build usbdfu.exe, you need the Windows Driver Kits environment.

 108

Or you can use our BIN\DFUHost.exe GUI application to upload/download firmware. Contact MDI if
you need to integrate the DFU feature into your own GUI application. DFUHost.exe is a good example
showing how to do that. To re-build it, you need Visual C++ only, no need for Windows Driver Kits.

 109

Here are screenshots for DFU mode:

 110

 111

 112

You can use our BIN\usbdfu.exe command line utility to upload/download firmware.

 113

Or you can use our BIN\DFUHost.exe GUI application to upload/download firmware.

 114

D.3 Mass Storage
Windows XP will install the mass storage device automatically when you plug in the device (your target
board). Our demo program (which emulates a flash disk using RAM on your board) automatically
partitions and formats the RAM disk.

D.4 Media Transfer Protocol (MTP)
Windows XP will install the MTP device automatically when you plug in the device (your target board).
After installation you can check the Digital Still Camera device in Device Manager.

You can use Windows built-in Scanner and Camera Wizard to import the pictures from this device.

 115

 116

 117

 118

 119

You can also use Windows Explorer to list the pictures on this device.

D.5 Mouse/Keyboard
Windows XP will install the mouse/keyboard driver automatically when you plug in the device (your
target board). No additional operations are necessary.

D.6 Ethernet over USB
Windows XP and MacOS/Linux will install the driver automatically when you plug in the device (your
target board). No additional operations are necessary.

 120

You can use our TestSocket.exe Utility to test it:

 121

D.7 Serial Port
To install the serial port driver, you may need an .inf file. Several are provided in the
XUSBD\Function\Serial and SerialM directories for different cases (single port, multi-port, composite,
and whether it uses the Windows built-in driver or the Micro Digital driver. The files in
XUSBD\Function\Serial are for the Windows driver; the files in XUSBD\Function\SerialM are for the
Micro Digital Driver. See section 9.1 Multiple Port Serial Device (or Single Port Limited Endpoints)
for more information. Note that for Windows XP versions before SP3, multi-port serial requires the
Micro Digital driver.

Windows XP will pop up a dialog when you plug in your target, to inform you it has found new
hardware.

 122

You may need to copy the .inf file to a temporary directory, such as C:\

 123

You can ignore the following warning dialog (see Appendix H. Host OS Certification for more
information):

 124

Windows will search for the driver usbser.sys. It may prompt you to insert your Windows installation
CD if this file is not in your Driver Cache or Service Pack .cab file.

 125

In the Device Manager, you will see a new COM port has been added:

You can use HyperTerminal to test if your serial port emulator works properly.

 126

Or you can use our TestComm utility to do the performance and stress testing. It is in the BIN directory.
TestComm initially selects the highest COM port because that is the most likely one to be for the
smxUSBD target just plugged in. If you started TestComm before plugging in the USB cable, click the
refresh button to update the COM port list.

 127

D.8 Video
Windows XP will install the video device automatically when you plug in the device (your target board).
After installation you can check the video device in Device Manager.

 128

If you double click the USB Video Device, the Scanner and Camera Wizard will pop up.

 129

Click Next and you will see the video (160x120).

 130

 131

Appendix E. Installing Devices under Windows Vista, 7, and 8
smxUSBD devices are supported by Windows Vista and Windows 7 built-in drivers. The following
screen shots (from Vista) show the Windows installation steps, which are the same for both versions of
Windows. (The shorthand Vista/7 is used below to mean both.) If it doesn’t work after installing the
device driver, try ending the target debug session and starting a new one. If that doesn’t work, try
restarting Windows. Contact Micro Digital if you still have trouble.

First see section 3.3 Building and Running the Demos before running the demos.

E.1 Audio
Windows Vista/7 will install the audio device automatically when you plug in the device (your target
board). After installation you can check the audio device in Device Manager.

.

 132

You can also check the device in Control Panel | Sounds | Playback and Recording

 133

 134

Speaker volume control (Mixer):

E.2 Device Firmware Upgrade (DFU)
Windows Vista/7 has no built-in driver and utility for the DFU device. You need to install the driver
provided by MDI or another. See section 9.2 Device Firmware Upgrade (DFU) Device.

A DFU device has two modes. One is the runtime mode, which shows the normal function and DFU
ability. The other is DFU mode, which is for firmware upgrade only.

 135

 136

Ignore this warning dialog

 137

 138

 139

 140

E.3 Mass Storage
Windows Vista/7 will install the mass storage device automatically when you plug in the device (your
target board). Our demo program (which emulates a flash disk using RAM on your board) automatically
partitions and formats the RAM disk.

E.4 Media Transfer Protocol (MTP)
Windows Vista/7 will install the MTP device automatically when you plug in the device (your target
board). After installation you can check the MTP device in Device Manager.

You can use the Windows built-in utility to import the pictures and videos:

 141

 142

 143

You can also use Windows Explorer to list the files on this MTP device.

E.5 Mouse/Keyboard
Windows Vista/7 will install the mouse/keyboard driver automatically when you plug in the device
(your target board). No additional operations are necessary.

E.6 Ethernet over USB
Windows Vista/7 and MacOS/Linux will install the driver automatically when you plug in the device
(your target board). No additional operations are necessary.

E.7 Serial Port
To install the serial port driver, you may need an .inf file. Several are provided in the
XUSBD\Function\Serial and SerialM directories for different cases (single port, multi-port, composite,
and whether it uses the Windows built-in driver or the Micro Digital driver. The files in
XUSBD\Function\Serial are for the Windows driver; the files in XUSBD\Function\SerialM are for the

 144

Micro Digital Driver. See section 9.1 Multiple Port Serial Device (or Single Port Limited Endpoints)
for more information.

Windows Vista/7 will pop up a dialog when you plug in your target, to inform you it has found new
hardware.

 145

Select “Don’t search online”

 146

Select “I don’t have a disc, show me other options”

 147

Select “Browse my computer for driver software”

 148

You may need to copy the .inf file to a temporary directory:

 149

You need to select “Install this driver software anyway” when you get the following warning dialog (see
Appendix H. Host OS Certification for more information):

Windows will search for the driver usbser.sys. It may prompt you to insert your Windows installation
CD if this file is not in your Driver Cache or Service Pack .cab file.

 150

 151

 152

In the Device Manager, you will see a new Serial Port has been added:

 153

You can use a terminal emulator program (e.g. HyperTerminal or Tera Term) to test if your serial port
emulator works properly.

Or you can use our TestComm utility to do the performance and stress testing. It is in the BIN directory.
TestComm initially selects the highest COM port because that is the most likely one to be for the
smxUSBD target just plugged in. If you started TestComm before plugging in the USB cable, click the
refresh button to update the COM port list.

 154

E.8 Video
Windows Vista/7 will install the video device automatically when you plug in the device (your target
board). After installation you can check the video device in Device Manager.

 155

You can use the AMCap utility to capture the video.

 156

Appendix F. Specification Reference
smxUSBD is based on the following specifications. USB related documents are available at
www.usb.org or at www.usb.org/developers/docs.

F.1 USB Specifications
Universal Serial Bus Specification, Revision 1.1
Universal Serial Bus Specification, Revision 2.0

F.2 Device Controller Specifications
ISP1161 Full-speed Universal Serial Bus single-chip host and device controller, Rev. 02
ISP1181 Full-speed Universal Serial Bus interface device, Rev. 04
ISP1362 Single-chip Universal Serial Bus On-The-Go controller, Rev. 04
ISP1582 Hi-Speed Universal Serial Bus peripheral controller, Rev. 03
ISP1761 Hi-Speed Universal Serial Bus On-The-Go controller, Rev. 02
AT91 ARM Thumb-based Microcontrollers AT91SAM7S256, 6175E–ATARM–04-Apr-06
AT91 ARM® Thumb®-based Microcontrollers AT91SAM7X256, 6120C–ATARM–16-Jan-06
ARM920T™-based MicrocontrollerAT91RM9200, 1768E-ATARM–30-Sep-05
LH7A404 Universal SoC User’s Guide, Version 1.1
LPC3180 User Manual, Rev. 01, 1 June 2006
MC9328MX1 i.MX Integrated Portable System Processor Reference Manual, Rev. 5
MCF5329 Reference Manual, Rev. 1, 07/2006
MCF548x Reference Manual, Rev. 2.1, 10/2004
STR71xMicrocontrollerReference Manual, Rev. 7
STR91xF ARM9®-based Microcontroller Family, Rev. 1

F.3 Audio Devices Specifications
Universal Serial Bus Device Class Definition for Audio Devices, Revision 2.0

F.4 Communication Devices Specifications
Universal Serial Bus Device Class Definition for Communication Devices, Revision 1.1

F.5 Device Firmware Upgrade (DFU) Specifications
Universal Serial Bus Device Class Specification for Device Firmware Upgrade, Revision 1.1

F.6 HID Specifications
Universal Serial Bus Device Class Definition for Human Interface Devices, Revision 1.11

http://www.usb.org/developers/docs/

 157

F.7 Mass Storage Specifications
Universal Serial Bus Mass Storage Class Specification Overview, Revision 1.2
Universal Serial Bus Mass Storage Class Bulk-Only Transport, Revision 1.0
SCSI Primary Commands - 2 (SPC-2), Revision 20
SCSI Block Commands - 2 (SBC-2), Revision 14

F.8 Media Transfer Protocol (MTP) Specifications
Universal Serial Bus Device Still Image Capture Device Definition, Revision 1.0
Picture Transfer Protocol (PTP) for Digital Still Photography Devices, PIMA 15749:2000
USB Media Transfer Protocol Specification, Revision 1.1

F.9 Remote NDIS Specifications
Microsoft Remote NDIS Specifications, Rev 1.1

F.10 Video Device Specifications
Universal Serial Bus Device Class Definition for Video Devices, Revision 1.0a
Universal Serial Bus Device Class Definition for Video Devices, Revision 1.1

 158

Appendix G. Testing
USB testing is not only related to software (USB stack) but also to the device controller and other
hardware, so there is no certificate for the USB stack itself. However, we did some testing based on
some evaluation boards, as discussed below.

We tested smxUSBD with USBCheck v5.1 on a Windows PC to verify that it passes the Chapter 9
compliance tests for full speed and high speed (if the controller supports high speed).

High Speed Test Mode is also supported.

On the following boards, smxUSBD also passed the USBCV v1.3 Chapter 9 tests, HID tests, and MSC
tests.

• Atmel AT91 (AT91SAM9260-EK)

• Atmel AT91HS (AT91SAM9M10G45-EK)

• Freescale MCF5329 and MCF5251 EVBs

• Freescale K70 (TWR-K70F120M)

• NXP ISP1181 compatible (ISP1362 PCI)

• NXP ISP1581 compatible (ISP1763 PCI)

• NXP LPCxxxx (LPC1788EA)

• STMicro STR7/9 (STR912KS)

• STMicro STM32F20x/40x full speed port (STM3240G-EVAL)

Freescale M5485EVB passed USBCV version 1.3 chapter 9 tests but failed the MSC tests because the
MCF5485 device controller has some problem when sending 1-byte descriptors. MSC tests will retrieve
1 byte descriptors for string descriptor length.

Sharp LH7A40x failed USBCV test for suspend/resume because the device controller driver needs to
know the USB cable is removed. Otherwise it cannot handle the suspend event properly.

 159

Appendix H. Host OS Certification

H.1 Windows Logo Program / Windows Hardware Certification Program
Some device types such as mass storage and audio are standard device types with a built-in Windows
driver, and no special steps are needed to use them. For other devices, such as serial and custom devices,
it is necessary to go through an installation procedure the first time the device is plugged into the
Windows PC. You point to the location of the driver .inf and .sys files, and then Windows installs the
driver. However, it displays a warning dialog that says:

Many devices ship this way, but if you want to improve your customers’ experience and avoid this
warning, it is necessary to go through the steps of the Windows Logo Program (Windows XP) or
Windows Hardware Certification Program (Windows 7 and 8). For full details, search for these names
in your browser. Here is a summary of steps:

1. Get a VeriSign ID and Winqual account to identify your company.

2. Download Window Logo Kit and run the automatic test on your hardware.

3. After the test passes, submit the results to Microsoft and get the signature of the driver package.

4. Distribute the driver package with your product.

Notes:

1. It is necessary to do testing and pay a fee for each version of Windows you want to support.

2. It is necessary to do these steps even for the serial drivers provided in Windows.

 160

3. It is necessary to do this for composite devices, even if they use standard drivers, e.g. mass storage +
serial.

As part of the process, you will modify the .inf file to have your company and device name, so that will
be what appears when your users plug in the device and Windows installs the driver. If we were to do
this, it would be Micro Digital Inc and smxUSBD Serial Driver (or similar) that would appear, which is
not likely what you want for your product.

Important: It can be difficult to pass the testing, and the test program provided by Microsoft is
difficult and time consuming to use. It provides inadequate diagnostics to determine what is wrong. We
recommend that you start early on this process. Select a company to do the testing and try testing your
device mid-way through development, not at the end. We will charge hourly for time spent assisting
you with this process.

 161

Appendix I. Glossary
API Application Interface

BSP Board Support Package

CDC Communications Device Class

EOI End Of Interrupt

HID Human Interface Device

IAD Interface Association Descriptor

IHV Independent Hardware Vendor

.inf Setup Information file, in plain text format

ISOC Isochronous

ISR Interrupt Service Routine

LSR Link Service Routine

OS Operating System

RTOS Real Time Operating System

USB Universal Serial Bus

USBD USB Driver

USBDI USB Driver Interface

USB-IF USB Implementers Forum, Inc., a nonprofit corporation formed to facilitate the development
of USB compliant products.

	1. Overview
	2. Files
	2.1 Directory Structure
	2.2 Files

	3. smxUSBD Code and Demos
	3.1 smxUSBD Configuration
	3.2 Building the Code
	3.3 Building and Running the Demos
	3.4 Initialization

	4. Function Drivers
	4.1 Audio
	4.2 Device Firmware Upgrade (DFU)
	4.3 HID Communication
	4.4 Keyboard
	4.5 Mass Storage
	4.6 Media Transfer Protocol (MTP)
	4.7 Mouse
	4.8 Ethernet over USB
	4.9 Serial (CDC-ACM)
	4.10 Video

	5. Writing a New Function Driver
	5.1 Function Driver Interface
	5.2 Function Operation Interface
	5.3 Device Information
	5.4 Configuration Information
	5.5 Send Request
	5.6 Select Endpoint Number

	6. Writing a New Device Controller Driver
	6.1 Device Controller Operation Interface
	6.2 Handle Device Controller Interrupt
	6.3 Logical Endpoint Number and Physical Endpoint Number

	7. Composite Device
	7.1 Composite Device Framework
	7.2 Adding an Existing Function to the Composite Device Framework
	7.3 Composite Device Product and Interface IDs
	7.4 Composite Device Limitations

	8. Hardware Porting Notes
	8.1 udport.h
	8.2 udport.c
	8.3 DMA Transfer

	9. Windows Drivers / Application
	9.1 Multiple Port Serial Device (or Single Port Limited Endpoints)
	9.2 Device Firmware Upgrade (DFU) Device
	9.3 HID Communication

	10. Application Notes
	10.1 Flow Control of the Serial Port
	10.2 Mass Storage and File System Share the Same Media
	10.3 Switching to Different Functions at Run Time
	10.4 Mass Storage Function Driver Buffer Size
	10.5 Improving USB to Serial Function Driver Performance
	10.6 Linux Support
	10.7 MAC OS X Support
	10.8 USB Device Controller Soft Connect Feature
	10.9 Opening a Serial Port on the Host
	10.10 Multiple Same Type Devices on the Same USB Host
	10.11 HID vs. Serial for Data Communication
	10.12 HID Communication Multiple Reports
	10.13 Video Camera Software

	Appendix A. Memory Usage and Performance Summary
	A.1 Size
	A.2 Performance

	Appendix B. Block Device Driver Interface
	Appendix C. Installing Devices under Windows 2000
	C.1 Audio
	C.2 Mass Storage
	C.3 Mouse/Keyboard
	C.4 Ethernet over USB
	C.5 Serial Port

	Appendix D. Installing Devices under Windows XP
	D.1 Audio
	D.2 Device Firmware Upgrade (DFU)
	D.3 Mass Storage
	D.4 Media Transfer Protocol (MTP)
	D.5 Mouse/Keyboard
	D.6 Ethernet over USB
	D.7 Serial Port
	D.8 Video

	Appendix E. Installing Devices under Windows Vista, 7, and 8
	E.1 Audio
	E.2 Device Firmware Upgrade (DFU)
	E.3 Mass Storage
	E.4 Media Transfer Protocol (MTP)
	E.5 Mouse/Keyboard
	E.6 Ethernet over USB
	E.7 Serial Port
	E.8 Video

	Appendix F. Specification Reference
	F.1 USB Specifications
	F.2 Device Controller Specifications
	F.3 Audio Devices Specifications
	F.4 Communication Devices Specifications
	F.5 Device Firmware Upgrade (DFU) Specifications
	F.6 HID Specifications
	F.7 Mass Storage Specifications
	F.8 Media Transfer Protocol (MTP) Specifications
	F.9 Remote NDIS Specifications
	F.10 Video Device Specifications

	Appendix G. Testing
	Appendix H. Host OS Certification
	H.1 Windows Logo Program / Windows Hardware Certification Program

	Appendix I. Glossary

