
RTOS Innovators

Sales: (800) 366-2491  Email: sales@smxrtos.com  Web: www.smxrtos.com  Voice: (714) 437-7333  Fax: (714) 432-0490

1 
 
Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro 
Digital, Inc. and may not be copied, stored, or transmitted, without written permission. 
s:\smxd\articles\deferredinterruptprocessing.doc  12/27/05 

Deferred Interrupt Processing 
improves system response 

by Ralph Moore 
smx Architect 

Introduction 
All RTOS kernels must deal with the problem of protecting kernel data structures from 
damage caused by asynchronous interrupts. In a recent article, William Lamie1 has 
categorized RTOSs by how they handle interrupts: 
 

1. Unified Interrupt Architecture wherein system services may be accessed from 
ISRs. 

2. Segmented Interrupt Architecture wherein system services may not be accessed 
from ISRs. 

 
Most commercial kernels (e.g. ThreadX, MQX, and VxWorks) fall into the first category. 
Because system services can be called from ISRs, these kernels must disable interrupts 
whenever kernel data structures are being changed. If, for example, a system service is 
removing an object from a queue, ISRs must be blocked from adding objects to the 
queue, or else the queue could be damaged. Generally, this requires disabling all 
interrupts for the entire code section (called a critical section) during which a kernel 
object is being changed. 
 
A few kernels (e.g. smx and Velocity) fall into the second category. These kernels 
provide a mechanism to defer calling kernel services until after the ISR has finished and 
any interrupted system service has also finished. Consequently, these kernels do not need 
to disable interrupts in order to protect kernel objects. 
 
Lamie goes on to discuss the advantages of the unified architecture versus the segmented 
architecture and concludes that the former is preferable for embedded systems. 
 
In another recent article, David Kleidermacher2 discusses the need to keep ISRs simple 
and short and to disable interrupts as little as possible. He distinguishes between RTOSs 
that have a Simple architecture and those that have an Advanced architecture. These 
match categories 1 and 2 above, respectively. He presents an Advanced architecture 
wherein ISRs are split into two parts. The first part does the minimum necessary 
processing to handle the hardware and to schedule the second part. The second part is 
performed later, when interrupts are enabled, by a call back mechanism in the scheduler. 
Unfortunately, not much detail is provided concerning this mechanism. 
 
We fully agree with Kleidermacher concerning the importance of minimizing interrupt 
latency in the kernel. We start with a discussion of why this is important in real-time 



2 
 
Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro 
Digital, Inc. and may not be copied, stored, or transmitted, without written permission. 
s:\smxd\articles\deferredinterruptprocessing.doc  12/27/05 

embedded systems, and then contrast the two types of kernels with respect to it. We 
follow this with a presentation, and code example, of an efficient mechanism for 
deferring interrupt processing. This uses what we call LSRs. LSRs introduce the 
additional benefit of smoothing peak interrupt overloads, and thus making applications 
more rugged. 
 

Theory 
The Need for a Good Defense against Interrupts 
As a rule, it is best to keep ISRs as short as possible and to not enable interrupts during 
ISRs. Generally, it is not possible to make ISRs reentrant, without unacceptable 
performance penalties. Therefore, the same ISR must be blocked from running again until 
it has finished its current run. This is normally done by the hardware, which masks all 
further interrupts or, on some processors, those at the current and lower levels. 
Unmasking the interrupt and reenabling the interrupt source are usually the last things an 
ISR does. If the ISR takes too long to run, the next interrupt may be lost. This problem 
can occur if the ISR was excessively delayed getting started by kernel and application 
interrupt latency, higher priority ISRs running, and the next interrupt occurring sooner 
than normal. 
 
A missed interrupt can be a nightmare to find because it may occur only once in a blue 
moon. We know that we must be concerned about such rare events because experience 
(and Murphy’s Law) teaches us that they will occur at the worst possible times. Even if 
this kind of bug occurs frequently, it can be hard to find because normal debugging 
techniques are not tuned to detecting it. (In fact, debuggers normally cause interrupts to 
be missed.) The best defense is to design this problem out of the system, from the outset. 
Keeping ISRs as short as possible helps to do this. 
 
In most processors, the hardware disables all interrupts when an interrupt occurs. This 
allows the programmer to block higher priority interrupts as well as the same and lower 
priority interrupts, by not reenabling interrupts until the end of the ISR. If an ISR is very 
short, this may be acceptable, even though higher priority ISRs are delayed. Doing so 
eliminates interrupt nesting, which is another cause of problems: (1) Interrupt nesting 
increases stack usage and can cause unexpected stack overflows for the unwary 
programmer – another hard problem to track. (2) There can be resource-sharing problems 
even though each interrupt invokes a different ISR. For example, without realizing it, two 
ISRs might be using a common global variable disguised by a macro, or even worse, 
there might be some subtle, undocumented hardware interaction. 
 
In this emerging era of complex hardware hacks, it is hard to trust the hardware, 
anymore. Therefore, unless you want to be burning late-night oil, defensive interrupt 
programming is a must. Regarding nested interrupts, this means they should be avoided, 
if possible. 
 



3 
 
Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro 
Digital, Inc. and may not be copied, stored, or transmitted, without written permission. 
s:\smxd\articles\deferredinterruptprocessing.doc  12/27/05 

Unified Interrupt Kernels 
Because of the above problems, many seasoned embedded programmers shudder at the 
thought of introducing a Unified Interrupt Kernel into their designs. 
 
A simple example illustrates the reason for this: In most kernels, the ready queue consists 
of a doubly linked list of Task Control Blocks (TCBs). The TCBs are linked in 
descending priority order. TCBs of the same priority are linked by descending waiting- 
time. Any kernel operation, which causes a task to become ready, must search the ready 
queue, from its start to the correct position at which to link the task’s TCB. Interrupts 
must be disabled, all during that time, in order to protect the ready queue from damage. 
The ready queue may contain only a few tasks or it may contain all tasks of the system. 
Sometimes, the new task will be placed at the start, sometimes in the middle, and 
sometimes at the very end. The devil is in this uncertainty. From time to time, interrupts 
may be disabled for too long and an interrupt will be missed. 
 
Making this problem even worse, is that it is not possible to enable higher priority 
interrupts that do not use the particular resource being protected. Such selectivity is not 
possible. Kernel services must disable all interrupts, when in critical sections, because 
there is no practical way to know which ISRs make which kernel calls. Thus, the 
interrupt latency introduced by kernel services directly impacts the most important, 
highest priority interrupts – even if they make no kernel calls! 
 
 

Service Routine Definitions 
• Interrupt Service Routines (ISRs) are driven by external interrupts that are 

asynchronous to everything else. If not blocked, an ISR can run between any two 
machine instructions. (This can catch a C programmer unawares because it is easy 
to fall into the trap of thinking that ISRs can run only between C statements.) ISRs 
are often written in assembly language to optimize their performance. They take 
no parameters and have no return values. 
 

• Link Service Routines (LSRs) are invoked by ISRs to do deferred interrupt 
processing. They are written as ordinary C functions with a single parameter and 
no return value. LSRs run with interrupts enabled, unless disabled by the 
programmer. LSRs are permitted to call all kernel services, but cannot wait for 
results. Link Service Routines are so named because they link ISRs to tasks. 
 

• System Service Routines (SSRs) are the routines that perform system services. 
They are written as ordinary C functions that take parameters and return results. 

 
 
 



4 
 
Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro 
Digital, Inc. and may not be copied, stored, or transmitted, without written permission. 
s:\smxd\articles\deferredinterruptprocessing.doc  12/27/05 

Segmented Interrupt Kernels 
Segmented Interrupt Kernels avoid the above problem because they do not permit calling 
kernel services (i.e. SSRs) from ISRs. Instead, Link Service Routines (LSRs) are invoked 
to perform deferred interrupt processing and to call kernel services. Kernel services cause 
tasks to be scheduled to run, by sending messages to them, signaling semaphores where 
they are waiting, resuming them directly, etc. Hence, LSRs are so named because they 
link foreground activity (interrupts and ISRs) to background activity (tasks). Without 
such linkage, nothing much would happen! 
 
LSRs run only after all ISRs have completed and after any interrupted SSR has also 
finished. Because of this, there are no critical sections within SSRs that need to be 
protected from interrupts. Therefore, SSRs run with interrupts fully enabled and 
introduce no interrupt latency. LSRs, too, run with interrupts fully enabled, unless the 
application programmer chooses otherwise. (In which case, he will be aware of the 
interrupt latency he has introduced and it is up to him to keep it under control.) 
 
Like ISRs, LSRs run in the context of the current task. This means that they use its stack 
and they save only the registers that they use. Thus, compared to task switching, LSR 
switching has much lower overhead. This makes LSRs ideal for deferred interrupt 
processing. The following code illustrates this: 
 
Code Example 
_rx_isr_shell:   ISR_ENTER 
                       jsr         _rx_isr 
                        ISR_EXIT 
 
void rx_isr (void) 
{ 
   // Clear RXF interrupt event handled by this isr. 
   frp->eir = EIR_RXF; 
 
   while(!(rbd[crx].flags & RxBD_E))   // Process all received frames. 
   { 
      if (!((rbd[crx].flags & RxBD_L) && (rbd[crx].flags & RxBD_ERROR)) || 
          (rbd[crx].flags & RxBD_TR))   
      {                                 
          // Frame ok -- accept packet 
      } 
      else  
      {                            
         INVOKE(rx_error_lsr, rbd[crx].flags);  // Frame error -- reject packet. 
      } 
      if(++crx == NUM_RX_BD) 
         crx = 0; 
   } 
} 
 
static void rx_error_lsr(u32 flags) 
{ 



5 
 
Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro 
Digital, Inc. and may not be copied, stored, or transmitted, without written permission. 
s:\smxd\articles\deferredinterruptprocessing.doc  12/27/05 

   if ... 
    
   if (flags & RxBD_RO1) 
   { 
      ERROR_MSG1("Out of receive buffers\n"); 
      error_count++; 
   } 
} 
 
This example is drawn from an Ethernet driver for a ColdFire® processor. The receive 
interrupt causes control to vector to _rx_isr_shell, an interrupt shell, which is written in 
assembly language. It brackets the core of the ISR, written in C, with enter and exit ISR 
macros. (More on these later.) A portion of the receive ISR is shown. Note that it resets 
the interrupt source, then tests for any errors that the Ethernet controller has detected and 
recorded in the receive buffer descriptor (rbd) flags field. If an error is found, the 
rx_error_lsr() LSR is invoked to deal with it at a later time. Therefore, this and other 
interrupts are not delayed while the error is processed and its error message is displayed. 
 
Note that the flags field is passed to rx_error_lsr() as a parameter. Thus, when it later 
runs, rx_error_lsr() has all it needs to do its job – namely:  determine what error occurred, 
output an appropriate error message, and increment the error counter. This is a good 
example of using LSRs effectively – an error in one packet does not cause other packets 
or other interrupts to be missed. For this particular driver, the data in and data out paths 
are also handled by LSRs. 
 
In this example, before returning to the ISR shell, the receive ISR checks if there is 
another received packet in the descriptor ring and processes it, if so. If this packet also 
has errors, rx_error_lsr() will be invoked again with the error flags for it. When the second 
invocation of rx_error_lsr() runs, it will report the errors for the second packet. This is a 
good example of the value of being able to invoke the same LSR multiple times, before it 
runs. Finally, rx_isr() returns to the ISR shell and the exit ISR macro runs. 
 
How LSRs Work 
The ISR_ENTER and ISR_EXIT macros determine when LSRs run. A nesting counter, 
srnest, is incremented by ISR_ENTER. It keeps track of ISR nesting. If srnest is greater 
than one, ISR_EXIT returns to the interrupted ISR. There is very little overhead, in this 
case. If srnest is one (meaning no more ISRs to run) and there are LSRs to run, interrupts 
are enabled and the LSR scheduler is called. It runs all waiting LSRs, then the task 
scheduler runs to determine if a higher priority task is ready to run. If so, the current task 
is suspended and the higher priority task is dispatched. Since ISRs cannot call kernel 
services, a new task can become ready to run only if an LSR has called a kernel service, 
which resumed or started it. 
 
The INVOKE() macro stores the LSR address and a 32-bit parameter in the LSR queue. 
This queue is a cyclic queue of a size specified by the programmer. It can store as many 
LSRs as necessary to handle peak loads. An important feature of LSRs is that, unlike 



6 
 
Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro 
Digital, Inc. and may not be copied, stored, or transmitted, without written permission. 
s:\smxd\articles\deferredinterruptprocessing.doc  12/27/05 

tasks, the same LSR may be scheduled multiple times, before running. Each time it can 
be scheduled with a different parameter. The parameter could be a pointer to a block that 
contains captured information needed by the LSR. This makes deferred interrupt 
processing feasible because each instantiation of the same LSR is given its own data to 
process. These could be contents of device registers as well as global variables -- i.e. a 
freeze frame. 
 
An additional benefit of the LSR mechanism is that it has the ability to smooth out 
interrupt overloads. When hit with a burst of interrupts, ISRs run in rapid succession, 
performing minimal processing and invoking LSRs to complete needed processing later. 
When the burst of interrupts is over and all ISRs have run, then LSRs run in the order 
invoked. Thus they maintain temporal integrity. The LSRs process freeze frames of what 
happened in real time. While running late, the external manifestation is some 
sluggishness, but not loss of control nor system breakdown. Thus, LSRs impart a certain 
ruggedness to systems using them. 
 

Summary 
We have discussed the importance of minimizing interrupt latency and of doing defensive 
interrupt programming in real-time embedded applications. If tight control cannot be 
maintained here, the integrity of the whole system is undermined. In addition, tracking 
bugs in interrupt handling code is especially difficult. Therefore bugs must be designed 
out, if at all possible. An important principle to follow is to minimize the size of ISRs – 
non-essential processing is best deferred in order to avoid missing new interrupts. It is 
particularly important to defer kernel service calls because they can be quite lengthy. 
Also, if kernel calls are permitted from ISRs they can significantly increase interrupt 
latency for the system. The Link Service Routine (LSR) offers a good mechanism for 
doing deferred interrupt processing. It has been presented in detail, with an example. 
LSRs have been used, with good results, in hundreds of embedded applications over the 
past 15 years. For more details on LSRs, see reference 3. 
 

References: 
1. Lamie, William, “Pardon the Interruption”, p58, Information Quarterly Vol. 3, 

Number 4, 2004. 
2. Kliedermacher, David, “Minimizing Interrupt Response Time”, p52, Information 

Quarterly Vol. 4, 2005. 
3. Moore, Ralph, “Link Service Routines” 

http://www.smxrtos.com/articles/lsr_art/lsr_art.htm 
 
 
 

http://www.smxrtos.com/articles/lsr_art/lsr_art.htm

	Introduction
	Theory
	The Need for a Good Defense against Interrupts
	Unified Interrupt Kernels


	Service Routine Definitions
	Segmented Interrupt Kernels
	Code Example
	How LSRs Work


	Summary
	References:

