
1

F

Achieving Device
Security

A guide to partitioning connected device firmware
to achieve secure operation by Ralph Moore

© Copyright 2021-2024

Micro Digital Associates, Inc.
 (714) 437-7333

support@smxrtos.com
www.smxrtos.com

All rights reserved.

smx and SecureSMX are Registered Trademarks of Micro Digital, Inc.

SecureSMX is protected by patents listed at www.smxrtos.com/patents.htm and patents pending.

http://www.smxrtos.com/patents.htm

Contents
1. Introduction ... 1

The First Problem.. 1

The Second Problem .. 2

The Hardware ... 2

The Security Goals ... 3

2. Basics of Partition Isolation ... 4

Introduction ... 4

Let’s Get Started ... 4

Advantages of Isolated Partitions.. 6

The Need to Isolate Code As Well As Data .. 7

Partition Definition ... 7

ptasks vs utasks .. 8

Summary ... 9

3. Partitioning Code .. 10

Introduction ... 10

MPU Operation ... 11

Typical MPU Regions ... 12

MPAs, Templates, and Tasks ... 13

Sections .. 14

Linker Command File .. 15

MPA Templates .. 16
ptask template for v7M: .. 16
utask template for v7M ... 17
ptask template for v8M ... 18
utask template for v8M ... 18
MPA Creation ... 18
default MPA for v7 .. 19

MPU/MPA Relationship .. 19

Stack Regions ... 20

v7M Memory Gaps .. 21

v7M Memory Tails ... 22

Partition Demos .. 23
pd0 .. 23
pd1 .. 23
pd2 .. 24
pd3 .. 24
pd4 .. 24

Summary ... 24

4. Creating Isolated Partitions .. 25

Introduction ... 25

System Services from umode ... 25

SVC Shell Functions ... 26

Custom SVC Shell Functions .. 28

Multiple Heaps .. 30

Protected Blocks and Messages ... 31
pblocks ... 31
pmsgs ... 31

Summary ... 32

5. The Need for Portals ... 33

Introduction ... 33

Free Message Portals ... 34
Portal Operation ... 34
Portal Initialization .. 36

Tunnel Portals ... 37

Shell Functions ... 38

Tunnel Portal Timeouts ... 44

Summary ... 44

6. Partition Limitations .. 45

Introduction ... 45

Runtime Limiting ... 45

Tokens .. 47

The ISR Problem .. 49

Summary ... 51

7. Advanced Features ... 52

Parent/Child Tasks .. 52

Auxiliary Slots ... 53

Dynamic Slots ... 54

Multi-task Partition Templates ... 55

Critical Code Sections ... 55

Scheduler Callbacks ... 56

smxAware ... 57

Event Monitoring ... 57

Porting Applications to SecureSMX .. 58

Frameworks .. 58

Debugging ... 59

MPUMapper .. 60

8. Conclusion ... 61

Appendix A eheap ... 63

Introduction ... 63

Doubly Linked Chunks .. 63

Heap Bins ... 64

Large Bin Sorting .. 65

Merge Control ... 65

Heap Recovery ... 65

Aligned Blocks .. 66

Region Blocks ... 67

Chunk Types ... 68

Integrated Block Pools .. 68

The Need for Mutexes .. 69

Summary ... 69

Appendix B smxAware ... 70

MPU Display ... 70

MPA Displays .. 73

Finding Memory Manage Faults (MMFs) .. 76

Event Display .. 77

Timeline Display .. 79

Summary ... 79

Figures

Figure 2.1 Typical Embedded System Structure .. 4
Figure 2.2 Secure Network Solution ... 5
Figure 3.1 MPU Operation ... 11
Figure 3.2 Typical MPU Regions .. 12
Figure 3.3 Templates, MPAs, and Tasks Relationship ... 13
Figure 3.4 MPU/MPA Relationship ... 20
Figure 3.5a Before MPUPacker .. 21
Figure 3.5b After MPUPacker ... 21
Figure 4.1 System Service Calls .. 26
Figure 4.2 Multiple Heaps .. 30
Figure 4.3 Protected Message ... 32
Figure 5.1a Server Function API ... 33
Figure 5.1b Portal API ... 33
Figure 5.2 Free Message Protocol Configurations ... 34
Figure 5.3 Free Message Portal Initialization ... 36
Figure 5.4 Tunnel Portal Operation .. 37
Figure 5.5 Portal Operation .. 38
Figure 6.1 Runtime Limiting ... 46
Figure 6.2 Tokens Controlling Semaphore Access .. 47
Figure 6.3 Safe LSR Operation .. 50
Figure 7.1 Parent/Child Tasks .. 52
Figure 7.2 Swapping IO Regions ... 54
Figure 7.3 Multiple MPAs from One Template ... 55

Achieving Device Security

1

1. Introduction

The First Problem
Complacency is biggest problem in device security. So far, many devices have been
hacked, but hackers have focused mainly on the low-hanging fruit of phishing and similar
tactics to gain entry into computer networks. However, this low-hanging fruit is
beginning to disappear as those companies with large networks adopt better security
software and better security practices. Consequently, the next main target is likely to be
the thousands of unprotected devices already connected to computer networks.

Furthermore, large governments around the world have large stockpiles of zero-days
ready to activate without warning. These and insider attacks are unknown threats, but are
likely to be more device-oriented.

OEM executives need to decide if they want to start taking prudent steps now or to hire
an army later to deal with attacks on their devices. Courts could well decide that
inadequate security provisions constitute negligence, and therefore, device manufactures
are on the hook for damages due to their devices being hacked [Ref 5]. This could put
many OEMs out of business. Even if this does not happen it is likely that provable
security will become an important sales point for many types of devices.

Looking at the broad software picture, it is likely that only about 10-20% of the software
in a device does the mission-critical work. This code is probably carefully written,
thoroughly tested, field-proven, and thus unlikely to change. The remaining 80-90% of
the code is a mixture of third-party, open source, and newly developed code, and it is

Achieving Device Security

2

probably filled with vulnerabilities. Without protection, a hack anywhere in this code
exposes the entire system, thus facilitating ransomware attacks and theft of critical data.

Also, it should be anticipated that insider attacks will become more prevalent. Mission-
critical code should be locked away and inaccessible to all but a few highly-trusted
employees. Since it may need no security nor functional updates, this code should not be
included in updates so it cannot be tampered with, which gives some hope of averting
catastrophic insider attacks.

The Second Problem
Overconfidence is the second problem. The common image of a lone hacker working
while sitting on his bed in pajamas is not useful. Hacker organizations are well-staffed,
well-funded, and well-equipped. More likely the hacker is wearing tasteful business attire
and working in a large, air-conditioned office, alongside an army of coworkers. Even
large development teams are seriously out-gunned. For these teams to think that they are
smarter, can hide the flaws in their code, or that there is safety in small probabilities is
sheer folly. Hackers are not only smart, they use computers, even super-computers, to try
billions of attacks until they find one that works. Governments and crime syndicates
spend millions of dollars to find zero-days that can cause great damage.

No doubt your team is able to write small amounts of hacker-resistant code. But to write
a whole system that way is clearly impractical – it takes too long and costs too much. We
need a better methodology for writing embedded system code. What is needed is baked-
in security that protects against all kinds of attacks. Neither Linux nor wimpy RTOSs are
likely to achieve this objective. However, we believe that our new, high-security RTOS,
SecureSMX®, can do it. The purpose of this ebook is to present the features contained in
SecureSMX that are necessary to achieve this objective.

The Hardware
SecureSMX supports Cortex-M because it is the most popular microcontroller
architecture and it has some good security features:

• Three Processor Modes:
o Handler (hmode)
o Privileged (pmode)
o Unprivileged (umode)

• Memory Protection Unit (MPU)
• Supervisor Call (SVC N)
• PSLIM & MSLIM (v8)
• TrustZone (v8) is not used
• Both v7 and v8 are supported

Achieving Device Security

3

Cortex-M processors have three modes of operation: Handler mode, or hmode, can be
entered only via an exception or an interrupt. Privileged mode, or pmode, can be entered
from hmode or on startup. Unprivileged mode, or umode, can be entered only via an
exception return from the other two modes. umode is most secure because it cannot do
certain system functions, such as turn off the MPU. Cortex-M MPUs typically have 8
slots, each holding a region. A region enforces a memory range and attributes on all
memory accesses. The supervisor call permits system service calls from umode. PSLIM
and MSLIM provide overflow detection for task stacks and the main stack. The security
methods implemented by SecureSMX do not require TrustZone.

The Security Goals
The following goals have guided the development of SecureSMX:

• Upgrade existing devices with minimal code changes
• Provide a security framework for new devices
• Achieve fully isolated partitions
• Hardware-based security
• Protect the system from compromised partitions
• Flexible set of tools
• Consistent solutions
• Wide applicability

Fixing the billions of devices already in use is of paramount importance, even if they
cannot be updated in the field. Units in the field can be replaced when necessary and new
units coming off the factory floor will be more secure. The process should support
iterative improvement. Starting with a security framework that runs like the final system
allows ironing out inter-module problems in advance and bakes in security. Fully isolated
partitions are necessary to stop hackers. Security must be hardware-based, else hackers
will just program around it. Malware can do considerable damage from inside of a
partition, so limitations on code running it are necessary to protect the system. Flexibility
in the application of security tools is very important. For example, we should not runtime
limit the task that is preventing a crane from tipping over! Consistency and wide
applicability are hallmarks of a good set of tools.

Achieving Device Security

4

2. Basics of Partition Isolation

Introduction
To me, achieving full partition isolation is the Holy Grail of Microcontroller Unit (MCU)
system security, because a hacker cannot access data and code outside of a partition from
inside a partition that is fully isolated from the rest of the system. Achieving full isolation
between processes using Memory Management Units (MMUs) is relatively easy but
requires power-hungry processors to achieve acceptable process switching times, and it is
not appropriate at the task-level, anyway. Achieving full partition isolation for MCUs
using Memory Protection Units (MPUs) is possible, but comes with a higher level of
difficulty.

This ebook discusses how to achieve full partition isolation in MCU-based systems.
Many papers have been written concerning MPUs. Ref. 1 is a particularly well-written
introduction to the subject by Jean Labrosse, and I recommend that you read it ahead of
this ebook, as an introduction to MPU concepts. Refs. 2 and 3 are also helpful. The main
problem with Ref. 1 is that it does not go far enough to achieve full partition isolation.
However its contents are reviewed, in a few places here, in order to illustrate the
consequences of different approaches to MPU usage and other aspects of partition
isolation.

Let’s Get Started

USBH

ISRs

RTOS

App1

App3

Figure 2.1 Typical Embedded System Structure

Achieving Device Security

5

Figure 2.1 shows the structure of a typical embedded system. There is no structure, and
there are no partitions. If a hacker breaks in anywhere he has access to everything – to the
keys, to critical data, etc. This is not good.

Ethernet
TCP/IP

Network
Apps Application

Boot &
Initialize

Vault

umode

hmode

System
Services

Internet

Power On

SVC

Direct
Portal

Networking & Security

Security

pmode Barrier

Tunnel Portal

SVC
Handler

System

pmode

Figure 2.2 Secure Network Solution

Figure 2.2 shows a solution to the problem of safely adding networking to an existing,
defenseless embedded system. It is shown here in order to discuss the basics of system
partitioning – see Ref. 3 for more information on this solution.

Above the heavy line is umode. Below the heavy line is pmode and hmode. We call the
heavy line the pmode Barrier, because it is enforced by the processor, and umode code
cannot break through it, except via SVC exceptions. As shown, the Ethernet driver plus
TCP/IP stack, both of which are vulnerable to hacking, are in a umode partition. This
partition sees only encrypted data passing in or out. It connects to the Network Apps
partition via a tunnel portal, and it obtains system services via the SVC exception, both
of which strongly limit what can be done from inside this partition. Note that only the
Security partition connects to the Vault, which contains the keys and other proprietary
information of the system owner.

Achieving Device Security

6

In the above diagram, the entire embedded application code has been grouped into a
single pmode partition and thus it is also protected from an intrusion via the Internet.
Figure 2.2 is a solution for legacy systems and is not typical for new systems, which are
the main subject of this ebook.

Advantages of Isolated Partitions
Dividing embedded system software into isolated partitions has many benefits:

• Protection against unpatched vulnerabilities.
• Protection against zero-days.
• Protection against insider attacks.
• Double protection of mission-critical code.
• Hardware enforced separation of privileged and unprivileged code.
• Hardware controlled access to system services, data, and I/O registers.
• Higher reliability and safety.
• Easier incorporation of legacy software.
• Hardware enforcement of the good programming practices of modular code

with well-defined interfaces.
• Immediate detection of wild pointers and stack and buffer overflows.
• Strong development framework for new systems:

o Protection from other people’s bugs.
o Well defined interfaces (portals).
o Agile coding & CI/CD at the partition level.
o Debugging in a full system environment.

• Partition-only reboot and shutdown to minimize system interruption.
• Partition-only updates to minimize code exposure and system interruption.
• Support for interchangeable modules.

Security and reliability are two sides of the same coin. In the first, hacks are deliberate; in
the second, bugs and malfunctions are accidental. Both can damage property and cause
injury. Measures that improve one tend to improve the other. Hardware enforcement of
full isolation enables interchangeability of modules within a system and better module
reusability in future systems. Hardware enforcement of better design practices also helps
to improve system security and reliability. Partial reboots save time and may allow
normal operation to not be interrupted. Partial updates save time and avoid exposing
partitions not being updated. These are all good reasons for partitioning.

But it should be emphasized that partitioning does not replace other security measures
such as:

• Encryption
• Authentication
• Least privilege

Achieving Device Security

7

• Root of trust
• Firewalls
• Best coding practices
• Bounds checking of inputs
• Monitoring for anomalous behavior

Multiple layers are still necessary for effective security. But if a hacker penetrates these
security layers, partitioning will limit his ability to go further into the system in order to
steal sensitive data or to cause damage. Hence partitioning is an important part of a strong
security strategy.

The Need to Isolate Code As Well As Data
There seems to be some controversy concerning whether or not the code of each partition
should be isolated from the code of other partitions. For example Ref. 1 states:

“Because of the fairly limited number of regions available in an MPU, regions are
generally set up to prevent access to data (in RAM) and not so much to prevent access to
code (in flash).”

A competitive golfer must assume that his opponent will sink the putt, whatever the
distance. An analogous situation exists here – you must assume that a hacker knows
where each of your functions is and what it does. Using this knowledge he can wreak
havoc upon your system simply by calling your functions at inappropriate times or with
inappropriate parameters. If, on the other hand, he can only access code within the
partition that he has penetrated, then he can only damage that partition. Therefore, code
must be isolated in partitions, just like data.

Next we will cover how to define partitions and how to manage the task or tasks within
them.

Partition Definition
Partitions typically are subsystems or modules that perform specific functions, e.g. file
systems, networking stacks, data acquisition, etc. In a new system, we would like to see
as much application, middleware, and driver code put into umode partitions, as possible.
(As previously noted, this is not likely to be practical for legacy systems.)

A partition must contain at least one main task. It may contain other helper tasks. When
defining a new partition, it is a good idea to list all regions that the partition will need.
This may reveal an MPU overflow problem. One technique to deal with MPU overflow is
to divide the partition regions among the main task and one or more helper tasks. For
example, an IO task might be created and assigned the IO regions along with a code
region and a data region that it shares with the main task. Then the main task would not
need the IO regions to be in the MPU when it runs.

Achieving Device Security

8

This might be the standard solution for the MPU overflow problem, except that tasks use
a lot of memory. A typical task needs at least 100 bytes for its Task Control Block (TCB)
and at least 500 bytes for its stack. Very simple tasks might have smaller stacks, but
subroutine parameters and auto variables tend to eat up stack quickly, thus necessitating
fairly large stacks for most tasks. Consequently, task stacks impose a significant memory
requirement. For good performance, the TCB and the task stack should come from on-
chip SRAM, but it is in short supply in most MCUs.

A solution to this is the one-shot task. This type of task does not have an infinite loop in
its code. Instead it receives a stack from a stack pool, runs straight through its code, then
stops and returns the stack to the stack pool. This is possible because it has no need to
store information between runs. One-shot tasks are a good fit for helper tasks and server
tasks. For example, the IO task referred to above needs to run only when its IO operation
is required. For example, it might output infrequent messages to a console. While waiting
for the next message, it does not require a stack. It often happens, due to the system
design, that not all one-shot tasks can run at the same time, or that it is ok for some to
wait for stacks. Consequently many one-shot tasks may be able to share just a few stacks,
thus saving a large amount of SRAM.

ptasks vs utasks

utasks provide a higher level of security than ptasks because the MPU cannot be changed
from umode. In pmode, a hacker is only one instruction away from turning off the MPU
and taking control of the whole system. However, ptasks have equal reliability protection

Achieving Device Security

9

to utasks, and it is not always possible to implement mission-critical functions in umode
due to its lower performance and restrictions. In particular, all ptasks have sys_code and
sys_data regions, which allow them to make direct, unfiltered calls for system services.

As shown in Figure 2.2, utasks must use the SVC exception for system services, which is
much slower and more restrictive (services that could cause system damage are not
permitted). In addition, interrupts cannot be disabled nor enabled from umode, which is
essential for drivers and some low-level code.

Therefore, the importance of ptasks should not be overlooked. In fact, if all vulnerable
partitions have been put into umode, then the umode partitions and the pmode barrier will
provide strong protection against hacking ptasks from umode.

Summary
In the foregoing we have examined the need for and the advantages of partitioning
embedded system software. In addition, we have explored the uses of pmode and umode
and the relationship of tasks to partitions.

Achieving Device Security

10

3. Partitioning Code

Introduction
In this chapter we examine the strategies and techniques to effectively manage MPUs and
solutions to the MPU overflow problem. The references at the end of this ebook are
recommended if you are not familiar with the Cortex-M MPUs.

Achieving Device Security

11

MPU Operation

taskA

R0

R1

R2

R3

taskA
Code
RO

Common
Code
RO

Data
RW, XN

Stack
RW, XN

Rejects

MPU

Memory
Regions

Addr

Data

TLS

MMF
Handler

MMF
Handler

Figure 3.1 MPU Operation

Figure 3.1 shows how an MPU operates. taskA must access memory through the MPU.
Region R0 allows taskA to access taskA read-only code. R1 allows taskA to access
common read-only code. R2 allows taskA to access read/write, execute-never data. R3
allows taskA to access its read/write, execute-never stack and optional task local storage
(TLS). The latter permits task-specific data storage without requiring another data region
for it. If an address is not within the ranges shown or has the wrong attributes such as
!XN for a data access, the Memory Manage Fault (MMF) handler is triggered and takes
control of the system, expelling the hacker.

Achieving Device Security

12

Typical MPU Regions

t2a_stack

USART1

t2a_code

t2a_data

sys_code

sys_data

7

6

5

4

3

2

1

0

ACTIVE SLOTSSTATIC SLOTS

ptask utask

ut2a_stack

USART1

ucom_code

ucom_data

ut2a_code

ut2a_data

sys_code

sys_data0

Figure 3.2 Typical MPU Regions

Figure 3.2 shows typical MPU regions for a ptask and a utask. Static slots are loaded
once, during initialization. Active slots are loaded each time a task switch occurs. The
combined slots determine what regions a task can access.

Starting with the ptask on the left, sys_code means system code. It contains the RTOS,
system services, exception handlers, ISRs, and ucom_code. sys_data contains system
objects such as TCBs, privileged data, the main heap, and ucom_data. Above these are
the task t2a_code and t2a_data regions, a region for USART1, two empty regions, and
the t2a_stack region.

The utask on the right, also has sys_code and sys_data. However, it cannot access them
because they are privileged. They are needed by exceptions and interrupts, which switch
the processor to hmode in order to run exception handlers and ISRs. Above these are the
task ut2a_code and ut2a_data, ucom_code and ucom_data, and USART1 and ut2a stack
regions. ucom code holds common code between utasks such as C library functions and
system service shell functions. ucom_data contains common data, if any. Certain
common code is acceptable, but it is preferrable that there be no common data. The ucom
regions are not necessary for ptasks because they are contained in sys_code and sys_data.

Achieving Device Security

13

MPAs, Templates, and Tasks

TCB0
MPA0

MPA1

MPA2

MPA3

mpa_tmplta

mpa_tmpltb

TCB1

TCB2

TCB3

Task Control
Blocks

Memory
Protection

Arrays

TCB4
MPA_DFLT

MPA Templates

MPU

Figure 3.3 Templates, MPAs, and Tasks Relationship

Figure 3.3 shows the relationship between MPA templates), Memory Protection Arrays
(MPAs), and Task Control Blocks (TCBs). Each task, represented here by its TCB, has an
MPA. When the task starts running, the active regions in its MPA are loaded into the
MPU, as shown.

Note that an MPA template can apply to a single MPA or it can be shared among
multiple MPAs. Normally, in the latter case, the tasks would be in the same partition.
There is also a default MPA that does not require a template. When a task is created, it is
given a pointer to the default MPA. During debug, the default MPA might allow access
to all memory, whereas during operation it might allow little or no memory access. The
sections that follow discuss how to create MPA templates.

Achieving Device Security

14

Sections
The first step in defining templates is to define sections, which compose regions. To do
this it is not necessary to reorganize modules that include code or data from other
partitions. For this, pragmas can be used, as follows1:

#pragma default_function_attributes = @ ".t2a_text"
void t2a_main(void)
{
 …
}
#pragma default_function_attributes =

Similarly for data:
#pragma default_variable_attributes = @ ".t2a_data"
u32 irq;
TCB_PTR parent;
u32 tskctr;
#pragma default_variable_attributes =

Section pragma definitions for the same section that are scattered throughout the code are
merged by the linker into a single section.

If modules get too messy with pragmas everywhere, code and data for a partition can be
brought together into one or more C files for that partition. Then, command line options
can be used, instead of pragmas. For example, in the project window for the file(s) select:
Options, C/C++ Compiler, Extra Options, and enter the following:

--section .bss=.t2a_bss
--section .data=.t2a_data
--section .text=.t2a_text
--section .rodata=.t2a_rodata
--section .noinit=.t2a_noinit

This simply renames the standard section names assigned by the compiler, provided that
Override inherited settings is checked. If several modules for a partition are grouped into
a project file node, then the above need be put only into the options for that node. Or,
instead of the above, put the following into Extra Options:

-f $PROJ_DIR$\..\..\..\CFG\t2a.xcc

and put the above command lines into a new file, t2a.xcc.

1 All code and directions are for the IAR EWARM tool suite.

Achieving Device Security

15

Linker Command File
The second step in defining templates is to define region blocks in the linker command
file. These are composed of the sections previously defined. For example, for v7M2:

/* region sizes (must be power of two) */
define exported symbol t2acsz = 0x1000;
define exported symbol t2adsz = 0x200;
define exported symbol romsz = 0x80000;
define exported symbol sramsz = 0x40000;

/* task code regions */
define block t2a_code with size = t2acsz*7/8, alignment = t2acsz
 {ro section .t2a_text, ro section .t2a_rodata};
/* task data regions */
define block t2a_data with size = t2adsz*6/8, alignment = t2adsz
 {rw section .t2a_bss, rw section .t2a_data};

/* optimized block order using MPUPacker */
define block rom_block with fixed order, size = romsz*5/8,
 alignment = romsz {block sys_code, block
 ut2c_code, block t2a_code, block ut2a_code,
 block ut2s_code, block t2b_code, block t2s_code,
 block ut2d_code, block ut2b_code, block t2c_code,
 block ut1a_code, ro};
define block sram_block with fixed order, size = sramsz*8/8,
 alignment = sramsz{block sys_data, block
 ut2c_data, block ut1a_data, block t2a_data,
 block ut2s_data, block ut2a_data, block t2b_data,
 block t2s_data, block ut2ax_data, block
 ut2d_data, block t2c_data, block ut2b_data, block
 tm23_data, block heap3x};

/* placements */
place in ROM {block rom_block};
place in SRAM {block sram_block};

Region sizes are defined at the top. For v7M, these must be powers of 2. If using hex
numbers, only one digit can be non-zero and it must be 1, 2, 4, or 8, as shown above.
Next the t2a_code and t2a_data region blocks are defined. These become MPU regions.
Note that the actual region block sizes are 5/8, 6/8, 7/8, or 8/8 times the region sizes
defined previously. This utilizes subregion disables for the last 3, 2, 1, or 0 subregions,
respectively. The region blocks are aligned on the region sizes, then the sections for each
region block are listed within the { }. The region blocks are placed in rom_block and

2 v7M is shorthand for ARMv7-M architecture, and v8M is shorthand for ARMv8-M architecture.

Achieving Device Security

16

sram_block super blocks in order to control their locations in memory. The order of
blocks is optimized to minimize memory waste by using our MPUPacker utility, which is
discussed below. Finally, rom_block is placed in ROM and sram_block is placed in
SRAM. The code shown above is just a small part of an actual linker command file.

For v8M, things are simpler and more efficient, as shown by this reduced example:
define exported symbol t2acsz = 0xB00;
define exported symbol t2adsz = 0xA0;
…
define block t2a_code with size = t2acsz, alignment = 32
 {ro section .t2a_text, ro section .t2a_rodata};
define block t2a_data with size = t2adsz, alignment = 32
 {rw section .t2a_bss, rw section .t2a_data};

In this case, the sizes need only be multiples of 32 (0x20) and the region blocks need only
be aligned on 32, as shown. The rest of the linker command lines are the same.
Obviously, v8M is much more memory efficient than v7M. For example, t2a code is
0x1000 * 6/8 = 0xC00 = 3072 bytes for v7M vs 0xB00 = 2816 bytes for v8M. However,
we have several other methods to improve v7M memory efficiency.

MPA Templates
The last step in defining MPA templates is shown in the following examples. These are
consistent with Figure 3.2.

ptask template for v7M:
#pragma section = "sys_code"
#pragma section = "sys_data"
#pragma section = "t2a_code"
#pragma section = "t2a_data"

extern u32 scsz;
extern u32 sdsz;
extern u32 t2acsz;
extern u32 t2adsz;

MPA mpu_static =
{
 RGN(0 | RA("sys_data") | V, PDATARW | SRD("sys_data") | RSI("sys_data") | EN, "sys_data"),
 RGN(1 | RA("sys_code") | V, PCODE | SRD("sys_code") | RSI("sys_code") | EN, "sys_code"),

};

MPA mpa_tmplt_t2a =
{
 RGN(2 | RA("t2a_data") | V, DATARW | SRD("t2a_data") | RSIC(t2adsz)| EN, "t2a_data"),
 RGN(3 | RA("t2a_code") | V, CODE | SRD("t2a_code") | RSIC(t2acsz)| EN, "t2a_code"),
 RGN(4 | 0x40011000 | V, IOR | (0x9<<1) | EN, "USART1"),

};

Achieving Device Security

17

In the above, #pragma section gives access in the code to section names, such as
“t2a_code”, that were defined in the linker command file as region block names and
exported from it. The region sizes, such as t2acsz, were also defined in the linker
command file and exported from it.

RGN, RA, SRD, and RSIC are macros that generate the fields required for the MPU
registers RBAR and RASR. The third field (e.g. "t2a_data") allows assigning a name to
each region for use during debugging. It is not loaded into the MPU. Note: the fields are
separated by commas that are hard to see.

t2a is a ptask, so the static regions, sys_code and sys_data, are necessary for it to obtain
system services via direct function calls. sys_code contains the RTOS and other system
service code, and sys_data contains the control blocks (e.g. TCBs) and the globals needed
by the RTOS and other system services. These are static regions loaded into MPU slots 0
and 1 during initialization. Note that P in PDATARW and PCODE means that these
regions are privileged.

Next is the t2a active region template, starting with t2a_data and t2a_code, which are
defined above. Note that the IO region, USART1, is defined with numbers. This is
because IO regions are at fixed locations in memory and are not defined in the linker
command file. Regions above 4 are not being used and they are loaded with 0’s by
smx_MPACreate(). Region 7 is reserved for the t2a stack. If it is a permanent stack, its
region is loaded from the TCB into the MPA when the MPA is created. If it is a
temporary stack, its region is created and loaded into the MPA and the MPU when t2a is
started.

utask template for v7M
MPA mpa_tmplt_ut2a =
{
 RGN(2 | RA("ut2a_data") | V, DATARW | SRD("ut2a_data | RSI("ut2a_data") | EN, "ut2a_data"),
 RGN(3 | RA("ut2a_code") | V, CODE | SRD("ut2a_code") | RSI("ut2a_code") | EN, "ut2a_code"),
 RGN(4 | RA("ucom_data") | V, DATARW | SRD("ucom_data") | RSI("ucom_data") | EN, "ucom_data"),
 RGN(5 | RA("ucom_code") | V, CODE | SRD("ucom_code") | RSI("ucom_code") | EN, "ucom_code"),
 RGN(6 | 0x40011000 | V, IOR | (0x9 << 1) | EN, "USART1"),

};

The only differences from the t2a template are that sys_data has been replaced with
ucom_data, and sys_code has been replaced with ucom_code and the task is ut2a instead
of t2a. Note that sys_data contains ucom_data, and sys_code contains ucom_code, so
ptasks do not need regions for them.

Achieving Device Security

18

ptask template for v8M
MPA mpa_tmplt_t2a =
{
 RGN(0, RA("sys_data") | PDATARW, RLA("sys_data") | AI(0) | EN, "sys_data"),
 RGN(1, RA("sys_code") | PCODE, RLA("sys_code") | AI(0) | EN, "sys_code"),
 RGN(2, RA("t2a_data") | DATARW, RLA("t2a_data") | AI(0) | EN, "t2a_data"),
 RGN(3, RA("t2a_code") | CODE, RLA("t2a_code") | AI(0) | EN, "t2a_code"),
 RGN(4, 0x40011000 | IOR, 0x40011FFF | AI(1) | EN, "USART1"),

};

The v8M MPU register structure is simpler. However the v8M constraint against
overlapping regions makes static regions difficult to define, so the t2a template includes
sys_data and sys_code. Hence, task switching will be a little slower for v8M. Note that P
in PDATARW and PCODE means that these regions are privileged.

utask template for v8M
MPA mpa_tmplt_ut2a =
{
 RGN(0, RA("sys_data") | PDATARW, RLA("sys_data") | AI(0) | EN, "sys_data"),
 RGN(1, RA("sys_code") | PCODE, RLA("sys_code") | AI(0) | EN, "sys_code"),
 RGN(2, RA("ut2a_data")| DATARW, RLA("ut2a_data") | AI(0) | EN, "ut2a_data"),
 RGN(3, RA("ut2a_code")| CODE, RLA("ut2a_code") | AI(0) | EN, "ut2a_code"),
 RGN(4, 0x40011000 | IOR, 0x40011FFF | AI(1) | EN, "USART1"),

};

The only difference from the ptask template is that t2a is replaced with ut2a. sys_data and
sys_code are still present, but ut2a cannot access them because they are privileged.

MPA Creation
t2a = smx_TaskCreate(t2a_main, PRI2, 300, HEAP0, NO_FLAGS,"t2a“);

if (ARMM7)
{
 mp_MPACreate(t2a, (MPA*)&mpa_tmplt_t2a, 0x7, 6);
}
else
{
 mp_MPACreate(t2a, (MPA*)&mpa_tmplt_t2a, 0x1F, 8);
}
smx_TaskStart(t2a, 0);

Here t2a is created followed by creating its MPA with the mpa_tmplt_t2a template. In the
ARMM7 case, 0x7 means to take the first 3 regions and that 6 is the MPA size. In the
ARMM8 case, 0x1F means to take the first 5 regions and 8 is the MPA size.

Achieving Device Security

19

default MPA for v7
MPA mpa_dflt =
{
 RGN(2 | RA("rom_block") | V, PCODE | SRD("rom_block") | RSI("rom_block") | EN, "rom_block"),
 RGN(3 | RA("sram_block")| V, PDATARW | SRD("sram_block") | RSI("sram_block")| EN, "sram_block"),
 RGN(4 | RA("ram_block") | V, PDATARW | SRD("ram_block") | RSI("ram_block") | EN, "ram_block"),
 RGN(5 | 0x40000000 | V, PIOR | RSIN(0x80000) | EN, "IO Regs"),

};

This is a default MPA for v7M. Note that the rom_block, sram_block, and ram_block
cover all memory that is in use. All accesses outside of these regions will cause MMFs.
Also, if the attributes are wrong (e.g. trying to execute from sram_block) an MMF will
occur. So even this default MPA helps to catch errors.

The static sys_data and sys_code regions are still present in MPU slots 0 and 1, but are
also included in sram_block and rom_block. v7 allows regions to overlap, but v8 does
not. This MPA is useful when debugging of a partition starts. Later a more restrictive
template will be assigned to the partition. For released code, mpa_dflt might be reduced
to no accesses permitted. This would block a task without an MPA from running.

MPU/MPA Relationship
Figure 3.4 shows the relationship between the MPU and an MPA. The static slots are
loaded once during system initialization. These are likely to contain privileged regions
such as sys_code and sys_data, in order to allow ISRs and exception handlers to run
without Background Region, BR,3 on. Static slots are quite likely in 16-slot MPUs, but
not in 8-slot MPUs, due to the need for more active slots.

3 Background Region, BR, enables access to all memory in hmode and pmode. If sys_code and sys_data
are not in the MPU, BR must be on in umode in order for ISRs and exception handlers to run when they
interrupt. BR has no effect in umode.

Achieving Device Security

20

SR

6

5

4

3

2

1

0

0

1

2

3

4

SR

6

7

8

MPU

MPA

2

3

4

5

6

7

Auxiliary
Slots

Active
Slots

Static
Slots

Figure 3.4 MPU/MPA Relationship

The active MPU slots are loaded when a task is dispatched. The active region of each slot
7 is the task stack region. This may be loaded into the MPA and MPU when a task is
dispatched, or loaded into the MPA when the MPA is created, then loaded into the MPU
when the task is dispatched. Finally the auxiliary slots are only in the MPA, and their
number varies from one MPA to another. (MPAs are allocated from the main heap and
thus can vary in size.)

Stack Regions
Ref. 1 suggests an interesting idea of using red zones to protect against stack overflows.
This has the advantage that it permits stacks to be right-sized for their tasks and to be
located adjacent to each other in a single region that may contain other common
variables. This can save a great deal of RAM in a v7M system. The red zone is a small
region (e.g. 32 bytes) loaded into the top MPU slot on a task switch; it overlays the top of
the task’s stack. The red zone prohibits all accesses so that a stack overflow (from below
the red zone) will cause an MMF.

Whereas this might be useful to catch some stack usage errors, it is not very useful for
security. A hacker can easily jump over the red zone by defining a large local array in his
first malware function being currently run by the task. You must always assume that a
hacker knows as much or more than you do about your own code. Hence he knows which
stack goes with which task and he will be able to place a false return to his second

Achieving Device Security

21

malware function in whatever stack he wishes. When that task runs, he will gain control
of it via a return from its stack. In addition, the red zone uses an MPU slot, so it gains
nothing over a stack region, which also uses an MPU slot, as far as MPU usage is
concerned.

The ideal approach is to allocate a stack from a heap when the task is created. Of course,
this requires a heap that can allocate a block of the right size and alignment for the MPU.
In addition, for v7M, it must set subregion disables to achieve the best greater-than-or-
equal fit. eheap, which is discussed in Appendix A can do this. An alternative approach is
to use static stacks or stack pools in which the stacks are already properly sized and
aligned. The heap approach offers more flexibility and efficiency, but either works fine
for security. In both cases, the stack region has RW (Read/Write) and XN (eXecute
Never) attributes. XN defeats a number of hacker tricks.

As a consequence of using a stack region, stack overflows and attempts to execute from
the stack cause immediate MMFs. The worst a hacker can do is to wreck the stack and
possibly the Task Local Storage (TLS) below it. He cannot damage any other stacks. For
best security, the task stack region is put into the top slot. This is because for v7M, the
attributes of the higher number slot prevails when regions overlap. This assures that the
XN will not be overridden. v8M does not permit region overlap (more on this later), so
this is not a factor for it, but the top slot is still used for consistency.

v7M Memory Gaps
Gaps are wasted memory between region blocks. The first line of defense against gaps is
MPUPacker:

 Disabled Subregions
Figure 3.5a Before MPUPacker

Figure 3.5b After MPUPacker

Achieving Device Security

22

MPUPacker is a utility provided with SecureSMX. It is used to determine optimum
ordering of region blocks. Figure 3.4a shows the linker output with wasted space due
region block alignment on regions boundaries, which results in gaps where there are
disabled subregions. Figure 3.4b shows how MPUPacker fills the first gap with small
region blocks that are still on their own region boundaries.

If the reduction by MPUPacker is still not enough, plug blocks can be created from
memory used for boot, initialization, and shutdown that are not in run-time regions, and
these can be used to provide more gap fill. This code runs either before the MPU is
enabled or when it is using MPA regions that span all memory.

Gaps can also occur inside of region blocks if other aligned region blocks are being
included, such as:

define block sys_code with fixed order, size=scsz*6/8,alignment=scsz
 {block ucom_code, block cp_code, ro section
 .sys_text, ro section .sys_rodata};

The first step is to put the blocks in order by size. In this case ucom_code = 0x4000*6/8
and cp_code = 0x4000*5/8, so there is a gap of 0x1000 between them. .sys_text =
0xF680, which is too big for the gap; .sys_rodata = 0xE16, which will fit into the gap, as
follows:

define block sys_code with fixed order, size=scsz*6/8,alignment=scsz
 {block ucom_code, ro section .sys_rodata,
 block cp_code, ro section .sys_text};

 Now the gap is reducing the gap to 0x1EA, however, sys_code size remains at 0x18000.

v7M Memory Tails
Tails are wasted memory inside of region blocks. In the above example, the tail has
grown to 0x234a, which is still much less than the subregion size = 0x4000, so we cannot
do a subregion disable to get rid of it. A tail can be as large as the subregion size minus
one byte. Tails can be much harder to reduce or eliminate than gaps. However, if
available memory is not being exceeded, spare memory might as well be distributed
among tails. That is because they provide expansion memory for partition updates,
without impacting other partitions, thus allowing smaller and faster updates.

The following techniques can be used to reduce tails:

1. If a tail is greater than 1/2 the region size for the block, reduce the region size.
2. If a tail is greater than or equal to the subregion size for the block, disable the

subregion(s) occupied by the tail.
3. If code or data slightly exceeds a subregion boundary, improve code or data

efficiency in order to reduce it below the subregion boundary, then disable that
subregion or reduce the region size if the last 3 subregions are already disabled.

Achieving Device Security

23

4. If a spare slot is available in every partition template using the region, split the
region block into two smaller region blocks, such that the sum of the tails is
smaller than the original tail. This may require some experimentation.

5. Use auxiliary slots to free up active slots and/or to reduce region block sizes in
order to apply the above methods.

6. Split partitions into smaller partitions so that regions are smaller and the sum of
the resulting tail sizes is smaller than the original sum of the tail sizes. This is
likely to require adding new tasks. However, smaller partitions do enhance
security.

Obviously, the foregoing techniques can take a lot of work and thus it is likely to be
feasible only after all development is done. During development, we recommend using a
pin-compatible MCU with much larger internal memory, if one is available. If not, then
use stub partitions for partitions not being debugged. These either have less-important
functionality removed or simply return constants for service requests. See the Framework
section for more information on this.

Partition Demos
A partition demo package consisting of five separate demos plus instructions can be
downloaded from www.smxrtos.com/securesmx. These demos illustrate the process of
putting vulnerable code, such as a file system in this case, into a pmode partition, then
moving it into a umode partition without changing mission-critical code. This illustrates
the process for upgrading the security of existing deices.

The demos are in source code form, so they can be modified to try out ideas. They are as
follows:

pd0

pd0 represents a typical, unprotected embedded system running in handler mode (hmode)
and privileged mode (pmode). It contains three tasks: idle, mctask, and ffdemo. mctask is
intended to represent a mission-critical task. The ffdemo task uses FatFs, which is third-
party code and thus may be considered to be vulnerable. Our goal is to move ffdemo and
FatFs into an isolated umode partition from which mctask is protected with no significant
change to the mctask code.

pd1

The first step is to turn on SMX_CFG_MPU. This enables the MPU. When it is on,
smx_TaskCreate() assigns the default Memory Protection Array (MPA), mpa_dflt, to
each task it creates. When a task is dispatched, its MPA is loaded into the MPU. So this
step is to define mpa_dflt, which involves defining region blocks, mpa_dflt, and task
stack regions.

http://www.smxrtos.com/securesmx

Achieving Device Security

24

pd2

In this step we put FatFs into a pmode partition, called fs, and create a unique MPA for it.
Since a partition must have at least one task, we add ffdemo to the fs partition. Next,
sections are defined for the fs partition using pragmas in the code and compiler section
switches. The sections are used to define region blocks in the linker command file. These,
in turn, are used to define an MPA template for the ffdemo task, which is used at run time
to define the MPA for it. This MPA is created and loaded immediately after the ffdemo
task is created, and now when it is dispatched, it will be limited to the regions in its MPA.
Functions and variables that have been left out cause Memory Management Faults
(MMFs), which are tracked down and fixed. In the end, FatFs and ffdemo are running
only in fs partition regions and cannot access code nor data used by idle and mctask.

pd3

In this step we prepare to move the fs partition to umode. First we must get it to make
system calls via the SVC exception, because when running in umode, it will not be able to
access hmode directly from umode. The SVC exception is triggered by the SVC N
instruction, where N represents one of 256 possible system services. For each service, a
value of N is assigned using an enum. Then, using N as the index, a jump table to the
system service is created. For each service, a shell function is created to call SVC N, with
its N. Also, a mapping header file is created that converts system calls to shell function
calls. Then the standard API header file is replaced by the mapping header file for all fs C
files, and the demo now runs using SVC exceptions, instead of direct service calls.

pd4

In this step we move to umode. The first step is to define the ucom_code and ucom_data
regions, which are common to all utasks. The shell functions are put into .ucom_text.
Next, the fs MPA template is modified to replace the sys_code and sys_data regions with
the ucom regions. Since fs requires heap access, a custom heap is created for the fs
partition. The final step is to set the umode flag in the ffdemo task create function. Now
the fs partition runs in umode, and it cannot access any code or data in hmode or pmode,
so mctask and idle are protected from any malware that might be put into fs.

Summary
In the foregoing we have examined methods to create static and dynamic regions. In
addition, we have covered creating partition templates and using them to initialize task
MPAs. We have also covered the MPU/MPA relationship and the definition of static,
active, and auxiliary regions. Using auxiliary regions to create precise IO regions, and
task stack region tradeoffs have been examined, as well. Finally the security
improvement process for existing devices is illustrated with a set of five demos that can
be downloaded and run. This is a pretty complete review of the current state of MPU
management.

Achieving Device Security

25

4. Creating Isolated Partitions

Introduction
The quest for security is not over, but we are closer. In this chapter we cover methods to
achieve isolated partitions.

System Services from umode
ptasks can directly call system services in pmode, but utasks require a software interrupt
interface (SWI) for system services such as signaling a semaphore. This API is
implemented using the SVC N instruction, which causes an SVC exception that results in
switching to pmode and executing the desired system service. The parameter N selects
the system service to be performed. The SVC instruction is the only way a utask can
penetrate the pmode barrier, and then only to run a permitted system service. When the
system service completes, the utask is resumed in umode with the return value and data,
if any, from the service. Figure 4.1 illustrates this process.

Achieving Device Security

26

utask
SS

Shell
Function

SVC
Handler

SS
Jump
Table

System
Service

SS
Call

PV

Error
Mgr.

ptask
pmodeumode

Figure 4.1 System Service Calls

Not only the code for system services but also the structures they use (e.g. Task Control
Blocks) reside in pmode and thus are not accessible to a hacker from umode. In addition,
services that could cause system damage are not permitted from utasks. Attempted use of
a restricted system service results in a Privilege Violation (PV), causing the Error
Manager to run, the utask to be stopped, and recovery software to take control, thus
stopping a hacker dead in his tracks.

SVC Shell Functions
The following code shows how the SVC shell functions work. The xapiu.h header
function is included in all umode C files. It defines the shell functions, which differ in
name from standard smx functions with a prefix of smxu_ instead of smx_. The second
part of xapiu.h maps standard smx functions to the shell functions.

Achieving Device Security

27

xapiu.h
u32 smxu_BlockPeek(BCB_PTR blk, SMX_PK_PAR par);
BOOLEAN smxu_BlockRel(BCB_PTR blk, u16 clrsz=0);
u32 smxu_BlockRelAll(TCB_PTR task);
...
#define smx_BlockPeek(blk, par) smxu_BlockPeek(blk, par)
#define smx_BlockRel(blk, clrsz) smxu_BlockRel(blk, clrsz)
#define smx_BlockRelAll(task) smxu_BlockRelAll(task)

svc.c
/* main system service table indices */
enum ssndx {LIM, BP, BR, BRA, ... }

/* system service jump table */
u32 smx_sst[] = {
 (u32)END,
 (u32)smx_BlockPeek,
 (u32)smx_BlockRel,
 (u32)smx_BlockRelAll,
 ...
}

The svc.c file starts with the ssndx enum, which assigns n to abbreviated service call
names, such as BP, for BlockPeek. Below is the system service jump table, smx_sst,
which has the addresses of system services in the same order as ssndx. As shown in
Figure 4.1 this table is in pmode.

Next are the system service shell functions. These are put into .svc_text, which is in
ucom_code. The shell functions are very simple – they just call one of the macros shown
below in svc.h.

/* system service shell functions */
#include "xapiu.h"
#pragma default_function_attributes = @ ".svc_text"

NI u32 smxu_BlockPeek(BCB_PTR blk, SMX_PK_PAR par)
{
 sb_SVC(BP)
}

NI BOOLEAN smxu_BlockRel(BCB_PTR blk, u16 clrsz)
{
 sb_SVC(BR)
}

Achieving Device Security

28

NI u32 smxu_BlockRelAll(TCB_PTR task)
{
 sb_SVC(BRA)
}

The first macro in svc.h is for four parameters or less, which are passed in registers 0 to
3. The second macro is for more than four parameters, in which case those over 4 are
passed in the task stack.

svc.h
#define sb_SVC(id) \
 { \
 __asm("mov r12, #0"); \
 __asm("svc %0" : : "i" (id)); \
 }

#define sb_SVCG4(id) \
 { \
 __asm("mov r12, #1"); \
 __asm("push {r4} \n\t"); \
 __asm("svc %0" : : "i" (id)); \
 __asm("pop {r4} \n\t"); \
 }

All system service calls that are deemed safe for use from umode are included in the main
system shell functions in svc.c. Excluded service calls are those that could cause system
damage such as initialization functions. These should only be used from pmode during
initialization and not while running.

Custom SVC Shell Functions
Most partitions need only a dozen or so system services. It is possible to define a custom
set of shell functions and a custom jump table for a partition, as shown below. Notice that
the header file xapipa.h is different. It is included in all C files in the partition. The
prefixes of services are now pa_ where pa is the partition name. (smxpa_ could be used
instead, if preferred.)

Achieving Device Security

29

xapipa.h

u32 pa_BlockPeek(BCB_PTR blk, SMX_PK_PAR par);
BOOLEAN pa_BlockRel(BCB_PTR blk, u16 clrsz=0);
...
#define smx_BlockPeek(blk, par) pa_BlockPeek(blk, par)
#define smx_BlockRel(blk, clrsz) pa_BlockRel(blk, clrsz)

The svcpa.c file is used in the pa partition instead of the svc.c file. It starts with its own
enum, pa_ssndx, which assigns n to a lesser number of abbreviated service call names,
such as BP and BR. Below it is the pa system service jump table, pa_sst, which has the
addresses of system services in the same order as pa_ssndx. Even though this table is for
partition pa, it is located in sys_code, where it is used.

svcpa.c
/* main system service table indices */
enum pa_ssndx {LIM, BP, BR,... }

/* main system service jump table */
u32 smx_sstpa[] = {
 (u32)END,
 (u32)smx_BlockPeek,
 (u32)smx_BlockRel,
 ...
}

Next are the system service shell functions. These are put into .pa_text, which is included
in pa_code. The shell functions are very simple – they just call one of the macros shown
in svc.h.

/* paSSR shell functions */
#include "xapipa.h"
#pragma default_function_attributes = @ ".pa_text"

NI u32 pa_BlockPeek(BCB_PTR blk, SMX_PK_PAR par)
{
 sb_SVC(BP)
}

NI BOOLEAN pa_BlockRel(BCB_PTR blk, u16 clrsz)
{
 sb_SVC(BR)
}

When a switch to a task in pa occurs, smx_sstp = &pa_sst, where smx_sstp is used to
access the current jump table. This is done in the START and ENTER cases of the task
callback function. The EXIT case does smx_sstp = &smx_sst to restore the normal jump

Achieving Device Security

30

table. Thus only partitions with custom jump tables need to have callback functions for
this reason.

Multiple Heaps
There was a day when embedded systems were so simple that heaps were seldom used.
However complexity has grown so much since then that most embedded systems, even
RTOSs, now use heaps. In a typical partitioned system there may be several heaps.
Multiple heaps are necessary because using a common heap between partitions destroys
the isolation between them. SecureSMX uses eheap.

App1

SECURITY Exception
Handlers

Mission
Critical

File
SystemApp3

keys Boot &
Initialize

ISRs &
LSRs

pmode

umode

pmode barrier

hmode

RTOS &
Services

h1 h2

h0

Figure 4.2 Multiple Heaps

Figure 4.2 shows a partitioned system requiring multiple heaps. Heap h0 is the main
heap. It is used by pmode and hmode code. It is also used for task stacks and pmsgs,
which can be used in umode. These are special cases. Task stacks have been discussed
previously, and pmsgs are discussed next. The App1 partition needs heap h1 because its
code is written in C++. eheap incorporates small block pools to allow fast object creation
and deletion. The file system partition requires heap h2 because it was written to get
variable size buffers from a heap for files. If App1 or the File System were allowed to use
h0, then the entire h0 would need to be accessible to them. Thus a hacker in either
partition could wreak havoc on the system.

eheap is similar to dlmalloc [Ref. 4] in that it uses bins. However, it is different in that the
number and sizes of bins is configurable. Due to its extensive use, h0 is likely to have

Achieving Device Security

31

many different bins, whereas h1 and h2 may require just a few bins and thus be much
simpler. The following are features of eheap:

• Developed for Embedded Systems
• Permits Multiple Heaps Per System
• Aligned Block Allocations
• MPU Region Allocations
• Integrated Small Block Pools for C++
• 1 to 32 Configurable Bins
• Merge Control
• Heap Extension
• Auto Allocation Recovery
• Heap and Bin Self-Test and Recovery

For more information on eheap see Appendix A and the eheap User’s Guide.

Protected Blocks and Messages
Protected blocks (pblocks) and protected messages (pmsgs) are unique to SecureSMX.
pblocks provide secure buffers and pmsgs provide secure messages for portals, which are
discussed next.

pblocks

If a buffer is needed and there is a spare slot in a task’s MPA, it is desirable to allocate a
pblock for the buffer. This can be done from an outside heap (normally the main heap),
an outside block pool, or a statically defined block (e.g. block[100]) inside an existing
MPA region4. A region for the pblock is automatically created and loaded into the MPU
and into the task’s MPA. pblocks can be used for partition heaps, temporary buffers,
work areas, etc.

Such a block would normally have RW and XN attributes. It could also have cache,
strongly ordered, and shareable attributes, which might be useful for DMA buffers, for
example. An outside pblock immediately detects overflow and underflow and triggers an
MMF. This defeats hacker buffer overflows. Additionally, if allocation of pblocks is
performed in pmode, attributes such as XN cannot be changed in umode, which provides
additional protection.

pmsgs

A normal smx message consists of a Message Control Block (MCB) linked to a data
block, which contains the actual data. Tasks exchange messages via exchanges. An

4 An outside block cannot be permitted because this would give a hacker access to any memory
he desired. An inside pblock can also be used for pmsgs.

Achieving Device Security

32

exchange can enqueue tasks waiting for messages, or messages waiting for tasks. Both
tasks and messages can be enqueued by priority or by order of arrival.

A protected message (pmsg) is a normal smx message for which the data block is a
pblock and the MCB contains the corresponding region information (e.g. RBAR and
RASR/RLAR), as shown in Figure 4.3.

other fields

data

pmsg bp

rxch

RBAR

RASR/RLAR
pmsg region

handle MCB msg block

message
header

service
header

Figure 4.3 Protected Message

In the above figure, pmsg is the handle of the protected message. When a pmsg is
received by a task, its region information is loaded into a free slot in the MPU and into
the same slot in the task’s MPA. pmsg attributes are normally RW and XN, but they
could be RO and XN. pmsgs are, in effect, self-contained, traveling regions.

Summary
In the foregoing we have examined two of the essential requirements for isolated
partitions: SWI system calls and multiple heaps. We also examined pblocks and pmsgs,
which provide additional protection. Another essential requirement, partition portals is
covered in the next section.

Achieving Device Security

33

5. The Need for Portals

Introduction
The normal API between clients and servers is a function call API. Unfortunately as
shown in Figure 5.1a, this destroys isolation between the client partitions and between the
client and server partitions as illustrated by the large ellipses, because clients must have
access to the server API functions.

C1 C2

S

Figure 5.1a Server Function API

A partition portal provides a message API. As shown in Figure 5.1b, using a portal, P,
preserves partition isolation.

S

C1 C2
P

Figure 5.1b Portal API

Basically, function calls are converted to pmsgs in the clients, C1 and C2, and converted
back to function calls in the server, S. In this chapter, two types of portals are discussed:
free-message portals and tunnel portals.

Achieving Device Security

34

Free Message Portals
In a free message portal, a pmsg is used once. It is sent from a client to a server and when
the server is done with it, it is recycled or deleted. After being sent, the client can no
longer access it. After being released, the server can no longer access it nor determine its
fate. Hence, free message portals provide strong isolation. They are generally used for
commands and small amounts of data.

Portal Operation

The free message portal gets its name from the fact that the pmsgs are not bound to the
client as they are for a tunnel portal; hence they are free. The free message protocol is a
connectionless protocol similar to UDP. It makes use of protected messaging capabilities,
as discussed previously. Figure 5.2 illustrates three of many possible free message
protocol configurations. small circles indicate waiting messages at the message
exchanges shown.

C SX S

Memory

RX

C1 C2

SX

SC SX S

RX

A

B C
Figure 5.2 Free Message Protocol Configurations

Figure 5.2A is the simplest configuration: Client C gets a pmsg from memory, fills it, and
sends it to Server S via server exchange SX. Server S processes the pmsg and returns it to
memory. Figure 5.2B is a more efficient configuration. In this case, Server S sends pmsgs
to reply exchange RX from which they are obtained by Client C. In the case where a
single pmsg is being circulated, the return pmsg probably has ACK/NAK status or data,
and RX serves as a reply exchange. In the case where several pmsgs are circulating, RX
serves as a resource exchange. Figure 5.2C is an extension of 5.2B where two clients are
using the same server. In this case S is serving multiple clients and RX is a resource
exchange.

Achieving Device Security

35

Normally pmsgs have priorities. In 5.2C, for example, messages from C2 might have a
higher priority than pmsgs from C1 and thus be serviced ahead of C1 pmsgs. In addition,
if SX is a pass exchange, the pmsg priority is passed on to server task S while it is
processing the pmsg. If S <= C, the pmsg will be processed some indeterminate time in
the future after C and any other tasks >= S that are ahead of it have been suspended or
stopped. This would probably be satisfactory for logging, for example. If S > C, C will be
preempted for S to run. The latter mimics a direct call. Thus pmsg priority can be
adjusted to achieve different results.
Note that the client is the master, and that it initiates transactions. Should the server need
to initiate a transaction, such as for a client callback, a separate portal is required. If a
pmsg block comes from a client data region, the client can use an auxiliary slot for its
region (see Figure 3.4). Otherwise the client must use an active slot. Similarly for the
server. v8M introduces a complexity for pmsgs because it does not permit overlapping
regions. Therefore, if a pmsg comes from a local region in a client or server, its region
must be put into an auxiliary slot.

The task in a client that was making direct calls to the server is now making and sending
pmsgs. The task in the server which is handling the portal is serving as a proxy making
API calls for the client task.

Achieving Device Security

36

Portal Initialization

fpcs2

fpcs1

FPCS2FPCS1

sxchg

FPSS

pname pname pname
sxchg sxchg

C1 C2 S

other fields other fields

stask

PCL

sxchg

Free Message
Portal

pmsgs

other fields

rxchgrxchg

Figure 5.3 Free Message Portal Initialization

Figure 5.3 illustrates how a free message portal is created and initialized. There is a Free
Portal Server Structure (FPSS) for each free portal in a server. (A server has a portal for
each interface that it presents to the rest of the system.) There is a Free Portal Client
Structure (FPCS) for each server that a client can access. In addition, for each FPSS,
there is a Permitted Client List (PCL) array of pointers to all FPCSs of clients permitted
to access the server’s portal. All structures and arrays are defined at compile time and
cannot be changed during run time. Also they are in pmode and not accessible from
umode. Server portal initialization code, which must be called in pmode does the
following:

• Creates the server exchange, sxchg.
• Loads the sxchg handle and the portal name into the FPCSs, using the portal

client list, PCL, pointers (e.g. fpcs1 and fpcs2).
• Creates the server task, stask.
• Loads the sxchg handle, portal name, and stask handle into the FPSS.
• Causes stask to wait at sxchg for the first pmsg.

Achieving Device Security

37

A client calls the portal open function, which creates a resource exchange, rxchg, gets N
pmsgs, sends the N pmsgs to rxchg, and loads FPCS fields, except name and sxchg,
which were already loaded. This is consistent with Figure 5.2B. If N = 0, rxchg is not
created, and no pmsgs are obtained. This is consistent with Figure 5.2A. For Figure 5.2C,
C1 gets N pmsgs and rxchg and C2 gets no pmsgs and shares rxchg with C1.

This protocol may seem overly elaborate, but it is not. C1 and C2 are isolated from S.
Hence, the only way C1 and C2 can get the sxchg handle and the portal name is if they
are copied into their regions by initialization code running in pmode. The portal name is
optional, but it helps to avoid confusion during debugging if there is more than one portal
structure in a partition. It is important that the portal structures and the PCL array cannot
be altered from umode in order to prevent tampering by a hacker.

Tunnel Portals
Tunnel portals are used for multi-block data transfers, such as files or network streams. A
tunnel portal is similar to a free message portal, except that the pmsg sent by a client
remains in use until the multi-block transmission is complete and the portal is closed by
both ends. Hence the tunnel portal is a connection protocol similar to TCP. Also, the
client remains the owner of the pmsg and server is just its host, but both ends have the
pmsg region in their MPAs.

As shown below, the tunnel has a door at each end, but only one door, at a time, can be
open. When the client’s door is open, it puts data into the pmsg in the tunnel. The door
closes; then the door on the server end opens and the server takes data out of the pmsg.
Sending data from the server to the client is the opposite. The pmsg data block acts as an
alternately shared region between the client and the server, similar to an airlock.

data

client servertunnel

pmsg

client servertunnel

data

client servertunnel

pmsg

pmsg

Figure 5.4 Tunnel Portal Operation

Achieving Device Security

38

The half-duplex operation, is controlled by two semaphores, csem (client semaphore) and
ssem (server semaphore). For example, the client can load data into the pmsg block,
signal ssem, and then wait at csem. This closes the client’s door and opens the server’s
door. The server can read the data, load a return value or data into the pmsg block, then
signal csem and wait at ssem, which reverses the doors. When the tunnel portal is closed
by both ends, the pmsg is recycled or deleted.

Tunnel portal initialization is similar to free message portal initialization, except that the
structures are different: Tunnel Portal Server Structure (TPSS) and Tunnel Portal Client
Structure (TPCS). Portal creation is similar. A single pmsg is obtained by the client and
sent to the sxchg. Then the client initiates a multi-block send or receive, where the blocks
are pmsg block size with the last block usually smaller. Naturally the larger the pmsg
block is, the better the performance. If the pmsg block is as big as the data being sent, no-
copy operation can be implemented, where the pmsg block, itself, is used as the client
working buffer.

Shell Functions
Both types of portals use shell functions. Here we examine shell functions for tunnel
portals since they are slightly more complicated. Each portal has protocol functions such
as Create(), Open(), Close(), Send(), and Receive() for using the portal. Figure 5.5 shows
how a portal converts an API function call to a pmsg in the client, then uses a switch
statement to convert the pmsg back to the function call in the server. The server performs
the function then sends the return value and data, if any, back to the client via the pmsg.

App

f1()
f2()

fn()

fmap.h Shell Fcts
f1p()
f2p()

fnp()

switch
(fid)

API

f1()

f2()

fn()

pmsg

Tunnel

Figure 5.5 Portal Operation

Achieving Device Security

39

The following code is for a umode client, ut2c, and a umode server, ut2s. First are
pragmas to put cbuf and tp_pcsa into ut2c_data and to put tp_pss and tp_pcl into
ut2s_data.

#pragma default_variable_attributes = @ ".ut2c_bss"
u8 cbuf[LBSZ]; /* client buffer */
TPCS tp_pcsA; /* tunnel portal client structure A */
#pragma default_variable_attributes = @ ".ut2s_bss"
TPSS tp_pss; /* tunnel portal server structure */
#pragma default_variable_attributes = @ ".ut2s_data"
TPCS* tp_pcl[] = {&tp_pcsA, &tp_pcsB}; /* permitted client list*/
#pragma default_variable_attributes =

tportal_init() creates ut2c and its MPA, then creates ut2s and its MPA. Following this the
TPSS for ut2s is initialized, then ut2s and ut2c are started. tportal_init() runs during
initialization in pmode.

void tportal_init()
{
 TPSS* psh; /* portal server handle */

 /* create client and server tasks */
 ut2c = smx_TaskCreate(func, TP2, TS_SSZ, SMX_FL_UMODE, "ut2c");
 mp_MPACreate(ut2c, (MPA*)&mpa_tmplt_ut2c, tmskc, 9);
 ut2s = smx_TaskCreate(funs, TP2, TS_SSZ, SMX_FL_UMODE, "ut2s");
 mp_MPACreate(ut2s, (MPA*)&mpa_tmplt_ut2s, tmsks);

 /* initialize portal server structure */
 psh = &tp_pss;
 psh->stask = ut2s;
 psh->sid = sid;
 psh->ssid = 0;
 mp_TPortalCreate(&psh, tp_pcl, sizeof(tp_pcl)/4, SV_SLOT,
 "tp_uportl", "tp_sxchg");

 /* start server and client */
 smx_TaskStart(ut2s);
 smx_TaskStart(ut2c);
}

Achieving Device Security

40

The following is the server code, which is in the ut2s_code region. ut2s_main() simply
calls mp_TPortalServer(), which is a tunnel portal protocol function.

#include “xapiu.h”
#pragma default_function_attributes = @ “.ut2s_text”

/* umode server task */
void ut2s_main(u32)
{
 mp_TPortalServer(&tp_pss, STMO);
}

Next is the client task code, which is in the ut2c_code region. The first step is to get a
pmsg block from the main heap of size SMSZ. The block address is loaded into tpch-
>mhp (message header pointer), the pmsg region is loaded into CL_SLOT in the MPU
and in the ut2c MPA so that ut2c can access it, and the region has a DATARW attribute.
Next, tportal is opened with its tunnel portal control structure = tp_pcsA, message size =
SMSZ, total header size = THSZ, priority = TP3, timeout = COTMO, and ssem and csem
names. mp_TPortalOpen() creates the ssem and csem semaphores, initializes tpch, then
creates an OPEN pmsg, which is sent to the server with TP3 priority, then causes ut2c to
wait at csem.

If OPEN succeeds, the server returns TRUE and the client continues. If COTMO ticks
elapse, the open fails and operation is aborted, as shown. For reliability, there must be a
timeout, but COTOMO must allow sufficient time for the server to first serve other
clients that are ahead.

Achieving Device Security

41

#pragma default_function_attributes = @ ".ut2c_text"

/* umode client utask. */
void ut2c_main(u32)
{
 u8* cbp = (u8*)&cbuf; /* client buffer ptr */
 TPMH* mhp; /* pmsg header pointer */
 TPCS* tpch = &tp_pcsA; /* tunnel portal client handle */

 /* get pmsg from heap */
 tpch->pmsg = smx_PMsgGetHeap(SMSZ, (u8**)&tpch->mhp, CL_SLOT,
 DATARW);
 /* open tportal */
 if (mp_TPortalOpen(tpch, SMSZ, THSZ, TP3, COTMO, "ssem", "csem"))
 {
 /* send data in cbuf to server */
 tp_Send(tpch, cbp, LBSZ, TP_WRITE) /* shell function */

 /* receive data from server into cbuf */
 tp_Receive(tpch, cbp, LBSZ, TP_READ); /* shell function */

 /* close tunnel portal and release pmsg */
 mp_TPortalClose(tpch, CCTMO);
 }
 smx_PMsgRel(&tpch->pmsg);
}

If OPEN succeeds, the client then sends the data in cbuf to the server. If LBSZ > SMSZ,
this will result in a multi-block transfer, which is transparent to the client. Then the client
receives the data back, closes the portal, and releases the pmsg. To close the portal, it
sends a CLOSE command to the server, then waits at csem for a response. When received
or if CCTMO ticks elapse, it clears the client part of tp_pcsA and deletes csem and ssem.
Care must be taken that CCTMO is long enough for the server to complete whatever it
might be doing (e.g. an fwrite() operation.)

The two shell functions, tp_Receive() and tp_Send(), which are called above, are shown
below. These are put into ucom_code, assuming there will be more than one client for
this server. If there is only one client for this server, they would be put into ut2c_code.
Basically, these just call the macro mp_SHL1() to load the service header in the pmsg
block (see Figure 4.3) with the function id, parameter n, and a default return value, 0 =
fail. Then tp_Receive() calls mp_TPortalReceive() and tp_Send() calls
mp_TPortalSend(), which are tunnel portal functions. These and the open and close
functions implement the tunnel portal API on the client side.

Achieving Device Security

42

#pragma default_function_attributes = @ ".ucom_text"

/* client send data to server shell function */
BOOLEAN tp_Send(TPCS* tpch, u8* dp, u32 msz, TP_FID fid, u32 n)
{
 mp_PTL_CALLER_SAV();
 TPSH* shp = (TPSH*)tpch->shp; /* service header pointer */
 mp_SHL1(fid, n, 0);
 return (mp_TPortalSend(tpch, dp, msz, CTMO));
}

/* client receive data from server shell function */
BOOLEAN tp_Receive(TPCS* tpch, u8* dp, u32 msz, TP_FID fid, u32 n)
{
 mp_PTL_CALLER_SAV();
 TPSH* shp = (TPSH*)tpch->shp;
 mp_SHL1(fid, n, 0);
 return (mp_TPortalReceive(tpch, dp, msz, CTMO));
}

#define mp_SHL1(fid, par1, e) \
{ \
 shp->fid = fid; \
 shp->p1 = par1; \
 shp->ret = e; \
 mp_PTL_CALLER_SHL(); \
}

On the server side we see mp_TPortalServer(), which is a tunnel portal function. Note
that it is in the ucom_code region. Basically, it waits passively at sxchg for the next
pmsg. When it receives the pmsg, it switches on the command in the message header (see
Figure 4.3). Shown here are just the SEND and RECEIVE cases. There are also OPEN,
CLOSE, and default cases. SEND calls the user function tp_server(), then does send-
related protocol functions. RECEIVE also call tp_server(), then does receive-related
protocol functions.

Achieving Device Security

43

#pragma default_function_attributes = @ ".ucom_text"

void mp_TPortalServer(TPSS* psh, u32 stmo)
{
 while (psh->pmsg = smx_PMsgReceive(psh->sxchg, ...))
 {
 switch (mhp->cmd)
 {
 case SEND: /* from client */
 tp_server(tpsh);
 ...
 break;
 case RECEIVE: /* to client */
 tp_server(tpsh);
 ...
 break;
 }
 }
}

tp_server interprets the service header to call the services provided by the server. In this
case there are only two services, TP_WRITE and TP_READ. Note that tp_server is in
ut2s_code.

#pragma default_function_attributes = @ ".ut2s_text"

void tp_server(TPSS* tpsh)
{
 thp = (TPSH*)tpsh->shp;

 switch (thp->fid)
 {
 case TP_WRITE:
 ...
 break;
 case TP_READ:
 ...
 break;
 }
}

Achieving Device Security

44

Tunnel Portal Timeouts
The difficulty of choosing timeouts is a direct consequence of enforcing isolation. The
best approach is to pick the longest timeouts that are tolerable for the system. Then
design the client code to retry a few times, before resorting to more severe measures.
When the client csem times out, it marks the portal as being closed so that subsequent
read and write operations will be aborted. To retry, the portal should be closed, then
reopened. The server treats an ssem timeout as a portal close, and it goes back to sxchg
for the next pmsg.

Using semaphores is the bare minimum necessary to implement multiblock transfers.
These are event semaphores so multiple signaling has no effect. However, a hacker
probably can mess them up somehow. This is why tunnel portals are less secure than free
message portals. Of course, application software can implement multi-block transfers
with free message portals, but they may not be fast enough.

Summary
In the foregoing we have examined why portals are necessary to achieve fully isolated
partitions. Two types of portals have been discussed, free message portals and tunnel
portals, both of which utilize pmsgs. In addition we have looked into how a function call
API can be converted to a message API. As with system services, only server functions
that cannot cause system damage should be available via portals. For example, server
initialization functions should only be called directly from pmode during initialization.
Basically, portals should implement only the minimum set of API functions to utilize the
server in the manner necessary for clients. If a potentially dangerous function must be
available to clients, it should be carefully monitored and limited in the server to avoid
hacker misuse.

Achieving Device Security

45

6. Partition Limitations

Introduction
Unfortunately, fully isolated partitions are not enough. A hacker can do considerable
system damage from within a partition. For example, putting a task into an infinite loop
results in blocking all tasks of equal or lower priority from running. Repetitively creating
the same object can exhaust the supply of that object. Hacking into an ISR puts the
hacker into handler mode where he can turn off the MPU and access or do whatever he
wants. The features discussed in this section are designed to help thwart these attacks.

Runtime Limiting
To prevent the first attack, it is necessary to implement task runtime limiting.
Unfortunately, in real time systems, this can be a curse as well as a blessing – for
example, we do not want mission-critical tasks to be runtime limited during emergencies,
such as when a crane is about to topple over! But it is not possible for a developer to
estimate how much run time may be required to avert such a catastrophe. So important
tasks must be allowed to run without runtime limits. This, plus their high priorities should
assure that they can run as long as necessary to never fail, even in extreme situations.

Less-trusted tasks are assigned runtime limits and counters. At the start of a frame, all
counters are cleared. It turns out that tick resolution is too coarse, so CPU clocks are
used, instead. Each time a task runs, the number of clocks it used is determined and

Achieving Device Security

46

added to its counter. If this exceeds the task’s runtime limit, the task is suspended on a
gate semaphore and can no longer run. At each tick, the current task’s counter is updated,
and if it is above its runtime limit, the task is suspended upon the gate semaphore.

Gate
Semaphore

Idle
Task

Signal

Ti
m

ed
 O

ut
 T

as
ks

Time-Limited Tasks Unlimited Tasks

= Counts Left

(after n passes)

Figure 6.1 Runtime Limiting

It is hard enough to get a good balance between task priorities, which allows tasks to
meet their deadlines. Adding a fixed runtime frame can only increase this difficulty.
Instead, we end the runtime frame when the idle task has had sufficient passes to do its
work. Since the idle task has the lowest priority, this assures that all tasks have run
sufficiently to do their work. Then the gate semaphore is signaled, and all waiting tasks
are resumed with their counters cleared. Tasks of the same priority resume in the same
order as they were suspended. This avoids excessive task delays, which could cause
problems.

A child task shares its top parent’s5 runtime limit and counter. If the limit is exceeded, the
child task is suspended immediately. The parent and its other children are suspended only
if they attempt to run afterward. Assigning runtime limits to task families is much easier
than trying to assign a runtime limit to each task in a family, as it is spawned.

5 SecureSMX permits child tasks to spawn other child tasks. So, the “top parent” is the task which is not a child of
any other task.

Achieving Device Security

47

Tokens
During World War II, families received red tokens for meat, blue tokens for fish, and
silver tokens for the trolley. In this way our government controlled consumption.
Similarly, we need to govern how much of each resource a partition can use and how the
partition can use that resource. SecureSMX uses tokens for this purpose.

A handle is a memory location that stores the address of an object control block, such as
a task’s TCB – i.e. it is a control block pointer. A token is the address of a handle.
Handles are defined at compile time, and assigned addresses at link time. There are two
types of tokens: a HI token allows creating, deleting, modifying, and accessing an object,
and a LO token permits only accessing the object (e.g. to test or signal a semaphore). A
token list is compiled for each task, by the programmer, and assigned to the task after it is
created. If no token list is assigned, the task does not require tokens to access or modify
objects. The latter is necessary for tasks such as recovery tasks, and it makes things
simpler for trusted tasks.

Semaphore

Semaphore

Task

Tokens

Figure 6.2 Tokens Controlling Semaphore Access

One of the insidious things a hacker can do from inside a partition is to create the same
object over and over until the pool of object control blocks is exhausted. Then no other
task can create an object of that type. This is blocked as follows: First, the task being
used by the hacker must have a HI token for the object. Second, once created, the object
cannot be re-created, as shown in t2a_main() until it has been deleted.

Another possible hacker attack is to guess a handle and use this to cause trouble. For
example, a semaphore in another partition could be signaled, thus causing a task in that
partition to run when it should not run. This is blocked by requiring a token for that
semaphore.

Achieving Device Security

48

In addition to tokens, all handle parameters are verified to be valid handles before using
them in system services. Each handle is range-checked, and its cbtype field is checked.
This prevents a hacker from using invalid handles in system service calls.

The following code shows token operation for two utasks. First the token lists are
defined. In this case each list has only one token: a LO sbe token and a HI sbe token for
semaphore sbe. Token lists normally have more tokens.

u32 ut2a_ta1[] = {(u32)&sbe, 0}; /* ut2a token list with LO sbe token */
u32 ut2b_ta1[] = {(u32)&sbe+1, 0}; /* ut2b token list with HI sbe token */

This is followed by tsemTK01() which creates tasks ut2a and ut2b and assigns the token
lists to them. Then the tasks are started.

void tsemTK01(void)
{
 /* create ut2a and attach token list */
 ut2a = smx_TaskCreate(tsemTK01_ut2a, TP2, TS_SSZ, UTASK, "ut2a");
 smx_TaskSet(ut2a, SMX_ST_TAP, (u32)&ut2a_ta1);

 /* create ut2b and attach token list */
 ut2b = smx_TaskCreate(tsemTK01_ut2b, TP2, TS_SSZ, UTASK, "ut2b");
 smx_TaskSet(ut2b, SMX_ST_TAP, (u32)&ut2b_ta1);

 /* start tasks */
 smx_TaskStart(ut2a);
 smx_TaskStart(ut2b);
}

Task ut2a attempts to create sbe, but it fails because it has only a LO sbe token.
void tsemTK01_ut2a(u32)
{
 /* fail to create sbe */
 sbe = smx_SemCreate(SMX_SEM_EVENT, 1, "sbe", &sbe);
 if (sbe != NULL)
 tfail();
}

Task ut2b successfully creates sbe because it has a HI sbe token, but it cannot create sbe
twice.

Achieving Device Security

49

void tsemTK01_ut2b(u32 mode)
{
 /* create sbe */
 sbe = smx_SemCreate(SMX_SEM_EVENT, 1, "sbe", &sbe);
 if (sbe == NULL)
 tfail();

 /* fail to create sbe twice */
 SEM_PTR sbe_sav = sbe
 sbe = smx_SemCreate(SMX_SEM_EVENT, 1, "sbe", &sbe);
 if (sbe != sbe_sav)
 tfail();
}

Nor can a hacker define a fake semaphore handle then create a semaphore for it because
ut2b would not have a token for its handle.

The ISR Problem
Unfortunately, ISRs execute in hmode due to the Cortex-M architecture and thus they
provide an attack surface into hmode. Many ISRs are not written to have minimal code.
This problem is exacerbated by RTOSs that allow kernel services to be called from ISRs.
Together these can create a large target for a hacker. This target is particularly tempting
because hacking it puts him into hmode where he can turn off the MPU and access
everything.

SMX supports a different design philosophy, wherein ISRs are minimized and most
interrupt processing is deferred to link service routines (LSRs). LSRs run in the order they
were invoked and they run ahead of all tasks. Hence, they are immune to priority
inversion problems and are thus more suitable for deferred interrupt processing than are
tasks. Also LSR overhead is less than task overhead. Minimizing ISR size reduces the
target size and allows the ISR programmer to focus on making the ISR code more
difficult to hack.

SecureSMX supports three types of LSRs: trusted tLSRs, pmode pLSRs, and umode
uLSRs. Each pLSR and uLSR has its own stack and its own MPA, and it behaves like a
mini task.

Achieving Device Security

50

lsrA

par

isrA

LSR
QUEUE

LSR
SCHEDULER

LSR MPA
to MPU

Exception
Frame to
LSRStack

lsrA

taskA

Partition A

Autostop

PendSV
Handler

PMODE

UMODE

IRET

Interrupt
Invoke lsrA

para

lsrB

parb

...

Figure 6.3 Safe LSR Operation

Figure 6.3 illustrates uLSR operation. isrA invokes lsrA and re-enables the interrupt.
Invoke puts the lsrA handle and one parameter into the LSR queue. When all outstanding
ISRs have run, the LSR scheduler runs and gets the handle and parameter of lsrA, then
dispatches lsrA. This consists of loading its MPA into the MPU and a fake exception
frame into the lsrA stack, then doing an iret to lsrA main code in umode. As a
consequence, most original isrA code now runs in umode in partitionA along with taskA
and shares regions with taskA.

If the hacker hacks into lsrA code, he is no better off than hacking into taskA code. When
done, lsrA autostops. This triggers the PendSV Handler, PSVH, which calls the LSR
scheduler for lsrB.

Achieving Device Security

51

If overhead for a lsrA is too great as a uLSR, it can run as a tLSR. A tLSR runs in hmode
and has very low overhead. However, it is not secure. To deal with this, lsrA could have
minimal code, such as to just signal a semaphore at which taskA waits. taskA would then
do the deferred processing. However, this is likely to be slower than a uLSR and is
subject to priority inversion. So for fastest operation all of the code must remain in a
tLSR.

pLSRs run in pmode and thus are not secure, either. They are provided to support
developing code in a pmode partition, then moving it to a umode partition.

An interesting thing to note is that a uLSR may act like a child task and have some shared
regions and some unique regions (e.g. IO). uLSRs have very small control blocks and
typically require very small stacks. In addition, they run at a priority below ISRs and
above tasks. Thus they present an interesting way to do IO processing that is much more
secure than the usual ISR approach, yet nearly as fast.

Summary
SecureSMX offers the following methods to limit malware operations from inside of
partitions:

• Only permitted clients can access a portal
• Limited access to server functions via portals
• Limited access to system services from umode
• Selective runtime limits for tasks
• Tokens to limit access to and control of system objects
• Prevention of creating an object more than once or of creating fake objects

in order to exhaust object control blocks
• Moving hmode ISR code to a safe umode LSR
• Interrupt control permission tables
• Using precise IO regions by swapping auxiliary regions
• Extensive event monitoring to spot anomalous behavior
• Thorough system service parameter checking

Undoubtedly as time goes on, more limitations will be needed, but we think these are a
good start.

Achieving Device Security

52

7. Advanced Features

Parent/Child Tasks
There is a belief that all tasks should be created during system initialization. This might
improve security but it may not be feasible in practice. For example, USB devices may be
inserted or removed dynamically, and each requires a task for its class driver. Also there
are USB controllers that can operate in either host mode or device mode. Each requires
its own set of tasks. Since tasks are SRAM-hungry, it may be necessary while running to
delete tasks for one device or mode and to create tasks for the other device or mode.
Otherwise, the system would have to be stopped and rebooted to change modes.

There are many other cases where not allowing dynamic task creation and deletion would
create implementation problems. It is not even acceptable to limit task creation to pmode,
since USB stacks and similar code should be running in umode. On the other hand,
allowing umode partitions to create, delete, and otherwise manipulate tasks does not seem
like a good idea either.

Parent Task

Child A
Task

Child B
Task

Child C
Task

Partition
Template

Partition

Figure 7.1 Parent/Child Tasks

The parent/child task concept shown in Fig. 7.1 provides a solution to this conundrum.
The basic principle is that a child task cannot do anything that its parent cannot do.
Hence, the child task inherits all limitations (e.g. interrupt access, service call
permissions, runtime limits, and tokens) from its parent. In addition, it is limited to

Achieving Device Security

53

drawing its regions from the partition regions (shown as Partition Template in Fig 7.1),
and it will likely have only a subset of these regions. A parent task can create or delete a
child task; it can start it, stop it, and perform certain other task operations on it. A child
task can also be a parent of its own child tasks. However, it cannot perform task
operations on its parent, its siblings, nor their children. From a security point of view,
child tasks are simply extensions of their parents.

It should be noted that partition main tasks are normally created in pmode and initially
run in pmode because it is easier that way to initialize their partitions. Then main tasks go
into umode and possibly spawn child tasks and to complete the partition initialization in
umode. So a partition main task may or may not be a parent task.

Auxiliary Slots
Auxiliary slots effectively increase the number of MPU slots. They are used in two ways:
for protected messages (pmsgs) and for slot swapping. The former was discussed in
Chapter 5. The latter is particularly useful for IO regions. For example, a USB host task
might require access to the USB OTG, DMA, and USART controllers. For the
STM32F746 processor, these are located at: 0x40040000 to 0x4007FFFF, 0x40026000 to
63FF, and 0x40011000 to 13FF, respectively. The first requires a 0x40000 = 256KB
region starting on a 256KB boundary, the second and third require 0x400 = 1KB regions
starting on 1KB boundaries.

If only one active IO slot is available, as shown, it is necessary to define a single region
from 0x40000000 to 0x4007FFFF in order to include the three regions above — a
whopping 0x8000 = 512KB region. It would have 0x10000 size subregions, so the first
subregion (0x40000000 to 0x4000FFFF) could be disabled. Thus the actual region would
cover from 0x40010000 to 0x4007FFFF. This includes about 20 other peripheral regions
such as Ethernet, GPIO, SPI, Timers, and ADCs. The USB host task should not have
access to these — it would be a field day for a hacker who infected the USB host
partition!

Alternatively, these regions can be loaded into 3 auxiliary MPA slots and, when needed,
a region can be swapped into the active IO slot in the current task’s MPA and in the
MPU. This is illustrated in Figure 7.2.

Achieving Device Security

54

SP

IO

5

4

3

2

1

0

0

1

2

3

IO

SP

PMSG

USART

DMA

MPU

2

3

4

5

6

7

OR

Active
Slots

USB OTG

MPA

11

9

8

10

Figure 7.2 Swapping IO Regions

The small amount of time required to swap IO regions is well worth the increase in
partition isolation and thus security. Example code is as follows:

mp_MPASlotMove(6, 9);
/* USART code */
mp_MPASlotMove(6, 11);
/* USB OTG code */

…
The places to put slot moves can be found by running the code and finding where MMFs
occur, then putting slot moves there. mp_MPASlotMove() is fast, so this should not
seriously impact performance.

Dynamic Slots
Templates and MPAs can contain dynamic slots. This is useful if templates are stored in
ROM, for security, and thus cannot be changed during run time. A dynamic slot has a
pointer to where its region is stored. When the MPA is created, the region is loaded into

Achieving Device Security

55

the dynamic region of the MPA. The advantage of dynamic slots is that regions of needed
sizes can be created on-the-fly. For example, they can be allocated from a heap. This
allows adjusting to different installation or operational requirements at run time. It is
important to note that MPAs, and hence dynamic slots, can be created only in pmode and
thus only by trusted software. A hacker who has penetrated a umode partition cannot
create dynamic regions other than via system calls to create pblocks and pmsgs, which
were discussed in Chapter 4.

Multi-task Partition Templates
In many cases, a partition will have only one task. However, as discussed above, it may
be desirable have child tasks in addition to the main task. This allows offloading some
regions to child tasks, thus staying within the MPU slot limit. The method for assigning
partition regions to the MPAs of partition tasks is illustrated in Fig. 7.3.

A

B

C

D

E

F

G

H

A

B

C

D

A

B

E

F

G

H

1 1

1

1

1

1

0

0

1

1

1

1

0

0

0

0

Template MPA1

MPA2

M1 M2

M1 = 0x0F

M2 = 0xF3

Figure 7.3 Multiple MPAs from One Template

For simplicity, this figure assumes a 4 slot MPU. When MPA1 is created, mask M1
selects active regions A, B, C, and D. When MPA2 is created, mask M2 selects active
regions A, B, E, and F and auxiliary regions H and G. Thus the 4 slot MPU limit is met
for the partition, even though the partition template has 6 active slots.

Critical Code Sections
Critical code sections, particularly in low-level driver code, are generally protected by
interrupt disable before and interrupt enable after them. When moving a partition from

Achieving Device Security

56

pmode to umode, both of these instructions become NOPs and thus lose protection. One
might think that SVC shell functions could be created for them. This is a Catch-22
situation – whereas the interrupt disable function would work, the interrupt enable
function cannot work because interrupts and exceptions, including SVC, are disabled!
Additionally, it would be bad to allow umode code to disable all interrupts indefinitely.

Instead, SVC functions are provided to mask and unmask interrupts. Permitted interrupts
are specified on a task basis so that a hacker cannot mask or unmask interrupts used
outside of the partition he has infected.

Scheduler Callbacks
Most RTOSs provide EXIT and ENTER scheduler callbacks. The former can be used to
save an extended state (e.g. coprocessor registers) when a task suspends, and the latter
can be used to restore the extended state when the task resumes. SMX also provides
START and DELETE callbacks. When a task first starts running, the former can be used
to do task initialization and to get resources that the task needs. When the task is deleted,
the latter can be used to release the resources and do task cleanup. By placing the
DELETE case below the START case in the callback function switch statement, it is easy
to see if anything has been missed. This facilitates implementing partition-only stop and
reboot, without leaking resources. The following code shows how these cases are used:

SEM_PTR sbr;
u8* bp3;

void ut2a_CBF(u32 mode, u32 task)
{
 switch (mode)
 {
 case SMX_CBF_START:
 sbr = smx_SemCreate(SMX_SEM_RSRC, 1, "sbr");
 bp3 = (u8*)smx_HeapMalloc(128, 0, 3);
 break;
 case SMX_CBF_DELETE:
 smx_HeapFree(bp3, 3);
 smx_SemDelete(sbr);
 break;
 default:
 smx_EM(SMXE_INV_PAR, SMX_ERRH_UNS);
 }
}

void ut2a_main(u32)
{
 …
}

Achieving Device Security

57

void cbf_demo(void)
{
 ut2a = smx_TaskCreate(ut2a_main, TP2, TS_SSZ, 0, "t2a");
 smx_TaskSet(ut2a, SMX_ST_CBFUN, (u32)ut2a_CBF);
 smx_TaskStart(ut2a);
 smx_TaskDelete(&ut2a);
}

In the above example ut2a is created with the ut2a_CBF callback function. When ut2a
starts, the sbr semaphore is created for it. When ut2a stops or is deleted, the ut2a
semaphore is deleted. Similarly bp3 is allocated from heap0 on start, then freed back to it
on delete. ut2a is a utask, but ut2a_CBF executes in pmode. So this is also a convenient
way to initialize a utask in pmode before it starts running.

smxAware
smxAware provides kernel awareness for the IAR C-SPY debugger. When used with
SecureSMX, the MPU and MPA displays make it much easier to see region sizes and
attributes when tracking down MMFs. Also, portal operations are shown in the event
timelines graph, and MPU regions are shown in the memory map overview graph. See
Appendix B for more information on smxAware.

Event Monitoring
A large number of events are monitored, such as service calls, ISR runs, LSR runs, task
operations, errors, and user events. Relevant information for each event is stored in the
event buffer, EVB. In addition, user events can be defined and logged. Logging can be
filtered by event group so the EVB does not fill up too quickly. Periodically uploading
EVB to a security monitoring site allows special software to look for anomalous behavior
that might indicate an attack is in progress. If so, Security Control can take appropriate
action, such as shutting down the partition.

Monitoring operation of all elements of a large system can be the only way to stop highly
sophisticated attacks that evade security mechanisms and slowly penetrate computer
networks.

Achieving Device Security

58

Porting Applications to SecureSMX

It is not possible to run SecureSMX on other RTOSs, because it depends upon the rich
features of SMX that are missing in other RTOSs. Thus applications must be ported to
SMX in order to use SecureSMX. However, this is not as hard as it sounds. In order to
ease this operation, FRPort and TXPort are included with SecureSMX. They provide
porting functions that port nearly all FreeRTOS and ThreadX service calls used in
applications to equivalent smx service calls. Moving applications to SMX should result in
better operation as well as permitting access to all of the security features in SecureSMX.
More ports are planned.

Frameworks
The ideal way to start a new project is to create a framework consisting of all partitions
that will be needed in the final product. To do this, start with a diagram that shows the
partitions or modules needed and the connections between them. In addition, the pmode
barrier should be shown to indicate where each partition resides. Then create a task per
partition and assign it main code that initially simply loops to approximate the expected
execution time for the task. It is desirable to also assign a callback function with a
START case to initialize the task and a DELETE case to delete the task cleanly. Also
create an MPA template for each partition with expected regions, each containing
expected amounts of ROM and RAM for them. Create an MPA for each task. If there are
too many regions, this is a good time to define child tasks to take some of the regions.

Achieving Device Security

59

Add system boot and initialization code, as well as dummy ISRs and LSRs that activate
tasks, as expected.

For each connection between partitions, determine which type of portal is necessary, then
create the portal. Portals should implement the expected APIs for their respective
partitions. Initially, these might have just a few functions. The servers should have stubs
that perform some action or return something. Add code to the clients to make portal
calls.

When the initial framework is done, it should compile, link, and actually run. Now legacy
code can be added to its partitions and the framework should start running in a manner
similar to the final system. From here the remaining partitions can be coded using agile
and CI/CD techniques while using the framework for testing. As coding progresses the
framework will behave more and more like the final system. The main advantages of the
framework approach are:

• Familiarity with security concepts and tools is developed early.
• Interface problems are worked out before a lot of code is written.
• Code is developed iteratively using agile techniques.
• CI/CD means delivering code to the framework for testing with it.
• Third party code can be contained in isolated partitions.
• When the last code is delivered and tested, no integration is left to do.
• Security is baked into the final product.

Because of the advantages above, building in security may not increase development time
and cost -- it might actually reduce them, and the result will be a superior product.

Debugging
An ordinary debugger such as IAR C-SPY works fine for partition debugging. However,
there are some differences from normal code debugging, as follows:

1. MMFs. When moving a partition from pmode to umode, a large number of MMFs
are likely to be encountered. All one can do is fix the current problem, run the
code to the next MMF, and repeat the process. The call stack is helpful tool.
Clicking on the top entry takes you to the exact point in the code that caused the
MMF. Usually this will be a function or variable outside of the partition, so it is
easy to fix. Sometimes, however, it will be a parameter of the function. The
parameter may be outside of the partition or it may be a handle (see below). Really
tough problems are best solved by breaking at the point of MMF, then stepping
through the code in the disassembly window to see the actual instruction (usually
an LDR) causing the MMF.

2. Handles. We become so accustomed to using handles that we forget that they are
the addresses of pointers to RTOS objects. The compiler dereferences the handle
in order to pass the value of the pointer as an argument. It is easy to forget that an

Achieving Device Security

60

object was created outside of the current partition, hence the address of the handle
is outside of the current partition and triggers an MMF. One can struggle with this
problem for a long time, without seeing it. The solution is to step through the
disassembly code. You will see an LDR into a register, then an LDR using that
register, and then an MMF.

3. Broken Call Stacks. We are accustomed to using call stacks to trace a problem
back to its origin. For example, a file system function may be failing due to a
wrong parameter in the file system service call. Going back to the origin of the call
makes fixing a problem like this, easy. When a direct call API is replaced with a
portal, the call stack is broken because the file system server and the file system
client are implemented in different tasks. To counter this problem, the caller of the
API is saved in the caller field of the service header (SH) structure. This can be
entered into the disassembly window, and a breakpoint can be set there to run to
the point of call. When reached, the call stack window will be refreshed, and it
will now show the sequence of calls leading to that point.

4. Wild Pointers. Uninitialized and corrupted pointers will usually trigger MMFs,
making it easy to find them.

MPUMapper
MPUMapper is another utility shipped with SecureSMX. It runs after the ILINK linker
and modifies the .map file so it is possible to see what is where. For example:

 .ucom_text ro code 0x20'1732 0xdc bcc.o
 _itoa 0x20'1733
 _ltoa 0x20'173b
 _ultoa 0x20'17a1
 .ucom_text ro code 0x20'180e 0x24e cpcli.o
 sbp_ConClearScreen 0x20'180f
 sbp_ConClearScreenUnp 0x20'183b
 .ucom_rodata const 0x20'1bd4 0x4 bspm.o
 sbu_ticktmr_cntpt 0x20'1bd4

The above shows what functions are in .ucom_text and what data is in .ucom_rodata.
Therefore, searching on a function or variable reveals where it is, thus making it easier to
put where it should be.

Achieving Device Security

61

8. Conclusion

SecureSMX is intended to provide a flexible set of tools and a structure to improve the
security of existing and new MCU-based systems. It allows doing so with minimal
modification of trusted, legacy code. Its inherent flexibility permits fixing the most
important problems first and gradually improving total system security.

If SecureSMX is used as the foundation for a new system, it is likely that strong security
can be implemented with little or no schedule nor development cost increase. This is
because it provides hardware-enforcement of design practices proven to reduce
integration and debug time. And the downstream payoff, in terms of security protection,
is huge. For all of the features presented above, the code size of SecureSMX is about 10
KB (excluding SMX size). Of course, a large amount of application code must be added,
so the total size increase can be much larger.

In an ideal system, as much code as possible has been moved from pmode to isolated
umode partitions, portals are used for inter-partition communication, all untrusted tasks
are runtime and token limited, deferred interrupt processing is done in safe LSRs, and
mission-critical code and data are doubly protected by the pmode barrier.

While this goal is achievable for new designs, it is not likely to be practical for existing
designs. It may be that moving all untrusted code into a single umode partition and
applying some limitations to it is an adequate solution for an existing design. SecureSMX
is specifically designed to provide the flexibility to implement partial solutions. It also is
designed to permit incremental improvements, wherein the security team makes one
improvement at a time, thus achieving gradual security improvement over time.

It is important to recognize that other security measures are still needed, such as root-of-
trust, secure boot, secure update, encryption, and code improvement. In this context
SecureSMX provides a firm security foundation and offers many new options to deal
with security problems.

For the project manager, partitioning allows putting the best programmers on the most
important partitions and other programmers on the other partitions. Isolation guarantees
protection of important partitions from less important partitions. Although a hacker might
be able to hack one of the weaker partitions, he will not be able to get to the good stuff in
the important partitions. Hence your device is safe from serious damage due to being
hacked.

For more information on SecureSMX, please visit www.smxrtos.com/securesmx. Please
email me at ralph@smxrtos.com if you have questions. I will be happy to answer them.
Please put “RTOS” or “SecureSMX” in your title so your email will not be filtered out.

http://www.smxrtos.com/securesmx
mailto:ralph@smxrtos.com

Achieving Device Security

62

References
1. Jean Labrosse, Using A Memory Protection Unit With An RTOS, 5/18.
2. Ralph Moore, Is Your Thing in Danger?, 3/24.
3. Ralph Moore, Where’s The Gold?, 3/24.
4. Doug Lea, A Memory Allocator, 12/96.
5. Paul R. Wilson, Dynamic Storage Allocation: A Survey and Critical Review, 9/95.

Ralph Moore is a graduate of Caltech. He and a partner started Micro
Digital Inc. in 1975 as one of the first microprocessor design services.
In 1989 Ralph decided to get into the RTOS business and he
architected the smx RTOS kernel. After 20 years of selling Micro
Digital products and managing the business, he went back into product
development. Recent projects include eheap, SecureSMX, FRPort and
TXPort. Ralph has three children and six grandchildren.

https://www.embeddedcomputing.com/application/industrial/industrial-computing/using-a-memory-protection-unit-with-an-rtos
https://www.smxrtos.com/articles/thingindanger.htm
https://www.smxrtos.com/articles/wheresthegold.htm
http://gee.cs.oswego.edu/dl/html/malloc.html
https://users.cs.northwestern.edu/~pdinda/icsclass/doc/dsa.pdf

Achieving Device Security

63

Appendix A eheap

Introduction
eheap has been developed specifically for embedded systems. It has numerous features
that are useful for embedded systems, especially partitioned systems. These features are
discussed below.

Doubly Linked Chunks
Heaps consist of linked chunks. In each chunk is metadata used by the heap and the data
block returned to the user. In dlmalloc (see Ref. 4) and many of its derivatives, the block
size is at the start of each chunk and also at the end of each free chunk. This achieves a
very high memory efficiency – only 8 bytes per inuse chunk. However, it is only possible
to trace forward (by adding sizes to the heap start), and not backward through the heap.

A better design for embedded systems is a forward link and a backward link in every
chunk. This permits continual forward heap tracing during idle periods to find broken
links, and when a broken link is found, backward tracing to fix it. Backward tracing is
also necessary to check each link when tracing forward. Heaps contain vital information
such as task stacks, memory protection arrays, and other system and application control
structures. Hence, heap self-testing and self-healing is important for embedded systems
exposed to background radiation, electrical disturbances, heat, and other environmental
phenomena, not to mention hackers.

INUSE FREE INUSE FREE

IN
US

E

INUSE FREE

BIN
N

HEAP

BIN
N+1

Figure A.1: Heap Bins

Achieving Device Security

64

Heap Bins
dlmalloc was one of the first heaps to use heap bins, and most other heaps developed
since dlmalloc also use them. A heap bin consists of doubly linked free chunks, in a
certain size range, linked to a bin header. Normally the smallest-size bins have only one
size and are organized by successive chunk sizes (e.g. 24, 32, …, 56) up to a maximum
size. This is referred to as a Small Bin Array (SBA). Allocating or freeing an SBA chunk
is very fast – the size is used as an index into the SBA, and the first chunk is taken.
Above the SBA are the upper bins6, which consist of a mixture of small bins and large
bins. Small bins have one size; large bins have a range of sizes (e.g. 128 to 248, 256 to
504, etc.). The last upper bin is called the top bin, and it has all of the remaining sizes up
to the chunk size limit.

Accessing the correct upper bin requires size comparisons, then searching the bin for the
best match. If a big-enough chunk is not found, the first chunk in the next larger occupied
bin is taken. This can be time-consuming, but not as bad as searching a serial heap with
no bins. Each upper bin is, in effect, a small heap.

The problem with dlmalloc, and its variants, is that the number of bins and trees is fixed.
This may be ok for the main heap, but it is not a good match for partition heaps. A given
partition may use only a few block sizes, thus it needs only a small SBA, if any, and only
a few large block sizes. Thus a configurable bin structure is highly desirable for partition
heaps, both for memory efficiency and for performance. For example, the following bin
structure might work well for a network partition:

u32 const binsz2[] =
/*bin 0 1 2 3 4 end */
 {24, 512, 1024, 1526, 1534, -1};

In this case, there is no SBA. The first bin covers all chunk sizes from 24 to 5047. The
next two bins cover all chunk sizes up to 1518. Bin 3 has a single chunk size of 1526,
which can hold the maximum Ethernet frame size of 1518 bytes. Like an SBA bin, bin 3
requires no searching – the first chunk is taken. Bin 4 is the top bin and it contains all
chunk sizes from 1534 on up to the chunk size limit.

An even simpler partition might contain only one bin:
u32 const binsz1[] =
/*bin 0 end */
 {24, -1};

6 Not applicable to dlmalloc, which uses trees; trees are much more complicated than large bins.
7 Block sizes are 8 bytes less than chunk sizes, and chunk sizes are spaced 8 bytes apart.

Achieving Device Security

65

This could be a partition that allocates mostly permanent blocks. In this case, the chunks
would come primarily from the top chunk8 and seldom from bin0.

Large Bin Sorting
Generally, embedded systems have significant idle time in order to be able to handle peak
loads. Large bin sorting can be done during idle times. If a large bin has been sorted, the
first big-enough chunk is also the best-fit chunk in the bin. Assuming the rule is to always
take the first big-enough chunk, sorting reduces unnecessary chunk splitting and saves
bigger chunks for larger requests. (Note: Finding the best-fit chunk in an unsorted bin
usually takes too much time.)

Merge Control
When a chunk is freed it may be merged with adjacent free chunks. dlmalloc has no
merge control – freed chunks are always merged with adjacent free chunks. This tends to
deplete bins because it results in removing a free chunk from a lower bin, merging it with
the freed chunk, and placing the resulting free chunk into a higher bin. The next time this
chunk size is needed, its bin may be empty. Then it becomes necessary to get a larger
chunk from a higher bin, split it, and store the resulting free chunk in a lower bin. Thus
two unnecessary operations are necessitated: merge and split, which hurts performance,
and the allocation time is longer. If a chunk is in a bin, it will probably be needed again.

A better policy for embedded systems is not to merge until a specified upper threshold is
reached, such as HEAP_USE_MAX, and then merge all freed blocks until a lower
threshold is reached, such as HEAP_USE_MIN. This operates like a thermostat. Other
criteria could be used, such as number of free blocks, total free block bytes, etc. In
defense of dlmalloc, research has shown (See Ref. 5) that there is no universal solution to
avoiding allocation failures due to fragmentation. Hence, merge control may be
dangerous and possibly should be turned off. However, embedded systems, particularly
individual partitions, tend to have regular behaviors, and merge control probably will not
cause allocation failures for them.

Heap Recovery
In the event of an allocation failure, a heap recovery function is automatically called. It
traces through the heap to find enough adjacent free blocks to satisfy the request, merges
them together, and returns control to the allocation function. Thus the allocation takes
longer but does not fail.

8 An eheap starts out as a donor chunk for the SBA and a top chunk for upper bin chunk sizes. If there is
no SBA, there is no donor chunk and the whole heap starts out as a single top chunk.

Achieving Device Security

66

Aligned Blocks
Dynamically allocated protected blocks, pblocks, and protected messages, pmsgs, must
be aligned on power-of-two boundaries in order to be used as MPU regions. An efficient
process for doing this is as follows:

1. Find the first large-enough free chunk for the desired block size, sz.
2. Find the first 2^n alignment boundary inside the chunk’s data block, where 2^n is

the next power of two >= sz.
3. Test if the remainder of the chunk is >= sz.
4. If not, go on to the next large-enough chunk.
5. When a big enough chunk has been found, put its Inuse Chunk Control Block

(ICCB) below the boundary – i.e. just below the aligned data block.
6. The resulting space below the ICCB is called free space, and it is handled as follows:

a. If the preceding chunk is free, combine the free space with it.
b. Else, if the free space is large enough, make it into a free chunk.
c. Else, combine the free space with free space at the end of the preceding inuse

chunk, and if the result is big enough, make it into a new free chunk.
7. Split off space after the block, if large enough for a free chunk, else make it free space.

This process is illustrated in Figure A.2. In this figure, ICCB = Inuse CCB, FCCB = Free
CCB. In this case, option 6b has been taken and a small free chunk has been formed
below the new data block. Some spare space is left at the top of this chunk because the
space is not large enough to form a free chunk.

ICCB

free space

FCCB

aligned
data
block

ICCB

data
block

ICCB

ICCB

data
block

FCCB

free space

ICCB

sz

spare space

2^n

Figure A.2 Aligned Allocation

Achieving Device Security

67

Over a period of time, the heap will start to be organized into chunks having aligned data
blocks, and aligned allocations will become faster.

Region Blocks
The foregoing is adequate for v8M MPU regions when specifying alignment and size as
multiples of 32, but v7M MPUs require additional steps:

1. Determine the region size as the next larger power of two. For example, if sz =
630, then the region size = 1024.

2. Determine the subregion size and the number of contiguous subregions needed. In
the example, subregion size = 128, and 5*128 = 640 > 630, so N = 5.

3. Do aligned search steps 1 - 3 with alignment = 128 and size = 640.
4. After step 3: Verify that all N subregions are in the same region – i.e. find the next

region boundary (e.g. multiple of 1024) and verify that the last subregion ends
before it.

5. Do steps 5 -7.

ICCB

free space

FCCB

region
block

ICCB

data
block

ICCB

ICCB

data
block

ICCB

spare space

2^(n+3)spare space
0

1

2

3

4

5

6

7

2^(n+3)

Su
br

eg
io

n
N

um
be

rs

sz

2^n

Figure A.3 Region Allocation

This results in a subregion-aligned v7M region block that is contained in contiguous
subregions within a region, as shown in Figure A.3: In this example, subregions 1-5 will
be enabled, and subregions 0, 6, and 7 will be disabled. Note how the disables protect the

Achieving Device Security

68

surrounding heap CCBs and spare space. Because the region block is subregion-aligned,
it is easier to find than if it were region-aligned and it causes less heap disruption.

Chunk Types
Figure A.4 shows three types of chunks, each with a different Chunk Control Block
(CCB) (Orange). All three CCBs have a forward link to the next CCB and a backward
link to the previous CCB. In addition, the free CCB has chunk size, forward and
backward bin links, and bin number * 8. This requires 24 bytes, so that is the minimum
chunk size. The inuse CCB requires 8 bytes for links, so the smallest data block is 24 – 8
= 16 bytes.

The third type of chunk is a debug chunk. The debug CCB is an inuse CCB with chunk
size, time of allocation, owner, and a fence added. In addition the data block has N fences
above and below it. These things are useful during debugging to find memory leaks,
block overflows, and other problems. Whether an inuse chunk or a debug chunk is
generated by an allocation depends upon whether the heap’s debug mode is off or on,
respectively. This permits limiting debug chunks to code of interest, which is useful since
they can be much larger than inuse chunks (e.g. N = 32).

free space

Free Chunk Inuse Chunk Debug Chunk

bp

bp

Figure A.4 Heap Chunk Types

Integrated Block Pools
16 bytes + 8 for the CCB is rather large for many C++ objects. To alleviate this problem,
smaller block pools can be integrated into the heap. Then allocations of less than 16 bytes

Achieving Device Security

69

are taken from the block pools in the heap. This is fast and commensurate with the needs
of object-oriented code. A useful by-product of integrating block pools into a heap is that
if a block pool runs out of blocks, the block comes from the heap, instead. This may
result in slower performance, but the system does not break. When freed, blocks go back
to their respective sources.

It is likely in modern embedded systems that some partitions (especially third party
software) will be written in C++. A heap with integrated block pools may result in much
better performance for the partition and may use less memory.

The Need for Mutexes
All RTOSs use some mechanism to protect critical sections of system service routines.
Whatever method is used, the net result is that no other task can run during these critical
sections. That approach is not workable for multiple heaps that are managed by the same
heap code. Instead, we use a mutex per heap in order to limit one task at a time to access
a heap, while allowing higher priority tasks to preempt and access other heaps.

Summary
As can be seen from the foregoing, the heap choice is an important part of partitioning a
system. The right heap can improve performance and reduce code rewriting. Providing
dynamic regions is also an important heap requirement. eheap provides all of the features
discussed above. For more information see the eheap web page and the eheap User’s
Guide there.

https://www.smxrtos.com/eheap

Achieving Device Security

70

Appendix B smxAware

smxAware has been enhanced with new features to help debug issues related to the
Memory Protection Unit in SecureSMX systems. These are covered here. See the
smxAware User’s Guide for full documentation of them.

MPU Display
The IAR debugger displays the MPU registers like this:

RNR can be manually patched to the slot number to view, which then shows the RBAR
and RASR values for that slot. A separate display shows RBAR and RASR for the 4 slots
starting at slot RNR. smxAware provides a much better view of the MPU and also
provides similar views for all MPAs, as shown below.

This is a huge help in determining the cause of a Memory Manage Fault (MMF). The
MPU display shows the regions currently in the MPU. The MPA display shows the MPA
images for all tasks in the system. Each shows the regions that will be loaded into the
MPU on a switch to that task.

Achieving Device Security

71

The following shows the MPU when LED_task is running:

Achieving Device Security

72

A few things to discuss:

• A simple slot such as MPU[1] shows the Start, End, Size, Attributes, and name, as
well as the actual MPU RBAR and RASR register values.

• A more complex slot such as MPU[0] also shows disabled subregions. Usually
disabled subregions are at the end, but as shown for MPU[3] (GPIOBF), they can
be any of the 8 subregions. Sub Start/End indicate the area mapped by the enabled
regions. In this case, 1 and 5 (missing from the disabled list) are enabled, and the
Start/End show their extents.

• The name is assigned when built for debug. The MPU itself has no provision to
name regions. For release, names can be turned off with a single switch, which
makes the code use the fast MPU loading feature of the Cortex-M MPU.

• ucom_code contains common code such as SVC and portal client shell functions,
and some common C library functions.

• Slot 6 is unused.
• This task's MPA template is defined in the code like this: (A template is loaded

into an MPA when the MPA is created.)

Achieving Device Security

73

MPA Displays
The MPA tab lists all of the tasks:

Expanding one produces an MPA display similar to the MPU display. The following are
example MPAs for the fs_reader_writer0 and the first fsp_svr tasks:

Achieving Device Security

74

fsdp_code and fsdp_data contain smxFS demo code that accesses smxFS via a portal.
These do not contain smxFS library code and data. pmsg is a region for a tunnel portal
message used by the client tasks to make indirect calls to the smxFS API.

Achieving Device Security

75

By contrast, the smxFS portal server task has the smxFS library code and data regions,
plus the IO regions to access SDMMC and DMA registers, as well as its own copy of the
pmsg region:

Using the map file produced by the linker, especially the modified version created by our
MpuMapper utility, you can see what functions and variables are in each region.

Achieving Device Security

76

Finding Memory Manage Faults (MMFs)
The MPU/MPA display makes it possible to diagnose Memory Manage Faults because it
lets you see all of the regions accessible to the current task and the extent of each region.
To demonstrate this, an MMF is forced in our LED task. When it occurs, the debugger
stops execution and the call stack looks like this:

The last call in the call stack before the handler is sb_LEDWriteRow(), and when double-
clicked the disassembly shows it was on the first instruction.

The address of the first instruction (0x0804dcf4) is outside all of the regions in the
current MPU (see starts/ends in the MPU shown above), so the fault was caused by
calling this function. It needs to be located in a code section that is in one of the regions
shown, e.g. ucom_code or led_code. We normally put it in ucom_code for use by
multiple tasks, but it could also be put in led_code if used only by LED_task. It is
achieved by this pragma at the top of led.c:

#pragma default_function_attributes = @ ".ucom_text"

If the call stack and disassembly showed the fault occurred on a move instruction or other
data access, then look at the registers to see what the attempted source and destination
addresses were and whether either is out of range of all slots. Sometimes MMFs can
occur due to unusual situations (such as region overlap on v8), so see the Debug Tips
section of the Debug chapter in the SecureSMX manual for suggestions.

Achieving Device Security

77

Event Display
smxAware shows portal operations recorded in the Event Buffer like this:

In this example, all filter buttons at the top are enabled.

Achieving Device Security

78

In the following example, only the Portal filter button at the top is enabled:

This allows seeing more portal operations in one screen. Similarly Task, LSR, etc.
operations or any combination of operations shown by the buttons can be enabled.

Achieving Device Security

79

Timeline Display
Portal events are also shown on the timelines graph as purple dots. See the circled one
below and the details about it that appear when the Details button is clicked.

Summary
smxAware is vital to see what the MPU currently looks like as well as the images for
each task, in order to diagnose Memory Manage Faults. It is also helpful to debug portal
issues by showing the events in the event buffer and the graphical event timelines
display. We co-developed these new features right along with SecureSMX because we
needed them to do the work. In addition, we have given detailed debugging tips in the
manual to help solve problems you may encounter.

RTOS Security Specialists

www.smxrtos.com/securesmx

	1. Introduction
	The First Problem
	The Second Problem
	The Hardware
	The Security Goals

	2. Basics of Partition Isolation
	Introduction
	Let’s Get Started
	Advantages of Isolated Partitions
	The Need to Isolate Code As Well As Data
	Partition Definition
	ptasks vs utasks
	Summary

	3. Partitioning Code
	Introduction
	MPU Operation
	Typical MPU Regions
	MPAs, Templates, and Tasks
	Sections
	Linker Command File
	MPA Templates
	ptask template for v7M:
	utask template for v7M
	ptask template for v8M
	utask template for v8M
	MPA Creation
	default MPA for v7

	MPU/MPA Relationship
	Stack Regions
	v7M Memory Gaps
	v7M Memory Tails
	Partition Demos
	pd0
	pd1
	pd2
	pd3
	pd4

	Summary

	4. Creating Isolated Partitions
	Introduction
	System Services from umode
	SVC Shell Functions
	Custom SVC Shell Functions
	Multiple Heaps
	Protected Blocks and Messages
	pblocks
	pmsgs

	Summary

	5. The Need for Portals
	Introduction
	Free Message Portals
	Portal Operation
	Portal Initialization

	Tunnel Portals
	Shell Functions
	Tunnel Portal Timeouts
	Summary

	6. Partition Limitations
	Introduction
	Runtime Limiting
	Tokens
	The ISR Problem
	Summary

	7. Advanced Features
	Parent/Child Tasks
	Auxiliary Slots
	Dynamic Slots
	Multi-task Partition Templates
	Critical Code Sections
	Scheduler Callbacks
	smxAware
	Event Monitoring
	Porting Applications to SecureSMX
	Frameworks
	Debugging
	MPUMapper

	8. Conclusion
	Appendix A eheap
	Introduction
	Doubly Linked Chunks
	Heap Bins
	Large Bin Sorting
	Merge Control
	Heap Recovery
	Aligned Blocks
	Region Blocks
	Chunk Types
	Integrated Block Pools
	The Need for Mutexes
	Summary

	Appendix B smxAware
	MPU Display
	MPA Displays
	Finding Memory Manage Faults (MMFs)
	Event Display
	Timeline Display
	Summary

