
1

Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro
Digital, Inc. and may not be copied, stored, or transmitted, without written permission.
\\server\d\smxd\articles\oneshottasks.doc 12/22/05

One-Shot Tasks
reduce RAM usage

by Ralph Moore
smx Architect

Introduction
Many of the newer processors and SoCs have a significant amount of on-chip SRAM.
Using on-chip SRAM is much faster than external SDRAM and, for some systems, may
avoid the cost of external SDRAM and even having an external processor bus. Since
SRAM uses much more chip space than NOR flash, optimizing on-chip SRAM usage is
very important for both cost and performance.

In multitasking systems, each active task needs its own stack. Therefore, task stacks can
require a major amount of RAM. To mitigate this problem, smx supports what are known
as one-shot tasks. One-shot tasks run once from start to finish, then stop. When stopped,
no information is carried forward to the next run. Thus, a one-shot task does not need a
stack when it stops, and its stack is released back to the stack pool for use by another
task. When a one-shot task is dispatched, the smx scheduler gives it a stack from the stack
pool. Thus, a system with many one-shot tasks can operate with only a few stacks as long
as only a few one-shot tasks need to run simultaneously.

Stopped smx tasks can wait at semaphores, mutexes, exchanges, etc – just like
conventional suspended tasks, so there is no loss of flexibility. Starting a task takes the
same length of time as resuming a task, so there is no loss of performance.

Theory
RAM Usage
Normally, it is necessary to have one stack per active task. There are two exceptions to
this rule. One is the OSEK BCC1 one-shot execution model, which shares one stack
between all tasks. It has serious limitations -- see the discussion at the end of this paper.
The other exception is link service routines (LSRs). LSRs are another feature of smx that
can be used to reduce RAM usage. They act like tasks, but run in the context of the
current task and use its stack. For more information, see smx Link Service Routines.

In the general case, if one tries to share one stack among many tasks, a problem develops
because, in a normal system, tasks will resume in a different order than they were
suspended. Soon, most tasks will have fixed-size stack spaces that do not permit deeper
nesting of functions nor handling of interrupts. Although various complex stratagems
might be employed, the most practical solution is to allocate a stack per active task.

http://www.smxinfo.com/articles/lsr_art/lsr_art.htm

2

Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro
Digital, Inc. and may not be copied, stored, or transmitted, without written permission.
\\server\d\smxd\articles\oneshottasks.doc 12/22/05

This being the case, how large must task stacks be? Unfortunately, even a lean kernel is
likely to impose the need for about 200 bytes of stack. Added to this are the requirements
of the tasks, themselves, including maximum function nesting and space for
autovariables, which can easily add another 200-400 bytes. Some standard C library
functions (e.g. sprintf()) can add much more than this, just by themselves. This number
does not even include saving a coprocessor state or making room for floating point
emulation.

Finally, space is needed for the maximum possible nesting of interrupts — another 200
bytes, or so. It is true that interrupt service routines could have their own stacks.
However, that adds delay at the most critical point of most embedded systems — namely,
at the point of interrupt processing. Hence, although done in non-real time operating
systems (e.g. MS-DOS) interrupt stacks are not a good idea for high-performance,
embedded systems. Interrupt stacks also create other complexities and may not even save
much memory.

Hence, we end up with 600 to 800 bytes. Stacks can easily go to 1000 bytes or more
when a file system or networking is added. Thus, an embedded system with 20 tasks is
likely to require about 20 KB of RAM.

Fine-Grained vs. Coarse-Grained Task Structure
Because of the significant memory required per stack, the tendency on the part of many
programmers is to minimize the number of tasks. This has the unfortunate consequence
of making each task more complex than is necessary. Large tasks defeat the purpose of a
multitasking kernel, which is to simplify the programming job by dividing the application
into simple tasks. Simple tasks achieve complex results via their interactions. Indeed,
creating a few large, complex tasks is akin to creating processes in big multi-user
systems, such as UNIX. This is not the correct way to use a high-performance,
multitasking kernel.

An example will clarify this. Suppose we are developing a communication system.
Usually it works well to have at least two tasks — a receive task and a send task. Suppose
there are 10 identical channels. How many tasks should there be? I suggest 20, but many
designers would struggle with only two. Why are 20 better? Because:

(1) The code is simpler — it only has to deal with one channel. Exactly the same
receive code is used by all 10 receive tasks. Similarly for the send code. Thus to
have 20 tasks does not add any more code than having two. In fact, the amount of
code required may be much less, because it is simpler.

(2) More of what needs to be done is being done by proven kernel code. For example,
proven kernel objects, such as semaphores and messages, are likely to be used
more and untested application mechanisms, such as flags and buffers, are likely to
be used less. Kernel code is orders of magnitude more reliable than brand-new
application code.

3

Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro
Digital, Inc. and may not be copied, stored, or transmitted, without written permission.
\\server\d\smxd\articles\oneshottasks.doc 12/22/05

(3) It is scalable — channels can be added or removed merely by creating or deleting
tasks. Code need not be changed at all.

(4) It is dynamic — tasks can be created and deleted on the fly.
(5) The final design is easier to understand and to maintain by different programmers

than the originators.
(6) Interfaces between sections of code are defined by the kernel API. Hence, they

are more robust and better documented.
(7) The kernel adds extensive error checking and error reporting. These seldom get

put into application code, yet they speed debugging.

So, in this simple example, there are abundant reasons to support a fine-grained task
structure. When dealing with the needs of high-performance, high-reliability embedded
systems, some rethinking of basic concepts is appropriate. First, we need a kernel (not an
os) that is mean and lean. Then we need to learn how to best utilize that kernel to achieve
the project goals. One-shot tasks are a step in that direction.

One-Shot Task Operation
So, let’s get back to the subject of stacks. Wouldn’t it be nice if at least some tasks could
share stacks? Then there would not be so many stacks. This is where we introduce the
concept of the unbound stack. What is an unbound stack? An unbound stack is a stack,
which is not permanently bound to any particular task — i.e. it can be shared. How is this
possible? It works as follows: Unbound stacks are all the same size and belong to a single
stack pool. When a one-shot task is first dispatched (i.e. started running), unless it already
has a permanently bound stack, it is loaned a stack from the stack pool. As long as the
task is active (i.e. either running or suspended), it keeps the stack. Hence, the task and
stack function normally when the task is active. However, when the one-shot task
completes its function and is ready to wait for more work, it gives up the stack. We call
this stopping the task as opposed to suspending it. In the latter case, the task would keep
the stack, but in the former case, the task has no need for the stack so the task gives it up.
(In this regard, it is important to know that a one-shot task is later restarted from the
beginning rather than being resumed from where it left off.)

The stack goes back to the stack pool where it is available to be used by another task.
Now the one-shot task is in what we call the unbound mode:

Figure 1: Task Modes

In this mode, the task has no state variables (e.g. register contents) and no auto variables
worth remembering. This state is appropriate only if the task has completed all of its
work and is ready to start over again, or to restart, as we call it. This necessitates a
different code structure as shown in Figure 2.

Code Examples
a. Conventional Task:

void atask_main (void)
{
 MCB_PTR msg:
 // initialize
 unlock (self);
 while (msg = receive (xchg, INF))
 {
 // process msg
 }
}

b. One-shot Task:

void otask_main_init (void)
{
 // initialize
 // change task main function:
 task.fun = otask_main;
 receive_stop (xchg, INF);
}

void otask_main (MCB_PTR msg)
{
 // unlock (self);
 // process msg
 receive_stop (xchg, INF);
}

Figure 2: Code for Convention and One-Shot Tasks

The conventional task is created with atask_main() as its main function:

TCP_PTR atask;
 atask = create_task(atask_main, NORM, 1000);
 start(atask);

atask has normal priority and a permanently bound stack of 1000 bytes. When atask first
starts, it initializes and unlocks itself (so it can be preempted by higher priority tasks),
then goes into an infinite while loop. At the start of this loop, the task waits at xchg for a
message. When a message is received, it is processed, then the task waits at xchg for
another message. This process repeats for every new message received. In this particular
example, atask never exits the while loop unless it is externally stopped or deleted.

4

Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro
Digital, Inc. and may not be copied, stored, or transmitted, without written permission.
\\server\d\smxd\articles\oneshottasks.doc 12/22/05

5

Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro
Digital, Inc. and may not be copied, stored, or transmitted, without written permission.
\\server\d\smxd\articles\oneshottasks.doc 12/22/05

The one-shot task has a different structure. It is created with otask_main_init() as its
initial main function:

TCP_PTR otask;
 otask = create_task(otask_main_init, NORM, 0);
 start(otask);

otask has normal priority and no permanently bound stack. When otask first runs,
otask_main_init() does the initialization, then otask’s main function is changed to
otask_main() and otask stops on xchg. When a message is received, otask restarts, except
this time with otask_main() as its main function. Note that the message handle, msg, is
passed in as a parameter, not as a return value, as it is for atask. This is because, no code
executes after a stop function (i.e. receive_stop().) smx handles passing in the msg
parameter from receive_stop(). otask may or may not unlock itself (see discussion
below). The message is processed and otask again stops on xchg. otask_main() runs,
from the start, each time a new message is received.

Note that the results produced by atask and otask are the same, but their mechanisms are
much different.

More Considerations
In the above discussion, it was noted that otask may or may not unlock itself. This is
because, if otask is very short, it is probably desirable to leave it locked in order to
prevent excessive task switching. This is because a locked task cannot be preempted by
any other task (but ISRs and LSRs can run.) Such a task is called a non-preemptible one-
shot task. The reason that smx tasks start locked and must be deliberately unlocked, is to
assure that they cannot be preempted once they start running.

It is not a requirement that one-shot tasks be locked. They can be unlocked. However,
then they can be preempted and will thus hold borrowed stacks longer. This is not a
problem, but a bigger stack pool may be required. Ideally, a one-shot task is a tiger task,
like an interrupt service routine. It is best to let it rip.

One-shot tasks can loop, if necessary, such as to process a series of packets. One-shot
tasks can also suspend themselves, such as to receive a packet, then process it. Hence, a
one shot task can act like a conventional task to process a burst of activity. However,
once it finishes its business, it stops and must be restarted to run again. When restarted, it
always runs from the beginning of its main code. (This is why first-time initialization
code must be put into a separate function that is run only once.)

Stack RAM can also be saved by deleting tasks, when no longer needed and recreating
them when needed. However, this adds overhead whereas stopping and starting tasks
adds no overhead versus suspending and resuming them (except that a task may have to
wait for a stack). Also, a deleted task cannot wait for an event. In addition, it loses its
TCB and handle and thus can no longer be tracked by smxAware nor a debugger.

6

Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro
Digital, Inc. and may not be copied, stored, or transmitted, without written permission.
\\server\d\smxd\articles\oneshottasks.doc 12/22/05

Advantages of One Shot Tasks
What is the advantage of otask? Let’s return to our example and look at the 10 send tasks.
Suppose outgoing traffic is very light and a send task spends 90% of its time waiting at
an exchange for another message to send. Why tie up a valuable stack all this time? Quite
possibly, 2 stacks (or even 1 stack) would satisfy the needs of the 10 tasks. Hence, using
one-shot tasks would, in this one area, give an 80% reduction in stack space!

Three advantages are gained: (1) potential cost reduction due to eliminating external
RAM; (2) potential increase in performance due to using on-chip SRAM; (3) freedom to
utilize a fine-grained task structure to achieve the optimum architecture for the
application at hand. With reference to (2), note that putting stacks into on-chip SRAM
has particularly great impact upon improving performance. This is especially true for
multitasking systems because there is a strong tendency to use autovariables, which are
stored in task stacks, in order to achieve subroutine reentrancy.

What about disadvantages: (1) performance? It turns out that getting and binding a free
stack is an efficient process. It costs no more time than restoring registers from a bound
stack. Hence, there is no performance hit for using one-shot tasks. (2) reduced flexibility?
smx permits a one-shot task to wait, in the stopped condition or in the suspended
condition, at all of the same objects (e.g. semaphores, exchanges, etc) as a conventional
task. Hence, a one-shot task can do everything a conventional task can do. (3) run out of
stacks? If no stack is available, smx stops the task being started, for a tick, then tries to
dispatch it again. In such a situation, processing is probably stacked up due to limited
processor bandwidth, anyway; so waiting for free-stacks does not degrade overall
performance. At worst, a high-priority, one-shot task could miss a deadline. If this causes
a problem, such a task can be given a permanently bound stack to avoid the problem.
One-shot tasks are good for operations that are simple, infrequent, largely mutually
exclusive (or can wait a tick or two for stacks), and finish in one pass. Although they are
not a panacea for all embedded systems, they are good tools to have in your toolbox.
One-shot tasks have been an integral part of smx from the start and many applications
have benefited from them.

smx vs. OSEK Stack Sharing
The smx one-shot task stack-sharing feature is similar to the OSEK BCC1 one-shot
execution model. The latter allows sharing a single stack among all tasks. The required
stack space is determined by the sum of the maximum stack sizes of all priority levels.
For example, if there were two priority 3 tasks requiring stacks of 200 and 300 bytes,
then 300 would be added for level 3. This model requires that every task run to
completion, except while preempted by a higher priority task.

The smx approach requires a bit more stack space but it is less restrictive. Also, it is
easier and less error-prone to calculate the stack space required. Under smx, stacks may
be either retained or surrendered when waiting for messages, signals, events, timeouts,

7

Copyright © 2005 by Micro Digital, Inc. All rights reserved. The information on this page is proprietary to Micro
Digital, Inc. and may not be copied, stored, or transmitted, without written permission.
\\server\d\smxd\articles\oneshottasks.doc 12/22/05

etc by using either the suspend or stop version of the smx call. Hence, stopping vs.
suspending a task introduces no constraints on what the task can do. Also, when a task
that surrendered its stack is restarted, it is given a new stack from the stack pool, and the
task starts from the beginning of its code. (Hence, information from the old stack is not
needed.) There is no performance penalty for starting a task with a new stack vs.
resuming a task that already has a stack.

In contrast to OSEK BCC1, smx allows a mixture of conventional tasks, with permanent
stacks, and one-shot tasks, with temporary stacks. If we make the rule, like OSEK BCC1,
that one-shot tasks may not suspend themselves, then the number of stacks required in the
stack pool is equal to the number of different priorities of one-shot tasks. For example, if
there are 10 one-shot tasks having 3 different priorities, then only 3 stacks are required in
the stack pool. Unlike OSEK, these stacks must all be the same size.

Note that one-shot smx tasks can wait at semaphores, exchanges, and other smx objects,
when stopped. OSEK one-shot tasks cannot do this. Also, to add conventional tasks,
OSEK requires changing to the ECC1 or ECC2 model, neither of which permits stack
sharing. Hence, it is all or nothing with OSEK. With smx no such limitation exists -- there
can be any number of either kinds of task. Not only that, one-shot tasks can behave like
conventional tasks until they stop. Because of these differences, smx gives a programmer
much greater flexibility in fitting an application into limited RAM space, than does
OSEK.

For more information:

1. smx User’s Guide – See Chapter 16, More on Tasks.
2. smx Reference Manual – See stop versions of smx services.

	Introduction
	Theory
	RAM Usage
	Fine-Grained vs. Coarse-Grained Task Structure
	One-Shot Task Operation
	Code Examples
	More Considerations
	Advantages of One Shot Tasks

	smx vs. OSEK Stack Sharing
	For more information:

